WorldWideScience

Sample records for bethe-salpeter equation bse

  1. Covariant solutions of the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Williams, A.G.; Kusaka, K.; Simpson, K.M.

    1997-01-01

    There is a need for covariant solutions of bound state equations in order to construct realistic QCD based models of mesons and baryons. Furthermore, we ideally need to know the structure of these bound states in all kinematical regimes, which makes a direct solution in Minkowski space (without any 3-dimensional reductions) desirable. The Bethe-Salpeter equation (BSE) for bound states in scalar theories is reformulated and solved for arbitrary scattering kernels in terms of a generalized spectral representation directly in Minkowski space. This differs from the conventional Euclidean approach, where the BSE can only be solved in ladder approximation after a Wick rotation. (author)

  2. Bethe-salpeter equation from many-body perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Tobias; Starke, Ronald; Kresse, Georg [Computational Materials Physics, University of Vienna, Sensengasse 8/12, 1090 Vienna (Austria)

    2013-07-01

    The Green function formalism is a powerful tool to calculate not only electronic structure within the quasi-particle (QP) picture, but it also gives access to optical absorption spectra. Starting from QP energies within the GW method, the polarizability, as central quantity, is calculated from the solution of a Bethe-Salpeter-like equation (BSE). It is usually solved within the Tamm-Dancoff Approximation (TDA) which neglects the coupling of resonant (positive frequency branch) and anti-resonant (negative frequency branch) excitations. In this work we solve the full BSE (beyond TDA) based on self-consistently calculated QP orbitals and energies for typical systems. The dielectric function is averaged over many low dimensional shifted k-meshes to obtain k-point converged results. We compare the results to recently introduced approximation to the BSE kernel. Additionally, the time-evolution ansatz is employed to calculate the polarizability, which avoids the direct solution of the BSE.

  3. The Bethe-Salpeter equation with fermions

    International Nuclear Information System (INIS)

    Efimov, G.V.

    2007-01-01

    The Bethe-Salpeter (BS) equation in the ladder approximation is studied within a fermion theory: two fermion fields (constituents) with mass m interacting via an exchange of a scalar field with mass μ. The BS equation can be written in the form of an integral equation in the configuration Euclidean x-space with the symmetric kernel K for which Tr K 2 = ∞ due to the singular character of the fermion propagator. This kernel is represented in the form K = K 0 + K I . The operator K 0 with Tr K 0 2 ∞ is of the 'fall at the center' potential type and describes a continuous spectrum only. Besides the presence of this operator leads to a restriction on the value of the coupling constant. The kernel K I with Tr K I 2 2 c 2 and the variational procedure of calculations of eigenvalues and eigenfunctions can be applied. The quantum pseudoscalar and scalar mesodynamics is considered. The binding energy of the state 1 + (deuteron) as a function of the coupling constant is calculated in the framework of the procedure formulated above. It is shown that this bound state is absent in the pseudoscalar mesodynamics and does exist in the scalar mesodynamics. A comparison with the non-relativistic Schroedinger picture is made. (author)

  4. Glueball properties from the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Kellermann, Christian

    2012-01-01

    For over thirty years bound states of gluons are an outstanding problem of both theoretical and experimental physics. Being predicted by Quantum-Chromodynamics their experimental confirmation is one of the foremost goals of large experimental facilities currently under construction like FAIR in Darmstadt. This thesis presents a novel approach to the theoretical determination of physical properties of bound states of two gluons, called glueballs. It uses the consistent combination of Schwinger-Dyson equations for gluons and ghosts and appropriate Bethe-Salpeter equations describing their corresponding bound-states. A rigorous derivation of both sets of equations, starting from an 2PI effective action is given as well as a general determination of appropriate decompositions of Bethe-Salpeter amplitudes to a given set of quantum numbers of a glueball. As an application example bound state masses of glueballs in a simple truncation scheme are calculated. (orig.)

  5. Covariant solutions of the Bethe-Salpeter equation and an application to the nucleon structure function

    International Nuclear Information System (INIS)

    Williams, A.G.

    1998-01-01

    There is a need for covariant solutions of bound state equations in order to construct realistic QCD based models of mesons and baryons. Furthermore, we ideally need to know the structure of these bound states in all kinematical regimes, which makes a direct solution in Minkowski space (without any 3-dimensional reductions) desirable. The Bethe-Salpeter equation (BSE) for bound states in scalar theories is reformulated and solved for arbitrary scattering kernels in terms of a generalized spectral representation directly in Minkowski space. This differs from the conventional Euclidean approach, where the BSE can only be solved in ladder approximation after a Wick rotation. An application of covariant Bethe-Salpeter solutions to a quark-diquark model of the nucleon is also briefly discussed. (orig.)

  6. Excited charmonium states from Bethe-Salpeter Equation

    Czech Academy of Sciences Publication Activity Database

    Šauli, Vladimír; Bicudo, P.

    2012-01-01

    Roč. 7, 043 (2012), s. 1-10 ISSN 1824-8039. [International Workshop on QCD Green’s Functions. Tranto, 05.09.2011-09.09.2011] R&D Projects: GA MŠk(CZ) LG11005 Institutional research plan: CEZ:AV0Z10480505 Keywords : charmonium * Bethe-Salpeter Equation Subject RIV: BE - Theoretical Physics http:// pos .sissa.it/archive/conferences/136/043/QCD-TNT-II_043.pdf

  7. Numerical studies of the Bethe-Salpeter equation for a two-fermion bound state

    Science.gov (United States)

    de Paula, W.; Frederico, T.; Salmè, G.; Viviani, M.

    2018-03-01

    Some recent advances on the solution of the Bethe-Salpeter equation (BSE) for a two-fermion bound system directly in Minkowski space are presented. The calculations are based on the expression of the Bethe-Salpeter amplitude in terms of the so-called Nakanishi integral representation and on the light-front projection (i.e. the integration of the light-front variable k - = k 0 - k 3). The latter technique allows for the analytically exact treatment of the singularities plaguing the two-fermion BSE in Minkowski space. The good agreement observed between our results and those obtained using other existing numerical methods, based on both Minkowski and Euclidean space techniques, fully corroborate our analytical treatment.

  8. A systematic approach to sketch Bethe-Salpeter equation

    Directory of Open Access Journals (Sweden)

    Qin Si-xue

    2016-01-01

    Full Text Available To study meson properties, one needs to solve the gap equation for the quark propagator and the Bethe-Salpeter (BS equation for the meson wavefunction, self-consistently. The gluon propagator, the quark-gluon vertex, and the quark–anti-quark scattering kernel are key pieces to solve those equations. Predicted by lattice-QCD and Dyson-Schwinger analyses of QCD’s gauge sector, gluons are non-perturbatively massive. In the matter sector, the modeled gluon propagator which can produce a veracious description of meson properties needs to possess a mass scale, accordingly. Solving the well-known longitudinal Ward-Green-Takahashi identities (WGTIs and the less-known transverse counterparts together, one obtains a nontrivial solution which can shed light on the structure of the quark-gluon vertex. It is highlighted that the phenomenologically proposed anomalous chromomagnetic moment (ACM vertex originates from the QCD Lagrangian symmetries and its strength is proportional to the magnitude of dynamical chiral symmetry breaking (DCSB. The color-singlet vector and axial-vector WGTIs can relate the BS kernel and the dressed quark-gluon vertex to each other. Using the relation, one can truncate the gap equation and the BS equation, systematically, without violating crucial symmetries, e.g., gauge symmetry and chiral symmetry.

  9. Solution of the Bethe-Salpeter equation in the field of a plane electromagnetic wave

    International Nuclear Information System (INIS)

    Starostin, V.S.

    1988-01-01

    A solution is obtained of the Bethe--Salpeter equation for positronium in the field of linearly and circularly polarized plane electromagnetic waves at frequencies much higher than atomic. It is not assumed that the field is weak

  10. Validity of various approximations for the Bethe-Salpeter equation and their WKB quantization

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Bilal, A.; Gignoux, C.; Schuck, P.

    1984-01-01

    The validity of the instantaneous approximation for the Bethe-Salpeter equation is questioned within the framework of the simple scalar-scalar model of Cutkosky. Detailed numerous results for various approximations are compared to the exact ones. WKB quantization is applied to these relativistic approximations. An unexpected question arises: is the currently used Bethe-Salpeter equation (i.e., the ladder approximation) well suited to describe two interacting relativistic particles

  11. Stochastic integration of the Bethe-Salpeter equation for two bound fermions

    International Nuclear Information System (INIS)

    Salomon, M.

    1988-09-01

    A non-perturbative method using a Monte Carlo algorithm is used to integrate the Bethe-Salpeter equation in momentum space. Solutions for two scalars and two fermions with an arbitrary coupling constant are calculated for bound states in the ladder approximation. The results are compared with other numerical methods. (Author) (13 refs., 2 figs.)

  12. On the energy spectrum of the Bethe-Salpeter equation; Ob ehnergeticheskom spektre uravneniya Bete-Solpitera

    Energy Technology Data Exchange (ETDEWEB)

    Dorkin, S M [Dal` nevostochnyj Gosudarstvennyj Univ., Vladivostok (Russian Federation); Kaptar` , L P; Semikh, S S [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of Theoretical Physics

    1997-12-31

    The problem of calculating the energy spectrum of a two-fermion bound state within the Bethe-Salpeter formalism is discussed. An expansion of the kernel of the spinor-spinor Bethe-Salpeter equation in the ladder approximation is found in terms of a bi-orthogonal basis of the generalized Gilbert-Schmidt series for symmetric equations of the Fredholm type. According to this expansion, a new method of solving the Bethe-Salpeter equation and finding the mass spectrum is proposed. Methodological result of numerical solutions of equations with scalar interaction is presented. (author). 20 refs., 3 figs.

  13. Efficient implementation of core-excitation Bethe-Salpeter equation calculations

    Science.gov (United States)

    Gilmore, K.; Vinson, John; Shirley, E. L.; Prendergast, D.; Pemmaraju, C. D.; Kas, J. J.; Vila, F. D.; Rehr, J. J.

    2015-12-01

    We present an efficient implementation of the Bethe-Salpeter equation (BSE) method for obtaining core-level spectra including X-ray absorption (XAS), X-ray emission (XES), and both resonant and non-resonant inelastic X-ray scattering spectra (N/RIXS). Calculations are based on density functional theory (DFT) electronic structures generated either by ABINIT or QuantumESPRESSO, both plane-wave basis, pseudopotential codes. This electronic structure is improved through the inclusion of a GW self energy. The projector augmented wave technique is used to evaluate transition matrix elements between core-level and band states. Final two-particle scattering states are obtained with the NIST core-level BSE solver (NBSE). We have previously reported this implementation, which we refer to as OCEAN (Obtaining Core Excitations from Ab initio electronic structure and NBSE) (Vinson et al., 2011). Here, we present additional efficiencies that enable us to evaluate spectra for systems ten times larger than previously possible; containing up to a few thousand electrons. These improvements include the implementation of optimal basis functions that reduce the cost of the initial DFT calculations, more complete parallelization of the screening calculation and of the action of the BSE Hamiltonian, and various memory reductions. Scaling is demonstrated on supercells of SrTiO3 and example spectra for the organic light emitting molecule Tris-(8-hydroxyquinoline)aluminum (Alq3) are presented. The ability to perform large-scale spectral calculations is particularly advantageous for investigating dilute or non-periodic systems such as doped materials, amorphous systems, or complex nano-structures.

  14. Perturbation theory for the Bethe-Salpeter equation in the field of a plane electromagnetic wave

    International Nuclear Information System (INIS)

    Starostin, V.S.; Litskevich, I.K.

    1990-01-01

    The completeness and orthogonality of the solutions of the Bethe-Salpeter equation is proven. A correct derivation of perturbation-theory equations is given. A generalization that includes the field of a plane electromagnetic wave is proposed. The rate of one-photon annihilation of positronium in this field is calculated. If the one-photon decay is allowed, the stationary states of the system are found (states of light-positronium)

  15. The connection of two-particle relativistic quantum mechanics with the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1986-02-01

    We show the formal equivalence between the wave equations of two-particle relativistic quantum mechanics, based on the manifestly covariant hamiltonian formalism with constraints, and the Bethe-Salpeter equation. This is achieved by algebraically transforming the latter so as to separate it into two independent equations which match the equations of hamiltonian relativistic quantum mechanics. The first equation determines the relative time evolution of the system, while the second one yields a three-dimensional eigenvalue equation. A connection is thus established between the Bethe-Salpeter wave function and its kernel on the one hand and the quantum mechanical wave function and interaction potential on the other. For the sector of solutions of the Bethe-Salpeter equation having non-relativistic limits, this relationship can be evaluated in perturbation theory. We also device a generalized form of the instantaneous approximation which simplifies the various expressions involved in the above relations. It also permits the evaluation of the normalization condition of the quantum mechanical wave function as a three-dimensional integral

  16. Excitonic effects in solids : time-dependent density functional theory versus the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Sagmeister, S.

    2009-01-01

    The aim of this work is to compare two state-of-the-art methods for the investigation of excitonic effects in solids, namely Time-Dependent Density Functional Theory (TDDFT) and Many-Body Perturbation Theory (MBPT), for selected simple gap systems as well as semiconducting polymers. Within TDDFT, the linear response framework is used and the Dyson equation for the density-density response function is solved, whereas within MBPT, the Bethe-Salpeter equation (BSE) for the electron-hole correlation function is solved. The dielectric function is obtained as a last step. Both techniques take into account the excitonic effects caused by the interaction of electron-hole pairs. In the former these effects are included in the exchange-correlation (xc) kernel, whereas in the latter they are located in the interaction kernel of the BSE. Kohn-Sham single-particle wave functions obtained from Density Functional Theory within the linearized augmented planewave (LAPW) method are used to calculate all relevant quantities of the formalism. For the simple systems GaAs, Si and LiF are chosen. The role of several approximations to the xc kernel is studied and it is found that for GaAs and Si simple semi-empirical models provide a dielectric function in accordance with the BSE. For the case of LiF, being a system with a weak screening and a strongly bound exciton, only an xc kernel derived from MBPT yields reasonable results but still a slight discrepancy to the BSE is observed. Finally, the semiconducting polymers poly-acetylene and poly(phenylene-vinylene) (PPV) are studied. For both materials the concept of semi-empirical approximations to the xc kernel turns out to be ambiguous due to their low-dimensional character. In the case of poly-acetylene, the xc kernel derived from MBPT yields a dielectric function which is in close but not exact agreement with the one obtained from the BSE. (author) [de

  17. Bound states of quarks calculated with stochastic integration of the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Salomon, M.

    1992-07-01

    We have computed the masses, wave functions and sea quark content of mesons in their ground state by integrating the Bethe-Salpeter equation with a stochastic algorithm. This method allows the inclusion of a large set of diagrams. Inspection of the kernel of the equation shows that q-q-bar pairs with similar constituent masses in a singlet spin state exhibit a high bound state which is not present in other pairs. The pion, kaon and eta belongs to this category. 19 refs., 2 figs., 2 tabs

  18. A separable approximation of the NN-Paris-potential in the framework of the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Schwarz, K.; Haidenbauer, J.; Froehlich, J.

    1985-09-01

    The Bethe-Salpeter equation is solved with a separable kernel for the most important nucleon-nucleon partial wave states. We employ the Ernst Shakin-Thaler method in the framework of minimal relativity (Blankenbeckler-Sugar equation) to generate a separable representation of the meson-theoretical Paris potential. These separable interactions, which closely approximate the on-shell- and half-off-shell behaviour of the Paris potential, are then cast into a covariant form for application in the Bethe-Salpeter equation. The role of relativistic effects is discussed with respect to on-shell and off-shell properties of the NN-system. (Author)

  19. Solution to Bethe-Salpeter equation via Mellin-Barnes transform

    International Nuclear Information System (INIS)

    Allendes, Pedro; Kniehl, Bernd; Kondrashuk, Igor; Rojas Medar, Marko; Notte Cuello, Eduardo A.

    2012-06-01

    We consider Mellin-Barnes transform of triangle ladder-like scalar diagram in d=4 dimensions. It is shown how multi-fold MB transform of the momentum integral corresponding to any number of rungs is reduced to two-fold MB transform. For this purpose we use Belokurov-Usyukina reduction method for four-dimensional scalar integrals in the position space. The result is represented in terms of Euler ψ-function and its derivatives. We derive new formulas for MB two-fold integration in the complex planes of two complex variables. We demonstrate that these formulas solve Bethe-Salpeter equation. We comment on further applications of solution to Bethe-Salpeter equation for vertices in N=4 supersymmetric Yang-Mills theory. We show that the recursive property of MB transforms observed in the present work for that kind of diagrams has nothing to do with quantum field theory, theory of integral transforms, or with theory of polylogarithms in general, but has an origin in a simple recursive property for smooth functions which can be shown by using basic methods of mathematical analysis.

  20. Solution to Bethe-Salpeter equation via Mellin-Barnes transform

    Energy Technology Data Exchange (ETDEWEB)

    Allendes, Pedro [Concepcion Univ. (Chile). Dept. de Fisica; Kniehl, Bernd [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor; Rojas Medar, Marko [Univ. del Bio-Bio, Chillan (Chile). Dept. de Ciencias Basicas; Notte Cuello, Eduardo A. [Univ. de La Serena (Chile). Facultad de Ciencias

    2012-06-15

    We consider Mellin-Barnes transform of triangle ladder-like scalar diagram in d=4 dimensions. It is shown how multi-fold MB transform of the momentum integral corresponding to any number of rungs is reduced to two-fold MB transform. For this purpose we use Belokurov-Usyukina reduction method for four-dimensional scalar integrals in the position space. The result is represented in terms of Euler {psi}-function and its derivatives. We derive new formulas for MB two-fold integration in the complex planes of two complex variables. We demonstrate that these formulas solve Bethe-Salpeter equation. We comment on further applications of solution to Bethe-Salpeter equation for vertices in N=4 supersymmetric Yang-Mills theory. We show that the recursive property of MB transforms observed in the present work for that kind of diagrams has nothing to do with quantum field theory, theory of integral transforms, or with theory of polylogarithms in general, but has an origin in a simple recursive property for smooth functions which can be shown by using basic methods of mathematical analysis.

  1. Optical properties of bulk semiconductors and graphene/boron nitride: the Bethe-Salpeter equation with derivative discontinuity-corrected density functional energies

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten W.; Thygesen, Kristian S.

    2012-01-01

    -dimensional systems of graphene and hexagonal boron-nitride (h-BN) we find good agreement with previous many-body calculations. For the graphene/h-BN interface we find that the fundamental and optical gaps of the h-BN layer are reduced by 2.0 and 0.7 eV, respectively, compared to freestanding h-BN. This reduction......We present an efficient implementation of the Bethe-Salpeter equation (BSE) for optical properties of materials in the projector augmented wave method Grid-based projector-augmented wave method (GPAW). Single-particle energies and wave functions are obtained from the Gritsenko, Leeuwen, Lenthe...

  2. A separable approach to the Bethe-Salpeter equation and its application to nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Schwarz, K.; Froehlich, J.; Zingl, H.F.K.

    1980-01-01

    The Bethe-Salpeter equation is solved in closed form with the help of a four dimensional separable 'potential'. For possible applications to three-nucleon investigations the authors have fitted all nucleon-nucleon S-wave phase shifts in a sufficient way by this method; in addition they also present an example for a P-wave. (Auth.)

  3. Low-lying qq(qq)-bar states in a relativistic model based on the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Ram, B.; Kriss, V.

    1985-01-01

    Low-lying qq(qq)-bar states are analysed in a previously given relativistic model based on the Bethe-Salpeter equation. It is not got M-diquonia, P-mesonia, or meson molecules, but it is got T-diquonia

  4. Projecting the Bethe-Salpeter Equation onto the Light-Front and Back: A Short Review

    International Nuclear Information System (INIS)

    Frederico, T.; Salme, G.

    2011-01-01

    The technique of projecting the four-dimensional two-body Bethe-Salpeter equation onto the three-dimensional Light-Front hypersurface, combined with the quasi-potential approach, is briefly illustrated, by placing a particular emphasis on the relation between the projection method and the effective dynamics of the valence component of the Light-Front wave function. Some details on how to construct the Fock expansion of both (a) the Light-Front effective interaction and (b) the electromagnetic current operator, satisfying the proper Ward-Takahashi identity, will be presented, addressing the relevance of the Fock content in the operators living onto the Light-Front hypersurface. Finally, the generalization of the formalism to the three-particle case will be outlined. (author)

  5. Bethe-Salpeter equation for non-self conjugate mesons in a power-law potential

    International Nuclear Information System (INIS)

    Ikhdair, S.M.

    1992-07-01

    We develop an approach to the solution of the spinless Bethe-Salpeter equation for the different-mass case. Although the calculations are developed for spin-zero particles in any arbitrary spherically symmetric potential, the non-Coulombic effective power-law potential is used as a kernel to produce the spin-averaged bound states of the non-self-conjugate mesons. The analytical formulae are also applicable to the self-conjugate mesons in the equal-mass case. The flavor-independent case is investigated in this work. The calculations are carried out to the third-order correction of the energy series. Results are consistent with those obtained before. (author). 14 refs, 1 tab

  6. Bethe-Salpeter equation for fermion-antifermion system in the ladder approximation

    International Nuclear Information System (INIS)

    Fukui, Ichio; Seto, Noriaki; Yoshida, Toshihiro.

    1977-01-01

    The Bethe-Salpeter (B-S) equation is important for studying hadron physics. Especially intensive investigation on the fermion-antifermion B-S equation is indispensable for the phenomenological studies of hardrons. However, many components of the B-S amplitude and the Wick-rotated integral kernel of non-Fredholm type have prevented from knowing details the solutions even in the ladder approximation. Some particular solutions are known in case of the vanishing four-momenta of bound states. The B-S equation for the bound state of fermion-anti-fermion system interacting through vector (axial-vector) particle exchange was studied in the ladder approximation with Feynman gauge. The reduced equations were obtained for suitably decomposed amplitude, and it is shown that, in the S-wave case, the coupled equations separate into two parts. In the nonrelativistic limit, large components of the amplitude satisfy the Wick-Cutkosky equation, and small components are expressed in terms of the large ones. Equations are derived for the equal-time amplitudes. (Kobatake, H.)

  7. Numerical Solutions of One Reduced Bethe-Salpeter Equation for the Coulombic Bound States Composed of Virtual Constituents

    Science.gov (United States)

    Chen, Jiao-Kai

    2018-04-01

    We present one reduction of the Bethe-Salpeter equation for the bound states composed of two off-mass-shell constituents. Both the relativistic effects and the virtuality effects can be considered in the obtained spinless virtuality distribution equation. The eigenvalues of the spinless virtuality distribution equation are perturbatively calculated and the bound states e+e-, μ+μ-, τ+τ-, μ+e-, and τ+e- are discussed.

  8. Approach to calculation of mass spectra and two-photon decays of c c¯ mesons in the framework of Bethe-Salpeter equation

    Science.gov (United States)

    Bhatnagar, Shashank; Alemu, Lmenew

    2018-02-01

    In this work we calculate the mass spectra of charmonium for 1 P ,…,4 P states of 0++ and 1++, for 1 S ,…,5 S states of 0-+, and for 1 S ,…,4 D states of 1- along with the two-photon decay widths of the ground and first excited states of 0++ quarkonia for the process O++→γ γ in the framework of a QCD-motivated Bethe-Salpeter equation (BSE). In this 4 ×4 BSE framework, the coupled Salpeter equations are first shown to decouple for the confining part of the interaction (under the heavy-quark approximation) and are analytically solved, and later the one-gluon-exchange interaction is perturbatively incorporated, leading to mass spectral equations for various quarkonia. The analytic forms of wave functions obtained are used for the calculation of the two-photon decay widths of χc 0. Our results are in reasonable agreement with data (where available) and other models.

  9. The average kinetic energy of the heavy quark in Λb in the Bethe-Salpeter equation approach

    International Nuclear Information System (INIS)

    Guo, X.-H.; Wu, H.-K.

    2007-01-01

    In the previous paper, based on the SU(2) f xSU(2) s heavy quark symmetries of the QCD Lagrangian in the heavy quark limit, the Bethe-Salpeter equation for the heavy baryon Λ b was established with the picture that Λ b is composed of a heavy quark and a scalar light diquark. In the present work, we apply this model to calculate μ π 2 for Λ b , the average kinetic energy of the heavy quark inside Λ b . This quantity is particularly interesting since it can be measured in experiments and since it contributes to the inclusive semileptonic decays of Λ b when contributions from higher order terms in 1/M b expansions are taken into account and consequently influences the determination of the Cabibbo-Kobayashi-Maskawa matrix elements V ub and V cb . We find that μ π 2 for Λ b is 0.25GeV 2 ∼0.95GeV 2 , depending on the parameters in the model including the light diquark mass and the interaction strength between the heavy quark and the light diquark in the kernel of the BS equation. We also find that this result is consistent with the value of μ π 2 for Λ b which is derived from the experimental value of μ π 2 for the B meson with the aid of the heavy quark effective theory

  10. Light-quarkonium spectra and orbital-angular-momentum decomposition in a Bethe-Salpeter-equation approach

    Energy Technology Data Exchange (ETDEWEB)

    Hilger, T.; Krassnigg, A. [University of Graz, NAWI Graz, Institute of Physics, Graz (Austria); Gomez-Rocha, M. [ECT*, Villazzano, Trento (Italy)

    2017-09-15

    We investigate the light-quarkonium spectrum using a covariant Dyson-Schwinger-Bethe-Salpeter-equation approach to QCD. We discuss splittings among as well as orbital angular momentum properties of various states in detail and analyze common features of mass splittings with regard to properties of the effective interaction. In particular, we predict the mass of anti ss exotic 1{sup -+} states, and identify orbital angular momentum content in the excitations of the ρ meson. Comparing our covariant model results, the ρ and its second excitation being predominantly S-wave, the first excitation being predominantly D-wave, to corresponding conflicting lattice-QCD studies, we investigate the pion-mass dependence of the orbital-angular-momentum assignment and find a crossing at a scale of m{sub π} ∝ 1.4 GeV. If this crossing turns out to be a feature of the spectrum generated by lattice-QCD studies as well, it may reconcile the different results, since they have been obtained at different values of m{sub π}. (orig.)

  11. Bethe-Salpeter amplitudes and static properties of the deuteron

    International Nuclear Information System (INIS)

    Kaptari, L.P.; Bondarenko, S.G.; Khanna, F.C.; Kaempfer, B.; Technische Univ. Dresden

    1996-04-01

    Extended calculations of the deuteron's static properties, based on the numerical solution of the Bethe-Salpeter equation, are presented. A formalism is developed, which provides a comparative analysis of the covariant amplitudes in various representations and nonrelativistic wave functions. The magnetic and quadrupole moments of the deuteron are calculated in the Bethe-Salpeter formalism and the role of relativistic corrections is discussed. (orig.)

  12. Modification of the quantum-mechanical equations for the system of charged Dirac particles by including additional tensor terms of the Pauli type. Pt. 1. [Amplified Bethe-Salpeter, radiative corrections, fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Janyszek, H [Uniwersytet Mikolaja Kopernika, Torun (Poland). Instytut Fizyki

    1974-01-01

    A new modified quasirelativistic equation (different from that of Breit) for N charged Dirac particles in the external stationary electromagnetic field is proposed. This equation is an amplified quantum-mechanical Bethe-Salpeter equation obtained by adding (in a semi-phenomenological manner) terms which take into account radiative corrections. The application of this approximate equations is limited to third order terms in the fine structure constant ..cap alpha...

  13. Medium modifications of mesons. Chiral symmetry restoration, in-medium QCD sum rules for D and ρ mesons, and Bethe-Salpeter equations

    Energy Technology Data Exchange (ETDEWEB)

    Hilger, Thomas Uwe

    2012-04-11

    The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D- anti D and B- anti B mesons as a function of the nuclear matter density and investigate the impact of various condensates in linear density approximation. The analysis also includes D{sub s} and D{sup *}{sub 0} mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. The complementarity of mass shift and broadening is discussed. An alternative approach which utilizes coupled Dyson-Schwinger and Bethe-Salpeter equations for quark-antiquark bound states is investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex plane numerically and test the possibility to widen the applicability of the method to the sector of heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit but without dynamical chiral symmetry breaking.

  14. Superconductivity a new approach based on the Bethe-Salpeter equation in the mean-field approximation

    CERN Document Server

    Malik, G P

    2016-01-01

    Given the Debye temperature of an elemental superconductor (SC) and its Tc, BCS theory enables one to predict the value of its gap 0 at T = 0, or vice versa. This monograph shows that non-elemental SCs can be similarly dealt with via the generalized BCS equations (GBCSEs) which, given any two parameters of the set {Tc, 10, 20 > 10}, enable one to predict the third. Also given herein are new equations for the critical magnetic field and critical current density of an elemental and a non-elemental SC — equations that are derived directly from those that govern pairing in them. The monograph includes topics that are usually not covered in any one text on superconductivity, e.g., BCS-BEC crossover physics, the long-standing puzzle posed by SrTiO3, and heavy-fermion superconductors — all of which are still imperfectly understood and therefore continue to avidly engage theoreticians. It suggests that addressing the Tcs, s and other properties (e.g., number densities of charge carriers) of high-Tc SCs via GBCSE...

  15. Anomalous magnetic nucleon moments in a Bethe-Salpeter model

    International Nuclear Information System (INIS)

    Chak Wing Chan.

    1978-01-01

    We investigate the anomalous magnetic moment of the nucleon in a field theoretic many-channel model for the electromagnetic form factors of the N anti N, the ππ, the K anti K, the πω and the πrho systems. Propagator self-energy corrections from the Ward idendity and phenomenological strong vertex corrections are both included. The photon is coupled minimally to pions, kaons and nucleons with power multiplicative renormalization. With solutions in the framework of the Bethe-Salpeter equation we obtain a value 1.84 for the isovector moment and a value -0.02 for the isoscalar moment. (orig.)

  16. Quarkonia in the Bethe--Salpeter formalism with background fields

    International Nuclear Information System (INIS)

    Mathur, Y.K.; Mitra, A.N.

    1989-01-01

    A QCD-oriented Bethe--Salpeter (BS) equation for a q bar q system is formulated in which the quark 4-momenta p μ are modified as p μ →p μ -gA μ (x) in the inverse propagators therein, and a Fock--Schwinger (FS) gauge expansion is employed for the gluon fields A μ (x). The first term (∼x μ ) of the FS representation yields a harmonic kernel when the BS equation is reduced to a 3-dimensional level via the null-plane ansatz (NPA). It also generates a spin-dependent interaction proportional to (j 1 +s 1 )·(j 2 +s 2 ), in close parallel to a J·S term generated by a vector-like (γ (1) gamma(2)) harmonic model for the q bar q interaction proposed earlier by the Delhi Group. A possible mechanism for confinement in an asymptotically linear scene is proposed within the BS framework, taking cue partly from the suggestions of multiple correlation effects (Shifman), and partly from the postulation of stochastic fields (Simonov)

  17. Single-time reduction of bethe-salpeter formalism for two-fermion system

    International Nuclear Information System (INIS)

    Arkhipov, A.A.

    1988-01-01

    The single-time reduction method proposed in other refs. for the system of two scalar particles is generalized for the case of two-fermion system. A self-consistent procedure of single-time reduction has been constructed both in terms of the Bethe-Salpeter wave function and in terms of the Green's function of two-fermion system. Three-dimensional dynamic equations have been obtained for single-time wave functions and two-time Green's functions of a two-fermion system and the Schroedinger structure of the equations obtained is shown to be a consequence of the causality structure of the local QFT. 32 refs

  18. Euclidean to Minkowski Bethe-Salpeter amplitude and observables

    International Nuclear Information System (INIS)

    Carbonell, J.; Frederico, T.; Karmanov, V.A.

    2017-01-01

    We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)

  19. Euclidean to Minkowski Bethe-Salpeter amplitude and observables

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, J. [Universite Paris-Sud, IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France); Frederico, T. [Instituto Tecnologico de Aeronautica, DCTA, Sao Jose dos Campos (Brazil); Karmanov, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    2017-01-15

    We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)

  20. Delta and Omega electromagnetic form factors in a Dyson-Schwinger/Bethe-Salpeter approach

    Energy Technology Data Exchange (ETDEWEB)

    Diana Nicmorus, Gernot Eichmann, Reinhard Alkofer

    2010-12-01

    We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.

  1. Bethe-Salpeter analysis of the radiative pion disintegration

    Energy Technology Data Exchange (ETDEWEB)

    Abad, J.; Pacheco, A.F. (Zaragoza Univ. (Spain). Dept. de Fisica Teorica); Rodriguez-Trias, R.; Esteve, J.G. (Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies)

    1990-04-01

    The structure-dependent amplitude of the decay {pi}{yields}e{nu}{gamma} is evaluated in the framework of a Bethe-Salpeter description for the pion. We assume a general B-S wave function in the S-wave. Within this hypothesis, we show that the gauge invariance constrains the different contributions of the wave functions to the amplitude, resulting in the vanishing of the axial form factor. (orig.).

  2. Construction of Bethe Salpeter wave functions and applications in QCD

    International Nuclear Information System (INIS)

    Gromes, D.

    1993-01-01

    We suggest an ansatz for the Bethe Salpeter wave function which is strictly covariant, obeys the spectrum conditions, and has the correct non relativistic limit. As a first simple application we present a wave function for the pion. It contains two parameters, one of them being the quark mass. The decay constant and the form factor derived from this are in excellent agreement with the data. (orig.)

  3. Covariant Bethe-Salpeter wave functions for heavy hadrons

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-09-01

    In recent years the dynamics of heavy mesons and baryons has considerably simplified by the development of the so-called heavy quark effective theory (HQET). A covariant formulation of heavy meson and heavy baryon decays in the leading order of the HQET is presented. The method is based on a Bethe-Salpeter formulation in the limit of the heavy quark mass going to infinity. 15 refs, 4 figs

  4. GW and Bethe-Salpeter study of small water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Blase, Xavier, E-mail: xavier.blase@neel.cnrs.fr; Boulanger, Paul [CNRS, Institut NEEL, F-38042 Grenoble (France); Bruneval, Fabien [CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette (France); Fernandez-Serra, Marivi [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Duchemin, Ivan [INAC, SP2M/L-Sim, CEA/UJF Cedex 09, 38054 Grenoble (France)

    2016-01-21

    We study within the GW and Bethe-Salpeter many-body perturbation theories the electronic and optical properties of small (H{sub 2}O){sub n} water clusters (n = 1-6). Comparison with high-level CCSD(T) Coupled-Cluster at the Single Double (Triple) levels and ADC(3) Green’s function third order algebraic diagrammatic construction calculations indicates that the standard non-self-consistent G{sub 0}W{sub 0}@PBE or G{sub 0}W{sub 0}@PBE0 approaches significantly underestimate the ionization energy by about 1.1 eV and 0.5 eV, respectively. Consequently, the related Bethe-Salpeter lowest optical excitations are found to be located much too low in energy when building transitions from a non-self-consistent G{sub 0}W{sub 0} description of the quasiparticle spectrum. Simple self-consistent schemes, with update of the eigenvalues only, are shown to provide a weak dependence on the Kohn-Sham starting point and a much better agreement with reference calculations. The present findings rationalize the theory to experiment possible discrepancies observed in previous G{sub 0}W{sub 0} and Bethe-Salpeter studies of bulk water. The increase of the optical gap with increasing cluster size is consistent with the evolution from gas to dense ice or water phases and results from an enhanced screening of the electron-hole interaction.

  5. Null-plane formulation of Bethe-Salpeter qqq dynamics: Baryon mass spectra

    International Nuclear Information System (INIS)

    Kulshreshtha, D.S.; Mitra, A.N.

    1988-01-01

    The Bethe-Salpeter (BS) equation for a qqq system is formulated in the null-plane approximation (NPA) for the BS wave function, as a direct generalization of a corresponding QCD-motivated formalism developed earlier for qq-bar systems. The confinement kernel is assumed vector type (γ/sub μ//sup (1)/γ/sub μ//sup (2)/) for both qq-bar and qq pairs, with identical harmonic structures, and with the spring constant proportional, among other things, to the running coupling constant α/sub s/ (for an explicit QCD motivation). The harmonic kernel is given a suitable Lorentz-invariant definition [not D'Alembertian 2 δ 4 (q)], which is amenable to NPA reduction in a covariant form. The reduced qqq equation in NPA is solved algebraically in a six-dimensional harmonic-oscillator (HO) basis, using the techniques of SO(2,1) algebra interlinked with S 3 symmetry. The results on the nonstrange baryon mass spectra agree well with the data all the way up to N = 6, thus confirming the asymptotic prediction M∼N/sup 2/3/ characteristic of vector confinement in HO form. There are no extra parameters beyond the three basic constants (ω 0 ,C 0 ,m/sub u//sub d/) which were earlier found to provide excellent fits to meson spectra (qq-bar)

  6. Bayesian extraction of the parton distribution amplitude from the Bethe-Salpeter wave function

    Science.gov (United States)

    Gao, Fei; Chang, Lei; Liu, Yu-xin

    2017-07-01

    We propose a new numerical method to compute the parton distribution amplitude (PDA) from the Euclidean Bethe-Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe-Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method (MEM). The Nakanishi weight function as well as the corresponding light-front parton distribution amplitude (PDA) can be well determined. We confirm prior work on PDA computations, which was based on different methods.

  7. Comment on the analysis of Bethe-Salpeter scattering states by Hormozdiari and Huang

    International Nuclear Information System (INIS)

    Tryon, E.P.

    1978-01-01

    The analysis of Bethe-Salpeter scattering states by Hormozdiari and Huang appears to contain invalid mathematical arguments. When these arguments are rectified, one arrives at substantially different conclusions. In particular, the prescription of Hormozdiari and Huang for constructing such states does not seem applicable to any process occurring in nature

  8. Deep inelastic scattering on the deuteron in the Bethe-Salpeter formalism

    International Nuclear Information System (INIS)

    Kaptari, L.P.; Kazakov, K.Yu.; Umnikov, A.Yu.; Khanna, F.C.

    1996-01-01

    The nuclear effects in the spin structure functions of the deuteron g 1 and b 2 are estimated in a fully covariant approach of the Bethe-Salpeter formalism. The construction of the relativistic wave function of the deuteron is discussed in detail. Numerical results for g 1 and b 2 are compared with nonrelativistic results and relativistic corrections are discussed [ru

  9. Heavy quark effective theory, interpolating fields and Bethe-Salpeter amplitudes

    International Nuclear Information System (INIS)

    Hussain, F.; Thomspon, G.

    1994-07-01

    We use the LSZ reduction theorem and interpolating fields, along with the heavy quark effective theory, to investigate the structure of the Bethe-Salpeter amplitude for heavy hadrons. We show how a simple form of this amplitude, used extensively in heavy hadron decay calculations, follows naturally up to O(1/M) from these field theoretic considerations. (author). 13 refs, 1 tab

  10. Generalized structure of hadron-quark vertex function in Bethe-Salpeter framework: applications to leptonic decays of V-mesons

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, Shashank [Department of Physics, Addis Ababa University, PO Box 101739, Addis Ababa (Ethiopia); Li Shiyuan [Department of Physics, Shandong University, Jinan, 250100 (China)

    2006-07-15

    We employ the framework of the Bethe-Salpeter equation under a covariant instantaneous ansatz to study the leptonic decays of vector mesons. The structure of the hadron-quark vertex function {gamma} is generalized to include various Dirac covariants (other than i{gamma} . {epsilon}) from their complete set. They are incorporated in accordance with a naive power counting rule order-by-order in powers of the inverse of the meson mass. The decay constants for {rho}, {omega} and {phi} mesons are calculated with the incorporation of leading-order covariants.

  11. Generalized structure of hadron-quark vertex function in Bethe-Salpeter framework: applications to leptonic decays of V-mesons

    International Nuclear Information System (INIS)

    Bhatnagar, Shashank; Li Shiyuan

    2006-01-01

    We employ the framework of the Bethe-Salpeter equation under a covariant instantaneous ansatz to study the leptonic decays of vector mesons. The structure of the hadron-quark vertex function Γ is generalized to include various Dirac covariants (other than iγ . ε) from their complete set. They are incorporated in accordance with a naive power counting rule order-by-order in powers of the inverse of the meson mass. The decay constants for ρ, ω and φ mesons are calculated with the incorporation of leading-order covariants

  12. Bethe-Salpeter kernels and particle structure in the Yukawa2 quantum field theory

    International Nuclear Information System (INIS)

    Cooper, A.S.

    1981-01-01

    The author discusses the extension to the (weakly coupled) Yukawa quantum field theory in two space-time dimensions (Y 2 ), with equal bare masses, of some techniques used in the analysis of particle structure for weakly coupled even P(PHI) 2 . In particular he considers existence, regularity, and decay properties for the inverse two point functions and various Bethe-Salpeter kernels of the theory. These properties suffice to ensure that in the +-2 fermion sectors the mass spectrum is discrete below 2m 0 and the S-matrix is unitary up to 2m 0 + epsilon. (Auth.)

  13. Null-plane Bethe-Salpeter dynamics: Mass spectra, decay constants of pseudoscalar mesons, and the pion form factor

    International Nuclear Information System (INIS)

    Gupta, K.K.; Mitra, A.N.; Singh, N.N.

    1990-01-01

    A new relativistic definition of the reduced mass (μ 12 ) of a q bar q pair, so as to be in conformity with the standard Wightman-Garding definition of its relative four-momenta q μ , is introduced into the kernel of an ongoing Bethe-Salpeter (BS) program on a two-tier basis. The new definition of μ 12 (involving the hadron mass M) is found to produce a natural Regge asymptotic behavior (M 2 ∼N) in the hadron mass spectra, while retaining the property of an asymptotically linear (∼r) confinement in the three-dimensional structure of the BS kernel. The relativistic structure of μ 12 is responsible for a significant improvement in the fits to the ground-state masses of q bar q and Q bar q mesons as compared to its nonrelativistic definition m 1 m 2 /(m 1 +m 2 ). The leptonic decay constants f p and the charge radii thus calculated are also in excellent agreement with data (π,k) where available, while f p predictions for Q bar q mesons have good overlap with recent lattice predictions. Further, the scaling property (∼k μ -2 ) of the hadron's electromagnetic form factor at large k 2 is a consequence of the ''on-shell'' form of its null-plane wave function. All these results (which are indicated in the barest outline) are preceded by a perspective summary of the theoretical premises and practical working of the BS equation with a four-fermion interaction kernel as a necessary background on a two-tier basis

  14. QCD-oriented Bethe-Salpeter dynamics for all flavours, light and heavy

    International Nuclear Information System (INIS)

    Mitra, A.N.

