WorldWideScience

Sample records for bethe-placzec model

  1. Off-diagonal Bethe ansatz for exactly solvable models

    CERN Document Server

    Wang, Yupeng; Cao, Junpeng; Shi, Kangjie

    2015-01-01

    This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix.  These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems.

  2. Algebraic Bethe ansatz for 19-vertex models with reflection conditions

    International Nuclear Information System (INIS)

    Utiel, Wagner

    2003-01-01

    In this work we solve the 19-vertex models with the use of algebraic Bethe ansatz for diagonal reflection matrices (Sklyanin K-matrices). The eigenvectors, eigenvalues and Bethe equations are given in a general form. Quantum spin chains of spin one derived from the 19-vertex models were also discussed

  3. Model of pair aggregation on the Bethe lattice

    DEFF Research Database (Denmark)

    Baillet, M.V.-P.; Pacheco, A.F.; Gómez, J.B.

    1997-01-01

    We extend a recent model of aggregation of pairs of particles, analyzing the case in which the supporting framework is a Bethe lattice. The model exhibits a critical behavior of the percolation theory type....

  4. Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model

    Energy Technology Data Exchange (ETDEWEB)

    Cirilo António, N., E-mail: nantonio@math.ist.utl.pt [Centro de Análise Funcional e Aplicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Manojlović, N., E-mail: nmanoj@ualg.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Prof. Gama Pinto 2, PT-1649-003 Lisboa (Portugal); Departamento de Matemática, F.C.T., Universidade do Algarve, Campus de Gambelas, PT-8005-139 Faro (Portugal); Salom, I., E-mail: isalom@ipb.ac.rs [Institute of Physics, University of Belgrade, P.O. Box 57, 11080 Belgrade (Serbia)

    2014-12-15

    We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.

  5. Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model

    Science.gov (United States)

    Cirilo António, N.; Manojlović, N.; Salom, I.

    2014-12-01

    We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.

  6. Bethe ansatz solution of the closed anisotropic supersymmetric U model with quantum supersymmetry

    International Nuclear Information System (INIS)

    Hibberd, Katrina; Roditi, Itzhak; Links, Jon; Foerster, Angela

    1999-11-01

    The nested algebraic Bethe Ansatz is presented for the anisotropic supersymmetric U model maintaining quantum a supersymmetry. The Bethe Ansatz equations of the model are obtained on a one-dimensional closed lattice and an expression for the energy is given. (author)

  7. Two site spin correlation function in Bethe-Peierls approximation for Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D [Roorkee Univ. (India). Dept. of Physics

    1976-07-01

    Two site spin correlation function for an Ising model above Curie temperature has been calculated by generalising Bethe-Peierls approximation. The results derived by a graphical method due to Englert are essentially the same as those obtained earlier by Elliott and Marshall, and Oguchi and Ono. The earlier results were obtained by a direct generalisation of the cluster method of Bethe, while these results are derived by retaining that class of diagrams , which is exact on Bethe lattice.

  8. Topics in Bethe Ansatz

    Science.gov (United States)

    Wang, Chunguang

    Integrable quantum spin chains have close connections to integrable quantum field. theories, modern condensed matter physics, string and Yang-Mills theories. Bethe. ansatz is one of the most important approaches for solving quantum integrable spin. chains. At the heart of the algebraic structure of integrable quantum spin chains is. the quantum Yang-Baxter equation and the boundary Yang-Baxter equation. This. thesis focuses on four topics in Bethe ansatz. The Bethe equations for the isotropic periodic spin-1/2 Heisenberg chain with N. sites have solutions containing ±i/2 that are singular: both the corresponding energy and the algebraic Bethe ansatz vector are divergent. Such solutions must be carefully regularized. We consider a regularization involving a parameter that can be. determined using a generalization of the Bethe equations. These generalized Bethe. equations provide a practical way of determining which singular solutions correspond. to eigenvectors of the model. The Bethe equations for the periodic XXX and XXZ spin chains admit singular. solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to bephysical, in which case they correspond to genuine eigenvalues and eigenvectors of. the Hamiltonian. We analyze the ground state of the open spin-1/2 isotropic quantum spin chain. with a non-diagonal boundary term using a recently proposed Bethe ansatz solution. As the coefficient of the non-diagonal boundary term tends to zero, the Bethe roots. split evenly into two sets: those that remain finite, and those that become infinite. We. argue that the former satisfy conventional Bethe equations, while the latter satisfy a. generalization of the Richardson-Gaudin equations. We derive an expression for the. leading correction to the boundary energy in terms of the boundary parameters. We argue that the Hamiltonians for A(2) 2n open quantum spin chains

  9. Norm of Bethe vectors in models with gl(m|n symmetry

    Directory of Open Access Journals (Sweden)

    A. Hutsalyuk

    2018-01-01

    Full Text Available We study quantum integrable models solvable by the nested algebraic Bethe ansatz and possessing gl(m|n-invariant R-matrix. We compute the norm of the Hamiltonian eigenstates. Using the notion of a generalized model we show that the square of the norm obeys a number of properties that uniquely fix it. We also show that a Jacobian of the system of Bethe equations obeys the same properties. In this way we prove a generalized Gaudin hypothesis for the norm of the Hamiltonian eigenstates.

  10. Large N and Bethe ansatz

    OpenAIRE

    Jurco, B.

    2003-01-01

    We describe an integrable model, related to the Gaudin magnet, and its relation to the matrix model of Brezin, Itzykson, Parisi and Zuber. Relation is based on Bethe ansatz for the integrable model and its interpretation using orthogonal polynomials and saddle point approximation. Lagre $N$ limit of the matrix model corresponds to the thermodynamic limit of the integrable system. In this limit (functional) Bethe ansatz is the same as the generating function for correlators of the matrix models.

  11. The Bethe wavefunction

    CERN Document Server

    Gaudin, Michel

    2014-01-01

    Michel Gaudin's book La fonction d'onde de Bethe is a uniquely influential masterpiece on exactly solvable models of quantum mechanics and statistical physics. Available in English for the first time, this translation brings his classic work to a new generation of graduate students and researchers in physics. It presents a mixture of mathematics interspersed with powerful physical intuition, retaining the author's unmistakably honest tone. The book begins with the Heisenberg spin chain, starting from the coordinate Bethe Ansatz and culminating in a discussion of its thermodynamic properties. Delta-interacting bosons (the Lieb-Liniger model) are then explored, and extended to exactly solvable models associated to a reflection group. After discussing the continuum limit of spin chains, the book covers six- and eight-vertex models in extensive detail, from their lattice definition to their thermodynamics. Later chapters examine advanced topics such as multi-component delta-interacting systems, Gaudin magnets and...

  12. Bethe ansatz solutions of the τ{sub 2}-model with arbitrary boundary fields

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaotian; Hao, Kun; Yang, Tao [Institute of Modern Physics, Northwest University,Xian 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xian 710069 (China); Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics,Institute of Physics, Chinese Academy of Sciences,Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter,Beijing (China); School of Physical Sciences, University of Chinese Academy of Sciences,Beijing (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University,Xian 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences,Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University,Xian 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xian 710069 (China)

    2016-11-11

    The quantum τ{sub 2}-model with generic site-dependent inhomogeneity and arbitrary boundary fields is studied via the off-diagonal Bethe Ansatz method. The eigenvalues of the corresponding transfer matrix are given in terms of an inhomogeneous T−Q relation, which is based on the operator product identities among the fused transfer matrices and the asymptotic behavior of the transfer matrices. Moreover, the associated Bethe Ansatz equations are also obtained.

  13. Bethe vectors for XXX-spin chain

    Science.gov (United States)

    Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei

    2014-11-01

    The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included.

  14. Bethe vectors for XXX-spin chain

    International Nuclear Information System (INIS)

    Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei

    2014-01-01

    The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included

  15. The Bethe Wavefunction

    NARCIS (Netherlands)

    Gaudin, M.; Caux, J.-S.

    2014-01-01

    Michel Gaudin's book La fonction d'onde de Bethe is a uniquely influential masterpiece on exactly solvable models of quantum mechanics and statistical physics. Available in English for the first time, this translation brings his classic work to a new generation of graduate students and researchers

  16. Height probabilities in the Abelian sandpile model on the generalized finite Bethe lattice

    Science.gov (United States)

    Chen, Haiyan; Zhang, Fuji

    2013-08-01

    In this paper, we study the sandpile model on the generalized finite Bethe lattice with a particular boundary condition. Using a combinatorial method, we give the exact expressions for all single-site probabilities and some two-site joint probabilities. As a by-product, we prove that the height probabilities of bulk vertices are all the same for the Bethe lattice with certain given boundary condition, which was found from numerical evidence by Grassberger and Manna ["Some more sandpiles," J. Phys. (France) 51, 1077-1098 (1990)], 10.1051/jphys:0199000510110107700 but without a proof.

  17. Bethe ansatz study for ground state of Fateev Zamolodchikov model

    International Nuclear Information System (INIS)

    Ray, S.

    1997-01-01

    A Bethe ansatz study of a self-dual Z N spin lattice model, originally proposed by V. A. Fateev and A. B. Zamolodchikov, is undertaken. The connection of this model to the Chiral Potts model is established. Transcendental equations connecting the zeros of Fateev endash Zamolodchikov transfer matrix are derived. The free energies for the ferromagnetic and the anti-ferromagnetic ground states are found for both even and odd spins. copyright 1997 American Institute of Physics

  18. The spin-3/2 Blume-Capel model on the Bethe lattice using the recursion method

    International Nuclear Information System (INIS)

    Albayrak, Erhan; Keskin, Mustafa

    2000-01-01

    The spin-3/2 Blume-Capel model is solved on the Bethe lattice using the exact recursion equations. The nature of the variation of the Curie temperature with the ratio of the single-ion anisotropy term to the exchange-coupling constant is studied and the phase diagrams are constructed on the Bethe lattice with the co-ordination numbers q=3 and 6. A comparison is made with the results of the other approximation schemes

  19. The spin-3/2 Blume-Capel model on the Bethe lattice using the recursion method

    CERN Document Server

    Albayrak, E

    2000-01-01

    The spin-3/2 Blume-Capel model is solved on the Bethe lattice using the exact recursion equations. The nature of the variation of the Curie temperature with the ratio of the single-ion anisotropy term to the exchange-coupling constant is studied and the phase diagrams are constructed on the Bethe lattice with the co-ordination numbers q=3 and 6. A comparison is made with the results of the other approximation schemes.

  20. Bethe Ansatz and exact form factors of the O(N) Gross Neveu-model

    International Nuclear Information System (INIS)

    Babujian, Hrachya M.; Foerster, Angela; Karowski, Michael

    2016-01-01

    We apply previous results on the O(N) Bethe Ansatz http://dx.doi.org/10.1088/1751-8113/45/5/055207, http://arxiv.org/abs/1204.3479, http://dx.doi.org/10.1007/JHEP11(2013)089 to construct a general form factor formula for the O(N) Gross-Neveu model. We examine this formula for several operators, such as the energy momentum, the spin-field and the current. We also compare these results with the 1/N expansion of this model and obtain full agreement. We discuss bound state form factors, in particular for the three particle form factor of the field. In addition for the two particle case we prove a recursion relation for the K-functions of the higher level Bethe Ansatz.

  1. Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz

    Directory of Open Access Journals (Sweden)

    Samuel Belliard

    2013-11-01

    Full Text Available We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations formally similar to the ones obtained in the periodic case or with diagonal boundaries.

  2. Expanding the Bethe/Gauge dictionary

    Science.gov (United States)

    Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz

    2017-11-01

    We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.

  3. Where are the roots of the Bethe Ansatz equations?

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, R.S., E-mail: rsvieira@df.ufscar.br; Lima-Santos, A., E-mail: dals@df.ufscar.br

    2015-10-02

    Changing the variables in the Bethe Ansatz Equations (BAE) for the XXZ six-vertex model we had obtained a coupled system of polynomial equations. This provided a direct link between the BAE deduced from the Algebraic Bethe Ansatz (ABA) and the BAE arising from the Coordinate Bethe Ansatz (CBA). For two magnon states this polynomial system could be decoupled and the solutions given in terms of the roots of some self-inversive polynomials. From theorems concerning the distribution of the roots of self-inversive polynomials we made a thorough analysis of the two magnon states, which allowed us to find the location and multiplicity of the Bethe roots in the complex plane, to discuss the completeness and singularities of Bethe's equations, the ill-founded string-hypothesis concerning the location of their roots, as well as to find an interesting connection between the BAE with Salem’s polynomials.

  4. Thermodynamic Bethe Ansatz for the Spin-1/2 Staggered XXZ- Model

    OpenAIRE

    Mkhitaryan, V. V.; Sedrakyan, A. G.

    2003-01-01

    We develop the technique of Thermodynamic Bethe Ansatz to investigate the ground state and the spectrum in the thermodynamic limit of the staggered $XXZ$ models proposed recently as an example of integrable ladder model. This model appeared due to staggered inhomogeneity of the anisotropy parameter $\\Delta$ and the staggered shift of the spectral parameter. We give the structure of ground states and lowest lying excitations in two different phases which occur at zero temperature.

  5. A universality test of the quantum string Bethe ansatz

    DEFF Research Database (Denmark)

    Freyhult, L.; Kristjansen, C.

    2006-01-01

    We show that the quantum corrected string Bethe ansatz passes an important universality test by demonstrating that it correctly incorporates the non-analytical terms in the string sigma model one-loop correction for rational three-spin strings with two out of the three spins identical. Subsequent......, we use the quantum corrected string Bethe ansatz to predict the exact form of the non-analytic terms for the generic rational three-spin string.......We show that the quantum corrected string Bethe ansatz passes an important universality test by demonstrating that it correctly incorporates the non-analytical terms in the string sigma model one-loop correction for rational three-spin strings with two out of the three spins identical. Subsequently...

  6. Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models

    Directory of Open Access Journals (Sweden)

    Sh. Khachatryan

    2015-10-01

    Full Text Available We extend basic properties of two dimensional integrable models within the Algebraic Bethe Ansatz approach to 2+1 dimensions and formulate the sufficient conditions for the commutativity of transfer matrices of different spectral parameters, in analogy with Yang–Baxter or tetrahedron equations. The basic ingredient of our models is the R-matrix, which describes the scattering of a pair of particles over another pair of particles, the quark-anti-quark (meson scattering on another quark-anti-quark state. We show that the Kitaev model belongs to this class of models and its R-matrix fulfills well-defined equations for integrability.

  7. Distinct solutions of infinite U Hubbard model through nested Bethe ansatz and Gutzwiller projection operator approach

    International Nuclear Information System (INIS)

    Mishra, A.K.; Kishore, R.

    2009-01-01

    The exact nested Bethe ansatz solution for the one dimensional (1-D) U infinity Hubbard model show that the state vectors are a product of spin-less fermion and spin wavefunctions, or an appropriate superposition of such factorized wavefunctions. The spin-less fermion component of the wavefunctions ensures no double occupancy at any site. It had been demonstrated that the nested Bethe ansatz wavefunctions in the U infinity limit obey orthofermi statistics. Gutzwiller projection operator formalism is the another well known technique employed to handle U infinity Hubbard model. In general, this approach does not lead to spin-less fermion wavefunctions. Therefore, the nested Bethe ansatz and Gutzwiller projection operator approach give rise to different kinds of the wavefunctions for the U infinity limit of 1-D Hubbard Hamiltonian. To compare the consequences of this dissimilarity in the wavefunctions, we have obtained the ground state energy of a finite system consisting of three particles on a four site closed chain. It is shown that in the nested Bethe ansatz implemented through orthofermion algebra, all the permissible 2 3 spin configurations are degenerate in the ground state. This eight fold degeneracy of the ground state is absent in the Gutzwiller projection operator approach. This finding becomes relevant in the context of known exact U infinity results, which require that all the energy levels are 2 N -fold degenerate for an N particle system.

  8. Bethe states of the trigonometric SU(3) spin chain with generic open boundaries

    Science.gov (United States)

    Sun, Pei; Xin, Zhirong; Qiao, Yi; Wen, Fakai; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Tao; Yang, Wen-Li; Shi, Kangjie

    2018-06-01

    By combining the algebraic Bethe ansatz and the off-diagonal Bethe ansatz, we investigate the trigonometric SU (3) model with generic open boundaries. The eigenvalues of the transfer matrix are given in terms of an inhomogeneous T - Q relation, and the corresponding eigenstates are expressed in terms of nested Bethe-type eigenstates which have well-defined homogeneous limit. This exact solution provides a basis for further analyzing the thermodynamic properties and correlation functions of the anisotropic models associated with higher rank algebras.

  9. Anomalous magnetic nucleon moments in a Bethe-Salpeter model

    International Nuclear Information System (INIS)

    Chak Wing Chan.

    1978-01-01

    We investigate the anomalous magnetic moment of the nucleon in a field theoretic many-channel model for the electromagnetic form factors of the N anti N, the ππ, the K anti K, the πω and the πrho systems. Propagator self-energy corrections from the Ward idendity and phenomenological strong vertex corrections are both included. The photon is coupled minimally to pions, kaons and nucleons with power multiplicative renormalization. With solutions in the framework of the Bethe-Salpeter equation we obtain a value 1.84 for the isovector moment and a value -0.02 for the isoscalar moment. (orig.)

  10. Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE

    Science.gov (United States)

    Jiang, Yunfeng; Zhang, Yang

    2018-03-01

    In this paper and upcoming ones, we initiate a systematic study of Bethe ansatz equations for integrable models by modern computational algebraic geometry. We show that algebraic geometry provides a natural mathematical language and powerful tools for understanding the structure of solution space of Bethe ansatz equations. In particular, we find novel efficient methods to count the number of solutions of Bethe ansatz equations based on Gröbner basis and quotient ring. We also develop analytical approach based on companion matrix to perform the sum of on-shell quantities over all physical solutions without solving Bethe ansatz equations explicitly. To demonstrate the power of our method, we revisit the completeness problem of Bethe ansatz of Heisenberg spin chain, and calculate the sum rules of OPE coefficients in planar N=4 super-Yang-Mills theory.

  11. Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications

    International Nuclear Information System (INIS)

    Martins, M.J.; Melo, C.S.

    2009-01-01

    We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U q [SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.

  12. Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications

    Science.gov (United States)

    Martins, M. J.; Melo, C. S.

    2009-10-01

    We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U[SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.

  13. Nested Bethe Ansatz for Spin Ladder Model with Open Boundary Conditions

    International Nuclear Information System (INIS)

    Wu Junfang; Zhang Chunmin; Yue Ruihong; Li Runling

    2005-01-01

    The nested Bethe ansatz (BA) method is applied to find the eigenvalues and the eigenvectors of the transfer matrix for spin-ladder model with open boundary conditions. Based on the reflection equation, we find the general diagonal solution, which determines the general boundary interaction in the Hamiltonian. We introduce the spin-ladder model with open boundary conditions. By finding the solution K ± of the reflection equation which determines the nontrivial boundary terms in the Hamiltonian, we diagonalize the transfer matrix of the spin-ladder model with open boundary conditions in the framework of nested BA.

  14. Introduction to the thermodynamic Bethe ansatz

    Science.gov (United States)

    van Tongeren, Stijn J.

    2016-08-01

    We give a pedagogical introduction to the thermodynamic Bethe ansatz, a method that allows us to describe the thermodynamics of integrable models whose spectrum is found via the (asymptotic) Bethe ansatz. We set the stage by deriving the Fermi-Dirac distribution and associated free energy of free electrons, and then in a similar though technically more complicated fashion treat the thermodynamics of integrable models, focusing first on the one-dimensional Bose gas with delta function interaction as a clean pedagogical example, secondly the XXX spin chain as an elementary (lattice) model with prototypical complicating features in the form of bound states, and finally the {SU}(2) chiral Gross-Neveu model as a field theory example. Throughout this discussion we emphasize the central role of particle and hole densities, whose relations determine the model under consideration. We then discuss tricks that allow us to use the same methods to describe the exact spectra of integrable field theories on a circle, in particular the chiral Gross-Neveu model. We moreover discuss the simplification of TBA equations to Y systems, including the transition back to integral equations given sufficient analyticity data, in simple examples.

  15. Algebraic Bethe ansatz for the XXZ Heisenberg spin chain with triangular boundaries and the corresponding Gaudin model

    Science.gov (United States)

    Manojlović, N.; Salom, I.

    2017-10-01

    The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.

  16. Algebraic Bethe ansatz for the XXZ Heisenberg spin chain with triangular boundaries and the corresponding Gaudin model

    International Nuclear Information System (INIS)

    Manojlović, N.; Salom, I.

    2017-01-01

    The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.

  17. Obituary: Hans Albrecht Bethe, 1906-2005

    Science.gov (United States)

    Wijers, Ralph

    2007-12-01

    One of the unquestioned giants of physics and astrophysics, Hans Bethe, died on 6 March 2005, at the venerable age of 98, in his home town of Ithaca, New York. Seven decades of contributing to research and a Nobel Prize for his work on stellar hydrogen burning make a listing of his honors superfluous (besides being impossible in this space). Bethe was born in Strassburg, in then German Alsass Lothringen, on 2 July 1906. His father, Albrecht Julius Bethe (1872-1954), taught physiology at the University, and his mother, Anna Kuhn (1876-1966), was a musician and writer. Both his grandfathers were physicians. He spent his youth in Strassburg, Kiel, and Frankfurt, and some time in sanatoria due to tuberculosis. Hans's first scientific paper, at age 18, was with his father and a colleague, on dialysis. His education and early career in Germany brought him into contact with many top stars in the quantum revolution. Starting in Frankfurt in chemistry, Bethe soon switched to physics, taught there by Walter Gerlach and Karl Meissner, among others. In 1926, he successfully applied to join Arnold Sommerfeld's group in Munich, where he met one of his later long-term collaborators, Rudolf Peierls. Bethe considered his entry into physics to have come at an ideal time, with the new ideas of wave mechanics being developed and discussed right there; it was certainly also at an ideal place. His doctoral thesis was on the theory of electron diffraction by crystals, following the experimental work by Clinton Davisson and Lester Germer and the work on X-ray diffraction by Max von Laue and Paul Ewald. The newly minted doctor went from there briefly to Frankfurt and then to Ewald in Stuttgart, where he felt at home academically and personally. In 1939, Bethe would marry Ewald's daughter Rose. Not much later, though, Sommerfeld recalled him to Munich, where Sommerfeld created a Privatdozent position for him. There he worked out the solution for a linear chain of coupled spins by what we

  18. Sequential Bethe vectors and the quantum Ernst system

    International Nuclear Information System (INIS)

    Niedermaier, M.; Samtleben, H.

    2000-01-01

    We give a brief review on the use of Bethe Ansatz techniques to construct solutions of recursive functional equations which emerged in a bootstrap approach to the quantum Ernst system. The construction involves two particular limits of a rational Bethe Ansatz system with complex inhomogeneities. First, we pinch two insertions to the critical value. This links Bethe systems with different number of insertions and leads to the concept of sequential Bethe vectors. Second, we study the semiclassical limit of the system in which the scale parameter of the insertions tends to infinity. (author)

  19. Algebraic Bethe ansatz for the XXZ Heisenberg spin chain with triangular boundaries and the corresponding Gaudin model

    Directory of Open Access Journals (Sweden)

    N. Manojlović

    2017-10-01

    Full Text Available The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.

  20. Low-lying qq(qq)-bar states in a relativistic model based on the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Ram, B.; Kriss, V.

    1985-01-01

    Low-lying qq(qq)-bar states are analysed in a previously given relativistic model based on the Bethe-Salpeter equation. It is not got M-diquonia, P-mesonia, or meson molecules, but it is got T-diquonia

  1. Hans Bethe, Powering the Stars, and Nuclear Physics

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Hans Bethe, Energy Production in Stars, and Nuclear Physics physics, built atomic weapons, and called for a halt to their proliferation. Bethe's dual legacy is one of Laboratory] from 1943 to 1946. Prior to joining the Manhattan Project, Bethe taught physics at Cornell

  2. Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study

    International Nuclear Information System (INIS)

    Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.

    2016-01-01

    The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions. - Highlights: • The magnetic properties of bilayer on the Bethe lattice have been investigated. • The transition temperature has been deduced. • The magnetic coercive filed has been established.

  3. Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2016-03-01

    The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions. - Highlights: • The magnetic properties of bilayer on the Bethe lattice have been investigated. • The transition temperature has been deduced. • The magnetic coercive filed has been established.

  4. In Memoriam: Hans Bethe

    Science.gov (United States)

    Garwin, Richard L.; Von Hippel, Frank

    Hans Bethe, who died on March 6 at the age of 98, was exemplary as a scientist; a citizen-advocate seeking to stem the arms race; and an individual of warmth, generosity, tenacity, and modest habits. Bethe made major contributions to several areas of physics during his academic career. He earned a Nobel Prize in 1967 for his research into how the sun generates its energy by converting hydrogen to helium using carbon as a nuclear catalyst. A few years later, he made central contributions to the secret US World War II nuclear-weapon development programs (the "Manhattan Project").

  5. Probabilistic image processing by means of the Bethe approximation for the Q-Ising model

    International Nuclear Information System (INIS)

    Tanaka, Kazuyuki; Inoue, Jun-ichi; Titterington, D M

    2003-01-01

    The framework of Bayesian image restoration for multi-valued images by means of the Q-Ising model with nearest-neighbour interactions is presented. Hyperparameters in the probabilistic model are determined so as to maximize the marginal likelihood. A practical algorithm is described for multi-valued image restoration based on the Bethe approximation. The algorithm corresponds to loopy belief propagation in artificial intelligence. We conclude that, in real world grey-level images, the Q-Ising model can give us good results

  6. Nuclear forces the making of the physicist Hans Bethe

    CERN Document Server

    Schweber, Silvan S

    2012-01-01

    On the fiftieth anniversary of Hiroshima, Nobel-winning physicist Hans Bethe called on his fellow scientists to stop working on weapons of mass destruction. What drove Bethe, the head of Theoretical Physics at Los Alamos during the Manhattan Project, to renounce the weaponry he had once worked so tirelessly to create? That is one of the questions answered by "Nuclear Forces", a riveting biography of Bethe's early life and development as both a scientist and a man of principle. As Silvan Schweber follows Bethe from his childhood in Germany, to laboratories in Italy and England, and on to Cornell University, he shows how these differing environments were reflected in the kind of physics Bethe produced. Many of the young quantum physicists in the 1930s, including Bethe, had Jewish roots, and Schweber considers how Liberal Judaism in Germany helps explain their remarkable contributions. A portrait emerges of a man whose strategy for staying on top of a deeply hierarchical field was to tackle only those problems h...

  7. Approximate, analytic solutions of the Bethe equation for charged particle range

    OpenAIRE

    Swift, Damian C.; McNaney, James M.

    2009-01-01

    By either performing a Taylor expansion or making a polynomial approximation, the Bethe equation for charged particle stopping power in matter can be integrated analytically to obtain the range of charged particles in the continuous deceleration approximation. Ranges match reference data to the expected accuracy of the Bethe model. In the non-relativistic limit, the energy deposition rate was also found analytically. The analytic relations can be used to complement and validate numerical solu...

  8. Practitioner Profile: An Interview with Beth Crittenden

    Directory of Open Access Journals (Sweden)

    Martie Gillen

    2016-12-01

    Full Text Available Beth Crittenden offers financial wellness coaching to people who want growth both professionally and personally. Beth has been working with finances as a focus since 2009, after training in somatic psychology, healthy communication in relationship, and mindful meditation practices and theory.

  9. Hans Bethe, Quantum Mechanics, and the Lamb Shift

    Indian Academy of Sciences (India)

    addressed by Bethe in his own inimitable style: He was returning to ... the solution in the train itself (!), on his return journey ... was a viable atomic model to account for some cru- ... The WS conditions in turn were based on the Hamilton-.

  10. Obituary: Beth Brown (1969-2008)

    Science.gov (United States)

    Bregman, Joel

    2011-12-01

    phenomena. She was involved in outreach and education at many levels and throughout her career. She would give planetarium shows, popular science talks for the public, and would speak to local and national news agencies, where she would explain recent NASA science findings. Among other contributions to higher education, she created a course, "Naked Eye Astronomy" at the University of Michigan, which remains the most popular course that the department offers. She was an active member of the National Society of Black Physicists (NSBP), where she was a frequent speaker as well as a mentor to students. Beth Brown was an inspiration to women and minorities in encouraging them to pursue careers in astronomy and physics. One could not find a finer roll model. She will be missed but not forgotten.

  11. Loop expansion around the Bethe approximation through the M-layer construction

    Science.gov (United States)

    Altieri, Ada; Chiara Angelini, Maria; Lucibello, Carlo; Parisi, Giorgio; Ricci-Tersenghi, Federico; Rizzo, Tommaso

    2017-11-01

    For every physical model defined on a generic graph or factor graph, the Bethe M-layer construction allows building a different model for which the Bethe approximation is exact in the large M limit, and coincides with the original model for M=1 . The 1/M perturbative series is then expressed by a diagrammatic loop expansion in terms of so-called fat diagrams. Our motivation is to study some important second-order phase transitions that do exist on the Bethe lattice, but are either qualitatively different or absent in the corresponding fully connected case. In this case, the standard approach based on a perturbative expansion around the naive mean field theory (essentially a fully connected model) fails. On physical grounds, we expect that when the construction is applied to a lattice in finite dimension there is a small region of the external parameters, close to the Bethe critical point, where strong deviations from mean-field behavior will be observed. In this region, the 1/M expansion for the corrections diverges, and can be the starting point for determining the correct non-mean-field critical exponents using renormalization group arguments. In the end, we will show that the critical series for the generic observable can be expressed as a sum of Feynman diagrams with the same numerical prefactors of field theories. However, the contribution of a given diagram is not evaluated by associating Gaussian propagators to its lines, as in field theories: one has to consider the graph as a portion of the original lattice, replacing the internal lines with appropriate one-dimensional chains, and attaching to the internal points the appropriate number of infinite-size Bethe trees to restore the correct local connectivity of the original model. The actual contribution of each (fat) diagram is the so-called line-connected observable, which also includes contributions from sub-diagrams with appropriate prefactors. In order to compute the corrections near to the critical

  12. Validity of various approximations for the Bethe-Salpeter equation and their WKB quantization

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Bilal, A.; Gignoux, C.; Schuck, P.

    1984-01-01

    The validity of the instantaneous approximation for the Bethe-Salpeter equation is questioned within the framework of the simple scalar-scalar model of Cutkosky. Detailed numerous results for various approximations are compared to the exact ones. WKB quantization is applied to these relativistic approximations. An unexpected question arises: is the currently used Bethe-Salpeter equation (i.e., the ladder approximation) well suited to describe two interacting relativistic particles

  13. Combinatorics of Generalized Bethe Equations

    Science.gov (United States)

    Kozlowski, Karol K.; Sklyanin, Evgeny K.

    2013-10-01

    A generalization of the Bethe ansatz equations is studied, where a scalar two-particle S-matrix has several zeroes and poles in the complex plane, as opposed to the ordinary single pole/zero case. For the repulsive case (no complex roots), the main result is the enumeration of all distinct solutions to the Bethe equations in terms of the Fuss-Catalan numbers. Two new combinatorial interpretations of the Fuss-Catalan and related numbers are obtained. On the one hand, they count regular orbits of the permutation group in certain factor modules over {{Z}^M}, and on the other hand, they count integer points in certain M-dimensional polytopes.

  14. Professor Hans A Bethe

    Indian Academy of Sciences (India)

    2018-03-06

    Mar 6, 2018 ... These theories formed the deep conceptual foundations of modern ... wrote on nuclear theory in the 1930's, often called 'Bethe's Bible', ... tions to solid state physics, fluid dynamics, shock waves, radar theory and reactor.

  15. A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons

    International Nuclear Information System (INIS)

    Hibberd, K.E.; Dunning, C.; Links, J.

    2006-01-01

    We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane

  16. Selected Works Of Hans A Bethe (With Commentary)

    International Nuclear Information System (INIS)

    Bethe, Hans A.

    1997-01-01

    Hans A Bethe received the Nobel Prize for Physics in 1967 for his work on the production of energy in stars. A living legend among the physics community, he helped to shape classical physics into quantum physics and increased the understanding of the atomic processes responsible for the properties of matter and of the forces governing the structures of atomic nuclei. This collection of papers by Prof Bethe dates from 1928, when he received his PhD, to now. It covers several areas and reflects the many contributions in research and discovery made by one of the most important and eminent physicists of all time. Special commentaries have been written by Prof Bethe to complement the selected papers

  17. Algebraic Bethe ansatz for the Izergin-Korepin R matrix

    International Nuclear Information System (INIS)

    Tarasov, V.O.

    1989-01-01

    The authors propose a generalization of the algebraic Bethe ansatz for the Izergin-Korepin R matrix - the simplest unstudied odd-dimensional solution of the Yang-Baxter equation - and they discuss some related questions. The first section of the paper is an introduction. In the second they indicate a way of generalizing the algebraic Bethe ansatz to the case of the Izergin-Korepin R matrix. The simplest monodromy matrices (L operators) for this R matrix are described in the third section. The fourth section is devoted to the proof of the proposed generalization of the algebraic Bethe ansatz

  18. Thermodynamic Bethe ansatz with Haldane statistics

    International Nuclear Information System (INIS)

    Bytsko, A.G.; Fring, A.

    1998-01-01

    We derive the thermodynamic Bethe ansatz equation for the situation in which the statistical interaction of a multi-particle system is governed by Haldane statistics. We formulate a macroscopical equivalence principle for such systems. Particular CDD ambiguities play a distinguished role in compensating the ambiguity in the exclusion statistics. We derive Y-systems related to generalized statistics. We discuss several fermionic, bosonic and anyonic versions of affine Toda field theories and Calogero-Sutherland type models in the context of generalized statistics. (orig.)

  19. ODE/IM correspondence and Bethe ansatz for affine Toda field equations

    Directory of Open Access Journals (Sweden)

    Katsushi Ito

    2015-07-01

    Full Text Available We study the linear problem associated with modified affine Toda field equation for the Langlands dual gˆ∨, where gˆ is an untwisted affine Lie algebra. The connection coefficients for the asymptotic solutions of the linear problem are found to correspond to the Q-functions for g-type quantum integrable models. The ψ-system for the solutions associated with the fundamental representations of g leads to Bethe ansatz equations associated with the affine Lie algebra gˆ. We also study the A2r(2 affine Toda field equation in massless limit in detail and find its Bethe ansatz equations as well as T–Q relations.

  20. Centenary Birth Anniversary of E. W. Beth (1908-1964)

    Science.gov (United States)

    Bagni, Giorgio T.

    2008-01-01

    Evert Willem Beth (1908-1964) was a Dutch logician, mathematician and philosopher, whose work mainly concerned the foundations of mathematics. Beth was among the founders of the Commission Internationale pour l'Etude et l'Amelioration de l'Enseignement des Mathematiques and was a member of the Central Committee of the International Commission on…

  1. Mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000, Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2015-11-01

    The magnetic properties of spins-S and σ Ising model on the Bethe lattice have been investigated by using the Monte Carlo simulation. The thermal total magnetization and magnetization of spins S and σ with the different exchange interactions, different external magnetic field and different temperatures have been studied. The critical temperature and compensation temperature have been deduced. The magnetic hysteresis cycle of Ising ferrimagnetic system on the Bethe lattice has been deduced for different values of exchange interactions between the spins S and σ, for different values of crystal field and for different sizes. The magnetic coercive filed has been deduced. - Highlights: • The magnetic properties of Bethe lattice have been investigated. • The critical temperature and compensation temperature have been deduced. • The magnetic coercive filed has been deduced.

  2. Monte Carlo study of alternate mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice

    Energy Technology Data Exchange (ETDEWEB)

    Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2016-01-01

    The magnetic properties of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice have been studied by using the Monte Carlo simulations. The ground state phase diagrams of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice has been obtained. The thermal total magnetization and magnetization of spins-5/2 and spin-2 with the different exchange interactions, external magnetic field and temperatures have been studied. The critical temperature have been deduced. The magnetic hysteresis cycle on the Bethe lattice has been deduced for different values of exchange interactions, for different values of crystal field and for different sizes. The magnetic coercive field has been deduced. - Highlights: • The alternate mixed spin-5/2 and -2 on the Bethe lattice is studied. • The critical temperature has been deduced. • The magnetic coercive filed has been deduced.

  3. Bethe-Salpeter amplitudes and static properties of the deuteron

    International Nuclear Information System (INIS)

    Kaptari, L.P.; Bondarenko, S.G.; Khanna, F.C.; Kaempfer, B.; Technische Univ. Dresden

    1996-04-01

    Extended calculations of the deuteron's static properties, based on the numerical solution of the Bethe-Salpeter equation, are presented. A formalism is developed, which provides a comparative analysis of the covariant amplitudes in various representations and nonrelativistic wave functions. The magnetic and quadrupole moments of the deuteron are calculated in the Bethe-Salpeter formalism and the role of relativistic corrections is discussed. (orig.)

  4. Accuracy of the Bethe approximation for hyperparameter estimation in probabilistic image processing

    International Nuclear Information System (INIS)

    Tanaka, Kazuyuki; Shouno, Hayaru; Okada, Masato; Titterington, D M

    2004-01-01

    We investigate the accuracy of statistical-mechanical approximations for the estimation of hyperparameters from observable data in probabilistic image processing, which is based on Bayesian statistics and maximum likelihood estimation. Hyperparameters in statistical science correspond to interactions or external fields in the statistical-mechanics context. In this paper, hyperparameters in the probabilistic model are determined so as to maximize a marginal likelihood. A practical algorithm is described for grey-level image restoration based on a Gaussian graphical model and the Bethe approximation. The algorithm corresponds to loopy belief propagation in artificial intelligence. We examine the accuracy of hyperparameter estimation when we use the Bethe approximation. It is well known that a practical algorithm for probabilistic image processing can be prescribed analytically when a Gaussian graphical model is adopted as a prior probabilistic model in Bayes' formula. We are therefore able to compare, in a numerical study, results obtained through mean-field-type approximations with those based on exact calculation

  5. Overlaps of partial Néel states and Bethe states

    International Nuclear Information System (INIS)

    Foda, O; Zarembo, K

    2016-01-01

    Partial Néel states are generalizations of the ordinary Néel (classical anti-ferromagnet) state that can have arbitrary integer spin. We study overlaps of these states with Bethe states. We first identify this overlap with a partial version of reflecting-boundary domain-wall partition function, and then derive various determinant representations for off-shell and on-shell Bethe states. (paper: quantum statistical physics, condensed matter, integrable systems)

  6. Electronic structure of disordered binary alloys with short range correlation in Bethe lattice

    International Nuclear Information System (INIS)

    Moreno, I.F.

    1987-01-01

    The determination of the electronic structure of a disordered material along the tight-binding model when applied to a Bethe lattice. The diagonal as well as off-diagonal disorder, are considered. The coordination number on the Bethe is fixed lattice to four (Z=4) that occurs in most compound semiconductors. The main proposal was to study the conditions under which a relatively simple model of a disordered material, i.e, a binary alloy, could account for the basic properties of transport or more specifically for the electronic states in such systems. By using a parametrization of the pair probability the behaviour of the electronic density of states (DOS) for different values of the short range order parameter, σ, which makes possible to treat the segregated, random and alternating cases, was analysed. In solving the problem via the Green function technique in the Wannier representation a linear chain of atoms was considered and using the solution of such a 1-D system the problem of the Bethe lattice which is constructed using such renormalized chains as elements, was solved. The results indicate that the obtained DOS are strongly dependent on the correlation assumed for the occupancy in the lattice. (author) [pt

  7. The decay constants of heavy-light mesons in a two-tier Bethe-Salpeter model

    International Nuclear Information System (INIS)

    Pagnamenta, A.; Illinois Univ., Chicago, IL; Gupta, K.K.; Mitra, A.N.; Singh, N.N.; Ramanathan, R.