    1987-01-01

    A QCD oriented Bethe-Salpeter approach with a vector-like confinement which looks harmonic in the instantaneous approximation (IA), was found to describe several features of qanti q and qqq systems (mass spectra and structural properties) adequately, with little extra assumptions. The model had the following drawbacks: (a) The IA, being non-covariant, had restricted the application of the model to slow hadrons; (b) The zero-point energies were poorly described without additional assumptions; (c) The predicted Qanti Q spacings were too large for the data. These limitations have recently been overcome and the model now has a wide sweep of successful predictions, not only on the mass spectra for both light and heavy sectors, but also for transition amplitudes involving fast moving hadrons. A sketchy but consolidated account is given of the main features of the model (as modified through the new assumptions) and the nature of its successes on the experimental front (mostly mass spectra) are indicated. 20 refs

  15. Short-distance behavior of the Bethe--Salpeter wave function in the ladder approximation

    International Nuclear Information System (INIS)

    Guth, A.H.; Soper, D.E.

    1975-01-01

    We investigate the short-distance behavior of the (Wick-rotated) Bethe--Salpeter wave function for the two spin-1/2 quarks bound by the exchange of a massive vector meson. We use the ladder-model kernel, which has the same p -4 scaling behavior as the true kernel in a theory with a fixed point of the renormalization group at g not equal to 0. For a bound state with the quantum numbers of the pion, the leading asymptotic behavior is chi (q/sup μ/) approx. cq/sup -4 + epsilon(g)/γ 5 , where epsilon (g) =1- (1-g 2 /π 2 ) 1 / 2 . Our method also provides the full asymptotic series, although it should be noted that the nonleading terms will depend on the nonleading behavior of the ladder-model kernel. A general term has the form cq - /sup a/(lnq)/sup n/phi (q/sup μ/), where c is an unknown constant, a may be integral or nonintegral, n is an integer, and phi (q/sup μ/) is a representation function of the rotation group in four dimensions

  16. The decay constants of heavy-light mesons in a two-tier Bethe-Salpeter model

    International Nuclear Information System (INIS)

    Pagnamenta, A.; Illinois Univ., Chicago, IL; Gupta, K.K.; Mitra, A.N.; Singh, N.N.; Ramanathan, R.

    1990-01-01

    Leptonic decay widths for pseudoscalar mesons are calculated in a QCD-motivated Bethe-Salpeter formalism on a two-tier basis. This model, which is characterised by a Lorentz-invariant confining kernel that depends on the relativistic reduced mass defined in accordance with the Wightman-Garding definition of the internal 4-momenta q μ , has already shown precision fits to the spectra of qq-bar, qQ-bar and qqq hadrons apart from exhibiting an eplicit Regge-asymptotic behaviour (M 2 ∼N). The leptonic decay constants thus obtained with no free parameters, are (in MeV units), f P =134(π), 166(K); 158(D); 94.9(B), 114(B S ). (author)

  17. Intriguing solutions of the Bethe-Salpeter equation for radially excited pseudoscalar charmonia

    Czech Academy of Sciences Publication Activity Database

    Šauli, Vladimír

    2014-01-01

    Roč. 90, č. 1 (2014), 016005 ISSN 1550-7998 Institutional support: RVO:61389005 Keywords : quantum chromodynamics * confinement * quarks * gluons Subject RIV: BE - Theoretical Physics Impact factor: 4.643, year: 2014

  18. Elastic eD scattering in the Bethe-Salpeter approach for the deuteron with the positive- and negative-energy states

    International Nuclear Information System (INIS)

    Bondarenko, S.G.; Burov, V.V.; Hamamoto, N.; Manabe, Y.; Hosaka, A.; Toki, H.

    2005-01-01

    Recent results obtained by the application of the Bethe-Salpeter approach to the analysis of elastic electron-deuteron scattering with the separable NN kernel are presented. We analyze the impact of the P waves (negative-energy components) on the electromagnetic properties of the deuteron and compare it with experimental data. It was shown that the contribution of the P waves must be taken into account to explain tensor polarization and charge form factor of the deuteron

  19. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel

    Energy Technology Data Exchange (ETDEWEB)

    Rebolini, Elisa, E-mail: elisa.rebolini@kjemi.uio.no; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr [Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 4 place Jussieu, F-75005 Paris (France)

    2016-03-07

    We present a range-separated linear-response time-dependent density-functional theory (TDDFT) which combines a density-functional approximation for the short-range response kernel and a frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel. This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT and aims at improving the accuracy of calculations of electronic excitation energies of molecular systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation kernel is given using many-body Green-function theory. Preliminary tests of this range-separated TDDFT method are presented for the calculation of excitation energies of the He and Be atoms and small molecules (H{sub 2}, N{sub 2}, CO{sub 2}, H{sub 2}CO, and C{sub 2}H{sub 4}). The results suggest that the addition of the long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation energies.

  20. Light tetraquarks and mesons in a DSE/BSE approach

    Energy Technology Data Exchange (ETDEWEB)

    Heupel, Walter

    2015-07-01

    Bound states and their properties are an inherent non-perturbative feature of QCD. Moreover, QCD is a confining theory so that instead of the elementary quarks and gluons themselves, only colourless bound states formed of these elementary particles are directly measurable. One non-perturbative framework to describe QCD are the Dyson-Schwinger equations, which interrelate all Green functions of the theory by an infinite tower of integral equations, and the corresponding Bethe-Salpeter equations that define the bound states of the theory. To reduce the infinite tower to a tractable form, the equations have to be truncated. In this thesis the so-called rainbow ladder' truncation was used that reduces the quark-gluon vertex to the bare vertex and replaces the gluon by an effective modeled one so that the only Green function that has to be solved, is the quark propagator. This truncation preserves the important axial Ward-Takahashi-identity and the Gell-Mann-Oakes-Renner relation. For the effective gluon the Maris-Tandy interaction was used, modeled to reproduce the pion mass and decay constant. Starting from this well-established truncation, the four-body tetraquark Bethe-Salpeter equation was constructed. To solve the tetraquark Bethe-Salpeter equation, a fully covariant basis for the tetraquark amplitude is necessary. Additionally, the basis has to reflect the quantum numbers of the tetraquark and has to fulfill the Pauli principle. The construction of such a basis was performed for all parts of the amplitude: The Dirac-tensor structure, the phase space, the colour and the flavour tensor structure. Upon solving the tetraquark bound state equation, dynamical pion poles in the tetraquark amplitude phase space appeared, reflecting the actual physics that determines the tetraquark: The tetraquark is dominated by two-body correlations which manifest themselves as poles in the phase space. It is especially noteworthy that these two-body correlations in form of poles

  1. Bethe-Salpeter dynamics and the constituent mass concept for heavy quark mesons

    International Nuclear Information System (INIS)

    Souchlas, N.; Stratakis, D.

    2010-01-01

    The definition of a quark as heavy requires a comparison of its mass with the nonperturbative chiral symmetry breaking scale which is about 1 GeV (Λ χ ∼1 GeV) or with the scale Λ QCD ∼0.2 GeV that characterizes the distinction between perturbative and nonperturbative QCD. For quark masses significantly larger than these scales, nonperturbative dressing effects, or equivalently nonperturbative self-energy contributions, and relativistic effects are believed to be less important for physical observables. We explore the concept of a constituent mass for heavy quarks in the Dyson-Schwinger equations formalism, for light-heavy and heavy-heavy quark mesons by studying their masses and electroweak decay constants.

  2. Supersymmetric two-particle equations

    International Nuclear Information System (INIS)

    Sissakyan, A.N.; Skachkov, N.B.; Shevchenko, O.Yu.

    1986-01-01

    In the framework of the scalar superfield model, a particular case of which is the well-known Wess-Zumino model, the supersymmetric Schwinger equations are found. On their basis with the use of the second Legendre transformation the two-particle supersymmetric Edwards and Bethe-Salpeter equations are derived. A connection of the kernels and inhomogeneous terms of these equations with generating functional of the second Legendre transformation is found

  3. Relativistic three-particle dynamical equations: I. Theoretical development

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.; Frederico, T.

    1993-11-01

    Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, three dimensional scattering integral equations satisfying constrains of relativistic unitarity and covariance are rederived. These equations were first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence it is shown to perform and relate dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, several three dimensional three-particle scattering equations satisfying constraints of relativistic unitary and covariance are derived. Two of these three-particle equations are related by a transformation of variables as in the two-particle case. The three-particle equations obtained are very practical and suitable for performing relativistic scattering calculations. (author)

  4. Bethe-Salpeter wave functions of ηc(1S, 2S) and ψ(1S, 2S) states: local-potential description of the charmonium system revisited

    Science.gov (United States)

    Nochi, Kazuki; Kawanai, Taichi; Sasaki, Shoichi

    2018-03-01

    The quark potential models with an energy-independent central potential have been successful for understanding the conventional charmonium states especially below the open charm threshold. As one might consider, however, the interquark potential is in general energy-dependent, and its tendency gets stronger in higher lying states. Confirmation of whether the interquark potential is energy-independent is also important to verify the validity of the quark potential models. In this talk, we examine the energy dependence of the charmonium potential, which can be determined from the Bethe-Salpeter (BS) amplitudes of cc̅ mesons in lattice QCD.We first calculate the BS amplitudes of radially excited charmonium states, the ηc(2S) and ψ(2S) states, using the variational method and then determine both the quark kinetic mass and the charmonium potential within the HAL QCD method. Through a direct comparison of charmonium potentials determined from both the 1S and 2S states, we confirm that neither the central nor spin-spin potential shows visible energy dependence at least up to 2S state.

  5. LSZ asymptotic condition and dynamic equations in quantum field theory

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Savrin, V.I.

    1983-01-01

    Some techniques that may be appropriate for the derivation of dynamic equations in quantum field theory are considered. A new method of deriving equations based on the use of LSZ asymptotic condition is described. It is proved that with the help of this method it becomes possible to obtain equations for wave functions both of scattering and bound states. Work is described in several papers under the dame title. The first paper is devoted to the Bethe-Salpeter equation

  6. Dynamic equations for gauge-invariant wave functions

    International Nuclear Information System (INIS)

    Kapshaj, V.N.; Skachkov, N.B.; Solovtsov, I.L.

    1984-01-01

    The Bethe-Salpeter and quasipotential dynamic equations for wave functions of relative quark motion, have been derived. Wave functions are determined by the gauge invariant method. The V.A. Fock gauge condition is used in the construction. Despite the transl tional noninvariance of the gauge condition the standard separation of variables has been obtained and wave function doesn't contain gauge exponents

  7. Supersymmetric quasipotential equations

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1981-01-01

    A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru

  8. SU(N)-QCD2 meson equation in next-to-leading order

    International Nuclear Information System (INIS)

    Durgut, M.; Pak, N.K.

    1982-08-01

    We compute the 1/N corrections to the meson equation in the regular cut-off scheme. We illustrate that although the quark and gluon self energy and vertex corrections do not vanish explicitly as in the singular cut-off scheme, their contributions to the meson Bethe-Salpeter equation get cancelled within the whole set of contributing diagrams. We also argue that 0(1/N) corrections to the meson equation remove the massless boson from the spectrum in accordance with the Coleman theorem. (author)

  9. Hadronic bound states in SU(2) from Dyson-Schwinger equations

    Energy Technology Data Exchange (ETDEWEB)

    Vujinovic, Milan [Karl-Franzens-Universitaet Graz, Institut fuer Physik, Graz (Austria); Williams, Richard [Justus-Liebig-Universitaet Giessen, Institut fuer Theoretische Physik, Giessen (Germany)

    2015-03-01

    By using the Dyson-Schwinger/Bethe-Salpeter formalism in Euclidean spacetime, we calculate the ground state spectrum of J ≤ 1 hadrons in an SU(2) gauge theory with two fundamental fermions. We show that the rainbow-ladder truncation, commonly employed in QCD studies, is unsuitable for a description of an SU(2) theory. This we remedy by truncating at the level of the quark-gluon vertex Dyson-Schwinger equation in a diagrammatic expansion. Results obtained within this novel approach show good agreement with lattice studies. These findings emphasize the need to use techniques more sophisticated than rainbow-ladder when investigating generic strongly interacting gauge theories. (orig.)

  10. A discussion of the relativistic equal-time equation

    International Nuclear Information System (INIS)

    Chengrui, Q.; Danhua, Q.

    1981-03-01

    Ruan Tu-nan et al have proposed an equal-time equation for composite particles which is derived from Bethe-Salpeter (B-S) equation. Its advantage is that the kernel of this equation is a completely definite single rearrangement of the B-S irreducible kernel without any artificial assumptions. In this paper we shall give a further discussion of the properties of this equation. We discuss the behaviour of this equation as the mass of one of the two particles approaches the limit M 2 → infinite in the ladder approximation of single photon exchange. We show that up to order O(α 4 ) this equation is consistent with the Dirac equation. If the crossed two photon exchange diagrams are taken into account the difference between them is of order O(α 6 ). (author)

  11. Static correlation beyond the random phase approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian Sommer

    2014-01-01

    derived from Hedin's equations (Random Phase Approximation (RPA), Time-dependent Hartree-Fock (TDHF), Bethe-Salpeter equation (BSE), and Time-Dependent GW) all reproduce the correct dissociation limit. We also show that the BSE improves the correlation energies obtained within RPA and TDHF significantly...... and confirms that BSE greatly improves the RPA and TDHF results despite the fact that the BSE excitation spectrum breaks down in the dissociation limit. In contrast, second order screened exchange gives a poor description of the dissociation limit, which can be attributed to the fact that it cannot be derived...

  12. Self-consistence equations for extended Feynman rules in quantum chromodynamics

    International Nuclear Information System (INIS)

    Wielenberg, A.

    2005-01-01

    In this thesis improved solutions for Green's functions are obtained. First the for this thesis essential techniques and concepts of QCD as euclidean field theory are presented. After a discussion of the foundations of the extended approach for the Feynman rules of QCD with a systematic approach for the 4-gluon vertex a modified renormalization scheme for the extended approach is developed. Thereafter the resummation of the Dyson-Schwinger equations (DSE) by the appropriately modified Bethe-Salpeter equation is discussed. Then the leading divergences for the 1-loop graphs of the resummed DSE are determined. Thereafter the equation-of-motion condensate is defined as result of an operator-product expansion. Then the self-consistency equations for the extended approaches are defined and numerically solved. (HSI)

  13. Spinless Salpeter equation: Laguerre bounds on energy levels

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1996-08-01

    The spinless Salpeter equation may be considered either as a standard approximation to the Bethe-Salpeter formalism, designed for the description of bound states within a relativistic quantum field theory, or as the most simple, to a certain extent relativistic generalization of the customary non relativistic Schroedinger formalism. Because of the presence of the rather difficult-to-handle square-root operator of the relativistic kinetic energy in the corresponding Hamiltonian, very frequently the corresponding (discrete) spectrum of energy eigenvalues cannot be determined analytically. Therefore, we show how to calculate, by some clever choice of basis vectors in the Hilbert space of solutions, for the rather large class of power-law potentials, at least (sometimes excellent) upper bounds on these energy eigenvalues, for the lowest-lying levels this even analytically. (author)

  14. A comprehensive treatment of electromagnetic interactions and the three-body spectator equations

    Energy Technology Data Exchange (ETDEWEB)

    Jiri Adam; Jay Van Orden

    2004-10-01

    We present a general derivation the three-body spectator (Gross) equations and the corresponding electromagnetic currents. As in previous paper on two-body systems, the wave equations and currents are derived from those for Bethe-Salpeter equation with the help of algebraic method using a concise matrix notation. The three-body interactions and currents introduced by the transition to the spectator approach are isolated and the matrix elements of the e.m. current are presented in detail for system of three indistinguishable particles, namely for elastic scattering and for two and three body break-up. The general expressions are reduced to the one-boson-exchange approximation to make contact with previous work. The method is general in that it does not rely on introduction of the electromagnetic interaction with the help of the minimal replacement. It would therefore work also for other external fields.

  15. BSE in the UK

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint

    2004-01-01

    assessment by the Southwood Working Party. This lack of transparency ensured that the working party's risk characterization and recommendations were ambiguous and thus hard to interpret. It also meant that uncertainties were not addressed in a satisfactory way. In the recommendations, the attitude...... to uncertainty was implicit rather than explicit. The risk communication based on the report amplified these flaws. Most importantly, it did not address the uncertainty at all. Apparently, the reason for this was fear of overreaction by the public. However, the result was counter-productive, because the risk....... There seemed to be little faith in the public's ability to reach a balanced judgment regarding the uncertainties. In the concluding section of the paper, this analysis is compared with the food standards agency's (FSA's) approach to BSE. The intervention of this agency was seen as one of the more important...

  16. Relationship with BSE (Mad Cow Disease)

    Science.gov (United States)

    ... Disease (CWD) Prion Diseases Relationship with BSE (Mad Cow Disease) Evidence Recommend on Facebook Tweet Share Compartir ... macaque monkeys inoculated with brain tissue obtained from cattle with BSE had clinical and neuropathological features strikingly ...

  17. Non-perturbative QCD and hadron physics

    International Nuclear Information System (INIS)

    Cobos-Martínez, J J

    2016-01-01

    A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented. (paper)

  18. Covariant equations for the three-body bound state

    International Nuclear Information System (INIS)

    Stadler, A.; Gross, F.; Frank, M.

    1997-01-01

    The covariant spectator (or Gross) equations for the bound state of three identical spin 1/2 particles, in which two of the three interacting particles are always on shell, are developed and reduced to a form suitable for numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames, and all effects which arise from these boosts, including Wigner rotations and p-spin decomposition of the shell-particle, are treated exactly. In their final form, the equations reduce to a coupled set of Faddeev-like double integral equations with additional channels arising from the negative p-spin states of the off-shell particle

  19. BSE Practice and BSE Self-Efficacy among Nursing Students in Aceh, Indonesia

    Directory of Open Access Journals (Sweden)

    Juanita Juanita

    2013-01-01

    Full Text Available Purpose: To survey the level of BSE practice among female nursing students in Aceh, and the degree of self-efficacy in those who did practice it.Method: Seventy-six nursing students from the Public Nursing College, Syiah Kuala University in Aceh who met the inclusion criteria were recruited. Stratified proportionate random sampling was used to determine the required number of first, second, and third year students. BSE self-efficacy of the students was measured by the BSE Self-Efficacy Questionnaire which was modified from an existing tool developed by Khatun (2010. In addition, the students’ doing BSE or not was measured by BSE Practice Questionnaire which was developed by the researcher. The data were analyzed by using descriptive statistics.Result: Only 39.5% of the students practiced BSE with more than half of the students saying they did not practice BSE (60.5%. The main factors that influenced the students’ performing BSE were not having a family history of breast cancer, single, and no history of breast illness. Among the thirty students who practiced BSE, most of them did not practice it routinely (70%, nor at the correct time (86.7%, and their confidence in performing BSE was at a moderate level overall, with a high level for BSE procedural efficacy and moderate level for barrier management efficacy.Conclusion: A majority of the Acehnese nursing students did not practice BSE, and those who did had only a moderate level of BSE self-efficacy. Therefore, the results of this study suggest emphasizing the need to teach nursing students about BSE in their undergraduate courses, with future follow-up research regarding the success of the educational program.Keywords: practice, self-efficacy, breast self-examination (BSE, nursing students

  20. Meson spectra from two-body dirac equations with minimal interactions

    International Nuclear Information System (INIS)

    Crater, H.W.; Becker, R.L.; Wong, C.Y.

    1991-01-01

    Many authors have used two-body relativistic wave equations with spin in nonperturbative numerical quark model calculations of the meson spectrum. Usually, they adopt a truncation of the Bethe-Salpeter equation of QED and/or scalar. QED and replace the static Coulomb interactions of those field theories with a semiphenomenological Q bar Q potential whose insertion in the Breit terms give the corresponding spin corrections. However, the successes of these wave equations in QED have invariably depended on perturbative treatment of the terms in each beyond the Coulomb terms. There have been no successful nonperturbative numerical test of two-body quantum wave equations in QED, because in most equations the effective potentials beyond the Coulomb are singular and can only be treated perturbatively. This is a glaring omission that we rectify here for the case of the two-body Dirac equations of constraint dynamics. We show in this paper that a nonperturbative numerical treatment of these equations for QED yields the same spectral results as a perturbative treatment of them which in turn agrees with the standard spectral results for positronium and muonium. This establishes that the vector and scalar interaction structures of our equations accurately incorporate field theoretic interactions in a bone fide relativistic wave equation. The last portion of this work will report recent quark model calculations using these equations with the Adler-Piran static Q bar Q potential

  1. Relativistic two-and three-particle scattering equations using instant and light-front dynamics

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.; Frederico, T.

    1992-01-01

    Starting from the Bethe-Salpeter equation for two particles in the ladder approximation and integrating over the time component of momentum we derive three dimensional scattering integral equations satisfying constraints of unitarity and relativity, both employing the light-front and instant-form variables. The equations we arrive at are those first derived by Weinberg and by Blankenbecler and Sugar, and are shown to be related by a transformation of variables. Hence we show how to perform and relate identical dynamical calculation using these two equations. We extends this procedure to the case of three particles interacting via two-particle separable potentials. Using light-front and instant form variables we suggest a couple of three dimensional three-particle scattering equations satisfying constraints of two and three-particle unitarity and relativity. The three-particle light-front equation is shown to be approximately related by a transformation of variables to one of the instant-form three-particle equations. (author)

  2. A major genetic component of BSE susceptibility

    Science.gov (United States)

    Juling, Katrin; Schwarzenbacher, Hermann; Williams, John L; Fries, Ruedi

    2006-01-01

    Background Coding variants of the prion protein gene (PRNP) have been shown to be major determinants for the susceptibility to transmitted prion diseases in humans, mice and sheep. However, to date, the effects of polymorphisms in the coding and regulatory regions of bovine PRNP on bovine spongiform encephalopathy (BSE) susceptibility have been considered marginal or non-existent. Here we analysed two insertion/deletion (indel) polymorphisms in the regulatory region of bovine PRNP in BSE affected animals and controls of four independent cattle populations from UK and Germany. Results In the present report, we show that two previously reported 23- and 12-bp insertion/deletion (indel) polymorphisms in the regulatory region of bovine PRNP are strongly associated with BSE incidence in cattle. Genotyping of BSE-affected and control animals of UK Holstein, German Holstein, German Brown and German Fleckvieh breeds revealed a significant overrepresentation of the deletion alleles at both polymorphic sites in diseased animals (P = 2.01 × 10-3 and P = 8.66 × 10-5, respectively). The main effect on susceptibility is associated with the 12-bp indel polymorphism. Compared with non-carriers, heterozygous and homozygous carriers of the 12-bp deletion allele possess relatively higher risks of having BSE, ranging from 1.32 to 4.01 and 1.74 to 3.65 in the different breeds. These values correspond to population attributable risks ranging from 35% to 53%. Conclusion Our results demonstrate a substantial genetic PRNP associated component for BSE susceptibility in cattle. Although the BSE risk conferred by the deletion allele of the 12-bp indel in the regulatory region of PRNP is substantial, the main risk factor for BSE in cattle is environmental, i.e. exposure to feedstuffs contaminated with the infectious agent. PMID:17014722

  3. A major genetic component of BSE susceptibility

    Directory of Open Access Journals (Sweden)

    Williams John L

    2006-10-01

    Full Text Available Abstract Background Coding variants of the prion protein gene (PRNP have been shown to be major determinants for the susceptibility to transmitted prion diseases in humans, mice and sheep. However, to date, the effects of polymorphisms in the coding and regulatory regions of bovine PRNP on bovine spongiform encephalopathy (BSE susceptibility have been considered marginal or non-existent. Here we analysed two insertion/deletion (indel polymorphisms in the regulatory region of bovine PRNP in BSE affected animals and controls of four independent cattle populations from UK and Germany. Results In the present report, we show that two previously reported 23- and 12-bp insertion/deletion (indel polymorphisms in the regulatory region of bovine PRNP are strongly associated with BSE incidence in cattle. Genotyping of BSE-affected and control animals of UK Holstein, German Holstein, German Brown and German Fleckvieh breeds revealed a significant overrepresentation of the deletion alleles at both polymorphic sites in diseased animals (P = 2.01 × 10-3 and P = 8.66 × 10-5, respectively. The main effect on susceptibility is associated with the 12-bp indel polymorphism. Compared with non-carriers, heterozygous and homozygous carriers of the 12-bp deletion allele possess relatively higher risks of having BSE, ranging from 1.32 to 4.01 and 1.74 to 3.65 in the different breeds. These values correspond to population attributable risks ranging from 35% to 53%. Conclusion Our results demonstrate a substantial genetic PRNP associated component for BSE susceptibility in cattle. Although the BSE risk conferred by the deletion allele of the 12-bp indel in the regulatory region of PRNP is substantial, the main risk factor for BSE in cattle is environmental, i.e. exposure to feedstuffs contaminated with the infectious agent.

  4. Does the Amazon suffer from BSE prevention?

    NARCIS (Netherlands)

    Elferink, E.V.; Nonhebel, S.; Schoot Uiterkamp, A.J.M.

    In the last decade, large-scale production of soybeans has been a major driver of the enhanced deforestation in the Brazilian Amazon. We show that these soybeans are mainly exported to the EU to substitute for the BSE related banned meat and bone meal in livestock feed. This strongly suggests a link

  5. Review on the epidemiology and dynamics of BSE epidemics

    NARCIS (Netherlands)

    Ducrot, C.; Calavas, D.; Arnold, M.; Koeijer, de A.A.; Heim, D.

    2008-01-01

    The paper describes how the comprehensive surveillance of bovine spongiform encephalopathy (BSE) and studies carried out on these data has enhanced our knowledge of the epidemiology of BSE. Around 7 000 BSE cases were detected through the screening of about 50 million cattle with rapid tests in

  6. Gauge-invariant, nonperturbative approach to the infrared-finite bound-state problem in QCD

    International Nuclear Information System (INIS)

    Gogokhia, V.Sh.

    1989-09-01

    Gauge invariant, nonperturbative approach to the bound state problem within the infrared finite Bethe-Salpeter equation is presented. Condition of cancellation of the nonperturbative infrared divergences is derived. Solutions for the quark propagator and corresponding quark gluon vertex function are written down which can be directly applied to the Bethe-Salpeter equation, in particular to the 'generalized ladder' approximation of this equation. (author) 18 refs.; 3 figs

  7. Impact of BSE on livestock production system.

    Science.gov (United States)

    Nardone, A

    2003-09-01

    The small number of BSE cases diagnosed in Italy from January 2001 to 12 September 2001 (a total of 28, one every 9000 head) does not allow for a statistical analysis of the relationship between this disease and the livestock systems. However, some indications can be noted: (a) only dairy cattle, which represent three-quarters of the cattle raised in Italy, are involved; (b) 58% of the cases belong to medium-large farms that breed 27% of all head; (c) 13 out of 28 cases are 5-year-old animals and 26 out of 28 are between 5 and 7 years of age; (d) 15 of 28 cases come from Lombardia, where 27% of Italian dairy cattle are raised. The following factors may have affected the livestock system: (1) trends of beef meat consumption; (2) changes in livestock management; (3) changes in animal feeding; (4) possible effects on selection. A strong decline in beef meat consumption (4 kg/year) has been observed in the UK and other European countries since 1996 (the year of the discovery of the relationship between BSE and nvCJD). In Italy, from January 2001 the consumption of beef meat has declined as well as slaughter: a drop of 31% in the total slaughtered head in the period January-February, a drop of 14% in January-May. A fall in the price of calves has promoted, in some dairy farms, the start of the production of light beef less than one year old (advantages in the marketing of meat favour this initiative), a phenomenon which is not yet well established. Traceability and certification of meat have improved, thanks to breeders' associations and interprofessional agreements. The breeders associations have also started insurance initiatives against BSE risks. In Italy the employment of plant protein meals would increase the total feedstuff consumption by about 7%. Direct effects of BSE could slow down the genetic progress (GP) of cattle populations within breed and country. Indirect effects on GP may also happen as a consequence of an increase in the replacement rate (rr). This

  8. Helicity eigenstates of a relativistic spin-0 and spin-1/2 constituent bound by minimal electrodynamics: Zero orbital angular momentum, zero four-momentum solutions

    International Nuclear Information System (INIS)

    Mainland, G.B.

    1988-01-01

    Zero four-momentum, helicity eigenstates of the Bethe--Salpeter equation are found for a composite system consisting of a charged, spin-0 constituent and a charged, spin- 1/2 constituent bound by minimal electrodynamics. The form of the Bethe--Salpeter equation used to describe the bound state includes the contributions from both single photon exchange (ladder approximation) and the ''seagull'' diagram. Attention is restricted to zero orbital angular momentum states since these appear to be the most interesting physically

  9. [Basic research on BSE transmission to people].

    Science.gov (United States)

    Bodemer, W; Kaup, F J

    2002-08-01

    Prion diseases of animal and man belong to neurological diseases with amyloidal deposition of the respective proteins. As to prion disease, the cellular prionprotein is in its abnormal isoform(s) an essential component of prionprotein aggregates found in affected tissue. In contrast to all neurodegenerative diseases like Morbus Alzheimer or Huntington's disease, prion diseases are transmissible. Therefore, prion diseases were designated Transmissible Spongiform Encephalopathies (TSE). The diseases are well known since decades. Scrapie was first described around 1750, a BSE case was reported in the 1850, most likely a misdiagnosis, and in 1920/1930 the human Creutzfeldt-Jakob disease (CJD) had been described. Transmission of CJD i.e. Kuru had been suspected in the early 1950s and erronously classified as slow virus disease. The CJD transmission posed a problem to humans when transplants from CJD cases were used for treatment. Fortunately, these iatrogenic transmissions remained limited. But with the advent of BSE and appearance of variant CJD cases in the UK and some places in Europe scientists suspected that transmission from cattle to man could have happened. From animal models we know of successful transmission via several routes. Species barriers do not completely prevent transmission. Rather transmission barriers might exist controlling individual susceptibility against prions. Modes of transmission, susceptibility for transmission, identification of receptor molecules as well as molecular mechanisms of the transmission process are intensely investigated. Current knowledge let us to assume that inapparent stages of prion infection pretend a (not existing) species barrier. This inapparent infection preceeds overt disease and, thus, most re-search focuses on the development of highly sensitive assay systems for detection of minute amounts of pathological prionprotein in suspected cases. Inapparence also should warn us to underestimate BSE or human vCJD cases; at

  10. QCD bound states at finite temperature and baryon number

    International Nuclear Information System (INIS)

    Kalinovsky, Yu.L.; Muenchow, L.

    1991-04-01

    Quark-antiquark bound states are described within the Bethe-Salpeter equation for a class of quark models with instantaneous 4-quark interaction at finite temperature. Thereby decompositions of the Bethe-Salpeter vertex and wave functions according to their Lorentz structures and the particles content are used. As an application of general scheme, we determine the mass spectrum of low-lying mesons for a special Nambu-Jona-Lasinio model inspired by QCD for hadrons. (orig.)

  11. Bovine Spongiform Encephalopathy (BSE, Mad Cow Disease

    Directory of Open Access Journals (Sweden)

    G. K. Bruckner

    1997-07-01

    Full Text Available Mad Cow Disease or BSE (Bovine Spongiform Encephalopathy became a household name internationally and also in South Africa. International hysteria resulted following reports of a possible link between a disease diagnosed in cattle in Britain and a variant of the disease diagnosed in humans after the presumed ingestion or contact with meat from infected cattle. The European Union instituted a ban on the importation of beef from the United Kingdom during March 1996 that had a severe effect on the beef industry in the UK and also resulted in a world wide consumer resistance against beef consumption.

  12. Understanding the pattern of the BSE Sensex

    Science.gov (United States)

    Mukherjee, I.; Chatterjee, Soumya; Giri, A.; Barat, P.

    2017-09-01

    An attempt is made to understand the pattern of behaviour of the BSE Sensex by analysing the tick-by-tick Sensex data for the years 2006 to 2012 on yearly as well as cumulative basis using Principal Component Analysis (PCA) and its nonlinear variant Kernel Principal Component Analysis (KPCA). The latter technique ensures that the nonlinear character of the interactions present in the system gets captured in the analysis. The analysis is carried out by constructing vector spaces of varying dimensions. The size of the data set ranges from a minimum of 360,000 for one year to a maximum of 2,520,000 for seven years. In all cases the prices appear to be highly correlated and restricted to a very low dimensional subspace of the original vector space. An external perturbation is added to the system in the form of noise. It is observed that while standard PCA is unable to distinguish the behaviour of the noise-mixed data from that of the original, KPCA clearly identifies the effect of the noise. The exercise is extended in case of daily data of other stock markets and similar results are obtained.

  13. Bovine Spongiform Encephalopathy (BSE), or Mad Cow Disease

    Science.gov (United States)

    ... the CDC Bovine Spongiform Encephalopathy (BSE), or Mad Cow Disease Note: Javascript is disabled or is not ... spongiform encephalopathy) is a progressive neurological disorder of cattle that results from infection by an unusual transmissible ...

  14. Quasiparticle and optical properties of strained stanene and stanane.

    Science.gov (United States)

    Lu, Pengfei; Wu, Liyuan; Yang, Chuanghua; Liang, Dan; Quhe, Ruge; Guan, Pengfei; Wang, Shumin

    2017-06-20

    Quasiparticle band structures and optical properties of two dimensional stanene and stanane (fully hydrogenated stanene) are studied by the GW and GW plus Bethe-Salpeter equation (GW-BSE) approaches, with inclusion of the spin-orbit coupling (SOC). The SOC effect is significant for the electronic and optical properties in both stanene and stanane, compared with their group IV-enes and IV-anes counterparts. Stanene is a semiconductor with a quasiparticle band gap of 0.10 eV. Stanane has a sizable band gap of 1.63 eV and strongly binding exciton with binding energy of 0.10 eV. Under strain, the quasiparticle band gap and optical spectrum of both stanene and stanane are tunable.

  15. [Effects of BSE on consumer attitudes and behavior].

    Science.gov (United States)

    von Alvenisleben, R

    2002-08-01

    The extremely high media emphasis of the BSE issue during the period December 2000 to February 2001 has caused considerable short term public concern. A significant amount of this concern was due to an intensive communication of pictures. Pictures are "fast shots into the brain" (Kroeber-Riel). Pictured stimuli run under the cognitive control of the recipients effecting the consumer below the threshold of consciousness. However, the issue has fallen into oblivion very soon. In summer 2001 the public concern was not higher than before the BSE crisis. The perception of product quality regained a "normal level". The public concern has caused a considerable decline of the demand for beef and an increase of demand for substitutes and organic meat. When the media emphasis of the BSE issue diminished, the beef demand recovered but did not reach the pre-crisis level again. However, the BSE crisis has intensified animal welfare concerns, polarized public opinion about food and agriculture and had big effects in the political sphere. Furthermore, the BSE crisis has led to additional--politically supported--activities of the organic food suppliers causing a further growth of this market segment.

  16. Review on the epidemiology and dynamics of BSE epidemics.

    Science.gov (United States)

    Ducrot, Christian; Arnold, Mark; de Koeijer, Aline; Heim, Dagmar; Calavas, Didier

    2008-01-01

    The paper describes how the comprehensive surveillance of bovine spongiform encephalopathy (BSE) and studies carried out on these data has enhanced our knowledge of the epidemiology of BSE. Around 7, 000 BSE cases were detected through the screening of about 50 million cattle with rapid tests in Europe. It confirmed that the clinical surveillance had a poor capacity to detect cases, and also showed the discrepancy of this passive surveillance efficiency between regions and production types (dairy/beef). Other risk factors for BSE were being in a dairy herd (three times more than beef), having a young age at first calving (for dairy cattle), being autumn-born (dairy and beef), and being in a herd with a very high milk yield. These findings focus the risk on the feeding regimen of calves/heifers. Several epidemiological studies across countries suggest that the feedborne source related to meat and bone meal (MBM) is the only substantiated route of infection - even after the feed ban -, while it is not possible to exclude maternal transmission or milk replacers as a source of some infections. In most European countries, the average age of the cases is increasing over time and the prevalence decreasing, which reflects the effectiveness of control measures. Consistent results on the trend of the epidemic were obtained using back-calculation modelling, the R(0) approach and Age-Period-Cohort models. Furthermore, active surveillance also resulted in the finding of atypical cases. These are distinct from previously found BSE and classified in two different forms based on biochemical characteristics; their prevalence is very low (36 cases up to 1st September 2007), affected animals were old and some of them displayed clinical signs. The origin and possibility of natural transmission is unknown.

  17. Sb2Te3 crystal a potential absorber material for broadband photodetector: A first-principles study

    Directory of Open Access Journals (Sweden)

    Abdullahi Lawal

    Full Text Available Antimony telluride (Sb2Te3, a layered semiconductor material, is considered a promising absorbing material for a high-performance optoelectronic device within broadband wavelengths because of remarkable features like strong optical absorbance and the narrow direct band gap. In this work, based on the first-principles approach, we investigate in detail the structural, electronic and optical properties of the hexagonal Sb2Te3 compound. The structural and electronic properties were computed using the first-principles approach, treating exchange–correlation potential with generalized gradient approximation (GGA within density functional theory (DFT. Furthermore, for accurate prediction of the band gap, we go beyond DFT and calculated band structure using GW correction. The optical properties, namely, imaginary and real parts of complex dielectric function, absorption coefficient, refractive index, reflectivity, extinction coefficient, electron energy loss function and optical conductivity are performed by quasi-particle many-body perturbation theory (MBPT via Bethe-Salpeter equation (BSE. The computed structural parameters are in good agreement with available experimental data. The obtained quasi-particle (GW correction band structure show the semiconducting character of Sb2Te3 material with a direct band gap Eg of 0.221 eV, in agreement with previously reported value (Eg = 0.210 eV while the projected density of states indicates (PDOS that the p-orbital of Sb and Te atoms are responsible for material properties near the Fermi level. To our knowledge, our first reported calculations of optical properties, with the inclusion of electron-hole effects are consistent with available experimental measurements. Consistencies of our findings with experimental data validate the effectiveness of electron-hole interaction for theoretical investigation of optical properties. Keywords: DFT, Quasi-particle many-body perturbation theory, Bethe-Salpeter

  18. Nonperturbative calculation of the shear viscosity in hot $\\phi^{4}$ theory in real time

    CERN Document Server

    Wang, E; Wang, Enke; Heinz, Ulrich

    1999-01-01

    Starting from the Kubo formula we calculate the shear viscosity in hot phi**4 theory nonperturbatively by resumming ladders with a real-time version of the Bethe-Salpeter equation at finite temperature. In the weak coupling limit, the generalized Fluctuation-Dissipation Theorem is shown to decouple the Bethe-Salpeter equations for the different real-time components of the 4-point function. The resulting scalar integral equation is identical with the one obtained by Jeon using diagrammatic ``cutting rules'' in the Imaginary Time Formalism.

  19. Quasi-potential approach to the problem of bound states in quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rizov, V A; Todorov, I T [Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1975-07-01

    The paper reviews two types of quasipotential equations. An equation with a non-local potential is derived from the equations of motion of quantum electrodynamics. It is also related to a Bethe-Salpeter type of equation for the retarded Green function. Most of the paper is devoted to a systematic study of a local version of the Logunov-Tavkhelidze quasipotential approach.

  20. A hadron-quark vertex function

    International Nuclear Information System (INIS)

    Mitra, A.N.; Bhatnagar, S.

    1992-01-01

    This paper reports that the interrelation between the 4D and 3D forms of the Bethe-Salpeter equation (BSE) with a kernel K(q,q') which depends on the relative four-momenta, q μ = q μ - P · qP μ /P 2 , orthogonal to P μ is exploited to obtain a hadron-quark vertex function of the Lorentz-invariant form Γ(q) = D(q 2 ) circle time φ(q). The denominator function D(q 2 ) is universal and controls the 3D BSE, which provides the mass spectra with the eigenfunctions φ(q). The vertex function, directly related to the 4D wave function Ψ which satisfies a corresponding BSE, defines a natural off-shell extension over the whole of four-momentum space, and provides the basis for the evaluation of transition amplitudes via appropriate quark-loop diagrams. The key role of the quantity q 2 in this formalism is clarified in relation to earlier approaches, in which the applications of this quantity had mostly been limited to the mass shell (q · P = 0). Two applications (f p values for P → ell bar ell and F π for π 0 → γγ) are sketched as illustrations of this formalism, and attention is drawn to the problem of complex amplitudes for bigger quark loops with more hadrons, together with the role of the D(q) function in overcoming this problem

  1. Covariant meson-baryon scattering with chiral and large Nc constraints

    International Nuclear Information System (INIS)

    Lutz, M.F.M.; Kolomeitsev, E.E.

    2001-05-01

    We give a review of recent progress on the application of the relativistic chiral SU(3) Lagrangian to meson-baryon scattering. It is shown that a combined chiral and 1/N c expansion of the Bethe-Salpeter interaction kernel leads to a good description of the kaon-nucleon, antikaon-nucleon and pion-nucleon scattering data typically up to laboratory momenta of p lab ≅ 500 MeV. We solve the covariant coupled channel Bethe-Salpeter equation with the interaction kernel truncated to chiral order Q 3 where we include only those terms which are leading in the large N c limit of QCD. (orig.)

  2. A structure preserving Lanczos algorithm for computing the optical absorption spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Meiyue [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Div.; Jornada, Felipe H. da [Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Div.; Lin, Lin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Div.; Univ. of California, Berkeley, CA (United States). Dept. of Mathematics; Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Div.; Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Louie, Steven G. [Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Div.

    2016-11-16

    We present a new structure preserving Lanczos algorithm for approximating the optical absorption spectrum in the context of solving full Bethe-Salpeter equation without Tamm-Dancoff approximation. The new algorithm is based on a structure preserving Lanczos procedure, which exploits the special block structure of Bethe-Salpeter Hamiltonian matrices. A recently developed technique of generalized averaged Gauss quadrature is incorporated to accelerate the convergence. We also establish the connection between our structure preserving Lanczos procedure with several existing Lanczos procedures developed in different contexts. Numerical examples are presented to demonstrate the effectiveness of our Lanczos algorithm.

  3. SOA and Web Technology for Building BSE Market Map

    Directory of Open Access Journals (Sweden)

    Claudiu VINTE

    2012-01-01

    Full Text Available Visual representation as a map of the stock market data can offer access, in a quick and rele-vant manner for human participants, to the overall state of the market at a given point in time. The purpose of this paper is to present the results of our academic research upon building the market map for Bucharest Stock Exchange (BSE. We will focus on the algorithm for generat-ing the market map, the system architecture, and web technology employed for capturing the required data and making the map publicly available through the portal www.bursa.ase.ro. Mathematics Subject Classification: 68M14 (Distributed Systems

  4. Bankruptcy Risk in IFRS Era. Case Study on BSE Companies

    Directory of Open Access Journals (Sweden)

    Valentin BURCA

    2013-12-01

    Full Text Available The path of international accounting convergence is, unanimously accepted by all decision makers of the international financial reporting environment, as being the best solution towards reducing differences in international accounting. The idea of core standards is embraced by our country, too, the proof being the last legislative changes in Romanian accounting framework. This study aims to highlight a small part of the economic consequences of the decision to extend the mandatory use of IFRS standards to the statutory financial statements, also. More exactly we will underline the changes registered at the level of bankruptcy risk measureson a samples of companies listed on BSE.

  5. CNS histopathology on 203 bovines with clinical suspicion of BSE in Denmark 2001 to 2016

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre

    2017-01-01

    During 2001 to 2016 a total of 203 bovines were submitted to the instutute with clinical suspicion of having BSE. In two cases BSE was confirmed. The most common differential diagnosis was listeriosis, found in 54% of the cases. Listeriosis was characterized by multifocal, necrotizing, non-suppur...

  6. CNS histopathology on bovines with clinical suspicion of BSE in Denmark 2001 to 2011

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre

    During2001 to 2011 a total of 195 bovines were submitted to the instutute with clinical suspicion of having BSE. In two cases BSE was confirmed. The most common differential diagnosis was listeriosis, found in 54% of the cases. Listeriosis was characterized by multifocal, necrotizing, non-suppura...

  7. Modelling BSE trend over time in Europe, a risk assessment perspective

    NARCIS (Netherlands)

    Ducrot, C.; Sala, C.; Ru, G.; Koeijer, de A.A.; Sheridan, H.; Saegerman, C.; Selhorst, T.; Arnold, M.; Polak, M.P.; Calavas, D.

    2010-01-01

    BSE is a zoonotic disease that caused the emergence of variant Creuzfeldt-Jakob disease in the mid 1990s. The trend of the BSE epidemic in seven European countries was assessed and compared, using Age-Period-Cohort and Reproduction Ratio modelling applied to surveillance data 2001-2007. A strong

  8. Monitoring and analysis of bovine spongiform encephalopathy (BSE) testing in Denmark using statistical models

    DEFF Research Database (Denmark)

    Paisley, Larry

    2002-01-01

    The evolution of monitoring and surveillance for bovine spongiform encephalopathy (BSE) from the phase of passive surveillance that began in the United Kingdom in 1988 until the present is described. Currently, surveillance for BSE in Europe consists of mass testing of cattle slaughtered for human...

  9. On the Relativistic Separable Functions for the Breakup Reactions

    Science.gov (United States)

    Bondarenko, Serge G.; Burov, Valery V.; Rogochaya, Elena P.

    2018-02-01

    In the paper the so-called modified Yamaguchi function for the Bethe-Salpeter equation with a separable kernel is discussed. The type of the functions is defined by the analytic stucture of the hadron current with breakup - the reactions with interacting nucleon-nucleon pair in the final state (electro-, photo-, and nucleon-disintegration of the deuteron).

  10. Strong Coupling Continuum QCD

    International Nuclear Information System (INIS)

    Pennington, Michael

    2011-01-01

    The Schwinger-Dyson, Bethe-Salpeter system of equations are the link between coloured quarks and gluons, and colourless hadrons and their properties. This talk reviews some aspects of these studies from the infrared behavior of ghosts to the prediction of electromagnetic form-factors.

  11. Fermion-boson scattering in ladder approximation

    International Nuclear Information System (INIS)

    Jafarov, R.G.; Hadjiev, S.A.

    1992-10-01

    A method of calculation of forward scattering amplitude for fermions and scalar bosons with exchanging of scalar particle is suggested. The Bethe-Salpeter ladder equation for the imaginary part of the amplitude is constructed and a solution in Regge asymptotical form is found and the corrections to the amplitude due to the exit from mass shell are calculated. (author). 8 refs

  12. Eikonal multiple scattering model within the framework of Feynman's positron theory

    International Nuclear Information System (INIS)

    Tekou, A.

    1986-07-01

    The Bethe Salpeter equation for nucleon-nucleon, nucleon-nucleus and nucleus-nucleus scattering is eikonalized. Multiple scattering series is obtained. Contributions of three body interations are included. The model presented below may be used to investigate atomic collisions. (author)

  13. Elastic proton-deuteron backward scattering: relativistic effects and polarization observables

    International Nuclear Information System (INIS)

    Kaptari, L.P.; Semikh, S.S.

    1997-10-01

    The elastic proton-deuteron backward reaction is analyzed within a covariant approach based on the Bethe-Salpeter equation with 000. Lorentz boost and other relativistic effects in the cross section and spin correlation observables, like tensor analyzing power and polarization transfer etc., are investigated in explicit form. Results of numerical calculations for a complete set of polarization observables are presented. (orig.)

  14. The relativistic harmonic oscillator reconsidered

    International Nuclear Information System (INIS)

    Hofsaess, T.

    1978-01-01

    The bound states of scalar quarks interacting through a scalar harmonic oscillator are investigated. In the presence of this interaction the dressed quark propagator differs substantially from the free one. This leads to a Bethe Salpeter equation which does not allow for any stable bound states of positive mass. (orig.) [de

  15. On the proton exchange contribution to electron-hydrogen atom elastic scattering

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Tort, A.C.

    1979-05-01

    It is shown that the exchange contribution to the electron-proton potential Born term in elastic electron-hydrogen atom scattering arises as the non relativistic limit from the exchange of a proton between the two participant electrons - calculated from quantum electrodynamics including properly bound states (as solution of Bethe - Salpeter equation). (Author) [pt

  16. Communication: Strong excitonic and vibronic effects determine the optical properties of Li₂O₂

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Bass, J. D.; Thygesen, Kristian Sommer

    2011-01-01

    The band structure and optical absorption spectrum of lithium peroxide (Li2O2) is calculated from first-principles using the G0W0 approximation and the Bethe-Salpeter equation, respectively. A strongly localized (Frenkel type) exciton corresponding to the π*→σ* transition on the O2 −2 peroxide ion...

  17. Modelling BSE trend over time in Europe, a risk assessment perspective.

    Science.gov (United States)

    Ducrot, Christian; Sala, Carole; Ru, Giuseppe; de Koeijer, Aline; Sheridan, Hazel; Saegerman, Claude; Selhorst, Thomas; Arnold, Mark; Polak, Miroslaw P; Calavas, Didier

    2010-06-01

    BSE is a zoonotic disease that caused the emergence of variant Creuzfeldt-Jakob disease in the mid 1990s. The trend of the BSE epidemic in seven European countries was assessed and compared, using Age-Period-Cohort and Reproduction Ratio modelling applied to surveillance data 2001-2007. A strong decline in BSE risk was observed for all countries that applied control measures during the 1990s, starting at different points in time in the different countries. Results were compared with the type and date of the BSE control measures implemented between 1990 and 2001 in each country. Results show that a ban on the feeding of meat and bone meal (MBM) to cattle alone was not sufficient to eliminate BSE. The fading out of the epidemic started shortly after the complementary measures targeted at controlling the risk in MBM. Given the long incubation period, it is still too early to estimate the additional effect of the ban on the feeding of animal protein to all farm animals that started in 2001. These results provide new insights in the risk assessment of BSE for cattle and Humans, which will especially be useful in the context of possible relaxing BSE surveillance and control measures.

  18. The price of the precautionary principle: cost-effectiveness of BSE intervention strategies in The Netherlands.

    Science.gov (United States)

    Benedictus, A; Hogeveen, H; Berends, B R

    2009-06-01

    Since 1996, bovine spongiform encephalopathy (BSE) in cattle has been linked to a new variant of Creutzfeldt-Jakob disease (vCJD), a fatal brain disease in man. This paper assessed the cost-effectiveness of BSE control strategies instituted by the European Commission. In a Monte Carlo simulation model, a non-intervention baseline scenario was compared to three intervention strategies: removal of specified risk materials from slaughter animals, post-mortem testing for BSE and the culling of feed and age cohorts of BSE cases. The food risk in the baseline scenario ranged from 16.98 lost life years in 2002 to 2.69 lost life years in 2005. Removing specified risk materials removal practices, post-mortem testing and post-mortem testing plus cohort culling reduced this risk with 93%, 82.7% and 83.1%. The estimated cost-effectiveness of all BSE measures in The Netherlands ranged from 4.3 million euros per life year saved in 2002 to 17.7 million euros in 2005. It was discussed that the cost-effectiveness of BSE control strategies will further deviate from regular health economics thresholds as BSE prevalence and incidence declines.

  19. Evaluation of the cumulative evidence for freedom from BSE in birth cohorts

    DEFF Research Database (Denmark)

    Böhning, Dankmar; Greiner, Matthias

    2006-01-01

    Substantial resources are used for surveillance of bovine spongiform encephalopathy (BSE) despite an extremely low detection rate, especially in healthy slaughtered cattle. We have developed a method based on the geometric waiting time distribution to establish and update the statistical evidence...... for BSE-freedom for defined birth cohorts using continued surveillance data. The results suggest that currently (data included till September 2004) a birth cohort of Danish cattle born after March 1999 is free from BSE with probability (power) of 0.8746 or 0.8509, depending on the choice of a model...

  20. Functional renormalization group approach to electronic structure calculations for systems without translational symmetry

    Science.gov (United States)

    Seiler, Christian; Evers, Ferdinand

    2016-10-01

    A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band structure, such as disordered metals or molecules. The energy-domain FRG (ɛ FRG) presented here accounts for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of the art G W -BSE , because in ɛ FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG, also the ɛ FRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow of the corresponding interaction vertex. Embarking upon this fact, in an application of ɛ FRG to the spinless disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder strength. Finally, an extension of the approach to finite temperatures and spin S =1 /2 is also given.

  1. Quasi-particle energies and optical excitations of ZnS monolayer honeycomb structure

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhi, Masoud, E-mail: shahrokhimasoud37@gmail.com

    2016-12-30

    Highlights: • The electronic and optical properties of ZnS honeycomb sheet are investigated. • The electronic properties were analyzed at three levels of GW approach. • The optical properties of these materials are investigated using the BSE approach. • Optical properties of ZnS sheet strongly dominated by excitonic effects. • Spectrum is dominated by strongly bound Frenkel excitons. - Abstract: Using ab-initio density functional theory calculations combined with many-body perturbation formalism we carried out the electronic structure and optical properties of 2D graphene-like ZnS structure. The electronic properties were analyzed at three levels of many-body GW approach (G{sub 0}W{sub 0}, GW{sub 0} and GW) constructed over a Generalized Gradient Approximation functional. Our results indicate that ZnS sheet has a direct band gap at the Γ-point. Also it is seen that inclusion of electron–electron interaction does not change the sort of direct semiconducting band gap in ZnS sheet. The optical properties and excitonic effects of these materials are investigated using the Bethe-Salpeter equation (BSE) approach. The formation of first exciton peaks at 3.86, 4.26, and 4.57 eV with large binding energy of 0.36, 0.49 and 0.73 eV using G{sub 0}W{sub 0} + BSE, GW{sub 0} + BSE and GW + BSE, respectively, was observed. We show that the optical absorption spectrum of 2D ZnS structure is dominated by strongly bound Frenkel excitons. The enhanced excitonic effects in the ZnS monolayer sheet can be useful in designing optoelectronic applications.

  2. Pruritus is a common feature in sheep infected with the BSE agent.

    Science.gov (United States)

    Konold, Timm; Bone, Gemma; Vidal-Diez, Alberto; Tortosa, Raul; Davis, Andrew; Dexter, Glenda; Hill, Peter; Jeffrey, Martin; Simmons, Marion M; Chaplin, Melanie J; Bellworthy, Susan J; Berthelin-Baker, Christine

    2008-04-29

    The variability in the clinical or pathological presentation of transmissible spongiform encephalopathies (TSEs) in sheep, such as scrapie and bovine spongiform encephalopathy (BSE), has been attributed to prion protein genotype, strain, breed, clinical duration, dose, route and type of inoculum and the age at infection. The study aimed to describe the clinical signs in sheep infected with the BSE agent throughout its clinical course to determine whether the clinical signs were as variable as described for classical scrapie in sheep. The clinical signs were compared to BSE-negative sheep to assess if disease-specific clinical markers exist. Forty-seven (34%) of 139 sheep, which comprised 123 challenged sheep and 16 undosed controls, were positive for BSE. Affected sheep belonged to five different breeds and three different genotypes (ARQ/ARQ, VRQ/VRQ and AHQ/AHQ). None of the controls or BSE exposed sheep with ARR alleles were positive. Pruritus was present in 41 (87%) BSE positive sheep; the remaining six were judged to be pre-clinically infected. Testing of the response to scratching along the dorsum of a sheep proved to be a good indicator of clinical disease with a test sensitivity of 85% and specificity of 98% and usually coincided with weight loss. Clinical signs that were displayed significantly earlier in BSE positive cases compared to negative cases were behavioural changes, pruritic behaviour, a positive scratch test, alopecia, skin lesions, teeth grinding, tremor, ataxia, loss of weight and loss of body condition. The frequency and severity of each specific clinical sign usually increased with the progression of disease over a period of 16-20 weeks. Our results suggest that BSE in sheep presents with relatively uniform clinical signs, with pruritus of increased severity and abnormalities in behaviour or movement as the disease progressed. Based on the studied sheep, these clinical features appear to be independent of breed, affected genotype, dose, route

  3. Pruritus is a common feature in sheep infected with the BSE agent

    Directory of Open Access Journals (Sweden)

    Jeffrey Martin

    2008-04-01

    Full Text Available Abstract Background The variability in the clinical or pathological presentation of transmissible spongiform encephalopathies (TSEs in sheep, such as scrapie and bovine spongiform encephalopathy (BSE, has been attributed to prion protein genotype, strain, breed, clinical duration, dose, route and type of inoculum and the age at infection. The study aimed to describe the clinical signs in sheep infected with the BSE agent throughout its clinical course to determine whether the clinical signs were as variable as described for classical scrapie in sheep. The clinical signs were compared to BSE-negative sheep to assess if disease-specific clinical markers exist. Results Forty-seven (34% of 139 sheep, which comprised 123 challenged sheep and 16 undosed controls, were positive for BSE. Affected sheep belonged to five different breeds and three different genotypes (ARQ/ARQ, VRQ/VRQ and AHQ/AHQ. None of the controls or BSE exposed sheep with ARR alleles were positive. Pruritus was present in 41 (87% BSE positive sheep; the remaining six were judged to be pre-clinically infected. Testing of the response to scratching along the dorsum of a sheep proved to be a good indicator of clinical disease with a test sensitivity of 85% and specificity of 98% and usually coincided with weight loss. Clinical signs that were displayed significantly earlier in BSE positive cases compared to negative cases were behavioural changes, pruritic behaviour, a positive scratch test, alopecia, skin lesions, teeth grinding, tremor, ataxia, loss of weight and loss of body condition. The frequency and severity of each specific clinical sign usually increased with the progression of disease over a period of 16–20 weeks. Conclusion Our results suggest that BSE in sheep presents with relatively uniform clinical signs, with pruritus of increased severity and abnormalities in behaviour or movement as the disease progressed. Based on the studied sheep, these clinical features appear to

  4. Generation of a persistently infected MDBK cell line with natural bovine spongiform encephalopathy (BSE.

    Directory of Open Access Journals (Sweden)

    Dongseob Tark

    Full Text Available Bovine spongiform encephalopathy (BSE is a zoonotic transmissible spongiform encephalopathy (TSE thought to be caused by the same prion strain as variant Creutzfeldt-Jakob disease (vCJD. Unlike scrapie and chronic wasting disease there is no cell culture model allowing the replication of proteinase K resistant BSE (PrPBSE and the further in vitro study of this disease. We have generated a cell line based on the Madin-Darby Bovine Kidney (MDBK cell line over-expressing the bovine prion protein. After exposure to naturally BSE-infected bovine brain homogenate this cell line has shown to replicate and accumulate PrPBSE and maintain infection up to passage 83 after initial challenge. Collectively, we demonstrate, for the first time, that the BSE agent can infect cell lines over-expressing the bovine prion protein similar to other prion diseases. These BSE infected cells will provide a useful tool to facilitate the study of potential therapeutic agents and the diagnosis of BSE.

  5. The Development of a Cultural-Based Educational Program to Enhance Breast Self-Examination (BSE Self-Efficacy

    Directory of Open Access Journals (Sweden)

    Juanita Juanita

    2012-08-01

    Full Text Available Purpose: To develop the educational program which is appropriate with Islamic culture in order to enhance BSE self-efficacy of nursing students and thus promote BSE practice. Method: This study is a development research study which is consisting of three phases including: 1 reviewing several existing BSE educational programs; 2 program design based on SCT and Islamic culture; and 3 program validation by three experts. Result: Based on previous studies, the most appropriate theory to enhance self-efficacy was Social Cognitive Theory (SCT because this theory provides several strategies to increase the self-efficacy. Further, the program that used Islamic culture was more appropriate to increase BSE practice among Muslim women. As a result, the newly developed program was developed used SCT and Islamic culture. This program was comprised of four sessions including: 1 exploring Islamic mandate on prevention and individual responsibility in health promotion, and culture-related beliefs toward BSE, 2 health education by conducting lecturing session and watching a video about BSE procedures, 3 BSE training activities including BSE demonstration and return demonstration, 4 follow-up by conducting a meeting. Conclusion: The cultural-based educational program for enhancing BSE self-efficacy and promoting BSE is a program using multifaceted methods. It designed based on a review of the literature from previous studies and were supported by research findings on experimental studies in other population. Keywords: Cultural, Educational program development, Breast self-examination, Self-efficacy.

  6. Rapid and discriminatory diagnosis of scrapie and BSE in retro-pharyngeal lymph nodes of sheep

    Directory of Open Access Journals (Sweden)

    van Zijderveld Fred G

    2006-06-01

    Full Text Available Abstract Background Diagnosis based on prion detection in lymph nodes of sheep and goats can improve active surveillance for scrapie and, if it were circulating, for bovine spongiform encephalopathy (BSE. With sizes that allow repetitive testing and a location that is easily accessible at slaughter, retropharyngeal lymph nodes (RLN are considered suitable organs for testing. Western blotting (WB of brain homogenates is, in principle, a technique well suited to both detect and discriminate between scrapie and BSE. In this report, WB is developed for rapid diagnosis in RLN and to study biochemical characteristics of PrPres. Results Optimal PrPres detection in RLN by WB was achieved by proper tissue processing, antibody choice and inclusion of a step for PrPresconcentration. The analyses were performed on three different sheep sources. Firstly, in a study with preclinical scrapie cases, WB of RLN from infected sheep of VRQ/VRQ genotype – VRQ represents, respectively, polymorphic PrP amino acids 136, 154, and 171 – allowed a diagnosis 14 mo earlier compared to WB of brain stem. Secondly, samples collected from sheep with confirmed scrapie in the course of passive and active surveillance programmes in the period 2002–2003 yielded positive results depending on genotype: all sheep with genotypes ARH/VRQ, VRQ/VRQ, and ARQ/VRQ scored positive for PrPres, but ARQ/ARQ and ARR/VRQ were not all positive. Thirdly, in an experimental BSE study, detection of PrPres in all 11 ARQ/ARQ sheep, including 7 preclinical cases, was possible. In all instances, WB and IHC were almost as sensitive. Moreover, BSE infection could be discriminated from scrapie infection by faster electrophoretic migration of the PrPres bands. Using dual antibody staining with selected monoclonal antibodies like 12B2 and L42, these differences in migration could be employed for an unequivocal differentiation between BSE and scrapie. With respect to glycosylation of PrPres, BSE cases

  7. Causality and correlations between BSE and NYSE indexes: A Janus faced relationship

    Science.gov (United States)

    Neeraj; Panigrahi, Prasanta K.

    2017-09-01

    We study the multi-scale temporal correlations and causality connections between the New York Stock Exchange (NYSE) and Bombay Stock Exchange (BSE) monthly average closing price indexes for a period of 300 months, encompassing the time period of the liberalisation of the Indian economy and its gradual global exposure. In multi-scale analysis; clearly identifiable 1, 2 and 3 year non-stationary periodic modulations in NYSE and BSE have been observed, with NYSE commensurating changes in BSE at 3 years scale. Interestingly, at one year time scale, the two exchanges are phase locked only during the turbulent times, while at the scale of three year, in-phase nature is observed for a much longer time frame. The two year time period, having characteristics of both one and three year variations, acts as the transition regime. The normalised NYSE's stock value is found to Granger cause those of BSE, with a time lag of 9 months. Surprisingly, observed Granger causality of high frequency variations reveals BSE behaviour getting reflected in the NYSE index fluctuations, after a smaller time lag. This Janus faced relationship, shows that smaller stock exchanges may provide a natural setting for simulating market fluctuations of much bigger exchanges. This possibly arises due to the fact that high frequency fluctuations form an universal part of the financial time series, and are expected to exhibit similar characteristics in open market economies.

  8. Experimental sheep BSE prions generate the vCJD phenotype when serially passaged in transgenic mice expressing human prion protein.

    Science.gov (United States)

    Joiner, Susan; Asante, Emmanuel A; Linehan, Jacqueline M; Brock, Lara; Brandner, Sebastian; Bellworthy, Susan J; Simmons, Marion M; Hope, James; Collinge, John; Wadsworth, Jonathan D F

    2018-03-15

    The epizootic prion disease of cattle, bovine spongiform encephalopathy (BSE), causes variant Creutzfeldt-Jakob disease (vCJD) in humans following dietary exposure. While it is assumed that all cases of vCJD attributed to a dietary aetiology are related to cattle BSE, sheep and goats are susceptible to experimental oral challenge with cattle BSE prions and farmed animals in the UK were undoubtedly exposed to BSE-contaminated meat and bone meal during the late 1980s and early 1990s. Although no natural field cases of sheep BSE have been identified, it cannot be excluded that some BSE-infected sheep might have entered the European human food chain. Evaluation of the zoonotic potential of sheep BSE prions has been addressed by examining the transmission properties of experimental brain isolates in transgenic mice that express human prion protein, however to-date there have been relatively few studies. Here we report that serial passage of experimental sheep BSE prions in transgenic mice expressing human prion protein with methionine at residue 129 produces the vCJD phenotype that mirrors that seen when the same mice are challenged with vCJD prions from patient brain. These findings are congruent with those reported previously by another laboratory, and thereby strongly reinforce the view that sheep BSE prions could have acted as a causal agent of vCJD within Europe. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Factors affecting the accuracy of urine-based biomarkers of BSE

    Directory of Open Access Journals (Sweden)

    Ruddat Viola

    2011-02-01

    Full Text Available Abstract Background Transmissible spongiform encephalopathy diseases are untreatable, uniformly fatal degenerative syndromes of the central nervous system that can be transmitted both within as well as between species. The bovine spongiform encephalopathy (BSE epidemic and the emergence of a new human variant of Creutzfeldt-Jakob disease (vCJD, have profoundly influenced beef production processes as well as blood donation and surgical procedures. Simple, robust and cost effective diagnostic screening and surveillance tools are needed for both the preclinical and clinical stages of TSE disease in order to minimize both the economic costs and zoonotic risk of BSE and to further reduce the risk of secondary vCJD. Objective Urine is well suited as the matrix for an ante-mortem test for TSE diseases because it would permit non-invasive and repeated sampling. In this study urine samples collected from BSE infected and age matched control cattle were screened for the presence of individual proteins that exhibited disease specific changes in abundance in response to BSE infection that might form the basis of such an ante-mortem test. Results Two-dimensional differential gel electrophoresis (2D-DIGE was used to identify proteins exhibiting differential abundance in two sets of cattle. The known set consisted of BSE infected steers and age matched controls throughout the course of the disease. The blinded unknown set was composed of BSE infected and control samples of both genders, a wide range of ages and two different breeds. Multivariate analyses of individual protein abundance data generated classifiers comprised of the proteins best able to discriminate between the samples based on disease state, breed, age and gender. Conclusion Despite the presence of confounding factors, the disease specific changes in abundance exhibited by a panel of urine proteins permitted the creation of classifiers able to discriminate between control and infected cattle

  10. EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2014. Scientific Opinion on BSE risk in bovine intestines and mesentery

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    infected cattle entering undetected in the food and feed chain yearly. A model named TSEi was developed to estimates the BSE infectious load in tissues from infected animals at different ages and the total yearly infectious load that could enter the food and feed chain in the EU27. In BSE infected cattle...

  11. Improvement of goat TSE discriminative diagnosis and susceptibility based assessment of BSE infectivity in goat milk and meat

    NARCIS (Netherlands)

    Bossers, A.; Langeveld, J.P.M.

    2012-01-01

    In light of the known ability of the BSE agent to cross the animal/human species barrier, the evidence establishing the presence of BSE in goat is especially alarming, as it represents a potential risk of food-born contamination to human consumers of goat milk and meat products. The main objective

  12. The BSE Risk of Processing Meat and Bone Meal in Nonruminant Feed: A Quantitative Assessment for the Netherlands

    NARCIS (Netherlands)

    Vos, de C.J.; Heres, L.

    2009-01-01

    The total ban on use of meat and bone meal (MBM) in livestock feed has been very successful in reducing bovine spongiform encephalopathy (BSE) spread, but also implies a waste of high-quality proteins resulting in economic and ecological loss. Now that the BSE epidemic is fading out, a partial

  13. Bovine spongiform encephalopathy: is it time to relax BSE-related measures in the context of international trade?

    Science.gov (United States)

    Matthews, D; Adkin, A

    2011-04-01

    Bovine spongiform encephalopathy (BSE) has presented serious challenges to both the World Organisation for Animal Health and national governments, in defining and implementing appropriate national control measures, and in agreeing trade rules that permit safe trade in cattle and bovine products. Precautionary trade rules were initially necessary, based upon the science of sheep scrapie, but research into BSE later enabled BSE-specific trade rules to be developed. As a result, current rules on trade are underpinned by a sound body of knowledge on BSE. Declining epidemics in most affected countries confirm the appropriateness of current precautions. Nevertheless, risk is primarily dependent on the prevalence of infection with BSE. In the face of low prevalence scenarios, certain precautionary measures in the Terrestrial Animal Health Code may now be considered excessive. A thorough review is therefore deemed appropriate.

  14. 9 CFR 93.436 - Ruminants from regions of minimal risk for BSE.

    Science.gov (United States)

    2010-01-01

    ... each animal's right hip, high on the tail-head (over the junction of the sacral and first cocygeal... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Ruminants from regions of minimal risk for BSE. 93.436 Section 93.436 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE...

  15. Recent Progress in GW-based Methods for Excited-State Calculations of Reduced Dimensional Systems

    Science.gov (United States)

    da Jornada, Felipe H.

    2015-03-01

    Ab initio calculations of excited-state phenomena within the GW and GW-Bethe-Salpeter equation (GW-BSE) approaches allow one to accurately study the electronic and optical properties of various materials, including systems with reduced dimensionality. However, several challenges arise when dealing with complicated nanostructures where the electronic screening is strongly spatially and directionally dependent. In this talk, we discuss some recent developments to address these issues. First, we turn to the slow convergence of quasiparticle energies and exciton binding energies with respect to k-point sampling. This is very effectively dealt with using a new hybrid sampling scheme, which results in savings of several orders of magnitude in computation time. A new ab initio method is also developed to incorporate substrate screening into GW and GW-BSE calculations. These two methods have been applied to mono- and few-layer MoSe2, and yielded strong environmental dependent behaviors in good agreement with experiment. Other issues that arise in confined systems and materials with reduced dimensionality, such as the effect of the Tamm-Dancoff approximation to GW-BSE, and the calculation of non-radiative exciton lifetime, are also addressed. These developments have been efficiently implemented and successfully applied to real systems in an ab initio framework using the BerkeleyGW package. I would like to acknowledge collaborations with Diana Y. Qiu, Steven G. Louie, Meiyue Shao, Chao Yang, and the experimental groups of M. Crommie and F. Wang. This work was supported by Department of Energy under Contract No. DE-AC02-05CH11231 and by National Science Foundation under Grant No. DMR10-1006184.

  16. On some aspects of the relativistic description of the two-nucleon system

    International Nuclear Information System (INIS)

    Zuilhof, M.

    1981-01-01

    It has been shown that the Bethe-Salpeter equation (BSE) with a one-boson exchange (OBE) as the driving force is capable of giving a reasonable description of the two-nucleon system. They find it necessary to use a pseudo-vector (PV) pion-nucleon coupling, instead of the usual pseudo-scalar (PS) coupling, due to the very strong effects induced by the coupling of positive and negative-energy states in the latter case. Within such a field-theoretic model it is possible to study the electro-magnetic effects in a consistent way and the results, which are described in this thesis, do not deviate markedly from those calculated within a nonrelativistic model without corrections. A detailed analysis of the perturbative approach, is given and reveals both for PV and for PS coupling that there are effects which compensate the accepted contributions substantially. In particular, it is important to include the corrections due to special relativity in a consistent way. In addition the convergence of the quasipotential approach to the BSE has also been studied by adding higher order one-loop corrections. In general the author finds that the inclusion of corrections from the two-pion direct-box diagram to the driving force does not yield phase shifts close to the ones obtained from the BSE. The crossed-box effects are also of interest because one expects that there are cancellations with the direct-box diagram. This turns out not to be the case. Although there are essentially no problems in including these contributions in the description of the nucleon-nucleon interaction within the Blankenbeckler and Sugar framework, difficulties arise in the evaluation of the electromagnetic deuteron vertex function. (Auth.)

  17. Electronic and optical properties of titanium nitride bulk and surfaces from first principles calculations

    Science.gov (United States)

    Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.

    2015-11-01

    Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green's (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G0W0, GW0 to partially self-consistent sc-GW0, as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW0-BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations.

  18. Electronic and optical properties of titanium nitride bulk and surfaces from first principles calculations

    International Nuclear Information System (INIS)

    Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.

    2015-01-01

    Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green's (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G 0 W 0 , GW 0 to partially self-consistent sc-GW 0 , as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW 0 -BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations

  19. Relativistic treatment of fermion-antifermion bound states

    International Nuclear Information System (INIS)

    Lucha, W.; Rupprecht, H.; Schoeberl, F.F.

    1990-01-01

    We discuss the relativistic treatment of fermion-antifermion bound states by an effective-Hamiltonian method which imitates their description in terms of nonrelativistic potential models: the effective interaction potential, to be used in a Schroedinger equation which incorporates relativistic kinematics, is derived from the underlying quantum field theory. This approach is equivalent to the instantaneous approximation to the Bethe-Salpeter equation called Salpeter equation but comes closer to physical intuition than the latter one. (Author) 14 refs

  20. PCR-RFLP Using BseDI Enzyme for Pork Authentication in Sausage and Nugget Products

    Directory of Open Access Journals (Sweden)

    Y. Erwanto

    2011-04-01

    Full Text Available A polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP using BseDI restriction enzyme had been applied for identifying the presence of pork in processed meat (beef sausage and chicken nugget including before and after frying. Pork sample in various levels (1%, 3%, 5%, 10%, and 25 % was prepared in a mixture with beef and chicken meats and processed for sausage and nugget. The primers CYTb1 and CYTb2 were designed in the mitochondrial cytochrome b (cyt b gene and PCR successfully amplified fragments of 359 bp. To distinguish existence of porcine species, the amplified PCR products of mitochondrial DNA were cut by BseDI restriction enzyme. The result showed pig mitochondrial DNA was cut into 131 and 228 bp fragments. The PCR-RFLP species identification assay yielded excellent results for identification of porcine species. It is a potentially reliable technique for pork detection in animal food processed products for Halal authentication.

  1. Nonperturbative Aspects of Axial Vector Vertex

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; CHEN Xiang-Song; WANG Fan; CHANG Chao-Hsi; ZHAO En-Guang

    2002-01-01

    It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model.Gluon dressing of the axial vector vertex and the quark self-energy functions are described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger Dyson equation in the rainbow approximation,respectively.

  2. Determinantal method for complex angular momenta in potential scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. W. [University of Pennsylvania, Philadelphia, PA (United States)

    1963-01-15

    In this paper I would like do describe a formulation of the complex angular momenta in potential scattering based on the Lippmann-Schwinger integral equation rather than on the Schrödinger differential equation. This is intended as a preliminary to the paper by SAWYER on the Regge poles and high energy limits in field theory (Bethe-Salpeter amplitudes), where the integral formulation is definitely more advantageous than the differential formulation.

  3. Possible retardation effects of quark confinement on the meson spectrum

    International Nuclear Information System (INIS)

    Qiao, C.; Huang, H.; Chao, K.

    1996-01-01

    The reduced Bethe-Salpeter equation with scalar confinement and vector gluon exchange is applied to quark-antiquark bound states. The so-called intrinsic flaw of the Salpeter equation with static scalar confinement is investigated. The notorious problem of narrow level spacings is found to be remedied by taking into consideration the retardation effect of scalar confinement. A good fit for the mass spectrum of both heavy and light quarkonium states is then obtained. copyright 1996 The American Physical Society

  4. Development of Neutron Interferometer with Wide-Gapped ''BSE''s for Precision Measurements

    International Nuclear Information System (INIS)

    Seki, Y.; Kitaguchi, M.; Hino, M.; Funahashi, H.; Taketani, K.; Otake, Y.; Shimizu, H. M.

    2007-01-01

    We are developing large-dimensional cold-neutron interferometers with multilayer mirrors in order to investigate small interactions. In particular Jamin type interferometers composed of wide-gapped 'BSE's, which divide the beam completely, can realize the precision measurement of topological Aharonov-Casher effect. We have made a prototype with 200 μm gapped BSEs and confirmed the spatial separation of its two paths at monochromatic cold-neutron beamline MINE2 on JRR-3M reactor in JAEA

  5. THE EVALUATION OF BSE BAHASA INGGRIS FOR GRADE VII: WHEN ENGLISH RINGS A BELL

    OpenAIRE

    Doddy Dwi Wahyuwono; I Gusti Ngurah Aditya Liem Aria; Tandya Anggergian

    2017-01-01

    Coursebooks are core parts of any curriculum as the unique contributors to content learning (Demir & Ertas, 2014). Currently, in Indonesian curriculum, K13, the government develops coursebooks that can be used by students nationally. The developed coursebooks, Buku Sekolah Elektronik (BSE), vary for different level of education, starting from elementary schools up to senior and vocational high schools. In developing the coursebooks, the government needs to implement the coursebooks to the rea...

  6. Hadron spectroscopy and form factors at quark level

    International Nuclear Information System (INIS)

    Chakrabarty, S.; Gupta, K.K.; Singh, N.N.; Mitra, A.N.

    1988-01-01

    The theoretical status of hadrons as quark composites is examined from the point of view of a simultaneous understanding of their on-shell (mass spectra) and off-shell (form factors, transition amplitudes) properties. Greater stress is laid on light quark systems which are more sensitive to the confinement regime, and more prone to relativistic effects than on heavy quarkonia (on which many reviews exist). Two broad theoretical approaches obeying Lorentz and gauge invariance are identified: (i) QCD sum rules as a means of extrapolation from high to low energies; and (ii) dynamical equations for providing a microcausal link in the opposite direction (from low to high energies). The latter represents the major focus of attention in this article, with the Bethe-Salpeter Equation (BSE) providing a formal plank for a comparative assessment of several models. The Null-plane ansatz which facilitates the reduction of the 4-D BSE to a covariant 3-D form also provides the language for its comparison with other covariant 3-D equations. In particular, attention is drawn to the interesting possibility of reconstructing the 4-D BS wave function from its 3-D form (in a two-tier fashion) as a practical tool for generating higher Fock-space components (qq effects) in the BS wave function, and (more interestingly) for a clean separation between soft and hard QCD effects. To illustrate one such practical tool for an integrated view of different hadronic sectors within a single framework, the results of a two-tier BS model are presented in respect of qq-bar, qqq, gg, ggg, gqq-bar states and compared with experiment as well as with the results of other contemporary models. The N.R Resonating Group Method, which becomes necessary for bigger (six-quark) systems is briefly discussed from the point of view of its compatibility with a relativistic form of quark dynamics motivated from the BSC. (Author)

  7. ANALISIS SOAL JENJANG KOGNITIF TAKSONOMI BLOOM REVISI PADA BUKU SEKOLAH ELEKTRONIK (BSE BIOLOGI SMA

    Directory of Open Access Journals (Sweden)

    Aa Juhanda

    2016-11-01

    Penelitian ini bertujuan untuk menganalisis kemunculan soal jenjang kognitif Bloom Revisi pada Buku Sekolah Elektronik (BSE Biologi SMA. Subjek penelitian adalah 1.650 soal yang terdapat pada BSE Edisi 2009. Instrumen yang digunakan adalah lembar analisis dokumen yang di dalamnya memuat informasi seperti kode soal, soal, dan jenis tingkatan kognitif taksonomi Bloom Revisi. Analisis data dilakukan secara kuantitatif dan kualitatif. Hasil penelitian menunjukkan bahwa rerata persentase kemunculan cukup tinggi diperoleh pada soal yang mengembangkan keterampilan berpikir tingkat rendah (Lower-Order Thinking Skills yaitu soal C1 (mengingat sebesar 46,60% dan C2 (memahami sebesar 47,99%, meskipun untuk C3 (menerapkan persentasenya masih rendah (0,28%. Rerata persentase kemunculan soal yang mengembangkan keterampilan tingkat tinggi (Higher-Order Thinking Skills mulai dari soal C4 (menganalisis sampai dengan C6 (mencipta memiliki rerata persentase yang rendah. Oleh karena itu, kemunculan soal jenjang kognitif Bloom Revisi pada BSE khususnya yang mengembangkan Higher-Order Thinking Skills masih perlu untuk ditingkatkan.

  8. Optical properties of body-centered tetragonal C4: Insights from many-body perturbation and time-dependent density functional theories

    Science.gov (United States)

    Tarighi Ahmadpour, Mahdi; Rostamnejadi, Ali; Hashemifar, S. Javad

    2018-04-01

    We study the electronic structure and optical properties of a body-centered tetragonal phase of carbon (bct-C4) within the framework of time-dependent density functional theory and Bethe-Salpeter equation. The results indicate that the optical properties of bct-C4 are strongly affected by the electron-hole interaction. It is demonstrated that the long-range corrected exchange-correlation kernels could fairly reproduce the Bethe-Salpeter equation results. The effective carrier number reveals that at energies above 30 eV, the excitonic effects are not dominant any more and that the optical transitions originate mainly from electronic excitations. The emerged peaks in the calculated electron energy loss spectra are discussed in terms of plasmon excitations and interband transitions. The results of the research indicate that bct-C4 is an indirect wide-band-gap semiconductor, which is transparent in the visible region and opaque in the ultraviolet spectral range.

  9. Hyperon interaction in free space and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Madhumita [Justus-Liebig University Giessen (Germany); Lenske, Horst [Justus-Liebig University Giessen (Germany); GSI, Darmstadt (Germany)

    2016-07-01

    A new approach to the SU(3) flavour symmetric meson-exchange model is introduced to describe free space baryon-baryon interaction. The Bethe-Salpeter equations are solved in a 3-D reduction scheme. The coupling of the various channels of total strangeness S and conserved total charge Q is studied in detail. Special attention is paid to the physical thresholds. The derived vacuum interaction has then been used to derive nuclear medium effect by employing the Pauli projector operator in 3-D reduced Bethe-Salpeter equation. The in-medium properties of the interaction are clearly seen in the variation of the in-medium low-energy parameters as a function of density.

  10. Relativistic three-body approach to NN scattering at intermediate energies

    International Nuclear Information System (INIS)

    van Faassen, E.; Tjon, J.A.

    1986-01-01

    The Bethe-Salpeter equation for coupled-channel N-Δ scattering is extended to satisfy unitarity in the NN and NNπ sectors. The procedure eliminates the unitarity violations characteristic of the standard ladder Bethe-Salpeter equation in the inelastic region, and improves the description of pion production near threshold. Results are presented for the NN phase shift and a number of observables up to 1 GeV. In particular, the 1D 2 inelasticity is found to be considerably smaller than found from phase shift analysis. In this context, the importance of the pion deuteron channel for the inelasticity parameter of is pointed out. 33 refs., 16 figs., 4 tabs

  11. Some issues linked to the description of systems in strong interaction

    International Nuclear Information System (INIS)

    Theussl, L.