    1990-01-01

    Leptonic decay widths for pseudoscalar mesons are calculated in a QCD-motivated Bethe-Salpeter formalism on a two-tier basis. This model, which is characterised by a Lorentz-invariant confining kernel that depends on the relativistic reduced mass defined in accordance with the Wightman-Garding definition of the internal 4-momenta q μ , has already shown precision fits to the spectra of qq-bar, qQ-bar and qqq hadrons apart from exhibiting an eplicit Regge-asymptotic behaviour (M 2 ∼N). The leptonic decay constants thus obtained with no free parameters, are (in MeV units), f P =134(π), 166(K); 158(D); 94.9(B), 114(B S ). (author)

  8. The q-deformed analogue of the Onsager algebra: Beyond the Bethe ansatz approach

    International Nuclear Information System (INIS)

    Baseilhac, Pascal

    2006-01-01

    The spectral properties of operators formed from generators of the q-Onsager non-Abelian infinite-dimensional algebra are investigated. Using a suitable functional representation, all eigenfunctions are shown to obey a second-order q-difference equation (or its degenerate discrete version). In the algebraic sector associated with polynomial eigenfunctions (or their discrete analogues), Bethe equations naturally appear. Beyond this sector, where the Bethe ansatz approach is not applicable in related massive quantum integrable models, the eigenfunctions are also described. The spin-half XXZ open spin chain with general integrable boundary conditions is reconsidered in light of this approach: all the eigenstates are constructed. In the algebraic sector which corresponds to special relations among the parameters, known results are recovered

  9. Internal parity symmetry and degeneracy of Bethe Ansatz strings in the isotropic heptagonal magnetic ring

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, J., E-mail: jsmilew@wp.pl [Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań (Poland); Lulek, B., E-mail: barlulek@amu.edu.pl [East European State Higher School, ul. Tymona Terleckiego 6, 37-700 Przemyśl (Poland); Lulek, T., E-mail: tadlulek@prz.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); East European State Higher School, ul. Tymona Terleckiego 6, 37-700 Przemyśl (Poland); Łabuz, M., E-mail: labuz@univ.rzeszow.pl [University of Rzeszow, Institute of Physics, Rejtana 16a, 35-959 Rzeszów (Poland); Stagraczyński, R., E-mail: rstag@prz.edu.pl [Rzeszow University of Technology, The Faculty of Mathematics and Applied Physics, Powstańców Warszawy 6, 35-959 Rzeszów (Poland)

    2014-02-01

    The exact Bethe eigenfunctions for the heptagonal ring within the isotropic XXX model exhibit a doubly degenerated energy level in the three-deviation sector at the centre of the Brillouin zone. We demonstrate an explicit construction of these eigenfunctions by use of algebraic Bethe Ansatz, and point out a relation of degeneracy to parity conservation, applied to the configuration of strings for these eigenfunctions. Namely, the internal structure of the eigenfunctions (the 2-string and the 1-string, with opposite quasimomenta) admits generation of two mutually orthogonal eigenfunctions due to the fact that the strings which differ by their length are distinguishable objects.

  10. Degeneration of Bethe subalgebras in the Yangian of gl_n

    Science.gov (United States)

    Ilin, Aleksei; Rybnikov, Leonid

    2018-04-01

    We study degenerations of Bethe subalgebras B( C) in the Yangian Y(gl_n), where C is a regular diagonal matrix. We show that closure of the parameter space of the family of Bethe subalgebras, which parameterizes all possible degenerations, is the Deligne-Mumford moduli space of stable rational curves \\overline{M_{0,n+2}}. All subalgebras corresponding to the points of \\overline{M_{0,n+2}} are free and maximal commutative. We describe explicitly the "simplest" degenerations and show that every degeneration is the composition of the simplest ones. The Deligne-Mumford space \\overline{M_{0,n+2}} generalizes to other root systems as some De Concini-Procesi resolution of some toric variety. We state a conjecture generalizing our results to Bethe subalgebras in the Yangian of arbitrary simple Lie algebra in terms of this De Concini-Procesi resolution.

  11. Long-range psu(2,2|4) Bethe ansatze for gauge theory and strings

    International Nuclear Information System (INIS)

    Beisert, Niklas; Staudacher, Matthias

    2005-01-01

    We generalize various existing higher-loop Bethe ansatze for simple sectors of the integrable long-range dynamic spin chain describing planar N=4 super-Yang-Mills theory to the full psu(2,2|4) symmetry and, asymptotically, to arbitrary loop order. We perform a large number of tests of our conjectured equations, such as internal consistency, comparison to direct three-loop diagonalization and expected thermodynamic behavior. In the special case of the su(1|2) subsector, corresponding to a long-range t-J model, we are able to derive, up to three loops, the S-matrix and the associated nested Bethe ansatz from the gauge theory dilatation operator. We conjecture novel all-order S-matrices for the su(1|2) and su(1,1|2) subsectors, and show that they satisfy the Yang-Baxter equation. Throughout the paper, we muse about the idea that quantum string theory on AdS 5 xS 5 is also described by a psu(2,2|4) spin chain. We propose asymptotic all-order Bethe equations for this putative ''string chain'', which differ in a systematic fashion from the gauge theory equations

  12. Covariant solutions of the Bethe-Salpeter equation and an application to the nucleon structure function

    International Nuclear Information System (INIS)

    Williams, A.G.

    1998-01-01

    There is a need for covariant solutions of bound state equations in order to construct realistic QCD based models of mesons and baryons. Furthermore, we ideally need to know the structure of these bound states in all kinematical regimes, which makes a direct solution in Minkowski space (without any 3-dimensional reductions) desirable. The Bethe-Salpeter equation (BSE) for bound states in scalar theories is reformulated and solved for arbitrary scattering kernels in terms of a generalized spectral representation directly in Minkowski space. This differs from the conventional Euclidean approach, where the BSE can only be solved in ladder approximation after a Wick rotation. An application of covariant Bethe-Salpeter solutions to a quark-diquark model of the nucleon is also briefly discussed. (orig.)

  13. On the completeness of the set of Bethe-Hulthen solutions of the linear Heisenberg system

    International Nuclear Information System (INIS)

    Caspers, W J; Labuz, M; Wal, A

    2006-01-01

    In this work we formulate the standard form of the solutions of the Heisenberg chain with periodic boundary conditions and show that these solutions can be transformed into the well-known Bethe-Hulthen solutions. The standard form is found by solving the secular problem, separated according to the irreducible representations of the translation group. The relevant parameters exp(ik j ) of the Bethe-Hulthen solutions are found from a set of linear equations with coefficients derived from the standard solutions. This correspondence between standard and Bethe-Hulthen solutions realizes the completeness of the Bethe-Hulthen method

  14. Colored Quantum Algebra and Its Bethe State

    International Nuclear Information System (INIS)

    Wang Jin-Zheng; Jia Xiao-Yu; Wang Shi-Kun

    2014-01-01

    We investigate the colored Yang—Baxter equation. Based on a trigonometric solution of colored Yang—Baxter equation, we construct a colored quantum algebra. Moreover we discuss its algebraic Bethe ansatz state and highest wight representation. (general)

  15. The Yangians, Bethe ansatz and combinatorics

    International Nuclear Information System (INIS)

    Kirillov, A.N.; Reshetikhin, N.Yu.

    1986-01-01

    An axiomatic definition of a quantum monodromy matrix and the representations of its corresponding Hopf algebra are discussed. The connection between the quantum inverse transform method and the representation theory of a symmetric group is considered. A new approach to the completeness problem of Bethe vectors is also given. (orig.)

  16. Quantum Waveguide Properties of Bethe Lattices with a Ring

    International Nuclear Information System (INIS)

    Zhi-Ping, Lin; Zhi-Lin, Hou; You-Yan, Liu

    2008-01-01

    Based on waveguide theory we investigate electronic transport properties of Bethe lattices with a mesoscopic ring threaded by a magnetic flux. The generalized eigen-function method (GEM) is used to calculate the transmission and reflection coefficients up to the fifth generation of Bethe lattices. The relationships among the transmission coefficient T, magnetic flux φ and wave vector kl are investigated in detail. The numerical results are shown by the three-dimensional plots and contour maps. Some resonant-transmission features and the symmetry of the transmission coefficient T to flux φ are observed and discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Covariant solutions of the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Williams, A.G.; Kusaka, K.; Simpson, K.M.

    1997-01-01

    There is a need for covariant solutions of bound state equations in order to construct realistic QCD based models of mesons and baryons. Furthermore, we ideally need to know the structure of these bound states in all kinematical regimes, which makes a direct solution in Minkowski space (without any 3-dimensional reductions) desirable. The Bethe-Salpeter equation (BSE) for bound states in scalar theories is reformulated and solved for arbitrary scattering kernels in terms of a generalized spectral representation directly in Minkowski space. This differs from the conventional Euclidean approach, where the BSE can only be solved in ladder approximation after a Wick rotation. (author)

  18. Obituary: Hans Albrecht Bethe, 1906-2005

    NARCIS (Netherlands)

    Wijers, R.

    2007-01-01

    One of the unquestioned giants of physics and astrophysics, Hans Bethe, died on 6 March 2005, at the venerable age of 98, in his home town of Ithaca, New York. Seven decades of contributing to research and a Nobel Prize for his work on stellar hydrogen burning make a listing of his honors

  19. Bethe Ansatz and supersymmetric vacua

    International Nuclear Information System (INIS)

    Nekrasov, Nikita; Shatashvili, Samson

    2009-01-01

    Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T 2 . A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.

  20. Glueball properties from the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Kellermann, Christian

    2012-01-01

    For over thirty years bound states of gluons are an outstanding problem of both theoretical and experimental physics. Being predicted by Quantum-Chromodynamics their experimental confirmation is one of the foremost goals of large experimental facilities currently under construction like FAIR in Darmstadt. This thesis presents a novel approach to the theoretical determination of physical properties of bound states of two gluons, called glueballs. It uses the consistent combination of Schwinger-Dyson equations for gluons and ghosts and appropriate Bethe-Salpeter equations describing their corresponding bound-states. A rigorous derivation of both sets of equations, starting from an 2PI effective action is given as well as a general determination of appropriate decompositions of Bethe-Salpeter amplitudes to a given set of quantum numbers of a glueball. As an application example bound state masses of glueballs in a simple truncation scheme are calculated. (orig.)

  1. Pionierin der Religionspsychologie: Marianne Beth (1890-1984)

    NARCIS (Netherlands)

    Belzen, J.A.

    2010-01-01

    This article deals with the contributions to the psychology of religion made by Dr. Marianne Beth (1890-1984), an almost totally forgotten pioneer of the psychology of religion. The article especially contextualizes her initiative to turn "unbelief" into a topic for research in psychology of

  2. From tricritical Ising to critical Ising by thermodynamic Bethe ansatz

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1991-01-01

    A simple factorized scattering theory is suggested for the massless Goldstone fermions of the trajectory flowing from the tricritical Ising fixed point to the critical Ising one. The thermodynamic Bethe ansatz approach is applied to this scattering theory to support its interpretation both analytically and numerically. As a generalization a sequence of massless TBA systems is proposed which seems relevant for the trajectories interpolating between two successive minimal CFT models M p and M p-1 . (orig.)

  3. A cluster-bethe-lattice approach to spin-waves in dilute ferromagnets

    International Nuclear Information System (INIS)

    Salzberg, J.B.; Silva, C.E.T.G. da; Falicov, L.M.

    1975-01-01

    The spin-wave spectra of a dilute ferromagnet within the cluster-bethe-lattice approximation is studied. Short range order effects for the alloy are included. A study of finite size clusters connected at their edges to Bethe lattices of the same coordination number allows one to determine:(i) the stability condition for the magnetic system; (ii) the continuum spin-wave local density of states and (iii) the existence of localized states below and above the continuum states

  4. Euclidean to Minkowski Bethe-Salpeter amplitude and observables

    International Nuclear Information System (INIS)

    Carbonell, J.; Frederico, T.; Karmanov, V.A.

    2017-01-01

    We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)

  5. Euclidean to Minkowski Bethe-Salpeter amplitude and observables

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, J. [Universite Paris-Sud, IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France); Frederico, T. [Instituto Tecnologico de Aeronautica, DCTA, Sao Jose dos Campos (Brazil); Karmanov, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    2017-01-15

    We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)

  6. Correlation functions of the spin chains. Algebraic Bethe Ansatz approach

    International Nuclear Information System (INIS)

    Kitanine, N.

    2007-09-01

    Spin chains are the basic elements of integrable quantum models. These models have direct applications in condense matter theory, in statistical physics, in quantum optics, in field theory and even in string theory but they are also important because they enable us to solve, in an exact manner, non-perturbative phenomena that otherwise would stay unresolved. The method described in this work is based on the algebraic Bethe Ansatz. It is shown how this method can be used for the computation of null temperature correlation functions of the Heisenberg 1/2 spin chain. The important point of this approach is the solution of the inverse quantum problem given by the XXZ spin chain. This solution as well as a simple formulae for the scalar product of the Bethe states, have enabled us to get the most basic correlation functions under the form of multiple integrals. The formalism of multiple integrals open the way for asymptotic analysis for a few physical quantities like the probability of vacuum formation. It is worth noticing that this formalism can give exact results for two-point functions that are the most important correlation functions for applications. A relationship has been discovered between these multiple integrals and the sum of the form factors. The results have been extended to dynamical correlation functions. (A.C.)

  7. Correlation functions of the spin chains. Algebraic Bethe Ansatz approach; Fonctions de correlation des chaines de spin. Approche de l'ansatz de Bethe algebrique

    Energy Technology Data Exchange (ETDEWEB)

    Kitanine, N

    2007-09-15

    Spin chains are the basic elements of integrable quantum models. These models have direct applications in condense matter theory, in statistical physics, in quantum optics, in field theory and even in string theory but they are also important because they enable us to solve, in an exact manner, non-perturbative phenomena that otherwise would stay unresolved. The method described in this work is based on the algebraic Bethe Ansatz. It is shown how this method can be used for the computation of null temperature correlation functions of the Heisenberg 1/2 spin chain. The important point of this approach is the solution of the inverse quantum problem given by the XXZ spin chain. This solution as well as a simple formulae for the scalar product of the Bethe states, have enabled us to get the most basic correlation functions under the form of multiple integrals. The formalism of multiple integrals open the way for asymptotic analysis for a few physical quantities like the probability of vacuum formation. It is worth noticing that this formalism can give exact results for two-point functions that are the most important correlation functions for applications. A relationship has been discovered between these multiple integrals and the sum of the form factors. The results have been extended to dynamical correlation functions. (A.C.)

  8. A Political End to a Pioneering Career: Marianne Beth and the Psychology of Religion

    Directory of Open Access Journals (Sweden)

    Jacob A. Belzen

    2011-07-01

    Full Text Available Although forgotten in both Religionswissenschaft (the Science of Religion and psychology, Marianne Beth (1880-1984, initially trained as a lawyer and already in 1928 called a “leading European woman”, must be considered as one of the female pioneers of these fields. She has been active especially in the psychology of religion, a field in which she, together with her husband Karl Beth, founded a research institute, an international organization and a journal. In 1932, the Beths organized in Vienna (where Karl was a professor the largest conference ever in the history of the psychology of religion. Because of her Jewish descent, Marianne Beth fled to the USA when Austria was annexed by Nazi Germany in 1938. This brought an abrupt end to her career as researcher and writer. The article reconstructs Marianne Beth’s path into psychology, analyzes some of her work and puts her achievements in an international perspective.

  9. On the energy spectrum of the Bethe-Salpeter equation; Ob ehnergeticheskom spektre uravneniya Bete-Solpitera

    Energy Technology Data Exchange (ETDEWEB)

    Dorkin, S M [Dal` nevostochnyj Gosudarstvennyj Univ., Vladivostok (Russian Federation); Kaptar` , L P; Semikh, S S [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of Theoretical Physics

    1997-12-31

    The problem of calculating the energy spectrum of a two-fermion bound state within the Bethe-Salpeter formalism is discussed. An expansion of the kernel of the spinor-spinor Bethe-Salpeter equation in the ladder approximation is found in terms of a bi-orthogonal basis of the generalized Gilbert-Schmidt series for symmetric equations of the Fredholm type. According to this expansion, a new method of solving the Bethe-Salpeter equation and finding the mass spectrum is proposed. Methodological result of numerical solutions of equations with scalar interaction is presented. (author). 20 refs., 3 figs.

  10. Low-temperature excitations within the Bethe approximation

    International Nuclear Information System (INIS)

    Biazzo, I; Ramezanpour, A

    2013-01-01

    We propose the variational quantum cavity method to construct a minimal energy subspace of wavevectors that are used to obtain some upper bounds for the energy cost of the low-temperature excitations. Given a trial wavefunction we use the cavity method of statistical physics to estimate the Hamiltonian expectation and to find the optimal variational parameters in the subspace of wavevectors orthogonal to the lower-energy wavefunctions. To this end, we write the overlap between two wavefunctions within the Bethe approximation, which allows us to replace the global orthogonality constraint with some local constraints on the variational parameters. The method is applied to the transverse Ising model and different levels of approximations are compared with the exact numerical solutions for small systems. (paper)

  11. Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li, E-mail: wlyang@nwu.edu.cn [Institute of Modern Physics, Northwest University, Xian 710069 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-10-01

    Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–Q relation and the Bethe ansatz equations are derived.

  12. Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions

    International Nuclear Information System (INIS)

    Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng

    2013-01-01

    Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–Q relation and the Bethe ansatz equations are derived

  13. GW and Bethe-Salpeter study of small water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Blase, Xavier, E-mail: xavier.blase@neel.cnrs.fr; Boulanger, Paul [CNRS, Institut NEEL, F-38042 Grenoble (France); Bruneval, Fabien [CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette (France); Fernandez-Serra, Marivi [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Duchemin, Ivan [INAC, SP2M/L-Sim, CEA/UJF Cedex 09, 38054 Grenoble (France)

    2016-01-21

    We study within the GW and Bethe-Salpeter many-body perturbation theories the electronic and optical properties of small (H{sub 2}O){sub n} water clusters (n = 1-6). Comparison with high-level CCSD(T) Coupled-Cluster at the Single Double (Triple) levels and ADC(3) Green’s function third order algebraic diagrammatic construction calculations indicates that the standard non-self-consistent G{sub 0}W{sub 0}@PBE or G{sub 0}W{sub 0}@PBE0 approaches significantly underestimate the ionization energy by about 1.1 eV and 0.5 eV, respectively. Consequently, the related Bethe-Salpeter lowest optical excitations are found to be located much too low in energy when building transitions from a non-self-consistent G{sub 0}W{sub 0} description of the quasiparticle spectrum. Simple self-consistent schemes, with update of the eigenvalues only, are shown to provide a weak dependence on the Kohn-Sham starting point and a much better agreement with reference calculations. The present findings rationalize the theory to experiment possible discrepancies observed in previous G{sub 0}W{sub 0} and Bethe-Salpeter studies of bulk water. The increase of the optical gap with increasing cluster size is consistent with the evolution from gas to dense ice or water phases and results from an enhanced screening of the electron-hole interaction.

  14. Multicritical phase diagrams of the spin-((3)/(2)) Blume-Emery-Griffiths model on the Bethe lattice using the recursion method

    International Nuclear Information System (INIS)

    Ekiz, Cesur; Albayrak, Erhan; Keskin, Mustafa.

    2003-01-01

    The multicritical behaviour of the spin-((3)/(2)) Blume-Emery-Griffiths model with bilinear and biquadratic exchange interactions and single-ion crystal field is studied on the Bethe lattice by introducing two-sublattices A and B within the exact recursion equations. Exact expressions for the free energy, the Curie or second-order phase transition temperatures, as well as for the magnetization and quadrupolar moment order parameters are obtained. The general procedure of investigation of critical properties is discussed and phase diagrams are obtained, in particular, for negative biquadratic couplings. The phase diagram of the model exhibits a rich variety of behaviours. Results are compared with other approximate methods

  15. Bethe ansatz approach to quantum sine Gordon thermodynamics and finite temperature excitations

    International Nuclear Information System (INIS)

    Zotos, X.

    1982-01-01

    Takahashi and Suzuki (TS) using the Bethe ansatz method developed a formalism for the thermodynamics of the XYZ spin chain. Translating their formalism to the quantum sine-Gordon system, the thermodynamics and finite temperature elementary excitations are analyzed. Criteria imposed by TS on the allowed states simply correspond to the condition of normalizability of the wave functions. A set of coupled nonlinear integral equations for the thermodynamic equilibrium densities for particular values of the coupling constant in the attractive regime is derived. Solving numerically these Bethe ansatz equations, curves of the specific heat as a function of temperature are obtained. The soliton contribution peaks at a temperature of about 0.4 soliton masses shifting downward as the classical limit is approached. The weak coupling regime is analyzed by deriving the Bethe ansatz equations including the charged vacuum excitations. It is shown that they are necessary for a consistent presentation of the thermodynamics

  16. Comultiplication in ABCD algebra and scalar products of Bethe wave functions

    International Nuclear Information System (INIS)

    Mikhailov, A.

    1995-01-01

    The representation of scalar products of Bethe wave functions in terms of dual fields, plays an important role in the theory of completely integrable models. The proof is based on the explicit expression for the open-quotes seniorclose quotes coefficient, which was guessed in the Izergin paper and then proved to satisfy some recurrent relations, which determine it unambiguously. In this paper we present an alternative proof based on direct computation. It uses the operation of comultiplication in the ABCD-algebra

  17. Quantum solitons and their classical relatives: Bethe Ansatz states in soliton sectors of the Sine--Gordon System

    International Nuclear Information System (INIS)

    Garbaczewski, P.

    1982-01-01

    Previously we have found that the semiclassical sine--Gordon/Thirring spectrum can be received in the absence of quantum solitons via the spin 1/2 approximation of the quantized sine--Gordon system on a lattice. Later on, we have recovered the Hilbert space of quantum soliton states for the sine--Gordon system. In the present paper we present a derivation of the Bethe Ansatz eigenstates for the generalized ice model in this soliton Hilbert space. We demonstrate that via ''Wick rotation'' of a fundamental parameter of the ice model one arrives at the Bethe Ansatz eigenstates of the quantum sine--Gordon system. The latter is a ''local transition matrix'' ancestor of the coventional sine--Gordon/Thirring model, as derived by Faddeev et al. within the quantum inverse-scattering method. Our result is essentially based on the N< infinity,Δ = 1,m<<1 regime. Consequently, the spectrum received, though resembling the semiclassical one, does not coincide with it at all

  18. Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz

    International Nuclear Information System (INIS)

    Slavnov, N.A.

    1989-01-01

    The Bethe ansatz method is widely used to investigate two-dimensional completely integrable models. In the framework of the quantum inverse scattering method it has proved to be possible to construct an algebraic scheme of the Bethe ansatz, and this has been successfully applied to calculation of correlation functions. One of the important questions of the method is that of the scalar products of the wave functions. In particular, knowledge of the properties of the scalar products is necessary for investigating the form factors and correlation function. In the present paper the author considers a generalized model with R matrix of the model of the nonlinear Schroedinger equation. The main formulas and notation are given in Sec. 2. In Sec. 3 he calculates the scalar product of an arbitrary function and an eigenfunction of the Hamiltonian. The generalized two-site model is introduced in Sec. 4. In Sec. 5 he calculates the form factor of the particle number operator

  19. The Bethe Sum Rule and Basis Set Selection in the Calculation of Generalized Oscillator Strengths

    DEFF Research Database (Denmark)

    Cabrera-Trujillo, Remigio; Sabin, John R.; Oddershede, Jens

    1999-01-01

    Fulfillment of the Bethe sum rule may be construed as a measure of basis set quality for atomic and molecular properties involving the generalized oscillator strength distribution. It is first shown that, in the case of a complete basis, the Bethe sum rule is fulfilled exactly in the random phase...

  20. Generalized Bethe-Negele inequalities for excited states in muonic atoms

    International Nuclear Information System (INIS)

    Klarsfeld, S.

    1976-11-01

    Rigorous upper and lower bounds are derived for the Bethe logarithms in excited states of muonic atoms. Comparison with previous empirical estimates shows that the latter are inadequate in certain cases

  1. Excited charmonium states from Bethe-Salpeter Equation

    Czech Academy of Sciences Publication Activity Database

    Šauli, Vladimír; Bicudo, P.

    2012-01-01

    Roč. 7, 043 (2012), s. 1-10 ISSN 1824-8039. [International Workshop on QCD Green’s Functions. Tranto, 05.09.2011-09.09.2011] R&D Projects: GA MŠk(CZ) LG11005 Institutional research plan: CEZ:AV0Z10480505 Keywords : charmonium * Bethe-Salpeter Equation Subject RIV: BE - Theoretical Physics http:// pos .sissa.it/archive/conferences/136/043/QCD-TNT-II_043.pdf

  2. Cluster-Bethe-Lattice study of a planar antiferromagnet: Rb2NiF4

    International Nuclear Information System (INIS)

    Cruz, G.A.C. de la; Silva, C.E.T.G. da

    1979-01-01

    A discussion of the Cluster-Bethe-Lattice method is presented for a planar antiferromagnet for which the hamiltonian parameters are known and the one-magnon density of states may be computed exactly. All the square clusters of 1 to 121 atoms are studied both connected to and isolated from the Bethe lattices. It is shown that, even for the largest cluster treated, the approximation is still far from the exact result. It is discussed the limitations of the method [pt

  3. Bayesian extraction of the parton distribution amplitude from the Bethe-Salpeter wave function

    Science.gov (United States)

    Gao, Fei; Chang, Lei; Liu, Yu-xin

    2017-07-01

    We propose a new numerical method to compute the parton distribution amplitude (PDA) from the Euclidean Bethe-Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe-Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method (MEM). The Nakanishi weight function as well as the corresponding light-front parton distribution amplitude (PDA) can be well determined. We confirm prior work on PDA computations, which was based on different methods.

  4. Mixed spin-((1)/(2)) and spin-1 Blume-Capel Ising ferrimagnetic system on the Bethe lattice

    International Nuclear Information System (INIS)

    Albayrak, Erhan; Keskin, Mustafa

    2003-01-01

    The mixed spin-((1)/(2)) and spin-1 Blume-Capel Ising ferrimagnetic system is studied on the Bethe lattice by using the exact recursion equations. Exact expressions for the magnetization, the quadrupolar moment, the Curie temperature and the free energy are found and the phase diagrams are constructed on the Bethe lattice with the coordination numbers q=3, 4, 5 and 6. The existence of a tricritical point is investigated for different values of q. The results are compared with those of other approximate methods and with the exact result on the Bethe lattice by using a discrete nonlinear map and also the exact results that are available for the case of the honeycomb lattice

  5. Anisotropic generalization of Stinchcombe's solution for the conductivity of random resistor networks on a Bethe lattice

    Science.gov (United States)

    Semeriyanov, F.; Saphiannikova, M.; Heinrich, G.

    2009-11-01

    Our study is based on the work of Stinchcombe (1974 J. Phys. C: Solid State Phys. 7 179) and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of the inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi (1974 Phys. Rev. B 9 4575) for the regular lattice.

  6. Anisotropic generalization of Stinchcombe's solution for the conductivity of random resistor networks on a Bethe lattice

    International Nuclear Information System (INIS)

    Semeriyanov, F; Saphiannikova, M; Heinrich, G

    2009-01-01

    Our study is based on the work of Stinchcombe (1974 J. Phys. C: Solid State Phys. 7 179) and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of the inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi (1974 Phys. Rev. B 9 4575) for the regular lattice.

  7. Quantum graphs with the Bethe-Sommerfeld property

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Turek, Ondřej

    2017-01-01

    Roč. 8, č. 3 (2017), s. 305-309 ISSN 2220-8054 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : periodic quantum graphs * gap number * delta-coupling * rectangular lattice graph * scale-invariant coupling * Bethe-Sommerfeld conjecture * golden mean Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

  8. The connection of two-particle relativistic quantum mechanics with the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1986-02-01

    We show the formal equivalence between the wave equations of two-particle relativistic quantum mechanics, based on the manifestly covariant hamiltonian formalism with constraints, and the Bethe-Salpeter equation. This is achieved by algebraically transforming the latter so as to separate it into two independent equations which match the equations of hamiltonian relativistic quantum mechanics. The first equation determines the relative time evolution of the system, while the second one yields a three-dimensional eigenvalue equation. A connection is thus established between the Bethe-Salpeter wave function and its kernel on the one hand and the quantum mechanical wave function and interaction potential on the other. For the sector of solutions of the Bethe-Salpeter equation having non-relativistic limits, this relationship can be evaluated in perturbation theory. We also device a generalized form of the instantaneous approximation which simplifies the various expressions involved in the above relations. It also permits the evaluation of the normalization condition of the quantum mechanical wave function as a three-dimensional integral

  9. Pessoa em Bethânia: os versos do desassossego na voz do encantamento

    OpenAIRE

    Barros, Andre Luiz Calsone

    2013-01-01

    Pessoa em Bethânia tem por tema a recriação dos versos de Caeiro no espetáculo Rosa dos Ventos O Show Encantado, tendo por intérprete Maria Bethânia. O corpus é o Poema VIII de Alberto Caeiro, heterônimo de Fernando Pessoa, da obra O Guardador de Rebanhos (1911 1912), transformado em roteiro dramáticomusical e tornado performance no espetáculo Rosa dos Ventos. Reinterpretado por meio da voz, do corpo, da música e dos mais variados recursos cênicos, o poema de Fernando ...

  10. Bethe-Salpeter analysis of the radiative pion disintegration

    Energy Technology Data Exchange (ETDEWEB)

    Abad, J.; Pacheco, A.F. (Zaragoza Univ. (Spain). Dept. de Fisica Teorica); Rodriguez-Trias, R.; Esteve, J.G. (Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies)

    1990-04-01

    The structure-dependent amplitude of the decay {pi}{yields}e{nu}{gamma} is evaluated in the framework of a Bethe-Salpeter description for the pion. We assume a general B-S wave function in the S-wave. Within this hypothesis, we show that the gauge invariance constrains the different contributions of the wave functions to the amplitude, resulting in the vanishing of the axial form factor. (orig.).

  11. The critical 1-arm exponent for the ferromagnetic Ising model on the Bethe lattice

    Science.gov (United States)

    Heydenreich, Markus; Kolesnikov, Leonid

    2018-04-01

    We consider the ferromagnetic nearest-neighbor Ising model on regular trees (Bethe lattice), which is well-known to undergo a phase transition in the absence of an external magnetic field. The behavior of the model at critical temperature can be described in terms of various critical exponents; one of them is the critical 1-arm exponent ρ which characterizes the rate of decay of the (root) magnetization as a function of the distance to the boundary. The crucial quantity we analyze in this work is the thermal expectation of the root spin on a finite subtree, where the expected value is taken with respect to a probability measure related to the corresponding finite-volume Hamiltonian with a fixed boundary condition. The spontaneous magnetization, which is the limit of this thermal expectation in the distance between the root and the boundary (i.e., in the height of the subtree), is known to vanish at criticality. We are interested in a quantitative analysis of the rate of this convergence in terms of the critical 1-arm exponent ρ. Therefore, we rigorously prove that ⟨σ0⟩ n +, the thermal expectation of the root spin at the critical temperature and in the presence of the positive boundary condition, decays as ⟨σ0 ⟩ n +≈n-1/2 (in a rather sharp sense), where n is the height of the tree. This establishes the 1-arm critical exponent for the Ising model on regular trees (ρ =1/2 ).

  12. Solution to Bethe-Salpeter equation via Mellin-Barnes transform

    International Nuclear Information System (INIS)

    Allendes, Pedro; Kniehl, Bernd; Kondrashuk, Igor; Rojas Medar, Marko; Notte Cuello, Eduardo A.

    2012-06-01

    We consider Mellin-Barnes transform of triangle ladder-like scalar diagram in d=4 dimensions. It is shown how multi-fold MB transform of the momentum integral corresponding to any number of rungs is reduced to two-fold MB transform. For this purpose we use Belokurov-Usyukina reduction method for four-dimensional scalar integrals in the position space. The result is represented in terms of Euler ψ-function and its derivatives. We derive new formulas for MB two-fold integration in the complex planes of two complex variables. We demonstrate that these formulas solve Bethe-Salpeter equation. We comment on further applications of solution to Bethe-Salpeter equation for vertices in N=4 supersymmetric Yang-Mills theory. We show that the recursive property of MB transforms observed in the present work for that kind of diagrams has nothing to do with quantum field theory, theory of integral transforms, or with theory of polylogarithms in general, but has an origin in a simple recursive property for smooth functions which can be shown by using basic methods of mathematical analysis.

  13. Solution to Bethe-Salpeter equation via Mellin-Barnes transform

    Energy Technology Data Exchange (ETDEWEB)

    Allendes, Pedro [Concepcion Univ. (Chile). Dept. de Fisica; Kniehl, Bernd [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor; Rojas Medar, Marko [Univ. del Bio-Bio, Chillan (Chile). Dept. de Ciencias Basicas; Notte Cuello, Eduardo A. [Univ. de La Serena (Chile). Facultad de Ciencias

    2012-06-15

    We consider Mellin-Barnes transform of triangle ladder-like scalar diagram in d=4 dimensions. It is shown how multi-fold MB transform of the momentum integral corresponding to any number of rungs is reduced to two-fold MB transform. For this purpose we use Belokurov-Usyukina reduction method for four-dimensional scalar integrals in the position space. The result is represented in terms of Euler {psi}-function and its derivatives. We derive new formulas for MB two-fold integration in the complex planes of two complex variables. We demonstrate that these formulas solve Bethe-Salpeter equation. We comment on further applications of solution to Bethe-Salpeter equation for vertices in N=4 supersymmetric Yang-Mills theory. We show that the recursive property of MB transforms observed in the present work for that kind of diagrams has nothing to do with quantum field theory, theory of integral transforms, or with theory of polylogarithms in general, but has an origin in a simple recursive property for smooth functions which can be shown by using basic methods of mathematical analysis.

  14. Bethe ansatz for two-magnon scattering states in 2D and 3D Heisenberg–Ising ferromagnets

    Science.gov (United States)

    Bibikov, P. N.

    2018-04-01

    Two different versions of Bethe ansatz are suggested for evaluation of scattering two-magnon states in 2D and 3D Heisenberg–Ising ferromagnets on square and simple cubic lattices. It is shown that the two-magnon sector is subdivided on two subsectors related to non-interacting and scattering magnons. The former subsector possess an integrable regular dynamics and may be described by a natural modification of the usual Bethe Ansatz. The latter one is characterized by a non-integrable chaotic dynamics and may be treated only within discrete degenerative version of Bethe Ansatz previously suggested by the author. Some of these results are generalized for multi-magnon states of the Heisenberg–Ising ferromagnet on a D dimensional hyper cubic lattice. Dedicated to the memory of L D Faddeev.

  15. Covariant Bethe-Salpeter wave functions for heavy hadrons

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-09-01

    In recent years the dynamics of heavy mesons and baryons has considerably simplified by the development of the so-called heavy quark effective theory (HQET). A covariant formulation of heavy meson and heavy baryon decays in the leading order of the HQET is presented. The method is based on a Bethe-Salpeter formulation in the limit of the heavy quark mass going to infinity. 15 refs, 4 figs

  16. Periodic quantum graphs from the Bethe-Sommerfeld perspective

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Turek, Ondřej

    2017-01-01

    Roč. 50, č. 45 (2017), č. článku 455201. ISSN 1751-8113 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : quantum graphs * Bethe-Sommerfeld conjecture * vertex coupling * Diophantine approximation * periodic structure Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.857, year: 2016

  17. Anisotropic generalization of Stinchcombe's solution for the conductivity of random resistor networks on a Bethe lattice

    Energy Technology Data Exchange (ETDEWEB)

    Semeriyanov, F; Saphiannikova, M; Heinrich, G [Leibniz Institute of Polymer Research Dresden, Hohe str. 6, 01069 Dresden (Germany)], E-mail: fsemeriyanov@yahoo.de

    2009-11-20

    Our study is based on the work of Stinchcombe (1974 J. Phys. C: Solid State Phys. 7 179) and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of the inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi (1974 Phys. Rev. B 9 4575) for the regular lattice.

  18. Numerical studies of the Bethe-Salpeter equation for a two-fermion bound state

    Science.gov (United States)

    de Paula, W.; Frederico, T.; Salmè, G.; Viviani, M.

    2018-03-01

    Some recent advances on the solution of the Bethe-Salpeter equation (BSE) for a two-fermion bound system directly in Minkowski space are presented. The calculations are based on the expression of the Bethe-Salpeter amplitude in terms of the so-called Nakanishi integral representation and on the light-front projection (i.e. the integration of the light-front variable k - = k 0 - k 3). The latter technique allows for the analytically exact treatment of the singularities plaguing the two-fermion BSE in Minkowski space. The good agreement observed between our results and those obtained using other existing numerical methods, based on both Minkowski and Euclidean space techniques, fully corroborate our analytical treatment.

  19. QCD-oriented Bethe-Salpeter dynamics for all flavours, light and heavy

    International Nuclear Information System (INIS)

    Mitra, A.N.

    1987-01-01

    A QCD oriented Bethe-Salpeter approach with a vector-like confinement which looks harmonic in the instantaneous approximation (IA), was found to describe several features of qanti q and qqq systems (mass spectra and structural properties) adequately, with little extra assumptions. The model had the following drawbacks: (a) The IA, being non-covariant, had restricted the application of the model to slow hadrons; (b) The zero-point energies were poorly described without additional assumptions; (c) The predicted Qanti Q spacings were too large for the data. These limitations have recently been overcome and the model now has a wide sweep of successful predictions, not only on the mass spectra for both light and heavy sectors, but also for transition amplitudes involving fast moving hadrons. A sketchy but consolidated account is given of the main features of the model (as modified through the new assumptions) and the nature of its successes on the experimental front (mostly mass spectra) are indicated. 20 refs

  20. Asymptotic Bethe ansatz S-matrix and Landau-Lifshitz-type effective 2d actions

    International Nuclear Information System (INIS)

    Roiban, R; Tirziu, A; Tseytlin, A A

    2006-01-01

    Motivated by the desire to relate Bethe ansatz equations for anomalous dimensions found on the gauge-theory side of the AdS/CFT correspondence to superstring theory on AdS 5 x S 5 we explore a connection between the asymptotic S-matrix that enters the Bethe ansatz and an effective two-dimensional quantum field theory. The latter generalizes the standard 'non-relativistic' Landau-Lifshitz (LL) model describing low-energy modes of ferromagnetic Heisenberg spin chain and should be related to a limit of superstring effective action. We find the exact form of the quartic interaction terms in the generalized LL-type action whose quantum S-matrix matches the low-energy limit of the asymptotic S-matrix of the spin chain of Beisert, Dippel and Staudacher (BDS). This generalizes to all orders in the 't Hooft coupling λ an earlier computation of Klose and Zarembo of the S-matrix of the standard LL model. We also consider a generalization to the case when the spin-chain S-matrix contains an extra 'string' phase and determine the exact form of the LL 4-vertex corresponding to the low-energy limit of the ansatz of Arutyunov, Frolov and Staudacher (AFS). We explain the relation between the resulting 'non-relativistic' non-local action and the second-derivative string sigma model. We comment on modifications introduced by strong-coupling corrections to the AFS phase. We mostly discuss the SU(2) sector but also present generalizations to the SL(2) and SU(1|1) sectors, confirming universality of the dressing phase contribution by matching the low-energy limit of the AFS-type spin-chain S-matrix with tree-level string-theory S-matrix

  1. The Beer/Bethe/Uexküll paper (1899) and misinterpretations surrounding 'vitalistic behaviorism'.

    Science.gov (United States)

    Mildenberger, Florian

    2006-01-01

    In the history of behaviorism the paper of the three physiologists Theodor Beer, Albrecht Bethe and Jakob von Uexküll from 1899 plays an important role. Many researchers were influenced by this paper and identified it as fundamental for objective psychological research. But during the period of its adoption (1900-1925) psychologists did not notice that Beer, Bethe and Uexküll had distanced themselves from their own paper, because it had been ignored in physiological and biological discussions. Moreover, one of the three (Beer) had to resign from the scientific community because of private scandal and another one (Uexküll) changed all of his views and left the base of objective science for subjective vitalism. However, this did not change his adoption of behaviorism.

  2. Delta and Omega electromagnetic form factors in a Dyson-Schwinger/Bethe-Salpeter approach

    Energy Technology Data Exchange (ETDEWEB)

    Diana Nicmorus, Gernot Eichmann, Reinhard Alkofer

    2010-12-01

    We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.

  3. Heavy quark effective theory, interpolating fields and Bethe-Salpeter amplitudes

    International Nuclear Information System (INIS)

    Hussain, F.; Thomspon, G.

    1994-07-01

    We use the LSZ reduction theorem and interpolating fields, along with the heavy quark effective theory, to investigate the structure of the Bethe-Salpeter amplitude for heavy hadrons. We show how a simple form of this amplitude, used extensively in heavy hadron decay calculations, follows naturally up to O(1/M) from these field theoretic considerations. (author). 13 refs, 1 tab

  4. O(N)-matrix difference equations and a nested Bethe ansatz

    International Nuclear Information System (INIS)

    Babujian, Hrachya M; Foerster, Angela; Karowski, Michael

    2012-01-01

    A system of O(N)-matrix difference equations is solved by means of the off-shell version of the nested algebraic Bethe ansatz. In the nesting process, a new object, the Π-matrix, is introduced to overcome the complexities of the O(N)-group structure. The highest weight property of the solutions is proved and some explicit examples are discussed. (paper)

  5. Lepton-pair production of a light pseudoscalar particle via the Bethe-Heitler process

    International Nuclear Information System (INIS)

    Kim, B.R.; Stamm, C.