    2001-06-01

    In the first part of this work we have dealt with some issues that are relevant in the area of nucleonic resonances within different constituent quark models. In this context we have concentrated on the theoretical description of Pi and Nu decays for N and Delta resonances. The results obtained point to the necessity of a more microscopic description of the dynamics which is at the same time responsible for the binding of quarks inside baryons and the decay of the latter ones. In the second part we have contributed to the study of crossed two-boson exchanges in the Bethe-Salpeter equation as well as to the investigation of different three-dimensional approaches that follow from the Bethe-Salpeter equation in a certain non-relativistic reduction scheme. These one include in particular an equation whose interaction depends on the total energy of the system. It was shown that such an equation is able to account for a certain number of properties of Bethe-Salpeter equation, in particular, that there also arise abnormal solutions in such an approach. (author)

  12. Muonium hyperfine structure : An analytical solution to perturbative calculations

    International Nuclear Information System (INIS)

    Wotzasek, C.J.; Gregorio, M.A.; Reinecke, S.

    1982-01-01

    The purely coulombian contribution to the terms of order E sub(F) (α 2 m sub(e)/m sub(μ))ln α - 1 of the hyperfine splitting of muonium is computed. Results agree with those of other authors. The goal of the work was twofold: first, to confirm that contribution; second, and perhaps more important, to check the analytic solution of the relativistic coulombian problem of the Bethe-Salpeter equation with instantaneous kernel. (Author) [pt

  13. Microscopic Fermi liquid approach to disordered narrow band systems

    International Nuclear Information System (INIS)

    Kolley, E.; Kolley, W.

    1977-01-01

    A Fermi liquid approach to tightly bound electrons in disordered systems is proposed to evaluate two-particle correlation functions L at T=0 deg K. Starting with a random Hubbard model and using a local ladder approximation in the particle-particle channel the irreducible particle-hole vertex is derived, being the kernel of the Bethe-Salpeter equation for L. CPA vertex corrections to the electrical conductivity and, for the ordered case, the correlation-enhanced paramagnetic susceptibility are calculated

  14. The chiral Ward-Takahashi identity in the ladder approximation

    International Nuclear Information System (INIS)

    Kugo, Taichiro; Mitchard, M.G.

    1992-01-01

    We show that the ladder approximation to the Schwinger-Dyson and Bethe-Salpeter equations preserves the Ward-Takahashi identity for the axial vector vertex if and only if we use the gluon momentum as the argument of the running coupling constant. However, in the usual Landau gauge this is inconsistent with the vector Ward identity. We propose a new method for making the ladder approximation scheme consistent with both vector and axial vector Ward identities. (orig.)

  15. Aspects of open-flavour mesons in a comprehensive DSBSE study

    Energy Technology Data Exchange (ETDEWEB)

    Hilger, T. [University of Graz, NAWI Graz, Institute of Physics, Graz (Austria); Austrian Academy of Sciences, Institute of High Energy Physics, Vienna (Austria); Gomez-Rocha, M. [ECT*, Villazzano (Trento) (Italy); Krassnigg, A. [University of Graz, NAWI Graz, Institute of Physics, Graz (Austria); Lucha, W. [Austrian Academy of Sciences, Institute of High Energy Physics, Vienna (Austria)

    2017-10-15

    Open-flavour meson studies are the necessary completion to any comprehensive investigation of quarkonia. We extend recent studies of quarkonia in the Dyson-Schwinger-Bethe-Salpeter equation approach to explore their results for all possible flavour combinations. Within the inherent limitations of the setup, we present the most comprehensive results for meson masses and leptonic decay constants currently available and put them in perspective with respect to experiment and other approaches. (orig.)

  16. On the dynamic polarizability of atoms

    International Nuclear Information System (INIS)

    Nuroh, K.; Zaremba, E.

    1989-04-01

    The positive frequency dependent polarizability of atoms is discussed in terms of the particle-hole polarization propagator. It is considered in the simplest approximation defined by the Bethe-Salpeter equation which includes a subset of particle-hole interactions to all orders in the Coulomb potential. Its solution is used to show the relationship between different formulations of atomic photoabsorption via the effective dipole matrix element (Fermi's 'golden rule'), the TDLDA and the reaction matrix. (author). 21 refs, 7 figs

  17. Electrical conductivity in random alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.; Yussouff, M.

    1983-06-01

    Starting from the augmented space formalism by one of us, and the use of the Ward identity and Bethe Salpeter equation, a complete formalism for the calculation of the electrical conductivity in tight-binding models of random binary alloys has been developed. The formalism is practical in the sense that viable calculations may be carried out with its help for realistics models of alloy systems. (author)

  18. Squeezed condensate and confinement in a scalar model

    International Nuclear Information System (INIS)

    Blaschke, D.; Pavel, H.P.; Roepke, G.; Peradze, G.; Pervushin, V.N.

    1996-01-01

    The generating functional of a free scalar field theory is generalized to the case of a squeezed vacuum. The squeezed vacuum is prepared by macroscopically populating the original vacuum with pairs of zero energy particles. It is shown that the corresponding quark propagator has no poles on the real-k 2 axis which can be interpreted as quark confinement. In contrast, a scalar meson-like bound state exists as solution of the corresponding Bethe-Salpeter equation. 20 refs

  19. The BSE risk of processing meat and bone meal in nonruminant feed: a quantitative assessment for the Netherlands.

    Science.gov (United States)

    de Vos, Clazien J; Heres, Lourens

    2009-04-01

    The total ban on use of meat and bone meal (MBM) in livestock feed has been very successful in reducing bovine spongiform encephalopathy (BSE) spread, but also implies a waste of high-quality proteins resulting in economic and ecological loss. Now that the BSE epidemic is fading out, a partial lifting of the MBM ban might be considered. The objective of this study was to assess the BSE risk for the Netherlands if MBM derived from animals fit for human consumption, i.e., category 3 MBM, would be used in nonruminant feed. A stochastic simulation model was constructed that calculates (1) the probability that infectivity of undetected BSE-infected cows ends up with calves and (2) the quantity of infectivity (Q(inf)) consumed by calves in case of such an incident. Three pathways were considered via which infectivity can reach cattle: (1) cross-contamination in the feed mill, (2) cross-contamination on the primary farm, and (3) pasture contamination. Model calculations indicate that the overall probability that infectivity ends up with calves is 3.2%. In most such incidents the Q(inf) is extremely small (median = 6.5 x 10(-12) ID(50); mean = 1.8 x 10(-4) ID(50)), corresponding to an average probability of 1.3 x 10(-4) that an incident results in >or=1 new BSE infections. Cross-contamination in the feed mill is the most risky pathway. Combining model results with Dutch BSE prevalence estimates for the coming years, it can be concluded that the BSE risk of using category 3 MBM derived from Dutch cattle in nonruminant feed is very low.

  20. Effect of ladder diagrams on optical absorption spectra in a quasiparticle self-consistent GW framework

    Science.gov (United States)

    Cunningham, Brian; Grüning, Myrta; Azarhoosh, Pooya; Pashov, Dimitar; van Schilfgaarde, Mark

    2018-03-01

    We present an approach to calculate the optical absorption spectra that combines the quasiparticle self-consistent GW method [Phys. Rev. B 76, 165106 (2007), 10.1103/PhysRevB.76.165106] for the electronic structure with the solution of the ladder approximation to the Bethe-Salpeter equation for the macroscopic dielectric function. The solution of the Bethe-Salpeter equation has been implemented within an all-electron framework, using a linear muffin-tin orbital basis set, with the contribution from the nonlocal self-energy to the transition dipole moments (in the optical limit) evaluated explicitly. This approach addresses those systems whose electronic structure is poorly described within the standard perturbative GW approaches with density-functional theory calculations as a starting point. The merits of this approach have been exemplified by calculating optical absorption spectra of a strongly correlated transition metal oxide, NiO, and a narrow gap semiconductor, Ge. In both cases, the calculated spectrum is in good agreement with the experiment. It is also shown that for systems whose electronic structure is well-described within the standard perturbative GW , such as Si, LiF, and h -BN , the performance of the present approach is in general comparable to the standard GW plus Bethe-Salpeter equation. It is argued that both vertex corrections to the electronic screening and the electron-phonon interaction are responsible for the observed systematic overestimation of the fundamental band gap and spectrum onset.

  1. Risk, science and policy: definitional struggles, information management, the media and BSE.

    Science.gov (United States)

    Miller, D

    1999-11-01

    This article examines the role of definitional struggles in the science policy interface using the example of the cattle disease bovine spongiform encephalopathy (BSE) or mad cow disease in the UK. A central contention is that an explicit focus on definition illuminates the processes by which scientific judgements are made, promoted, communicated, assessed and judged and gives an improved picture of policy making. Neglected areas such as the role of secrecy, public relations and the mass media in the science-policy interface are brought into sharper focus as an intrinsic part of the wider operation of definitional struggles. The focus on definitional struggles also sheds light on some current work on risk in social theory. It is argued that the neglect of questions of agency which are central to definitional struggles has led to some theorists presenting risks as inevitable concomitants of technological and cultural developments leaving them in the grip of political quietism.

  2. [Animal feeding and feed legislation after the detection of the first indigenous BSE cases in Germany].

    Science.gov (United States)

    Kamphues, J

    2002-08-01

    In Great Britain, even the earliest tangible signs indicating the epidemiologic significance of meat and bone meal in the spreading of BSE soon gave rise to increasingly rigorous legislative measures regulating animal feedstuffs. In 1994 a ban on the feeding of animal proteins to ruminants was implemented throughout the entire EU. But until the first BSE cases were actually confirmed in locally raised cattle (November 2000), feeding practice and legislation more or less in Germany remained unaffected by the efforts undertaken in Great Britain. This situation was suddenly changed on 1 December, 2000, when the so-called "Verfütterungsverbot" was put into effect, a law which drastically extended bans regarding the feedstuffs (including fishmeal and animal fats) as well as the species concerned (all animals used in food production). In 2001 the "contamination" phenomenon (ingredients of animal origin were detected in mixed feeds) became a vital issue for the feed industry; through the media, the subject "feedstuff safety" gained a previously unseen level of public awareness. Those circles concerned with mixed feed production and animal husbandry were increasingly confronted with the consequences of the "Verfütterungsverbot" (availability and pricing of substitute ingredients; the demand for amino acids and inorganic sources of phosphorus; problems finding adequate substitutes for animal fats; poor digestibility of alternative components such as indigenous legumes or vegetable fats in calf diets; lower utilization rate of original phosphorus in mixed feeds with negative consequences for skeletal development). With the conditional approval of fishmeal (except in feeds for ruminants) the situation has eased again to a certain degree; on the EU level there are increasing signals pointing toward a political intention to reinstate the utilization of by-products of slaughtered animals qualified for human consumption (with the exception of fallen/dead animals and specific

  3. Correlation between the Insertion/Deletion Mutations of Prion Protein Gene and BSE Susceptibility and Milk Performance in Dairy Cows

    Directory of Open Access Journals (Sweden)

    Hu Shen-rong

    2013-12-01

    Full Text Available Objective To investigate the 23 bp and 12 bp insertion/deletion (indel mutations within the bovine prion protein (PRNP gene in Chinese dairy cows, and to detect the associations of two indel mutations with BSE susceptibility and milk performance.

  4. ESEM-BSE coupled with rapid nano-scratching for micro-physicochemical analysis of marine exposed concrete

    NARCIS (Netherlands)

    Palin, D.; Thijssen, A.; Wiktor, V.; Jonkers, H.M.; Schlangen, H.E.J.G.

    2015-01-01

    Ordinary Portland cement (OPC) mortar specimens submerged in sea-water were analysed through environmental scanning electron microscopy (ESEM) in back scattered electron (BSE) mode and nano-scratching. Results from both sets of analysis show the presence of distinct phases associated with aragonite,

  5. Poly-γ-glutamic acid productivity of Bacillus subtilis BsE1 has positive function in motility and biocontrol against Fusarium graminearum.

    Science.gov (United States)

    Wang, Luyao; Wang, Ning; Mi, Dandan; Luo, Yuming; Guo, Jianhua

    2017-07-01

    In this study, we investigate the relationship between γ-PGA productivity and biocontrol capacity of Bacillus subtilis BsE1; one bacterial isolate displayed 62.14% biocontrol efficacy against Fusarium root rot. The γ-PGA yield assay, motility assay, wheat root colonization assay, and biological control assay were analysed in different γ-PGA yield mutants of BsE1. The pgsB (PGA-synthase-CapB gene) deleted mutant of BsE1 reduced γ-PGA yield and exhibited apparent decline of in vitro motile ability. Deletion of pgsB impaired colonizing capacity of BsE1 on wheat root in 30 days, also lowered biocontrol efficacies from 62.08% (wild type BsE1) to 14.22% in greenhouse experiment against Fusarium root rot. The knockout of pgdS and ggt (genes relate to two γ-PGA degrading enzymes) on BsE1, leads to a considerable improvement in polymer yield and biocontrol efficacy, which attains higher level compared with wild type BsE1. Compared with ΔpgsB mutant, defense genes related to reactive oxygen species (ROS) and phytoalexin expressed changes by notable levels on wheat roots treated with BsE1, demonstrating the functional role γ-PGA plays in biocontrol against Fusarium root rot. γ-PGA is not only important to the motile and plant root colonization ability of BsE1, but also essential to the biological control performed by BsE1 against Fusarium root rot. Our goal in this study is to reveals a new perspective of BCAs screening on bacterial isolates, without good performance during pre-assays of antagonism ability.

  6. A spatio-temporal analysis of BSE cases born before and after the reinforced feed ban in France.

    Science.gov (United States)

    Ducrot, Christian; Abrial, David; Calavas, Didier; Carpenter, Tim

    2005-01-01

    A spatio-temporal analysis was carried out to see how the risk distribution of bovine spongiform encephalopathy (BSE) in France changed depending on the period of birth. The data concerned the 539 BSE cases born in France after the ban (BAB) of meat and bone meal (MBM) in 1990 and detected between July 1, 2001 and December 31, 2003, when the surveillance of BSE was comprehensive. Seventy-two of these cases were born after the reinforced (second) ban (BASB) in 1996, which involved the removal of BSE-risk materials and cadavers from the processing of MBM. The Ederer-Myers-Mantel (EMM) time and space cluster test was applied, after classifying the cases by trimester and region of birth, BAB or BASB status, and dairy or beef status. Then disease mapping was performed for four successive birth periods, three for the BAB cases (January 1991 through June 1994, July 1994 through June 1995, July 1995 through June 1996), and one for the BASB (July 1996 through October 1998). It was elaborated with the Bayesian graphical modelling methods and based on a Poisson distribution with spatial smoothing. The parameters were estimated by a Markov Chain Monte Carlo (MCMC) simulation method. The main finding was that the areas with the highest risk of BSE changed largely from one birth period to another; from the west, it reached the east of France for birth cohort 1994-1995 and the southwest for birth cohort 1995-1996. The EMM test identified a peak risk in this region both for dairy and beef cattle in the fall 1995. The spatial distribution of the risk for the BASB cases matched the spatial pattern of risk for the preceding BAB birth cohort quite well; this was in favour of a common origin of the infection of the BAB and BASB cases, despite the complementary control measures.

  7. Relativistic quasiparticle time blocking approximation: Dipole response of open-shell nuclei

    International Nuclear Information System (INIS)

    Litvinova, E.; Ring, P.; Tselyaev, V.

    2008-01-01

    The self-consistent relativistic quasiparticle random-phase approximation (RQRPA) is extended by the quasiparticle-phonon coupling (QPC) model using the quasiparticle time blocking approximation (QTBA). The method is formulated in terms of the Bethe-Salpeter equation (BSE) in the two-quasiparticle space with an energy-dependent two-quasiparticle residual interaction. This equation is solved either in the basis of Dirac states forming the self-consistent solution of the ground state or in the momentum representation. Pairing correlations are treated within the Bardeen-Cooper-Schrieffer (BCS) model with a monopole-monopole interaction. The same NL3 set of the coupling constants generates the Dirac-Hartree-BCS single-quasiparticle spectrum, the static part of the residual two-quasiparticle interaction and the quasiparticle-phonon coupling amplitudes. A quantitative description of electric dipole excitations in the chain of tin isotopes (Z=50) with the mass numbers A=100,106,114,116,120, and 130 and in the chain of isotones with (N=50) 88 Sr, 90 Zr, 92 Mo is performed within this framework. The RQRPA extended by the coupling to collective vibrations generates spectra with a multitude of 2q x phonon (two quasiparticles plus phonon) states providing a noticeable fragmentation of the giant dipole resonance as well as of the soft dipole mode (pygmy resonance) in the nuclei under investigation. The results obtained for the photo absorption cross sections and for the integrated contributions of the low-lying strength to the calculated dipole spectra agree very well with the available experimental data

  8. Control methods for cattle feedstuffs aimed at prevention of Bovine spongiform encephalopathy (BSE

    Directory of Open Access Journals (Sweden)

    Nešić Ksenija

    2006-01-01

    Full Text Available In the course of the last decades of the twentieth century, more than 30 new diseases were determined for the first time in history. Bovine spongiform encephalopathy (BSE, or "mad cow disease" is one of them. The disease implies the subacute neurodegenerative transmission of spongiform encephalopathy and it was diagnosed and described for the first time in Great Britain in 1986. A theory has been established that BSE is spread through feedstuffs, more precisely, meat-bone flour which contains infective proteins of ruminants, and legislature has been passed throughout the world with the objective of preventing the entry of meat-bone flour into the food chain. The complete ban of the use of meat-bone flour for all farm animals (with the exception of fish flour for non-ruminants and an adequate thermal treatment in the production of meat-bone flour (133ºC, 3 bar, 20 min are the elements on which the European Union (EU legislature is based. The regulations in our country include a ban on the use of meat-bone flour in cattle feedstuffs and a ban on imports of beef proteins. The implementation of this legislature throughout the world requires the corresponding analytical means. At the present time, there are several available possibilities: optic microscopy, PCR, immunoprobes, spectroscopic methods, and several others which are still being examined for use for this purpose. All the analytical methods are being applied with the objective of controlling the implementation of the current regulations, but also in order to discover possible cross contamination that could take place in factories of animal feedstuffs, during transportation, storage, or on farms, in particular when there are no separate lines for feedstuffs that contains meat-bone flour and others in which even its traces are banned. In order to secure the successful control and prevention of bovine spongiform encephalopathy in our country, as well as to secure the unhindered continuation of

  9. A country that never had a BSE crisis: consensus and tensions in transforming the Norwegian food system.

    Science.gov (United States)

    Terragni, Laura

    2006-09-01

    Norway is often described as a country where the safety of domestically produced food is not questioned and where there is a prevailing consensus about the division of responsibility for food safety. For this reason it was surprising to find that Norwegian consumers trust the safety of their meat less than do their British counterparts. This result is particularly interesting, as Norway is one of the few countries that has never experienced BSE, while Britain has been the country most affected by it. The data discussed in the article suggest that not having to cope with a BSE crisis meant that some problems within the Norwegian food safety system remained unresolved. This in turn has affected patterns of consumer trust. The article is based on the data collected for a comparative study on European consumers' confidence in food safety.

  10. THE EVALUATION OF BSE BAHASA INGGRIS FOR GRADE VII: WHEN ENGLISH RINGS A BELL

    Directory of Open Access Journals (Sweden)

    Doddy Dwi Wahyuwono

    2017-12-01

    Full Text Available Coursebooks are core parts of any curriculum as the unique contributors to content learning (Demir & Ertas, 2014. Currently, in Indonesian curriculum, K13, the government develops coursebooks that can be used by students nationally. The developed coursebooks, Buku Sekolah Elektronik (BSE, vary for different level of education, starting from elementary schools up to senior and vocational high schools. In developing the coursebooks, the government needs to implement the coursebooks to the real life situation and also evaluate them. In this paper, the researchers try to evaluate a coursebook used in English class for Junior High School students grade VII. The evaluation is done through two ways, the theory-based analysis and checklist-based analysis. The used evaluative theories are made by Cunningsworth and the Checklist is made by Mukundan, Nimehchisalem, and Hajimohammadi. The findings show that the coursebook has met the requirements of learners‘ needs stated in the K13; however, there are still some aspects that can use some further improvement, such as the design, materials‘ authenticity, and so on. Ergo, in corresponding to the findings, the suggestions can be given to two parties, the developers and the teachers. The developers are hoped to take the evaluation results into account as the crucial points for future improvement and the teachers are hoped to not solely depend on the coursebook itself, but creatively look for extra materials.

  11. Health communication and consumer behavior on meat in Belgium: from BSE until dioxin.

    Science.gov (United States)

    Verbeke, W; Viaene, J; Guiot, O

    1999-01-01

    This article focuses on the impact of mass media meat-health information on consumer perception, attitude, and behavior toward fresh meat in Belgium. In a situation similar to that which occurred in most other European countries, Belgian fresh meat consumption fell considerably during 1995-1999. A multitude of messages linking meat consumption to human health risks were reported by mass media. Bovine Spongiform Encephalopathy (BSE) since 1996 and dioxin in 1999 constituted the major issues. Empirical research, conducted in April 1998, revealed the tremendous negative impact of mass media coverage of meat-health issues on consumer risk perception, health concern, and attitude and behavior toward fresh meat. Oppositely, personal communication through butchers had only a small effect on consumer decision-making in this era dominated by alarming meat-health press. Implications are threefold. First, mass media should be aware of its social responsibilities, which include spreading reliable and correct information to the society. This is especially the case as human health risks are involved. Second, the meat industry urgently needs to reorient itself toward quality, safety, and transparency. Finally, future communication dealing with similar crises situations requires cooperation across the meat chain, government, and those who are responsible for public health promotion and communication.

  12. Poultry, pig and the risk of BSE following the feed ban in France--a spatial analysis.

    Science.gov (United States)

    Abrial, David; Calavas, Didier; Jarrige, Nathalie; Ducrot, Christian

    2005-01-01

    A spatial analysis was carried out in order to analyse the reason why the risk of Bovine Spongiform Encephalopathy (BSE) was spatially heterogeneous in France, during the period following the feed ban of Meat and Bone Meal to cattle. The hypothesis of cross-contamination between cattle feedstuff and monogastric feedstuff, which was strongly suggested from previous investigations, was assessed, with the assumption that the higher the pig or poultry density is in a given area, the higher the risk of cross-contamination and cattle infection might be. The data concerned the 467 BSE cases born in France after the ban of meat and bone meal (July 1990) and detected between July 1st, 2001 and December 31, 2003, when the surveillance system was optimal and not spatially biased. The disease mapping models were elaborated with the Bayesian graphical modelling methods and based on a Poisson distribution with spatial smoothing (hierarchical approach) and covariates. The parameters were estimated by a Markov Chain Monte Carlo simulation method. The main result was that the poultry density did not significantly influence the risk of BSE whereas the pig density was significantly associated with an increase in the risk of 2.4% per 10 000 pigs. The areas with a significant pig effect were located in regions with a high pig density as well as a high ratio of pigs to cattle. Despite the absence of a global effect of poultry density on the BSE risk, some areas had a significant poultry effect and the risk was better explained in some others when considering both pig and poultry densities. These findings were in agreement with the hypothesis of cross-contamination, which could take place at the feedstuff factory, during the shipment of food or on the farm. Further studies are needed to more precisely explore how the cross-contamination happened.

  13. Evidence for more cost-effective surveillance options for bovine spongiform encephalopathy (BSE) and scrapie in Great Britain.

    Science.gov (United States)

    Wall, Ben A; Arnold, Mark E; Radia, Devi; Gilbert, Will; Ortiz-Pelaez, Angel; Stärk, Katharina Dc; Van Klink, Ed; Guitian, Javier

    2017-08-10

    Transmissible spongiform encephalopathies (TSEs) are an important public health concern. Since the emergence of bovine spongiform encephalopathy (BSE) during the 1980s and its link with human Creutzfeldt-Jakob disease, active surveillance has been a key element of the European Union's TSE control strategy. Success of this strategy means that now, very few cases are detected compared with the number of animals tested. Refining surveillance strategies would enable resources to be redirected towards other public health priorities. Cost-effectiveness analysis was performed on several alternative strategies involving reducing the number of animals tested for BSE and scrapie in Great Britain and, for scrapie, varying the ratio of sheep sampled in the abattoir to fallen stock (which died on the farm). The most cost-effective strategy modelled for BSE involved reducing the proportion of fallen stock tested from 100% to 75%, producing a cost saving of ca GBP 700,000 per annum. If 50% of fallen stock were tested, a saving of ca GBP 1.4 million per annum could be achieved. However, these reductions are predicted to increase the period before surveillance can detect an outbreak. For scrapie, reducing the proportion of abattoir samples was the most cost-effective strategy modelled, with limited impact on surveillance effectiveness. This article is copyright of The Authors, 2017.

  14. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Webster, R., E-mail: ross.webster07@imperial.ac.uk; Harrison, N. M. [Thomas Young Centre, Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Bernasconi, L. [Rutherford Appleton Laboratory, STFC, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2015-06-07

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.

  15. Absence of Evidence for a Causal Link between Bovine Spongiform Encephalopathy Strain Variant L-BSE and Known Forms of Sporadic Creutzfeldt-Jakob Disease in Human PrP Transgenic Mice.

    Science.gov (United States)

    Jaumain, Emilie; Quadrio, Isabelle; Herzog, Laetitia; Reine, Fabienne; Rezaei, Human; Andréoletti, Olivier; Laude, Hubert; Perret-Liaudet, Armand; Haïk, Stéphane; Béringue, Vincent

    2016-12-01

    Prions are proteinaceous pathogens responsible for subacute spongiform encephalopathies in animals and humans. The prions responsible for bovine spongiform encephalopathy (BSE) are zoonotic agents, causing variant Creutzfeldt-Jakob disease (CJD) in humans. The transfer of prions between species is limited by a species barrier, which is thought to reflect structural incompatibilities between the host cellular prion protein (PrP C ) and the infecting pathological PrP assemblies (PrP Sc ) constituting the prion. A BSE strain variant, designated L-BSE and responsible for atypical, supposedly spontaneous forms of prion diseases in aged cattle, demonstrates zoonotic potential, as evidenced by its capacity to propagate more easily than classical BSE in transgenic mice expressing human PrP C and in nonhuman primates. In humanized mice, L-BSE propagates without any apparent species barrier and shares similar biochemical PrP Sc signatures with the CJD subtype designated MM2-cortical, thus opening the possibility that certain CJD cases classified as sporadic may actually originate from L-type BSE cross-transmission. To address this issue, we compared the biological properties of L-BSE and those of a panel of CJD subtypes representative of the human prion strain diversity using standard strain-typing criteria in human PrP transgenic mice. We found no evidence that L-BSE causes a known form of sporadic CJD. Since the quasi-extinction of classical BSE, atypical BSE forms are the sole BSE variants circulating in cattle worldwide. They are observed in rare cases of old cattle, making them difficult to detect. Extrapolation of our results suggests that L-BSE may propagate in humans as an unrecognized form of CJD, and we urge both the continued utilization of precautionary measures to eliminate these agents from the human food chain and active surveillance for CJD phenotypes in the general population. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Spectrum of the ballooning Schroedinger equation

    International Nuclear Information System (INIS)

    Dewar, R.L.

    1997-01-01

    The ballooning Schroedinger equation (BSE) is a model equation for investigating global modes that can, when approximated by a Wentzel-Kramers-Brillouin (WKB) ansatz, be described by a ballooning formalism locally to a field line. This second order differential equation with coefficients periodic in the independent variable θ k is assumed to apply even in cases where simple WKB quantization conditions break down, thus providing an alternative to semiclassical quantization. Also, it provides a test bed for developing more advanced WKB methods: e.g. the apparent discontinuity between quantization formulae for open-quotes trappedclose quotes and open-quotes passingclose quotes modes, whose ray paths have different topologies, is removed by extending the WKB method to include the phenomena of tunnelling and reflection. The BSE is applied to instabilities with shear in the real part of the local frequency, so that the dispersion relation is inherently complex. As the frequency shear is increased, it is found that trapped modes go over to passing modes, reducing the maximum growth rate by averaging over θ k

  17. ON THE USE OF FIELD THEORETICAL MODELS IN STRONG INTERACTION PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Fubini, Sergio

    1963-06-15

    The effects of the short-range behavior in potential scattering upon the asymptotic behavior of the stronginteraction scattering amplitude and upon the validity of the methods of solution are discussed, using models. In particular, it is found that for certain singular potentials, the bound-state problem cannot be solved by a plane-wave expansion. For these singular potentials, an irtegral equation must be set up by means of an expansion in terms of eigenfunctions having the correct behavior at small distances. The study makes use of both the Schroedinger and Bethe-Salpeter equations. (T.F.H.)

  18. Two-photon processes of π0, η, η', ηc and ηb

    International Nuclear Information System (INIS)

    Klabucar, D.

    1997-01-01

    Two-photon processes of π 0 , η, η', η c and η b are studied in the consistently coupled Schwinger-Dyson (SD) and Bethe-Salpeter (BS) approach, where dynamical chiral symmetry breaking (DχSB) is obtained through the SD equation for the quark propagator which is then used in the BS equation. It is shown that the coupled SD-BS approach is similarly successful in the description of two-photon processes of pseudoscalar mesons over a wide range of masses. (K.A.)

  19. General QED/QCD aspects of simple systems

    International Nuclear Information System (INIS)

    Telegdi, V.L.; Brodsky, S.J.

    1989-09-01

    This paper discusses the following topics: renormalization theory; the Kinoshita-Lee-Nauenberg theorem; the Yennie-Frautschi-Suura relation; scale invariance at large momentum transfer; scaling and scaling violation at large momentum transfers; low-energy theorem in Compton scattering; does the perturbation series in QED converge; renormalization of the weak angle Θ w ; the Nambu-Bethe-Salpeter (NBS) equation; the decay rate of 3 S, positronium; radiative corrections to QCD Born cross section; and progress on the relativistic 2-body equation

  20. On one estimate of glueball mass

    International Nuclear Information System (INIS)

    Boos, E.E.

    1986-01-01

    The Bethe-Salpeter equation for the wave function of the bound state of two gluons is considered. The mass of the glueball 0 ++ , (M gl ∼ 1.3 GeV), is estimated using some expansions in the equation kernel in the spirit of those made in the QCD sum rules method. In the leading approximation, the masses of the glueballs 0 ++ and 2 ++ appear to be degenerate. A possibility to improve the accuracy of estimating the mass by using the expansion in 1/N c is discussed

  1. 'Relativistic' quark model for mesons with flavour-independent potential

    International Nuclear Information System (INIS)

    Kroesen, G.

    1987-01-01

    On the base of the Bethe-Salpeter equation in instantaneous approximation a unified model for the mass spectrum of the mesons was designed. The 'relativistic' structure of the Bethe-Salpeter equation allows a natural inclusion of the spin dependences and an extension of the model to small quark masses. The model contains as essential property two potential contributions where one represents the one-gluon exchange while the other represents the confinement potential. The annihilation of qanti q into gluons was not regarded. The spectrum and the amplitudes of the Bethe-Salpeter equation were solved approximatively in numerical way for the lowest states. The free parameters of the model were determined by a fit of the spectrum to a wellknown part of the meson spectrum. The results yield even at small quark masses a quantitatively good picture for all meson families. The result shows that the spectra of the heavy and light mesons can be described by a flavor-independent potential which contains 5 free parameters. Both the internal spin dependent structure and the absolute position of the families can so correctly be described. Especially the position of the D, D s , and B states and the position of the uanti u, danti d states can be simultaneously described by a constant C in the long-range part of the potential. The constant C is thereby essentially determined by the splitting between the Υ family and the B family repectively Ψ and D family. The 3 S 1- 3 D 1 respectively the 3 P 2 - 3 F 2 configuration mixing was regarded. The results show that this mixing is negligibly small. (orig./HSI) [de

  2. From meson-baryon scattering to meson photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Maxim

    2013-09-01

    In the present work we investigate the properties of the lowest baryon resonances. The starting point of our analyses is the low-energy effective theory of quantum chromodynamics, called chiral perturbation theory. As such it describes the long-range observables in terms of the low-energy effects, while the high-energy effects are subsumed in the so-called low-energy constants. In the region of the aforesaid lowest baryon resonances any strict perturbative expansion fails and some resummation scheme is required. For this we employ the Bethe-Salpeter equation (BSE) which guarantees the exact unitarity of the S-matrix and allows to generate resonances dynamically, however, abandoning some other basic principles of quantum field theory as described in chapter 2. Restricting the driving term of this equation to local terms of the second chiral order, we derive an exact solution of the BSE for meson-baryon scattering in chapter 2. Without putting the interaction kernel on shell we preserve the exact correspondence of this solution to an infinite chain of Feynman diagrams. In chapter 4 we apply this ansatz for antikaon-nucleon scattering, trying to get a new insight into the nature of the subthreshold resonance, i.e. {Lambda}(1405). The properties of this resonance have been debated for decades and in recent years it has again attracted a lot of attention by theoreticians since this resonance can be dynamically generated from the so-called chiral unitary approaches. Moreover, the recent measurement of the energy shift and width of kaonic hydrogen in the SIDDHARTA experiment at DA{Phi}NE has provided a very tight constraint on K{sup -}p scattering length. Typically, these approaches predict a two pole structure of {Lambda}(1405), but the question is how precise one can determine the position of these poles relying on data at and above the anti KN threshold. Moreover, we apply our framework for the analysis of pion-nucleon scattering in chapter 3. There we show that the

  3. A gauge-invariant chiral unitary framework for kaon photo- and electroproduction on the proton

    International Nuclear Information System (INIS)

    Borasoy, B.; Bruns, P.C.; Nissler, R.; Meissner, U.G.

    2007-01-01

    We present a gauge-invariant approach to photoproduction of mesons on nucleons within a chiral unitary framework. The interaction kernel for meson-baryon scattering is derived from the chiral effective Lagrangian and iterated in a Bethe-Salpeter equation. Within the leading-order approximation to the interaction kernel, data on kaon photoproduction from SAPHIR, CLAS and CBELSA/TAPS are analyzed in the threshold region. The importance of gauge invariance and the precision of various approximations in the interaction kernel utilized in earlier works are discussed. (orig.)

  4. Confinement, diquarks and goldstone's theorem

    International Nuclear Information System (INIS)

    Roberts, C.D.

    1996-01-01

    Determinations of the gluon propagator in the continuum and in lattice simulations are compared. A systematic truncation procedure for the quark Dyson-Schwinger and bound state Bethe-Salpeter equations is described. The procedure ensures the flavor-octet axial- vector Ward identity is satisfied order-by-order, thereby guaranteeing the preservation of Goldstone's theorem; and identifies a mechanism that simultaneously ensures the absence of diquarks in QCD and their presence in QCD N c =2 , where the color singlet diquark is the ''baryon'' of the theory

  5. Relativistic description of quark-antiquark bound states. Spin-independent treatment

    International Nuclear Information System (INIS)

    Gara, A.; Durand, B.; Durand, L.; Nickisch, L.J.

    1989-01-01

    We present the results of a detailed study of light- and heavy-quark--antiquark bound states in the context of the reduced Bethe-Salpeter equation with static vector and scalar interactions. In the present paper, we consider the spin-averaged spectra. Spin effects are considered in a separate paper. We find that this approach, although apparently successful for the heavy-quark b bar b and c bar c states, fails for the s bar s, l bar l, and light-heavy states. The reasons for the failure are intrinsic to the method, as we discuss. Difficulties are already evident for the c bar c states

  6. Relativistic quarkonium dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1985-06-01

    We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters

  7. Magnons and BFKL

    International Nuclear Information System (INIS)

    Gomez, Cesar; Gunnesson, Johan; Hernandez, Rafael

    2008-01-01

    We extract from the double logarithmic contributions to DGLAP anomalous dimensions for twist-two operators up to three-loops the magnon dispersion relation for planar N = 4 supersymmetric Yang-Mills. Perturbatively the magnon dispersion relation agrees with the expansion of the anomalous dimension for spin-one as well as with the non-collinear double logarithmic contributions to the BFKL anomalous dimensions analytically extended to negative spin. The all-loop expression for the magnon dispersion relation is determined by the double logarithmic resummation of the corresponding Bethe-Salpeter equation. A potential map relating the spin chain magnon to BFKL eigenfunctions in the double logarithm approximation is suggested.

  8. Three-body unitarity with isobars revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mai, M.; Hu, B. [The George Washington University, Washington, DC (United States); Doering, M. [The George Washington University, Washington, DC (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Pilloni, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Szczepaniak, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Indiana University, Center for Exploration of Energy and Matter, Bloomington, IN (United States); Indiana University, Physics Department, Bloomington, IN (United States)

    2017-09-15

    The particle exchange model of hadron interactions can be used to describe three-body scattering under the isobar assumption. In this study we start from the 3 → 3 scattering amplitude for spinless particles, which contains an isobar-spectator scattering amplitude. Using a Bethe-Salpeter Ansatz for the latter, we derive a relativistic three-dimensional scattering equation that manifestly fulfills three-body unitarity and two-body unitarity for the sub-amplitudes. This property holds for energies above breakup and also in the presence of resonances in the sub-amplitudes. (orig.)

  9. High energy production of gluons in a quasi-multi-Regge kinematics

    International Nuclear Information System (INIS)

    Fadin, V.S.; Lipatov, L.N.

    1989-01-01

    Inelastic gluon-gluon scattering amplitudes in the Born approximation for the quasi-multi-Regge kinematics are calculated, starting with the Veneziano-type expression for the inelastic amplitude of the gluon-tachyon scattering with its subsequent simplification in the region of large energies and the Regge slope α'→0. Results obtained allow one to determine the high order corrections to the gluon Regge trajectory, the reggeon-particle vertices and to the integral kernel of the Bethe-Salpeter equation for the vacuum t-channel partial waves. 10 refs.; 7 figs

  10. Techniques for calculations with nPI effective actions

    Directory of Open Access Journals (Sweden)

    Carrington M.E.

    2015-01-01

    Full Text Available We consider a symmetric scalar theory with quartic coupling in 2- and 3- dimensions and compare the self-consistent 4-point vertex obtained from the 4PI effective action with the Bethe-Salpeter 4-vertex from 2PI effective action. We show that when the coupling is large the contributions from the higher order effective action are large. We also show that one can solve the 2PI equations of motion in 4-dimensions, without introducing counter-terms, using a renormalization group method. This method provides a promising starting point to study the renormalization of higher order nPI theories.

  11. Dynamic retardation corrections to the mass spectrum of heavy quarkonia

    International Nuclear Information System (INIS)

    Kopalejshvili, T.; Rusetskij, A.

    1996-01-01

    In the framework of the Logunov-Tavkhelidze quasipotential approach the first-order retardation corrections to the heavy quarkonia mass spectrum are calculated with the use of the stationary wave boundary condition in the covariant kernel of the Bethe-Salpeter equation. As has been expected, these corrections turn out to be small for all low-lying heavy meson states and vanish in the heavy quark limit (m Q →∞). The comparison of the suggested approach to the calculation of retardation corrections with others, known in literature, is carried out. 22 refs., 1 tab

  12. Behavior of the S parameter in the crossover region between walking and QCD-like regimes of an SU(N) gauge theory

    International Nuclear Information System (INIS)

    Kurachi, Masafumi; Shrock, Robert

    2006-01-01

    We consider a vectorial, confining SU(N) gauge theory with a variable number, N f , of massless fermions transforming according to the fundamental representation. Using the Schwinger-Dyson and Bethe-Salpeter equations, we calculate the S parameter in terms of the current-current correlation functions. We focus on values of N f such that the theory is in the crossover region between the regimes of walking behavior and QCD-like (nonwalking) behavior. Our calculations indicate that the contribution to S from a given fermion decreases as one moves from the QCD-like to the walking regimes. The implications of this result for technicolor theories are discussed

  13. Covariant solution of the three-quark problem in quantum field theory: the nucleon

    Directory of Open Access Journals (Sweden)

    Nicmorus D.

    2010-04-01

    Full Text Available We provide details on a recent solution of the nucleon’s covariant Faddeev equation in an explicit three-quark approach. The full Poincaré-covariant structure of the three-quark amplitude is implemented through an orthogonal basis obtained from a partial-wave decomposition. We employ a rainbow-ladder gluon exchange kernel which allows for a comparison with meson Bethe-Salpeter and baryon quark-diquark studies. We describe the construction of the three-quark amplitude in full detail and compare it to a notation widespread in recent publications. Finally, we discuss first numerical results for the nucleon’s amplitude.

  14. Baryons in and beyond the quark-diquark model

    International Nuclear Information System (INIS)

    Eichmann, G.; Alkofer, R.; Krassnigg, A.; Fischer, C. S.; Nicmorus, D.

    2011-01-01

    We examine the nucleon's electromagnetic form factors in a Poincare-covariant Faddeev framework. The three-quark core contributions to the form factors are obtained by employing a quark-diquark approximation. We implement the self-consistent solution for the quark-photon vertex from its inhomogeneous Bethe-Salpeter equation. We find that the resulting transverse parts which add to the Ball-Chiu vertex have no significant impact on nucleon magnetic moments. The current-quark mass evolution of the form factors agrees with results from lattice QCD.

  15. Ab initio calculation of the electronic and optical properties of solid pentacene

    International Nuclear Information System (INIS)

    Tiago, Murilo L.; Northrup, John E.; Louie, Steve G.

    2002-01-01

    The optical and electronic properties of crystalline pentacene are studied, using a first-principles Green's-function approach. The quasiparticle energies are calculated within the GW approximation and the electron-hole excitations are computed by solving the Bethe-Salpeter equation. We investigate the role of polymorphism on the electronic energy gap and linear optical spectrum by studying two different crystalline phases: the solution-phase structure and the vapor-phase structure. charge-transfer excitons are found to dominate the optical spectrum. Excitons with sizable binding energies are predicted for both phases

  16. Dipole moments of the rho meson

    International Nuclear Information System (INIS)

    Hecht, M.B.; McKellar, B.H.P.

    1997-04-01

    The electric and magnetic dipole moments (EDM) of the rho meson are calculated using the propagators and vertices derived from the quantum chromodynamics Dyson-Schwinger equations. Results obtained from using the Bethe-Salpeter amplitude studied by Chappell, Mitchell et. al., and Pichowsky and Lee, are compared. The rho meson EDM is generated through the inclusion of a quark electric dipole moment, which is left as a free variable. These results are compared to the perturbative results to obtain a measure of the effects of quark interactions and confinement. The two dipole moments are also calculated using the phenomenological MIT bag model to provide a further basis for comparison

  17. Conformal operator product expansion in the Yukawa model

    International Nuclear Information System (INIS)

    Prati, M.C.

    1983-01-01

    Conformal techniques are applied to the Yukawa model, as an example of a theory with spinor fields. It is written the partial-wave analysis of the 4-point function of two scalars and two spinors in the channel phi psi → phi psi in terms of spinor tensor representations of the conformal group. Using this conformal expansion, it is diagonalized the Bethe-Salpeter equation, which is reduced to algebraic relations among the partial waves. It is shown that in the γ 5 -invariant model, but not in the general case, it is possible to derive dynamically from the expansions of the 4-point function the vacuum operator product phi psi>

  18. Evaluation of the effectiveness of selected measures against Bovine Spongiform Encephalopathy (BSE) in Switzerland by use of the basic reproduction ratio R0

    NARCIS (Netherlands)

    Schwermer, H.; Brülisauer, F.; Koeijer, de A.A.; Heim, D.

    2007-01-01

    The effectiveness of two measures against Bovine Spongiform Encephalopathy (BSE), the compulsory processing of animal by products to meat and bone mea (MBM) at 133 °C under 3 bars of pressure for 20 minutes in February 1993 and the exclusion offallen stock, heads with eyes and spinal cord of cattle

  19. Factors related to the practice of breast self examination (BSE and Pap smear screening among Malaysian women workers in selected electronics factories

    Directory of Open Access Journals (Sweden)

    Shamsuddin K

    2003-05-01

    Full Text Available Abstract Background The Malaysian Ministry of Health promotes breast self-examination (BSE for all women, and Pap smear screening every three years for all sexually active women ages 20 years and above. The objectives of this paper were to examine the practice of these two screening tests among women production workers in electronics factories, and to identify factors related to practice. Methods This was a cross-sectional survey of women production workers from ten electronics factories. Data was collected by a self-administered questionnaire from a total of 1,720 women. The chi-square test, odds ratio and binomial logistic regression were used in bivariate and multivariate analysis. Results Prevalence rates were 24.4% for BSE once a month, and 18.4% for Pap smear examination within the last three years. Women who were significantly more likely to perform BSE every month were 30 years and older, Malays, with upper secondary education and above, answered the BSE question correctly, and had a Pap smear within the last three years. The proportion of women who had a Pap smear within the last three years were significantly higher among those who were older, married, with young children, on the contraceptive pill or intra-uterine device, had a medical examination within the last five years, answered the Pap smear question correctly, and performed BSE monthly. Conclusion Screening practice rates in this study were low when compared to national rates. Socio-demographic and health care factors significantly associated with screening practice are indicative of barriers which should be further understood so that more effective educational and promotional strategies could be developed.

  20. How do US and Canadian consumers value credence attributes associated with beef labels after the North American BSE crisis of 2003?

    DEFF Research Database (Denmark)

    Steiner, Bodo; Yang, Jun

    2010-01-01

    A consumer survey conducted in 2006 (n = 419), and therefore after the first confirmed bovine spongiform encephalopathy (BSE) cases in North America in 2003, employs attribute-based choice experiments for a cross-country comparison of consumers' valuation of credence attributes associated with be....... Effective supply-chain responses to consumers' valuation of credence attributes, for example, in the form of labelling, should therefore take consumers' heterogeneity into account.......A consumer survey conducted in 2006 (n = 419), and therefore after the first confirmed bovine spongiform encephalopathy (BSE) cases in North America in 2003, employs attribute-based choice experiments for a cross-country comparison of consumers' valuation of credence attributes associated with beef...

  1. The Trade-Off between Phosphorus Recycling and Health Protection during the BSE Crisis in Switzerland. A “Disposal Dilemma”

    OpenAIRE

    Lamprecht, Heinz; Lang, Daniel J.; Binder, Claudia R.; Scholz, Roland W.

    2011-01-01

    Phosphorus (P) is an essential, finite resource whose geological, economic, and geopolitical accessibility may become critical in the future. Because P losses from agriculture, sewage and waste have serious environmental impacts such as eutrophication, it would be desirable to close P cycles. However, there may arise dilemmas due to trade-offs with other issues. For instance, recycling of animal bones – containing relatively high amounts of P – was prohibited in Switzerland after the BSE cris...

  2. Electronic structures and optical properties of wurtzite type LiBSe2 (B=Al, Ga, In): A first-principles study

    International Nuclear Information System (INIS)

    Li Longhua; Li Junqian; Wu Liming

    2008-01-01

    The electronic structures of three wurtzite type isostructural compounds LiBSe 2 (B=Al, Ga, In) are studied by the density functional theory (DFT). The results reveal that the presence of Li cations has direct influence on neither the band gaps (Eg) nor the bonding levels, but plays an important role in the stabilization of the structures. The band structures and densities of states (DOS) are analyzed in detail, and the band gaps of LiBSe 2 adhere to the following trend Eg (LiAlSe2) >Eg (LiGaSe2) >Eg (LiInSe2) , which is in agreement with the decrease of the bond energy of the corresponding Se 4p-B s antibonding orbitals. The role of the active s electrons of B element on the band gaps is also discussed. Finally, the optical properties are predicted, and the results would be a guide to understand the experiments. - Graphical abstract: The electronic structures and optical properties of wurtzite type LiBSe 2 (B=Al, Ga, In) have been studied by the DFT calculations. And the correlation of the electronegative of B element and the band gap decrease-trend are discussed. The comparison between different calculation methods and the experimental results is presented

  3. The {{\\rm{D}}\\bar{{\\rm{D}}}}^{{\\rm{* }}} interaction with isospin zero in an extended hidden gauge symmetry approach

    Science.gov (United States)

    Sun, Bao-Xi; Wan, Da-Ming; Zhao, Si-Yu

    2018-05-01

    The {{{D}}\\bar{{{D}}}}{{* }} interaction via a ρ or ω exchange is constructed within an extended hidden gauge symmetry approach, where the strange quark is replaced by the charm quark in the SU(3) flavor space. With this {{{D}}\\bar{{{D}}}}{{* }} interaction, a bound state slightly lower than the {{{D}}\\bar{{{D}}}}{{* }} threshold is generated dynamically in the isospin zero sector by solving the Bethe-Salpeter equation in the coupled-channel approximation, which might correspond to the X(3872) particle announced by many collaborations. This formulism is also used to study the {{{B}}\\bar{{{B}}}}{{* }} interaction, and a {{{B}}\\bar{{{B}}}}{{* }} bound state with isospin zero is generated dynamically, which has no counterpart listed in the review of the Particle Data Group. Furthermore, the one-pion exchange between the D meson and the {\\bar{{{D}}}}{{* }} is analyzed precisely, and we do not think the one-pion exchange potential need be considered when the Bethe-Salpeter equation is solved.

  4. Microscopic models for hadronic form factors and vertex functions

    International Nuclear Information System (INIS)

    Santhanam, I.; Bhatnagar, S.; Mitra, A.N.

    1990-01-01

    We review the status of nucleon (N) and few-nucleon form factors (f.f.'s) from the view-point of a gradual unfolding of successively inner degrees of freedom (d.o.f.) with increase in q 2 . To this end we focus attention on the problem of a microscopic formulation of hadronic vertex functions (v.f.) from the point of view of their key role in understanding the physics of a large variety of few-hadron reactions on the one hand, and their practical usefulness in articulating the internal dynamics of hadron and few-hadron systems on the other hand. The criterion of an integrated view from low-energy spectroscopy to high-q 2 amplitudes is employed to emphasize the desirability of formulations in terms of relativistic dynamical equations based on Lorentz and gauge invariance in preference to phenomenological models, which often require additional assumptions beyond their original premises to extend their applicability domains. In this respect, the practical possibilities of the Bethe-Salpeter equation (BSE) in articulating the necessary dynamical ingredients are emphasized on a two-tier basis, the basis constants (3) being pre-determined from the mass spectral data (1 st stage) in preparation for the construction of the hadron-quark vertex functions (2 nd stage). An explicit construction is outlined for meson-quark and baryon-quark vertex functions as well as of meson-nucleon vertex functions in a stepwise fashion. The role of the latter as basic parameter-free ingredients is discussed for possible use in the more serious treatment in the current literature of quark-meson level (α) and meson-isobar (β) d.o.f. in 2-N and 3-N form factor studies. Since most of these studies are characterized by the use of RGM techniques at the six-quark level, a comparative discussion is also given of several contemporary RGM based models. Finally, the concrete prospects for employing such hardon-quark vertex functions for evaluating pp-bar annihilation amplitudes are briefly indicated

  5. Evidence of ghost suppression in gluon mass scale dynamics

    Science.gov (United States)

    Aguilar, A. C.; Binosi, D.; Figueiredo, C. T.; Papavassiliou, J.

    2018-03-01

    In this work we study the impact that the ghost sector of pure Yang-Mills theories may have on the generation of a dynamical gauge boson mass scale, which hinges on the appearance of massless poles in the fundamental vertices of the theory, and the subsequent realization of the well-known Schwinger mechanism. The process responsible for the formation of such structures is itself dynamical in nature, and is governed by a set of Bethe-Salpeter type of integral equations. While in previous studies the presence of massless poles was assumed to be exclusively associated with the background-gauge three-gluon vertex, in the present analysis we allow them to appear also in the corresponding ghost-gluon vertex. The full analysis of the resulting Bethe-Salpeter system reveals that the contribution of the poles associated with the ghost-gluon vertex are particularly suppressed, their sole discernible effect being a slight modification in the running of the gluon mass scale, for momenta larger than a few GeV. In addition, we examine the behavior of the (background-gauge) ghost-gluon vertex in the limit of vanishing ghost momentum, and derive the corresponding version of Taylor's theorem. These considerations, together with a suitable Ansatz, permit us the full reconstruction of the pole sector of the two vertices involved.

  6. Fermionic bound states in Minkowski space. Light-cone singularities and structure

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Wayne de; Frederico, Tobias; Pimentel, Rafael [Instituto Tecnologico de Aeronautica, DCTA, Dept. de Fisica, Sao Jose dos Campos, Sao Paulo (Brazil); Salme, Giovanni [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Viviani, Michele [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)

    2017-11-15

    The Bethe-Salpeter equation for two-body bound system with spin 1/2 constituent is addressed directly in the Minkowski space. In order to accomplish this aim we use the Nakanishi integral representation of the Bethe-Salpeter amplitude and exploit the formal tool represented by the exact projection onto the null-plane. This formal step allows one (i) to deal with end-point singularities one meets and (ii) to find stable results, up to strongly relativistic regimes, which settle in strongly bound systems. We apply this technique to obtain the numerical dependence of the binding energies upon the coupling constants and the light-front amplitudes for a fermion-fermion 0{sup +} state with interaction kernels, in ladder approximation, corresponding to scalar-, pseudoscalar- and vector-boson exchanges, respectively. After completing the numerical survey of the previous cases, we extend our approach to a quark-antiquark system in 0{sup -} state, taking both constituent-fermion and exchanged-boson masses, from lattice calculations. Interestingly, the calculated light-front amplitudes for such a mock pion show peculiar signatures of the spin degrees of freedom. (orig.)

  7. Light-front Ward-Takahashi identity for two-fermion systems

    International Nuclear Information System (INIS)

    Marinho, J. A. O.; Frederico, T.; Pace, E.; Salme, G.; Sauer, P. U.

    2008-01-01

    We propose a three-dimensional electromagnetic current operator within light-front dynamics that satisfies a light-front Ward-Takahashi identity for two-fermion systems. The light-front current operator is obtained by a quasipotential reduction of the four-dimensional current operator and acts on the light-front valence component of bound or scattering states. A relation between the light-front valence wave function and the four-dimensional Bethe-Salpeter amplitude both for bound or scattering states is also derived, such that the matrix elements of the four-dimensional current operator can be fully recovered from the corresponding light-front ones. The light-front current operator can be perturbatively calculated through a quasipotential expansion, and the divergence of the proposed current satisfies a Ward-Takahashi identity at any given order of the expansion. In the quasipotential expansion the instantaneous terms of the fermion propagator are accounted for by the effective interaction and two-body currents. We exemplify our theoretical construction in the Yukawa model in the ladder approximation, investigating in detail the current operator at the lowest nontrivial order of the quasipotential expansion of the Bethe-Salpeter equation. The explicit realization of the light-front form of the Ward-Takahashi identity is verified. We also show the relevance of instantaneous terms and of the pair contribution to the two-body current and the Ward-Takahashi identity

  8. Congruency within rural social networks as an indicator of interpersonal influence on risk judgments: the great stir caused by BSE in a village in northern Germany.

    Science.gov (United States)

    Lehmkuhl, Markus J

    2008-10-01

    In the following survey, congruency within a sample of 150 rural social networks ascertained by comparing independently gathered data is used as an indicator of interpersonal influence concerning BSE-related current knowledge and consumption habits. Our findings suggest that friends, relatives and acquaintances mutually orientated each other about what was worth knowing about BSE. Concerning the behavioral dimension of risk judgments, our findings indicate that social networks obtained within the village explored have activated collective resistance against fear. This is explained by the character of the risk source. Positive attitudes towards conventional farming obviously contributed to the social identity of villagers. The devaluation of conventional farming as a source of societal threat by the mass media touched on an integral part of the self-definitions of villagers and activated resistance within their social networks. It is argued that a central point in explaining the role of interpersonal influence in risk judgments is not only the dimension of risk judgments but the character of the risk source. If attitudes concerning a risk source contribute positively to one's identity, the devaluation of the risk source by mass media coverage may enhance the probability of collective resistance against fear.

  9. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  10. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  11. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  12. The second RPA description for the decay of the one-phonon nuclear collective states at finite temperature

    International Nuclear Information System (INIS)

    Yannouleas, C.; Jang, S.

    1986-01-01

    The zero-temperature second RPA is generalized to finite temperatures through the use of the method of linearization of the equations of motion. After elimination of the quadruples, for low enough temperatures and within the subspace spanned by the doubles, a proper symmetrization yields an eigenvalue equation which exhibits formal properties like the simple RPA. From this second RPA eigenvalue equation, a closed formula for the spreading width of an isolated collective state is extracted. The second RPA can be recast in the form of a generalized collision term and be compared with the method of the Bethe-Salpeter equation for the two-body Green function. However, the second RPA method (and results) contrasts with the approach (and corresponding results) of the Boltzmann collision term, which is usually viewed as the appropriate agent for nuclear dissipation. (orig.)

  13. External gauge invariance and anomaly in BS vertices and boundstates

    International Nuclear Information System (INIS)

    Bando, Masako; Harada, Masayasu; Kugo, Taichiro

    1994-01-01

    A systematic method is given for obtaining consistent approximations to the Schwinger-Dyson (SD) and Bethe-Salpeter (BS) equations which maintain the external gauge invariance. We show that for any order of approximation to the SD equation there is a corresponding approximation to the BS equations such that the solutions to those equations satisfy the Ward-Takahashi identities of the external gauge symmetry. This formulation also clarifies the way how we can calculate the Green functions of current operators in a consistent manner with the gauge invariance and the axial anomaly. We show which type of diagrams for the π 0 → γγ amplitude using the pion BS amplitude give result consistent with the low-energy theorem. An interesting phenomenon is observed in the ladder approximation that the low-energy theorem is saturated by the zeroth order terms in the external momenta of the pseudoscalar BS amplitude and the vector vertex functions. (author)

  14. Quark-anti-quark potential in N=4 SYM

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Nikolay [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); St. Petersburg INP,Gatchina, 188 300, St.Petersburg (Russian Federation); Levkovich-Maslyuk, Fedor [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden)

    2016-12-22

    We construct a closed system of equations describing the quark-anti-quark potential at any coupling in planar N=4 supersymmetric Yang-Mills theory. It is based on the Quantum Spectral Curve method supplemented with a novel type of asymptotics. We present a high precision numerical solution reproducing the classical and one-loop string predictions very accurately. We also analytically compute the first 7 nontrivial orders of the weak coupling expansion. Moreover, we study analytically the generalized quark-anti-quark potential in the limit of large imaginary twist to all orders in perturbation theory. We demonstrate how the QSC reduces in this case to a one-dimensional Schrodinger equation. In the process we establish a link between the Q-functions and the solution of the Bethe-Salpeter equation.

  15. Bernoulli's Equation

    Indian Academy of Sciences (India)

    regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.

  16. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  17. On the absence of pentaquark states from dynamics in strongly coupled lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Petrus Henrique Ribeiro dos [Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Veiga, Paulo Afonso Faria da; O' Carroll, Michael [Universidade de Sao Paulo (USP), SP (Brazil); Francisco Neto, Antonio [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2011-07-01

    Full text: We consider an imaginary time functional integral formulation of a two-flavor, 3 + 1 lattice QCD model with Wilson's action and in the strong coupling regime (with a small hopping parameter, {kappa}0, and a much smaller plaquette coupling, {beta} = 1/g{sub 0}{sup 2}, so that the quarks and glueballs are heavy). The model has local SU(3){sub c} gauge and global SU(2){sub f} flavor symmetries, and incorporates the corresponding part of the eightfold way particles: baryons (mesons) of asymptotic mass -3ln{kappa}(-2 ln {kappa}). We search for pentaquark states as meson-baryon bound states in the energy-momentum spectrum of the model, using a lattice Bethe-Salpeter equation. This equation is solved within a ladder approximation, given by the lowest nonvanishing order in {kappa} and {beta} of the Bethe-Salpeter kernel. It includes order 2 contributions with a q-barq exchange potential together with a contribution that is a local-in-space, energy-dependent potential. The attractive or repulsive nature of the exchange interaction depends on the spin of the meson-baryon states. The Bethe-Salpeter equation presents integrable singularities, forcing the couplings to be above a threshold value for the meson and the baryon to bind in a pentaquark. We analyzed all the total isospin sectors, I = 1/2/3/2/ 5/2, for the system. For all I, the net attraction resulting from the two sources of interaction is not strong enough for the meson and the baryon to bind. Thus, within our approximation, these pentaquark states are not present up to near the free meson-baryon energy threshold of - 5 ln{kappa}. This result is to be contrasted with the spinless case for which our method detects meson-baryon bound states, as well as for Yukawa effective baryon and meson field models. A physical interpretation of our results emerges from an approximate correspondence between meson-baryon bound states and negative energy states of a one-particle lattice Schroedinger Hamiltonian

  18. Instabilities of the chiral-symmetry-breaking ground state in a truncation-free expansion

    International Nuclear Information System (INIS)

    Rembiesa, P.

    1988-01-01

    We use the composite-field effective-action method to examine the stability of the chiral-symmetry-breaking vacua in a QED-like model of interacting fermion fields. Unlike most of the existing approaches, ours does not rely on the truncated Baker-Johnson-Willey expansion. Instead, we break the hierarchy of the Dyson-Schwinger equations by the requirement that the vertex function is dominated by the contributions from the vicinity of the mass shell of the exchanged gluon and that it explicitly satisfies the Ward identity. The composite-field effective potential is then expanded in terms of the eigenfunctions of the Bethe-Salpeter equation. The signature of the second derivatives of the effective potential shows that the broken-symmetry vacua are unstable

  19. Meson-exchange N-N potential

    International Nuclear Information System (INIS)

    Nutt, W.T.

    1976-01-01

    A meson-theoretic model of the intermediate range nucleon-nucleon potential is presented with emphasis placed on the two-pion exchange contribution. The Bethe-Salpeter equation is reduced, by the Blankenbecler-Sugar technique, to a Lippmann-Schwinger equation, from which an approximate nonlocal, energy-dependent potential is obtained. The nucleon-antinucleon pair contribution, which plagues meson-theoretical two-pion calculations, is suppressed by the complex poles of the one-nucleon Green's function. The importance of the retention of the explicit energy dependence of the potential is demonstrated by calculating the off-shell scattering matrices. The potential is presented in a linearized (in energy) form with the core region adjusted to produce a fit to low energy data

  20. Exotic states in the S=1 N-pi-K system and low-lying 1/2+ S=-1 resonances

    Directory of Open Access Journals (Sweden)

    Oset E.

    2010-04-01

    Full Text Available In this manuscript we discuss about our study of the $N pi ar{K}$ and the NπK systems made by solving the Faddeev equations with the two-body t-matrices obtained by solving the Bethe-Salpeter equations with the potentials obtained from chiral dynamics. In the strangeness = -1 case, we found that all the Λ and Σ resonances listed by the particle data group, with spin-parity 1/2+ , in the 1550-1800 MeV region get generated due to the involved three-body dynamics. This motivated us to study the strangeness =1 three-body system, i.e., NπK , where we did not find any evidence for the Θ+ (1542 but found a broad bump around 1700 MeV which has a κ(800N structure.

  1. Phenomenological dynamics in QCD at large distances

    International Nuclear Information System (INIS)

    Gogohia, V.Sh.; Kluge, Gy.

    1991-07-01

    A gauge-invariant, nonperturbative approach to QCD at large distances in the context of the Schwinger-Dyson equations and corresponding Slavnov-Taylor identities in the quark sector is presented. Making only one widely accepted assumption that the full gluon propagator becomes an infrared singular like (q 2 ) -2 in the covariant gauge, we find three and only three confinement-type solutions for the quark propagator (quark confinement theorem.) The approach is free from ghost complications. Also show that multiplication by the quark infrared renormalization constant only, would make all the Green's functions infrared finite (multiplicative renormalizability). The bound-state problem in framework of Bethe-Salpeter equation is discussed as well. Some basic physical parameters of chiral QCD as pion decay constant and quark condensate, have been calculated within our approach. (author) 75 refs.; 14 figs

  2. On the influence of the Pauli exclusion principle on the transport properties of dense Coulomb systems

    International Nuclear Information System (INIS)

    Schmidt, M.; Janke, T.; Redmer, R.

    1989-01-01

    Within a model calculation the influence of the Pauli exclusion principle on the electrical conductivity of a fully ionized and degenerate hydrogen plasma is investigated. Basing on a quantum kinetic equation solved with the relaxation time ansatz, the electron-ion contribution to the resistivity is calculated. The thermodynamical T-matrix for electron-ion scattering processes is evaluated under special account for the Pauli blocking of the intermediate scattering states. The corresponding Bethe-Salpeter equation is solved analytically using a separable approximation of the statically screened potential. The Pauli exclusion principle has been found to give rise for a considerable enhancement of the transport cross section near the Fermi energy. Thus, degeneracy effects tend to diminish the electrical conductivity in the density-temperature region considered here. (author)

  3. Spectrum of Charmonia within a Contact Interaction

    International Nuclear Information System (INIS)

    Bedolla, Marco Antonio

    2016-01-01

    For the flavour-singlet heavy quark system of charmonia, we compute the masses of the ground state mesons in four different channels: pseudo-scalar (η c (1 S )), vector ( J /ψ(1 S )), scalar (χ s0 (1 P )) and axial vector (χ c1 (1 P )), as well as the weak decay constants of the η c (1S) and J/ψ(1 S ). The framework for this analysis is provided by a symmetry-preserving Schwinger- Dyson equation (SDEs) treatment of a vector x vector contact interaction (CI). The results found for the meson masses and the weak decay constants, for the spin-spin combinations studied, are in fairly good agreement with experimental data and earlier model calculations based upon Schwinger-Dyson and Bethe-Salpeter equations (BSEs) involving sophisticated interaction kernels. (paper)

  4. Meson exchange currents in nuclei; the triton beta decay as an example

    International Nuclear Information System (INIS)

    Jaus, W.

    1976-01-01

    The method used to reduce the four-dimensional Bethe-Salpeter equation to the three-dimensional Schroedinger equation, thus defining a potential in terms of the field theoretic interaction, can be generalized to define a consistent exchange by considering the relativistic interaction of a current with a bound state of nucleons. This covariant approach allows a unified treatment of exchange current effects, renormalization of the nuclear wave function due to meson exchange, relativistic corrections and negative energy contributions to the wave function and it is discussed in detail how these effects influence the Gamow-Teller matrix element for the decay 3 H→ 3 He + e + antiγ. One and two-meson exchange processes are calculated including nucleon resonances in intermediate states, and good agreement of theoretical and experimental predictions for the GT matrix element is found. (Auth.)

  5. Relativistic description of quark-antiquark bound states. II. Spin-dependent treatment

    International Nuclear Information System (INIS)

    Gara, A.; Durand, B.; Durand, L.

    1990-01-01

    We present the results of a study of light- and heavy-quark--antiquark bound states in the context of the reduced Bethe-Salpeter equation, including the full spin dependence. We obtain good fits to the observed spin splittings in the b bar b and c bar c systems using a short-distance single-gluon-exchange interaction, and a long-distance scalar confining interaction. However, we cannot obtain satisfactory fits to the centers of gravity of the b bar b and c bar c spin multiplets at the same time, and the splittings calculated for q bar Q mesons containing the lighter quarks are very poor. The difficulty appears to be intrinsic to the reduced Salpeter equation for reasons which we discuss

  6. Hyperon interaction in free space and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Madhumita; Lenske, Horst [Institute for Theoretical Physics, Justus- Liebig-University Giessen (Germany)

    2015-07-01

    Baryon-baryon interactions within the SU(3)-octet are investigated in free space and nuclear matter.A meson exchange model based on SU(3) symmetry is used for determining the interaction. The Bethe-Salpeter equations are solved in a 3-D reduction scheme. In-medium effect has been incorporated by including a two particle Pauli projector operator in the scattering equation. The coupling of the various channels of total strangeness S and conserved total charge is studied in detail. Special attention is paid to the physical thresholds. The density dependence of interaction is clearly seen in the variation of the in-medium low-energy parameters. The approach is compared to descriptions derived from chiral-EFT and other meson-exchange models e.g. the Nijmegen and the Juelich model.

  7. Quarkonia and heavy-light mesons in a covariant quark model

    Directory of Open Access Journals (Sweden)

    Leitão Sofia

    2016-01-01

    Full Text Available Preliminary calculations using the Covariant Spectator Theory (CST employed a scalar linear confining interaction and an additional constant vector potential to compute the mesonic mass spectra. In this work we generalize the confining interaction to include more general structures, in particular a vector and also a pseudoscalar part, as suggested by a recent study [1]. A one-gluon-exchange kernel is also implemented to describe the short-range part of the interaction. We solve the simplest CST approximation to the complete Bethe-Salpeter equation, the one-channel spectator equation, using a numerical technique that eliminates all singularities from the kernel. The parameters of the model are determined through a fit to the experimental pseudoscalar meson spectra, with a good agreement for both quarkonia and heavy-light states.

  8. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  9. Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors

    Science.gov (United States)

    Jiang, Zeyu; Liu, Zhirong; Li, Yuanchang; Duan, Wenhui

    2017-06-01

    Using first-principles G W Bethe-Salpeter equation calculations and the k .p theory, we unambiguously show that for two-dimensional (2D) semiconductors, there exists a robust linear scaling law between the quasiparticle band gap (Eg) and the exciton binding energy (Eb), namely, Eb≈Eg/4 , regardless of their lattice configuration, bonding characteristic, as well as the topological property. Such a parameter-free universality is never observed in their three-dimensional counterparts. By deriving a simple expression for the 2D polarizability merely with respect to Eg, and adopting the screened hydrogen model for Eb, the linear scaling law can be deduced analytically. This work provides an opportunity to better understand the fantastic consequence of the 2D nature for materials, and thus offers valuable guidance for their property modulation and performance control.

  10. The effect of meson wave function on heavy-quark fragmentation function

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi Nejad, S.M. [Yazd University, Faculty of Physics (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)

    2016-05-15

    We calculate the process-independent fragmentation functions (FFs) for a heavy quark to fragment into heavy mesons considering the effects of meson wave function. In all previous works, where the FFs of heavy mesons or heavy baryons were calculated, a delta function form was approximated for the wave function of hadrons. Here, for the first time, we consider a typical mesonic wave function which is different from the delta function and is the nonrelativistic limit of the solution of Bethe-Salpeter equation with the QCD kernel. We present our numerical results for the heavy FFs and show how the proposed wave function improves the previous results. As an example, we focus on the fragmentation function for c-quark to split into S-wave D{sup 0} -meson and compare our results with experimental data from BELLE and CLEO. (orig.)

  11. Topics in dual models and extended solutions

    International Nuclear Information System (INIS)

    Roth, R.S.

    1977-01-01

    Two main topics are explored. The first deals with the infinities arising from the one loop planar string diagram of the standard dual model. It is shown that for the number of dimensions d = 25 or 26, these infinities lead to a renormalization of the slope of the Regge trajectories, in addition to a renormalization of the coupling constant. The second topic deals with the propagator for a confined particle (monopole) in a field theory. When summed to all orders, this propagator is altogether free of singularities in the finite momentum plane, and an attempt is made to illustrate this. The Bethe-Salpeter equation is examined and it is shown that ladder diagrams are not sufficient to obtain this result. However, in a nonrelativistic approximation confinement is obtained and all poles disappear

  12. Theory of Raman scattering in coupled electron-phonon systems

    Science.gov (United States)

    Itai, K.

    1992-01-01

    The Raman spectrum is calculated for a coupled conduction-electron-phonon system in the zero-momentum-transfer limit. The Raman scattering is due to electron-hole excitations and phonons as well. The phonons of those branches that contribute to the electron self-energy and the correction of the electron-phonon vertex are assumed to have flat energy dispersion (the Einstein phonons). The effect of electron-impurity scattering is also incorporated. Both the electron-phonon interaction and the electron-impurity interaction cause the fluctuation of the electron distribution between different parts of the Fermi surface, which results in overdamped zero-sound modes of various symmetries. The scattering cross section is obtained by solving the Bethe-Salpeter equation. The spectrum shows a lower threshold at the smallest Einstein phonon energy when only the electron-phonon interaction is taken into consideration. When impurities are also taken into consideration, the threshold disappears.

  13. Defect properties of Sn- and Ge-doped ZnTe: suitability for intermediate-band solar cells

    Science.gov (United States)

    Flores, Mauricio A.

    2018-01-01

    We investigate the electronic structure and defect properties of Sn- and Ge- doped ZnTe by first-principles calculations within the DFT+GW formalism. We find that ({{{Sn}}}{{Zn}}) and ({{{Ge}}}{{Zn}}) introduce isolated energy levels deep in the band gap of ZnTe, derived from Sn-5s and Ge-4s states, respectively. Moreover, the incorporation of Sn and Ge on the Zn site is favored in p-type ZnTe, in both Zn-rich and Te-rich environments. The optical absorption spectra obtained by solving the Bethe-Salpeter equation reveals that sub-bandgap absorptance is greatly enhanced due to the formation of the intermediate band. Our results suggest that Sn- and Ge-doped ZnTe would be a suitable material for the development of intermediate-band solar cells, which have the potential to achieve efficiencies beyond the single-junction limit.

  14. Quasi-particle energies and optical excitations of hydrogenated and fluorinated germanene.

    Science.gov (United States)

    Shu, Huabing; Li, Yunhai; Wang, Shudong; Wang, Jinlan

    2015-02-14

    Using density functional theory, the G0W0 method and Bethe-Salpeter equation calculations, we systematically explore the structural, electronic and optical properties of hydrogenated and fluorinated germanene. The hydrogenated/fluorinated germanene tends to form chair and zigzag-line configurations and its electronic and optical properties show close geometry dependence. The chair hydrogenated/fluorinated and zigzag-line fluorinated germanene are direct band-gap semiconductors, while the zigzag-line hydrogenated germanene owns an indirect band-gap. Moreover, the quasi-particle corrections are significant and strong excitonic effects with large exciton binding energies are observed. Moreover, the zigzag-line hydrogenated/fluorinated germanene shows highly anisotropic optical responses, which may be used as a good optical linear polarizer.

  15. Relativistic few quark dynamics for hadrons

    International Nuclear Information System (INIS)

    Mitra, A.N.

    1983-07-01

    A microscopic confinement approach is presented to a few quarks systems through an effective (harmonic) kernel inserted at the level of q-q-bar and q-q pairs, using the vehicle of the Bethe-Salpeter equation for each such system. The formalism, which is realistic for light quark systems (which require an intrinsically relativistic treatment), has been developed in a simple enough form so as to be applicable in practice to a large class of phenomena amenable to experimental test. The comparison over a wide range of hadronic properties (from mass spectra to current matrix elements), all within a single integrated framework, would seem to strongly support the ansatz of universality of the reduced spring constant (ω-tilde) which plays a role analogous to the bag radius, but at a far more microscopic level

  16. Hadron-quark vertex function. Interconnection between 3D and 4D wave function

    International Nuclear Information System (INIS)

    Mitra, A.N.; Bhatnagar, S.

    1990-01-01

    Interconnection between 3D and 4D forms of Bethe-Salpeter equation (EBS) with a kernel depending on relative momenta is used to derive hadron-quark vertex function in Lorentz invariance form. The vertex function which is directly related to a 4D wave function satisfying a corresponding EBS determines the natural continuation outside mass surface for the entire momentum space and serves the basis for computing amplitudes of transitions through appropriate loop quark diagrams. Two applications (f p values for P→ll-bar and F π for n 0 +yy) are discussed briefly to illustrate this formalism. An attention is paid to the problem of complex amplitudes for quark loops with a larger number of external hadrons.A possible solution of the problem is proposed. 29 refs

  17. Role of various Dirac covariants in the BS wave functions in decay constant calculations of pseudoscalar mesons using a power counting scheme

    International Nuclear Information System (INIS)

    Bhatnagar, S.; Mahecha, J.

    2008-09-01

    We have employed the framework of Bethe-Salpeter equation under Covariant Instantaneous Ansatz to calculate the leptonic decay constants of unequal mass pseudoscalar mesons. In the Dirac structure of BS wave function, the covariants are incorporated from their complete set in accordance with a recently proposed power counting rule, order-by-order in powers of inverse of meson mass. The decay constants are calculated incorporating both Leading Order (LO) as well as Next-to-leading Order (NLO) Dirac covariants. The contribution of both LO as well as NLO covariants to decay constants are studied in detail in this paper. The results are found to improve dramatically, and hence validating the power counting rule which also provides a practical means of incorporating Dirac covariants in the BS wave function of a hadron. (author)

  18. Manipulating Light with Transition Metal Clusters, Organic Dyes, and Metal Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Ogut, Serdar [Univ. of Illinois, Chicago, IL (United States)

    2017-09-11

    The primary goals of our research program is to develop and apply state-of-the-art first-principles methods to predict electronic and optical properties of three systems of significant scientific and technological interest: transition metal clusters, organic dyes, and metal-organic frameworks. These systems offer great opportunities to manipulate light for a wide ranging list of energy-related scientific problems and applications. During this grant period, we focused our investigations on the development, implementation, and benchmarking of many-body Green’s function methods (GW approximation and the Bethe-Salpeter equation) to examine excited-state properties of transition metal/transition-metal-oxide clusters and organic molecules that comprise the building blocks of dyes and metal-organic frameworks.

  19. Barionic spectroscopy masses and hyperfine structure

    International Nuclear Information System (INIS)

    Vale, M.A.B. do.

    1986-01-01

    Using the Bethe-Salpeter equation in QCD, we obtain, in the nonrelativistic approximation, a quark-antiquark interaction potential. We include, in a phenomenological way, a confining term in the potential (V(qq-bar) = V QCD (qq-bar) + V sub (conf) (qq-bar)). Assuming that the three-quark interaction can be described in terms of pair interactions, and that the quark-quark interaction is related to the quark-antiquark interaction (v (qq)= 1/2 V(qq-bar)), we evaluate the baryon masses as three-quark bound states. We also calculate the relativistic corrections coming from the spin-spin interaction. Finally, our results are compared to the available experimental data. (author) [pt

  20. On the gluonic correction to lepton-pair decays in a relativistic quarkonium model

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    1987-01-01

    The gluonic correction to the leptonic decay of the heavy vector meson is investigated by using the perturbation theory to the order α s . The on-mass-shell approximation is assumed for the constituent quarks so that we assure the gauge independence of the correction. The decay rates in the model based on the Bethe-Salpeter equation are also shown, in which the gluonic correction with a high-momentum cutoff is calculated for the off-shell quarks. It is shown that the static approximation to the correction factor (1 - 16α s /3π) is not adequate and the gluonic correction does not suppress but enhance the decay rates of the ground states for the c anti c and b anti b systems. (author)

  1. Effects of molecular packing in organic crystals on singlet fission with ab initio many body perturbation theory

    Science.gov (United States)

    Haber, Jonah; Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.

    Multi-exciton generation processes, in which multiple charge carriers are generated from a single photon, are mechanisms of significant interest for achieving efficiencies beyond the Shockley-Queisser limit of conventional p-n junction solar cells. One well-studied multiexciton process is singlet fission, whereby a singlet decays into two spin-correlated triplet excitons. Here, we use a newly developed computational approach to calculate singlet-fission coupling terms and rates with an ab initio Green's function formalism based on many-body perturbation theory (MBPT) within the GW approximation and the Bethe-Salpeter equation approach. We compare results for crystalline pentacene and TIPS-pentacene and explore the effect of molecular packing on the singlet fission mechanism. This work is supported by the Department of Energy.

  2. Fields, particles and analyticity: recent results or 30 goldberg (ER) variations on B.A.C.H

    International Nuclear Information System (INIS)

    Bros, J.

    1991-01-01

    As it is known, Axiomatic Field Theory (A) implies double analyticity of the η-point functions in space-time and energy-momentum Complex Variables (C), with various interconnections by Fourier-Laplace analysis. When the latter is replaced by. Harmonic Analysis (H) on spheres and hyperboloids, a new kind of double analyticity results from (A) (i.e. from locality, spectral condition, temperateness and invariance): complex angular momentum is thereby introduced (a missing chapter in (A)). Exploitation of Asymptotic Completeness via Bethe-Salpeter-type equations (B) leads to new developments of the previous theme on (A, C, H) (complex angular momentum) and of other themes on (A,C) (crossing, Haag-Swieca property etc...). Various aspects of (A) + (B) have been implemented in Constructive Field Theory (composite spectrum, asymptotic properties etc...) by a combination of specific techniques and of model-independent methods

  3. Fields, particles and analyticity: recent results or 30 goldberg (ER) variations on B.A.C.H

    Energy Technology Data Exchange (ETDEWEB)

    Bros, J

    1992-12-31

    As it is known, Axiomatic Field Theory (A) implies double analyticity of the {eta}-point functions in space-time and energy-momentum Complex Variables (C), with various interconnections by Fourier-Laplace analysis. When the latter is replaced by. Harmonic Analysis (H) on spheres and hyperboloids, a new kind of double analyticity results from (A) (i.e. from locality, spectral condition, temperateness and invariance): complex angular momentum is thereby introduced (a missing chapter in (A)). Exploitation of Asymptotic Completeness via Bethe-Salpeter-type equations (B) leads to new developments of the previous theme on (A, C, H) (complex angular momentum) and of other themes on (A,C) (crossing, Haag-Swieca property etc...). Various aspects of (A) + (B) have been implemented in Constructive Field Theory (composite spectrum, asymptotic properties etc...) by a combination of specific techniques and of model-independent methods.

  4. Spectral properties of nuclear matter

    International Nuclear Information System (INIS)

    Bozek, P

    2006-01-01

    We review self-consistent spectral methods for nuclear matter calculations. The in-medium T-matrix approach is conserving and thermodynamically consistent. It gives both the global and the single-particle properties the system. The T-matrix approximation allows to address the pairing phenomenon in cold nuclear matter. A generalization of nuclear matter calculations to the super.uid phase is discussed and numerical results are presented for this case. The linear response of a correlated system going beyond the Hartree-Fock+ Random-Phase-Approximation (RPA) scheme is studied. The polarization is obtained by solving a consistent Bethe-Salpeter (BS) equation for the coupling of dressed nucleons to an external field. We find that multipair contributions are important for the spin(isospin) response when the interaction is spin(isospin) dependent

  5. Meson-meson bound state in a 2+1 lattice QCD model with two flavors and strong coupling

    International Nuclear Information System (INIS)

    Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, Antonio Francisco

    2005-01-01

    We consider the existence of bound states of two mesons in an imaginary-time formulation of lattice QCD. We analyze an SU(3) theory with two flavors in 2+1 dimensions and two-dimensional spin matrices. For a small hopping parameter and a sufficiently large glueball mass, as a preliminary, we show the existence of isoscalar and isovector mesonlike particles that have isolated dispersion curves (upper gap up to near the two-particle threshold ∼-4lnκ). The corresponding meson masses are equal up to and including O(κ 3 ) and are asymptotically of order -2lnκ-κ 2 . Considering the zero total isospin sector, we show that there is a meson-meson bound state solution to the Bethe-Salpeter equation in a ladder approximation, below the two-meson threshold, and with binding energy of order bκ 2 ≅0.02359κ 2 . In the context of the strong coupling expansion in κ, we show that there are two sources of meson-meson attraction. One comes from a quark-antiquark exchange. This is not a meson exchange, as the spin indices are not those of the meson particle, and we refer to this as a quasimeson exchange. The other arises from gauge field correlations of four overlapping bonds, two positively oriented and two of opposite orientation. Although the exchange part gives rise to a space range-one attractive potential, the main mechanism for the formation of the bound state comes from the gauge contribution. In our lattice Bethe-Salpeter equation approach, this mechanism is manifested by an attractive distance-zero energy-dependent potential. We recall that no bound state appeared in the one-flavor case, where the repulsive effect of Pauli exclusion is stronger

  6. The infrared behaviour of QCD Green's functions. Confinement, dynamical symmetry breaking, and hadrons as relativistic bound states

    Science.gov (United States)

    Alkofer, Reinhard; von Smekal, Lorenz

    2001-11-01

    Recent studies of QCD Green's functions and their applications in hadronic physics are reviewed. We discuss the definition of the generating functional in gauge theories, in particular, the rôle of redundant degrees of freedom, possibilities of a complete gauge fixing versus gauge fixing in presence of Gribov copies, BRS invariance and positivity. The apparent contradiction between positivity and colour antiscreening in combination with BRS invariance in QCD is considered. Evidence for the violation of positivity by quarks and transverse gluons in the covariant gauge is collected, and it is argued that this is one manifestation of confinement. We summarise the derivation of the Dyson-Schwinger equations (DSEs) of QED and QCD. For the latter, the implications of BRS invariance on the Green's functions are explored. The possible influence of instantons on DSEs is discussed in a two-dimensional model. In QED in (2+1) and (3+1) dimensions, the solutions for Green's functions provide tests of truncation schemes which can under certain circumstances be extended to the DSEs of QCD. We discuss some limitations of such extensions and assess the validity of assumptions for QCD as motivated from studies in QED. Truncation schemes for DSEs are discussed in axial and related gauges, as well as in the Landau gauge. Furthermore, we review the available results from a systematic non-perturbative expansion scheme established for Landau gauge QCD. Comparisons to related lattice results, where available, are presented. The applications of QCD Green's functions to hadron physics are summarised. Properties of ground state mesons are discussed on the basis of the ladder Bethe-Salpeter equation for quarks and antiquarks. The Goldstone nature of pseudoscalar mesons and a mechanism for diquark confinement beyond the ladder approximation are reviewed. We discuss some properties of ground state baryons based on their description as Bethe-Salpeter/Faddeev bound states of quark

  7. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  8. A quantitative assessment of the BSE risk associated with fly ash and slag from the incineration of meat-and-bone meal in a gas-fired power plant in Denmark

    DEFF Research Database (Denmark)

    Paisley, Larry; Hostrup-Pedersen, J.