    1983-01-01

    Bethe-Heitler processes of light pseudoscalar particles off nuclei are at present very important experimentally. For these processes we present our results which seem to differ from previous theoretical calculations found in the literature. (orig.)

  6. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel

    Energy Technology Data Exchange (ETDEWEB)

    Rebolini, Elisa, E-mail: elisa.rebolini@kjemi.uio.no; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr [Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 4 place Jussieu, F-75005 Paris (France)

    2016-03-07

    We present a range-separated linear-response time-dependent density-functional theory (TDDFT) which combines a density-functional approximation for the short-range response kernel and a frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel. This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT and aims at improving the accuracy of calculations of electronic excitation energies of molecular systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation kernel is given using many-body Green-function theory. Preliminary tests of this range-separated TDDFT method are presented for the calculation of excitation energies of the He and Be atoms and small molecules (H{sub 2}, N{sub 2}, CO{sub 2}, H{sub 2}CO, and C{sub 2}H{sub 4}). The results suggest that the addition of the long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation energies.

  7. Physics over easy Breakfasts with Beth and physics

    CERN Document Server

    Azaroff, L V

    2010-01-01

    During a sequence of meals, the author relates the principal features of physics in easy-to-understand conversations with his wife Beth. Beginning with the studies of motion by Galileo and Newton through to the revolutionary theories of relativity and quantum mechanics in the 20th century, all important aspects of electricity, energy, magnetism, gravity and the structure of matter and atoms are explained and illustrated. The second edition similarly recounts the more recent application of these theories to nanoparticles, Bose-Einstein condensates, quantum entanglement and quantum computers. By

  8. Site-occupation embedding theory using Bethe ansatz local density approximations

    Science.gov (United States)

    Senjean, Bruno; Nakatani, Naoki; Tsuchiizu, Masahisa; Fromager, Emmanuel

    2018-06-01

    Site-occupation embedding theory (SOET) is an alternative formulation of density functional theory (DFT) for model Hamiltonians where the fully interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a noninteracting) one. It provides a rigorous framework for combining wave-function (or Green function)-based methods with DFT. In this work, exact expressions for the per-site energy and double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative solutions to the Hubbard and single-impurity Anderson models are constructed and tested on a one-dimensional ring. The self-consistent calculation of the embedded impurity wave function has been performed with the density-matrix renormalization group method. It has been shown that promising results are obtained in specific regimes of correlation and density. Possible further developments have been proposed in order to provide reliable embedding functionals and potentials.

  9. Construction of Bethe Salpeter wave functions and applications in QCD

    International Nuclear Information System (INIS)

    Gromes, D.

    1993-01-01

    We suggest an ansatz for the Bethe Salpeter wave function which is strictly covariant, obeys the spectrum conditions, and has the correct non relativistic limit. As a first simple application we present a wave function for the pion. It contains two parameters, one of them being the quark mass. The decay constant and the form factor derived from this are in excellent agreement with the data. (orig.)

  10. Stochastic integration of the Bethe-Salpeter equation for two bound fermions

    International Nuclear Information System (INIS)

    Salomon, M.

    1988-09-01

    A non-perturbative method using a Monte Carlo algorithm is used to integrate the Bethe-Salpeter equation in momentum space. Solutions for two scalars and two fermions with an arbitrary coupling constant are calculated for bound states in the ladder approximation. The results are compared with other numerical methods. (Author) (13 refs., 2 figs.)

  11. A separable approximation of the NN-Paris-potential in the framework of the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Schwarz, K.; Haidenbauer, J.; Froehlich, J.

    1985-09-01

    The Bethe-Salpeter equation is solved with a separable kernel for the most important nucleon-nucleon partial wave states. We employ the Ernst Shakin-Thaler method in the framework of minimal relativity (Blankenbeckler-Sugar equation) to generate a separable representation of the meson-theoretical Paris potential. These separable interactions, which closely approximate the on-shell- and half-off-shell behaviour of the Paris potential, are then cast into a covariant form for application in the Bethe-Salpeter equation. The role of relativistic effects is discussed with respect to on-shell and off-shell properties of the NN-system. (Author)

  12. Semi-classical analysis of the inner product of Bethe states

    International Nuclear Information System (INIS)

    Bettelheim, Eldad; Kostov, Ivan

    2014-01-01

    We study the inner product of two Bethe states, one of which is taken on-shell, in an inhomogeneous XXX chain in the Sutherland limit, where the number of magnons is comparable with the length L of the chain and the magnon rapidities arrange in a small number of macroscopically large Bethe strings. The leading order in the large L limit is known to be expressed through a contour integral of a dilogarithm. Here we derive the sub-leading term. Our analysis is based on a new contour-integral representation of the inner product in terms of a Fredholm determinant. We give two derivations of the sub-leading term. Besides a direct derivation by solving a Riemann–Hilbert problem, we give a less rigorous, but more intuitive derivation by field-theoretical methods. For that we represent the Fredholm determinant as an expectation value in a Fock space of chiral fermions and then bosonize. We construct a collective field for the bosonized theory, the short wave-length part of which may be evaluated exactly, while the long wave-length part is amenable to a 1/L expansion. Our treatment thus results in a systematic 1/L expansion of structure factors within the Sutherland limit. (paper)

  13. Deep inelastic scattering on the deuteron in the Bethe-Salpeter formalism

    International Nuclear Information System (INIS)

    Kaptari, L.P.; Kazakov, K.Yu.; Umnikov, A.Yu.; Khanna, F.C.

    1996-01-01

    The nuclear effects in the spin structure functions of the deuteron g 1 and b 2 are estimated in a fully covariant approach of the Bethe-Salpeter formalism. The construction of the relativistic wave function of the deuteron is discussed in detail. Numerical results for g 1 and b 2 are compared with nonrelativistic results and relativistic corrections are discussed [ru

  14. Solution of the Bethe-Salpeter equation in the field of a plane electromagnetic wave

    International Nuclear Information System (INIS)

    Starostin, V.S.

    1988-01-01

    A solution is obtained of the Bethe--Salpeter equation for positronium in the field of linearly and circularly polarized plane electromagnetic waves at frequencies much higher than atomic. It is not assumed that the field is weak

  15. Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity

    Directory of Open Access Journals (Sweden)

    Azat M. Gainutdinov

    2016-08-01

    Full Text Available For generic values of q, all the eigenvectors of the transfer matrix of the Uqsl(2-invariant open spin-1/2 XXZ chain with finite length N can be constructed using the algebraic Bethe ansatz (ABA formalism of Sklyanin. However, when q is a root of unity (q=eiπ/p with integer p≥2, the Bethe equations acquire continuous solutions, and the transfer matrix develops Jordan cells. Hence, there appear eigenvectors of two new types: eigenvectors corresponding to continuous solutions (exact complete p-strings, and generalized eigenvectors. We propose general ABA constructions for these two new types of eigenvectors. We present many explicit examples, and we construct complete sets of (generalized eigenvectors for various values of p and N.

  16. Clinical trials of boron neutron capture therapy [in humans] [at Beth Israel Deaconess Medical Center][at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Wallace, Christine

    2001-01-01

    Assessment of research records of Boron Neutron Capture Therapy was conducted at Brookhaven National Laboratory and Beth Israel Deaconess Medical Center using the Code of Federal Regulations, FDA Regulations and Good Clinical Practice Guidelines. Clinical data were collected FR-om subjects' research charts, and differences in conduct of studies at both centers were examined. Records maintained at Brookhaven National Laboratory were not in compliance with regulatory standards. Beth Israel's records followed federal regulations. Deficiencies discovered at both sites are discussed in the reports

  17. Quantum quench dynamics of the attractive one-dimensional Bose gas via the coordinate Bethe ansatz

    Directory of Open Access Journals (Sweden)

    Jan C. Zill, Tod M. Wright, Karen V. Kheruntsyan, Thomas Gasenzer, Matthew J. Davis

    2018-02-01

    Full Text Available We use the coordinate Bethe ansatz to study the Lieb-Liniger model of a one-dimensional gas of bosons on a finite-sized ring interacting via an attractive delta-function potential. We calculate zero-temperature correlation functions for seven particles in the vicinity of the crossover to a localized solitonic state and study the dynamics of a system of four particles quenched to attractive interactions from the ideal-gas ground state. We determine the time evolution of correlation functions, as well as their temporal averages, and discuss the role of bound states in shaping the postquench correlations and relaxation dynamics.

  18. On Condensation Properties of Bethe Roots Associated with the XXZ Chain

    Science.gov (United States)

    Kozlowski, Karol K.

    2018-02-01

    I prove that the Bethe roots describing either the ground state or a certain class of "particle-hole" excited states of the XXZ spin-1/2 chain in any sector with magnetisation m \\in [0;1/2] exist, are uniquely defined, and form, in the infinite volume limit, a dense distribution on a subinterval of R. The results hold for any value of the anisotropy {Δ ≥ -1}. In fact, I establish an even stronger result, namely the existence of an all order asymptotic expansion of the counting function associated with such roots. As a corollary, these results allow one to prove the existence and form of the infinite volume limit of various observables attached to the model -the excitation energy, momentum, the zero temperature correlation functions, so as to name a few- that were argued earlier in the literature.

  19. Log-gamma directed polymer with fixed endpoints via the replica Bethe Ansatz

    International Nuclear Information System (INIS)

    Thiery, Thimothée; Le Doussal, Pierre

    2014-01-01

    We study the model of a discrete directed polymer (DP) on a square lattice with homogeneous inverse gamma distribution of site random Boltzmann weights, introduced by Seppalainen (2012 Ann. Probab. 40 19–73). The integer moments of the partition sum, Z n -bar , are studied using a transfer matrix formulation, which appears as a generalization of the Lieb–Liniger quantum mechanics of bosons to discrete time and space. In the present case of the inverse gamma distribution the model is integrable in terms of a coordinate Bethe Ansatz, as discovered by Brunet. Using the Brunet-Bethe eigenstates we obtain an exact expression for the integer moments of Z n -bar for polymers of arbitrary lengths and fixed endpoint positions. Although these moments do not exist for all integer n, we are nevertheless able to construct a generating function which reproduces all existing integer moments and which takes the form of a Fredholm determinant (FD). This suggests an analytic continuation via a Mellin–Barnes transform and we thereby propose a FD ansatz representation for the probability distribution function (PDF) of Z and its Laplace transform. In the limit of a very long DP, this ansatz yields that the distribution of the free energy converges to the Gaussian unitary ensemble (GUE) Tracy-Widom distribution up to a non-trivial average and variance that we calculate. Our asymptotic predictions coincide with a result by Borodin et al (2013 Commun. Math. Phys. 324 215–32) based on a formula obtained by Corwin et al (2011 arXiv:1110.3489) using the geometric Robinson–Schensted–Knuth (gRSK) correspondence. In addition we obtain the dependence on the endpoint position and the exact elastic coefficient at a large time. We argue the equivalence between our formula and that of Borodin et al. As we will discuss, this provides a connection between quantum integrability and tropical combinatorics. (paper)

  20. Experimental observation of Bethe strings

    Science.gov (United States)

    Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois

    2018-02-01

    Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.

  1. Quarkonia in the Bethe--Salpeter formalism with background fields

    International Nuclear Information System (INIS)

    Mathur, Y.K.; Mitra, A.N.

    1989-01-01

    A QCD-oriented Bethe--Salpeter (BS) equation for a q bar q system is formulated in which the quark 4-momenta p μ are modified as p μ →p μ -gA μ (x) in the inverse propagators therein, and a Fock--Schwinger (FS) gauge expansion is employed for the gluon fields A μ (x). The first term (∼x μ ) of the FS representation yields a harmonic kernel when the BS equation is reduced to a 3-dimensional level via the null-plane ansatz (NPA). It also generates a spin-dependent interaction proportional to (j 1 +s 1 )·(j 2 +s 2 ), in close parallel to a J·S term generated by a vector-like (γ (1) gamma(2)) harmonic model for the q bar q interaction proposed earlier by the Delhi Group. A possible mechanism for confinement in an asymptotically linear scene is proposed within the BS framework, taking cue partly from the suggestions of multiple correlation effects (Shifman), and partly from the postulation of stochastic fields (Simonov)

  2. Comment on the analysis of Bethe-Salpeter scattering states by Hormozdiari and Huang

    International Nuclear Information System (INIS)

    Tryon, E.P.

    1978-01-01

    The analysis of Bethe-Salpeter scattering states by Hormozdiari and Huang appears to contain invalid mathematical arguments. When these arguments are rectified, one arrives at substantially different conclusions. In particular, the prescription of Hormozdiari and Huang for constructing such states does not seem applicable to any process occurring in nature

  3. Green's function approach to neutron flux discontinuities

    International Nuclear Information System (INIS)

    Saad, E.A.; El-Wakil, S.A.

    1980-01-01

    The present work is devoted to the presentation of analytical method for the calculation of elastically and inelastically slowed down neutrons in an infinite non-absorbing medium. On the basis of the central limit theory (CLT) and the integral transform technique the slowing down equation including inelastic scattering, in terms of the Green function of elastic scattering, is solved. The Green function is decomposed according to the number of collisions. Placzec discontinuity associated with elastic scattering in addition to two discontinuities due to inelastic scattering are investigated. Numerical calculations for Fe 56 show that the elastic discontinuity produces about 41.8% change in the collision density whilst the ratio of the inelastic collision density discontinuity at qsub(o)sup(+) to the Placzec discontinuity at usub(o) + 1n 1/oc gives 55.7 percent change. (author)

  4. The convergence of the binding energy expansion in the Brueckner-Bethe-Goldstone theory of nuclear matter

    International Nuclear Information System (INIS)

    Grange, P.; Lejeune, A.

    1979-01-01

    Two, three- and four-body contributions to the binding energy of nuclear matter are evaluated in the framework of the Bethe-Brueckner expansion. Special attention is devoted to the choice of the auxillary single particle field and to the potential diagrams at the level of three- and four-hole lines present when such a field is different from zero. Two nucleon-nucleon interactions are used: a model interaction V 1 and the Reid soft-core interaction. For V 1 our results are compared with those obtained from variational calculations; this comparison supports the reliability of the perturbative expansion. (Auth.)

  5. A political end to a pioneering career: Marianne Beth and the psychology of religion

    NARCIS (Netherlands)

    Belzen, J.A.

    2011-01-01

    Although forgotten in both Religionswissenschaft (the Science of Religion) and psychology, Marianne Beth (1880-1984), initially trained as a lawyer and already in 1928 called a "leading European woman", must be considered as one of the female pioneers of these fields. She has been active especially

  6. On string solutions of Bethe equations in N=4 supersymmetric Yang-Mills theory

    International Nuclear Information System (INIS)

    Bytsko, A.G.; Shenderovich, I.E.

    2007-12-01

    The Bethe equations, arising in description of the spectrum of the dilatation operator for the su(2) sector of the N=4 supersymmetric Yang-Mills theory, are considered in the anti-ferromagnetic regime. These equations are deformation of those for the Heisenberg XXX magnet. It is proven that in the thermodynamic limit roots of the deformed equations group into strings. It is proven that the corresponding Yang's action is convex, which implies uniqueness of solution for centers of the strings. The state formed of strings of length (2n+1) is considered and the density of their distribution is found. It is shown that the energy of such a state decreases as n grows. It is observed that non-analyticity of the left hand side of the Bethe equations leads to an additional contribution to the density and energy of strings of even length. Whence it is concluded that the structure of the anti-ferromagnetic vacuum is determined by the behaviour of exponential corrections to string solutions in the thermodynamic limit and possibly involves strings of length 2. (orig.)

  7. On string solutions of Bethe equations in N=4 supersymmetric Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Bytsko, A.G. [Rossijskaya Akademiya Nauk, St. Petersburg (Russian Federation). Inst. Matematiki]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Shenderovich, I.E. [St. Petersburg State Univ. (Russian Federation). Physics Dept.

    2007-12-15

    The Bethe equations, arising in description of the spectrum of the dilatation operator for the su(2) sector of the N=4 supersymmetric Yang-Mills theory, are considered in the anti-ferromagnetic regime. These equations are deformation of those for the Heisenberg XXX magnet. It is proven that in the thermodynamic limit roots of the deformed equations group into strings. It is proven that the corresponding Yang's action is convex, which implies uniqueness of solution for centers of the strings. The state formed of strings of length (2n+1) is considered and the density of their distribution is found. It is shown that the energy of such a state decreases as n grows. It is observed that non-analyticity of the left hand side of the Bethe equations leads to an additional contribution to the density and energy of strings of even length. Whence it is concluded that the structure of the anti-ferromagnetic vacuum is determined by the behaviour of exponential corrections to string solutions in the thermodynamic limit and possibly involves strings of length 2. (orig.)

  8. Bethe ansatz equations for open spin chains from giant gravitons

    International Nuclear Information System (INIS)

    Nepomechie, Rafael I.

    2009-01-01

    We investigate the open spin chain describing the scalar sector of the Y = 0 giant graviton brane at weak coupling. We provide a direct proof of integrability in the SU(2) and SU(3) sectors by constructing the transfer matrices. We determine the eigenvalues of these transfer matrices in terms of roots of the corresponding Bethe ansatz equations (BAEs). Based on these results, we propose BAEs for the full SO(6) sector. We find that, in the weak-coupling limit, the recently-proposed all-loop BAEs essentially agree with those proposed in the present work.

  9. A systematic approach to sketch Bethe-Salpeter equation

    Directory of Open Access Journals (Sweden)

    Qin Si-xue

    2016-01-01

    Full Text Available To study meson properties, one needs to solve the gap equation for the quark propagator and the Bethe-Salpeter (BS equation for the meson wavefunction, self-consistently. The gluon propagator, the quark-gluon vertex, and the quark–anti-quark scattering kernel are key pieces to solve those equations. Predicted by lattice-QCD and Dyson-Schwinger analyses of QCD’s gauge sector, gluons are non-perturbatively massive. In the matter sector, the modeled gluon propagator which can produce a veracious description of meson properties needs to possess a mass scale, accordingly. Solving the well-known longitudinal Ward-Green-Takahashi identities (WGTIs and the less-known transverse counterparts together, one obtains a nontrivial solution which can shed light on the structure of the quark-gluon vertex. It is highlighted that the phenomenologically proposed anomalous chromomagnetic moment (ACM vertex originates from the QCD Lagrangian symmetries and its strength is proportional to the magnitude of dynamical chiral symmetry breaking (DCSB. The color-singlet vector and axial-vector WGTIs can relate the BS kernel and the dressed quark-gluon vertex to each other. Using the relation, one can truncate the gap equation and the BS equation, systematically, without violating crucial symmetries, e.g., gauge symmetry and chiral symmetry.

  10. Hospital CIO Explains Blockchain Potential: An Interview with Beth Israel Deaconess Medical Center's John Halamka.

    Science.gov (United States)

    Mertz, Leslie

    2018-01-01

    Work is already underway to bring blockchain technology to the healthcare industry, and hospital administrators are trying to figure out what it can do for them, their clinicians, and their patients. That includes administrators at Beth Israel Deaconess Medical Center, a leading academic medical center located in Boston.

  11. Beth-Uhlenbeck approach for repulsive interactions between baryons in a hadron gas

    Science.gov (United States)

    Vovchenko, Volodymyr; Motornenko, Anton; Gorenstein, Mark I.; Stoecker, Horst

    2018-03-01

    The quantum mechanical Beth-Uhlenbeck (BU) approach for repulsive hard-core interactions between baryons is applied to the thermodynamics of a hadron gas. The second virial coefficient a2—the "excluded volume" parameter—calculated within the BU approach is found to be temperature dependent, and it differs dramatically from the classical excluded volume (EV) model result. At temperatures T =100 -200 MeV, the widely used classical EV model underestimates the EV parameter for nucleons at a given value of the nucleon hard-core radius by large factors of 3-4. Previous studies, which employed the hard-core radii of hadrons as an input into the classical EV model, have to be re-evaluated using the appropriately rescaled EV parameters. The BU approach is used to model the repulsive baryonic interactions in the hadron resonance gas (HRG) model. Lattice data for the second- and fourth-order net baryon susceptibilities are described fairly well when the temperature dependent BU baryonic excluded volume parameter corresponds to nucleon hard-core radii of rc=0.25 -0.3 fm. Role of the attractive baryonic interactions is also considered. It is argued that HRG model with a constant baryon-baryon EV parameter vN N≃1 fm3 provides a simple yet efficient description of baryon-baryon interaction in the crossover temperature region.

  12. Short-distance behavior of the Bethe--Salpeter wave function in the ladder approximation

    International Nuclear Information System (INIS)

    Guth, A.H.; Soper, D.E.

    1975-01-01

    We investigate the short-distance behavior of the (Wick-rotated) Bethe--Salpeter wave function for the two spin-1/2 quarks bound by the exchange of a massive vector meson. We use the ladder-model kernel, which has the same p -4 scaling behavior as the true kernel in a theory with a fixed point of the renormalization group at g not equal to 0. For a bound state with the quantum numbers of the pion, the leading asymptotic behavior is chi (q/sup μ/) approx. cq/sup -4 + epsilon(g)/γ 5 , where epsilon (g) =1- (1-g 2 /π 2 ) 1 / 2 . Our method also provides the full asymptotic series, although it should be noted that the nonleading terms will depend on the nonleading behavior of the ladder-model kernel. A general term has the form cq - /sup a/(lnq)/sup n/phi (q/sup μ/), where c is an unknown constant, a may be integral or nonintegral, n is an integer, and phi (q/sup μ/) is a representation function of the rotation group in four dimensions

  13. A separable approach to the Bethe-Salpeter equation and its application to nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Schwarz, K.; Froehlich, J.; Zingl, H.F.K.

    1980-01-01

    The Bethe-Salpeter equation is solved in closed form with the help of a four dimensional separable 'potential'. For possible applications to three-nucleon investigations the authors have fitted all nucleon-nucleon S-wave phase shifts in a sufficient way by this method; in addition they also present an example for a P-wave. (Auth.)

  14. Single-time reduction of bethe-salpeter formalism for two-fermion system

    International Nuclear Information System (INIS)

    Arkhipov, A.A.

    1988-01-01

    The single-time reduction method proposed in other refs. for the system of two scalar particles is generalized for the case of two-fermion system. A self-consistent procedure of single-time reduction has been constructed both in terms of the Bethe-Salpeter wave function and in terms of the Green's function of two-fermion system. Three-dimensional dynamic equations have been obtained for single-time wave functions and two-time Green's functions of a two-fermion system and the Schroedinger structure of the equations obtained is shown to be a consequence of the causality structure of the local QFT. 32 refs

  15. Density matrix renormalization group simulations of SU(N ) Heisenberg chains using standard Young tableaus: Fundamental representation and comparison with a finite-size Bethe ansatz

    Science.gov (United States)

    Nataf, Pierre; Mila, Frédéric

    2018-04-01

    We develop an efficient method to perform density matrix renormalization group simulations of the SU(N ) Heisenberg chain with open boundary conditions taking full advantage of the SU(N ) symmetry of the problem. This method is an extension of the method previously developed for exact diagonalizations and relies on a systematic use of the basis of standard Young tableaux. Concentrating on the model with the fundamental representation at each site (i.e., one particle per site in the fermionic formulation), we have benchmarked our results for the ground-state energy up to N =8 and up to 420 sites by comparing them with Bethe ansatz results on open chains, for which we have derived and solved the Bethe ansatz equations. The agreement for the ground-state energy is excellent for SU(3) (12 digits). It decreases with N , but it is still satisfactory for N =8 (six digits). Central charges c are also extracted from the entanglement entropy using the Calabrese-Cardy formula and agree with the theoretical values expected from the SU (N) 1 Wess-Zumino-Witten conformal field theories.

  16. Bethe-salpeter equation from many-body perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Tobias; Starke, Ronald; Kresse, Georg [Computational Materials Physics, University of Vienna, Sensengasse 8/12, 1090 Vienna (Austria)

    2013-07-01

    The Green function formalism is a powerful tool to calculate not only electronic structure within the quasi-particle (QP) picture, but it also gives access to optical absorption spectra. Starting from QP energies within the GW method, the polarizability, as central quantity, is calculated from the solution of a Bethe-Salpeter-like equation (BSE). It is usually solved within the Tamm-Dancoff Approximation (TDA) which neglects the coupling of resonant (positive frequency branch) and anti-resonant (negative frequency branch) excitations. In this work we solve the full BSE (beyond TDA) based on self-consistently calculated QP orbitals and energies for typical systems. The dielectric function is averaged over many low dimensional shifted k-meshes to obtain k-point converged results. We compare the results to recently introduced approximation to the BSE kernel. Additionally, the time-evolution ansatz is employed to calculate the polarizability, which avoids the direct solution of the BSE.

  17. Stieltjes-Bethe equations in higher genus and branched coverings with even ramifications

    Science.gov (United States)

    Korotkin, Dmitry

    2018-02-01

    We describe projective structures on a Riemann surface corresponding to monodromy groups which have trivial SL (2) monodromies around singularities and trivial PSL (2) monodromies along homologically non-trivial loops on a Riemann surface. We propose a natural higher genus analog of Stieltjes-Bethe equations. Links with branched projective structures and with Hurwitz spaces with ramifications of even order are established. We find a higher genus analog of the genus zero Yang-Yang function (the function generating accessory parameters) and describe its similarity and difference with Bergman tau-function on the Hurwitz spaces.

  18. A Cluster-Bethe lattice treatment for the F-center in alkali-halides

    International Nuclear Information System (INIS)

    Queiroz, S.L.A. de; Koiller, B.; Maffeo, B.; Brandi, H.S.

    1977-01-01

    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Cluster-Bethe lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second- neighbors to it, respectively, cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides [pt

  19. The Bethe-Salpeter equation with fermions

    International Nuclear Information System (INIS)

    Efimov, G.V.

    2007-01-01

    The Bethe-Salpeter (BS) equation in the ladder approximation is studied within a fermion theory: two fermion fields (constituents) with mass m interacting via an exchange of a scalar field with mass μ. The BS equation can be written in the form of an integral equation in the configuration Euclidean x-space with the symmetric kernel K for which Tr K 2 = ∞ due to the singular character of the fermion propagator. This kernel is represented in the form K = K 0 + K I . The operator K 0 with Tr K 0 2 ∞ is of the 'fall at the center' potential type and describes a continuous spectrum only. Besides the presence of this operator leads to a restriction on the value of the coupling constant. The kernel K I with Tr K I 2 2 c 2 and the variational procedure of calculations of eigenvalues and eigenfunctions can be applied. The quantum pseudoscalar and scalar mesodynamics is considered. The binding energy of the state 1 + (deuteron) as a function of the coupling constant is calculated in the framework of the procedure formulated above. It is shown that this bound state is absent in the pseudoscalar mesodynamics and does exist in the scalar mesodynamics. A comparison with the non-relativistic Schroedinger picture is made. (author)

  20. Bound states of quarks calculated with stochastic integration of the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Salomon, M.

    1992-07-01

    We have computed the masses, wave functions and sea quark content of mesons in their ground state by integrating the Bethe-Salpeter equation with a stochastic algorithm. This method allows the inclusion of a large set of diagrams. Inspection of the kernel of the equation shows that q-q-bar pairs with similar constituent masses in a singlet spin state exhibit a high bound state which is not present in other pairs. The pion, kaon and eta belongs to this category. 19 refs., 2 figs., 2 tabs

  1. Study of Y and Lu iron garnets using Bethe-Peierls-Weiss method

    Science.gov (United States)

    Goveas, Neena; Mukhopadhyay, G.; Mukhopadhyay, P.

    1994-11-01

    We study here the magnetic properties of Y- and Lu- Iron Garnets using the Bethe- Peierls-Weiss method modified to suit complex systems like these Garnets. We consider these Garnets as described by Heisenberg Hamiltonian with two sublattices (a,d) and determine the exchange interaction parameters Jad, Jaa and Jdd by matching the exerimental susceptibility curves. We find Jaa and Jdd to be much smaller than those determined by Néel theory, and consistent with those obtained by the study of spin wave spectra; the spin wave dispersion relation constant obtained using these parameters gives good agreement with the experimental values.

  2. Perturbation theory for the Bethe-Salpeter equation in the field of a plane electromagnetic wave

    International Nuclear Information System (INIS)

    Starostin, V.S.; Litskevich, I.K.

    1990-01-01

    The completeness and orthogonality of the solutions of the Bethe-Salpeter equation is proven. A correct derivation of perturbation-theory equations is given. A generalization that includes the field of a plane electromagnetic wave is proposed. The rate of one-photon annihilation of positronium in this field is calculated. If the one-photon decay is allowed, the stationary states of the system are found (states of light-positronium)

  3. Connections of the Liouville model and XXZ spin chain

    Science.gov (United States)

    Faddeev, Ludvig D.; Tirkkonen, Olav

    1995-02-01

    The quantum theory of the Liouville model with imaginary field is considered using the Quantum Inverse Scattering Method. An integrable structure with non-trivial spectral-parameter dependence is developed for lattice Liouville theory by scaling the L-matrix of lattice sine-Gordon theory. This L-matrix yields Bethe ansatz equations for Liouville theory, by the methods of the algebraic Bethe ansatz. Using the string picture of excited Bethe states, the lattice Liouville Bethe equations are mapped to the corresponding spin- {1}/{2} XXZ chain equations. The well developed theory of finite-size corrections in spin chains is used to deduce the conformal properties of the lattice Liouville Bethe states. The unitary series of conformal field theories emerge for Liouville couplings of the form γ = πν/( ν + 1), corresponding to root of unity XXZ anisotropies. The Bethe states give the full spectrum of the corresponding unitary conformal field theory, with the primary states in the Kač table parameterized by a string length K, and the remnant of the chain length mod ( ν + 1).

  4. Connections of the Liouville model and XXZ spin chain

    International Nuclear Information System (INIS)

    Faddeev, L.D.; Tirkkonen, O.

    1995-01-01

    The quantum theory of the Liouville model with imaginary field is considered using the Quantum Inverse Scattering Method. An integrable structure with non-trivial spectral-parameter dependence is developed for lattice Liouville theory by scaling the L-matrix of lattice sine-Gordon theory. This L-matrix yields Bethe ansatz equations for Liouville theory, by the methods of the algebraic Bethe ansatz. Using the string picture of excited Bethe states, the lattice Liouville Bethe equations are mapped to the corresponding spin-1/2 XXZ chain equations. The well developed theory of finite-size corrections in spin chains is used to deduce the conformal properties of the lattice Liouville Bethe states. The unitary series of conformal field theories emerge for Liouville couplings of the form γ= πν/(ν+1), corresponding to root of unity XXZ anisotropies. The Bethe states give the full spectrum of the corresponding unitary conformal field theory, with the primary states in the Kac table parameterized by a string length K, and the remnant of the chain length mod (ν+1). (orig.)

  5. Part I: quantum fluctuations in chains of Josephson junctions. Part II: directed aggregation on the Bethe lattice

    International Nuclear Information System (INIS)

    Bradley, R.M.

    1985-01-01

    Part I studies the effect of quantum fluctuations of the phase on the low temperature behavior of two models of Josephson junction chains with Coulomb interactions taken into account. The first model, which represents a chain of junctions close to a ground plane, is the Hamiltonian version of the two-dimensional XY model in one space and one time dimension. In the second model, the charging energy for a single junction in the chain is just the parallel-plate capacitor energy. It is shown that quantum fluctuations produce exponential decay of the order parameter correlation junction for any finite value of the junction capacitance. Part II deals with two types of directed aggregation on the Bethe lattice - directed diffusion-limited aggregation DDLA and ballistic aggregation (BA). In the DDLA problem on finite lattices, an exact nonlinear recursion relation is constructed for the probability distribution of the density. The mean density tends to zero as the lattice size is taken into infinity. Using a mapping between the model with perfect adhesion on contact and another model with a particular value of the adhesion probability, it is shown that the adhesion probability is irrelevant over an interval of values

  6. A generalized Bethe-Weizaecker mass formula for strange hadronic matter

    International Nuclear Information System (INIS)

    Dover, C.B.; Gal, A.

    1993-01-01

    We extend the Bethe- Weizsaecker nuclear mass formula to strange hadronic matter composed of nucleons, lambdas and cascade hyperons. The generalized formula contains several volume and symmetry terms constrained by phenomenologically determined Λ-nuclear, Ξ-nuclear and ΛΛ interaction parameters and by hyperon-hyperon (ΛΛ, ΛΞ, ΞΞ) interaction parameters suggested by one-boson-exchange models. We confirm that multi-Λ hypernuclei are generally unstable to ΛΛ→ΞN conversion. For strange hadronic matter we determine, as function of the baryon number A, the line of strong-interaction stability, along which a large strangeness fraction vertical stroke /Svertical stroke /A∝0.5-1.1 and a low charge fraction q/A< or ∼0.2 hold, and no fission occurs. The binding energy per baryon increases monotonically to its bulk limit, B/A→38 MeV, vertical stroke /Svertical stroke /A→ 1.1 and q/A→0 for the parameters adopted here assuming that the hyperon species saturate at densities similar to those of protons and neutrons in nuclei. Even in the extreme limit of vanishingly small hyperon-hyperon interaction strengths, strange hadronic matter with B/A→15 MeV, vertical stroke /Svertical stroke /A→0.7 and q/A→0 in the bulk limit should exist and our mass formula reproduces semi-quantitatively recent mean-field calculations which implicitly assumed weak hyperon-hyperon interactions. (orig.)

  7. A generalized Bethe-Weizsaecker mass formula for strange hadronic matter

    International Nuclear Information System (INIS)

    Dover, C.B.; Washington Univ., Seattle, WA; Gal, A.; Washington Univ., Seattle, WA

    1992-12-01

    The Bethe-Weizsaecker nuclear mass formula is extended to strange hadronic matter composed of nucleons, lambdas and cascade hyperons. The generalized formula contains several volume and symmetry terms constrained by phenomenologically determined λ-nuclear, ξ-nuclear and λλ interaction parameters and by hyperon-hyperon (λλ, λξ, ξξ) interaction parameters suggested by One-Boson-Exchange models. We find that hypernuclei are generally unstable to λλ → ξN conversion. For strange hadronic matter, as function of the baryon number A, the line of strong-interaction stability, along which a large strangeness fraction |S|/A ∼ 0.5 - 1.1 and a low charge fraction q/A approx-lt 0.2 hold, and no fission occurs, is determined. The binding energy per baryon increases monotonically to its bulk limit, B/A → 38 MeV, |S|/A → 1.1 and q/A → 0 for the parameters adopted here assuming that the hyperon species saturate at densities similar to those of protons and neutrons in nuclei. Even in the extreme limit of vanishingly small hyperon-hyperon interaction strengths, strange hadronic matter with B/A → 15 MeV, |S|/A → 0.7 and q/A → 0 in the bulk limit should exist; the mass formula reproduces semi-quantitatively recent mean-field calculations which implicitly assumed weak hyperon-hyperon interactions

  8. Non-skew-symmetric classical r-matrices, algebraic Bethe ansatz, and Bardeen-Cooper-Schrieffer-type integrable systems

    International Nuclear Information System (INIS)

    Skrypnyk, T.

    2009-01-01

    We construct quantum integrable systems associated with non-skew-symmetric gl(2)-valued classical r-matrices. We find a new explicit multiparametric family of such the non-skew-symmetric classical r-matrices. We consider two classes of examples of the corresponding integrable systems, namely generalized Gaudin systems with and without an external magnetic field. In the case of arbitrary r-matrices diagonal in a standard gl(2)-basis, we calculate the spectrum of the corresponding quantum integrable systems using the algebraic Bethe ansatz. We apply these results to a construction of integrable fermionic models and obtain a wide class of integrable Bardeen-Cooper-Schrieffer (BCS)-type fermionic Hamiltonians containing the pairing and electrostatic interaction terms. We also consider special cases when the corresponding integrable Hamiltonians contain only pairing interaction term and are exact analogs of the 'reduced BCS Hamiltonian' of Richardson

  9. Large-N behaviour of string solutions in the Heisenberg model

    CERN Document Server

    Fujita, T; Takahashi, H

    2003-01-01

    We investigate the large-N behaviour of the complex solutions for the two-magnon system in the S = 1/2 Heisenberg XXZ model. The Bethe ansatz equations are numerically solved for the string solutions with a new iteration method. Clear evidence of the violation of the string configurations is found at N = 22, 62, 121, 200, 299, 417, but the broken states are still Bethe states. The number of Bethe states is consistent with the exact diagonalization, except for one singular state.

  10. Bethe-Salpeter kernels and particle structure in the Yukawa2 quantum field theory

    International Nuclear Information System (INIS)

    Cooper, A.S.

    1981-01-01

    The author discusses the extension to the (weakly coupled) Yukawa quantum field theory in two space-time dimensions (Y 2 ), with equal bare masses, of some techniques used in the analysis of particle structure for weakly coupled even P(PHI) 2 . In particular he considers existence, regularity, and decay properties for the inverse two point functions and various Bethe-Salpeter kernels of the theory. These properties suffice to ensure that in the +-2 fermion sectors the mass spectrum is discrete below 2m 0 and the S-matrix is unitary up to 2m 0 + epsilon. (Auth.)

  11. The H-N method for solving linear transport equation: theory and application

    International Nuclear Information System (INIS)

    Kaskas, A.; Gulecyuz, M.C.; Tezcan, C.

    2002-01-01

    The system of singular integral equation which is obtained from the integro-differential form of the linear transport equation as a result of Placzec lemma is solved. Application are given using the exit distributions and the infinite medium Green's function. The same theoretical results are also obtained with the use of the singular eigenfunction of the method of elementary solutions

  12. Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan-Yuan; Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-15

    The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.

  13. The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice

    International Nuclear Information System (INIS)

    Queiroz, S.L.A. de.

    1977-07-01

    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author) [pt

  14. Numerical Solutions of One Reduced Bethe-Salpeter Equation for the Coulombic Bound States Composed of Virtual Constituents

    Science.gov (United States)

    Chen, Jiao-Kai

    2018-04-01

    We present one reduction of the Bethe-Salpeter equation for the bound states composed of two off-mass-shell constituents. Both the relativistic effects and the virtuality effects can be considered in the obtained spinless virtuality distribution equation. The eigenvalues of the spinless virtuality distribution equation are perturbatively calculated and the bound states e+e-, μ+μ-, τ+τ-, μ+e-, and τ+e- are discussed.

  15. A Binary-Encounter-Bethe Approach to Simulate DNA Damage by the Direct Effect

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.

    2013-01-01

    The DNA damage is of crucial importance in the understanding of the effects of ionizing radiation. The main mechanisms of DNA damage are by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research in this area, many questions on the formation of DNA damage remains. To refine existing DNA damage models, an approach based on the Binary-Encounter-Bethe (BEB) model was developed[1]. This model calculates differential cross sections for ionization of the molecular orbitals of the DNA bases, sugars and phosphates using the electron binding energy, the mean kinetic energy and the occupancy number of the orbital. This cross section has an analytic form which is quite convenient to use and allows the sampling of the energy loss occurring during an ionization event. To simulate the radiation track structure, the code RITRACKS developed at the NASA Johnson Space Center is used[2]. This code calculates all the energy deposition events and the formation of the radiolytic species by the ion and the secondary electrons as well. We have also developed a technique to use the integrated BEB cross section for the bases, sugar and phosphates in the radiation transport code RITRACKS. These techniques should allow the simulation of DNA damage by ionizing radiation, and understanding of the formation of double-strand breaks caused by clustered damage in different conditions.

  16. Light-quarkonium spectra and orbital-angular-momentum decomposition in a Bethe-Salpeter-equation approach

    Energy Technology Data Exchange (ETDEWEB)

    Hilger, T.; Krassnigg, A. [University of Graz, NAWI Graz, Institute of Physics, Graz (Austria); Gomez-Rocha, M. [ECT*, Villazzano, Trento (Italy)

    2017-09-15

    We investigate the light-quarkonium spectrum using a covariant Dyson-Schwinger-Bethe-Salpeter-equation approach to QCD. We discuss splittings among as well as orbital angular momentum properties of various states in detail and analyze common features of mass splittings with regard to properties of the effective interaction. In particular, we predict the mass of anti ss exotic 1{sup -+} states, and identify orbital angular momentum content in the excitations of the ρ meson. Comparing our covariant model results, the ρ and its second excitation being predominantly S-wave, the first excitation being predominantly D-wave, to corresponding conflicting lattice-QCD studies, we investigate the pion-mass dependence of the orbital-angular-momentum assignment and find a crossing at a scale of m{sub π} ∝ 1.4 GeV. If this crossing turns out to be a feature of the spectrum generated by lattice-QCD studies as well, it may reconcile the different results, since they have been obtained at different values of m{sub π}. (orig.)