    2005-01-01

    and slag are incorporated into the cement or concrete. Our goal was to assess with a Monte Carlo simulation model the bovine spongiform, encephalopathy (BSE) risk to cattle and humans posed by the ash and slag. The results will be used by decision makers to evaluate the need for disposal of the fly ash......It has been recommended that meat-and-bone meal (MBM) be incinerated at 850 degrees C for at least 2 s and the ashes and slag disposed of in controlled landfills, to dispose of animal-derived proteins. Most commonly, the MBM is incinerated in cement works or coal-fired power plants and the ashes...

  9. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  10. Equating error in observed-score equating

    NARCIS (Netherlands)

    van der Linden, Willem J.

    2006-01-01

    Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of

  11. Chemical Equation Balancing.

    Science.gov (United States)

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  12. Handbook of integral equations

    CERN Document Server

    Polyanin, Andrei D

    2008-01-01

    This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.

  13. Introduction to differential equations

    CERN Document Server

    Taylor, Michael E

    2011-01-01

    The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen

  14. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  15. Benney's long wave equations

    International Nuclear Information System (INIS)

    Lebedev, D.R.

    1979-01-01

    Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown

  16. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  17. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  18. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  19. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  20. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  1. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  2. Functional equations with causal operators

    CERN Document Server

    Corduneanu, C

    2003-01-01

    Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.

  3. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  4. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  5. Differential equations for dummies

    CERN Document Server

    Holzner, Steven

    2008-01-01

    The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

  6. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  7. Application of the N-quantum approximation method to bound state problems

    International Nuclear Information System (INIS)

    Raychaudhuri, A.

    1977-01-01

    The N-quantum approximation (NQA) method is examined in the light of its application to bound state problems. Bound state wave functions are obtained as expansion coefficients in a truncated Haag expansion. From the equations of motion for the Heisenberg field and the NQA expansion, an equation satisfied by the wave function is derived. Two different bound state systems are considered. In one case, the bound state problem of two identical scalars by scalar exchange is analyzed using the NQA. An integral equation satisfied by the wave function is derived. In the nonrelativistic limit, the equation is shown to reduce to the Schroedinger equation. The equation is solved numerically, and the results compared with those obtained for this system by other methods. The NQA method is also applied to the bound state of two spin 1/2 particles with electromagnetic interaction. The integral equation for the wave function is shown to agree with the corresponding Bethe Salpeter equation in the nonrelativistic limit. Using the Dirac (4 x 4) matrices the wave function is expanded in terms of structure functions and the equation for the wave function is reduced to two disjoint sets of coupled equation for the structure functions

  8. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  9. Solving Ordinary Differential Equations

    Science.gov (United States)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  10. Reactimeter dispersion equation

    OpenAIRE

    A.G. Yuferov

    2016-01-01

    The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...

  11. Differential equations I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.

  12. A new evolution equation

    International Nuclear Information System (INIS)

    Laenen, E.

    1995-01-01

    We propose a new evolution equation for the gluon density relevant for the region of small x B . It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multigluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed α s . We find that the effects of multigluon correlations on the deep-inelastic structure function are small. (orig.)

  13. Equational type logic

    NARCIS (Netherlands)

    Manca, V.; Salibra, A.; Scollo, Giuseppe

    1990-01-01

    Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either

  14. Alternative equations of gravitation

    International Nuclear Information System (INIS)

    Pinto Neto, N.

    1983-01-01

    It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt

  15. Reduced Braginskii equations

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite {beta} that we solve the perpendicular component of Ohm`s law to conserve the physical energy while ensuring the relation {del} {center_dot} j = 0.

  16. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that we solve the perpendicular component of Ohm's law to conserve the physical energy while ensuring the relation ∇ · j = 0

  17. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1994-01-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that the perpendicular component of Ohm's law be solved to ensure ∇·j=0 for energy conservation

  18. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  19. The Wouthuysen equation

    NARCIS (Netherlands)

    M. Hazewinkel (Michiel)

    1995-01-01

    textabstractDedication: I dedicate this paper to Prof. P.C. Baayen, at the occasion of his retirement on 20 December 1994. The beautiful equation which forms the subject matter of this paper was invented by Wouthuysen after he retired. The four complex variable Wouthuysen equation arises from an

  20. The generalized Fermat equation

    NARCIS (Netherlands)

    Beukers, F.

    2006-01-01

    This article will be devoted to generalisations of Fermat’s equation xn + yn = zn. Very soon after the Wiles and Taylor proof of Fermat’s Last Theorem, it was wondered what would happen if the exponents in the three term equation would be chosen differently. Or if coefficients other than 1 would

  1. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2004-01-01

    This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...

  2. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  3. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  4. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  5. Local instant conservation equations

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    Local instant conservation equations for two-phase flow are derived. Derivation of the equation starts from the recording of integral laws of conservation for a fixed reference volume, containing both phases. Transformation of the laws, using the Leibniz rule and Gauss theory permits to obtain the sum of two integrals as to the volume and integral as to the surface. Integrals as to the volume result in local instant differential equations, in particular derivatives for each phase, and integrals as to the surface reflect local instant conditions of a jump on interface surface

  6. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  7. Ordinary differential equations

    CERN Document Server

    Miller, Richard K

    1982-01-01

    Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,

  8. Uncertain differential equations

    CERN Document Server

    Yao, Kai

    2016-01-01

    This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.

  9. Multiple Stage Ore Formation in the Chadormalu Iron Deposit, Bafq Metallogenic Province, Central Iran: Evidence from BSE Imaging and Apatite EPMA and LA-ICP-MS U-Pb Geochronology

    Directory of Open Access Journals (Sweden)

    Hassan Heidarian

    2018-02-01

    Full Text Available The Chadormalu magnetite-apatite deposit in Bafq metallogenic province, Central Iran, is hosted in the late Precambrian-lower Cambrian volcano-sedimentary rocks with sodic, calcic, and potassic alterations characteristic of iron oxide copper-gold (IOCG and iron oxide-apatite (IOA ore systems. Apatite occurs as scattered irregular veinlets and disseminated grains, respectively, within and in the marginal parts of the main ore-body, as well as apatite-magnetite veins in altered wall rocks. Textural evidence (SEM-BSE images of these apatites shows primary bright, and secondary dark areas with inclusions of monazite/xenotime. The primary, monazite-free fluorapatite contains higher concentrations of Na, Si, S, and light rare earth elements (LREE. The apatite was altered by hydrothermal events that led to leaching of Na, Si, and REE + Y, and development of the dark apatite. The bright apatite yielded two U-Pb age populations, an older dominant age of 490 ± 21 Ma, similar to other iron deposits in the Bafq district and associated intrusions, and a younger age of 246 ± 17 Ma. The dark apatite yielded a U-Pb age of 437 ± 12 Ma. Our data suggest that hydrothermal magmatic fluids contributed to formation of the primary fluorapatite, and sodic and calcic alterations. The primary apatite reequilibrated with basinal brines in at least two regional extensions and basin developments in Silurian and Triassic in Central Iran.

  10. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2015-01-01

    This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs.  Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...

  11. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  12. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  13. Equations For Rotary Transformers

    Science.gov (United States)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  14. Problems in differential equations

    CERN Document Server

    Brenner, J L

    2013-01-01

    More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.

  15. Applied partial differential equations

    CERN Document Server

    DuChateau, Paul

    2012-01-01

    Book focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included.

  16. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  17. Modern nonlinear equations

    CERN Document Server

    Saaty, Thomas L

    1981-01-01

    Covers major types of classical equations: operator, functional, difference, integro-differential, and more. Suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." - Math Reviews. 1964 edition.

  18. SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER

    Science.gov (United States)

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1960-05-10

    A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.

  19. Structural Equations and Causation

    OpenAIRE

    Hall, Ned

    2007-01-01

    Structural equations have become increasingly popular in recent years as tools for understanding causation. But standard structural equations approaches to causation face deep problems. The most philosophically interesting of these consists in their failure to incorporate a distinction between default states of an object or system, and deviations therefrom. Exploring this problem, and how to fix it, helps to illuminate the central role this distinction plays in our causal thinking.

  20. Equations of radiation hydrodynamics

    International Nuclear Information System (INIS)

    Mihalas, D.

    1982-01-01

    The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is esential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations; and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved will be presented

  1. Quantum linear Boltzmann equation

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  2. Covariant field equations in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2017-12-15

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Covariant field equations in supergravity

    International Nuclear Information System (INIS)

    Vanhecke, Bram; Proeyen, Antoine van

    2017-01-01

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Differential Equation over Banach Algebra

    OpenAIRE

    Kleyn, Aleks

    2018-01-01

    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  5. Transport equation solving methods

    International Nuclear Information System (INIS)

    Granjean, P.M.

    1984-06-01

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

  6. Introduction to partial differential equations

    CERN Document Server

    Greenspan, Donald

    2000-01-01

    Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.

  7. Quadratic Diophantine equations

    CERN Document Server

    Andreescu, Titu

    2015-01-01

    This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.

  8. Stochastic porous media equations

    CERN Document Server

    Barbu, Viorel; Röckner, Michael

    2016-01-01

    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  9. Boussinesq evolution equations

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Schaffer, H.; Madsen, Per A.

    2004-01-01

    This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic...... Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over...... a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave...

  10. Equations of mathematical physics

    CERN Document Server

    Tikhonov, A N

    2011-01-01

    Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri

  11. Iteration of adjoint equations

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1994-01-01

    Adjoint functions are the basis of variational methods and now widely used for perturbation theory and its extension to higher order theory as used, for example, in modelling fuel burnup and optimization. In such models, the adjoint equation is to be solved in a critical system with an adjoint source distribution that is not zero but has special properties related to ratios of interest in critical systems. Consequently the methods of solving equations by iteration and accumulation are reviewed to show how conventional methods may be utilized in these circumstances with adequate accuracy. (author). 3 refs., 6 figs., 3 tabs

  12. Systematic Equation Formulation

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2007-01-01

    A tutorial giving a very simple introduction to the set-up of the equations used as a model for an electrical/electronic circuit. The aim is to find a method which is as simple and general as possible with respect to implementation in a computer program. The “Modified Nodal Approach”, MNA, and th......, and the “Controlled Source Approach”, CSA, for systematic equation formulation are investigated. It is suggested that the kernel of the P Spice program based on MNA is reprogrammed....

  13. Partial differential equations

    CERN Document Server

    Agranovich, M S

    2002-01-01

    Mark Vishik's Partial Differential Equations seminar held at Moscow State University was one of the world's leading seminars in PDEs for over 40 years. This book celebrates Vishik's eightieth birthday. It comprises new results and survey papers written by many renowned specialists who actively participated over the years in Vishik's seminars. Contributions include original developments and methods in PDEs and related fields, such as mathematical physics, tomography, and symplectic geometry. Papers discuss linear and nonlinear equations, particularly linear elliptic problems in angles and gener

  14. Generalized estimating equations

    CERN Document Server

    Hardin, James W

    2002-01-01

    Although powerful and flexible, the method of generalized linear models (GLM) is limited in its ability to accurately deal with longitudinal and clustered data. Developed specifically to accommodate these data types, the method of Generalized Estimating Equations (GEE) extends the GLM algorithm to accommodate the correlated data encountered in health research, social science, biology, and other related fields.Generalized Estimating Equations provides the first complete treatment of GEE methodology in all of its variations. After introducing the subject and reviewing GLM, the authors examine th

  15. Nonlinear wave equations

    CERN Document Server

    Li, Tatsien

    2017-01-01

    This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.

  16. High energy asymptotics of perturbative multi-color QCD

    International Nuclear Information System (INIS)

    Lipatov, L.N.

    1993-01-01

    The structure functions of deep-inelastic scattering at small-x satisfy two different equations in the leading logarithmic approximation (LLA). The first one -- the GLAP equation, describes the Q 2 -evolution of partonic distributions h i (x). The second one -- the BFKL, equation determines the x-dependence of parton densities H i (x, k perpendicular ). Analogous equations for matrix elements of higher twist operators were constructed in Refs. 3 and 4. Here the author discusses the possibility of finding an exact solution for multi-gluon compound states in LLA for the color group SU(N), in the limit N → ∞. The contributions of diagrams with many reggeized gluons are important for the unitarization of the perturbative Pomeron in QCD. It is shown that the Bethe-Salpeter equations for compound states of many reggeized gluons are conformally invariant in the two-dimensional impact parameter space. Their solutions can be written in holomorphically factorized form and there is a differential operator commuting with the holomorphic part of the corresponding Hamiltonian

  17. Analysis of wave equation in electromagnetic field by Proca equation

    International Nuclear Information System (INIS)

    Pamungkas, Oky Rio; Soeparmi; Cari

    2017-01-01

    This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)

  18. Comparison of Kernel Equating and Item Response Theory Equating Methods

    Science.gov (United States)

    Meng, Yu

    2012-01-01

    The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…

  19. Test equating methods and practices

    CERN Document Server

    Kolen, Michael J

    1995-01-01

    In recent years, many researchers in the psychology and statistical communities have paid increasing attention to test equating as issues of using multiple test forms have arisen and in response to criticisms of traditional testing techniques This book provides a practically oriented introduction to test equating which both discusses the most frequently used equating methodologies and covers many of the practical issues involved The main themes are - the purpose of equating - distinguishing between equating and related methodologies - the importance of test equating to test development and quality control - the differences between equating properties, equating designs, and equating methods - equating error, and the underlying statistical assumptions for equating The authors are acknowledged experts in the field, and the book is based on numerous courses and seminars they have presented As a result, educators, psychometricians, professionals in measurement, statisticians, and students coming to the subject for...

  20. On the Raychaudhuri equation

    Indian Academy of Sciences (India)

    The Raychaudhuri equation is central to the understanding of gravitational attraction in ... of K Gödel on the ideas of shear and vorticity in cosmology (he defines the shear. (eq. (8) in [1]) .... which follows from the definition of the scale factor l.

  1. Generalized reduced magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Kruger, S.E.

    1999-01-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics

  2. Calculus & ordinary differential equations

    CERN Document Server

    Pearson, David

    1995-01-01

    Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

  3. The Freudenstein Equation

    Indian Academy of Sciences (India)

    research, teaching and practice related to the analysis and design ... its variants, are present in a large number of ma- chines used in daily ... with advanced electronics, sensors, control systems and computing ... ted perfectly well with the rapidly developing comput- .... velopment of the Freudenstein equation using Figure 3.

  4. Differential Equation of Equilibrium

    African Journals Online (AJOL)

    user

    ABSTRACT. Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak. Laplace transformation was used to solve the governing ...

  5. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  6. Dunkl Hyperbolic Equations

    Directory of Open Access Journals (Sweden)

    Hatem Mejjaoli

    2008-12-01

    Full Text Available We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.

  7. Structural Equation Model Trees

    Science.gov (United States)

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  8. ANTHROPOMETRIC PREDICTIVE EQUATIONS FOR ...

    African Journals Online (AJOL)

    Keywords: Anthropometry, Predictive Equations, Percentage Body Fat, Nigerian Women, Bioelectric Impedance ... such as Asians and Indians (Pranav et al., 2009), ... size (n) of at least 3o is adjudged as sufficient for the ..... of people, gender and age (Vogel eta/., 1984). .... Fish Sold at Ile-Ife Main Market, South West Nigeria.

  9. dimensional Fokas equation

    Indian Academy of Sciences (India)

    However, one can associate the term with any solution of nonlinear partial differential equations (PDEs) which (i) represents a wave of permanent form, (ii) is localized ... In the past several decades, many methods have been proposed for solving nonlinear PDEs, such as ... space–time fractional derivative form of eq. (1) and ...

  10. A Quadratic Spring Equation

    Science.gov (United States)

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  11. Guiding center drift equations

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1979-03-01

    The quations for particle guiding center drift orbits are given in a new magnetic coordinate system. This form of the equations not only separates the fast motion along the lines from the slow motion across, but also requires less information about the magnetic field than many other formulations of the problem

  12. dimensional nonlinear evolution equations

    Indian Academy of Sciences (India)

    in real-life situations, it is important to find their exact solutions. Further, in ... But only little work is done on the high-dimensional equations. .... Similarly, to determine the values of d and q, we balance the linear term of the lowest order in eq.

  13. Stochastic nonlinear beam equations

    Czech Academy of Sciences Publication Activity Database

    Brzezniak, Z.; Maslowski, Bohdan; Seidler, Jan

    2005-01-01

    Roč. 132, č. 1 (2005), s. 119-149 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA201/01/1197 Institutional research plan: CEZ:AV0Z10190503 Keywords : stochastic beam equation * stability Subject RIV: BA - General Mathematics Impact factor: 0.896, year: 2005

  14. Balancing Chemical Equations.

    Science.gov (United States)

    Savoy, L. G.

    1988-01-01

    Describes a study of students' ability to balance equations. Answers to a test on this topic were analyzed to determine the level of understanding and processes used by the students. Presented is a method to teach this skill to high school chemistry students. (CW)

  15. Lectures on partial differential equations

    CERN Document Server

    Petrovsky, I G

    1992-01-01

    Graduate-level exposition by noted Russian mathematician offers rigorous, transparent, highly readable coverage of classification of equations, hyperbolic equations, elliptic equations and parabolic equations. Wealth of commentary and insight invaluable for deepening understanding of problems considered in text. Translated from the Russian by A. Shenitzer.

  16. Quantum equations from Brownian motions

    International Nuclear Information System (INIS)

    Rajput, B.S.

    2011-01-01

    Classical Schrodinger and Dirac equations have been derived from Brownian motions of a particle, it has been shown that the classical Schrodinger equation can be transformed to usual Schrodinger Quantum equation on applying Heisenberg uncertainty principle between position and momentum while Dirac Quantum equation follows it's classical counter part on applying Heisenberg uncertainly principle between energy and time without applying any analytical continuation. (author)

  17. Elements of partial differential equations

    CERN Document Server

    Sneddon, Ian Naismith

    1957-01-01

    Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory.Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent st

  18. On generalized fractional vibration equation

    International Nuclear Information System (INIS)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-01-01

    Highlights: • The paper presents a generalized fractional vibration equation for arbitrary viscoelastically damped system. • Some classical vibration equations can be derived from the developed equation. • The analytic solution of developed equation is derived under some special cases. • The generalized equation is particularly useful for developing new fractional equivalent linearization method. - Abstract: In this paper, a generalized fractional vibration equation with multi-terms of fractional dissipation is developed to describe the dynamical response of an arbitrary viscoelastically damped system. It is shown that many classical equations of motion, e.g., the Bagley–Torvik equation, can be derived from the developed equation. The Laplace transform is utilized to solve the generalized equation and the analytic solution under some special cases is derived. Example demonstrates the generalized transfer function of an arbitrary viscoelastic system.

  19. Covariant density functional theory for nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Badarch, U.

    2007-07-01

    The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)

  20. Covariant density functional theory for nuclear matter

    International Nuclear Information System (INIS)

    Badarch, U.

    2007-01-01

    The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)

  1. Methods for Equating Mental Tests.

    Science.gov (United States)

    1984-11-01

    1983) compared conventional and IRT methods for equating the Test of English as a Foreign Language ( TOEFL ) after chaining. Three conventional and...three IRT equating methods were examined in this study; two sections of TOEFL were each (separately) equated. The IRT methods included the following: (a...group. A separate base form was established for each of the six equating methods. Instead of equating the base-form TOEFL to itself, the last (eighth

  2. equateIRT: An R Package for IRT Test Equating

    Directory of Open Access Journals (Sweden)

    Michela Battauz

    2015-12-01

    Full Text Available The R package equateIRT implements item response theory (IRT methods for equating different forms composed of dichotomous items. In particular, the IRT models included are the three-parameter logistic model, the two-parameter logistic model, the one-parameter logistic model and the Rasch model. Forms can be equated when they present common items (direct equating or when they can be linked through a chain of forms that present common items in pairs (indirect or chain equating. When two forms can be equated through different paths, a single conversion can be obtained by averaging the equating coefficients. The package calculates direct and chain equating coefficients. The averaging of direct and chain coefficients that link the same two forms is performed through the bisector method. Furthermore, the package provides analytic standard errors of direct, chain and average equating coefficients.

  3. Lattice Wigner equation

    Science.gov (United States)

    Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2018-01-01

    We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.

  4. Energy master equation

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    1995-01-01

    energies chosen randomly according to a Gaussian. The random-walk model is here derived from Newton's laws by making a number of simplifying assumptions. In the second part of the paper an approximate low-temperature description of energy fluctuations in the random-walk model—the energy master equation...... (EME)—is arrived at. The EME is one dimensional and involves only energy; it is derived by arguing that percolation dominates the relaxational properties of the random-walk model at low temperatures. The approximate EME description of the random-walk model is expected to be valid at low temperatures...... of the random-walk model. The EME allows a calculation of the energy probability distribution at realistic laboratory time scales for an arbitrarily varying temperature as function of time. The EME is probably the only realistic equation available today with this property that is also explicitly consistent...

  5. Classical Diophantine equations

    CERN Document Server

    1993-01-01

    The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...

  6. Flavored quantum Boltzmann equations

    International Nuclear Information System (INIS)

    Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean

    2010-01-01

    We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.

  7. Causal electromagnetic interaction equations

    International Nuclear Information System (INIS)

    Zinoviev, Yury M.

    2011-01-01

    For the electromagnetic interaction of two particles the relativistic causal quantum mechanics equations are proposed. These equations are solved for the case when the second particle moves freely. The initial wave functions are supposed to be smooth and rapidly decreasing at the infinity. This condition is important for the convergence of the integrals similar to the integrals of quantum electrodynamics. We also consider the singular initial wave functions in the particular case when the second particle mass is equal to zero. The discrete energy spectrum of the first particle wave function is defined by the initial wave function of the free-moving second particle. Choosing the initial wave functions of the free-moving second particle it is possible to obtain a practically arbitrary discrete energy spectrum.

  8. Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

    Directory of Open Access Journals (Sweden)

    Hamidreza Rezazadeh

    2014-05-01

    Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.

  9. Equations of multiparticle dynamics

    International Nuclear Information System (INIS)

    Chao, A.W.

    1987-01-01

    The description of the motion of charged-particle beams in an accelerator proceeds in steps of increasing complexity. The first step is to consider a single-particle picture in which the beam is represented as a collection on non-interacting test particles moving in a prescribed external electromagnetic field. Knowing the external field, it is then possible to calculate the beam motion to a high accuracy. The real beam consists of a large number of particles, typically 10 11 per beam bunch. It is sometimes inconvenient, or even impossible, to treat the real beam behavior using the single particle approach. One way to approach this problem is to supplement the single particle by another qualitatively different picture. The commonly used tools in accelerator physics for this purpose are the Vlasov and the Fokker-Planck equations. These equations assume smooth beam distributions and are therefore strictly valid in the limit of infinite number of micro-particles, each carrying an infinitesimal charge. The hope is that by studying the two extremes -- the single particle picture and the picture of smooth beam distributions -- we will be able to describe the behavior of our 10 11 -particle system. As mentioned, the most notable use of the smooth distribution picture is the study of collective beam instabilities. However, the purpose of this lecture is not to address this more advanced subject. Rather, it has the limited goal to familiarize the reader with the analytical tools, namely the Vlasov and the Fokker-Planck equations, as a preparation for dealing with the more advanced problems at later times. We will first derive these equations and then illustrate their applications by several examples which allow exact solutions

  10. Electroweak evolution equations

    International Nuclear Information System (INIS)

    Ciafaloni, Paolo; Comelli, Denis

    2005-01-01

    Enlarging a previous analysis, where only fermions and transverse gauge bosons were taken into account, we write down infrared-collinear evolution equations for the Standard Model of electroweak interactions computing the full set of splitting functions. Due to the presence of double logs which are characteristic of electroweak interactions (Bloch-Nordsieck violation), new infrared singular splitting functions have to be introduced. We also include corrections related to the third generation Yukawa couplings

  11. Differential equations with Mathematica

    CERN Document Server

    Abell, Martha L

    2004-01-01

    The Third Edition of the Differential Equations with Mathematica integrates new applications from a variety of fields,especially biology, physics, and engineering. The new handbook is also completely compatible with recent versions of Mathematica and is a perfect introduction for Mathematica beginners.* Focuses on the most often used features of Mathematica for the beginning Mathematica user* New applications from a variety of fields, including engineering, biology, and physics* All applications were completed using recent versions of Mathematica

  12. Damped nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nicholson, D.R.; Goldman, M.V.

    1976-01-01

    High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time

  13. Fun with Differential Equations

    Indian Academy of Sciences (India)

    IAS Admin

    tion of ® with ¼=2. One can use the uniqueness of solutions of differential equations to prove the addition formulae for sin(t1 +t2), etc. But instead of continuing with this thought process, let us do something more interesting. Now we shall consider another system. Fix 0 < < 1. I am looking for three real-valued functions x(t), ...

  14. Mathematics and Maxwell's equations

    International Nuclear Information System (INIS)

    Boozer, Allen H

    2010-01-01

    The universality of mathematics and Maxwell's equations is not shared by specific plasma models. Computations become more reliable, efficient and transparent if specific plasma models are used to obtain only the information that would otherwise be missing. Constraints of high universality, such as those from mathematics and Maxwell's equations, can be obscured or lost by integrated computations. Recognition of subtle constraints of high universality is important for (1) focusing the design of control systems for magnetic field errors in tokamaks from perturbations that have little effect on the plasma to those that do, (2) clarifying the limits of applicability to astrophysics of computations of magnetic reconnection in fields that have a double periodicity or have B-vector =0 on a surface, as in a Harris sheet. Both require a degree of symmetry not expected in natural systems. Mathematics and Maxwell's equations imply that neighboring magnetic field lines characteristically separate exponentially with distance along a line. This remarkably universal phenomenon has been largely ignored, though it defines a trigger for reconnection through a critical magnitude of exponentiation. These and other examples of the importance of making distinctions and understanding constraints of high universality are explained.

  15. Information Equation of State

    Directory of Open Access Journals (Sweden)

    M. Paul Gough

    2008-07-01

    Full Text Available Landauer’s principle is applied to information in the universe. Once stars began forming there was a constant information energy density as the increasing proportion of matter at high stellar temperatures exactly compensated for the expanding universe. The information equation of state was close to the dark energy value, w = -1, for a wide range of redshifts, 10 > z > 0.8, over one half of cosmic time. A reasonable universe information bit content of only 1087 bits is sufficient for information energy to account for all dark energy. A time varying equation of state with a direct link between dark energy and matter, and linked to star formation in particular, is clearly relevant to the cosmic coincidence problem. In answering the ‘Why now?’ question we wonder ‘What next?’ as we expect the information equation of state to tend towards w = 0 in the future.c

  16. Generalized reduced MHD equations

    International Nuclear Information System (INIS)

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1998-07-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson

  17. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    Science.gov (United States)

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  18. FMTLxLyLz DIMENSIONAL EQUAT DIMENSIONAL EQUATION ...

    African Journals Online (AJOL)

    eobe

    plant made of 12mm thick steel plate was used in de steel plate ... water treatment plant. ... ameters affecting filtration processes were used to derive an equation usin ..... system. However, in deriving the equation onl terms are incorporated.

  19. Reduction operators of Burgers equation.

    Science.gov (United States)

    Pocheketa, Oleksandr A; Popovych, Roman O

    2013-02-01

    The solution of the problem on reduction operators and nonclassical reductions of the Burgers equation is systematically treated and completed. A new proof of the theorem on the special "no-go" case of regular reduction operators is presented, and the representation of the coefficients of operators in terms of solutions of the initial equation is constructed for this case. All possible nonclassical reductions of the Burgers equation to single ordinary differential equations are exhaustively described. Any Lie reduction of the Burgers equation proves to be equivalent via the Hopf-Cole transformation to a parameterized family of Lie reductions of the linear heat equation.

  20. Multistrange Meson-Baryon Dynamics and Resonance Generation

    Science.gov (United States)

    Khemchandani, K. P.; Martínez Torres, A.; Hosaka, A.; Nagahiro, H.; Navarra, F. S.; Nielsen, M.

    2018-05-01

    In this talk I review our recent studies on meson-baryon systems with strangeness - 1 and - 2. The motivation of our works is to find resonances generated as a consequence of coupled channel meson-baryon interactions. The coupled channels are all meson-baryon systems formed by combining a pseudoscalar or a vector meson with an octet baryon such that the system has the strange quantum number equal to - 1 or - 2. The lowest order meson-baryon interaction amplitudes are obtained from Lagrangians based on the chiral and the hidden local symmetries related to the vector mesons working as the gauge bosons. These lowest order amplitudes are used as an input to solve the Bethe-Salpeter equation and a search for poles is made in the resulting amplitudes, in the complex plane. In case of systems with strangeness - 1, we find evidence for the existence of some hyperons such as: Λ(2000), Σ(1750), Σ(1940), Σ(2000). More recently, in the study of strangeness - 2 systems we have found two narrow resonances which can be related to Ξ (1690) and Ξ(2120). In this latter work, we have obtained the lowest order amplitudes relativistically as well as in the nonrelativistic approximation to solve the scattering equations. We find that the existence of the poles in the complex plane does not get affected by the computation of the scattering equation with the lowest order amplitudes obtained in the nonrelativistic approximation.

  1. Relationship of field-theory based single-boson-exchange potentials to static ones

    International Nuclear Information System (INIS)

    Amghar, A.; Desplanques, B.

    2000-01-01

    It is shown that field-theory based single-boson-exchange potentials cannot be identified to those of the Yukawa or Coulomb type that are currently inserted in the Schroedinger equation. The potential which is obtained rather correspond to this current single-boson-exchange potential corrected for the probability that the system under consideration is in a two-body component, therefore missing contributions due to the interaction of these two bodies while bosons are exchanged. The role of these contributions, which involve at least two-boson exchanges, is examined. The conditions that allow one to recover the usual single-boson-exchange potential are given. It is shown that the present results have some relation: (i) to the failure of the Bethe-Salpeter equation in reproducing the Dirac or Klein-Gordon equations in the limit where one of the constituents has a large mass, (ii) to the absence of corrections of relative order α log 1/α to a full calculation of the binding energy in the case of neutral massless bosons or (iii) to large corrections of wave-functions calculated perturbatively in some light-front approaches. Refs. 48 (author)

  2. Color-suppression of non-planar diagrams in bosonic bound states

    Science.gov (United States)

    Alvarenga Nogueira, J. H.; Ji, Chueng-Ryong; Ydrefors, E.; Frederico, T.

    2018-02-01

    We study the suppression of non-planar diagrams in a scalar QCD model of a meson system in 3 + 1 space-time dimensions due to the inclusion of the color degrees of freedom. As a prototype of the color-singlet meson, we consider a flavor-nonsinglet system consisting of a scalar-quark and a scalar-antiquark with equal masses exchanging a scalar-gluon of a different mass, which is investigated within the framework of the homogeneous Bethe-Salpeter equation. The equation is solved by using the Nakanishi representation for the manifestly covariant bound-state amplitude and its light-front projection. The resulting non-singular integral equation is solved numerically. The damping of the impact of the cross-ladder kernel on the binding energies are studied in detail. The color-suppression of the cross-ladder effects on the light-front wave function and the elastic electromagnetic form factor are also discussed. As our results show, the suppression appears significantly large for Nc = 3, which supports the use of rainbow-ladder truncations in practical non-perturbative calculations within QCD.

  3. Auxiliary equation method for solving nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Sirendaoreji,; Jiong, Sun

    2003-01-01

    By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation

  4. Evaluating Equating Results: Percent Relative Error for Chained Kernel Equating

    Science.gov (United States)

    Jiang, Yanlin; von Davier, Alina A.; Chen, Haiwen

    2012-01-01

    This article presents a method for evaluating equating results. Within the kernel equating framework, the percent relative error (PRE) for chained equipercentile equating was computed under the nonequivalent groups with anchor test (NEAT) design. The method was applied to two data sets to obtain the PRE, which can be used to measure equating…

  5. Differential Equations as Actions

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    We extend a conventional action system with a primitive action consisting of a differential equation and an evolution invariant. The semantics is given by a predicate transformer. The weakest liberal precondition is chosen, because it is not always desirable that steps corresponding to differential...... actions shall terminate. It is shown that the proposed differential action has a semantics which corresponds to a discrete approximation when the discrete step size goes to zero. The extension gives action systems the power to model real-time clocks and continuous evolutions within hybrid systems....

  6. Partial differential equations

    CERN Document Server

    Levine, Harold

    1997-01-01

    The subject matter, partial differential equations (PDEs), has a long history (dating from the 18th century) and an active contemporary phase. An early phase (with a separate focus on taut string vibrations and heat flow through solid bodies) stimulated developments of great importance for mathematical analysis, such as a wider concept of functions and integration and the existence of trigonometric or Fourier series representations. The direct relevance of PDEs to all manner of mathematical, physical and technical problems continues. This book presents a reasonably broad introductory account of the subject, with due regard for analytical detail, applications and historical matters.

  7. Ordinary differential equations

    CERN Document Server

    Cox, William

    1995-01-01

    Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required.The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further

  8. Partial differential equations

    CERN Document Server

    Sloan, D; Süli, E

    2001-01-01

    /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight in

  9. Elliptic partial differential equations

    CERN Document Server

    Han, Qing

    2011-01-01

    Elliptic Partial Differential Equations by Qing Han and FangHua Lin is one of the best textbooks I know. It is the perfect introduction to PDE. In 150 pages or so it covers an amazing amount of wonderful and extraordinary useful material. I have used it as a textbook at both graduate and undergraduate levels which is possible since it only requires very little background material yet it covers an enormous amount of material. In my opinion it is a must read for all interested in analysis and geometry, and for all of my own PhD students it is indeed just that. I cannot say enough good things abo

  10. dimensional Jaulent–Miodek equations

    Indian Academy of Sciences (India)

    (2+1)-dimensional Jaulent–Miodek equation; the first integral method; kinks; ... and effective method for solving nonlinear partial differential equations which can ... of the method employed and exact kink and soliton solutions are constructed ...

  11. Equationally Noetherian property of Ershov algebras

    OpenAIRE

    Dvorzhetskiy, Yuriy

    2014-01-01

    This article is about equationally Noetherian and weak equationally Noetherian property of Ershov algebras. Here we show two canonical forms of the system of equations over Ershov algebras and two criteria of equationally Noetherian and weak equationally Noetherian properties.

  12. The Dirac equation

    International Nuclear Information System (INIS)

    Thaller, B.

    1992-01-01

    This monograph treats most of the usual material to be found in texts on the Dirac equation such as the basic formalism of quantum mechanics, representations of Dirac matrices, covariant realization of the Dirac equation, interpretation of negative energies, Foldy-Wouthuysen transformation, Klein's paradox, spherically symmetric interactions and a treatment of the relativistic hydrogen atom, etc., and also provides excellent additional treatments of a variety of other relevant topics. The monograph contains an extensive treatment of the Lorentz and Poincare groups and their representations. The author discusses in depth Lie algebaic and projective representations, covering groups, and Mackey's theory and Wigner's realization of induced representations. A careful classification of external fields with respect to their behavior under Poincare transformations is supplemented by a basic account of self-adjointness and spectral properties of Dirac operators. A state-of-the-art treatment of relativistic scattering theory based on a time-dependent approach originally due to Enss is presented. An excellent introduction to quantum electrodynamics in external fields is provided. Various appendices containing further details, notes on each chapter commenting on the history involved and referring to original research papers and further developments in the literature, and a bibliography covering all relevant monographs and over 500 articles on the subject, complete this text. This book should satisfy the needs of a wide audience, ranging from graduate students in theoretical physics and mathematics to researchers interested in mathematical physics

  13. Cryostatic stability equation

    International Nuclear Information System (INIS)

    Sydoriak, S.G.

    1976-01-01

    Although criteria for cryostatic stability of superconducting magnets cooled by pool boiling of liquid helium have been widely discussed the same cannot be said for magnets cooled by natural convection or forced flow boiling in channels. Boiling in narrow channels is shown to be qualitatively superior to pool boiling because the recovery heat flux equals the breakaway flux for narrow channels, whereas the two are markedly different in pool boiling. A second advantage of channel boiling is that it is well understood and calculable; pool peak nucleate boiling heat flux has been adequately measured only for boiling from the top of an immersed heated body. Peak boiling from the bottom is much less and (probably) depends strongly on the extent of the bottom surface. Equations are presented by which one can calculate the critical boiling heat flux for parallel wall vertical channels subject to either natural convection or forced flow boiling, with one or both walls heated. The one-heated-wall forced flow equation is discussed with regard to design of a spiral wound solenoid (pancake magnet) having a slippery insulating tape between the windings

  14. Solving Nonlinear Coupled Differential Equations

    Science.gov (United States)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  15. Completely integrable operator evolutionary equations

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1979-01-01

    The authors present natural generalizations of classical completely integrable equations where the functions are replaced by arbitrary operators. Among these equations are the non-linear Schroedinger, the Korteweg-de Vries, and the modified KdV equations. The Lax representation and the Baecklund transformations are presented. (Auth.)

  16. On the F-equation

    International Nuclear Information System (INIS)

    Kalinowski, M.W.; Szymanowski, L.

    1982-03-01

    A generalization of the Truesdell F-equations is proposed and some solutions to them - generalized Fox F-functions - are found. It is also shown that a non-linear difference-differential equation, which does not belong to the Truesdell class, nevertheless may be transformed into the standard F-equation. (author)

  17. On the Saha Ionization Equation

    Indian Academy of Sciences (India)

    Abstract. We revisit the Saha Ionization Equation in order to highlightthe rich interdisciplinary content of the equation thatstraddles distinct areas of spectroscopy, thermodynamics andchemical reactions. In a self-contained discussion, relegatedto an appendix, we delve further into the hidden message ofthe equation in terms ...

  18. Differential equations extended to superspace

    Energy Technology Data Exchange (ETDEWEB)

    Torres, J. [Instituto de Fisica, Universidad de Guanajuato, A.P. E-143, Leon, Guanajuato (Mexico); Rosu, H.C. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.P. 3-74, Tangamanga, San Luis Potosi (Mexico)

    2003-07-01

    We present a simple SUSY Ns = 2 superspace extension of the differential equations in which the sought solutions are considered to be real superfields but maintaining the common derivative operators and the coefficients of the differential equations unaltered. In this way, we get self consistent systems of coupled differential equations for the components of the superfield. This procedure is applied to the Riccati equation, for which we obtain in addition the system of coupled equations corresponding to the components of the general superfield solution. (Author)

  19. Reduction of infinite dimensional equations

    Directory of Open Access Journals (Sweden)

    Zhongding Li

    2006-02-01

    Full Text Available In this paper, we use the general Legendre transformation to show the infinite dimensional integrable equations can be reduced to a finite dimensional integrable Hamiltonian system on an invariant set under the flow of the integrable equations. Then we obtain the periodic or quasi-periodic solution of the equation. This generalizes the results of Lax and Novikov regarding the periodic or quasi-periodic solution of the KdV equation to the general case of isospectral Hamiltonian integrable equation. And finally, we discuss the AKNS hierarchy as a special example.

  20. Differential equations extended to superspace

    International Nuclear Information System (INIS)

    Torres, J.; Rosu, H.C.

    2003-01-01

    We present a simple SUSY Ns = 2 superspace extension of the differential equations in which the sought solutions are considered to be real superfields but maintaining the common derivative operators and the coefficients of the differential equations unaltered. In this way, we get self consistent systems of coupled differential equations for the components of the superfield. This procedure is applied to the Riccati equation, for which we obtain in addition the system of coupled equations corresponding to the components of the general superfield solution. (Author)

  1. On the helix equation

    Directory of Open Access Journals (Sweden)

    Taouil Hajer

    2012-08-01

    Full Text Available This paper is devoted to the helices processes, i.e. the solutions H : ℝ × Ω → ℝd, (t, ω ↦ H(t, ω of the helix equation egin{eqnarray} H(0,o=0; quad H(s+t,o= H(s,Phi(t,o +H(t,oonumber end{eqnarray} H ( 0 ,ω = 0 ;   H ( s + t,ω = H ( s, Φ ( t,ω + H ( t,ω where Φ : ℝ × Ω → Ω, (t, ω ↦ Φ(t, ω is a dynamical system on a measurable space (Ω, ℱ. More precisely, we investigate dominated solutions and non differentiable solutions of the helix equation. For the last case, the Wiener helix plays a fundamental role. Moreover, some relations with the cocycle equation defined by Φ, are investigated. Ce papier est consacré aux hélices, c’est-à-dire les solutions H : ℝ × Ω → ℝd, (t, ω ↦ H(t, ω de l’équation fonctionnelle egin{eqnarray} H(0,o=0; quad H(s+t,o= H(s,Phi(t,o +H(t,o onumber end{eqnarray} H ( 0 ,ω = 0 ;   H ( s + t,ω = H ( s, Φ ( t,ω + H ( t,ω où Φ : ℝ × Ω → Ω, (t, ω ↦ Φ(t, ω est un système dynamique défini sur un espace mesurable (Ω, ℱ. Plus présisément, nous déterminons d’abord les hélices dominées puis nous caractérisons les hélices non différentiables. Dans ce dernier cas, l’hélice de Wiener joue un rôle important. Nous précisons aussi quelques relations des hélices avec les cocycles définis par Φ.