  17. Bethe-Salpeter equation for non-self conjugate mesons in a power-law potential

    International Nuclear Information System (INIS)

    Ikhdair, S.M.

    1992-07-01

    We develop an approach to the solution of the spinless Bethe-Salpeter equation for the different-mass case. Although the calculations are developed for spin-zero particles in any arbitrary spherically symmetric potential, the non-Coulombic effective power-law potential is used as a kernel to produce the spin-averaged bound states of the non-self-conjugate mesons. The analytical formulae are also applicable to the self-conjugate mesons in the equal-mass case. The flavor-independent case is investigated in this work. The calculations are carried out to the third-order correction of the energy series. Results are consistent with those obtained before. (author). 14 refs, 1 tab

  18. Electromagnetic production of trimuons in muon scattering: Bethe-Heitler reactions with muon and heavy-lepton pairs

    International Nuclear Information System (INIS)

    Ganapathi, V.; Smith, J.

    1981-01-01

    We analyze the Bethe-Heitler production of muon and heavy-lepton pairs using high-energy muon beams on a variety of targets. We give results for coherent production from a nucleus, for incoherent production from individual protons and neutrons, and for deep-inelastic production. Differential distributions are presented for the final leptons and the effects of experimental cuts are considered. This work complements our previous study of trimuon production via muon radiation, Compton radiation, and hadronic final-state interactions

  19. La cerámica Khirbet Kerak (Beth Yerah, Israel y la etnicidad: un enfoque alternativo

    Directory of Open Access Journals (Sweden)

    Bernardo Gandulla

    2007-07-01

    Full Text Available La cerámica Khirbet Kerak, descubierta en el sudoeste del Mar de Galilea en 1930 por W. F. Albright, ha sido desde entonces motivo de muchas controversias. Las razones de las discusiones en torno a este estilo radican  en su carácter aparentemente intrusivo en Palestina, entre el 2800-2400  a.C., puesto que esta cerámica es típica en la Cultura Transcaucásica Temprana o Cultura Kura-Araxes y en Siria Septentrional, durante el Bronce Antiguo, siendo especialmente abundante en la etapa final de este período. Sin embargo los estudios realizados en Beth Shan (Chazan y McGovern, ver n. 17, muestran que los materiales Khirbet Kerak fueron de producción local lo que parece descartar su carácter intrusivo. Por tanto, desde nuestro punto de vista, el “fenómeno Khirbet Kerak” constituye así un hito de singular importancia en la conformación de las tradiciones culturales de Canaan a partir de un sustrato etnocultural común hurrita, en un eje de interacción cultural norte a sur desde la región del Lago Van, que habrá de proyectarse de distintas formas en la macrorregión alcanzando hasta los antiguos hebreos, en cuanto cananeos, como se reflejan en instituciones del derecho privado presentes en las narraciones del Génesis.Palabras clave: Canaán - Bronce Antiguo - Beth Yerah - Khirbet Kerak - Hurritas- Hebreos

  20. Bukhvostov–Lipatov model and quantum-classical duality

    Directory of Open Access Journals (Sweden)

    Vladimir V. Bazhanov

    2018-02-01

    Full Text Available The Bukhvostov–Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1+1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O(3 non-linear sigma model. In our previous work [arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov–Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.

  1. Bukhvostov-Lipatov model and quantum-classical duality

    Science.gov (United States)

    Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Runov, Boris A.

    2018-02-01

    The Bukhvostov-Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1 + 1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O (3) non-linear sigma model. In our previous work [arxiv:arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov-Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.

  2. Particle–hole duality, integrability, and Russian doll BCS model

    Energy Technology Data Exchange (ETDEWEB)

    Bork, L.V. [Center for Fundamental and Applied Research, N. L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, 117218 Moscow (Russian Federation); Pogosov, W.V., E-mail: walter.pogosov@gmail.com [Center for Fundamental and Applied Research, N. L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation)

    2015-08-15

    We address a generalized Richardson model (Russian doll BCS model), which is characterized by the breaking of time-reversal symmetry. This model is known to be exactly solvable and integrable. We point out that the Russian doll BCS model, on the level of Hamiltonian, is also particle–hole symmetric. This implies that the same state can be expressed both in the particle and hole representations with two different sets of Bethe roots. We then derive exact relations between Bethe roots in the two representations, which can hardly be obtained staying on the level of Bethe equations. In a quasi-classical limit, similar identities for usual Richardson model, known from literature, are recovered from our results. We also show that these relations for Richardson roots take a remarkably simple form at half-filling and for a symmetric with respect to the middle of the interaction band distribution of one-body energy levels, since, in this special case, the rapidities in the particle and hole representations up to the translation satisfy the same system of equations.

  3. Web-based description of the space radiation environment using the Bethe-Bloch model

    Science.gov (United States)

    Cazzola, Emanuele; Calders, Stijn; Lapenta, Giovanni

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe-Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most important

  4. High-accuracy energy formulas for the attractive two-site Bose-Hubbard model

    Science.gov (United States)

    Ermakov, Igor; Byrnes, Tim; Bogoliubov, Nikolay

    2018-02-01

    The attractive two-site Bose-Hubbard model is studied within the framework of the analytical solution obtained by the application of the quantum inverse scattering method. The structure of the ground and excited states is analyzed in terms of solutions of Bethe equations, and an approximate solution for the Bethe roots is given. This yields approximate formulas for the ground-state energy and for the first excited-state energy. The obtained formulas work with remarkable precision for a wide range of parameters of the model, and are confirmed numerically. An expansion of the Bethe state vectors into a Fock space is also provided for evaluation of expectation values, although this does not have accuracy similar to that of the energies.

  5. "Her mouth is medicine": Beth Brant and Paula Gunn Allen's decolonizing queer erotics.

    Science.gov (United States)

    Burford, Arianne

    2013-01-01

    This article asserts the need to recognize the complexity of the theoretical work of more lesbian Native American writers, focusing specifically Beth Brant (Bay of Quinte Mohawk) and Paula Gunn Allen (Laguna Pueblo). Their poetry and short stories provide a theoretically nuanced analysis of how heteronormativity is intertwined in and dependent on colonialism, and thus a methodology for Queer Theory that requires an understanding of it in relation to colonialism. They reject heteronormative Pocahontas fantasies about Native women, offering a lesbian-based tactic for decolonization through the expression of erotic desire. This article demonstrates the endless possibilities for fierce queer resistance, revolutionary change, and healing from the trauma of genocide and the accompanying colonialist heteropatriarchal disciplining of Native women's bodies.

  6. Exact solution of the XXX Gaudin model with generic open boundaries

    Science.gov (United States)

    Hao, Kun; Cao, Junpeng; Yang, Tao; Yang, Wen-Li

    2015-03-01

    The XXX Gaudin model with generic integrable open boundaries specified by the most general non-diagonal reflecting matrices is studied. Besides the inhomogeneous parameters, the associated Gaudin operators have six free parameters which break the U(1) -symmetry. With the help of the off-diagonal Bethe ansatz, we successfully obtained the eigenvalues of these Gaudin operators and the corresponding Bethe ansatz equations.

  7. Bethe-Salpeter equation for fermion-antifermion system in the ladder approximation

    International Nuclear Information System (INIS)

    Fukui, Ichio; Seto, Noriaki; Yoshida, Toshihiro.

    1977-01-01

    The Bethe-Salpeter (B-S) equation is important for studying hadron physics. Especially intensive investigation on the fermion-antifermion B-S equation is indispensable for the phenomenological studies of hardrons. However, many components of the B-S amplitude and the Wick-rotated integral kernel of non-Fredholm type have prevented from knowing details the solutions even in the ladder approximation. Some particular solutions are known in case of the vanishing four-momenta of bound states. The B-S equation for the bound state of fermion-anti-fermion system interacting through vector (axial-vector) particle exchange was studied in the ladder approximation with Feynman gauge. The reduced equations were obtained for suitably decomposed amplitude, and it is shown that, in the S-wave case, the coupled equations separate into two parts. In the nonrelativistic limit, large components of the amplitude satisfy the Wick-Cutkosky equation, and small components are expressed in terms of the large ones. Equations are derived for the equal-time amplitudes. (Kobatake, H.)

  8. Projecting the Bethe-Salpeter Equation onto the Light-Front and Back: A Short Review

    International Nuclear Information System (INIS)

    Frederico, T.; Salme, G.

    2011-01-01

    The technique of projecting the four-dimensional two-body Bethe-Salpeter equation onto the three-dimensional Light-Front hypersurface, combined with the quasi-potential approach, is briefly illustrated, by placing a particular emphasis on the relation between the projection method and the effective dynamics of the valence component of the Light-Front wave function. Some details on how to construct the Fock expansion of both (a) the Light-Front effective interaction and (b) the electromagnetic current operator, satisfying the proper Ward-Takahashi identity, will be presented, addressing the relevance of the Fock content in the operators living onto the Light-Front hypersurface. Finally, the generalization of the formalism to the three-particle case will be outlined. (author)

  9. An Exactly Solvable Supersymmetric Model of Semimagic Nuclei

    International Nuclear Information System (INIS)

    Balantekin, A. B.; Gueven, Nurtac; Pehlivan, Yamac

    2008-01-01

    A simple model of nucleons coupled to angular momentum zero (s-pairs) occupying the valance shell of a semi-magic nuclei is considered. The model has a separable, orbit dependent pairing interaction which dominates over the kinetic term. It is shown that such an interaction leads to an exactly solvable model whose (0 + ) eigenstates and energies can be computed very easily with the help of the algebraic Bethe ansatz method. It is also shown that the model has a supersymmetry which connects the spectra of some semimagic nuclei. The results obtained from this model for the semimagic Ni isotopes from 58 Ni to 68 Ni are given. In addition, a new and easier technique for calculating the energy eigenvalues from the Bethe ansatz equations is also presented.

  10. Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain

    Science.gov (United States)

    Belliard, Samuel; Pimenta, Rodrigo A.

    2015-12-01

    We consider the XXX spin-1/2 Heisenberg chain on the circle with an arbitrary twist. We characterize its spectral problem using the modified algebraic Bethe anstaz and study the scalar product between the Bethe vector and its dual. We obtain modified Slavnov and Gaudin-Korepin formulas for the model. Thus we provide a first example of such formulas for quantum integrable models without U(1) symmetry characterized by an inhomogenous Baxter T-Q equation.

  11. Projectile-z3 and -z4 corrections to basic Bethe-Bloch stopping power theory and mean excitation energies of Al, Si, Ni, Ge, Se, Y, Ag and Au

    International Nuclear Information System (INIS)

    Porter, L.E.; Bryan, S.R.

    1980-01-01

    Three independent sets of measurements of the stopping power of solid elemental targets for alpha particles were previously analyzed in terms of basic Bethe-Bloch theory with the low velocity projectile-z 3 correction term included. These data for Al, Si, Ni, Ge, Se, Y, Ag and Au have now been analyzed with the Bloch projectile-z 4 term and a revised projectile-z 3 term incorporated in the Bethe-Bloch formula, the projectile-z 3 revision having been effected by variation of the single free parameter of the projectile-z 3 effect formalism. The value of this parameter, fixed at 1.8 in previous studies, which counteracts inclusion of the projectile-z 4 term is 1.3 +- 0.1 for all target elements except Si. (orig.)

  12. Elastic eD scattering in the Bethe-Salpeter approach for the deuteron with the positive- and negative-energy states

    International Nuclear Information System (INIS)

    Bondarenko, S.G.; Burov, V.V.; Hamamoto, N.; Manabe, Y.; Hosaka, A.; Toki, H.

    2005-01-01

    Recent results obtained by the application of the Bethe-Salpeter approach to the analysis of elastic electron-deuteron scattering with the separable NN kernel are presented. We analyze the impact of the P waves (negative-energy components) on the electromagnetic properties of the deuteron and compare it with experimental data. It was shown that the contribution of the P waves must be taken into account to explain tensor polarization and charge form factor of the deuteron

  13. An investigation of relativistic microscopic optical potential in terms of relativistic Brueckner-Bethe-Goldstone equation

    International Nuclear Information System (INIS)

    Chen Baoqiu; Ma Zhongyu

    1992-01-01

    Relativistic microscopic optical potential of nucleon-nucleus is derived from the relativistic Brueckner-Bethe-Goldstone (RBBG) equation. The complex effective mass of a nucleon is determined by a fit to 200 MeV p- 40 Ca scattering data. The relativistic microscopic optical potentials with this effective mass are obtained from RBBG for p- 16O , 40 Ca, 90 Zr and 208 Pb scattering in energy range from 160 to 800 MeV. The microscopic optical potential is used to study the proton- 40 Ca scattering problem at 200 MeV. The results, such as differential cross section, analyzing power and spin rotation function are compared with those calculated from phenomenological relativistic optical potential

  14. Generalized Heine–Stieltjes and Van Vleck polynomials associated with two-level, integrable BCS models

    International Nuclear Information System (INIS)

    Marquette, Ian; Links, Jon

    2012-01-01

    We study the Bethe ansatz/ordinary differential equation (BA/ODE) correspondence for Bethe ansatz equations that belong to a certain class of coupled, nonlinear, algebraic equations. Through this approach we numerically obtain the generalized Heine–Stieltjes and Van Vleck polynomials in the degenerate, two-level limit for four cases of integrable Bardeen–Cooper–Schrieffer (BCS) pairing models. These are the s-wave pairing model, the p + ip-wave pairing model, the p + ip pairing model coupled to a bosonic molecular pair degree of freedom, and a newly introduced extended d + id-wave pairing model with additional interactions. The zeros of the generalized Heine–Stieltjes polynomials provide solutions of the corresponding Bethe ansatz equations. We compare the roots of the ground states with curves obtained from the solution of a singular integral equation approximation, which allows for a characterization of ground-state phases in these systems. Our techniques also permit the computation of the roots of the excited states. These results illustrate how the BA/ODE correspondence can be used to provide new numerical methods to study a variety of integrable systems. (paper)

  15. Generalized structure of hadron-quark vertex function in Bethe-Salpeter framework: applications to leptonic decays of V-mesons

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, Shashank [Department of Physics, Addis Ababa University, PO Box 101739, Addis Ababa (Ethiopia); Li Shiyuan [Department of Physics, Shandong University, Jinan, 250100 (China)

    2006-07-15

    We employ the framework of the Bethe-Salpeter equation under a covariant instantaneous ansatz to study the leptonic decays of vector mesons. The structure of the hadron-quark vertex function {gamma} is generalized to include various Dirac covariants (other than i{gamma} . {epsilon}) from their complete set. They are incorporated in accordance with a naive power counting rule order-by-order in powers of the inverse of the meson mass. The decay constants for {rho}, {omega} and {phi} mesons are calculated with the incorporation of leading-order covariants.

  16. Generalized structure of hadron-quark vertex function in Bethe-Salpeter framework: applications to leptonic decays of V-mesons

    International Nuclear Information System (INIS)

    Bhatnagar, Shashank; Li Shiyuan

    2006-01-01

    We employ the framework of the Bethe-Salpeter equation under a covariant instantaneous ansatz to study the leptonic decays of vector mesons. The structure of the hadron-quark vertex function Γ is generalized to include various Dirac covariants (other than iγ . ε) from their complete set. They are incorporated in accordance with a naive power counting rule order-by-order in powers of the inverse of the meson mass. The decay constants for ρ, ω and φ mesons are calculated with the incorporation of leading-order covariants

  17. Models and games

    NARCIS (Netherlands)

    Väänänen, J.

    2011-01-01

    This gentle introduction to logic and model theory is based on a systematic use of three important games in logic: the semantic game; the Ehrenfeucht–Fraïssé game; and the model existence game. The third game has not been isolated in the literature before but it underlies the concepts of Beth

  18. Algebraic aspects of exact models

    International Nuclear Information System (INIS)

    Gaudin, M.

    1983-01-01

    Spin chains, 2-D spin lattices, chemical crystals, and particles in delta function interaction share the same underlying structures: the applicability of Bethe's superposition ansatz for wave functions, the commutativity of transfer matrices, and the existence of a ternary operator algebra. The appearance of these structures and interrelations from the eight vortex model, for delta function interreacting particles of general spin, and for spin 1/2, are outlined as follows: I. Eight Vortex Model. Equivalences to Ising model and the dimer system. Transfer matrix and symmetry of the Self Conjugate model. Relation between the XYZ Hamiltonian and the transfer matrix. One parameter family of commuting transfer matrices. A representation of the symmetric group spin. Diagonalization of the transfer matrix. The Coupled Spectrum equations. II. Identical particles with Delta Function interaction. The Bethe ansatz. Yang's representation. The Ternary Algebra and intergrability. III. Identical particles with delta function interaction: general solution for two internal states. The problem of spin 1/2 fermions. The Operator method

  19. Bethe, Oppenheimer, Teller and the Fermi Award: Norris Bradbury Speaks

    Energy Technology Data Exchange (ETDEWEB)

    Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-28

    In 1956 the Enrico Fermi Presidential Award was established to recognize scientists, engineers, and science policymakers who gave unstintingly over their careers to advance energy science and technology. The first recipient was John von Neumann. .1 Among those scientists who were thought eligible for the award were Hans Bethe, J. Robert Oppenheimer, and Edward Teller. In 1959 Norris Bradbury was asked to comment on the relative merits of each these three men, whom he knew well from their affiliation with Los Alamos. Below is a reproduction of the letter Bradbury sent to Dr. Warren C. Johnson of the AEC’s General Advisory Committee(GAC) containing his evaluation of each man. The letter might surprise those not accustomed to Bradbury’s modus operandi of providing very detailed and forthright answers to the AEC. The letter, itself, was found in cache of old microfilm. Whether because of the age of the microfilm or the quality of the filming process, portions of the letter are not legible. Where empty brackets appear, the word or words could not be read or deduced. Words appearing in brackets are guesses that appear, from the image, to be what was written. These guesses, of course, are just that – guesses.

  20. Exact ground-state correlation functions of an atomic-molecular Bose–Einstein condensate model

    Science.gov (United States)

    Links, Jon; Shen, Yibing

    2018-05-01

    We study the ground-state properties of an atomic-molecular Bose–Einstein condensate model through an exact Bethe Ansatz solution. For a certain range of parameter choices, we prove that the ground-state Bethe roots lie on the positive real-axis. We then use a continuum limit approach to obtain a singular integral equation characterising the distribution of these Bethe roots. Solving this equation leads to an analytic expression for the ground-state energy. The form of the expression is consistent with the existence of a line of quantum phase transitions, which has been identified in earlier studies. This line demarcates a molecular phase from a mixed phase. Certain correlation functions, which characterise these phases, are then obtained through the Hellmann–Feynman theorem.

  1. Quasi-exactly solvable relativistic soft-core Coulomb models

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Davids, E-mail: davagboola@gmail.com; Zhang, Yao-Zhong, E-mail: yzz@maths.uq.edu.au

    2012-09-15

    By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.

  2. Mixed spin-3/2 and spin-5/2 Ising system on the Bethe lattice

    International Nuclear Information System (INIS)

    Albayrak, Erhan; Yigit, Ali

    2006-01-01

    In order to study the critical behaviors of the half-integer mixed spin-3/2 and spin-5/2 Blume-Capel Ising ferrimagnetic system, we have used the exact recursion relations on the Bethe lattice. The system was studied for the coordination numbers with q=3, 4, 5 and 6, and the obtained phase diagrams are illustrated on the (kT c /|J|,D A /|J|) plane for constant values of D B /|J|, the reduced crystal field of the sublattice with spin-5/2, and on the (kT c /|J|,D B /|J|) plane for constant values of D A /|J|, the reduced crystal field of the sublattice with spin-3/2, for q=3 only, since the cases corresponding to q=4, 5 and 6 reproduce results similar to the case for q=3. In addition we have also presented the phase diagram with equal strengths of the crystal fields for q=3, 4, 5 and 6. Besides the second- and first-order phase transitions, the system also exhibits compensation temperatures for appropriate values of the crystal fields. In this mixed spin system while the second-order phase transition lines never cut the reduced crystal field axes as in the single spin type spin-3/2 and spin-5/2 Ising models separately, the first-order phase transition lines never connect to the second-order phase transition lines and they end at the critical points, therefore the system does not give any tricritical points. In addition to this, this mixed-spin model exhibits one or two compensation temperatures depending on the values of the crystal fields, as a result the compensation temperature lines show reentrant behavior

  3. Efficient implementation of core-excitation Bethe-Salpeter equation calculations

    Science.gov (United States)

    Gilmore, K.; Vinson, John; Shirley, E. L.; Prendergast, D.; Pemmaraju, C. D.; Kas, J. J.; Vila, F. D.; Rehr, J. J.

    2015-12-01

    We present an efficient implementation of the Bethe-Salpeter equation (BSE) method for obtaining core-level spectra including X-ray absorption (XAS), X-ray emission (XES), and both resonant and non-resonant inelastic X-ray scattering spectra (N/RIXS). Calculations are based on density functional theory (DFT) electronic structures generated either by ABINIT or QuantumESPRESSO, both plane-wave basis, pseudopotential codes. This electronic structure is improved through the inclusion of a GW self energy. The projector augmented wave technique is used to evaluate transition matrix elements between core-level and band states. Final two-particle scattering states are obtained with the NIST core-level BSE solver (NBSE). We have previously reported this implementation, which we refer to as OCEAN (Obtaining Core Excitations from Ab initio electronic structure and NBSE) (Vinson et al., 2011). Here, we present additional efficiencies that enable us to evaluate spectra for systems ten times larger than previously possible; containing up to a few thousand electrons. These improvements include the implementation of optimal basis functions that reduce the cost of the initial DFT calculations, more complete parallelization of the screening calculation and of the action of the BSE Hamiltonian, and various memory reductions. Scaling is demonstrated on supercells of SrTiO3 and example spectra for the organic light emitting molecule Tris-(8-hydroxyquinoline)aluminum (Alq3) are presented. The ability to perform large-scale spectral calculations is particularly advantageous for investigating dilute or non-periodic systems such as doped materials, amorphous systems, or complex nano-structures.

  4. The average kinetic energy of the heavy quark in Λb in the Bethe-Salpeter equation approach

    International Nuclear Information System (INIS)

    Guo, X.-H.; Wu, H.-K.

    2007-01-01

    In the previous paper, based on the SU(2) f xSU(2) s heavy quark symmetries of the QCD Lagrangian in the heavy quark limit, the Bethe-Salpeter equation for the heavy baryon Λ b was established with the picture that Λ b is composed of a heavy quark and a scalar light diquark. In the present work, we apply this model to calculate μ π 2 for Λ b , the average kinetic energy of the heavy quark inside Λ b . This quantity is particularly interesting since it can be measured in experiments and since it contributes to the inclusive semileptonic decays of Λ b when contributions from higher order terms in 1/M b expansions are taken into account and consequently influences the determination of the Cabibbo-Kobayashi-Maskawa matrix elements V ub and V cb . We find that μ π 2 for Λ b is 0.25GeV 2 ∼0.95GeV 2 , depending on the parameters in the model including the light diquark mass and the interaction strength between the heavy quark and the light diquark in the kernel of the BS equation. We also find that this result is consistent with the value of μ π 2 for Λ b which is derived from the experimental value of μ π 2 for the B meson with the aid of the heavy quark effective theory

  5. Null-plane formulation of Bethe-Salpeter qqq dynamics: Baryon mass spectra

    International Nuclear Information System (INIS)

    Kulshreshtha, D.S.; Mitra, A.N.

    1988-01-01

    The Bethe-Salpeter (BS) equation for a qqq system is formulated in the null-plane approximation (NPA) for the BS wave function, as a direct generalization of a corresponding QCD-motivated formalism developed earlier for qq-bar systems. The confinement kernel is assumed vector type (γ/sub μ//sup (1)/γ/sub μ//sup (2)/) for both qq-bar and qq pairs, with identical harmonic structures, and with the spring constant proportional, among other things, to the running coupling constant α/sub s/ (for an explicit QCD motivation). The harmonic kernel is given a suitable Lorentz-invariant definition [not D'Alembertian 2 δ 4 (q)], which is amenable to NPA reduction in a covariant form. The reduced qqq equation in NPA is solved algebraically in a six-dimensional harmonic-oscillator (HO) basis, using the techniques of SO(2,1) algebra interlinked with S 3 symmetry. The results on the nonstrange baryon mass spectra agree well with the data all the way up to N = 6, thus confirming the asymptotic prediction M∼N/sup 2/3/ characteristic of vector confinement in HO form. There are no extra parameters beyond the three basic constants (ω 0 ,C 0 ,m/sub u//sub d/) which were earlier found to provide excellent fits to meson spectra (qq-bar)

  6. Approach to calculation of mass spectra and two-photon decays of c c¯ mesons in the framework of Bethe-Salpeter equation

    Science.gov (United States)

    Bhatnagar, Shashank; Alemu, Lmenew

    2018-02-01

    In this work we calculate the mass spectra of charmonium for 1 P ,…,4 P states of 0++ and 1++, for 1 S ,…,5 S states of 0-+, and for 1 S ,…,4 D states of 1- along with the two-photon decay widths of the ground and first excited states of 0++ quarkonia for the process O++→γ γ in the framework of a QCD-motivated Bethe-Salpeter equation (BSE). In this 4 ×4 BSE framework, the coupled Salpeter equations are first shown to decouple for the confining part of the interaction (under the heavy-quark approximation) and are analytically solved, and later the one-gluon-exchange interaction is perturbatively incorporated, leading to mass spectral equations for various quarkonia. The analytic forms of wave functions obtained are used for the calculation of the two-photon decay widths of χc 0. Our results are in reasonable agreement with data (where available) and other models.

  7. Optical properties of bulk semiconductors and graphene/boron nitride: the Bethe-Salpeter equation with derivative discontinuity-corrected density functional energies

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten W.; Thygesen, Kristian S.

    2012-01-01

    -dimensional systems of graphene and hexagonal boron-nitride (h-BN) we find good agreement with previous many-body calculations. For the graphene/h-BN interface we find that the fundamental and optical gaps of the h-BN layer are reduced by 2.0 and 0.7 eV, respectively, compared to freestanding h-BN. This reduction......We present an efficient implementation of the Bethe-Salpeter equation (BSE) for optical properties of materials in the projector augmented wave method Grid-based projector-augmented wave method (GPAW). Single-particle energies and wave functions are obtained from the Gritsenko, Leeuwen, Lenthe...

  8. Magnetic properties of the mixed ferrimagnetic ternary system with a single-ion anisotropy on the Bethe lattice

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); School of Computational Science, Florida State University, Tallahassee, FL 32306-4120 (United States); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2009-05-15

    The magnetic properties of the ternary system ABC consisting of spins {sigma}=1/2 , S=1, and m=3/2 are investigated on the Bethe lattice by using the exact recursion relations. We consider both ferromagnetic and antiferromagnetic exchange interactions. The exact expressions for magnetizations and magnetic susceptibilities are found, and thermal behaviors of magnetizations and susceptibilities are studied. We construct the phase diagrams and find that the system exhibits one, two or even three compensation temperatures depending on the values of the interaction parameters in the Hamiltonian. Moreover, the system undergoes a second-order phase transition for the coordination number q{<=}3 and a second- and first-order phase transitions for q>3; hence the system gives a tricritical point. The system also exhibits the reentrant behaviors.

  9. Magnetic properties of the mixed ferrimagnetic ternary system with a single-ion anisotropy on the Bethe lattice

    International Nuclear Information System (INIS)

    Deviren, Bayram; Canko, Osman; Keskin, Mustafa

    2009-01-01

    The magnetic properties of the ternary system ABC consisting of spins σ=1/2 , S=1, and m=3/2 are investigated on the Bethe lattice by using the exact recursion relations. We consider both ferromagnetic and antiferromagnetic exchange interactions. The exact expressions for magnetizations and magnetic susceptibilities are found, and thermal behaviors of magnetizations and susceptibilities are studied. We construct the phase diagrams and find that the system exhibits one, two or even three compensation temperatures depending on the values of the interaction parameters in the Hamiltonian. Moreover, the system undergoes a second-order phase transition for the coordination number q≤3 and a second- and first-order phase transitions for q>3; hence the system gives a tricritical point. The system also exhibits the reentrant behaviors

  10. Thermodynamic Bethe ansatz for boundary sine-Gordon model

    International Nuclear Information System (INIS)

    Lee, Taejun; Rim, Chaiho

    2003-01-01

    (R-channel) TBA is elaborated to find the effective central charge dependence on the boundary parameters for the massless boundary sine-Gordon model with the coupling constant (8π)/β 2 =1+λ with λ a positive integer. Numerical analysis of the massless boundary TBA demonstrates that at an appropriate boundary parameter range (cusp point) there exists a singularity crossing phenomena and this effect should be included in TBA to have the right behavior of the effective central charge

  11. TBA equations for excited states in the sine-Gordon model

    International Nuclear Information System (INIS)

    Balog, Janos; Hegedus, Arpad

    2004-01-01

    We propose thermodynamic Bethe ansatz (TBA) integral equations for multi-particle soliton (fermion) states in the sine-Gordon (massive Thirring) model. This is based on T-system and Y-system equations, which follow from the Bethe ansatz solution in the light-cone lattice formulation of the model. Even and odd charge sectors are treated on an equal footing, corresponding to periodic and twisted boundary conditions, respectively. The analytic properties of the Y-system functions are conjectured on the basis of the large volume solution of the system, which we find explicitly. A simple relation between the TBA Y-functions and the counting function variable of the alternative non-linear integral equation (Destri-de Vega equation) description of the model is given. At the special value β 2 = 6π of the sine-Gordon coupling, exact expressions for energy and momentum eigenvalues of one-particle states are found

  12. Bethe-Salpeter wave functions of ηc(1S, 2S) and ψ(1S, 2S) states: local-potential description of the charmonium system revisited

    Science.gov (United States)

    Nochi, Kazuki; Kawanai, Taichi; Sasaki, Shoichi

    2018-03-01

    The quark potential models with an energy-independent central potential have been successful for understanding the conventional charmonium states especially below the open charm threshold. As one might consider, however, the interquark potential is in general energy-dependent, and its tendency gets stronger in higher lying states. Confirmation of whether the interquark potential is energy-independent is also important to verify the validity of the quark potential models. In this talk, we examine the energy dependence of the charmonium potential, which can be determined from the Bethe-Salpeter (BS) amplitudes of cc̅ mesons in lattice QCD.We first calculate the BS amplitudes of radially excited charmonium states, the ηc(2S) and ψ(2S) states, using the variational method and then determine both the quark kinetic mass and the charmonium potential within the HAL QCD method. Through a direct comparison of charmonium potentials determined from both the 1S and 2S states, we confirm that neither the central nor spin-spin potential shows visible energy dependence at least up to 2S state.

  13. A Riemann-Hilbert formulation for the finite temperature Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Cavaglià, Andrea [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); Cornagliotto, Martina [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Mattelliano, Massimo; Tateo, Roberto [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy)

    2015-06-03

    Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily solved numerically. We discuss the emergence of an exact Bethe Ansatz and the link between the TBA approach and the results by Jüttner, Klümper and Suzuki based on the Quantum Transfer Matrix method. We also comment on the analytic continuation mechanism leading to excited states and on the mirror equations describing the finite-size Hubbard model with twisted boundary conditions.

  14. Toy models for wrapping effects

    International Nuclear Information System (INIS)

    Penedones, Joao; Vieira, Pedro

    2008-01-01

    The anomalous dimensions of local single trace gauge invariant operators in N = 4 supersymmetric Yang-Mills theory can be computed by diagonalizing a long range integrable Hamiltonian by means of a perturbative asymptotic Bethe ansatz. This formalism breaks down when the number of fields of the composite operator is smaller than the range of the Hamiltonian which coincides with the order in perturbation theory at study. We analyze two spin chain toy models which might shed some light on the physics behind these wrapping effects. One of them, the Hubbard model, is known to be closely related to N = 4 SYM. In this example, we find that the knowledge of the effective spin chain description is insufficient to reconstruct the finite size effects of the underlying electron theory. We compute the wrapping corrections for generic states and relate them to a Luscher like approach. The second toy models are long range integrable Hamiltonians built from the standard algebraic Bethe ansatz formalism. This construction is valid for any symmetry group. In particular, for non-compact groups it exhibits an interesting relation between wrapping interactions and transcendentality.

  15. Separation of contributions from deeply virtual Compton scattering and its interference with the Bethe-Heitler process in measurements on a hydrogen target

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, Z.

    2009-09-01

    Hard exclusive leptoproduction of real photons from an unpolarized proton target is studied in an effort to elucidate generalized parton distributions. The data accumulated during the years 1996-2005 with the HERMES spectrometer are analyzed to yield asymmetries with respect to the combined dependence of the cross section on beam helicity and charge, thereby revealing previously unseparated contributions from deeply virtual Compton scattering and its interference with the Bethe-Heitler process. The integrated luminosity is sufficient to show correlated dependences on two kinematic variables, and provides the most precise determination of the dependence on only the beam charge. (orig.)

  16. 'Relativistic' quark model for mesons with flavour-independent potential

    International Nuclear Information System (INIS)

    Kroesen, G.

    1987-01-01

    On the base of the Bethe-Salpeter equation in instantaneous approximation a unified model for the mass spectrum of the mesons was designed. The 'relativistic' structure of the Bethe-Salpeter equation allows a natural inclusion of the spin dependences and an extension of the model to small quark masses. The model contains as essential property two potential contributions where one represents the one-gluon exchange while the other represents the confinement potential. The annihilation of qanti q into gluons was not regarded. The spectrum and the amplitudes of the Bethe-Salpeter equation were solved approximatively in numerical way for the lowest states. The free parameters of the model were determined by a fit of the spectrum to a wellknown part of the meson spectrum. The results yield even at small quark masses a quantitatively good picture for all meson families. The result shows that the spectra of the heavy and light mesons can be described by a flavor-independent potential which contains 5 free parameters. Both the internal spin dependent structure and the absolute position of the families can so correctly be described. Especially the position of the D, D s , and B states and the position of the uanti u, danti d states can be simultaneously described by a constant C in the long-range part of the potential. The constant C is thereby essentially determined by the splitting between the Υ family and the B family repectively Ψ and D family. The 3 S 1- 3 D 1 respectively the 3 P 2 - 3 F 2 configuration mixing was regarded. The results show that this mixing is negligibly small. (orig./HSI) [de

  17. Eikonal multiple scattering model within the framework of Feynman's positron theory

    International Nuclear Information System (INIS)

    Tekou, A.

    1986-07-01

    The Bethe Salpeter equation for nucleon-nucleon, nucleon-nucleus and nucleus-nucleus scattering is eikonalized. Multiple scattering series is obtained. Contributions of three body interations are included. The model presented below may be used to investigate atomic collisions. (author)

  18. Thermodynamics of the topological Kondo model

    Directory of Open Access Journals (Sweden)

    Francesco Buccheri

    2015-07-01

    Full Text Available Using the thermodynamic Bethe ansatz, we investigate the topological Kondo model, which describes a set of one-dimensional external wires, pertinently coupled to a central region hosting a set of Majorana bound states. After a short review of the Bethe ansatz solution, we study the system at finite temperature and derive its free energy for arbitrary (even and odd number of external wires. We then analyse the ground state energy as a function of the number of external wires and of their couplings to the Majorana bound states. Then, we compute, both for small and large temperatures, the entropy of the Majorana degrees of freedom localized within the central region and connected to the external wires. Our exact computation of the impurity entropy provides evidence of the importance of fermion parity symmetry in the realization of the topological Kondo model. Finally, we also obtain the low-temperature behaviour of the specific heat of the Majorana bound states, which provides a signature of the non-Fermi-liquid nature of the strongly coupled fixed point.

  19. Thermodynamics of the topological Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Buccheri, Francesco, E-mail: buccheri@iip.ufrn.br [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Babujian, Hrachya [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Yerevan Physics Institute, Alikhanian Brothers 2, Yerevan, 375036 (Armenia); Korepin, Vladimir E. [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); C. N. Yang Institute for Theoretical Physics, Stony Brook University, NY 11794 (United States); Sodano, Pasquale [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Departemento de Fisíca Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Trombettoni, Andrea [CNR-IOM DEMOCRITOS Simulation Center, Via Bonomea 265, I-34136 Trieste (Italy); SISSA and INFN, Sezione di Trieste, Via Bonomea 265, I-34136 Trieste (Italy)

    2015-07-15

    Using the thermodynamic Bethe ansatz, we investigate the topological Kondo model, which describes a set of one-dimensional external wires, pertinently coupled to a central region hosting a set of Majorana bound states. After a short review of the Bethe ansatz solution, we study the system at finite temperature and derive its free energy for arbitrary (even and odd) number of external wires. We then analyse the ground state energy as a function of the number of external wires and of their couplings to the Majorana bound states. Then, we compute, both for small and large temperatures, the entropy of the Majorana degrees of freedom localized within the central region and connected to the external wires. Our exact computation of the impurity entropy provides evidence of the importance of fermion parity symmetry in the realization of the topological Kondo model. Finally, we also obtain the low-temperature behaviour of the specific heat of the Majorana bound states, which provides a signature of the non-Fermi-liquid nature of the strongly coupled fixed point.

  20. Strings as multi-particle states of quantum sigma-models

    International Nuclear Information System (INIS)

    Gromov, Nikolay; Kazakov, Vladimir; Sakai, Kazuhiro; Vieira, Pedro

    2007-01-01

    We study the quantum Bethe ansatz equations in the O(2n) sigma-model for physical particles on a circle, with the interaction given by the Zamolodchikovs'S-matrix, in view of its application to quantization of the string on the S 2n-1 xR t space. For a finite number of particles, the system looks like an inhomogeneous integrable O(2n) spin chain. Similarly to OSp(2m+n|2m) conformal sigma-model considered by Mann and Polchinski, we reproduce in the limit of large density of particles the finite gap Kazakov-Marshakov-Minahan-Zarembo solution for the classical string and its generalization to the S 5 xR t sector of the Green-Schwarz-Metsaev-Tseytlin superstring. We also reproduce some quantum effects: the BMN limit and the quantum homogeneous spin chain similar to the one describing the bosonic sector of the one-loop N=4 super-Yang-Mills theory. We discuss the prospects of generalization of these Bethe equations to the full superstring sigma-model

  1. Integrable quantum impurity models

    International Nuclear Information System (INIS)

    Eckle, H.P.

    1998-01-01

    By modifying some of the local L operators of the algebraic form of the Bethe Ansatz inhomogeneous one dimensional quantum lattice models can be constructed. This fact has recently attracted new attention, the inhomogeneities being interpreted as local impurities. The Hamiltonians of the so constructed one-dimensional quantum models have a nearest neighbour structure except in the vicinity of the local impurities which involve three-site interactions. The pertinent feature of these models is the absence of backscattering at the impurities: the impurities are transparent. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  2. Differential equations and integrable models: the SU(3) case

    International Nuclear Information System (INIS)

    Dorey, Patrick; Tateo, Roberto

    2000-01-01

    We exhibit a relationship between the massless a 2 (2) integrable quantum field theory and a certain third-order ordinary differential equation, thereby extending a recent result connecting the massless sine-Gordon model to the Schroedinger equation. This forms part of a more general correspondence involving A 2 -related Bethe ansatz systems and third-order differential equations. A non-linear integral equation for the generalised spectral problem is derived, and some numerical checks are performed. Duality properties are discussed, and a simple variant of the non-linear equation is suggested as a candidate to describe the finite volume ground state energies of minimal conformal field theories perturbed by the operators phi 12 , phi 21 and phi 15 . This is checked against previous results obtained using the thermodynamic Bethe ansatz

  3. Staircase Models from Affine Toda Field Theory

    CERN Document Server

    Dorey, P; Dorey, Patrick; Ravanini, Francesco

    1993-01-01

    We propose a class of purely elastic scattering theories generalising the staircase model of Al. B. Zamolodchikov, based on the affine Toda field theories for simply-laced Lie algebras g=A,D,E at suitable complex values of their coupling constants. Considering their Thermodynamic Bethe Ansatz equations, we give analytic arguments in support of a conjectured renormalisation group flow visiting the neighbourhood of each W_g minimal model in turn.

  4. 1/J2 corrections to BMN energies from the quantum long range Landau-Lifshitz model

    International Nuclear Information System (INIS)

    Minahan, Joseph A.; Tirziu, Alin; Tseytlin, Arkady A.

    2005-01-01

    In a previous paper [hep-th/0509071], it was shown that quantum 1/J corrections to the BMN spectrum in an effective Landau-Lifshitz (LL) model match with the results from the one-loop gauge theory, provided one chooses an appropriate regularization. In this paper we continue this study for the conjectured Bethe ansatz for the long range spin chain representing perturbative large-N N = 4 Super Yang-Mills in the SU(2) sector, and the 'quantum string' Bethe ansatz for its string dual. The comparison is carried out for corrections to BMN energies up to order λ-tilde 3 in the effective expansion parameter λ-tilde = λ/J 2 . After determining the 'gauge-theory' LL action to order λ-tilde 3 , which is accomplished indirectly by fixing the coefficients in the LL action so that the energies of circular strings match with the energies found using the Bethe ansatz, we find perfect agreement. We interpret this as further support for an underlying integrability of the system. We then consider the 'string-theory' LL action which is a limit of the classical string action representing fast string motion on an S 3 subspace of S 5 and compare the resulting λ-tilde 3 /J 2 corrections to the prediction of the 'string' Bethe ansatz. As in the gauge case, we find precise matching. This indicates that the LL hamiltonian supplemented with a normal ordering prescription and ζ-function regularization reproduces the full superstring result for the 1/J 2 corrections, and also signifies that the string Bethe ansatz does describe the quantum BMN string spectrum to order 1/J 2 . We also comment on using the quantum LL approach to determine the non-analytic contributions in λ that are behind the strong to weak coupling interpolation between the string and gauge results

  5. The sine-Gordon model revisited I

    Energy Technology Data Exchange (ETDEWEB)

    Niccoli, G.; Teschner, J.

    2009-10-15

    We study integrable lattice regularizations of the Sine-Gordon model with the help of the Separation of Variables method of Sklyanin and the Baxter Q-operators. This allows us to characterize the spectrum (eigenvalues and eigenstates) completely in terms of polynomial solutions of the Baxter equation with certain properties. This result is analogous to the completeness of the Bethe ansatz. (orig.)

  6. Algebraic Bethe ansatz for a quantum integrable derivative nonlinear Schroedinger model

    International Nuclear Information System (INIS)

    Basu-Mallick, B.; Bhattacharyya, Tanaya

    2002-01-01

    We find that the quantum monodromy matrix associated with a derivative nonlinear Schroedinger (DNLS) model exhibits U(2) or U(1,1) symmetry depending on the sign of the related coupling constant. By using a variant of quantum inverse scattering method which is directly applicable to field theoretical models, we derive all possible commutation relations among the operator valued elements of such monodromy matrix. Thus, we obtain the commutation relation between creation and annihilation operators of quasi-particles associated with DNLS model and find out the S-matrix for two-body scattering. We also observe that, for some special values of the coupling constant, there exists an upper bound on the number of quasi-particles which can form a soliton state for the quantum DNLS model

  7. Role of fluctuations in the phase transitions of coupled plaquette spin models of glasses

    Directory of Open Access Journals (Sweden)

    Giulio Biroli, Charlotte Rulquin, Gilles Tarjus, Marco Tarzia

    2016-10-01

    Full Text Available We study the role of fluctuations on the thermodynamic glassy properties of plaquette spin models, more specifically on the transition involving an overlap order parameter in the presence of an attractive coupling between different replicas of the system. We consider both short-range fluctuations associated with the local environment on Bethe lattices and long-range fluctuations that distinguish Euclidean from Bethe lattices with the same local environment. We find that the phase diagram in the temperature-coupling plane is very sensitive to the former but, at least for the $3$-dimensional (square pyramid model, appears qualitatively or semi-quantitatively unchanged by the latter. This surprising result suggests that the mean-field theory of glasses provides a reasonable account of the glassy thermodynamics of models otherwise described in terms of the kinetically constrained motion of localized defects and taken as a paradigm for the theory of dynamic facilitation. We discuss the possible implications for the dynamical behavior.

  8. Modification of the quantum-mechanical equations for the system of charged Dirac particles by including additional tensor terms of the Pauli type. Pt. 1. [Amplified Bethe-Salpeter, radiative corrections, fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Janyszek, H [Uniwersytet Mikolaja Kopernika, Torun (Poland). Instytut Fizyki

    1974-01-01

    A new modified quasirelativistic equation (different from that of Breit) for N charged Dirac particles in the external stationary electromagnetic field is proposed. This equation is an amplified quantum-mechanical Bethe-Salpeter equation obtained by adding (in a semi-phenomenological manner) terms which take into account radiative corrections. The application of this approximate equations is limited to third order terms in the fine structure constant ..cap alpha...

  9. Representations of the Virasoro algebra from lattice models

    International Nuclear Information System (INIS)

    Koo, W.M.; Saleur, H.

    1994-01-01

    We investigate in detail how the Virasoro algebra appears in the scaling limit of the simplest lattice models of XXZ or RSOS type. Our approach is straightforward but to our knowledge had never been tried so far. We simply formulate a conjecture for the lattice stress-energy tensor motivated by the exact derivation of lattice global Ward identities. We then check that the proper algebraic relations are obeyed in the scaling limit. The latter is under reasonable control thanks to the Bethe-ansatz solution. The results, which are mostly numerical for technical reasons, are remarkably precise. They are also corroborated by exact pieces of information from various sources, in particular Temperley-Lieb algebra representation theory. Most features of the Virasoro algebra (like central term, null vectors, metric properties, etc.) can thus be observed using the lattice models. This seems of general interest for lattice field theory, and also more specifically for finding relations between conformal invariance and lattice integrability, since a basis for the irreducible representations of the Virasoro algebra should now follow (at least in principle) from Bethe-ansatz computations. ((orig.))

  10. Applications of the Heisenberg magnetic model in nanoscience

    International Nuclear Information System (INIS)

    Labuz, M.; Kuzma, M.; Wal, A.

    2003-01-01

    The theoretical Heisenberg magnet model and its solution given by Bethe and Hulthen (B.H.) known as Bethe Ansatz (BA) is widely applied in physics (solid state physics, quantum dots, statistical physics, high-temperatures superconductivity, low-dimensional systems, etc.), chemistry (polymers, organic metals and magnets), biology (biological molecular arrays and chains), etc. In most of the applications, the Heisenberg model is applied to infinite chains (asymptotic case), which is a good reality approximation for objects of macroscopic size. In such a case, the solutions of the model are well known. However, for objects of nanoscale size, one has to find solutions of the Heisenberg model of a finite chain consisting of N nodes. For such a chain, the problem of solving of B.H. equations is very complicated (because of the strange nonlinearity of these equations) even for very small objects N N (combinatorial explosion). In such cases, even numerical methods are helpless. In our paper, we propose an approach in which numerical methods could be adapted to such a large numerical problem, as B.H. solutions for objects consisting of N>100, which responds to nanoscale physical or biological objects. This method is based on the 'experimental' observation that B.H. solutions change in a quasi-continuous way with respect to N

  11. Excitonic effects in solids : time-dependent density functional theory versus the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Sagmeister, S.

    2009-01-01

    The aim of this work is to compare two state-of-the-art methods for the investigation of excitonic effects in solids, namely Time-Dependent Density Functional Theory (TDDFT) and Many-Body Perturbation Theory (MBPT), for selected simple gap systems as well as semiconducting polymers. Within TDDFT, the linear response framework is used and the Dyson equation for the density-density response function is solved, whereas within MBPT, the Bethe-Salpeter equation (BSE) for the electron-hole correlation function is solved. The dielectric function is obtained as a last step. Both techniques take into account the excitonic effects caused by the interaction of electron-hole pairs. In the former these effects are included in the exchange-correlation (xc) kernel, whereas in the latter they are located in the interaction kernel of the BSE. Kohn-Sham single-particle wave functions obtained from Density Functional Theory within the linearized augmented planewave (LAPW) method are used to calculate all relevant quantities of the formalism. For the simple systems GaAs, Si and LiF are chosen. The role of several approximations to the xc kernel is studied and it is found that for GaAs and Si simple semi-empirical models provide a dielectric function in accordance with the BSE. For the case of LiF, being a system with a weak screening and a strongly bound exciton, only an xc kernel derived from MBPT yields reasonable results but still a slight discrepancy to the BSE is observed. Finally, the semiconducting polymers poly-acetylene and poly(phenylene-vinylene) (PPV) are studied. For both materials the concept of semi-empirical approximations to the xc kernel turns out to be ambiguous due to their low-dimensional character. In the case of poly-acetylene, the xc kernel derived from MBPT yields a dielectric function which is in close but not exact agreement with the one obtained from the BSE. (author) [de

  12. Low-temperature specific heat of the degenerate supersymmetric t-J model in one dimension

    International Nuclear Information System (INIS)

    Lee, K.; Schlottmann, P.

    1996-01-01

    We consider the one-dimensional SU(N)-invariant t-J model, which consists of electrons with N spin components on a lattice with nearest-neighbor hopping t constrained by the excluded multiple occupancy of the sites and spin-exchange J between neighboring lattice sites. The model is integrable and has been diagonalized in terms of nested Bethe ansatze at the supersymmetric point t=J. The low-T specific heat is proportional to T. The γ-coefficient is extracted from the thermodynamic Bethe-ansatz equations and is expressed in terms of the spin wave velocities and the group velocity of the charges for arbitrary N, band filling, and splitting of the levels (magnetic and crystalline fields). Our results contain the following special cases: (i) For N=2 the traditional spin-1/2 supersymmetric t-J model, (ii) for exactly one electron per site the SU(N)-Heisenberg chain, and (iii) for N=4 the two-band supersymmetric t-J model with crystalline field splitting. copyright 1996 American Institute of Physics

  13. From ‘Nerve Fiber Regeneration’ to ‘Functional Changes’ in the Human Brain – On the Paradigm-Shifting Work of the Experimental Physiologist Albrecht Bethe (1872-1954 in Frankfurt am Main

    Directory of Open Access Journals (Sweden)

    Frank W Stahnisch

    2016-02-01

    Full Text Available Until the beginning 1930s the traditional dogma that the human central nervous system did not possess any abilities to adapt functionally to degenerative processes and external injuries loomed large in the field of the brain sciences (Hirnforschung. Cutting-edge neuroanatomists, such as the luminary Wilhelm Waldeyer (1836–1921 in Germany or the Nobel Prize laureate Santiago Ramón y Cajal (1852–1934 in Spain, debated any regenerative and thus plastic properties in the human brain. A renewed interest arose in the scientific community to investigate the pathologies and the healing processes in the human central nervous system after the return of the high number of brain injured war veterans from the fronts during and after the First World War (1914–1918. A leading research center in this area was the Institute for the Scientific Study of the Effects of Brain Injuries, which the neurologist Ludwig Edinger (1855–1918 had founded shortly before the war. This article specifically deals with the physiological research on nerve fiber plasticity by Albrecht Bethe (1872–1954 at the respective institute of the University of Frankfurt am Main. Bethe conducted here his paradigmatic experimental studies on the pathophysiological and clinical phenomena of peripheral and central nervous system regeneration.

  14. Moments of the Bethe surface and total inelastic x-ray scattering cross sections for H2

    International Nuclear Information System (INIS)

    Sharma, B.S.; Thakkar, A.J.

    1987-01-01

    Moments, S(j,K), of the generalized oscillator strength distribution are global properties of the Bethe surface. Apart from S(-1,K) which is related to the Waller-Hartree incoherent scattering factor, little is known about these moments for nonzero K. This paper describes high-accuracy calculations of S(1,K) and S(2,K) for molecular hydrogen. Comparison with experiment is made, and the utility of simple asymptotic approximations is confirmed. The moments are used to calculate differential cross sections for the inelastic scattering of x rays using the constant-momentum-transfer and constant-angle theories of Bonham. These cross sections differ from the Waller-Hartree cross sections at large angles thus demonstrating the importance of making corrections to the Waller-Hartree theory if the incoherent scattering factor S(K) is to be extracted from experimental inelastic cross sections. Total cross sections for scattering of 6- and 7-keV photons from H 2 are compared with synchrotron radiation scattering experiments. The calculations suggest that the Bonham constant-angle cross sections agree best with experiment. However, further experimental and theoretical work is needed to obtain firm conclusions about the limitations of Waller-Hartree theory

  15. Solution of the classical Yang–Baxter equation with an exotic symmetry, and integrability of a multi-species boson tunnelling model

    Energy Technology Data Exchange (ETDEWEB)

    Links, Jon, E-mail: jrl@maths.uq.edu.au

    2017-03-15

    Solutions of the classical Yang–Baxter equation provide a systematic method to construct integrable quantum systems in an algebraic manner. A Lie algebra can be associated with any solution of the classical Yang–Baxter equation, from which commuting transfer matrices may be constructed. This procedure is reviewed, specifically for solutions without skew-symmetry. A particular solution with an exotic symmetry is identified, which is not obtained as a limiting expansion of the usual Yang–Baxter equation. This solution facilitates the construction of commuting transfer matrices which will be used to establish the integrability of a multi-species boson tunnelling model. The model generalises the well-known two-site Bose–Hubbard model, to which it reduces in the one-species limit. Due to the lack of an apparent reference state, application of the algebraic Bethe Ansatz to solve the model is prohibitive. Instead, the Bethe Ansatz solution is obtained by the use of operator identities and tensor product decompositions.

  16. The quench action approach to out-of-equilibrium quantum integrable models

    NARCIS (Netherlands)

    Wouters, B.M.

    2015-01-01

    In this PhD thesis quantum quenches to 1D quantum integrable models are studied by means of the quench action approach. Using the large-system-size scaling of overlaps between the initial state and Bethe states as basic input, this method gives an exact description in the thermodynamic limit of the

  17. Level Density In Interacting Boson-Fermion-Fermion Model (IBFFM) Of The Odd-Odd Nucleus 196Au

    International Nuclear Information System (INIS)

    Kabashi, Skender; Bekteshi, Sadik

    2007-01-01

    The level density of the odd-odd nucleus 196Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM total level density is fitted by Gaussian and its tail is also fitted by Bethe formula and constant temperature Fermi gas model

  18. Simple polynomial approximation to modified Bethe formula low-energy electron stopping powers data

    Energy Technology Data Exchange (ETDEWEB)

    Taborda, A., E-mail: ana.taborda@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 92262 Fontenay-aux-Roses (France); Desbrée, A. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 92262 Fontenay-aux-Roses (France); Reis, M.A. [C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km139.7, 2685-066 Bobadela LRS (Portugal)

    2015-08-01

    A recently published detailed and exhaustive paper on cross-sections for ionisation induced by keV electrons clearly shows that electron phenomena occurring in parallel with X-ray processes may have been dramatically overlooked for many years, mainly when low atomic number species are involved since, in these cases, the fluorescence coefficient is smaller than the Auger yield. An immediate problem is encountered while attempting to tackle the issue. Accounting for electron phenomena requires the knowledge of the stopping power of electrons within, at least, a reasonably small error. Still, the Bethe formula for stopping powers is known to not be valid for electron energies below 30 keV, and its use leads to values far off experimental ones. Recently, a few authors have addressed this problem and both detailed tables of electron stopping powers for various atomic species and attempts to simplify the calculations, have emerged. Nevertheless, its implementation in software routines to efficiently calculate keV electron effects in materials quickly becomes a bit cumbersome. Following a procedure already used to establish efficient methods to calculate ionisation cross-sections by protons and alpha particles, it became clear that a simple polynomial approximation could be set, which allows retrieving the electronic stopping powers with errors of less than 20% for energies above 500 eV and less than 50% for energies between 50 eV and 500 eV. In this work, we present this approximation which, based on just six parameters, allows to recover electron stopping power values that are less than 20% different from recently published experimentally validated tabulated data.

  19. Type-I integrable quantum impurities in the Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Doikou, Anastasia, E-mail: adoikou@upatras.gr

    2013-12-21

    Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified.

  20. Type-I integrable quantum impurities in the Heisenberg model

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2013-01-01

    Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified

  1. Exact solution of the p + ip pairing Hamiltonian and a hierarchy of integrable models

    International Nuclear Information System (INIS)

    Dunning, Clare; Ibañez, Miguel; Sierra, Germán; Links, Jon; Zhao, Shao-You

    2010-01-01

    Using the well-known trigonometric six-vertex solution of the Yang–Baxter equation we derive an integrable pairing Hamiltonian with anyonic degrees of freedom. The exact algebraic Bethe ansatz solution is obtained using standard techniques. From this model we obtain several limiting models, including the pairing Hamiltonian with p + ip-wave symmetry. An in-depth study of the p + ip model is then undertaken, including a mean-field analysis, analytical and numerical solutions of the Bethe ansatz equations and an investigation of the topological properties of the ground-state wavefunction. Our main result is that the ground-state phase diagram of the p + ip model consists of three phases. There is the known boundary line with gapless excitations that occurs for vanishing chemical potential, separating the topologically trivial strong pairing phase and the topologically non-trivial weak pairing phase. We argue that a second boundary line exists separating the weak pairing phase from a topologically trivial weak coupling BCS phase, which includes the Fermi sea in the limit of zero coupling. The ground state on this second boundary line is the Moore–Read state

  2. Form factors in quantum integrable models with GL(3)-invariant R-matrix

    Energy Technology Data Exchange (ETDEWEB)

    Pakuliak, S., E-mail: pakuliak@theor.jinr.ru [Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Reg. (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Reg. (Russian Federation); Institute of Theoretical and Experimental Physics, 117259 Moscow (Russian Federation); Ragoucy, E., E-mail: eric.ragoucy@lapth.cnrs.fr [Laboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex (France); Slavnov, N.A., E-mail: nslavnov@mi.ras.ru [Steklov Mathematical Institute, Moscow (Russian Federation)

    2014-04-15

    We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3)-invariant R-matrix. We obtain determinant representations for form factors of off-diagonal entries of the monodromy matrix. These representations can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.

  3. Inelastic cross-sections for electron transport in liquid water: a comparison of dielectric models

    International Nuclear Information System (INIS)

    Emfietzoglou, D.

    2003-01-01

    Various methodologies for constructing inelastic cross-sections for low-energy (<10 keV) electron transport in liquid water are presented and compared. They are all based on an optical-data model which provides the dependence on energy loss, and a dispersion algorithm which incorporates the momentum-transfer dependence. A Drude dielectric model was used to analytically represent the optical data. Various dispersion schemes were examined: the Bethe approximation, the δ-oscillator models of Ashley and Liljequist, and two forms of Ritchie's extended-Drude model. They all have been used in Monte-Carlo (MC) codes for analog electron transport in the condensed phase. Results in the form of differential and total inelastic cross-sections are presented. Where possible, comparisons with results of other studies are made. It was found that, despite the application of general constraints (e.g. sum rules), the optical model has a notable influence on the single-collision energy loss spectrum. In addition, both the shape and peak position of the total and differential cross-section distributions depend strongly on the dispersion model adopted. The work is particularly relevant to the development of event-by-event MC transport codes for liquid water, as well as, to the calculations of stopping-powers below the range of applicability of Bethe's formula

  4. Bethe ansatz and ordinary differential equation correspondence for degenerate Gaudin models

    Science.gov (United States)

    El Araby, Omar; Gritsev, Vladimir; Faribault, Alexandre

    2012-03-01

    In this work, we generalize the numerical approach to Gaudin models developed earlier by us [Faribault, El Araby, Sträter, and Gritsev, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.235124 83, 235124 (2011)] to degenerate systems, showing that their treatment is surprisingly convenient from a numerical point of view. In fact, high degeneracies not only reduce the number of relevant states in the Hilbert space by a non-negligible fraction, they also allow us to write the relevant equations in the form of sparse matrix equations. Moreover, we introduce an inversion method based on a basis of barycentric polynomials that leads to a more stable and efficient root extraction, which most importantly avoids the necessity of working with arbitrary precision. As an example, we show the results of our procedure applied to the Richardson model on a square lattice.

  5. Quasi-exact solvability of the one-dimensional Holstein model

    International Nuclear Information System (INIS)

    Pan Feng; Dai Lianrong; Draayer, J P

    2006-01-01

    The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is solved by using a Bethe ansatz in analogue to that for the one-dimensional spinless Fermi-Hubbard model. Excitation energies and the corresponding wavefunctions of the model are determined by a set of partial differential equations. It is shown that the model is, at least, quasi-exactly solvable for the two-site case, when the phonon frequency, the electron-phonon coupling strength and the hopping integral satisfy certain relations. As examples, some quasi-exact solutions of the model for the two-site case are derived. (letter to the editor)

  6. Study of parent-child communication in joint-reading process according the investigation of Beth Ann Beschorner, foreign researcher

    Directory of Open Access Journals (Sweden)

    Maksimova A.A.

    2016-01-01

    Full Text Available The article presents the analysis carried out by Ph. D. Beth Ann Beschorner (University of Iowa, USA which concerns the training program for parents aimed at teaching them how to arrange the Dialogic reading with their childrenand and which makes it possible to conclude that due to the experience and direct contact with the written language in preschool age the idea of literacy was being formed. The article compares the empirical data obtained independently in different areas of scientific knowledge, i.e., philosophy and psychology: the study of B.A. Beschorner has a lot in common with the principles of cultural-historical psychology, formulated by L. Vygotsky, M. Lisina and other national psychologists. Although B. A. Beschorner do not stick directly to cultural-historical and activity theory, her results correspond with the basic provisions of these theories. The analysis of B.A. Beschorner’s works confirms the commonality of her findings to those obtained in terms of the cultural-historical theory. It proves that scientific thoughts even going in independent ways, may lead to similar results, which ultimately demonstrates the validity of the findings and the versatility of approaches to the problem

  7. A convenient basis for the Izergin-Korepin model

    Science.gov (United States)

    Qiao, Yi; Zhang, Xin; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Wen-Li; Shi, Kangjie

    2018-05-01

    We propose a convenient orthogonal basis of the Hilbert space for the quantum spin chain associated with the A2(2) algebra (or the Izergin-Korepin model). It is shown that compared with the original basis the monodromy-matrix elements acting on this basis take relatively simple forms, which is quite similar as that for the quantum spin chain associated with An algebra in the so-called F-basis. As an application of our general results, we present the explicit recursive expressions of the Bethe states in this basis for the Izergin-Korepin model.

  8. Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature

    Science.gov (United States)

    Blaschke, D.; Dubinin, A.; Ebert, D.; Friesen, A. V.

    2018-05-01

    We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth-Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth-Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.

  9. Periodic p-adic Gibbs Measures of q-State Potts Model on Cayley Trees I: The Chaos Implies the Vastness of the Set of p-Adic Gibbs Measures

    Science.gov (United States)

    Ahmad, Mohd Ali Khameini; Liao, Lingmin; Saburov, Mansoor

    2018-06-01

    We study the set of p-adic Gibbs measures of the q-state Potts model on the Cayley tree of order three. We prove the vastness of the set of the periodic p-adic Gibbs measures for such model by showing the chaotic behavior of the corresponding Potts-Bethe mapping over Q_p for the prime numbers p≡1 (mod 3). In fact, for 0< |θ -1|_p< |q|_p^2 < 1 where θ =\\exp _p(J) and J is a coupling constant, there exists a subsystem that is isometrically conjugate to the full shift on three symbols. Meanwhile, for 0< |q|_p^2 ≤ |θ -1|_p< |q|_p < 1, there exists a subsystem that is isometrically conjugate to a subshift of finite type on r symbols where r ≥ 4. However, these subshifts on r symbols are all topologically conjugate to the full shift on three symbols. The p-adic Gibbs measures of the same model for the prime numbers p=2,3 and the corresponding Potts-Bethe mapping are also discussed. On the other hand, for 0< |θ -1|_p< |q|_p < 1, we remark that the Potts-Bethe mapping is not chaotic when p=3 and p≡ 2 (mod 3) and we could not conclude the vastness of the set of the periodic p-adic Gibbs measures. In a forthcoming paper with the same title, we will treat the case 0< |q|_p ≤ |θ -1|_p < 1 for all prime numbers p.

  10. Generalising the staircase models

    International Nuclear Information System (INIS)

    Dorey, P.; Ravanini, F.

    1993-01-01

    Systems of integral equations are proposed which generalise those previously encountered in connection with the so-called staircase models. Under the assumption that these equations describe the finite-size effects of relativistic field theories via the thermodynamic Bethe ansatz, analytical and numerical evidence is given for the existence of a variety of new roaming renormalisation group trajectories. For each positive integer k and s=0, .., k-1, these is a one-parameter family of trajectories, passing close by the coset conformal field theories G (k) xG (nk+s) /G ((n+1)k+s) before finally flowing to a massive theory for s=0, or to another coset model for s.=|0. (orig.)

  11. Exact solution of the one-dimensional fermionic model with correlated hopping

    International Nuclear Information System (INIS)

    Schadschneider, A.; Su Gang; Zittartz, J.

    1997-01-01

    We extend the Bethe Ansatz solution of a one-dimensional integrable fermionic model with correlated hopping to the parameter regime Δt > 1. It is found that the model is equivalent to one with interaction 2 - Δt, but with twisted boundary conditions. Apart from the ground state energy we investigate the low-lying excitations and the asymptotic behaviour of the correlation functions. As in the case of Δt < 1 we find dominating superconducting correlations for small doping. The behaviour in this regime therefore differs from that of the non-integrable model with symmetric bond-charge interaction (Hirsch model). (orig.)

  12. Uimin-Lai-Sutherland spin-3/2 chain model in terms of fermion creation and annihilation operators

    International Nuclear Information System (INIS)

    Mirumyan, M.B.

    2002-01-01

    The Uimin-Lai-Sutherland spin-3/2 chain model is investigated. The representation of the su(2) algebra for the spin 3/2 is constructed in the linear space of the creation and annihilation operators of three fermions. Expressions are obtained for the Hamiltonian and energy spectrum as well as the corresponding Bethe equations are derived

  13. Uimin-Lai-Sutherland spin-3/2 chain model in terms of fermion creation and annihilation operators

    CERN Document Server

    Mirumyan, M B

    2002-01-01

    The Uimin-Lai-Sutherland spin-3/2 chain model is investigated. The representation of the su(2) algebra for the spin 3/2 is constructed in the linear space of the creation and annihilation operators of three fermions. Expressions are obtained for the Hamiltonian and energy spectrum as well as the corresponding Bethe equations are derived.

  14. Theoretical model to the Raman spectrum of B2O3

    International Nuclear Information System (INIS)

    Barrio, R.A.

    1984-01-01

    In this paper we report a new theory that reproduces qualitatively well the Raman spectrum of v-B 2 O 3 . The basic idea is that one can find the thermodinamically averaged Green's function for a Bethe lattice, with a Born Hamiltonian, with dihedral angles totally random. In extension one constructs a Bethe lattice of rings and solve the equations of motion for Green's functions at the Boron sites, bridging oxygens and oxygens in the rings. (M.W.O.) [pt

  15. Integrable models in 1+1 dimensional quantum field theory

    International Nuclear Information System (INIS)

    Faddeev, Ludvig.

    1982-09-01

    The goal of this lecture is to present a unifying view on the exactly soluble models. There exist several reasons arguing in favor of the 1+1 dimensional models: every exact solution of a field-theoretical model can teach about the ability of quantum field theory to describe spectrum and scattering; some 1+1 d models have physical applications in the solid state theory. There are several ways to become acquainted with the methods of exactly soluble models: via classical statistical mechanics, via Bethe Ansatz, via inverse scattering method. Fundamental Poisson bracket relation FPR and/or fundamental commutation relations FCR play fundamental role. General classification of FPR is given with promizing generalizations to FCR

  16. Slavnov and Gaudin-Korepin formulas for models without U (1) symmetry: the XXX chain on the segment

    Science.gov (United States)

    Belliard, S.; Pimenta, R. A.

    2016-04-01

    We consider the isotropic spin -\\frac{1}{2} Heisenberg chain with the most general integrable boundaries. The scalar product between the on-shell Bethe vector and its off-shell dual, obtained by means of the modified algebraic Bethe ansatz, is given by a modified Slavnov formula. The corresponding Gaudin-Korepin formula, i.e., the square of the norm, is also obtained.

  17. Analytical results for entanglement in the five-qubit anisotropic Heisenberg model

    International Nuclear Information System (INIS)

    Wang Xiaoguang

    2004-01-01

    We solve the eigenvalue problem of the five-qubit anisotropic Heisenberg model, without use of Bethe's ansatz, and give analytical results for entanglement and mixedness of two nearest-neighbor qubits. The entanglement takes its maximum at Δ=1 (Δ>1) for the case of zero (finite) temperature with Δ being the anisotropic parameter. In contrast, the mixedness takes its minimum at Δ=1 (Δ>1) for the case of zero (finite) temperature

  18. Spin-dependent level density in interacting Boson-Fermion-Fermion model of the Odd-Odd Nucleus 196Au

    International Nuclear Information System (INIS)

    Kabashi, S.; Bekteshi, S.; Ahmetaj, S.; Shaqiri, Z.

    2009-01-01

    The level density of the odd-odd nucleus 196 Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM spin-dependent level densities show high-spin reduction with respect to Bethe formula.This can be well accounted for by a modified spin-dependent level density formula. (authors)

  19. The critical boundary RSOS M(3,5) model

    Science.gov (United States)

    El Deeb, O.

    2017-12-01

    We consider the critical nonunitary minimal model M(3, 5) with integrable boundaries and analyze the patterns of zeros of the eigenvalues of the transfer matrix and then determine the spectrum of the critical theory using the thermodynamic Bethe ansatz ( TBA) equations. Solving the TBA functional equation satisfied by the transfer matrices of the associated A 4 restricted solid-on-solid Forrester-Baxter lattice model in regime III in the continuum scaling limit, we derive the integral TBA equations for all excitations in the ( r, s) = (1, 1) sector and then determine their corresponding energies. We classify the excitations in terms of ( m, n) systems.

  20. Conformal operator product expansion in the Yukawa model

    International Nuclear Information System (INIS)

    Prati, M.C.

    1983-01-01

    Conformal techniques are applied to the Yukawa model, as an example of a theory with spinor fields. It is written the partial-wave analysis of the 4-point function of two scalars and two spinors in the channel phi psi → phi psi in terms of spinor tensor representations of the conformal group. Using this conformal expansion, it is diagonalized the Bethe-Salpeter equation, which is reduced to algebraic relations among the partial waves. It is shown that in the γ 5 -invariant model, but not in the general case, it is possible to derive dynamically from the expansions of the 4-point function the vacuum operator product phi psi>

  1. Yang-Baxter algebra - Integrable systems - Conformal quantum field theories

    International Nuclear Information System (INIS)

    Karowski, M.

    1989-01-01

    This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)

  2. QCD bound states at finite temperature and baryon number

    International Nuclear Information System (INIS)

    Kalinovsky, Yu.L.; Muenchow, L.

    1991-04-01

    Quark-antiquark bound states are described within the Bethe-Salpeter equation for a class of quark models with instantaneous 4-quark interaction at finite temperature. Thereby decompositions of the Bethe-Salpeter vertex and wave functions according to their Lorentz structures and the particles content are used. As an application of general scheme, we determine the mass spectrum of low-lying mesons for a special Nambu-Jona-Lasinio model inspired by QCD for hadrons. (orig.)

  3. The exact solution and the finite-size behaviour of the Osp(1vertical stroke 2)-invariant spin chain

    International Nuclear Information System (INIS)

    Martins, M.J.

    1995-01-01

    We have solved exactly the Osp(1vertical stroke 2) spin chain by the Bethe ansatz approach. Our solution is based on an equivalence between the Osp(1vertical stroke 2) chain and a certain special limit of the Izergin-Korepin vertex model. The completeness of the Bethe ansatz equations is discussed for a system with four sites and the appearance of special string structures is noted. The Bethe ansatz presents an important phase factor which distinguishes the even and odd sectors of the theory. The finite-size properties are governed by a conformal field theory with central charge c=1. (orig.)

  4. The exact mass-gaps of the principal chiral models

    CERN Document Server

    Hollowood, Timothy J

    1994-01-01

    An exact expression for the mass-gap, the ratio of the physical particle mass to the $\\Lambda$-parameter, is found for the principal chiral sigma models associated to all the classical Lie algebras. The calculation is based on a comparison of the free-energy in the presence of a source coupling to a conserved charge of the theory computed in two ways: via the thermodynamic Bethe Ansatz from the exact scattering matrix and directly in perturbation theory. The calculation provides a non-trivial test of the form of the exact scattering matrix.

  5. Null-plane Bethe-Salpeter dynamics: Mass spectra, decay constants of pseudoscalar mesons, and the pion form factor

    International Nuclear Information System (INIS)

    Gupta, K.K.; Mitra, A.N.; Singh, N.N.

    1990-01-01

    A new relativistic definition of the reduced mass (μ 12 ) of a q bar q pair, so as to be in conformity with the standard Wightman-Garding definition of its relative four-momenta q μ , is introduced into the kernel of an ongoing Bethe-Salpeter (BS) program on a two-tier basis. The new definition of μ 12 (involving the hadron mass M) is found to produce a natural Regge asymptotic behavior (M 2 ∼N) in the hadron mass spectra, while retaining the property of an asymptotically linear (∼r) confinement in the three-dimensional structure of the BS kernel. The relativistic structure of μ 12 is responsible for a significant improvement in the fits to the ground-state masses of q bar q and Q bar q mesons as compared to its nonrelativistic definition m 1 m 2 /(m 1 +m 2 ). The leptonic decay constants f p and the charge radii thus calculated are also in excellent agreement with data (π,k) where available, while f p predictions for Q bar q mesons have good overlap with recent lattice predictions. Further, the scaling property (∼k μ -2 ) of the hadron's electromagnetic form factor at large k 2 is a consequence of the ''on-shell'' form of its null-plane wave function. All these results (which are indicated in the barest outline) are preceded by a perspective summary of the theoretical premises and practical working of the BS equation with a four-fermion interaction kernel as a necessary background on a two-tier basis

  6. Average Nuclear properties based on statistical model

    International Nuclear Information System (INIS)

    El-Jaick, L.J.

    1974-01-01

    The rough properties of nuclei were investigated by statistical model, in systems with the same and different number of protons and neutrons, separately, considering the Coulomb energy in the last system. Some average nuclear properties were calculated based on the energy density of nuclear matter, from Weizsscker-Beth mass semiempiric formulae, generalized for compressible nuclei. In the study of a s surface energy coefficient, the great influence exercised by Coulomb energy and nuclear compressibility was verified. For a good adjust of beta stability lines and mass excess, the surface symmetry energy were established. (M.C.K.) [pt

  7. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    Science.gov (United States)

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  8. Nonuniversal critical behaviour in a model for charge density wave dynamics

    International Nuclear Information System (INIS)

    Ritala, R.K.; Hertz, J.A.

    1986-02-01

    We have studied short range fluctuations around the infinite-range model of charge density wave (CDW) dynamics. We find that the inhomogeneity of the local field, which is neglected in the infinite-range approximation has a dramatic effect on the transition. In the Bethe approximation the critical behaviour is nonuniversal. In particular, the current exponent is ζ = 3/2 log(z-1)/[log(z)]+log(1+f/J)], where z is the number of neighbors, f the pinning strength, and J the elastic coupling. (orig.)

  9. The many-body problem an encyclopedia of exactly solved models in one dimension

    CERN Document Server

    1993-01-01

    This book differs from its predecessor, Lieb & Mattis Mathematical Physics in One Dimension, in a number of important ways. Classic discoveries which once had to be omitted owing to lack of space - such as the seminal paper by Fermi, Pasta and Ulam on lack of ergodicity of the linear chain, or Bethe's original paper on the Bethe ansatz - can now be incorporated. Many applications which did not even exist in 1966 (some of which were originally spawned by the publication of Lieb & Mattis) are newly included. Among these, this new book contains critical surveys of a number of important developmen

  10. Asymptotic behaviour of two-point functions in multi-species models

    Directory of Open Access Journals (Sweden)

    Karol K. Kozlowski

    2016-05-01

    Full Text Available We extract the long-distance asymptotic behaviour of two-point correlation functions in massless quantum integrable models containing multi-species excitations. For such a purpose, we extend to these models the method of a large-distance regime re-summation of the form factor expansion of correlation functions. The key feature of our analysis is a technical hypothesis on the large-volume behaviour of the form factors of local operators in such models. We check the validity of this hypothesis on the example of the SU(3-invariant XXX magnet by means of the determinant representations for the form factors of local operators in this model. Our approach confirms the structure of the critical exponents obtained previously for numerous models solvable by the nested Bethe Ansatz.

  11. Test of Capital Asset Pricing Model in Turkey = Finansal Varlıkların Fiyatlandırılması Modelinin Türkiyede Sınanması

    Directory of Open Access Journals (Sweden)

    Gulnara REJEPOVA

    2007-01-01

    Full Text Available This article attempts to test the validity of CAPM (Capital Asset Pricing Model in Turkey by regressing the weekly risk premiums (rj - rf against the beta coefficients of 20 portfolios, each including 10 stocks, over the period of 1995-2004.ISE 100 index and US T-Bill rate, adjusted for the difference between Turkish and US inflation rates were used as the proxies to the market portfolio, and the risk-free rate respectively. Following an in-depth literature survey, Fama and MacBeth (1973, and Pettengil et. al. (1995 approaches were selected as two alternative methods to be used in the research. Research findings based on Fama&MacBeth approach indicated no meaningful relationship between beta coefficients and ex-post risk premiums of the selected portfolios. With Pettengill et al. methodology, on the other hand, strong beta-risk premium relationships were discovered.

  12. Non compact continuum limit of two coupled Potts models

    International Nuclear Information System (INIS)

    Vernier, Éric; Jacobsen, Jesper Lykke; Saleur, Hubert

    2014-01-01

    We study two Q-state Potts models coupled by the product of their energy operators, in the regime 2  3 (2) vertex model. It corresponds to a selfdual system of two antiferromagnetic Potts models, coupled ferromagnetically. We derive the Bethe ansatz equations and study them numerically for two arbitrary twist angles. The continuum limit is shown to involve two compact bosons and one non compact boson, with discrete states emerging from the continuum at appropriate twists. The non compact boson entails strong logarithmic corrections to the finite-size behaviour of the scaling levels, an understanding of which allows us to correct an earlier proposal for some of the critical exponents. In particular, we infer the full set of magnetic scaling dimensions (watermelon operators) of the Potts model. (paper)

  13. A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities

    Science.gov (United States)

    Chouika, N.; Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.

    2018-05-01

    A systematic approach for the model building of Generalized Parton Distributions (GPDs), based on their overlap representation within the DGLAP kinematic region and a further covariant extension to the ERBL one, is applied to the valence-quark pion's case, using light-front wave functions inspired by the Nakanishi representation of the pion Bethe-Salpeter amplitudes (BSA). This simple but fruitful pion GPD model illustrates the general model building technique and, in addition, allows for the ambiguities related to the covariant extension, grounded on the Double Distribution (DD) representation, to be constrained by requiring a soft-pion theorem to be properly observed.

  14. Superconductivity in a Repulsive Model

    DEFF Research Database (Denmark)

    Feldman, Joel; Knoerrer, Horst; Sinclair, Robert

    1997-01-01

    A two-dimensional system of Fermions with classical dispersion relationand a purely repulsive delta function pair potential generates the dominant attractive coupling in the third order Bethe-Salpeter approximation for the Cooper channel. This suggests that the ground state is an l=1 superconductor....

  15. Inner-shell corrections to the Bethe stopping-power formula evaluated from a realistic atomic model

    International Nuclear Information System (INIS)

    Inokuti, M.; Manson, S.T.

    1985-01-01

    Generalized oscillator strengths for K- and L-shell ionization have been calculated using a central potential derived from the Hartree-Slater model. In cases in which an ejected electron carries low kinetic energies, sizable differences with hydrogenic-model calculations are evident

  16. Loop equations and topological recursion for the arbitrary-$\\beta$ two-matrix model

    CERN Document Server

    Bergère, Michel; Marchal, Olivier; Prats-Ferrer, Aleix

    2012-01-01

    We write the loop equations for the $\\beta$ two-matrix model, and we propose a topological recursion algorithm to solve them, order by order in a small parameter. We find that to leading order, the spectral curve is a "quantum" spectral curve, i.e. it is given by a differential operator (instead of an algebraic equation for the hermitian case). Here, we study the case where that quantum spectral curve is completely degenerate, it satisfies a Bethe ansatz, and the spectral curve is the Baxter TQ relation.

  17. A TBA approach to thermal transport in the XXZ Heisenberg model

    Science.gov (United States)

    Zotos, X.

    2017-10-01

    We show that the thermal Drude weight and magnetothermal coefficient of the 1D easy-plane Heisenberg model can be evaluated by an extension of the Bethe ansatz thermodynamics formulation by Takahashi and Suzuki (1972 Prog. Theor. Phys. 48 2187). They have earlier been obtained by the quantum transfer matrix method (Klümper 1999 Z. Phys. B 91 507). Furthermore, this approach can be applied to the study of the far-out of equilibrium energy current generated at the interface between two semi-infinite chains held at different temperatures.

  18. On Affine Fusion and the Phase Model

    Directory of Open Access Journals (Sweden)

    Mark A. Walton

    2012-11-01

    Full Text Available A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n Wess-Zumino-Novikov-Witten (WZNW conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.