  2. Goldstone bosons in a crystalline chiral phase

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, Marco

    2017-07-24

    The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.

  3. Goldstone bosons in a crystalline chiral phase

    International Nuclear Information System (INIS)

    Schramm, Marco

    2017-01-01

    The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.

  4. Self-consistent model of confinement

    International Nuclear Information System (INIS)

    Swift, A.R.

    1988-01-01

    A model of the large-spatial-distance, zero--three-momentum, limit of QCD is developed from the hypothesis that there is an infrared singularity. Single quarks and gluons do not propagate because they have infinite energy after renormalization. The Hamiltonian formulation of the path integral is used to quantize QCD with physical, nonpropagating fields. Perturbation theory in the infrared limit is simplified by the absence of self-energy insertions and by the suppression of large classes of diagrams due to vanishing propagators. Remaining terms in the perturbation series are resummed to produce a set of nonlinear, renormalizable integral equations which fix both the confining interaction and the physical propagators. Solutions demonstrate the self-consistency of the concepts of an infrared singularity and nonpropagating fields. The Wilson loop is calculated to provide a general proof of confinement. Bethe-Salpeter equations for quark-antiquark pairs and for two gluons have finite-energy solutions in the color-singlet channel. The choice of gauge is addressed in detail. Large classes of corrections to the model are discussed and shown to support self-consistency

  5. t-Channel unitarity construction of small-x kernels

    International Nuclear Information System (INIS)

    Coriano, C.; White, A.R.

    1995-01-01

    In the leading-log approximation, the small-x behavior of parton distributions in QCD is derived from the BFKL evolution equation. The authors describe the ion as a reggeon Bethe-Salpeter equation and discuss the use of reggeon diagrams to obtain 2-2 and 2-4 reggeon interactions at O(g 4 ). They then outline the dispersion theory basis of multiparticle j-plane analysis and describe how a gauge theory can be studied by combining Ward identity constraints with the group structure of reggeon interactions. Gluon reggeization, the O(g 2 ) BFKL kernel and O(g 4 ) corrections to it, are derived within this formalism. They give an explicit expression for the O(g 4 ) forward ''parton'' kernel in terms of logarithms and evaluate the eigenvalues. A separately infra-red finite component with a holomorphically factorizable spectrum is shown to be present and conjectured to be a new leading-order partial-wave amplitude. A comparison is made with Kirschner's discussion of O(g 4 ) contributions from the multi-Regge effective action

  6. Electronic collective modes and instabilities on semiconductor surfaces. I

    International Nuclear Information System (INIS)

    Muramatsu, A.; Hanke, W.

    1984-01-01

    A Green's-function theory of electronic collective modes is presented which leads to a practical scheme for a microscopic determination of surface elementary excitations in conducting as well as nonconducting solids. Particular emphasis is placed on semiconductor surfaces where the jellium approximation is not valid, due to the importance of density fluctuations on a microscopic scale (reflected in the local-field effects). Starting from the Bethe-Salpeter equation for the two-particle Green's function of the surface system, an equation of motion for the electron-hole pair is obtained. Its solutions determine the energy spectra, lifetimes, and amplitudes of the surface elementary excitations, i.e., surface plasmons, excitons, polaritons, and magnons. Exchange and correlation effects are taken into account through the random-phase and time-dependent Hartree-Fock (screened electron-hole attraction) approximations. The formalism is applied to the study of electronic (charge- and spin-density) instabilities at covalent semiconductor surfaces. Quantitative calculations for an eight-layer Si(111) slab display an instability of the ideal paramagnetic surface with respect to spin-density waves with wavelength nearly corresponding to (2 x 1) and (7 x 7) superstructures

  7. Isgur-Wise function for Λb→Λc in the BS approach

    International Nuclear Information System (INIS)

    Guo, X.; Muta, T.

    1996-01-01

    In the heavy quark limit, the heavy baryon Λ Q (Q=b or c) can be regarded as composed of a heavy quark and a scalar light diquark which has good spin and flavor quantum numbers. Based on this picture we establish the Bethe-Salpeter (BS) equation for Λ Q in the leading order of 1/m Q expansion. With the kernel containing both the scalar confinement and one-gluon-exchange terms we solve the BS equation numerically. The Isgur-Wise function for Λ b →Λ c is obtained numerically from our model. A comparison with other model calculations is also presented. It seems that the Isgur-Wise function for Λ b →Λ c drops faster than that for B→D. The differential and total decay widths for Λ b →Λ c l bar ν are given in the limit m b,c →∞. copyright 1996 The American Physical Society

  8. Hyperon interactions in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Madhumita; Lenske, Horst [Institut fuer Theoretische Physik, Universitaet Giessen (Germany)

    2014-07-01

    Baryon-baryon interactions within the SU(3)-octet are investigated in free space and nuclear matter. A meson exchange model is used for determining the interaction. The Bethe-Salpeter equations are solved in a 3-D reduction scheme. In-medium effects have been incorporated by including a two particle Pauli projection operator in the scattering equation. The coupling of the various channels of total strangeness S=-1,-2 and conserved total charge is studied in detail. Calculations and the corresponding results are compared for using the isospin and the particle basis. Matrix elements are compared in detail, in particular discussing mixing effects of different hyperon channels. Special attention is paid to the physical thresholds. The density dependence of interaction is clearly seen in the variation of the in-medium low-energy parameters. The approach is compared to descriptions derived from chiral-EFT and other meson-exchange models e.g. the Nijmegen and the Juelich model.

  9. Kohn-Luttinger superconductivity in monolayer and bilayer semimetals with the Dirac spectrum

    International Nuclear Information System (INIS)

    Kagan, M. Yu.; Mitskan, V. A.; Korovushkin, M. M.

    2014-01-01

    The effect of Coulomb interaction in an ensemble of Dirac fermions on the formation of superconducting pairing in monolayer and bilayer doped graphene is studied using the Kohn-Luttinger mechanism disregarding the Van der Waals potential of the substrate and impurities. The electronic structure of graphene is described using the Shubin-Vonsovsky model taking into account the intratomic, interatomic, and interlayer (in the case of bilayer graphene) Coulomb interactions between electrons. The Cooper instability is determined by solving the Bethe-Saltpeter integral equation. The renormalized scattering amplitude is obtained with allowance for the Kohn-Luttinger polarization contributions up to the second order of perturbation theory in the Coulomb interaction. It plays the role of effective interaction in the Bethe-Salpeter integral equation. It is shown that the allowance for the Kohn-Luttinger renormalizations as well as intersite Coulomb interaction noticeably affects the competition between the superconducting phases with the f-wave and d + id-wave symmetries of the order parameter. It is demonstrated that the superconducting transition temperature for an idealized graphene bilayer with significant interlayer Coulomb interaction between electrons is noticeably higher than in the monolayer case

  10. A renormalizable extension of the NJL-model

    International Nuclear Information System (INIS)

    Langfeld, K.; Kettner, C.; Reinhardt, H.

    1996-01-01

    The Nambu-Jona-Lasinio model is supplemented by the quark interaction generated by the one-gluon exchange. The employed gluon propagator exhibits the correct large-momentum behavior of QCD, whereas the Landau pole at low energies is screened. The emerging constituent quark model is one-loop renormalizable and interpolates between the phenomenologically successful Nambu-Jona-Lasinio model (modified by a transversal projector) at low energies and perturbative QCD at high momenta. Consequently, the momentum dependence of the quark self-energy at high energy coincides with the prediction from perturbative QCD. The chiral phase transition is studied in dependence on the low-energy four-quark interaction strength in the Dyson-Schwinger equation approach. The critical exponents of the quark self-energy and the quark condensate are obtained. The latter exponent deviates from the NJL-result. Pion properties are addressed by means of the Bethe-Salpeter equation. The validity of the Gell-Mann-Oakes-Renner relation is verified. Finally, we study the conditions under which the Nambu-Jona-Lasinio model is a decent approximation to our renormalizable theory as well as the shortcoming of the NJL-model due to its inherent non-renormalizability. (orig.)

  11. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory.

    Science.gov (United States)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S; Shirley, Eric L; Prendergast, David

    2017-03-03

    Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.

  12. Nonperturbative aspects of the quark-photon vertex

    International Nuclear Information System (INIS)

    Frank, M.R.

    1994-01-01

    The electromagnetic interaction with quarks is investigated through a relativistic, electromagnetic gauge-invariant treatment. Gluon dressing of the quark-photon vertex and the quark self-energy functions is described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger-Dyson equation in the rainbow approximation respectively. Results for the calculation of the quark-photon vertex are presented in both the time-like and space-like regions of photon momentum squared, however emphasis is placed on the space-like region relevant to electron scattering. The treatment presented here simultaneously addresses the role of dynamically generated q bar q vector bound states and the approach to asymptotic behavior. The resulting description is therefore applicable over the entire range of momentum transfers available in electron scattering experiments. Input parameters are limited to the model gluon two-point function which is chosen to reflect confinement and asymptotic freedom and are largely constrained by the obtained bound-state spectrum

  13. On the glue content in heavy quarkonia

    International Nuclear Information System (INIS)

    Gromes, D.

    2003-01-01

    Starting with two coupled Bethe-Salpeter equations for the quark-antiquark, and for the quark-glue-antiquark component of the quarkonium, we solve the bound state equations perturbatively. The resulting admixture of glue can be partially understood in a semiclassical way; one has, however, to take care of the different use of time ordered versus retarded Green functions. Subtle questions concerning the precise definition of the equal time wave function arise, because the wave function for the Coulomb gluon is discontinuous with respect to the relative time of the gluon. A striking feature is that a one loop non-abelian graph contributes to the same order as tree graphs, because the couplings of transverse gluons in the tree graphs are suppressed in the non-relativistic bound state, while the higher order loop graph can couple to quarks via non-suppressed Coulomb gluons. We also calculate the amplitude for quark and antiquark at zero distance in the quark-glue-antiquark component of the P-state. This quantity is of importance for annihilation decays of P-states. It shows a remarkable compensation between the tree graph and the non-abelian loop graph contribution. An extension of our results to include non-perturbative effects is possible. (orig.)

  14. Large degeneracy of excited hadrons and quark models

    International Nuclear Information System (INIS)

    Bicudo, P.

    2007-01-01

    The pattern of a large approximate degeneracy of the excited hadron spectra (larger than the chiral restoration degeneracy) is present in the recent experimental report of Bugg. Here we try to model this degeneracy with state of the art quark models. We review how the Coulomb Gauge chiral invariant and confining Bethe-Salpeter equation simplifies in the case of very excited quark-antiquark mesons, including angular or radial excitations, to a Salpeter equation with an ultrarelativistic kinetic energy with the spin-independent part of the potential. The resulting meson spectrum is solved, and the excited chiral restoration is recovered, for all mesons with J>0. Applying the ultrarelativistic simplification to a linear equal-time potential, linear Regge trajectories are obtained, for both angular and radial excitations. The spectrum is also compared with the semiclassical Bohr-Sommerfeld quantization relation. However, the excited angular and radial spectra do not coincide exactly. We then search, with the classical Bertrand theorem, for central potentials producing always classical closed orbits with the ultrarelativistic kinetic energy. We find that no such potential exists, and this implies that no exact larger degeneracy can be obtained in our equal-time framework, with a single principal quantum number comparable to the nonrelativistic Coulomb or harmonic oscillator potentials. Nevertheless we find it plausible that the large experimental approximate degeneracy will be modeled in the future by quark models beyond the present state of the art

  15. p-Euler equations and p-Navier-Stokes equations

    Science.gov (United States)

    Li, Lei; Liu, Jian-Guo

    2018-04-01

    We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.

  16. Generalized quantal equation of motion

    International Nuclear Information System (INIS)

    Morsy, M.W.; Embaby, M.

    1986-07-01

    In the present paper, an attempt is made for establishing a generalized equation of motion for quantal objects, in which intrinsic self adjointness is naturally built in, independently of any prescribed representation. This is accomplished by adopting Hamilton's principle of least action, after incorporating, properly, the quantal features and employing the generalized calculus of variations, without being restricted to fixed end points representation. It turns out that our proposed equation of motion is an intrinsically self-adjoint Euler-Lagrange's differential equation that ensures extremization of the quantal action as required by Hamilton's principle. Time dependence is introduced and the corresponding equation of motion is derived, in which intrinsic self adjointness is also achieved. Reducibility of the proposed equation of motion to the conventional Schroedinger equation is examined. The corresponding continuity equation is established, and both of the probability density and the probability current density are identified. (author)

  17. Alternatives to the Dirac equation

    International Nuclear Information System (INIS)

    Girvin, S.M.; Brownstein, K.R.

    1975-01-01

    Recent work by Biedenharn, Han, and van Dam (BHvD) has questioned the uniqueness of the Dirac equation. BHvD have obtained a two-component equation as an alternate to the Dirac equation. Although they later show their alternative to be unitarily equivalent to the Dirac equation, certain physical differences were claimed. BHvD attribute the existence of this alternate equation to the fact that their factorizing matrices were position-dependent. To investigate this, we factor the Klein-Gordon equation in spherical coordinates allowing the factorizing matrices to depend arbitrarily upon theta and phi. It is shown that despite this additional freedom, and without involving any relativistic covariance, the conventional four-component Dirac equation is the only possibility

  18. Wave Partial Differential Equation

    OpenAIRE

    Szöllös, Alexandr

    2009-01-01

    Práce se zabývá diferenciálními rovnicemi, jejich využitím při analýze     vedení, experimenty s vedením a možnou akcelerací výpočtu v GPU  s využitím prostředí nVidia CUDA. This work deals with diffrential equations, with the possibility     of using them for analysis of the line and the possibility     of accelerating the computations in GPU using nVidia CUDA. C

  19. Λ scattering equations

    Science.gov (United States)

    Gomez, Humberto

    2016-06-01

    The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm.

  20. Scaling of differential equations

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and exam...

  1. Parabolized stability equations

    Science.gov (United States)

    Herbert, Thorwald

    1994-01-01

    The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.

  2. The Langevin equation

    Science.gov (United States)

    Pomeau, Yves; Piasecki, Jarosław

    2017-11-01

    The existence of atoms has been long predicted by philosophers and scientists. The development of thermodynamics and of the statistical interpretation of its concepts at the end of the nineteenth century and in the early years of the twentieth century made it possible to bridge the gap of scales between the macroscopic world and the world of atoms. Einstein and Smoluchowski showed in 1905 and 1906 that the Brownian motion of particles of measurable size is a manifestation of the motion of atoms in fluids. Their derivation was completely different from each other. Langevin showed in 1908 how to put in a coherent framework the subtle effect of the randomness of the atomic world, responsible for the fluctuating force driving the motion of the Brownian particle and the viscosity of the "macroscopic" flow taking place around the same Brownian particle. Whereas viscous forces were already well understood at this time, the "Langevin" force appears there for the first time: it represents the fluctuating part of the interaction between the Brownian particle and the surrounding fluid. We discuss the derivation by Einstein and Smoluchowski as well as a previous paper by Sutherland on the diffusion coefficient of large spheres. Next we present Langevin's short note and explain the fundamental splitting into a random force and a macroscopic viscous force. This brings us to discuss various points, like the kind of constraints on Langevin-like equations. We insist in particular on the one arising from the time-reversal symmetry of the equilibrium fluctuations. Moreover, we discuss another constraint, raised first by Lorentz, which implies that, if the Brownian particle is not very heavy, the viscous force cannot be taken as the standard Stokes drag on an object moving at uniform speed. Lastly, we examine the so-called Langevin-Heisenberg and/or Langevin-Schrödinger equation used in quantum mechanics.

  3. Introduction to partial differential equations

    CERN Document Server

    Borthwick, David

    2016-01-01

    This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise.Within each section the author creates a narrative that answers the five questions: (1) What is the scientific problem we are trying to understand? (2) How do we model that with PDE? (3) What techniques can we use to analyze the PDE? (4) How do those techniques apply to this equation? (5) What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.

  4. Analytic solutions of hydrodynamics equations

    International Nuclear Information System (INIS)

    Coggeshall, S.V.

    1991-01-01

    Many similarity solutions have been found for the equations of one-dimensional (1-D) hydrodynamics. These special combinations of variables allow the partial differential equations to be reduced to ordinary differential equations, which must then be solved to determine the physical solutions. Usually, these reduced ordinary differential equations are solved numerically. In some cases it is possible to solve these reduced equations analytically to obtain explicit solutions. In this work a collection of analytic solutions of the 1-D hydrodynamics equations is presented. These can be used for a variety of purposes, including (i) numerical benchmark problems, (ii) as a basis for analytic models, and (iii) to provide insight into more complicated solutions

  5. On matrix fractional differential equations

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2017-01-01

    Full Text Available The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.

  6. Differential equations methods and applications

    CERN Document Server

    Said-Houari, Belkacem

    2015-01-01

    This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory. To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included. The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations. .

  7. Integral equations and their applications

    CERN Document Server

    Rahman, M

    2007-01-01

    For many years, the subject of functional equations has held a prominent place in the attention of mathematicians. In more recent years this attention has been directed to a particular kind of functional equation, an integral equation, wherein the unknown function occurs under the integral sign. The study of this kind of equation is sometimes referred to as the inversion of a definite integral. While scientists and engineers can already choose from a number of books on integral equations, this new book encompasses recent developments including some preliminary backgrounds of formulations of integral equations governing the physical situation of the problems. It also contains elegant analytical and numerical methods, and an important topic of the variational principles. Primarily intended for senior undergraduate students and first year postgraduate students of engineering and science courses, students of mathematical and physical sciences will also find many sections of direct relevance. The book contains eig...

  8. Stochastic partial differential equations

    CERN Document Server

    Lototsky, Sergey V

    2017-01-01

    Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected ...

  9. JWL Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Laboratory

    2015-12-15

    The JWL equation of state (EOS) is frequently used for the products (and sometimes reactants) of a high explosive (HE). Here we review and systematically derive important properties. The JWL EOS is of the Mie-Grueneisen form with a constant Grueneisen coefficient and a constants specific heat. It is thermodynamically consistent to specify the temperature at a reference state. However, increasing the reference state temperature restricts the EOS domain in the (V, e)-plane of phase space. The restrictions are due to the conditions that P ≥ 0, T ≥ 0, and the isothermal bulk modulus is positive. Typically, this limits the low temperature regime in expansion. The domain restrictions can result in the P-T equilibrium EOS of a partly burned HE failing to have a solution in some cases. For application to HE, the heat of detonation is discussed. Example JWL parameters for an HE, both products and reactions, are used to illustrate the restrictions on the domain of the EOS.

  10. Gauge-invariant flow equation

    Science.gov (United States)

    Wetterich, C.

    2018-06-01

    We propose a closed gauge-invariant functional flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise choice of the macroscopic field and the effective average action in order to realize a closed and simple form of the flow equation.

  11. The generalized Airy diffusion equation

    Directory of Open Access Journals (Sweden)

    Frank M. Cholewinski

    2003-08-01

    Full Text Available Solutions of a generalized Airy diffusion equation and an associated nonlinear partial differential equation are obtained. Trigonometric type functions are derived for a third order generalized radial Euler type operator. An associated complex variable theory and generalized Cauchy-Euler equations are obtained. Further, it is shown that the Airy expansions can be mapped onto the Bessel Calculus of Bochner, Cholewinski and Haimo.

  12. Introduction to ordinary differential equations

    CERN Document Server

    Rabenstein, Albert L

    1966-01-01

    Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutio

  13. On matrix fractional differential equations

    OpenAIRE

    Adem Kılıçman; Wasan Ajeel Ahmood

    2017-01-01

    The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objec...

  14. Electronic representation of wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Veigend, Petr; Kunovský, Jiří, E-mail: kunovsky@fit.vutbr.cz; Kocina, Filip; Nečasová, Gabriela; Valenta, Václav [University of Technology, Faculty of Information Technology, Božetěchova 2, 612 66 Brno (Czech Republic); Šátek, Václav [IT4Innovations, VŠB Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); University of Technology, Faculty of Information Technology, Božetěchova 2, 612 66 Brno (Czech Republic)

    2016-06-08

    The Taylor series method for solving differential equations represents a non-traditional way of a numerical solution. Even though this method is not much preferred in the literature, experimental calculations done at the Department of Intelligent Systems of the Faculty of Information Technology of TU Brno have verified that the accuracy and stability of the Taylor series method exceeds the currently used algorithms for numerically solving differential equations. This paper deals with solution of Telegraph equation using modelling of a series small pieces of the wire. Corresponding differential equations are solved by the Modern Taylor Series Method.

  15. Generalized Lorentz-Force equations

    International Nuclear Information System (INIS)

    Yamaleev, R.M.

    2001-01-01

    Guided by Nambu (n+1)-dimensional phase space formalism we build a new system of dynamic equations. These equations describe a dynamic state of the corporeal system composed of n subsystems. The dynamic equations are formulated in terms of dynamic variables of the subsystems as well as in terms of dynamic variables of the corporeal system. These two sets of variables are related respectively as roots and coefficients of the n-degree polynomial equation. In the special n=2 case, this formalism reproduces relativistic dynamics for the charged spinning particles

  16. The forced nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Kaup, D.J.; Hansen, P.J.

    1985-01-01

    The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)

  17. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.

  18. The Dirac equation for accountants

    International Nuclear Information System (INIS)

    Ord, G.N.

    2006-01-01

    In the context of relativistic quantum mechanics, derivations of the Dirac equation usually take the form of plausibility arguments based on experience with the Schroedinger equation. The primary reason for this is that we do not know what wavefunctions physically represent, so derivations have to rely on formal arguments. There is however a context in which the Dirac equation in one dimension is directly related to a classical generating function. In that context, the derivation of the Dirac equation is an exercise in counting. We provide this derivation here and discuss its relationship to quantum mechanics

  19. Difference equations theory, applications and advanced topics

    CERN Document Server

    Mickens, Ronald E

    2015-01-01

    THE DIFFERENCE CALCULUS GENESIS OF DIFFERENCE EQUATIONS DEFINITIONS DERIVATION OF DIFFERENCE EQUATIONS EXISTENCE AND UNIQUENESS THEOREM OPERATORS ∆ AND E ELEMENTARY DIFFERENCE OPERATORS FACTORIAL POLYNOMIALS OPERATOR ∆−1 AND THE SUM CALCULUS FIRST-ORDER DIFFERENCE EQUATIONS INTRODUCTION GENERAL LINEAR EQUATION CONTINUED FRACTIONS A GENERAL FIRST-ORDER EQUATION: GEOMETRICAL METHODS A GENERAL FIRST-ORDER EQUATION: EXPANSION TECHNIQUES LINEAR DIFFERENCE EQUATIONSINTRODUCTION LINEARLY INDEPENDENT FUNCTIONS FUNDAMENTAL THEOREMS FOR HOMOGENEOUS EQUATIONSINHOMOGENEOUS EQUATIONS SECOND-ORDER EQUATIONS STURM-LIOUVILLE DIFFERENCE EQUATIONS LINEAR DIFFERENCE EQUATIONS INTRODUCTION HOMOGENEOUS EQUATIONS CONSTRUCTION OF A DIFFERENCE EQUATION HAVING SPECIFIED SOLUTIONS RELATIONSHIP BETWEEN LINEAR DIFFERENCE AND DIFFERENTIAL EQUATIONS INHOMOGENEOUS EQUATIONS: METHOD OF UNDETERMINED COEFFICIENTS INHOMOGENEOUS EQUATIONS: OPERATOR METHODS z-TRANSFORM METHOD SYSTEMS OF DIFFERENCE EQUATIONS LINEAR PARTIAL DIFFERENCE EQUATI...

  20. Differential equations a dynamical systems approach ordinary differential equations

    CERN Document Server

    Hubbard, John H

    1991-01-01

    This is a corrected third printing of the first part of the text Differential Equations: A Dynamical Systems Approach written by John Hubbard and Beverly West. The authors' main emphasis in this book is on ordinary differential equations. The book is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. Traditional courses on differential equations focus on techniques leading to solutions. Yet most differential equations do not admit solutions which can be written in elementary terms. The authors have taken the view that a differential equations defines functions; the object of the theory is to understand the behavior of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods. The companion software, MacMath, is designed to bring these notions to life.

  1. Chiral symmetry breaking and the pion quark structure

    International Nuclear Information System (INIS)

    Bernard, V.

    1986-01-01

    The mechanism of dynamical breaking of chiral symmetry in hadronic matter is first studied in the framework of the Nambu and Jona-Lasinio model on one hand and its generalisation to finite hadron size on the other hand. The analysis uses a variational procedure modelled after the BCS superconductor. Our study indicates for example, a great sensitivity of various quantities characterizing the breaking of symmetry to the shape of the interaction. Also the mechanism of breaking of chiral symmetry is essentially related to the mechanism of confinement. When a symmetry is spontaneously broken, there exists a Goldstone particle of zero mass. This is true in our model. This particle, the pion, is obtained as solution of a Bethe Salpeter equation for a qantiq bound state. This enables us to establish a connection between the pion as a Goldstone boson related to spontaneous symmetry breaking and the quark-antiquark structure of the pion. The finite mass of the physical pion is obtained with non zero current quark mass. Various properties of this particle are then studied in the RPA formalism. One important point of our model is the highly collective character of the pion. 85 refs [fr

  2. Anomalous behavior of the excited state of the A exciton in bulk WS2

    DEFF Research Database (Denmark)

    Jindal, Vishwas; Bhuyan, Sumi; Deilmann, Thorsten

    2018-01-01

    Results of optical spectroscopy studies on bulk 2H-WS2 at energies close to its direct band gap are presented. Reflectance and absorption measurements at low temperature show only one dominant feature due to the A exciton of bulk WS2 at similar to 2.02 eV. However, a laser-modulated photoreflecta......Results of optical spectroscopy studies on bulk 2H-WS2 at energies close to its direct band gap are presented. Reflectance and absorption measurements at low temperature show only one dominant feature due to the A exciton of bulk WS2 at similar to 2.02 eV. However, a laser....... The experimental results are analyzed by comparison with many-body perturbation theory calculations, including the solutions of the Bethe-Salpeter equation. A* is identified as the first excited state of the A exciton, that is, A(n = 2). The anomalous behavior of A* is explained by its distinct wave function...... spread along the c axis, the direction of weak van der Waals bonding, which makes it more susceptible to perturbations. Our ab initio calculations suggest that the A exciton in the ground state has a two-dimensional (2D) nature with a large binding energy E-b, in fair agreement with E-b similar to 90...

  3. Strong excitonic interactions in the oxygen K-edge of perovskite oxides.

    Science.gov (United States)

    Tomita, Kota; Miyata, Tomohiro; Olovsson, Weine; Mizoguchi, Teruyasu

    2017-07-01

    Excitonic interactions of the oxygen K-edge electron energy-loss near-edge structure (ELNES) of perovskite oxides, CaTiO 3 , SrTiO 3 , and BaTiO 3 , together with reference oxides, MgO, CaO, SrO, BaO, and TiO 2 , were investigated using a first-principles Bethe-Salpeter equation calculation. Although the transition energy of oxygen K-edge is high, strong excitonic interactions were present in the oxygen K-edge ELNES of the perovskite oxides, whereas the excitonic interactions were negligible in the oxygen K-edge ELNES of the reference compounds. Detailed investigation of the electronic structure suggests that the strong excitonic interaction in the oxygen K-edge ELNES of the perovskite oxides is caused by the directionally confined, low-dimensional electronic structure at the Ti-O-Ti bonds. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Electromagnetic properties of the pion as a composite Nambu-Goldstone boson

    International Nuclear Information System (INIS)

    Ito, H.; Buck, W.W.; Gross, F.

    1992-01-01

    Motivated by the Nambu--Jona-Lasinio model of light mesons, we introduce a covariant separable interaction to model the structure of relativistic quark-antiquark systems. The Schwinger-Dyson equation for the quark self-energy is solved analytically, generating a dynamical quark mass through spontaneous breaking of chiral symmetry, and yielding a pion which has zero mass in the chiral limit. The Bethe-Salpeter vertex function for this q bar q pion, which has a momentum distribution and composite structure associated with the interaction, is obtained analytically. Using this vertex function, and a similar one for the ρ meson, we calculate the electromagnetic observables of this composite Nambu-Goldstone boson, including effects from ρ-meson dominance processes. Our calculation takes the composite structure of the mesons into account. The ρ-meson effects are found to be very small in the pion charge form factor, but substantial in the charge radius. Using the model, predictions are made for γ * π 0 →γ and ρπγ transition form factors

  5. About the role of 2D screening in high temperature superconductivity

    International Nuclear Information System (INIS)

    Vazquez-Ponce, Y.; Oliva Aguero, D.; Cabo Montes de Oca, D.

    2005-09-01

    The 2D screening is investigated in a simple single band square tight-binding model which qualitatively resembles the known electronic structure in high temperature superconductors. The Coulomb kernel for the two particle Bethe-Salpeter equation in the single loop (RPA) approximation for the polarization can be evaluated in a strong tight binding limit. The results indicate an intense screening of the Coulomb repulsion between the particles, which becomes stronger and anisotropic when the Fermi level approaches half filling (or equivalently, when the Fermi surface turns to be near the Van Hove singularities) and rapidly decreases away from it. The effect is also more pronounced for quasi-momenta regions near the corners of the Brillouin cell, which corresponds to dual spatial distances of the order of a few unit cells. Therefore, a possible mechanism is identified which could explain the existence of extremely small Cooper pairs in these materials, as bounded anisotropic composite particles joined by residual superexchange or phonon interactions. (author)

  6. Quark model calculations of current correlators in the nonperturbative domain

    International Nuclear Information System (INIS)

    Celenza, L.S.; Shakin, C.M.; Sun, W.D.

    1995-01-01

    The authors study the vector-isovector current correlator in this work, making use of a generalized Nambu-Jona-Lasinio (NJL) model. In their work, the original NJL model is extended to describe the coupling of the quark-antiquark states to the two-pion continuum. Further, a model for confinement is introduced that is seen to remove the nonphysical cuts that appear in various amplitudes when the quark and antiquark go on mass shell. Quite satisfactory results are obtained for the correlator. The authors also use the correlator to define a T-matrix for confined quarks and discuss a rho-dominance model for that T-matrix. It is also seen that the Bethe-Salpeter equation that determines the rho mass (in the absence of the coupling to the two-pion continuum) has more satisfactory behavior in the generalized model than in the model without confinement. That improved behavior is here related to the absence of the q bar q cut in the basic quark-loop integral of the generalized model. In this model, it is seen how one may work with both quark and hadron degrees of freedom, with only the hadrons appearing as physical particles. 12 refs., 16 figs., 1 tab

  7. Structure of the vertex function in finite quantum electrodynamics

    International Nuclear Information System (INIS)

    Mannheim, P.D.

    1975-01-01

    We study the structure of the renormalized electromagnetic current vertes, GAMMA-tilde/sub μ/(p,p+q,q), in finite quantum electrodynamics. Using conformal invariance we find that GAMMA-tilde/sub μ/(p,p,0) takes the simple form of Z 1 γ/sub μ/ when the external fermions are far off the mass shell. We interpret this result as an old theorem on the structure of the vertex function due to Gell--Mann and Zachariasen. We give the general structure of the vertex for arbitrary momentum transfer parametrically, and discuss how the Bethe--Salpeter equation and the Federbush--Johnson theorem are satisfied. We contrast the meaning of pointlike in a finite field theory with the meaning understood in the parton model. We discuss to what extent the condition Z 1 = 0, which may hold in conformal theories other than finite quantum electrodynamics, may be interpreted as a bootstrap condition. We show that the vanishing of Z 1 prevents their being bound states in the Migdal--Polyakov bootstrap

  8. Frenkel and Charge-Transfer Excitations in Donor-acceptor Complexes from Many-Body Green's Functions Theory.

    Science.gov (United States)

    Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael

    2012-08-14

    Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.

  9. Baryon-baryon bound states from first principles in 3+1 lattice QCD with two flavors and strong coupling

    International Nuclear Information System (INIS)

    Faria da Veiga, Paulo A.; O'Carroll, Michael

    2006-01-01

    We determine baryon-baryon bound states in (3+1)-dimensional SU(3) lattice QCD with two flavors, 4x4 spin matrices, and in an imaginary time formulation. For small hopping parameter κ>0 and large glueball mass (strong coupling), we show the existence of three-quark isospin 1/2 particles (proton and neutron) and isospin 3/2 baryons (delta particles), with asymptotic masses -3lnκ and isolated dispersion curves. Baryon-baryon bound states of isospin zero are found with binding energy of order κ 2 , using a ladder approximation to a lattice Bethe-Salpeter equation. The dominant baryon-baryon interaction is an energy-independent spatial range-one attractive potential with an O(κ 2 ) strength. There is also attraction arising from gauge field correlations associated with six overlapping bonds, but it is counterbalanced by Pauli repulsion to give a vanishing zero-range potential. The overall range-one potential results from a quark, antiquark exchange with no meson exchange interpretation; the repulsive or attractive nature of the interaction depends on the isospin and spin of the two-baryon state

  10. Decreasing the electronic confinement in layered perovskites through intercalation.

    Science.gov (United States)

    Smith, Matthew D; Pedesseau, Laurent; Kepenekian, Mikaël; Smith, Ian C; Katan, Claudine; Even, Jacky; Karunadasa, Hemamala I

    2017-03-01

    We show that post-synthetic small-molecule intercalation can significantly reduce the electronic confinement of 2D hybrid perovskites. Using a combined experimental and theoretical approach, we explain structural, optical, and electronic effects of intercalating highly polarizable molecules in layered perovskites designed to stabilize the intercalants. Polarizable molecules in the organic layers substantially alter the optical and electronic properties of the inorganic layers. By calculating the spatially resolved dielectric profiles of the organic and inorganic layers within the hybrid structure, we show that the intercalants afford organic layers that are more polarizable than the inorganic layers. This strategy reduces the confinement of excitons generated in the inorganic layers and affords the lowest exciton binding energy for an n = 1 perovskite of which we are aware. We also demonstrate a method for computationally evaluating the exciton's binding energy by solving the Bethe-Salpeter equation for the exciton, which includes an ab initio determination of the material's dielectric profile across organic and inorganic layers. This new semi-empirical method goes beyond the imprecise phenomenological approximation of abrupt dielectric-constant changes at the organic-inorganic interfaces. This work shows that incorporation of polarizable molecules in the organic layers, through intercalation or covalent attachment, is a viable strategy for tuning 2D perovskites towards mimicking the reduced electronic confinement and isotropic light absorption of 3D perovskites while maintaining the greater synthetic tunability of the layered architecture.

  11. Inquiry for the conversion of the (π+ - π-) bound state into two π0

    International Nuclear Information System (INIS)

    Bunatyan, G.G.

    1998-01-01

    In the work presented, the decay of the pionium, that is the (π + π - ) bound state, into two π 0 is studied, the ππ-interaction causing this transition being described by the underlying Weinberg Lagrangian. The calculation with such a ππ-Lagrangian being carried out, the π-meson size r 0 emerges to be allowed for, and this quantity occurs in the final result. The bound (π + π - )-system itself is presumed to be due to the instantaneous Coulomb interaction and is treated consistently nonrelativistically, the Bethe-Salpeter equation being utilized. When calculating, the terms to the lowest order in the fine structure constant α and the terms ∼ ln (r 0 ) are retained. The obtained pionium lifetime τ is thought to be compatible with the conceivable future experimental data. The dependence of the results on the effective Lagrangian parameters is visualized. The investigation carried out persuades us that it is just the complete form of the genuine ππ-interaction that determines the pionium lifetime , but not much simply the ππ scattering lengths. The inquiry into pionium decaying promotes to specify the validity of the various ππ-interaction descriptions

  12. Interpretation of Y(4390) as an isoscalar partner of Z(4430) from D*(2010) anti D{sub 1}(2420) interaction

    Energy Technology Data Exchange (ETDEWEB)

    He, Jun [Nanjing Normal University, Department of Physics and Institute of Theoretical Physics, Nanjing (China); Chen, Dian-Yong [Southeast University, School of Physics, Nanjing (China)

    2017-06-15

    Invoked by the recent observation of Y(4390) at BESIII, which is about 40 MeV below the D*(2010) anti D{sub 1}(2420) threshold, we investigate possible bound and resonance states from the D*(2010) anti D{sub 1}(2420) interaction with the one-boson-exchange model in a quasipotential Bethe-Salpeter equation approach. A bound state with quantum number 0{sup -}(1{sup --}) is produced at 4384 MeV from the D*(2010) anti D{sub 1}(2420) interaction, which can be related to experimentally observed Y(4390). Another state with quantum number 1{sup +}(1{sup +}) is also produced at 4461 + i39 MeV from this interaction. Different from the 0{sup -}(1{sup --}) state, the 1{sup +}(1{sup +}) state is a resonance state above the D*(2010) anti D{sub 1}(2420) threshold. This resonance state can be related to the first observed charged charmonium-like state Z(4430), which has a mass about 4475 MeV measured above the threshold as observed at Belle and LHCb. Our result suggests that Y(4390) is an isoscalar partner of the Z(4430) as a hadronic-molecular state from the D*(2010) anti D{sub 1}(2420) interaction. (orig.)

  13. Relativistic chiral SU(3) symmetry, large Nc sum rules and meson-baryon scattering

    International Nuclear Information System (INIS)

    Lutz, M.F.M.; Kolomeitsev, E.E.

    2001-05-01

    The relativistic chiral SU(3) Lagrangian is used to describe kaon-nucleon scattering imposing constraints from the pion-nucleon sector and the axial-vector coupling constants of the baryon octet states. We solve the covariant coupled-channel Bethe-Salpeter equation with the interaction kernel truncated at chiral order Q 3 where we include only those terms which are leading in the large N c limit of QCD. The baryon decuplet states are an important explicit ingredient in our scheme, because together with the baryon octet states they form the large N c baryon ground states of QCD. Part of our technical developments is a minimal chiral subtraction scheme within dimensional regularization, which leads to a manifest realization of the covariant chiral counting rules. All SU(3) symmetry-breaking effects are well controlled by the combined chiral and large N c expansion, but still found to play a crucial role in understanding the empirical data. We achieve an excellent description of the data set typically up to laboratory momenta of p lab ≅ 500 MeV. (orig.)

  14. Comparison of two Minkowski-space approaches to heavy quarkonia

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Sofia; Biernat, Elmar P. [Universidade de Lisboa, CFTP, Instituto Superior Tecnico, Lisbon (Portugal); Li, Yang [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); College of William and Mary, Department of Physics, Williamsburg, VA (United States); Maris, Pieter; Vary, James P. [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); Pena, M.T. [Universidade de Lisboa, CFTP, Instituto Superior Tecnico, Lisbon (Portugal); Universidade de Lisboa, Departamento de Fisica, Instituto Superior Tecnico, Lisbon (Portugal); Stadler, Alfred [Universidade de Lisboa, CFTP, Instituto Superior Tecnico, Lisbon (Portugal); Universidade de Evora, Departamento de Fisica, Evora (Portugal)

    2017-10-15

    In this work we compare mass spectra and decay constants obtained from two recent, independent, and fully relativistic approaches to the quarkonium bound-state problem: the Basis Light-Front Quantization approach, where light-front wave functions are naturally formulated; and, the Covariant Spectator Theory (CST), based on a reorganization of the Bethe-Salpeter equation. Even though conceptually different, both solutions are obtained in Minkowski space. Comparisons of decay constants for more than ten states of charmonium and bottomonium show favorable agreement between the two approaches as well as with experiment where available. We also apply the Brodsky-Huang-Lepage prescription to convert the CST amplitudes into functions of light-front variables. This provides an ideal opportunity to investigate the similarities and differences at the level of the wave functions. Several qualitative features are observed in remarkable agreement between the two approaches even for the rarely addressed excited states. Leading-twist distribution amplitudes as well as parton distribution functions of heavy quarkonia are also analyzed. (orig.)

  15. Excitation spectrum and staggering transformations in lattice quantum models.

    Science.gov (United States)

    Faria da Veiga, Paulo A; O'Carroll, Michael; Schor, Ricardo

    2002-08-01

    We consider the energy-momentum excitation spectrum of diverse lattice Hamiltonian operators: the generator of the Markov semigroup of Ginzburg-Landau models with Langevin stochastic dynamics, the Hamiltonian of a scalar quantum field theory, and the Hamiltonian associated with the transfer matrix of a classical ferromagnetic spin system at high temperature. The low-lying spectrum consists of a one-particle state and a two-particle band. The two-particle spectrum is determined using a lattice version of the Bethe-Salpeter equation. In addition to the two-particle band, depending on the lattice dimension and on the attractive or repulsive character of the interaction between the particles of the system, there is, respectively, a bound state below or above the two-particle band. We show how the existence or nonexistence of these bound states can be understood in terms of a nonrelativistic single-particle lattice Schrödinger Hamiltonian with a delta potential. A staggering transformation relates the spectra of the attractive and the repulsive cases.

  16. Optical absorption in disordered monolayer molybdenum disulfide

    Science.gov (United States)

    Ekuma, C. E.; Gunlycke, D.