  19. NLIE of Dirichlet sine-Gordon model for boundary bound states

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bajnok, Zoltan; Palla, Laszlo; Ravanini, Francesco

    2008-01-01

    We investigate boundary bound states of sine-Gordon model on the finite-size strip with Dirichlet boundary conditions. For the purpose we derive the nonlinear integral equation (NLIE) for the boundary excited states from the Bethe ansatz equation of the inhomogeneous XXZ spin 1/2 chain with boundary imaginary roots discovered by Saleur and Skorik. Taking a large volume (IR) limit we calculate boundary energies, boundary reflection factors and boundary Luescher corrections and compare with the excited boundary states of the Dirichlet sine-Gordon model first considered by Dorey and Mattsson. We also consider the short distance limit and relate the IR scattering data with that of the UV conformal field theory

  20. An integrability primer for the gauge-gravity correspondence. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Bombardelli, Diego [Torino Univ. (Italy). Dipartimento di Fisica; Bologna Univ. (Italy). Dipt. die Fisica e Astronomia; INFN, Torino (Italy); INFN, Bologna (Italy); Cagnazzo, Alessandra [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Stockholm Univ. (Sweden); KTH Royal Institute of Technology, Stockholm (Sweden). Nordita; Frassek, Rouven; Szecsenyi, I.M. [Durham Univ. (United Kingdom). Dept. of Mathematical Sciences; Levkovich-Maslyuk, Fedor [King' s College London (United Kingdom). Mathematics Dept.; Loebbert, F. [Humboldt-Univ., Berlin (Germany). Inst. fuer Physik; Negro, Stefano [Paris 06 Univ., Sorbonne Univs., PSL Research Univ., CNRS UMR 8549 (France). LPTENS, Ecole Normale Superieure; Sfondrini, A. [ETH Zuerich (Switzerland). Inst. fuer Theoretische Physik; Tongeren, S.J. van [Humboldt-Univ., Berlin (Germany). Inst. fuer Physik; Humboldt-Univ., Berlin (Germany). Inst. fuer Mathematik; Torrielli, A. [Surrey Univ., Guildford (United Kingdom). Dept. of Mathematics

    2016-12-15

    We introduce a series of articles reviewing various aspects of integrable models relevant to the AdS/CFT correspondence. Topics covered in these reviews are: classical integrability, Yangian symmetry, factorized scattering, the Bethe ansatz, the thermodynamic Bethe ansatz, and integrable structures in (conformal) quantum field theory. In the present article we highlight how these concepts have found application in AdS/CFT, and provide a brief overview of the material contained in this series.

  1. An integrability primer for the gauge-gravity correspondence. An introduction

    International Nuclear Information System (INIS)

    Bombardelli, Diego; Cagnazzo, Alessandra; Stockholm Univ.; KTH Royal Institute of Technology, Stockholm; Frassek, Rouven; Szecsenyi, I.M.; Levkovich-Maslyuk, Fedor; Loebbert, F.; Negro, Stefano; Sfondrini, A.; Tongeren, S.J. van; Humboldt-Univ., Berlin; Torrielli, A.

    2016-12-01

    We introduce a series of articles reviewing various aspects of integrable models relevant to the AdS/CFT correspondence. Topics covered in these reviews are: classical integrability, Yangian symmetry, factorized scattering, the Bethe ansatz, the thermodynamic Bethe ansatz, and integrable structures in (conformal) quantum field theory. In the present article we highlight how these concepts have found application in AdS/CFT, and provide a brief overview of the material contained in this series.

  2. One-loop topological expansion for spin glasses in the large connectivity limit

    Science.gov (United States)

    Chiara Angelini, Maria; Parisi, Giorgio; Ricci-Tersenghi, Federico

    2018-01-01

    We apply for the first time a new one-loop topological expansion around the Bethe solution to the spin-glass model with a field in the high connectivity limit, following the methodological scheme proposed in a recent work. The results are completely equivalent to the well-known ones, found by standard field-theoretical expansion around the fully connected model (Bray and Roberts 1980, and following works). However this method has the advantage that the starting point is the original Hamiltonian of the model, with no need to define an associated field theory, nor to know the initial values of the couplings, and the computations have a clear and simple physical meaning. Moreover this new method can also be applied in the case of zero temperature, when the Bethe model has a transition in field, contrary to the fully connected model that is always in the spin-glass phase. Sharing with finite-dimensional model the finite connectivity properties, the Bethe lattice is clearly a better starting point for an expansion with respect to the fully connected model. The present work is a first step towards the generalization of this new expansion to more difficult and interesting cases as the zero-temperature limit, where the expansion could lead to different results with respect to the standard one.

  3. ON THE USE OF FIELD THEORETICAL MODELS IN STRONG INTERACTION PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Fubini, Sergio

    1963-06-15

    The effects of the short-range behavior in potential scattering upon the asymptotic behavior of the stronginteraction scattering amplitude and upon the validity of the methods of solution are discussed, using models. In particular, it is found that for certain singular potentials, the bound-state problem cannot be solved by a plane-wave expansion. For these singular potentials, an irtegral equation must be set up by means of an expansion in terms of eigenfunctions having the correct behavior at small distances. The study makes use of both the Schroedinger and Bethe-Salpeter equations. (T.F.H.)

  4. A note on the boundary spin s XXZ chain

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2007-01-01

    The open spin s XXZ model with non-diagonal boundaries is considered. Within the algebraic Bethe ansatz framework and in the spirit of earlier works we derive suitable reference states. The derivation of the reference state is the crucial point in this investigation, and it involves the solution of sets of difference equations. For the spin s representation, expressed in terms of difference operators, the pseudo-vacuum is identified in terms of q-hypergeometric series. Having specified such states we then build the Bethe states and also identify the spectrum of the model for generic values of the anisotropy parameter q

  5. Scattering matrices for Φ1,2 perturbed conformal minimal models in absence of kink states

    International Nuclear Information System (INIS)

    Koubek, A.; Martins, M.J.; Mussardo, G.

    1991-05-01

    We determine the spectrum and the factorizable S-matrices of the massive excitations of the nonunitary minimal models M 2,2n+1 perturbed by the operator Φ 1,2 . These models present no kinks as asymptotic states, as follows from the reduction of the Zhiber-Mikhailov-Shabat model with respect to the quantum group SL(2) q found by Smirnov. We also give the whole set of S-matrices of the nonunitary minimal model M 2,9 perturbed by the operator Φ 1,4 , which is related to a RSOS reduction for the Φ 1.2 operator of the unitary model M 8,9 . The thermodynamical Bethe ansatz and the truncated conformal space approach are applied to these scattering theories in order to support their interpretation. (orig.)

  6. Virtual compton scattering off protons at moderately large momentum transfer

    International Nuclear Information System (INIS)

    Kroll, P.; Schuermann, M.; Guichon, P.A.M.

    1995-01-01

    The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction of photons and the Bethe-Heitler contamination are discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (authors). 35 refs., 8 figs., 1 tab

  7. Virtual compton scattering off protons at moderately large momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, P; Schuermann, M [Wuppertal Univ. (Gesamthochschule) (Germany); Guichon, P A.M. [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee

    1995-06-28

    The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction of photons and the Bethe-Heitler contamination are discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (authors). 35 refs., 8 figs., 1 tab.

  8. Virtual Compton scattering off protons at moderately large momentum transfer

    International Nuclear Information System (INIS)

    Kroll, P.

    1996-01-01

    The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction off protons and the Bethe-Heitler contamination are photon discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (orig.)

  9. The infinite range Heisenberg model and high temperature superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil

    1992-01-01

    The thesis deals with the theory of high temperature superconductivity from the standpoint of three-band Hubbard models.Chapter 1 of the thesis proposes a strongly coupled variational wavefunction that has the three-spin system of an oxygen hole and its two neighboring copper spins in a doublet and the background Cu spins in an eigenstate of the infinite range antiferromagnet. This wavefunction is expected to be a good "zeroth order" wavefunction in the superconducting regime of dopings. The three-spin polaron is stabilized by the hopping terms rather than the copper-oxygen antiferromagnetic coupling Jpd. Considering the effect of the copper-copper antiferromagnetic coupling Jdd, we show that the three-spin polaron cannot be pure Emery (Dg), but must have a non-negligible amount of doublet-u (Du) character for hopping stabilization. Finally, an estimate is made for the magnitude of the attractive coupling of oxygen holes.Chapter 2 presents an exact solution to a strongly coupled Hamiltonian for the motion of oxygen holes in a 1-D Cu-O lattice. The Hamiltonian separates into two pieces: one for the spin degrees of freedom of the copper and oxygen holes, and the other for the charge degrees of freedom of the oxygen holes. The spinon part becomes the Heisenberg antiferromagnet in 1-D that is soluble by the Bethe Ansatz. The holon piece is also soluble by a Bethe Ansatz with simple algebraic relations for the phase shifts.Finally, we show that the nearest neighbor Cu-Cu spin correlation increases linearly with doping and becomes positive at x [...] 0.70.

  10. Obituary: Elizabeth Katherine Holmes, 1973-2004

    Science.gov (United States)

    Beichman, Charles Arnold

    2004-12-01

    Elizabeth (Beth) K. Holmes died suddenly in Pasadena on March 23, 2004, from the unexpected effects of a long-standing heart condition. She was 30 years old. At the moment of her passing, she was at her computer comparing her theoretical models on the effects of planets on the distribution of zodiacal dust with some of the first observations from the Spitzer Space Telescope. Born on June 24, 1973, in New York City, Beth was the only child of James and Barbara Holmes, who were respectively, a financial manager and a nurse and social worker. Undeterred by numerous treatments and operations to correct a congenital heart condition, Beth developed an interest in math and physics leading to her graduation from MIT in 1995 with a bachelor's degree in Physics. She entered the University of Florida shortly afterwards to begin her PhD studies under the direction of Stanley Dermott. Beth was particularly interested in the dynamics of interplanetary dust, and initially worked on secular perturbations of the zodiacal cloud: how the planets impose warping of the cloud, and how they can force the center of the cloud to be offset from the Sun. Despite the fact that Beth was primarily a theorist, she was keen to include some observing experience in her PhD education. She recently completed an observing program with Harold Butner at the Steward and Palomar Observatories looking for submillimeter and mid-infrared emission around nearby main-sequence stars - a signpost of planetary formation. The results were published last year in the Astronomical Journal. Beth's PhD thesis work, some results of which were recently published in the Astrophysical Journal, focused on dust originating in the Kuiper belt and how some of this dust is expected to be spatially structured due to resonant interactions with Neptune. This phenomenon may be quite common in other planetary systems, with recent images of Epsilon Eridani perhaps providing a prime example of a Kuiper disk analog. After graduating

  11. On the mass-coupling relation of multi-scale quantum integrable models

    Energy Technology Data Exchange (ETDEWEB)

    Bajnok, Zoltán; Balog, János [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Ito, Katsushi [Department of Physics, Tokyo Institute of Technology,2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Satoh, Yuji [Institute of Physics, University of Tsukuba,1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Tóth, Gábor Zsolt [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary)

    2016-06-13

    We determine exactly the mass-coupling relation for the simplest multi-scale quantum integrable model, the homogenous sine-Gordon model with two independent mass-scales. We first reformulate its perturbed coset CFT description in terms of the perturbation of a projected product of minimal models. This representation enables us to identify conserved tensor currents on the UV side. These UV operators are then mapped via form factor perturbation theory to operators on the IR side, which are characterized by their form factors. The relation between the UV and IR operators is given in terms of the sought-for mass-coupling relation. By generalizing the Θ sum rule Ward identity we are able to derive differential equations for the mass-coupling relation, which we solve in terms of hypergeometric functions. We check these results against the data obtained by numerically solving the thermodynamic Bethe Ansatz equations, and find a complete agreement.

  12. Integrable anyon chains: From fusion rules to face models to effective field theories

    International Nuclear Information System (INIS)

    Finch, Peter E.; Flohr, Michael; Frahm, Holger

    2014-01-01

    Starting from the fusion rules for the algebra SO(5) 2 we construct one-dimensional lattice models of interacting anyons with commuting transfer matrices of ‘interactions round the face’ (IRF) type. The conserved topological charges of the anyon chain are recovered from the transfer matrices in the limit of large spectral parameter. The properties of the models in the thermodynamic limit and the low energy excitations are studied using Bethe ansatz methods. Two of the anyon models are critical at zero temperature. From the analysis of the finite size spectrum we find that they are effectively described by rational conformal field theories invariant under extensions of the Virasoro algebra, namely WB 2 and WD 5 , respectively. The latter contains primaries with half and quarter spin. The modular partition function and fusion rules are derived and found to be consistent with the results for the lattice model

  13. Benchmarking Deep Learning Models on Large Healthcare Datasets.

    Science.gov (United States)

    Purushotham, Sanjay; Meng, Chuizheng; Che, Zhengping; Liu, Yan

    2018-06-04

    Deep learning models (aka Deep Neural Networks) have revolutionized many fields including computer vision, natural language processing, speech recognition, and is being increasingly used in clinical healthcare applications. However, few works exist which have benchmarked the performance of the deep learning models with respect to the state-of-the-art machine learning models and prognostic scoring systems on publicly available healthcare datasets. In this paper, we present the benchmarking results for several clinical prediction tasks such as mortality prediction, length of stay prediction, and ICD-9 code group prediction using Deep Learning models, ensemble of machine learning models (Super Learner algorithm), SAPS II and SOFA scores. We used the Medical Information Mart for Intensive Care III (MIMIC-III) (v1.4) publicly available dataset, which includes all patients admitted to an ICU at the Beth Israel Deaconess Medical Center from 2001 to 2012, for the benchmarking tasks. Our results show that deep learning models consistently outperform all the other approaches especially when the 'raw' clinical time series data is used as input features to the models. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Topics in dual models and extended solutions

    International Nuclear Information System (INIS)

    Roth, R.S.

    1977-01-01

    Two main topics are explored. The first deals with the infinities arising from the one loop planar string diagram of the standard dual model. It is shown that for the number of dimensions d = 25 or 26, these infinities lead to a renormalization of the slope of the Regge trajectories, in addition to a renormalization of the coupling constant. The second topic deals with the propagator for a confined particle (monopole) in a field theory. When summed to all orders, this propagator is altogether free of singularities in the finite momentum plane, and an attempt is made to illustrate this. The Bethe-Salpeter equation is examined and it is shown that ladder diagrams are not sufficient to obtain this result. However, in a nonrelativistic approximation confinement is obtained and all poles disappear

  15. Excitation energy and angular momentum dependence of the nuclear level densities

    International Nuclear Information System (INIS)

    Razavi, R.; Kakavand, T.; Behkami, A. N.

    2007-01-01

    We have investigated the excitation energy (E) dependence of nuclear level density for Bethe formula and constant temperature model. The level density parameter aa nd the back shifted energy from the Bethe formula are obtained by fitting the complete level schemes. Also the level density parameters from the constant temperature model have been determined for several nuclei. we have shown that the microscopic theory provides more precise information on the nuclear level densities. On the other hand, the spin cut-off parameter and effective moment of inertia are determined by studying of the angular momentum (J) dependence of the nuclear level density, and effective moment of inertia is compared with rigid body value.

  16. A renormalizable extension of the NJL-model

    International Nuclear Information System (INIS)

    Langfeld, K.; Kettner, C.; Reinhardt, H.

    1996-01-01

    The Nambu-Jona-Lasinio model is supplemented by the quark interaction generated by the one-gluon exchange. The employed gluon propagator exhibits the correct large-momentum behavior of QCD, whereas the Landau pole at low energies is screened. The emerging constituent quark model is one-loop renormalizable and interpolates between the phenomenologically successful Nambu-Jona-Lasinio model (modified by a transversal projector) at low energies and perturbative QCD at high momenta. Consequently, the momentum dependence of the quark self-energy at high energy coincides with the prediction from perturbative QCD. The chiral phase transition is studied in dependence on the low-energy four-quark interaction strength in the Dyson-Schwinger equation approach. The critical exponents of the quark self-energy and the quark condensate are obtained. The latter exponent deviates from the NJL-result. Pion properties are addressed by means of the Bethe-Salpeter equation. The validity of the Gell-Mann-Oakes-Renner relation is verified. Finally, we study the conditions under which the Nambu-Jona-Lasinio model is a decent approximation to our renormalizable theory as well as the shortcoming of the NJL-model due to its inherent non-renormalizability. (orig.)

  17. A scalar-vector model of quark-antiquark interaction under linear confinement

    International Nuclear Information System (INIS)

    Chakrabarty, S.

    1992-08-01

    Considering the idea that the constituent quark mass is the dressed sum of current quark mass and dynamical quark mass, and using the standard values of current quark masses we obtain approximate values of constituent quark masses, which are then used in our extensively studied Bethe-Salpeter-reduced potential model. We find that the mass formulas become much simpler for linear potential ar with zero anomalous magnetic moment (λ), the values of scalar-vector fraction (η) and 'a' in the linear potential being (1/4) and (1/5) respectively. Also, some of the quantities can be related to each other and the match with experimental data is good. (author). 18 refs, 3 tabs

  18. Self-consistent model of confinement

    International Nuclear Information System (INIS)

    Swift, A.R.

    1988-01-01

    A model of the large-spatial-distance, zero--three-momentum, limit of QCD is developed from the hypothesis that there is an infrared singularity. Single quarks and gluons do not propagate because they have infinite energy after renormalization. The Hamiltonian formulation of the path integral is used to quantize QCD with physical, nonpropagating fields. Perturbation theory in the infrared limit is simplified by the absence of self-energy insertions and by the suppression of large classes of diagrams due to vanishing propagators. Remaining terms in the perturbation series are resummed to produce a set of nonlinear, renormalizable integral equations which fix both the confining interaction and the physical propagators. Solutions demonstrate the self-consistency of the concepts of an infrared singularity and nonpropagating fields. The Wilson loop is calculated to provide a general proof of confinement. Bethe-Salpeter equations for quark-antiquark pairs and for two gluons have finite-energy solutions in the color-singlet channel. The choice of gauge is addressed in detail. Large classes of corrections to the model are discussed and shown to support self-consistency

  19. Theoretical model for calculation of molecular stopping power

    International Nuclear Information System (INIS)

    Xu, Y.J.

    1984-01-01

    A modified local plasma model based on the work of Linhard-Winther, Bethe, Brown, and Walske is established. The Gordon-Kim's molecular charged density model is employed to obtain a formula to evaluate the stopping power of many useful molecular systems. The stopping power of H 2 and He gas was calculated for incident proton energy ranging from 100 KeV to 2.5 MeV. The stopping power of O 2 , N 2 , and water vapor was also calculated for incident proton energy ranging from 40 keV to 2.5 MeV. Good agreement with experimental data was obtained. A discussion of molecular effects leading to departure from Bragg's rule is presented. The equipartition rule and the effect of nuclear momentum recoiling in stopping power are also discussed in the appendix. The calculation procedure presented hopefully can easily be extended to include the most useful organic systems such as the molecules composed of carbon, nitrogen, hydrogen and oxygen which are useful in radiation protection field

  20. 1/N-expansions of σ-models in 2 and 4 dimensions: Taking them to their technical limits

    International Nuclear Information System (INIS)

    Flyvbjerg, H.; Larsen, F.; Kristjansen, C.

    1990-11-01

    The mass gap and the magnetic susceptibility of the non-linear σ-model in 2d are given as functions of β to three leading orders in 1/N up to correlation lengths 300-400. Our results agree with Monte Carlo results for N≥3, and, for large β, with recent Bethe ansatz results for the correlation length. With applications to the Higgs sector of the Standard Model in mind, we have tested the precision of the 1/N-expansion of the N-component φ 4 theory in 4d for N=4. In the theory's symmetric phase very satisfactory precision is obtained already to two leading orders in 1/N, except at very strong coupling. In the physically interesting broken phase prospects are less encouraging. (orig.)

  1. Exact solution for the inhomogeneous Dicke model in the canonical ensemble: Thermodynamical limit and finite-size corrections

    Energy Technology Data Exchange (ETDEWEB)

    Pogosov, W.V., E-mail: walter.pogosov@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Shapiro, D.S. [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation); National University of Science and Technology MISIS, Moscow (Russian Federation); Bork, L.V. [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Onishchenko, A.I. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)

    2017-06-15

    We consider an exactly solvable inhomogeneous Dicke model which describes an interaction between a disordered ensemble of two-level systems with single mode boson field. The existing method for evaluation of Richardson–Gaudin equations in the thermodynamical limit is extended to the case of Bethe equations in Dicke model. Using this extension, we present expressions both for the ground state and lowest excited states energies as well as leading-order finite-size corrections to these quantities for an arbitrary distribution of individual spin energies. We then evaluate these quantities for an equally-spaced distribution (constant density of states). In particular, we study evolution of the spectral gap and other related quantities. We also reveal regions on the phase diagram, where finite-size corrections are of particular importance.

  2. Bethe ansatz approach to quench dynamics in the Richardson model

    NARCIS (Netherlands)

    Faribault, A.D.P.; Calabrese, P.; Caux, J.S.

    2009-01-01

    By instantaneously changing a global parameter in an extended quantum system, an initially equilibrated state will afterwards undergo a complex nonequilibrium unitary evolution whose description is extremely challenging. A nonperturbative method giving a controlled error in the long time limit

  3. Nonlinear integral equations for thermodynamics of the sl(r + 1) Uimin-Sutherland model

    International Nuclear Information System (INIS)

    Tsuboi, Zengo

    2003-01-01

    We derive traditional thermodynamic Bethe ansatz (TBA) equations for the sl(r+1) Uimin-Sutherland model from the T-system of the quantum transfer matrix. These TBA equations are identical to the those from the string hypothesis. Next we derive a new family of nonlinear integral equations (NLIEs). In particular, a subset of these NLIEs forms a system of NLIEs which contains only a finite number of unknown functions. For r=1, this subset of NLIEs reduces to Takahashi's NLIE for the XXX spin chain. A relation between the traditional TBA equations and our new NLIEs is clarified. Based on our new NLIEs, we also calculate the high-temperature expansion of the free energy

  4. Medium modifications of mesons. Chiral symmetry restoration, in-medium QCD sum rules for D and ρ mesons, and Bethe-Salpeter equations

    Energy Technology Data Exchange (ETDEWEB)

    Hilger, Thomas Uwe

    2012-04-11

    The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D- anti D and B- anti B mesons as a function of the nuclear matter density and investigate the impact of various condensates in linear density approximation. The analysis also includes D{sub s} and D{sup *}{sub 0} mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. The complementarity of mass shift and broadening is discussed. An alternative approach which utilizes coupled Dyson-Schwinger and Bethe-Salpeter equations for quark-antiquark bound states is investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex plane numerically and test the possibility to widen the applicability of the method to the sector of heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit but without dynamical chiral symmetry breaking.

  5. The exact mass-gap of the supersymmetric CP$^{N-1}$ sigma model

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1995-01-01

    A formula for the mass-gap of the supersymmetric \\CP^{n-1} sigma model (n > 1) in two dimensions is derived: m/\\Lambda_{\\overline{\\rm MS}}=\\sin(\\pi\\Delta)/(\\pi\\Delta) where \\Delta=1/n and m is the mass of the fundamental particle multiplet. This result is obtained by comparing two expressions for the free-energy density in the presence of a coupling to a conserved charge; one expression is computed from the exact S-matrix of K\\"oberle and Kurak via the thermodynamic Bethe ansatz and the other is computed using conventional perturbation theory. These calculations provide a stringent test of the S-matrix, showing that it correctly reproduces the universal part of the beta-function and resolving the problem of CDD ambiguities.

  6. The spin-3/2 Ising model AFM/AFM two-layer lattice with crystal field

    International Nuclear Information System (INIS)

    Yigit, A.; Albayrak, E.

    2010-01-01

    The spin-3/2 Ising model is investigated for the case of antiferromagnetic (AFM/AFM) interactions on the two-layer Bethe lattice by using the exact recursion relations in a pairwise approach for given coordination numbers q=3, 4 and 6 when the layers are under the influences of equal external magnetic and equal crystal fields. The ground state (GS) phase diagrams are obtained on the different planes in detail and then the temperature dependent phase diagrams of the system are calculated accordingly. It is observed that the system presents both second- and first-order phase transitions for all q, therefore, tricritical points. It was also found that the system exhibits double-critical end points and isolated points. The model also presents two Neel temperatures, TN, and the existence of which leads to the reentrant behavior.

  7. Quarkonia and heavy-light mesons in a covariant quark model

    Directory of Open Access Journals (Sweden)

    Leitão Sofia

    2016-01-01

    Full Text Available Preliminary calculations using the Covariant Spectator Theory (CST employed a scalar linear confining interaction and an additional constant vector potential to compute the mesonic mass spectra. In this work we generalize the confining interaction to include more general structures, in particular a vector and also a pseudoscalar part, as suggested by a recent study [1]. A one-gluon-exchange kernel is also implemented to describe the short-range part of the interaction. We solve the simplest CST approximation to the complete Bethe-Salpeter equation, the one-channel spectator equation, using a numerical technique that eliminates all singularities from the kernel. The parameters of the model are determined through a fit to the experimental pseudoscalar meson spectra, with a good agreement for both quarkonia and heavy-light states.

  8. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach

    Energy Technology Data Exchange (ETDEWEB)

    Duchemin, Ivan, E-mail: ivan.duchemin@cea.fr [INAC, SP2M/L-Sim, CEA/UJF Cedex 09, 38054 Grenoble (France); Jacquemin, Denis [Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 (France); Institut Universitaire de France, 1 rue Descartes, 75005 Paris Cedex 5 (France); Blase, Xavier [CNRS, Inst. NÉEL, F-38000 Grenoble (France); Univ. Grenoble Alpes, Inst. NÉEL, F-38000 Grenoble (France)

    2016-04-28

    We have implemented the polarizable continuum model within the framework of the many-body Green’s function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics, wet chemistry, and biology.

  9. Hyperon interaction in free space and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Madhumita [Justus-Liebig University Giessen (Germany); Lenske, Horst [Justus-Liebig University Giessen (Germany); GSI, Darmstadt (Germany)

    2016-07-01

    A new approach to the SU(3) flavour symmetric meson-exchange model is introduced to describe free space baryon-baryon interaction. The Bethe-Salpeter equations are solved in a 3-D reduction scheme. The coupling of the various channels of total strangeness S and conserved total charge Q is studied in detail. Special attention is paid to the physical thresholds. The derived vacuum interaction has then been used to derive nuclear medium effect by employing the Pauli projector operator in 3-D reduced Bethe-Salpeter equation. The in-medium properties of the interaction are clearly seen in the variation of the in-medium low-energy parameters as a function of density.

  10. Integral Nursing: An Emerging Framework for Engaging the Evolution of the Profession.

    Science.gov (United States)

    Fiandt, Kathryn; Forman, John; Megel, Mary Erickson; Pakieser, Ruth A.; Burge, Stephanie

    2003-01-01

    Proposes the Integral Nursing framework, which combines Wilber's All-Quadrant/All-Level model, a heuristic device to organize human experience, and the Spiral Dynamics model of human development organized around value memes or cultural units of information. Includes commentary by Beth L. Rodgers. (Contains 17 references.) (JOW)

  11. Quark model calculations of current correlators in the nonperturbative domain

    International Nuclear Information System (INIS)

    Celenza, L.S.; Shakin, C.M.; Sun, W.D.

    1995-01-01

    The authors study the vector-isovector current correlator in this work, making use of a generalized Nambu-Jona-Lasinio (NJL) model. In their work, the original NJL model is extended to describe the coupling of the quark-antiquark states to the two-pion continuum. Further, a model for confinement is introduced that is seen to remove the nonphysical cuts that appear in various amplitudes when the quark and antiquark go on mass shell. Quite satisfactory results are obtained for the correlator. The authors also use the correlator to define a T-matrix for confined quarks and discuss a rho-dominance model for that T-matrix. It is also seen that the Bethe-Salpeter equation that determines the rho mass (in the absence of the coupling to the two-pion continuum) has more satisfactory behavior in the generalized model than in the model without confinement. That improved behavior is here related to the absence of the q bar q cut in the basic quark-loop integral of the generalized model. In this model, it is seen how one may work with both quark and hadron degrees of freedom, with only the hadrons appearing as physical particles. 12 refs., 16 figs., 1 tab

  12. Some issues linked to the description of systems in strong interaction

    International Nuclear Information System (INIS)

    Theussl, L.

    2001-06-01

    In the first part of this work we have dealt with some issues that are relevant in the area of nucleonic resonances within different constituent quark models. In this context we have concentrated on the theoretical description of Pi and Nu decays for N and Delta resonances. The results obtained point to the necessity of a more microscopic description of the dynamics which is at the same time responsible for the binding of quarks inside baryons and the decay of the latter ones. In the second part we have contributed to the study of crossed two-boson exchanges in the Bethe-Salpeter equation as well as to the investigation of different three-dimensional approaches that follow from the Bethe-Salpeter equation in a certain non-relativistic reduction scheme. These one include in particular an equation whose interaction depends on the total energy of the system. It was shown that such an equation is able to account for a certain number of properties of Bethe-Salpeter equation, in particular, that there also arise abnormal solutions in such an approach. (author)

  13. On the gluonic correction to lepton-pair decays in a relativistic quarkonium model

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    1987-01-01

    The gluonic correction to the leptonic decay of the heavy vector meson is investigated by using the perturbation theory to the order α s . The on-mass-shell approximation is assumed for the constituent quarks so that we assure the gauge independence of the correction. The decay rates in the model based on the Bethe-Salpeter equation are also shown, in which the gluonic correction with a high-momentum cutoff is calculated for the off-shell quarks. It is shown that the static approximation to the correction factor (1 - 16α s /3π) is not adequate and the gluonic correction does not suppress but enhance the decay rates of the ground states for the c anti c and b anti b systems. (author)

  14. The exact mass-gap of the supersymmetric O(N) sigma model

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1995-01-01

    A formula for the mass-gap of the supersymmetric O(N) sigma model (N>4) in two dimensions is derived: m/\\Lambda_{\\overline{\\rm MS}}=2^{2\\Delta}\\sin(\\pi\\Delta)/(\\pi\\Delta), where \\Delta=1/(N-2) and m is the mass of the fundamental vector particle in the theory. This result is obtained by comparing two expressions for the free-energy density in the presence of a coupling to a conserved charge; one expression is computed from the exact S-matrix of Shankar and Witten via the the thermodynamic Bethe ansatz and the other is computed using conventional perturbation theory. These calculations provide a stringent test of the S-matrix, showing that it correctly reproduces the universal part of the beta-function and resolving the problem of CDD ambiguities.

  15. Nonlinear integral equations for the sausage model

    Science.gov (United States)

    Ahn, Changrim; Balog, Janos; Ravanini, Francesco

    2017-08-01

    The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.

  16. Vibrational properties of amorphous semiconductors

    International Nuclear Information System (INIS)

    Schulz, P.A.B.

    1985-01-01

    A model for the lattice dynamics of a-Si 1-X N X is introduced. This model is based on a Born hamiltonian, solved in the Bethe lattice approximation. Starting from the local density of vibrational states, we analize the infrared absoption spectra of this material. (author) [pt

  17. Lattice dynamics of a- Si3N4

    International Nuclear Information System (INIS)

    Schulz, P.A.B.; Silva, C.E.T.G. da

    1984-01-01

    We introduce a model for the lattice dynamics of SI 3 N 4 in its amorphous phase. This model is based on a Born hamiltonian, solved in the Bethe lattice approximation. We included the local vicinity until third nearest neighbours, building up the central cluster. (M.W.O.) [pt

  18. From Coalgebra to Bialgebra for the Six-Vertex Model: The Star-Triangle Relation as a Necessary Condition for Commuting Transfer Matrices

    Directory of Open Access Journals (Sweden)

    Jeffrey R. Schmidt

    2012-08-01

    Full Text Available Using the most elementary methods and considerations, the solution of the star-triangle condition (a2+b2-c2/2ab = ((a’^2+(b’^2-(c’^2/2a’b’ is shown to be a necessary condition for the extension of the operator coalgebra of the six-vertex model to a bialgebra. A portion of the bialgebra acts as a spectrum-generating algebra for the algebraic Bethe ansatz, with which higher-dimensional representations of the bialgebra can be constructed. The star-triangle relation is proved to be necessary for the commutativity of the transfer matrices T(a, b, c and T(a’, b’, c’.

  19. Colour-independent partition functions in coloured vertex models

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O., E-mail: omar.foda@unimelb.edu.au [Dept. of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010 (Australia); Wheeler, M., E-mail: mwheeler@lpthe.jussieu.fr [Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589 (France); Université Pierre et Marie Curie – Paris 6, 4 place Jussieu, 75252 Paris cedex 05 (France)

    2013-06-11

    We study lattice configurations related to S{sub n}, the scalar product of an off-shell state and an on-shell state in rational A{sub n} integrable vertex models, n∈{1,2}. The lattice lines are colourless and oriented. The state variables are n conserved colours that flow along the line orientations, but do not necessarily cover every bond in the lattice. Choosing boundary conditions such that the positions where the colours flow into the lattice are fixed, and where they flow out are summed over, we show that the partition functions of these configurations, with these boundary conditions, are n-independent. Our results extend to trigonometric A{sub n} models, and to all n. This n-independence explains, in vertex-model terms, results from recent studies of S{sub 2} (Caetano and Vieira, 2012, [1], Wheeler, (arXiv:1204.2089), [2]). Namely, 1.S{sub 2}, which depends on two sets of Bethe roots, {b_1} and {b_2}, and cannot (as far as we know) be expressed in single determinant form, degenerates in the limit {b_1}→∞, and/or {b_2}→∞, into a product of determinants, 2. Each of the latter determinants is an A{sub 1} vertex-model partition function.

  20. Colour-independent partition functions in coloured vertex models

    International Nuclear Information System (INIS)

    Foda, O.; Wheeler, M.

    2013-01-01

    We study lattice configurations related to S n , the scalar product of an off-shell state and an on-shell state in rational A n integrable vertex models, n∈{1,2}. The lattice lines are colourless and oriented. The state variables are n conserved colours that flow along the line orientations, but do not necessarily cover every bond in the lattice. Choosing boundary conditions such that the positions where the colours flow into the lattice are fixed, and where they flow out are summed over, we show that the partition functions of these configurations, with these boundary conditions, are n-independent. Our results extend to trigonometric A n models, and to all n. This n-independence explains, in vertex-model terms, results from recent studies of S 2 (Caetano and Vieira, 2012, [1], Wheeler, (arXiv:1204.2089), [2]). Namely, 1.S 2 , which depends on two sets of Bethe roots, {b 1 } and {b 2 }, and cannot (as far as we know) be expressed in single determinant form, degenerates in the limit {b 1 }→∞, and/or {b 2 }→∞, into a product of determinants, 2. Each of the latter determinants is an A 1 vertex-model partition function

  1. Fredholm determinant representation of quantum correlation function for Sine-Gordon at special value of coupling constant

    International Nuclear Information System (INIS)

    Itoyama, H.; Korepin, V.E.; Thacker, H.B.

    1992-01-01

    In this paper, correlation functions of the Sine-Gordon model (which is equivalent of the Massive-Thirring model) are considered at the free fermion point. The authors derive a determinant formula for local correlation functions of the Sine-Gordon model, starting form Bethe ansatz wave function. Kernel of integral operator is trigonometric version of the one for Impenetrable Bosons

  2. Fisher information framework for time series modeling

    Science.gov (United States)

    Venkatesan, R. C.; Plastino, A.

    2017-08-01

    A robust prediction model invoking the Takens embedding theorem, whose working hypothesis is obtained via an inference procedure based on the minimum Fisher information principle, is presented. The coefficients of the ansatz, central to the working hypothesis satisfy a time independent Schrödinger-like equation in a vector setting. The inference of (i) the probability density function of the coefficients of the working hypothesis and (ii) the establishing of constraint driven pseudo-inverse condition for the modeling phase of the prediction scheme, is made, for the case of normal distributions, with the aid of the quantum mechanical virial theorem. The well-known reciprocity relations and the associated Legendre transform structure for the Fisher information measure (FIM, hereafter)-based model in a vector setting (with least square constraints) are self-consistently derived. These relations are demonstrated to yield an intriguing form of the FIM for the modeling phase, which defines the working hypothesis, solely in terms of the observed data. Cases for prediction employing time series' obtained from the: (i) the Mackey-Glass delay-differential equation, (ii) one ECG signal from the MIT-Beth Israel Deaconess Hospital (MIT-BIH) cardiac arrhythmia database, and (iii) one ECG signal from the Creighton University ventricular tachyarrhythmia database. The ECG samples were obtained from the Physionet online repository. These examples demonstrate the efficiency of the prediction model. Numerical examples for exemplary cases are provided.

  3. New construction of eigenstates and separation of variables for SU( N) quantum spin chains

    Science.gov (United States)

    Gromov, Nikolay; Levkovich-Maslyuk, Fedor; Sizov, Grigory

    2017-09-01

    We conjecture a new way to construct eigenstates of integrable XXX quantum spin chains with SU( N) symmetry. The states are built by repeatedly acting on the vacuum with a single operator B good( u) evaluated at the Bethe roots. Our proposal serves as a compact alternative to the usual nested algebraic Bethe ansatz. Furthermore, the roots of this operator give the separated variables of the model, explicitly generalizing Sklyanin's approach to the SU( N) case. We present many tests of the conjecture and prove it in several special cases. We focus on rational spin chains with fundamental representation at each site, but expect many of the results to be valid more generally.

  4. Some exact results for the three-layer Zamolodchikov model

    International Nuclear Information System (INIS)

    Boos, H.E.; Mangazeev, V.V.

    2001-01-01

    In this paper we continue the study of the three-layer Zamolodchikov model started in our previous works (H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 3041-3054 and H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 5285-5298). We analyse numerically the solutions to the Bethe ansatz equations obtained in H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 5285-5298. We consider two regimes I and II which differ by the signs of the spherical sides (a 1 ,a 2 ,a 3 )→(-a 1 ,-a 2 ,-a 3 ). We accept the two-line hypothesis for the regime I and the one-line hypothesis for the regime II. In the thermodynamic limit we derive integral equations for distribution densities and solve them exactly. We calculate the partition function for the three-layer Zamolodchikov model and check a compatibility of this result with the functional relations obtained in H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 5285-5298. We also do some numeric checkings of our results

  5. Spectra of heavy-light mesons in a relativistic model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-Bin; Lue, Cai-Dian [Institute of High Energy Physics, Beijing (China)

    2017-05-15

    The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model which is based on a heavy-quark expansion of the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation. The kernel we choose is the standard combination of linear scalar and Coulombic vector. The effective Hamiltonian for heavy-light quark-antiquark system is calculated up to order 1/m{sub Q}{sup 2}. Our results are in good agreement with available experimental data except for the anomalous D{sub s0}{sup *}(2317) and D{sub s1}(2460) states. The newly observed heavy-light meson states can be accommodated successfully in the relativistic quark model with their assignments presented. The D{sub sJ}{sup *}(2860) can be interpreted as the vertical stroke 1{sup 3/2}D{sub 1} right angle and vertical stroke 1{sup 5/2}D{sub 3} right angle states being members of the 1D family with J{sup P} = 1{sup -} and 3{sup -}. (orig.)

  6. Solution of quantum integrable systems from quiver gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Dorey, Nick [Department of Applied Mathematics and Theoretical Physics, University of Cambridge,Cambridge (United Kingdom); Zhao, Peng [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook (United States)

    2017-02-23

    We construct new integrable systems describing particles with internal spin from four-dimensional N = 2 quiver gauge theories. The models can be quantized and solved exactly using the quantum inverse scattering method and also using the Bethe/Gauge correspondence.

  7. Understanding many-body physics in one dimension from the Lieb–Liniger model

    International Nuclear Information System (INIS)

    Jiang Yu-Zhu; Chen Yang-Yang; Guan Xi-Wen

    2015-01-01

    This article presents an elementary introduction on various aspects of the prototypical integrable model the Lieb–Liniger Bose gas ranging from the cooperative to the collective features of many-body phenomena. In 1963, Lieb and Liniger first solved this quantum field theory many-body problem using Bethe’s hypothesis, i.e., a particular form of wavefunction introduced by Bethe in solving the one-dimensional Heisenberg model in 1931. Despite the Lieb–Liniger model is arguably the simplest exactly solvable model, it exhibits rich quantum many-body physics in terms of the aspects of mathematical integrability and physical universality. Moreover, the Yang–Yang grand canonical ensemble description for the model provides us with a deep understanding of quantum statistics, thermodynamics, and quantum critical phenomena at the many-body physical level. Recently, such fundamental physics of this exactly solved model has been attracting growing interest in experiments. Since 2004, there have been more than 20 experimental papers that reported novel observations of different physical aspects of the Lieb–Liniger model in the laboratory. So far the observed results are in excellent agreement with results obtained using the analysis of this simplest exactly solved model. Those experimental observations reveal the unique beauty of integrability. (topical review)

  8. Total bremsstrahlung spectra of thick lead compounds produced by {sup 90}Sr beta emitter in photon energy region of 10–100 keV

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suhansar Jit [Department of Physics, B.B.S.B Polytechnic, Fatehgarh Sahib, Punjab (India); Singh, Tajinder, E-mail: tajindersingh2k9@gmail.com [Department of Physics, Mata Gujri College, Fatehgarh Sahib, Punjab (India); Singh, Doordarshi [Department of Mechanical Engineering, B.B.S.B Engineering College, Fatehgarh Sahib, Punjab (India); Singh, Amrit [Department of Physics, Baba Ajay Singh Khalsa College, Gurdas Nangal, Gurdaspur, Punjab (India); Dhaliwal, A.S. [Department of Physics, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab (India)

    2017-06-15

    Highlights: • Total bremsstrahlung spectra in thick targets of Pb compounds by {sup 90}Sr in energy range 10–100 keV. • Experimental results show better agreement with the model which includes PB in SA up to 30 keV. • At higher photon energy region 30–100 keV the model which describes OB is more accurate. • Experimental results show positive deviations from the entire models at higher energy end spectrum. - Abstract: The total bremsstrahlung spectra in the thick targets of lead acetate trihydrate (Pb(CH{sub 3}COO){sub 2}·3H{sub 2}O), lead nitrate Pb(NO{sub 3}){sub 2} and lead chloride (PbCl{sub 2}) produced by {sup 90}Sr beta particles have been investigated in the photon energy region of 10–100 keV. The experimental bremsstrahlung spectra have been compared with the theoretical models Elwert corrected (non relativistic) Bethe Heitler theory, modified Elwert factor (relativistic) Bethe Heitler theory for ordinary bremsstrahlung and modified Elwert factor (relativistic) Bethe Heitler theory which includes polarization bremsstrahlung in the stripped atom approximation. The experimental results show better agreement with theoretical model that includes polarization bremsstrahlung in stripped approximation in the photon energy region below 30 keV. However, at higher photon energy region 30–100 keV, the theoretical model which describes ordinary bremsstrahlung is more accurate to describe the experimental bremsstrahlung spectra. The experimental results show positive deviations from the entire theoretical models at higher energy end of the spectrum. The results indicate that polarization bremsstrahlung plays important role in the formation of total bremsstrahlung spectra in lead compounds produced by continuous beta particles at low photon energy region of 10–30 keV.

  9. The open XXX spin chain in the SoV framework: scalar product of separate states

    Science.gov (United States)

    Kitanine, N.; Maillet, J. M.; Niccoli, G.; Terras, V.

    2017-06-01

    We consider the XXX open spin-1/2 chain with the most general non-diagonal boundary terms, that we solve by means of the quantum separation of variables (SoV) approach. We compute the scalar products of separate states, a class of states which notably contains all the eigenstates of the model. As usual for models solved by SoV, these scalar products can be expressed as some determinants with a non-trivial dependance in terms of the inhomogeneity parameters that have to be introduced for the method to be applicable. We show that these determinants can be transformed into alternative ones in which the homogeneous limit can easily be taken. These new representations can be considered as generalizations of the well-known determinant representation for the scalar products of the Bethe states of the periodic chain. In the particular case where a constraint is applied on the boundary parameters, such that the transfer matrix spectrum and eigenstates can be characterized in terms of polynomial solutions of a usual T-Q equation, the scalar product that we compute here corresponds to the scalar product between two off-shell Bethe-type states. If in addition one of the states is an eigenstate, the determinant representation can be simplified, hence leading in this boundary case to direct analogues of algebraic Bethe ansatz determinant representations of the scalar products for the periodic chain.

  10. The open XXX spin chain in the SoV framework: scalar product of separate states

    International Nuclear Information System (INIS)

    Kitanine, N; Maillet, J M; Niccoli, G; Terras, V

    2017-01-01

    We consider the XXX open spin-1/2 chain with the most general non-diagonal boundary terms, that we solve by means of the quantum separation of variables (SoV) approach. We compute the scalar products of separate states, a class of states which notably contains all the eigenstates of the model. As usual for models solved by SoV, these scalar products can be expressed as some determinants with a non-trivial dependance in terms of the inhomogeneity parameters that have to be introduced for the method to be applicable. We show that these determinants can be transformed into alternative ones in which the homogeneous limit can easily be taken. These new representations can be considered as generalizations of the well-known determinant representation for the scalar products of the Bethe states of the periodic chain. In the particular case where a constraint is applied on the boundary parameters, such that the transfer matrix spectrum and eigenstates can be characterized in terms of polynomial solutions of a usual T - Q equation, the scalar product that we compute here corresponds to the scalar product between two off-shell Bethe-type states. If in addition one of the states is an eigenstate, the determinant representation can be simplified, hence leading in this boundary case to direct analogues of algebraic Bethe ansatz determinant representations of the scalar products for the periodic chain. (paper)

  11. Null-polygonal minimal surfaces in AdS4 from perturbed W minimal models

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji

    2012-11-01

    We study the null-polygonal minimal surfaces in AdS 4 , which correspond to the gluon scattering amplitudes/Wilson loops in N=4 super Yang-Mills theory at strong coupling. The area of the minimal surfaces with n cusps is characterized by the thermodynamic Bethe ansatz (TBA) integral equations or the Y-system of the homogeneous sine-Gordon model, which is regarded as the SU(n-4) 4 /U(1) n-5 generalized parafermion theory perturbed by the weight-zero adjoint operators. Based on the relation to the TBA systems of the perturbed W minimal models, we solve the TBA equations by using the conformal perturbation theory, and obtain the analytic expansion of the remainder function around the UV/regular-polygonal limit for n = 6 and 7. We compare the rescaled remainder function for n=6 with the two-loop one, to observe that they are close to each other similarly to the AdS 3 case.

  12. Squeezed condensate and confinement in a scalar model

    International Nuclear Information System (INIS)

    Blaschke, D.; Pavel, H.P.; Roepke, G.; Peradze, G.; Pervushin, V.N.

    1996-01-01

    The generating functional of a free scalar field theory is generalized to the case of a squeezed vacuum. The squeezed vacuum is prepared by macroscopically populating the original vacuum with pairs of zero energy particles. It is shown that the corresponding quark propagator has no poles on the real-k 2 axis which can be interpreted as quark confinement. In contrast, a scalar meson-like bound state exists as solution of the corresponding Bethe-Salpeter equation. 20 refs

  13. Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation

    International Nuclear Information System (INIS)

    Matevosyan, Hrayr H.; Thomas, Anthony W.; Tandy, Peter C.

    2007-01-01

    We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light-quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three-gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. Within the current model, the more consistent dressed vertex limits the ladder-rainbow truncation error for vector mesons to be never more than 10% as the current quark mass is varied from the u/d region to the b region

  14. Time dependent photon and neutrino emission from Mkr 421 in the context of the one-zone leptohadronic model

    Directory of Open Access Journals (Sweden)

    Mastichiadis Apostolos

    2013-12-01

    Full Text Available We apply a recently developed time-dependent one-zone leptohadronic model to study the emission of the blazar Mrk 421. Both processes involving proton-photon interactions, i.e. photopair (Bethe-Heitler and photopion, have been modeled in great detail using the results of Monte Carlo simulations, like the SOPHIA event generator, in a self-consistent scheme that couples energy losses and secondary injection. We find that TeV gamma-rays can be attributed to synchrotron radiation either from relativistic protons or, alternatively, from secondary leptons produced via photohadronic processes. We also study the variability patterns that each scenario predicts and we find that while the former is more energetically favored, it is the latter that produces, in a more natural way, the usual quadratic behavior between X-rays and TeV gamma-rays. We also use the obtained SEDs to calculate in detail the expected neutron and neutrino fluxes that each model predicts.

  15. Statistical thermodynamics of equilibrium polymers at interfaces

    NARCIS (Netherlands)

    Gucht, van der J.; Besseling, N.A.M.

    2002-01-01

    The behavior of a solution of equilibrium polymers (or living polymers) at an interface is studied, using a Bethe-Guggenheim lattice model for molecules with orientation dependent interactions. The density profile of polymers and the chain length distribution are calculated. For equilibrium polymers

  16. Null-polygonal minimal surfaces in AdS{sub 4} from perturbed W minimal models

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ito, Katsushi [Tokyo Institute of Technology (Japan). Dept. of Physics; Satoh, Yuji [Tsukuba Univ., Sakura, Ibaraki (Japan). Inst. of Physics

    2012-11-15

    We study the null-polygonal minimal surfaces in AdS{sub 4}, which correspond to the gluon scattering amplitudes/Wilson loops in N=4 super Yang-Mills theory at strong coupling. The area of the minimal surfaces with n cusps is characterized by the thermodynamic Bethe ansatz (TBA) integral equations or the Y-system of the homogeneous sine-Gordon model, which is regarded as the SU(n-4){sub 4}/U(1){sup n-5} generalized parafermion theory perturbed by the weight-zero adjoint operators. Based on the relation to the TBA systems of the perturbed W minimal models, we solve the TBA equations by using the conformal perturbation theory, and obtain the analytic expansion of the remainder function around the UV/regular-polygonal limit for n = 6 and 7. We compare the rescaled remainder function for n=6 with the two-loop one, to observe that they are close to each other similarly to the AdS{sub 3} case.

  17. Reference: 279 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ork, N.Y.) Bandyopadhyay Anindita|Blakeslee Joshua|Gaxiola Roberto|Gilroy Simon|Khodakovskaya Mariya|Krizek ...Beth|Li Jisheng|Murphy Angus S|Peer Wendy Ann|Richards Elizabeth L|Richter Gregory|Titapiwantakun Boosaree|Undurraga Soledad|Yang Haibing

  18. Medline Plus

    Full Text Available ... 5/08/2008) Testicular Disorders Varicocele Surgery (Beth Israel Medical Center, New York, NY, 2/24/2009) ... Reconstruction Breast Reconstruction: Deep Inferior Epigastric Perforator (Beth Israel Medical Center, New York, NY, 1/11/2008) ...

  19. Simplified models for the Monte Carlo simulation of energy distributions of keV electrons transmitted or back-scattered in various solids

    International Nuclear Information System (INIS)

    Liljequist, D.

    1978-01-01

    Simplified models, based on stopping power, transport mean free path and classical straggling, are shown to give results in rather good agreement with experiment and comparable with the results of more detailed, direct Monte Carlo procedure hitherto constructed. The small effects of features such as large-angle scattering and the interaction between straggling and scattering are studied. A description based on the near linearity of the transport mean free path is used to obtain empirical corrections in some cases of the total transmission and back-scattering simulation and empirical estimates of the (Bethe) range and the transport mean free path. The estimates of the range are consistent with a rough calculation of the effect of large binding energies. (author)

  20. Auxiliary matrices for the six-vertex model at q sup N = 1 and a geometric interpretation of its symmetries

    CERN Document Server

    Korff, C

    2003-01-01

    The construction of auxiliary matrices for the six-vertex model at a root of unity is investigated from a quantum group theoretic point of view. Employing the concept of intertwiners associated with the quantum loop algebra U sub q (s-tilde l-tilde sub 2) at q sup N = 1, a three-parameter family of auxiliary matrices is constructed. The elements of this family satisfy a functional relation with the transfer matrix allowing one to solve the eigenvalue problem of the model and to derive the Bethe ansatz equations. This functional relation is obtained from the decomposition of a tensor product of evaluation representations and involves auxiliary matrices with different parameters. Because of this dependence on additional parameters, the auxiliary matrices break in general the finite symmetries of the six-vertex model, such as spin-reversal or spin-conservation. More importantly, they also lift the extra degeneracies of the transfer matrix due to the loop symmetry present at rational coupling values. The extra pa...

  1. Cross sections and oscillator strengths for electron-impact excitation of electronic states in polyatomic molecules. Application examples of the BEf- scaling model in optically-allowed transitions

    International Nuclear Information System (INIS)

    Kato, H.; Kawahara, H.; Hoshino, M.

    2009-12-01

    Integral cross sections for optically allowed electronic-state excitations by electron impact, are reviewed for polyatomic molecules by applying the Binary-Encounter-Bethe (BEB) scaling model. Following the context of the present review, the scaling model originally proposed by Yong-Ki Kim to determine electron-impact cross sections for ionization of atoms and molecules is also summarized briefly for its wide range of applications [Electron-Impact Cross Section Database, NIST, Y.-K. Kim]. The present report not only focuses on the need for the cross-section data, but also elucidates the verification of the scaling model in the general application for atoms and molecules. Since this report is for a data base, it is summarized for data base users by citing (copying) the descriptions in the original papers and the references within those papers in the style of a textbook. (author)

  2. Excited TBA equations I: Massive tricritical Ising model

    International Nuclear Information System (INIS)

    Pearce, Paul A.; Chim, Leung; Ahn, Changrim

    2001-01-01

    We consider the massive tricritical Ising model M(4,5) perturbed by the thermal operator phi (cursive,open) Greek 1,3 in a cylindrical geometry and apply integrable boundary conditions, labelled by the Kac labels (r,s), that are natural off-critical perturbations of known conformal boundary conditions. We derive massive thermodynamic Bethe ansatz (TBA) equations for all excitations by solving, in the continuum scaling limit, the TBA functional equation satisfied by the double-row transfer matrices of the A 4 lattice model of Andrews, Baxter and Forrester (ABF) in Regime III. The complete classification of excitations, in terms of (m,n) systems, is precisely the same as at the conformal tricritical point. Our methods also apply on a torus but we first consider (r,s) boundaries on the cylinder because the classification of states is simply related to fermionic representations of single Virasoro characters χ r,s (q). We study the TBA equations analytically and numerically to determine the conformal UV and free particle IR spectra and the connecting massive flows. The TBA equations in Regime IV and massless RG flows are studied in Part II

  3. Finite-volume spectra of the Lee-Yang model

    Energy Technology Data Exchange (ETDEWEB)

    Bajnok, Zoltan [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Deeb, Omar el [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Physics Department, Faculty of Science, Beirut Arab University (BAU),Beirut (Lebanon); Pearce, Paul A. [School of Mathematics and Statistics, University of Melbourne,Parkville, Victoria 3010 (Australia)

    2015-04-15

    We consider the non-unitary Lee-Yang minimal model M(2,5) in three different finite geometries: (i) on the interval with integrable boundary conditions labelled by the Kac labels (r,s)=(1,1),(1,2), (ii) on the circle with periodic boundary conditions and (iii) on the periodic circle including an integrable purely transmitting defect. We apply φ{sub 1,3} integrable perturbations on the boundary and on the defect and describe the flow of the spectrum. Adding a Φ{sub 1,3} integrable perturbation to move off-criticality in the bulk, we determine the finite size spectrum of the massive scattering theory in the three geometries via Thermodynamic Bethe Ansatz (TBA) equations. We derive these integral equations for all excitations by solving, in the continuum scaling limit, the TBA functional equations satisfied by the transfer matrices of the associated A{sub 4} RSOS lattice model of Forrester and Baxter in Regime III. The excitations are classified in terms of (m,n) systems. The excited state TBA equations agree with the previously conjectured equations in the boundary and periodic cases. In the defect case, new TBA equations confirm previously conjectured transmission factors.

  4. Excitation spectrum and staggering transformations in lattice quantum models.

    Science.gov (United States)

    Faria da Veiga, Paulo A; O'Carroll, Michael; Schor, Ricardo

    2002-08-01

    We consider the energy-momentum excitation spectrum of diverse lattice Hamiltonian operators: the generator of the Markov semigroup of Ginzburg-Landau models with Langevin stochastic dynamics, the Hamiltonian of a scalar quantum field theory, and the Hamiltonian associated with the transfer matrix of a classical ferromagnetic spin system at high temperature. The low-lying spectrum consists of a one-particle state and a two-particle band. The two-particle spectrum is determined using a lattice version of the Bethe-Salpeter equation. In addition to the two-particle band, depending on the lattice dimension and on the attractive or repulsive character of the interaction between the particles of the system, there is, respectively, a bound state below or above the two-particle band. We show how the existence or nonexistence of these bound states can be understood in terms of a nonrelativistic single-particle lattice Schrödinger Hamiltonian with a delta potential. A staggering transformation relates the spectra of the attractive and the repulsive cases.

  5. Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model

    Science.gov (United States)

    Borcherding, Daniel; Frahm, Holger

    2018-05-01

    The contribution of anyonic degrees of freedom emerging in the non-Abelian spin sector of a one-dimensional system of interacting fermions carrying both spin and SU(N f ) orbital degrees of freedom to the thermodynamic properties of the latter is studied based on the exact solution of the model. For sufficiently small temperatures and magnetic fields the anyons appear as zero energy modes localized at the massive kink excitations (Tsvelik 2014 Phys. Rev. Lett. 113 066401). From their quantum dimension they are identified as spin- anyons. The density of kinks (and anyons) can be controlled by an external magnetic field leading to the formation of a collective state of these anyons described by a parafermion conformal field theory for large fields. Based on the numerical analysis of the thermodynamic Bethe ansatz equations we propose a phase diagram for the anyonic modes.

  6. New Security and Justice Sector Partnership Models: Implications of the Arab Uprisings

    Science.gov (United States)

    2014-01-01

    contributions of several of our RAND colleagues. Emma Davies Cutrufello was instrumental collect- ing and analyzing the data for Chapter Two. Beth...Light of the Financial Crisis: A Critical Review, Development Centre Studies, OECD Publications, 2009, pp. 43–45. 3 Paul Collier, “Is Aid Oil? An...represent signifi- cant opportunities for burden sharing. Another area where there is potential for enhanced multilateral - ism and local ownership of SJSP

  7. The Sonar Simulation Toolset, Release 4.6: Science, Mathematics, and Algorithms

    Science.gov (United States)

    2008-10-01

    members included Beth Kirby, Kou-Ying Moravan, Pete Brodsky, Brandon Smith, Don Perci - val, Patrick Tewson, Megan Hazen, Gordon Bisset, and undergraduates...Surface and Bottom Models Class References Use Boundary Monostatic, table driven APLBottom [APL Models 1994, Mourad Jackson 1989] Bottom, monostatic...high frequency JacksonBottom [Williams Jackson 1998, APL Models 1994, Mourad Jackson 1993, Mourad Dahl Jackson 1991,Moe Jackson 1994, Schul- ten Anderson

  8. Sandpile model for relaxation in complex systems

    International Nuclear Information System (INIS)

    Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.

    1997-10-01

    The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)

  9. Baryons in and beyond the quark-diquark model

    International Nuclear Information System (INIS)

    Eichmann, G.; Alkofer, R.; Krassnigg, A.; Fischer, C. S.; Nicmorus, D.

    2011-01-01

    We examine the nucleon's electromagnetic form factors in a Poincare-covariant Faddeev framework. The three-quark core contributions to the form factors are obtained by employing a quark-diquark approximation. We implement the self-consistent solution for the quark-photon vertex from its inhomogeneous Bethe-Salpeter equation. We find that the resulting transverse parts which add to the Ball-Chiu vertex have no significant impact on nucleon magnetic moments. The current-quark mass evolution of the form factors agrees with results from lattice QCD.

  10. Yet another possible explanation of the solar-neutrino puzzle

    International Nuclear Information System (INIS)

    Kolb, E.W.; Turner, M.S.; Walker, T.P.

    1986-01-01

    Mikheyev and Smirnov have shown that the interactions of neutrinos with matter can result in the conversion of electron neutrinos produced in the center of the sun to muon neutrinos. Bethe has exploited this and has pointed out that the solar-neutrino puzzle can be resolved if the mass difference squared of the two neutrinos is m 2 2 -m 2 1 approx.=6x10 -5 eV 2 , and the mixing angle satisfies sin THETAsub(v)>0.0065. We discuss a qualitatively different solution to the solar-neutrino puzzle which requires 1.0x10 -8 2 2 -m 2 1 )(sin 2 2THETAsub(v)/cos2THETAsub(v)) -8 eV 2 . Our solutions result in a much smaller flux of neutrinos from the p-p process than predicted by standard solar models, while Bethe's solution results in a flux of neutrinos from the p-p process that is about the same as standard solar models. (orig.)

  11. Yet another possible explanation of the solar-neutrino puzzle

    International Nuclear Information System (INIS)

    Kolb, E.W.; Turner, M.S.; Walker, T.P.

    1986-04-01

    Mikheyev and Smirnov have shown that the interactions of neutrinos with matter can result in the conversion of electron neutrinos produced in the center of the sun to muon neutrinos. Bethe has exploited this and has pointed out that the solar-neutrino puzzle can be resolved if the mass difference squared of the two neutrinos is m 2 2 - m 1 2 approx. = 6 x 10 -5 eV 2 , and the mixing angle satisfies sin theta/sub v/ > 0.0065. We discuss a qualitatively different solution to the solar-neutrino puzzle which requires 1.0 x 10 -8 2 2 - m 1 2 ) (sin 2 2theta/sub v//cos 2theta/sub v/) -8 eV 2 . Our solutions result in a much smaller flux of neutrinos from the p - p process than predicted by standard solar models, while Bethe's solution results in a flux of neutrinos from the p - process that is about the same as standard solar models

  12. Thermodynamics of Inozemtsev's elliptic spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Klabbers, Rob, E-mail: rob.klabbers@desy.de

    2016-06-15

    We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.

  13. Finite volume spectrum of 2D field theories from Hirota dynamics

    International Nuclear Information System (INIS)

    Gromov, Nikolay; Kazakov, Vladimir; Vieira, Pedro; Univ. do Porto

    2008-12-01

    We propose, using the example of the O(4) sigma model, a general method for solving integrable two dimensional relativistic sigma models in a finite size periodic box. Our starting point is the so-called Y-system, which is equivalent to the thermodynamic Bethe ansatz equations of Yang and Yang. It is derived from the Zamolodchikov scattering theory in the cross channel, for virtual particles along the non-compact direction of the space-time cylinder. The method is based on the integrable Hirota dynamics that follows from the Y-system. The outcome is a nonlinear integral equation for a single complex function, valid for an arbitrary quantum state and accompanied by the finite size analogue of Bethe equations. It is close in spirit to the Destri-deVega (DdV) equation. We present the numerical data for the energy of various states as a function of the size, and derive the general Luescher-type formulas for the finite size corrections. We also re-derive by our method the DdV equation for the SU(2) chiral Gross-Neveu model. (orig.)

  14. Thermodynamics of Inozemtsev's elliptic spin chain

    International Nuclear Information System (INIS)

    Klabbers, Rob

    2016-01-01

    We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.

  15. TEST OF THE CHEN-ROLL-ROSS MACROECONOMIC FACTOR MODEL: EVIDENCE FROM CROATIAN STOCK MARKET

    Directory of Open Access Journals (Sweden)

    Denis Dolinar

    2015-12-01

    Full Text Available This paper empirically examines the well-known Chen-Roll-Ross model on the Croatian stock market. Modifications of definitions of the Chen-Roll-Ross model variables showed as necessary because of doubtful availability and quality of input data needed. Namely, some macroeconomic and market variables are not available in the originally defined form or do not exist. In that sense this paper gives some alternative definitions for some model variables. Also, in order to improve statistical analysis, in this paper we have modified Fama-MacBeth technique in the way that second-pass regression was substituted with panel regression analysis. Based on the two-pass regression analysis of returns of 34 Croatian stocks on 4 macroeconomic variables during the seven-and-half-year observation period the following conclusion is made. In contrast to the results of Chen, Roll and Ross (1986 for the U.S. stock market, their model is not successful when describing a risk-return relation of Croatian stocks. Nevertheless, one observed version of the Chen-RollRoss model showed certain statistical significance. Namely, two risk factors in that version of the model were statistically significant: default premium, measured as risk premium for the corporate short-term bank loan financing, and term structure premium, measured on short-run basis.

  16. On the origin of the pion in confinement schemes

    International Nuclear Information System (INIS)

    Brout, R.; Englert, F.; Frere, J.-M.

    1978-01-01

    It is argued that the 't Hooft one-dimensional gauge model is a good starting point on how to conceive the pion in confinement schemes. The results of Wu on the quark propagator in this model are analyzed in the light of spontaneously broken chiral symmetry and the existence of the pion is deduced. The corresponding Bethe-Salpeter wave function is exhibited. (Auth.)

  17. Bethe, Hans Albrecht (1906-)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Physicist, born in Strasburg, Germany (present-day France), Nobel prizewinner (1967). As professor of physics at Cornell University he worked out the nuclear reactions occurring in the Sun. He worked on the development of the atomic bomb in the Manhatten project, and, after the second World War, pursued again research on stellar nuclear energy sources and the origin of the chemical elements in th...

  18. Quantum group symmetries and completeness for \\boldsymbol {A}_{\\boldsymbol {2n}}^{\\boldsymbol{(2)}} open spin chains

    Science.gov (United States)

    Ahmed, Ibrahim; Nepomechie, Rafael I.; Wang, Chunguang

    2017-07-01

    We argue that the Hamiltonians for A(2)2n open quantum spin chains corresponding to two choices of integrable boundary conditions have the symmetries Uq(Bn) and Uq(Cn) , respectively. We find a formula for the Dynkin labels of the Bethe states (which determine the degeneracies of the corresponding eigenvalues) in terms of the numbers of Bethe roots of each type. With the help of this formula, we verify numerically (for a generic value of the anisotropy parameter) that the degeneracies and multiplicities of the spectra implied by the quantum group symmetries are completely described by the Bethe ansatz.

  19. Central venous catheterization training: current perspectives on the role of simulation

    Directory of Open Access Journals (Sweden)

    Soffler MI

    2018-05-01

    Full Text Available Morgan I Soffler,1,2 Margaret M Hayes,2–4 C Christopher Smith3–5 1Harvard Combined Pulmonary and Critical Care Fellowship at Massachusetts General Hospital and Beth Israel Deaconess Medical Center, Boston, MA, USA; 2Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; 3Internal Medicine Residency Program, Beth Israel Deaconess Medical Center, Boston, MA, USA; 4Shapiro Institute for Education and Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; 5Division of General Internal Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA Abstract: Simulation is a popular and effective training modality in medical education across a variety of domains. Central venous catheterization (CVC is commonly undertaken by trainees, and carries significant risk for patient harm when carried out incorrectly. Multiple studies have evaluated the efficacy of simulation-based training programs, in comparison with traditional training modalities, on learner and patient outcomes. In this review, we discuss relevant adult learning principles that support simulation-based CVC training, review the literature on simulation-based CVC training, and highlight the use of simulation-based CVC training programs at various institutions. Keywords: simulation, central venous catheterization, assessment, competency, central line insertion

  20. The ODE/IM correspondence

    International Nuclear Information System (INIS)

    Dorey, Patrick; Dunning, Clare; Tateo, Roberto

    2007-01-01

    This paper reviews a recently discovered link between integrable quantum field theories and certain ordinary differential equations in the complex domain. Along the way, aspects of PT-symmetric quantum mechanics are discussed, and some elementary features of the six-vertex model and the Bethe ansatz are explained. (topical review)

  1. Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems

    International Nuclear Information System (INIS)

    Batchelor, M T

    2005-01-01

    A key element of theoretical physics is the conceptualisation of physical phenomena in terms of models, which are then investigated by the tools at hand. For quantum many-body systems, some models can be exactly solved, i.e., their physical properties can be calculated in an exact fashion. There is often a deep underlying reason why this can be done-the theory of integrability-which manifests itself in many guises. In Beautiful models, Bill Sutherland looks at exactly solved models in quantum many-body systems, a well established field dating back to Bethe's 1931 exact solution of the spin-1/2 Heisenberg chain. This field is enjoying a renaissance due to the ongoing and striking experimental advances in low-dimensional quantum physics, which includes the manufacture of quasi one-dimensional quantum gases. Apart from the intrinsic beauty of the subject material, Beautiful Models is written by a pioneering master of the field. Sutherland has aimed to provide a broad textbook style introduction to the subject for graduate students and interested non-experts. An important point here is the 'language' of the book. In Sutherland's words, the subject of exactly solved models 'belongs to the realm of mathematical physics-too mathematical to be 'respectable' physics, yet not rigorous enough to be 'real' mathematics. ...there are perennial attempts to translate this body of work into either respectable physics or real mathematics; this is not that sort of book.' Rather, Sutherland discusses the models and their solutions in terms of their 'intrinisic' language, which is largely as found in the physics literature. The book begins with a helpful overview of the contents and then moves on to the foundation material, which is the chapter on integrability and non-diffraction. As is shown, these two concepts go hand in hand. The topics covered in later chapters include models with δ-function potentials, the Heisenberg spin chain, the Hubbard model, exchange models, the Calogero

  2. Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, M T [Department of Theoretical Physics, RSPSE and Department of Mathematics, MSI, Australian National University, Canberra ACT 0200 (Australia)

    2005-04-08

    A key element of theoretical physics is the conceptualisation of physical phenomena in terms of models, which are then investigated by the tools at hand. For quantum many-body systems, some models can be exactly solved, i.e., their physical properties can be calculated in an exact fashion. There is often a deep underlying reason why this can be done-the theory of integrability-which manifests itself in many guises. In Beautiful models, Bill Sutherland looks at exactly solved models in quantum many-body systems, a well established field dating back to Bethe's 1931 exact solution of the spin-1/2 Heisenberg chain. This field is enjoying a renaissance due to the ongoing and striking experimental advances in low-dimensional quantum physics, which includes the manufacture of quasi one-dimensional quantum gases. Apart from the intrinsic beauty of the subject material, Beautiful Models is written by a pioneering master of the field. Sutherland has aimed to provide a broad textbook style introduction to the subject for graduate students and interested non-experts. An important point here is the 'language' of the book. In Sutherland's words, the subject of exactly solved models 'belongs to the realm of mathematical physics-too mathematical to be 'respectable' physics, yet not rigorous enough to be 'real' mathematics. ...there are perennial attempts to translate this body of work into either respectable physics or real mathematics; this is not that sort of book.' Rather, Sutherland discusses the models and their solutions in terms of their 'intrinisic' language, which is largely as found in the physics literature. The book begins with a helpful overview of the contents and then moves on to the foundation material, which is the chapter on integrability and non-diffraction. As is shown, these two concepts go hand in hand. The topics covered in later chapters include models with {delta}-function potentials, the

  3. Off-critical statistical models: factorized scattering theories and bootstrap program

    International Nuclear Information System (INIS)

    Mussardo, G.

    1992-01-01

    We analyze those integrable statistical systems which originate from some relevant perturbations of the minimal models of conformal field theories. When only massive excitations are present, the systems can be efficiently characterized in terms of the relativistic scattering data. We review the general properties of the factorizable S-matrix in two dimensions with particular emphasis on the bootstrap principle. The classification program of the allowed spins of conserved currents and of the non-degenerate S-matrices is discussed and illustrated by means of some significant examples. The scattering theories of several massive perturbations of the minimal models are fully discussed. Among them are the Ising model, the tricritical Ising model, the Potts models, the series of the non-unitary minimal models M 2,2n+3 , the non-unitary model M 3,5 and the scaling limit of the polymer system. The ultraviolet limit of these massive integrable theories can be exploited by the thermodynamics Bethe ansatz, in particular the central charge of the original conformal theories can be recovered from the scattering data. We also consider the numerical method based on the so-called conformal space truncated approach which confirms the theoretical results and allows a direct measurement of the scattering data, i.e. the masses and the S-matrix of the particles in bootstrap interaction. The problem of computing the off-critical correlation functions is discussed in terms of the form-factor approach

  4. Classical and Quantum Nonlinear Integrable Systems: Theory and Application

    International Nuclear Information System (INIS)

    Brzezinski, Tomasz

    2003-01-01

    This is a very interesting collection of introductory and review articles on the theory and applications of classical and quantum integrable systems. The book reviews several integrable systems such as the KdV equation, vertex models, RSOS and IRF models, spin chains, integrable differential equations, discrete systems, Ising, Potts and other lattice models and reaction--diffusion processes, as well as outlining major methods of solving integrable systems. These include Lax pairs, Baecklund and Miura transformations, the inverse scattering method, various types of the Bethe Ansatz, Painleve methods, the dbar method and fusion methods to mention just a few. The book is divided into two parts, each containing five chapters. The first part is devoted to classical integrable systems and introduces the subject through the KdV equation, and then proceeds through Painleve analysis, discrete systems and two-dimensional integrable partial differential equations, to culminate in the review of solvable lattice models in statistical physics, solved through the coordinate and algebraic Bethe Ansatz methods. The second part deals with quantum integrable systems, and begins with an outline of unifying approaches to quantum, statistical, ultralocal and non-ultralocal systems. The theory and methods of solving quantum integrable spin chains are then described. Recent developments in applying Bethe Ansatz methods in condensed matter physics, including superconductivity and nanoscale physics, are reviewed. The book concludes with an introduction to diffusion-reaction processes. Every chapter is devoted to a different subject and is self-contained, and thus can be read separately. A reader interesting in classical methods of solitons, such as the methods of solving the KdV equation, can start from Chapter 1, while a reader interested in the Bethe Ansatz method can immediately proceed to Chapter 5, and so on. Thus the book should appeal and be useful to a wide range of theoretical

  5. Electrical conductivity in random alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.; Thakur, P.K.; Yussouff, M.

    1984-12-01

    Based on the augmented space formalism introduced by one of us and the use of the Ward identity and the Bethe-Sapeter equation, a formalism has been developed for the calculation of electrical conductivity for random alloys. A simple application is made to a model case, and it is argued that the formalism enables us to carry out viable calculations on more realistic models of alloys. (author)

  6. Electrical conductivity in random alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.; Yussouff, M.

    1983-06-01

    Starting from the augmented space formalism by one of us, and the use of the Ward identity and Bethe Salpeter equation, a complete formalism for the calculation of the electrical conductivity in tight-binding models of random binary alloys has been developed. The formalism is practical in the sense that viable calculations may be carried out with its help for realistics models of alloy systems. (author)

  7. Extended trigonometric Cherednik algebras and nonstationary Schrödinger equations with delta-potentials

    International Nuclear Information System (INIS)

    Hartwig, J. T.; Stokman, J. V.

    2013-01-01

    We realize an extended version of the trigonometric Cherednik algebra as affine Dunkl operators involving Heaviside functions. We use the quadratic Casimir element of the extended trigonometric Cherednik algebra to define an explicit nonstationary Schrödinger equation with delta-potential. We use coordinate Bethe ansatz methods to construct solutions of the nonstationary Schrödinger equation in terms of generalized Bethe wave functions. It is shown that the generalized Bethe wave functions satisfy affine difference Knizhnik-Zamolodchikov equations as functions of the momenta. The relation to the vector valued root system analogs of the quantum Bose gas on the circle with delta-function interactions is indicated.

  8. Yang-Yang method for the thermodynamics of one-dimensional multi-component interacting fermions

    International Nuclear Information System (INIS)

    Lee, J Y; Guan, X W; Batchelor, M T

    2011-01-01

    Using Yang and Yang's particle-hole description, we present a thorough derivation of the thermodynamic Bethe ansatz equations for a general SU(κ) fermionic system in one dimension for both the repulsive and attractive regimes under the presence of an external magnetic field. These equations are derived from Sutherland's Bethe ansatz equations by using the spin-string hypothesis. The Bethe ansatz root patterns for the attractive case are discussed in detail. The relationship between the various phases of the magnetic phase diagrams and the external magnetic fields is given for the attractive case. We also give a quantitative description of the ground-state energies for both strongly repulsive and attractive regimes.

  9. Large degeneracy of excited hadrons and quark models

    International Nuclear Information System (INIS)

    Bicudo, P.

    2007-01-01

    The pattern of a large approximate degeneracy of the excited hadron spectra (larger than the chiral restoration degeneracy) is present in the recent experimental report of Bugg. Here we try to model this degeneracy with state of the art quark models. We review how the Coulomb Gauge chiral invariant and confining Bethe-Salpeter equation simplifies in the case of very excited quark-antiquark mesons, including angular or radial excitations, to a Salpeter equation with an ultrarelativistic kinetic energy with the spin-independent part of the potential. The resulting meson spectrum is solved, and the excited chiral restoration is recovered, for all mesons with J>0. Applying the ultrarelativistic simplification to a linear equal-time potential, linear Regge trajectories are obtained, for both angular and radial excitations. The spectrum is also compared with the semiclassical Bohr-Sommerfeld quantization relation. However, the excited angular and radial spectra do not coincide exactly. We then search, with the classical Bertrand theorem, for central potentials producing always classical closed orbits with the ultrarelativistic kinetic energy. We find that no such potential exists, and this implies that no exact larger degeneracy can be obtained in our equal-time framework, with a single principal quantum number comparable to the nonrelativistic Coulomb or harmonic oscillator potentials. Nevertheless we find it plausible that the large experimental approximate degeneracy will be modeled in the future by quark models beyond the present state of the art

  10. T-systems and Y-systems in integrable systems

    International Nuclear Information System (INIS)

    Kuniba, Atsuo; Nakanishi, Tomoki; Suzuki, Junji

    2011-01-01

    T- and Y-systems are ubiquitous structures in classical and quantum integrable systems. They are difference equations having a variety of aspects related to commuting transfer matrices in solvable lattice models, q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, cluster algebras with coefficients, periodicity conjectures of Zamolodchikov and others, dilogarithm identities in conformal field theory, difference analog of L-operators in KP hierarchy, Stokes phenomena in 1D Schroedinger problem, AdS/CFT correspondence, Toda field equations on discrete spacetime, Laplace sequence in discrete geometry, Fermionic character formulas and combinatorial completeness of Bethe ansatz, Q-system and ideal gas with exclusion statistics, analytic and thermodynamic Bethe ansaetze, quantum transfer matrix method and so forth. This review is a collection of short reviews on these topics which can be read more or less independently. (topical review)

  11. T-systems and Y-systems in integrable systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuniba, Atsuo [Institute of Physics, University of Tokyo, Komaba, Tokyo 153-8902 (Japan); Nakanishi, Tomoki [Graduate School of Mathematics, Nagoya University, Nagoya 464-8604 (Japan); Suzuki, Junji, E-mail: atsuo@gokutan.c.u-tokyo.ac.jp [Department of Physics, Faculty of Science, Shizuoka University, Ohya 836 (Japan)

    2011-03-11

    T- and Y-systems are ubiquitous structures in classical and quantum integrable systems. They are difference equations having a variety of aspects related to commuting transfer matrices in solvable lattice models, q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, cluster algebras with coefficients, periodicity conjectures of Zamolodchikov and others, dilogarithm identities in conformal field theory, difference analog of L-operators in KP hierarchy, Stokes phenomena in 1D Schroedinger problem, AdS/CFT correspondence, Toda field equations on discrete spacetime, Laplace sequence in discrete geometry, Fermionic character formulas and combinatorial completeness of Bethe ansatz, Q-system and ideal gas with exclusion statistics, analytic and thermodynamic Bethe ansaetze, quantum transfer matrix method and so forth. This review is a collection of short reviews on these topics which can be read more or less independently. (topical review)

  12. Nonlinear σ-model with non-compact symmetry group and the theory of nonideal bose gas

    International Nuclear Information System (INIS)

    Pashaev, O.K.

    1985-01-01

    A continuous classical model of the Heisenberg magnet is constructed on the non-compact SU(1, 1)/U(1) manifold which is gauge equivalent to the nonlinear Schroedinger equation (MLS) of the repulsive type. It is shown that the choice of gauge transformation function as the Jost solutions for the NLS linear problem allows one to obtain solutions of the appropriate Σ-model of the magnet. Spin-wave and soliton solutions are presented. Energy, momentum and magnetization integrals are calculated. Spin waves are determined by the Bogoluybov frequency and describe precession on the hyperboloid surface with a fixed Msub(z) value. Soliton solution describes the magnetization vector yield from the precession plane. When condensate density p → O, then the spectrum coincides with the result obtained for SU(2) Heisenberg ferromagnet and with an exact solution for Bethe spin complex. In the case corresponding to unlimited length of vector S, the soliton spectrum coincides with the hole spectrum of antiferromagnet. There magnetizations related to the upper and lower sheets of the hyperboloid compensate for each other

  13. Exact solutions of sl-boson system in U(2l + 1) reversible O(2l + 2) transitional region

    CERN Document Server

    Zhang Xin

    2002-01-01

    Exact eigen-energies and the corresponding wavefunctions of the interacting sl-boson system in U(2l + 1) reversible O(2l +2) transitional region are obtained by using an algebraic Bethe Ansatz with the infinite dimensional Lie algebraic technique. Numerical algorithm for solving the Bethe Ansatz equations by using mathematical package is also outlined

  14. Breakdown of quasiparticle picture in the low-density limit of the 1D Hubbard model

    International Nuclear Information System (INIS)

    Qin Shaojin; Qian Tiezheng; Su Zhaobin

    1995-03-01

    Using the finite-size scaling of results obtained by exact diagonalization, we study the low-density limit of the one-dimensional Hubbard model. Calculating the quasiparticle weight, we demonstrate that for a given particle number N and system size L, there always exists a crossover point U c separating the Fermi-liquid (U c ) and non-Fermi-liquid (U > U c ) regimes (U is the Hubbard repulsion). We find that for a fixed N, U c is inversely proportional to L, keeping U c L/t constant (with t as the hopping integral), as L is large enough. It follows that in the low-density (in fact vanishing density) limit L → ∞, U c → 0, so the system is always in non-Fermi-liquid regime as long as U > 0. We show that our numerical results are consistent with the Bethe ansatz solution. (author). 11 refs, 3 figs

  15. On single-time reduction in quantum field theory

    International Nuclear Information System (INIS)

    Arkhipov, A.A.