    2018-05-01

    We explore the combined impact of sulfur vacancies and electronic interactions on the optical properties of monolayer MoS2. First, we present a generalized Anderson-Hubbard Hamiltonian that accounts for both randomly distributed sulfur vacancies and the presence of dielectric screening within the material. Second, we parametrize this energy-dependent Hamiltonian from first-principles calculations based on density functional theory and the Green's function and screened Coulomb (GW) method. Third, we apply a first-principles-based many-body typical medium method to determine the single-particle electronic structure. Fourth, we solve the Bethe-Salpeter equation to obtain the charge susceptibility χ with its imaginary part being related to the absorbance A . Our results show that an increased vacancy concentration leads to decreased absorption both in the band continuum and from exciton states within the band gap. We also observe increased absorption below the band-gap threshold and present an expression, which describes Lifshitz tails, in excellent qualitative agreement with our numerical calculations. This latter increased absorption in the 1.0 -2.5 eV range makes defect engineering of potential interest for solar cell applications.

  17. Isostructural and heterostructural MgZnO and CdZnO alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schleife, Andre; Roedl, Claudia; Bechstedt, Friedhelm [Institut fuer Festkoerpertheorie und -optik and European Theoretical Spectroscopy Facility, Friedrich-Schiller-Universitaet Jena, 07743 Jena (Germany)

    2011-07-01

    One important goal of materials design is to purposefully tailor the fundamental band gap. Recently, group-II oxides such as MgO, ZnO, and CdO are discussed to possibly supersede the nitrides for certain applications, e.g. in optoelectronics. Since the band gaps of the oxides cover a large spectral range from 1.8 eV (CdO) up to 7.7 eV (MgO), their alloys seem to be promising - unless the different equilibrium crystal structures of the end components (rocksalt-MgO and -CdO vs. wurtzite-ZnO) prevent their application. By employing three different cluster statistics within a cluster-expansion approach we investigate the impact of different growth conditions on the composition of isostructural and heterostructural Mg{sub x}Zn{sub 1-x}O and Cd{sub x}Zn{sub 1-x}O alloys. Our total-energy calculations are based on density-functional theory using a generalized-gradient approximation for exchange and correlation. We also compute quasiparticle energies using the HSE03+G{sub 0}W{sub 0} approach. This allows us to derive the bowings of fundamental band gaps, which reveal a strongly nonlinear behavior. Using the solution of the Bethe-Salpeter equation for the optical polarization function we investigate the influence of the preparation conditions on the peaks related to bound excitonic states at the absorption edge.

  18. Nucleon scattering on one-hole nuclei in the framework of the continuum RPA

    International Nuclear Information System (INIS)

    Abdi, S.M.

    1979-01-01

    It is shown that the scattering transition amplitude for nucleon-nucleus scattering on one-hole nuclei can be directly related to so-called linear response function. The theory of the linear response function is formulated in the framework of Greens functions. The linear response function obreys an equation of Bethe-Salpeter-type. From to the spectral decomposition of the response function one can deduce, that the knowledge of the response function in equivalent to the knowledge of the so-called 'particle-hole'- and 'hole-particle'-amplitudes, respectively, and the exitation energies of the compound A-particle system. In this work the binding- and resonance energies for 16 O and 16 N, respectively, have been calculated, which are needed for the scattering processes 15 N(p,n) 15 O and 15 N(n,n') 15 N, respectively. For low energies the agreement with experiment is not statisfactory, probably due to the coupling to 3p-3h-states, which was neglected in the treatment. (orig./HSI) [de

  19. Strongly bound excitons in monolayer PtS2 and PtSe2

    KAUST Repository

    Sajjad, M.

    2018-01-22

    Based on first-principles calculations, the structural, electronic, and optical properties of monolayers PtS2 and PtSe2 are investigated. The bond stiffnesses and elastic moduli are determined by means of the spring constants and strain-energy relations, respectively. Dynamic stability is confirmed by calculating the phonon spectra, which shows excellent agreement with experimental reports for the frequencies of the Raman-active modes. The Heyd-Scuseria-Ernzerhof functional results in electronic bandgaps of 2.66 eV for monolayer PtS2 and 1.74 eV for monolayer PtSe2. G0W0 calculations combined with the Bethe-Salpeter equation are used to predict the optical spectra and exciton binding energies (0.78 eV for monolayer PtS2 and 0.60 eV for monolayer PtSe2). It turns out that the excitons are strongly bound and therefore very stable against external perturbations.

  20. Dressing the nucleon propagator

    International Nuclear Information System (INIS)

    Fishman, S.; Gersten, A.

    1976-01-01

    The nucleon propagator in the ''nested bubbles'' approximation is analyzed. The approximation is built from the minimal set of diagrams which is needed to maintain the unitarity condition under two-pion production threshold in the two-nucleon Bethe--Salpeter equation. Recursive formulas for subsets of ''nested bubbles'' diagrams calculated in the framework of the pseudoscalar interaction are obtained by the use of dispersion relations. We prove that the sum of all the ''nested bubbles'' diverges. Moreover, the successive iterations are plagued with ghost poles. We prove that the first approximation--which is the so-called chain approximation--has ghost poles for any nonvanishing coupling constant. In an earlier paper we have shown that ghost poles lead to ghost cuts. These cuts are present in the ''nested bubbles.'' Ghost elimination procedures are discussed. Modifications of the ''nested bubbles'' approximation are introduced in order to obtain convergence and in order to eliminate the ghost poles and ghost cuts. In a similar way as in the Lee model, cutoff functions are introduced in order to eliminate the ghost poles. The necessary and sufficient conditions for the absence of ghost poles are formulated and analyzed. The spectral functions of the modified ''nested bubbles'' are analyzed and computed. Finally, we present a theorem, similar in its form to Levinson's theorem in scattering theory, which enables one to compute in a simple way the number of ghost poles

  1. Relativistic many-body theory a new field-theoretical approach

    CERN Document Server

    Lindgren, Ingvar

    2016-01-01

    This revised second edition of the author’s classic text offers readers a comprehensively updated review of relativistic atomic many-body theory, covering the many developments in the field since the publication of the original title.  In particular, a new final section extends the scope to cover the evaluation of QED effects for dynamical processes. The treatment of the book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insufficient to explain the accurate experimental data recently obtained, particularly for highly charged ions. The main text is divided into...

  2. Optical conductivity calculation of a k.p model semiconductor GaAs incorporating first-order electron-hole vertex correction

    Science.gov (United States)

    Nurhuda, Maryam; Aziz Majidi, Muhammad

    2018-04-01

    The role of excitons in semiconducting materials carries potential applications. Experimental results show that excitonic signals also appear in optical absorption spectra of semiconductor system with narrow gap, such as Gallium Arsenide (GaAs). While on the theoretical side, calculation of optical spectra based purely on Density Functional Theory (DFT) without taking electron-hole (e-h) interactions into account does not lead to the appearance of any excitonic signal. Meanwhile, existing DFT-based algorithms that include a full vertex correction through Bethe-Salpeter equation may reveal an excitonic signal, but the algorithm has not provided a way to analyze the excitonic signal further. Motivated to provide a way to isolate the excitonic effect in the optical response theoretically, we develop a method of calculation for the optical conductivity of a narrow band-gap semiconductor GaAs within the 8-band k.p model that includes electron-hole interactions through first-order electron-hole vertex correction. Our calculation confirms that the first-order e-h vertex correction reveals excitonic signal around 1.5 eV (the band gap edge), consistent with the experimental data.

  3. Polarization of recoil deuteron in ed elastic scattering at medium energies

    International Nuclear Information System (INIS)

    Bhalerao, R. S.

    1981-12-01

    Vector and tensor polarizations of the recoil deuteron in ed elastic scattering are calculated for THETA=0deg-180deg and q 2 2 . A longitudinally polarized electron beam is assumed to scatter off an unpolarized deuteron target. Calculations are made in the relativistic impulse approximation using a recently described approach based on the Bethe-Salpeter equation. Results are different, at high q 2 even qualitatively so, from those of a non-relativistic calculation, and a relativistic calculation which takes the spectator nucleon on-mass-shell. In the light of these results a recent suggestion that the polarization measurements would throw new light on the off-shell behavior and tensor force strength of the NN interaction are reexamined. Results are also presented for the three deuteron form factors Gsub(C), Gsub(Q), and Gsub(M), and the often-needed related quantities Ssub(S), Ssub(Q), and Ssub(M). The latter results may have an important implication in high-momentum transfer reactions involving deuteron. (author)

  4. 58. annual symposium of the Austrian Physical Society. Conference programme

    International Nuclear Information System (INIS)

    Oswald, J.

    2008-01-01

    Full text: This annual conference consisted of a plenary session, oral and poster sessions on the research fields of: acoustics; atoms, quantum optics and plasma (doped helium droplets, biomolecules studies in super fluid helium droplets, quantum physics with neutrons); solid state physics (terahertz quantum-cascade lasers, semiconductors nanostructures, magnetic studies on steel pipeline tubes, magnetic characterization magnetic materials, spin properties of confined electrons); physics history; nuclear and particle physics (antiprotonic helium - hyperfine structure, pionic atoms (hydrogen), CMS experiment at LHC (level 1-trigger, super symmetry), vertex reconstruction toolkit RAVE, silicon strip detectors, chiral transition temperature, quantum physics - Bell theorem, Bethe-Salpeter equation, plane static magnetic field, low-lying eigen modes of the dirac operator, SU(3) potentials by thick-center-vortex-model); medical, bio - and environmental physics; neutrons and synchrotron radiation physics (neutron holography - advances, atomic diffusion by XPCS, micro-diffraction experiments, cold three-axis spectrometer - next generation, superconductive radio resonating cavities- roughness, neutron polarization); surfaces and thin films (carbon monoxide adsorption on metal surfaces, laser - assisted deposition, nanostructures (magnetic properties, semiconductors, electronic structure, erosion, crystal growth, adsorption, sputtering)); physics - industry - energy; besides a poster session on polymer physics and the Max Auwaerter symposium are included. Those contributions which are in the INIS subject scope are indexed individually. (nevyjel)

  5. Raman scattering in a Heisenberg S = 1/2 antiferromagnet on the anisotropic triangular lattice

    International Nuclear Information System (INIS)

    Perkins, Natalia; Brenig, Wolfram

    2009-01-01

    We investigate two-magnon Raman scattering from the S = 1/2 Heisenberg antiferromagnet on the triangular lattice (THAF), considering both isotropic and anisotropic exchange interactions. We find that the Raman intensity for the isotropic THAF is insensitive to the scattering geometry, while both the line profile and the intensity of the Raman response for the anisotropic THAF shows a strong dependence on the scattering geometry. For the isotropic case we present an analytical and numerical study of the Raman intensity including both the effect of renormalization of the one-magnon spectrum by 1 = S corrections and final-state magnonmagnon interactions. The bare Raman intensity displays two peaks related to one-magnon van-Hove singularities. We find that 1 = S self-energy corrections to the one-magnon spectrum strongly modify this intensity profile. The central Raman-peak is significantly enhanced due to plateaus in the magnon dispersion, the high frequency peak is suppressed due to magnon damping, and the overall spectral support narrows considerably. Additionally we investigate final-state interactions by solving the Bethe-Salpeter equation to O(1 = S). In contrast to collinear antiferromagnets, the non-collinear nature of the magnetic ground state leads to an irreducible magnon scattering which is retarded and non-separable already to lowest order. We show that final-state interactions lead to a rather broad Raman-continuum centered around approximately twice the 'roton'-energy.

  6. Interquark potential with finite quark mass from lattice QCD.

    Science.gov (United States)

    Kawanai, Taichi; Sasaki, Shoichi

    2011-08-26

    We present an investigation of the interquark potential determined from the q ̄q Bethe-Salpeter (BS) amplitude for heavy quarkonia in lattice QCD. The q ̄q potential at finite quark mass m(q) can be calculated from the equal-time and Coulomb gauge BS amplitude through the effective Schrödinger equation. The definition of the potential itself requires information about a kinetic mass of the quark. We then propose a self-consistent determination of the quark kinetic mass on the same footing. To verify the proposed method, we perform quenched lattice QCD simulations with a relativistic heavy-quark action at a lattice cutoff of 1/a≈2.1  GeV in a range 1.0≤m(q)≤3.6 GeV. Our numerical results show that the q ̄q potential in the m(q)→∞ limit is fairly consistent with the conventional one obtained from Wilson loops. The quark-mass dependence of the q ̄q potential and the spin-spin potential are also examined. © 2011 American Physical Society

  7. Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites.

    Science.gov (United States)

    Umari, Paolo; Mosconi, Edoardo; De Angelis, Filippo

    2018-02-01

    The performance of lead-halide perovskites in optoelectronic devices is due to a unique combination of factors, including highly efficient generation, transport, and collection of photogenerated charge carriers. The mechanism behind efficient charge generation in lead-halide perovskites is still largely unknown. Here, we investigate the factors that influence the exciton binding energy (E b ) in a series of metal-halide perovskites using accurate first-principles calculations based on solution of the Bethe-Salpeter equation, coupled to ab initio molecular dynamics simulations. We find that E b is strongly modulated by screening from low-energy phonons, which account for a factor ∼2 E b reduction, while dynamic disorder and rotational motion of the organic cations play a minor role. We calculate E b = 15 meV for MAPbI 3 , in excellent agreement with recent experimental estimates. We then explore how different material combinations (e.g., replacing Pb → Pb:Sn→ Sn; and MA → FA → Cs) may lead to different E b values and highlight the mechanisms underlying E b tuning.

  8. Effect of oxygen vacancies on the electronic and optical properties of tungsten oxide from first principles calculations

    Science.gov (United States)

    Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.; Ramana, Chintalapalle V.

    2016-12-01

    In this work, we investigated theoretically the role of oxygen vacancies on the electronic and optical properties of cubic, γ-monoclinic, and tetragonal phases of tungsten oxide (WO3) thin films. Following the examination of structural properties and stability of the bulk tungsten oxide polymorphs, we analyzed band structures and optical properties, applying density functional theory (DFT) and GW (Green's (G) function approximation with screened Coulomb interaction (W)) methods. Careful benchmarking of calculated band gaps demonstrated the importance of using a range-separated functional, where results for the pristine room temperature γ-monoclinic structure indicated agreement with experiment. Further, modulation of the band gap for WO3 structures with oxygen vacancies was quantified. Dielectric functions for cubic WO3, calculated at both the single-particle, essentially time-dependent DFT, as well as many-body GW-Bethe-Salpeter equation levels, indicated agreement with experimental data for pristine WO3. Interestingly, we found that introducing oxygen vacancies caused appearance of lower energy absorptions. A smaller refractive index was indicated in the defective WO3 structures. These predictions could lead to further experiments aimed at tuning the optical properties of WO3 by introducing oxygen vacancies, particularly for the lower energy spectral region.

  9. Relativistic Many-Body Theory A New Field-Theoretical Approach

    CERN Document Server

    Lindgren, Ingvar

    2011-01-01

    Relativistic Many-Body Theory treats — for the first time — the combination of relativistic atomic many-body theory with quantum-electrodynamics (QED) in a unified manner. This book can be regarded as a continuation of the book by Lindgren and Morrison, Atomic Many-Body Theory (Springer 1986), which deals with the non-relativistic theory of many-electron systems, describing several means of treating the electron correlation to essentially all orders of perturbation theory. The treatment of the present book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insuffici...

  10. Origins of Singlet Fission in Solid Pentacene from an ab initio Green's Function Approach

    Science.gov (United States)

    Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.

    2017-12-01

    We develop a new first-principles approach to predict and understand rates of singlet fission with an ab initio Green's-function formalism based on many-body perturbation theory. Starting with singlet and triplet excitons computed from a G W plus Bethe-Salpeter equation approach, we calculate the exciton-biexciton coupling to lowest order in the Coulomb interaction, assuming a final state consisting of two noninteracting spin-correlated triplets with finite center-of-mass momentum. For crystalline pentacene, symmetries dictate that the only purely Coulombic fission decay process from a bright singlet state requires a final state consisting of two inequivalent nearly degenerate triplets of nonzero, equal and opposite, center-of-mass momenta. For such a process, we predict a singlet lifetime of 30-70 fs, in very good agreement with experimental data, indicating that this process can dominate singlet fission in crystalline pentacene. Our approach is general and provides a framework for predicting and understanding multiexciton interactions in solids.

  11. Spectra of heavy-light mesons in a relativistic model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-Bin; Lue, Cai-Dian [Institute of High Energy Physics, Beijing (China)

    2017-05-15

    The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model which is based on a heavy-quark expansion of the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation. The kernel we choose is the standard combination of linear scalar and Coulombic vector. The effective Hamiltonian for heavy-light quark-antiquark system is calculated up to order 1/m{sub Q}{sup 2}. Our results are in good agreement with available experimental data except for the anomalous D{sub s0}{sup *}(2317) and D{sub s1}(2460) states. The newly observed heavy-light meson states can be accommodated successfully in the relativistic quark model with their assignments presented. The D{sub sJ}{sup *}(2860) can be interpreted as the vertical stroke 1{sup 3/2}D{sub 1} right angle and vertical stroke 1{sup 5/2}D{sub 3} right angle states being members of the 1D family with J{sup P} = 1{sup -} and 3{sup -}. (orig.)

  12. Hadronic molecular states from the K anti K* interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lue, Pei-Liang; He, Jun [Chinese Academy of Sciences, Theoretical Physics Division, Institute of Modern Physics, Lanzhou (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China)

    2016-12-15

    In this work, the K anti K* interaction is studied in a quasipotential Bethe-Salpeter equation approach combined with the one-boson-exchange model. With the help of the hidden-gauge Lagrangian, the exchanges of pseudoscalar mesons (π and η) and vector mesons (ρ, ω and φ) are considered to describe the K anti K* interaction. Besides the direct vector-meson exchange which can be related to the Weinberg-Tomozawa term, pseudoscalar-meson exchanges also play important roles in the mechanism of the K anti K* interaction. The poles of scattering amplitude are searched to find the molecular states produced from the K anti K* interaction. In the case of quantum number I{sup G}(J{sup PC}) = 0{sup +}(1{sup ++}), a pole is found with a reasonable cutoff, which can be related to the f{sub 1}(1285) in experiment. Another bound state with 0{sup -}(1{sup +-}) is also produced from the K anti K* interaction, which can be related to the h{sub 1}(1380). In the isovector sector, the interaction is much weaker and a bound state with 1{sup +}(1{sup +}) relevant to the b{sub 1}(1235) is produced but at a larger cutoff. Our results suggest that in the hadronic molecular state picture the f{sub 1}(1285) and b{sub 1}(1235) are the strange partners of the X(3872) and Z{sub c}(3900), respectively. (orig.)

  13. Ab initio electronic structure of quasi-two-dimensional materials: A “native” Gaussian–plane wave approach

    Energy Technology Data Exchange (ETDEWEB)

    Trevisanutto, Paolo E. [Graphene Research Centre and CA2DM, National University of Singapore, Singapore 117542, Singapore and Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore); Vignale, Giovanni, E-mail: vignaleg@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211 (United States)

    2016-05-28

    Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is “native” to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basic tools of ab initio electronic structure theory — density functional theory, GW approximation and Bethe-Salpeter equation — are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields.

  14. Optical properties of single-layer, double-layer, and bulk MoS2

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Sanchez, Alejandro; Wirtz, Ludger [University of Luxembourg (Luxembourg); Hummer, Kerstin [University of Vienna, Vienna (Austria)

    2013-07-01

    The rise of graphene has brought attention also to other layered materials that can complement graphene or that can be an alternative in applications as transistors. Single-layer MoS{sub 2} has shown interesting electronic and optical properties such as as high electron mobility at room temperature and an optical bandgap of 1.8 eV. This makes the material suitable for transistors or optoelectronic devices. We present a theoretical study of the optical absorption and photoluminescence spectra of single-layer, double-layer and bulk MoS{sub 2}. The excitonic states have been calculated in the framework of the Bethe-Salpeter equation, taking into account the electron-hole interaction via the screened Coulomb potential. In addition to the step-function like behaviour that is typical for the joint-density of states of 2D materials with parabolic band dispersion, we find a bound excitonic peak that is dominating the luminescence spectra. The peak is split due to spin-orbit coupling for the single-layer and split due to layer-layer interaction for few-layer and bulk MoS{sub 2}. We discuss the changes of the optical bandgap and of the exciton binding energy with the number of layers, comparing our results with the reported experimental data.

  15. Charming baryons

    International Nuclear Information System (INIS)

    Garcia-Recio, C.; Salcedo, L.L.; Gamermann, D.; Nieves, J.; Romanets, O.; Tolos, L.

    2014-01-01

    We study odd-parity baryonic resonances with one heavy and three light flavors, dynamically generated by meson-baryon interactions. Special attention is paid to Heavy Quark Spin Symmetry (HQSS), hence pseudoscalar and vector mesons and baryons with J π = 1/2 + and 3/2 + are considered as constituent hadrons. For the hidden-charm sector (N c = N c ¯ = 1), the meson-baryon Lagrangian with Heavy Flavor Symmetry is constructed by a minimal extension of the SU(3) Weinberg-Tomozawa (WT) Lagrangian to fulfill HQSS, such that not new parameters are needed. This interaction can be presented in different formal ways: as a Field Lagrangian, as Hadron creation-annihilation operators, as SU(6)×HQSS group projectors and as multichannel matrices. The multichannel Bethe-Salpeter equation is solved for odd-parity light baryons, hidden-charm N and Δ and Beauty Baryons (Λ b ). Results of calculations with this model are shown in comparison with other models and experimental values for baryonic resonances. (author)

  16. Strong decays of D{sub 3}{sup *}(2760), D{sub s3}{sup *}(2860), B{sub 3}{sup *}, and B{sub s3}{sup *}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianhong; Jiang, Yue; Wang, Guo-Li [Harbin Institute of Technology, Department of Physics, Harbin (China); Wang, Zhi-Hui [Beifang University of Nationalities, School of Electrical and Information Engineering, Yinchuan (China); Jiang, Libo [University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh, PA (United States)

    2017-01-15

    In this paper, we study the OZI-allowed two-body strong decays of 3{sup -} heavy-light mesons. Experimentally the charmed D{sub 3}{sup *}(2760) and the charm-strange D{sub s3}{sup *}(2860) states with these quantum numbers have been discovered. For the bottomed B(5970) state, which was found by the CDF Collaboration recently, its quantum number has not been decided yet and we assume it is a 3{sup -} meson in this paper. The theoretical prediction for the strong decays of bottom-strange state B{sub s3}{sup *} is also given. The relativistic wave functions of 3{sup -} heavy mesons are constructed and their numerical values are obtained by solving the corresponding Bethe-Salpeter equation with instantaneous approximation. The transition matrix is calculated by using the PCAC and low energy theorem, following which the decay widths are obtained. For D{sub 3}{sup *}(2760) and D{sub s3}{sup *}(2860), the total strong decay widths are 72.6 and 47.6 MeV, respectively. For B{sub 3}{sup *} with M = 5978 MeV and B{sub s3}{sup *} with M = 6178 MeV, their strong decay widths are 22.9 and 40.8 MeV, respectively. (orig.)

  17. Range-separated density-functional theory for molecular excitation energies

    International Nuclear Information System (INIS)

    Rebolini, E.

    2014-01-01

    Linear-response time-dependent density-functional theory (TDDFT) is nowadays a method of choice to compute molecular excitation energies. However, within the usual adiabatic semi-local approximations, it is not able to describe properly Rydberg, charge-transfer or multiple excitations. Range separation of the electronic interaction allows one to mix rigorously density-functional methods at short range and wave function or Green's function methods at long range. When applied to the exchange functional, it already corrects most of these deficiencies but multiple excitations remain absent as they need a frequency-dependent kernel. In this thesis, the effects of range separation are first assessed on the excitation energies of a partially-interacting system in an analytic and numerical study in order to provide guidelines for future developments of range-separated methods for excitation energy calculations. It is then applied on the exchange and correlation TDDFT kernels in a single-determinant approximation in which the long-range part of the correlation kernel vanishes. A long-range frequency-dependent second-order correlation kernel is then derived from the Bethe-Salpeter equation and added perturbatively to the range-separated TDDFT kernel in order to take into account the effects of double excitations. (author)

  18. Solutions to Arithmetic Convolution Equations

    Czech Academy of Sciences Publication Activity Database

    Glöckner, H.; Lucht, L.G.; Porubský, Štefan

    2007-01-01

    Roč. 135, č. 6 (2007), s. 1619-1629 ISSN 0002-9939 R&D Projects: GA ČR GA201/04/0381 Institutional research plan: CEZ:AV0Z10300504 Keywords : arithmetic functions * Dirichlet convolution * polynomial equations * analytic equations * topological algebras * holomorphic functional calculus Subject RIV: BA - General Mathematics Impact factor: 0.520, year: 2007

  19. On Degenerate Partial Differential Equations

    OpenAIRE

    Chen, Gui-Qiang G.

    2010-01-01

    Some of recent developments, including recent results, ideas, techniques, and approaches, in the study of degenerate partial differential equations are surveyed and analyzed. Several examples of nonlinear degenerate, even mixed, partial differential equations, are presented, which arise naturally in some longstanding, fundamental problems in fluid mechanics and differential geometry. The solution to these fundamental problems greatly requires a deep understanding of nonlinear degenerate parti...

  20. Differential equations a concise course

    CERN Document Server

    Bear, H S

    2011-01-01

    Concise introduction for undergraduates includes, among other topics, a survey of first order equations, discussions of complex-valued solutions, linear differential operators, inverse operators and variation of parameters method, the Laplace transform, Picard's existence theorem, and an exploration of various interpretations of systems of equations. Numerous clearly stated theorems and proofs, examples, and problems followed by solutions.

  1. Differential equations and finite groups

    NARCIS (Netherlands)

    Put, Marius van der; Ulmer, Felix

    2000-01-01

    The classical solution of the Riemann-Hilbert problem attaches to a given representation of the fundamental group a regular singular linear differential equation. We present a method to compute this differential equation in the case of a representation with finite image. The approach uses Galois

  2. Saturation and linear transport equation

    International Nuclear Information System (INIS)

    Kutak, K.

    2009-03-01

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)

  3. Lie symmetries in differential equations

    International Nuclear Information System (INIS)

    Pleitez, V.

    1979-01-01

    A study of ordinary and Partial Differential equations using the symmetries of Lie groups is made. Following such a study, an application to the Helmholtz, Line-Gordon, Korleweg-de Vries, Burguer, Benjamin-Bona-Mahony and wave equations is carried out [pt

  4. Introduction to nonlinear dispersive equations

    CERN Document Server

    Linares, Felipe

    2015-01-01

    This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introdu...

  5. Students' Understanding of Quadratic Equations

    Science.gov (United States)

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  6. Solving equations by topological methods

    Directory of Open Access Journals (Sweden)

    Lech Górniewicz

    2005-01-01

    Full Text Available In this paper we survey most important results from topological fixed point theory which can be directly applied to differential equations. Some new formulations are presented. We believe that our article will be useful for analysts applying topological fixed point theory in nonlinear analysis and in differential equations.

  7. Generalized Fermat equations: A miscellany

    NARCIS (Netherlands)

    Bennett, M.A.; Chen, I.; Dahmen, S.R.; Yazdani, S.

    2015-01-01

    This paper is devoted to the generalized Fermat equation xp + yq = zr, where p, q and r are integers, and x, y and z are nonzero coprime integers. We begin by surveying the exponent triples (p, q, r), including a number of infinite families, for which the equation has been solved to date, detailing

  8. Equation with the many fathers

    DEFF Research Database (Denmark)

    Kragh, Helge

    1984-01-01

    In this essay I discuss the origin and early development of the first relativistic wave equation, known as the Klein-Gordon equation. In 1926 several physicists, among them Klein, Fock, Schrödinger, and de Broglie, announced this equation as a candidate for a relativistic generalization of the us...... as electrodynamics. Although this ambitious attempt attracted some interest in 1926, its impact on the mainstream of development in quantum mechanics was virtually nil....... of the usual Schrödinger equation. In most of the early versions the Klein-Gordon equation was connected with the general theory of relativity. Klein and some other physicists attempted to express quantum mechanics within a five-dimensional unified theory, embracing general relativity as well...

  9. The relativistic electron wave equation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1977-08-01

    The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)

  10. Higher order field equations. II

    International Nuclear Information System (INIS)

    Tolhoek, H.A.

    1977-01-01

    In a previous paper wave propagation was studied according to a sixth-order partial differential equation involving a complex mass M. The corresponding Yang-Feldman integral equations (indicated as SM-YF-equations), were formulated using modified Green's functions Gsub(R)sup(M)(x) and Gsub(A)sup(M)(x), which then incorporate the partial differential equation together with certain boundary conditions. In this paper certain limit properties of these modified Green's functions are derived: (a) It is shown that for mod(M)→infinity the Green's functions Gsub(R)sup(M)(x) and Gsub(A)sup(M)(x) approach the Green's functions Δsub(R)(x) and Δsub(A)(x) of the corresponding KG-equation (Klein-Gordon equation). (b) It is further shown that the asymptotic behaviour of Gsub(R)sup(M)(x) and Gsub(A)sup(M)(x) is the same as of Δsub(R)(x) and Δsub(A)(x)-and also the same as for Dsub(R)(x) and Dsub(A)(x) for t→+-infinity;, where Dsub(R) and Dsub(A) are the Green's functions for the KG-equation with mass zero. It is essential to take limits in the sense of distribution theory in both cases (a) and (b). The property (b) indicates that the wave propagation properties of the SM-YF-equations, the KG-equation with finite mass and the KG-equation with mass zero are closely related in an asymptotic sense. (Auth.)

  11. Equating TIMSS Mathematics Subtests with Nonlinear Equating Methods Using NEAT Design: Circle-Arc Equating Approaches

    Science.gov (United States)

    Ozdemir, Burhanettin

    2017-01-01

    The purpose of this study is to equate Trends in International Mathematics and Science Study (TIMSS) mathematics subtest scores obtained from TIMSS 2011 to scores obtained from TIMSS 2007 form with different nonlinear observed score equating methods under Non-Equivalent Anchor Test (NEAT) design where common items are used to link two or more test…

  12. Neoclassical MHD equations for tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Shaing, K.C.

    1986-03-01

    The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion

  13. Approximate solutions to Mathieu's equation

    Science.gov (United States)

    Wilkinson, Samuel A.; Vogt, Nicolas; Golubev, Dmitry S.; Cole, Jared H.

    2018-06-01

    Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrödinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community.

  14. Soliton equations and Hamiltonian systems

    CERN Document Server

    Dickey, L A

    2002-01-01

    The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water. Besides its obvious practical use, this theory is attractive also becau

  15. Galois theory of difference equations

    CERN Document Server

    Put, Marius

    1997-01-01

    This book lays the algebraic foundations of a Galois theory of linear difference equations and shows its relationship to the analytic problem of finding meromorphic functions asymptotic to formal solutions of difference equations. Classically, this latter question was attacked by Birkhoff and Tritzinsky and the present work corrects and greatly generalizes their contributions. In addition results are presented concerning the inverse problem in Galois theory, effective computation of Galois groups, algebraic properties of sequences, phenomena in positive characteristics, and q-difference equations. The book is aimed at advanced graduate researchers and researchers.

  16. Integral equation methods for electromagnetics

    CERN Document Server

    Volakis, John

    2012-01-01

    This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo

  17. Bridging the Knowledge Gaps between Richards' Equation and Budyko Equation

    Science.gov (United States)

    Wang, D.

    2017-12-01

    The empirical Budyko equation represents the partitioning of mean annual precipitation into evaporation and runoff. Richards' equation, based on Darcy's law, represents the movement of water in unsaturated soils. The linkage between Richards' equation and Budyko equation is presented by invoking the empirical Soil Conservation Service curve number (SCS-CN) model for computing surface runoff at the event-scale. The basis of the SCS-CN method is the proportionality relationship, i.e., the ratio of continuing abstraction to its potential is equal to the ratio of surface runoff to its potential value. The proportionality relationship can be derived from the Richards' equation for computing infiltration excess and saturation excess models at the catchment scale. Meanwhile, the generalized proportionality relationship is demonstrated as the common basis of SCS-CN method, monthly "abcd" model, and Budyko equation. Therefore, the linkage between Darcy's law and the emergent pattern of mean annual water balance at the catchment scale is presented through the proportionality relationship.

  18. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  19. Nonlinear integrodifferential equations as discrete systems

    Science.gov (United States)

    Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.

    1999-06-01

    We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.

  20. Direct 'delay' reductions of the Toda equation

    International Nuclear Information System (INIS)

    Joshi, Nalini

    2009-01-01

    A new direct method of obtaining reductions of the Toda equation is described. We find a canonical and complete class of all possible reductions under certain assumptions. The resulting equations are ordinary differential-difference equations, sometimes referred to as delay-differential equations. The representative equation of this class is hypothesized to be a new version of one of the classical Painleve equations. The Lax pair associated with this equation is obtained, also by reduction. (fast track communication)

  1. Integral equation for Coulomb problem

    International Nuclear Information System (INIS)

    Sasakawa, T.

    1986-01-01

    For short range potentials an inhomogeneous (homogeneous) Lippmann-Schwinger integral equation of the Fredholm type yields the wave function of scattering (bound) state. For the Coulomb potential, this statement is no more valid. It has been felt difficult to express the Coulomb wave function in a form of an integral equation with the Coulomb potential as the perturbation. In the present paper, the author shows that an inhomogeneous integral equation of a Volterra type with the Coulomb potential as the perturbation can be constructed both for the scattering and the bound states. The equation yielding the binding energy is given in an integral form. The present treatment is easily extended to the coupled Coulomb problems

  2. Geophysical interpretation using integral equations

    CERN Document Server

    Eskola, L

    1992-01-01

    Along with the general development of numerical methods in pure and applied to apply integral equations to geophysical modelling has sciences, the ability improved considerably within the last thirty years or so. This is due to the successful derivation of integral equations that are applicable to the modelling of complex structures, and efficient numerical algorithms for their solution. A significant stimulus for this development has been the advent of fast digital computers. The purpose of this book is to give an idea of the principles by which boundary-value problems describing geophysical models can be converted into integral equations. The end results are the integral formulas and integral equations that form the theoretical framework for practical applications. The details of mathematical analysis have been kept to a minimum. Numerical algorithms are discussed only in connection with some illustrative examples involving well-documented numerical modelling results. The reader is assu­ med to have a back...

  3. Singularity: Raychaudhuri equation once again

    Indian Academy of Sciences (India)

    Cosmology; Raychaudhuri equation; Universe; quantum gravity; loop quan- tum gravity ... than the observation verifying the prediction of theory. This gave .... which was now expanding, would have had a singular beginning in a hot Big Bang.

  4. Kinetic equations in dirty superconductors

    International Nuclear Information System (INIS)

    Kraehenbuehl, Y.

    1981-01-01

    Kinetic equations for superconductors in the dirty limit are derived using a method developed for superfluid systems, which allows a systematic expansion in small parameters; exact charge conservation is obeyed. (orig.)

  5. Kinks and the Dirac equation

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    In a model quantum theory of interacting mesons, the motion of certain conserved particle-like structures is discussed. It is shown how collective coordinates may be introduced to describe them, leading, in lowest approximation, to a Dirac equation. (author)

  6. Solving Differential Equations in R

    Science.gov (United States)

    Although R is still predominantly applied for statistical analysis and graphical representation, it is rapidly becoming more suitable for mathematical computing. One of the fields where considerable progress has been made recently is the solution of differential equations. Here w...

  7. Wave-equation dispersion inversion

    KAUST Repository

    Li, Jing; Feng, Zongcai; Schuster, Gerard T.

    2016-01-01

    We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained

  8. On the equations of motion

    International Nuclear Information System (INIS)

    Jannussis, A.; Streclas, A.; Sourlas, D.; Vlachos, K.

    1977-01-01

    Using the theorem of the derivative of a function of operators with respect to any parameter, we can find the equation of motion of a system in classical mechanics, in canonical as well as in non-canonical mechanics

  9. Quantum-statistical kinetic equations

    International Nuclear Information System (INIS)

    Loss, D.; Schoeller, H.

    1989-01-01

    Considering a homogeneous normal quantum fluid consisting of identical interacting fermions or bosons, the authors derive an exact quantum-statistical generalized kinetic equation with a collision operator given as explicit cluster series where exchange effects are included through renormalized Liouville operators. This new result is obtained by applying a recently developed superoperator formalism (Liouville operators, cluster expansions, symmetrized projectors, P q -rule, etc.) to nonequilibrium systems described by a density operator ρ(t) which obeys the von Neumann equation. By means of this formalism a factorization theorem is proven (being essential for obtaining closed equations), and partial resummations (leading to renormalized quantities) are performed. As an illustrative application, the quantum-statistical versions (including exchange effects due to Fermi-Dirac or Bose-Einstein statistics) of the homogeneous Boltzmann (binary collisions) and Choh-Uhlenbeck (triple collisions) equations are derived

  10. Lorentz Covariance of Langevin Equation

    International Nuclear Information System (INIS)

    Koide, T.; Denicol, G.S.; Kodama, T.

    2008-01-01

    Relativistic covariance of a Langevin type equation is discussed. The requirement of Lorentz invariance generates an entanglement between the force and noise terms so that the noise itself should not be a covariant quantity. (author)

  11. Equational theories of tropical sernirings

    DEFF Research Database (Denmark)

    Aceto, Luca; Esik, Zoltan; Ingolfsdottir, Anna

    2003-01-01

    examples of such structures are the (max,+) semiring and the tropical semiring. It is shown that none of the exotic semirings commonly considered in the literature has a finite basis for its equations, and that similar results hold for the commutative idempotent weak semirings that underlie them. For each......This paper studies the equational theories of various exotic semirings presented in the literature. Exotic semirings are semirings whose underlying carrier set is some subset of the set of real numbers equipped with binary operations of minimum or maximum as sum, and addition as product. Two prime...... of these commutative idempotent weak semirings, the paper offers characterizations of the equations that hold in them, decidability results for their equational theories, explicit descriptions of the free algebras in the varieties they generate, and relative axiomatization results. Udgivelsesdato: APR 11...

  12. Wave equations for pulse propagation

    International Nuclear Information System (INIS)

    Shore, B.W.

    1987-01-01

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation

  13. Feynman integrals and difference equations

    International Nuclear Information System (INIS)

    Moch, S.; Schneider, C.

    2007-09-01

    We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called ΠΣ * -fields. We test the implementation of the Mathematica package Sigma on examples from recent higher order perturbative calculations in Quantum Chromodynamics. (orig.)

  14. Hidden Statistics of Schroedinger Equation

    Science.gov (United States)

    Zak, Michail

    2011-01-01

    Work was carried out in determination of the mathematical origin of randomness in quantum mechanics and creating a hidden statistics of Schr dinger equation; i.e., to expose the transitional stochastic process as a "bridge" to the quantum world. The governing equations of hidden statistics would preserve such properties of quantum physics as superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods.

  15. Feynman integrals and difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation

    2007-09-15

    We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called {pi}{sigma}{sup *}-fields. We test the implementation of the Mathematica package Sigma on examples from recent higher order perturbative calculations in Quantum Chromodynamics. (orig.)

  16. Numerical solution of Boltzmann's equation

    International Nuclear Information System (INIS)

    Sod, G.A.

    1976-04-01

    The numerical solution of Boltzmann's equation is considered for a gas model consisting of rigid spheres by means of Hilbert's expansion. If only the first two terms of the expansion are retained, Boltzmann's equation reduces to the Boltzmann-Hilbert integral equation. Successive terms in the Hilbert expansion are obtained by solving the same integral equation with a different source term. The Boltzmann-Hilbert integral equation is solved by a new very fast numerical method. The success of the method rests upon the simultaneous use of four judiciously chosen expansions; Hilbert's expansion for the distribution function, another expansion of the distribution function in terms of Hermite polynomials, the expansion of the kernel in terms of the eigenvalues and eigenfunctions of the Hilbert operator, and an expansion involved in solving a system of linear equations through a singular value decomposition. The numerical method is applied to the study of the shock structure in one space dimension. Numerical results are presented for Mach numbers of 1.1 and 1.6. 94 refs, 7 tables, 1 fig

  17. Computational partial differential equations using Matlab

    CERN Document Server

    Li, Jichun

    2008-01-01

    Brief Overview of Partial Differential Equations The parabolic equations The wave equations The elliptic equations Differential equations in broader areasA quick review of numerical methods for PDEsFinite Difference Methods for Parabolic Equations Introduction Theoretical issues: stability, consistence, and convergence 1-D parabolic equations2-D and 3-D parabolic equationsNumerical examples with MATLAB codesFinite Difference Methods for Hyperbolic Equations IntroductionSome basic difference schemes Dissipation and dispersion errors Extensions to conservation lawsThe second-order hyperbolic PDE

  18. Linear determining equations for differential constraints

    International Nuclear Information System (INIS)

    Kaptsov, O V

    1998-01-01

    A construction of differential constraints compatible with partial differential equations is considered. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the classical determining equations used in the search for admissible Lie operators. As applications of this approach equations of an ideal incompressible fluid and non-linear heat equations are discussed

  19. Equationally Compact Acts : Coproducts / Peeter Normak

    Index Scriptorium Estoniae

    Normak, Peeter

    1998-01-01

    In this article equational compactness of acts and its generalizations are discussed. As equational compactness does not carry over to coproducts a slight generalization of c-equational campactness is introduced. It is proved that a coproduct of acts is c-equationally compact if and only if all components are c-equationally campact

  20. Exact results for the Boltzmann equation and Smoluchowski's coagulation equation

    International Nuclear Information System (INIS)

    Hendriks, E.M.

    1983-01-01

    Almost no analytical solutions have been found for realistic intermolecular forces, largely due to the complicated structure of the collision term which calls for the construction of simplified models, in which as many physical properties are maintained as possible. In the first three chapters of this thesis such model Boltzmann equations are studied. Only spatially homogeneous gases with isotropic distribution functions are considered. Chapter I considers transition kernels, chapter II persistent scattering models and chapter III very hard particles. The second part of this dissertation deals with Smoluchowski's coagulation equation for the size distribution function in a coagulating system, with chapters devoted to the following topics: kinetics of gelation and universality, coagulation equations with gelation and exactly soluble models of nucleation. (Auth./C.F.)