    1984-01-01

    It is shown, how the causality and spectrality properties in qUantum field theory may help one to carry out a single-time reduction of the Bethe-Salpeter wave fUnction. The single-time reduction technique is not based on any concrete model of the quantum field theory. Axiomatic formulations underline the quantum field theory

  16. Supersymmetric two-particle equations

    International Nuclear Information System (INIS)

    Sissakyan, A.N.; Skachkov, N.B.; Shevchenko, O.Yu.

    1986-01-01

    In the framework of the scalar superfield model, a particular case of which is the well-known Wess-Zumino model, the supersymmetric Schwinger equations are found. On their basis with the use of the second Legendre transformation the two-particle supersymmetric Edwards and Bethe-Salpeter equations are derived. A connection of the kernels and inhomogeneous terms of these equations with generating functional of the second Legendre transformation is found

  17. Low-energy proton stopping power of N2, O2, and water vapor, and deviations from Bragg's rule

    International Nuclear Information System (INIS)

    Xu, Y.J.; Khandelwal, G.S.; Wilson, J.W.

    1984-01-01

    A modified local-plasma model, based on the works of Lindhard and Winther, and Bethe, Brown, and Walske is established. The Gordon-Kim model for molecular-electron density is used to calculate stopping power of N 2 , O 2 , and water vapor for protons of energy ranging from 40 keV to 2.5 MeV, resulting in good agreement with experimental data. Deviations from Bragg's rule are evaluated and are discussed under the present theoretical model

  18. Atomic interactions of charged particles with matter

    International Nuclear Information System (INIS)

    Bichsel, H.

    1993-01-01

    Ideas about the interactions of charged particles with matter are discussed. First, some experimental information is presented. Concepts related to collision cross sections and the Bethe model for them are given. The stopping power is derived and applied to the discussion of depth dose functions ('Bragg curves'). Some details of the energy loss in microscopic volumes are discussed

  19. Open government: collaboration, transparency, and participation in practice

    National Research Council Canada - National Science Library

    Lathrop, Daniel; Ruma, Laurel

    2010-01-01

    ... 7: Lead by Example Practical Steps for Government Agencies About the Author BY THE PEOPLE by Carl Malamud About the Author THE SINGLE POINT OF FAILURE by Beth Simone Noveck The Closed Model of Decision Making New Technologies and Civic Life Participatory Democratic Theory in the Age of Networks About the Author ENGINEERING GOOD GOVERNMENT by Ho...

  20. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    Science.gov (United States)

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  1. Exact solution for the quench dynamics of a nested integrable system

    Science.gov (United States)

    Mestyán, Márton; Bertini, Bruno; Piroli, Lorenzo; Calabrese, Pasquale

    2017-08-01

    Integrable models provide an exact description for a wide variety of physical phenomena. For example nested integrable systems contain different species of interacting particles with a rich phenomenology in their collective behavior, which is the origin of the unconventional phenomenon of spin-charge separation. So far, however, most of the theoretical work in the study of non-equilibrium dynamics of integrable systems has focussed on models with an elementary (i.e. not nested) Bethe ansatz. In this work we explicitly investigate quantum quenches in nested integrable systems, by generalizing the application of the quench action approach. Specifically, we consider the spin-1 Lai-Sutherland model, described, in the thermodynamic limit, by the theory of two different species of Bethe-ansatz particles, each one forming an infinite number of bound states. We focus on the situation where the quench dynamics starts from a simple matrix product state for which the overlaps with the eigenstates of the Hamiltonian are known. We fully characterize the post-quench steady state and perform several consistency checks for the validity of our results. Finally, we provide predictions for the propagation of entanglement and mutual information after the quench, which can be used as signature of the quasi-particle content of the model.

  2. Some Advances in the Circuit Modeling of Extraordinary Optical Transmission

    Directory of Open Access Journals (Sweden)

    F. Medina

    2009-06-01

    Full Text Available The phenomenon of extraordinary optical transmission (EOT through electrically small holes perforated on opaque metal screens has been a hot topic in the optics community for more than one decade. This experimentally observed frequency-selective enhanced transmission of electromagnetic power through holes, for which classical Bethe's theory predicts very poor transmission, later attracted the attention of engineers working on microwave engineering or applied electromagnetics. Extraordinary transmission was first linked to the plasma-like behavior of metals at optical frequencies. However, the primary role played by the periodicity of the distribution of holes was soon made evident, in such a way that extraordinary transmission was disconnected from the particular behavior of metals at optical frequencies. Indeed, the same phenomenon has been observed in the microwave and millimeter wave regime, for instance. Nowadays, the most commonly accepted theory explains EOT in terms of the interaction of the impinging plane wave with the surface plasmon-polariton-Bloch waves (SPP-Bloch supported by the periodically perforated plate. The authors of this paper have recently proposed an alternative model whose details will be briefly summarized here. A parametric study of the predictions of the model and some new potential extensions will be reported to provide additional insight.

  3. The integrable quantum group invariant A2n-1(2) and Dn+1(2) open spin chains

    Science.gov (United States)

    Nepomechie, Rafael I.; Pimenta, Rodrigo A.; Retore, Ana L.

    2017-11-01

    A family of A2n(2) integrable open spin chains with Uq (Cn) symmetry was recently identified in arxiv:arXiv:1702.01482. We identify here in a similar way a family of A2n-1(2) integrable open spin chains with Uq (Dn) symmetry, and two families of Dn+1(2) integrable open spin chains with Uq (Bn) symmetry. We discuss the consequences of these symmetries for the degeneracies and multiplicities of the spectrum. We propose Bethe ansatz solutions for two of these models, whose completeness we check numerically for small values of n and chain length N. We find formulas for the Dynkin labels in terms of the numbers of Bethe roots of each type, which are useful for determining the corresponding degeneracies. In an appendix, we briefly consider Dn+1(2) chains with other integrable boundary conditions, which do not have quantum group symmetry.

  4. The integrable quantum group invariant A2n−1(2 and Dn+1(2 open spin chains

    Directory of Open Access Journals (Sweden)

    Rafael I. Nepomechie

    2017-11-01

    Full Text Available A family of A2n(2 integrable open spin chains with Uq(Cn symmetry was recently identified in arXiv:1702.01482. We identify here in a similar way a family of A2n−1(2 integrable open spin chains with Uq(Dn symmetry, and two families of Dn+1(2 integrable open spin chains with Uq(Bn symmetry. We discuss the consequences of these symmetries for the degeneracies and multiplicities of the spectrum. We propose Bethe ansatz solutions for two of these models, whose completeness we check numerically for small values of n and chain length N. We find formulas for the Dynkin labels in terms of the numbers of Bethe roots of each type, which are useful for determining the corresponding degeneracies. In an appendix, we briefly consider Dn+1(2 chains with other integrable boundary conditions, which do not have quantum group symmetry.

  5. On the critical frontiers of Potts ferromagnets

    International Nuclear Information System (INIS)

    Magalhaes, A.C.N. de; Tsallis, C.

    1981-01-01

    A conjecture concerning the critical frontiers of q- state Potts ferromagnets on d- dimensional lattices (d > 1) which generalize a recent one stated for planar lattices is formulated. The present conjecture is verified within satisfactory accuracy (exactly in some cases) for all the lattices or arrays whose critical points are known. Its use leads to the prediction of: a) a considerable amount of new approximate critical points (26 on non-planar regular lattices, some others on Husimi trees and cacti); b) approximate critical frontiers for some 3- dimensional lattices; c) the possibly asymptotically exact critical point on regular lattices in the limit d→infinite for all q>=1; d) the possibly exact critical frontier for the pure Potts model on fully anisotropic Bethe lattices; e) the possibly exact critical frontier for the general quenched random-bond Potts ferromagnet (any P(J)) on isotropic Bethe lattices. (Author) [pt

  6. Aed, mida pole kunagi kastetud / Kaja Kurg

    Index Scriptorium Estoniae

    Kurg, Kaja, 1959-

    2008-01-01

    Inglise aednikust Beth Chatto'st (sünd. 1923), tema Essexisse rajatud kruusaaiast, mille teevad lopsakaks ja värvikaks kasvupaika sobivad taimed. Lühidalt ülejäänud aiast: vee-, metsa-, alpi- ja taimeaiast. Lk. 72: Beth Chatto kiri Christopher Lloydile (Dear Friend & Gardener : Letters of Life and Gardening, London : Frances Lincoln, 1998), mille on tõlkinud Jaan Mettik

  7. Exact solution of the three-boson problem at vanishing energy

    International Nuclear Information System (INIS)

    Mora, Ch.; Gogolin, A.O.; Egger, R.

    2011-01-01

    A zero-range approach is used to model resonant two-body interactions between three identical bosons. A dimensionless phase parameterizes the three-body boundary condition while the scattering length enters the Bethe-Peierls boundary condition. The model is solved exactly at zero energy for any value of the scattering length, positive or negative. From this solution, an analytical expression for the rate of three-body recombination to the universal shallow dimer is extracted. (authors)

  8. On the absence of pentaquark states from dynamics in strongly coupled lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Petrus Henrique Ribeiro dos [Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Veiga, Paulo Afonso Faria da; O' Carroll, Michael [Universidade de Sao Paulo (USP), SP (Brazil); Francisco Neto, Antonio [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2011-07-01

    Full text: We consider an imaginary time functional integral formulation of a two-flavor, 3 + 1 lattice QCD model with Wilson's action and in the strong coupling regime (with a small hopping parameter, {kappa}0, and a much smaller plaquette coupling, {beta} = 1/g{sub 0}{sup 2}, so that the quarks and glueballs are heavy). The model has local SU(3){sub c} gauge and global SU(2){sub f} flavor symmetries, and incorporates the corresponding part of the eightfold way particles: baryons (mesons) of asymptotic mass -3ln{kappa}(-2 ln {kappa}). We search for pentaquark states as meson-baryon bound states in the energy-momentum spectrum of the model, using a lattice Bethe-Salpeter equation. This equation is solved within a ladder approximation, given by the lowest nonvanishing order in {kappa} and {beta} of the Bethe-Salpeter kernel. It includes order 2 contributions with a q-barq exchange potential together with a contribution that is a local-in-space, energy-dependent potential. The attractive or repulsive nature of the exchange interaction depends on the spin of the meson-baryon states. The Bethe-Salpeter equation presents integrable singularities, forcing the couplings to be above a threshold value for the meson and the baryon to bind in a pentaquark. We analyzed all the total isospin sectors, I = 1/2/3/2/ 5/2, for the system. For all I, the net attraction resulting from the two sources of interaction is not strong enough for the meson and the baryon to bind. Thus, within our approximation, these pentaquark states are not present up to near the free meson-baryon energy threshold of - 5 ln{kappa}. This result is to be contrasted with the spinless case for which our method detects meson-baryon bound states, as well as for Yukawa effective baryon and meson field models. A physical interpretation of our results emerges from an approximate correspondence between meson-baryon bound states and negative energy states of a one-particle lattice Schroedinger Hamiltonian

  9. Gauge-invariant, nonperturbative approach to the infrared-finite bound-state problem in QCD

    International Nuclear Information System (INIS)

    Gogokhia, V.Sh.

    1989-09-01

    Gauge invariant, nonperturbative approach to the bound state problem within the infrared finite Bethe-Salpeter equation is presented. Condition of cancellation of the nonperturbative infrared divergences is derived. Solutions for the quark propagator and corresponding quark gluon vertex function are written down which can be directly applied to the Bethe-Salpeter equation, in particular to the 'generalized ladder' approximation of this equation. (author) 18 refs.; 3 figs

  10. Quantum affine algebras and deformations of the virasoro and W-algebras

    International Nuclear Information System (INIS)

    Frenkel, E.; Reshetikhin, N.

    1996-01-01

    Using the Wakimoto realization of quantum affine algebras we define new Poisson algebras, which are q-deformations of the classical W-algebras. We also define their free field realizations, i.e. homomorphisms into some Heisenberg-Poisson algebras. The formulas for these homomorphisms coincide with formulas for spectra of transfer-matrices in the corresponding quantum integrable models derived by the Bethe-Ansatz method. (orig.)

  11. Nonperturbative Aspects of Axial Vector Vertex

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; CHEN Xiang-Song; WANG Fan; CHANG Chao-Hsi; ZHAO En-Guang

    2002-01-01

    It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model.Gluon dressing of the axial vector vertex and the quark self-energy functions are described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger Dyson equation in the rainbow approximation,respectively.

  12. A note on glN type-I integrable defects

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2014-01-01

    Type-I quantum defects are considered in the context of the gl N spin chain. The type-I defects are associated with the generalized harmonic oscillator algebra, and the chosen defect matrix is that of the vector nonlinear Schrödinger (NLS) model. The transmission matrices relevant to this particular type of defects are computed via the Bethe ansatz methodology. (paper)

  13. One-boson exchange model in the Tobocman-Chulick formalism

    International Nuclear Information System (INIS)

    Chulick, G.S.

    1988-01-01

    An alternative method to the standard techniques of field theory for the derivation of few-body dynamical equations is presented here. This new formalism gives rise to a set of coupled, three-dimensional, relativistic equations which represent one or more (coupled channel) nuclear interactive processes. The particles represented by these equations are dressed and/or are composite, with mass and vertex renormalization done in a simple, straightforward manner. The n-boson Tamm-Dancoff approximation is then used to restrict to a reasonable amount the number of coupled equations to be solved. In the one-boson Tamm-Dancoff approximation, the formalism gives rise to relativistic One-Boson Exchange time-ordered perturbation theory: i.e., the basic Bonn potential. Moreover, the formalism gives the Bonn potential a firmer theoretical basis, with physical particles, and with mass and vertex renormalization systematically taken into account. The formalism was tested numerically at two levels. First, it was tested for the simple model of elastic scalar NN scattering via the exchange of a single scalar boson. The resultant phase shifts, when compared to those for the Bethe-Salpeter equation and several of its three-dimensional reductions for the same model, were found to be reasonable. Next, the formalism was tested for the same model expanded to include non-elastic NN scattering processes. Even though the resultant scattering cross-sections were not compatible to the empirical scattering cross-sections, it was possible to discern what must be included in the model to obtain qualitative agreement

  14. Temperature quantization from the TBA equations

    International Nuclear Information System (INIS)

    Frolov, Sergey; Suzuki, Ryo

    2009-01-01

    We analyze the Thermodynamic Bethe Ansatz equations for the mirror model which determine the ground state energy of the light-cone AdS 5 xS 5 superstring living on a cylinder. The light-cone momentum of string is equal to the circumference of the cylinder, and is identified with the inverse temperature of the mirror model. We show that the natural requirement of the analyticity of the Y-functions leads to the quantization of the temperature of the mirror model which has never been observed in any other models.

  15. The XXX spin s quantum chain and the alternating s1, s2 chain with boundaries

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2002-01-01

    The integrable XXX spin s quantum chain and the alternating s 1 , s 2 (s 1 -s 2 =1/2) chain with boundaries are considered. The scattering of their excitations with the boundaries via the Bethe ansatz method is studied, and the exact boundary S matrices are computed in the limit s,s 1,2 →∞. Moreover, the connection of these models with the SU(2) Principal Chiral, WZW and the RSOS models is discussed

  16. Lattice Paths and the Constant Term

    International Nuclear Information System (INIS)

    Brak, R; Essam, J; Osborn, J; Owczarek, A L; Rechnitzer, A

    2006-01-01

    We firstly review the constant term method (CTM), illustrating its combinatorial connections and show how it can be used to solve a certain class of lattice path problems. We show the connection between the CTM, the transfer matrix method (eigenvectors and eigenvalues), partial difference equations, the Bethe Ansatz and orthogonal polynomials. Secondly, we solve a lattice path problem first posed in 1971. The model stated in 1971 was only solved for a special case - we solve the full model

  17. Heavy-to-light correlators beyond the light cone

    International Nuclear Information System (INIS)

    Lucha, W.; Melikhov, D. I.; Simula, S.

    2008-01-01

    We present the first systematic analysis of the off-light-cone effects in correlators relevant for the extraction of the heavy-to-light form factors within the method of light-cone sum rules. In a model with scalar constituents, the correlator is calculated in two different ways: (i) by performing the expansion of the Bethe-Salpeter amplitude of the light meson near the light cone x 2 = 0 and (ii) by adopting the known solution for the Bethe-Salpeter amplitude which allows one to calculate the correlator without invoking any expansion. We demonstrate that the contributions to the correlator from the off-light-cone terms x 2 ≠ 0 are not suppressed by any large parameter compared to the contribution of the light-cone term x 2 0. For decays of heavy particles of mass in the range 1.5-5 GeV, the light-cone correlator is shown to systematically overestimate the full correlator, numerically the difference being 10-20%

  18. Heavy-to-light correlators beyond the light cone

    International Nuclear Information System (INIS)

    Lucha, W.; Melikhov, D. I.; Simula, S.

    2008-01-01

    We present the first systematic analysis of the off-light-cone effects in correlators relevant for the extraction of the heavy-to-light form factors within the method of light-cone sum rules. In a model with scalar constituents, the correlator is calculated in two different ways: (i) by performing the expansion of the Bethe-Salpeter amplitude of the light meson near the light cone x 2 = 0 and (ii) by adopting the known solution for the Bethe-Salpeter amplitude which allows one to calculate the correlator without invoking any expansion. We demonstrate that the contributions to the correlator from the off-light-cone terms x 2 ≠ 0 are not suppressed by any large parameter compared to the contribution of the light-cone term x 2 = 0. For decays of heavy particles of mass in the range 1.5–5 GeV, the light-cone correlator is shown to systematically overestimate the full correlator, numerically the difference being 10–20%.

  19. Lamb shift in quantum electrodynamics (semiclassical theory)

    International Nuclear Information System (INIS)

    Blaive, B.; Boudet, R.

    1989-01-01

    This paper aims to bring some arguments to the proof of the Barut and Van Huele formula, which gives the Lamb shift in the semi-classical theory model: by shortening the calculation owing to the use of a decomposition of the self-potential of the electron; by eliminating the appeal to a divergent series; by bringing justifications and clarifications on some important points of the proof. The effective calculation of the coefficients of the formula is achieved for some of them, and the general analytical form of these coefficients is explicited. It is also proved that the B. and V.H. formula must give results at least as close to the experiment as those of the Bethe formula, which is obtained in Quantum Theory of Fields. Finally one shows that the B. and V.H. formula provides a justification de facto for the cut-off which is used for associating finite numbers to the divergent integrals of the Bethe formula [fr

  20. Order parameter fluctuations at a critical point - an exact result about percolation -

    International Nuclear Information System (INIS)

    Botet, Robert

    2011-01-01

    The order parameter of the system in the critical state, is expected to undergo large non-Gaussian fluctuations. However, almost nothing is known about the mathematical forms of the possible probability distributions of the order parameter. A remarkable exception is the site-percolation on the Bethe lattice, for which the complete order-parameter distribution has been recently derived at the critical point. Surprisingly, it appears to be the Kolmogorov-Smirnov distribution, well known in very different areas of mathematical statistics. In the present paper, we explain first how this special distribution could appear naturally in the context of the critical systems, under the assumption (still virtually unstudied) of the exponential distribution of the number of domains of a given size. In a second part, we present for the first time the complete derivation of the order-parameter distribution for the critical percolation model on the Bethe lattice, thus completing a recent publication announcing this result.

  1. Coherence factors beyond the BCS expressions—a derivation

    International Nuclear Information System (INIS)

    Gorohovsky, G; Bettelheim, E

    2014-01-01

    We present a derivation of a previously announced result for matrix elements between exact eigenstates of the pairing Hamiltonian. Our results, which generalize the well-known Bardeen–Cooper–Schrieffer (BCS) (Bardeen et al 1957 Phys. Rev. 108 1175; 1957 Phys. Rev. 106 162) expressions for what are known as ‘coherence factors’, are derived based on the Slavnov (1989 Theor. Math. Phys. 79 502) formula for overlaps between Bethe-ansatz states, thus making use of the known connection between the exact diagonalization of the BCS Hamiltonian, due to Richardson (1963 Phys. Lett. 3 277; 1964 Nucl. Phys. A 52 221), and the algebraic Bethe ansatz. The resulting formula has a compact form after a suitable parameterization of the energy plane. Although we apply our method here to the pairing Hamiltonian, it may be adjusted to study what is termed the ‘Sutherland limit’ (Sutherland 1995 Phys. Rev. Lett. 74 816) for exactly solvable models, namely where a macroscopic number of rapidities form a large string. (paper)

  2. The limits of the nuclear chart set by fission and alpha decay

    Directory of Open Access Journals (Sweden)

    Möller Peter

    2016-01-01

    Full Text Available I will review how our picture of heavy-element nuclear structure has evolved through remarkably simple ideas and related models. It is well known that the Bethe-Weizsäcker semi-empirical mass model had an important role in unraveling radioactive decay and element transmutation in the heavy-element region in the 1930s. A remarkable aspect is that this model could immediately after the discovery of fission be generalized to explain this phenomenon through the consideration of deformation of a charged liquid drop. Bethe and Bacher already raised the possibility that shell structure (by them calculated in terms of a single-particle oscillator potential could give rise to noticeable deviations between results of the macroscopic mass model and experiment but limited data prevented firm conclusions. In the 1950s the single-particle models took a realistic form and also included deformation. The possibility of the existence of a relatively stable “island” of superheavy elements was raised already then. But it was not until the work by Strutinsky in the mid 1960s that a quantitative model for the nuclear potential-energy emerged in the form of the macroscopic-microscopic model. Although new elements have been discovered at an almost steady pace since 1940, theory indicates that we are close to the end of this era: repulsive Coulomb effects will set the limit of observable elements to near Z = 120.

  3. The transition probability and the probability for the left-most particle's position of the q-totally asymmetric zero range process

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, Marko [Department of Mathematics and Statistics, University of Helsinki, FIN-00014 (Finland); Lee, Eunghyun [Centre de Recherches Mathématiques (CRM), Université de Montréal, Quebec H3C 3J7 (Canada)

    2014-01-15

    We treat the N-particle zero range process whose jumping rates satisfy a certain condition. This condition is required to use the Bethe ansatz and the resulting model is the q-boson model by Sasamoto and Wadati [“Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A 31, 6057–6071 (1998)] or the q-totally asymmetric zero range process (TAZRP) by Borodin and Corwin [“Macdonald processes,” Probab. Theory Relat. Fields (to be published)]. We find the explicit formula of the transition probability of the q-TAZRP via the Bethe ansatz. By using the transition probability we find the probability distribution of the left-most particle's position at time t. To find the probability for the left-most particle's position we find a new identity corresponding to identity for the asymmetric simple exclusion process by Tracy and Widom [“Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008)]. For the initial state that all particles occupy a single site, the probability distribution of the left-most particle's position at time t is represented by the contour integral of a determinant.

  4. The spectrum of a vertex model and related spin one chain sitting in a genus five curve

    Directory of Open Access Journals (Sweden)

    M.J. Martins

    2017-11-01

    Full Text Available We derive the transfer matrix eigenvalues of a three-state vertex model whose weights are based on a R-matrix not of difference form with spectral parameters lying on a genus five curve. We have shown that the basic building blocks for both the transfer matrix eigenvalues and Bethe equations can be expressed in terms of meromorphic functions on an elliptic curve. We discuss the properties of an underlying spin one chain originated from a particular choice of the R-matrix second spectral parameter. We present numerical and analytical evidences that the respective low-energy excitations can be gapped or massless depending on the strength of the interaction coupling. In the massive phase we provide analytical and numerical evidences in favor of an exact expression for the lowest energy gap. We point out that the critical point separating these two distinct physical regimes coincides with the one in which the weights geometry degenerate into union of genus one curves.

  5. The spectrum of a vertex model and related spin one chain sitting in a genus five curve

    Science.gov (United States)

    Martins, M. J.

    2017-11-01

    We derive the transfer matrix eigenvalues of a three-state vertex model whose weights are based on a R-matrix not of difference form with spectral parameters lying on a genus five curve. We have shown that the basic building blocks for both the transfer matrix eigenvalues and Bethe equations can be expressed in terms of meromorphic functions on an elliptic curve. We discuss the properties of an underlying spin one chain originated from a particular choice of the R-matrix second spectral parameter. We present numerical and analytical evidences that the respective low-energy excitations can be gapped or massless depending on the strength of the interaction coupling. In the massive phase we provide analytical and numerical evidences in favor of an exact expression for the lowest energy gap. We point out that the critical point separating these two distinct physical regimes coincides with the one in which the weights geometry degenerate into union of genus one curves.

  6. Introduction to integrable many-body systems II

    International Nuclear Information System (INIS)

    Samaj, L.

    2010-01-01

    This is the second part of a three-volume introductory course about integrable systems of interacting bodies. The models of interest are quantum spin chains with nearest-neighbor interactions between spin operators, in particular Heisenberg spin- 2 models. The Ising model in a transverse field, expressible as a quadratic fermion form by using the Jordan-Wigner transformation, is the subject of Sect. 12. The derivation of the coordinate Bethe ansatz for the XXZ Heisenberg chain and the determination of its absolute ground state in various regions of the anisotropy parameter are presented in Sect. 13. The magnetic properties of the ground state are explained in Sect. 14. Sect. 15 concerns excited states and the zero-temperature thermodynamics of the XXZ model. The thermodynamics of the XXZ Heisenberg chain is derived on the basis of the string hypothesis in Sect. 16; the thermodynamic Bethe ansatz equations are analyzed in high-temperature and low-temperature limits. An alternative derivation of the thermodynamics without using strings, leading to a non-linear integral equation determining the free energy, is the subject of Sect. 17. A nontrivial application of the Quantum Inverse Scattering method to the fully anisotropic XYZ Heisenberg chain is described in Section 18. Section 19 deals with integrable cases of isotropic spin chains with an arbitrary spin. (Author)

  7. Lattice super-Yang-Mills: a virial approach to operator dimensions

    International Nuclear Information System (INIS)

    Callan, Curtis G.; Heckman, Jonathan; McLoughlin, Tristan; Swanson, Ian

    2004-01-01

    The task of calculating operator dimensions in the planar limit of N=4 super-Yang-Mills theory can be vastly simplified by mapping the dilatation generator to the Hamiltonian of an integrable spin chain. The Bethe ansatz has been used in this context to compute the spectra of spin chains associated with various sectors of the theory which are known to decouple in the planar (large-Nc) limit. These techniques are powerful at leading order in perturbation theory but become increasingly complicated beyond one loop in the 't Hooft parameter λ=gYM2Nc, where spin chains typically acquire long-range (non-nearest-neighbor) interactions. In certain sectors of the theory, moreover, higher-loop Bethe ansatze do not even exist. We develop a virial expansion of the spin chain Hamiltonian as an alternative to the Bethe ansatz methodology, a method which simplifies the computation of dimensions of multi-impurity operators at higher loops in λ. We use these methods to extract previously reported numerical gauge theory predictions near the BMN limit for comparison with corresponding results on the string theory side of the AdS/CFT correspondence. For completeness, we compare our virial results with predictions that can be derived from current Bethe ansatz technology

  8. Measurement of excited states in 71Ge via (p, nγ) reaction and density of discrete levels in 71Ge

    International Nuclear Information System (INIS)

    Razavi, R.; Kakavand, T.; Behkami, A.N.

    2008-01-01

    In all statistical theories the nuclear level density is the most characteristic quantity and plays an essential role in the study of nuclear structure. In this work, additional experimental information about existing level structure of 71 Ge have been provided through the (p, nγ) reaction and then determined nuclear level density parameters of the Bethe formula and constant temperature model for 71 Ge

  9. Medical/Scientific Illustration And Production Of Otological Health Awareness Materials

    Science.gov (United States)

    Hawes, Nicholas E.

    2004-01-01

    Over the past year, I have worked for my mentor, Beth Cooper, on a large variety of projects. Beth is the Manager of the Acoustical Testing Laboratory, which tests the acoustical emissions of payloads destined for the International Space Station. She is also responsible for educating, and developing new methods of educating, people of all occupational and educational backgrounds in hearing conservation. Beth spends much of her time developing new materials and strategies with which to train people and teach other people to train people in hearing conservation and noise emissions control. I have been helping Beth develop and market these materials by way of graphic design and scientific illustration. Last summer, I spent much of my time creating educational illustrations that visually explained particular concepts in Beth's presentations. Sometimes these illustrations were small "comics" while, at other times, they were an instructional series of illustrations. Since then, Beth and her lab have been developing and updating some materials which will be distributed free to hearing conservation and noise control professionals and others in related fields. I have helped with these projects by designing their packaging. In each instance, it was my responsibility to develop an aesthetically appealing package that would also, through its imagery, describe or summarize the contents of the product. I did this for 3 CD's (Auditory Demonstrations 11, MACSUG, and JeopEARdy) and saw them through their actual production and distribution. In addition to working with Beth, I work with the Imaging Technology Center on various imaging projects. Some of my activities include photo retouching and manipulation for videos and print. This summer, I also had the opportunity to develop a screen saver that would show of some of the photography contained on the soon-to-be-released "Highlights of the GRC Image Archives, vol. 2". I was also able to utilize my medical training to help several of

  10. Hundness versus Mottness in a three-band Hund model with relevance for iron-pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Katharina M.; Delft, Jan von; Weichselbaum, Andreas [Ludwig Maximilians University, Munich (Germany); Yin, Zhiping; Kotliar, Gabriel [Rutgers University, New Jersey (United States)

    2016-07-01

    The recently discovered iron pnictide superconductors (as well as chalcogenides, ruthenates, and other 4d transition metal oxides) show puzzling anomalous properties, like a coherence-incoherence crossover, also in the normal state. While there is consensus about strong correlation effects playing a key role in these materials, their precise origin (Coulomb repulsion or Hund's rule coupling between electrons of different orbitals) has been under debate as one of the major open questions in the field many years. In a recent detailed study of the Hund metal problem the coherence-incoherence crossover was shown to be connected to spin-orbital separation and to be clearly driven by Hund's rule coupling. In order to better understand the differences between Mott insulators and Hund metals we explore the phase diagram for a three-band model with Coulomb repulsion and Hund's rule coupling on a Bethe lattice at 1/3 filling using the numerical renormalization group to obtain a numerically exact dynamical mean-field theory solution.

  11. Helicity eigenstates of a relativistic spin-0 and spin-1/2 constituent bound by minimal electrodynamics: Zero orbital angular momentum, zero four-momentum solutions

    International Nuclear Information System (INIS)

    Mainland, G.B.

    1988-01-01

    Zero four-momentum, helicity eigenstates of the Bethe--Salpeter equation are found for a composite system consisting of a charged, spin-0 constituent and a charged, spin- 1/2 constituent bound by minimal electrodynamics. The form of the Bethe--Salpeter equation used to describe the bound state includes the contributions from both single photon exchange (ladder approximation) and the ''seagull'' diagram. Attention is restricted to zero orbital angular momentum states since these appear to be the most interesting physically

  12. Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [UMR 5672 du CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)

    2010-12-15

    We describe a Bethe ansatz based method to derive, starting from a multiple integral representation, the long-distance asymptotic behavior at finite temperature of the density-density correlation function in the interacting onedimensional Bose gas. We compute the correlation lengths in terms of solutions of non-linear integral equations of the thermodynamic Bethe ansatz type. Finally, we establish a connection between the results obtained in our approach with the correlation lengths stemming from the quantum transfer matrix method. (orig.)

  13. Exact results for the many-body problem in one dimension with repulsive delta-function interaction

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    The repulsive δ interaction problem in one dimension for N particles is reduced, through the use of Bethe's hypothesis, to an eigenvalue problem of matrices of the same sizes as the irreducible representations R of the permutation group S/sub N/. For some R's this eigenvalue problem itself is solved by a second use of Bethe's hypothesis, in a generalized form. In particular, the ground-state problem of spin-1/2 fermions is reduced to a generalized Fredholm equation

  14. Y-system for γ-deformed ABJM theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hui-Huang; Liu, Peng [Institute of High Energy Physics, and Theoretical Physics Center for Science Facilities,Chinese Academy of Sciences,19B Yuquan Road, Beijing 100049 (China); University of Chinese Academy of Sciences,19A Yuquan Road, Beijing 100049 (China); Wu, Jun-Bao [School of Science, University of Tianjin,92 Weijin Road, Tianjin 300072 (China); School of Physics and Nuclear Energy Engineering, Beihang University,37 Xueyuan Road, Beijing 100191 (China); Institute of High Energy Physics, and Theoretical Physics Center for Science Facilities,Chinese Academy of Sciences,19B Yuquan Road, Beijing 100049 (China); University of Chinese Academy of Sciences,19A Yuquan Road, Beijing 100049 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Road, Beijing 100871 (China)

    2017-03-27

    We investigate the integrable aspects of the planar γ-deformed ABJM theory and propose the twisted asymptotic Bethe ansatz equations. A more general method through a twisted generating functional is discussed, based on which, the asymptotic large L solution of Y-system is modified in order to match the asymptotic Bethe ansatz equations. Several applications of our method in the sl(2)-like sector and some important examples in β-deformed ABJM are presented as well.

  15. Gibbs Measures Over Locally Tree-Like Graphs and Percolative Entropy Over Infinite Regular Trees

    Science.gov (United States)

    Austin, Tim; Podder, Moumanti

    2018-03-01

    Consider a statistical physical model on the d-regular infinite tree Td described by a set of interactions Φ . Let Gn be a sequence of finite graphs with vertex sets V_n that locally converge to Td. From Φ one can construct a sequence of corresponding models on the graphs G_n. Let μ_n be the resulting Gibbs measures. Here we assume that μ n converges to some limiting Gibbs measure μ on Td in the local weak^* sense, and study the consequences of this convergence for the specific entropies |V_n|^{-1}H(μ _n). We show that the limit supremum of |V_n|^{-1}H(μ _n) is bounded above by the percolative entropy H_{it{perc}}(μ ), a function of μ itself, and that |V_n|^{-1}H(μ _n) actually converges to H_{it{perc}}(μ ) in case Φ exhibits strong spatial mixing on T_d. When it is known to exist, the limit of |V_n|^{-1}H(μ _n) is most commonly shown to be given by the Bethe ansatz. Percolative entropy gives a different formula, and we do not know how to connect it to the Bethe ansatz directly. We discuss a few examples of well-known models for which the latter result holds in the high temperature regime.

  16. Nonperturbative calculation of the shear viscosity in hot $\\phi^{4}$ theory in real time

    CERN Document Server

    Wang, E; Wang, Enke; Heinz, Ulrich

    1999-01-01

    Starting from the Kubo formula we calculate the shear viscosity in hot phi**4 theory nonperturbatively by resumming ladders with a real-time version of the Bethe-Salpeter equation at finite temperature. In the weak coupling limit, the generalized Fluctuation-Dissipation Theorem is shown to decouple the Bethe-Salpeter equations for the different real-time components of the 4-point function. The resulting scalar integral equation is identical with the one obtained by Jeon using diagrammatic ``cutting rules'' in the Imaginary Time Formalism.

  17. Integrable structures in quantum field theory

    International Nuclear Information System (INIS)

    Negro, Stefano

    2016-01-01

    This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)

  18. Measurements of the exclusive production of a real photon with the ZEUS detector at HERA II

    International Nuclear Information System (INIS)

    Santamarta Martinez, R.

    2007-06-01

    The study of exclusive processes is one of the most promising tools to obtain information on the nucleon via generalized parton distributions. The simplest of these reactions is the Deeply Virtual Compton Scattering process in which a real photon is produced via diffractive exchange. Using the interference term between Deeply Virtual Compton Scattering and the Bethe-Heitler processes it is possible to extract the generalized parton distributions. The measurement presented in this thesis is a study of Deeply Virtual Compton Scattering and Bethe-Heitler processes recorder with the ZEUS detector. The data analyzed were taken with HERA II in the years 2003 to 2005, corresponding to an integrated luminosity of 41 pb -1 for e + p and 136 pb -1 for e - p scattering data. The cross section of the elastic Bethe-Heitler process measured in the kinematic region 230 2 2 and vertical stroke t vertical stroke 2 is presented. The feasibility of measurement of the Deeply Virtual Compton Scattering process is also reported. (orig.)

  19. Carl Friedrich von Weizsäcker major texts in physics

    CERN Document Server

    2014-01-01

    This book presents a collection of texts by the German physicist and philosopher Carl Friedrich von Weizsäcker (1912-2007), for use in seminars on the history, epistemology and structure of physics. Most texts appear in English for the first time. Weizsäcker became famous through his works in physics, mainly in the early development of nuclear physics. Later he would also become well known as a philosopher and analyst of contemporary culture. Texts include the original publications of the “Weizsäcker-Bethe formula” of nuclear masses and the “Bethe-Weizsäcker cycle,” which explains the source of energy in the sun; both were developed by Bethe at the same time and independently of Weizsäcker. Further texts deal with Weizsäcker’s explanation of the origin of planets, his explanation of the “time arrow” in Statistical Mechanics and his analyses of Quantum Mechanics and the structure of physics in general.

  20. Relativistic quarkonium dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1985-06-01

    We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters

  1. A fully microscopic model of 200 MeV proton-12C elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Karataglidis, S.; Dortmans, P.J.; Amos, K.; de Swiniarski, R.

    1996-01-01

    An effective two nucleon (NN) interaction in the nuclear medium is defined from an accurate mapping of the NN g matrices obtained by solving the Brueckner-Bethe-Goldstone equations for infinite nuclear matter. That effective interaction is used in a fully microscopic calculation of the nonlocal effective proton- 12 C interaction from which are obtained predictions of the differential cross section and analysing power for 200 MeV elastic scattering. The relative motion wave functions so found are used as the distorted waves in a distorted wave approximation (DWA) study of select inelastic scattering events. The effective NN interaction is used as the transition operator in those calculations. The relevant nuclear spectroscopy for the elastic and DWA (p, p') calculations is found from a full (0 + 2) ℎω shell model evaluation of the positive parity states while a restricted (1 + 3)ℎω has been used to give the negative parity states. Results are compared with those of the 0p-shell model of Cohen and Kurath or with those based upon axially symmetric, projected Hartree-Fock calculations. The diverse structure model wave functions are assessed by using them in calculations to compare with measured longitudinal, transverse electric and transverse magnetic form factors from electron scattering to many of the excited states of 12 C. Using those models of the structure of 12 C in the completely microscopic model of the elastic and inelastic scattering of 200 MeV protons, good fits have been found to the cross section and analysing power data. 50 refs., 3 tabs., 20 figs

  2. Potential problems with interpolating fields

    Energy Technology Data Exchange (ETDEWEB)

    Birse, Michael C. [The University of Manchester, Theoretical Physics Division, School of Physics and Astronomy, Manchester (United Kingdom)

    2017-11-15

    A potential can have features that do not reflect the dynamics of the system it describes but rather arise from the choice of interpolating fields used to define it. This is illustrated using a toy model of scattering with two coupled channels. A Bethe-Salpeter amplitude is constructed which is a mixture of the waves in the two channels. The potential derived from this has a strong repulsive core, which arises from the admixture of the closed channel in the wave function and not from the dynamics of the model. (orig.)

  3. Measurement of azimuthal asymmetries with respect of both beam charge and transverse target polarization in exclusive electroproduction of real photons

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [DESY Hamburg (Germany); Akopov, N.; Akopov, Z. [Yerevan Physics Institute (AR)] (and others)

    2008-02-15

    Azimuthal asymmetries in exclusive electroproduction of real photons are measured for the first time with respect to transverse target polarisation, providing new constraints on Generalized Parton Distributions. From the same data set on a hydrogen target, new results for the beam-charge asymmetry are also extracted with better precision than those previously reported. By comparing model calculations with measured asymmetries attributed to the interference between the deeply virtual Compton scattering and Bethe-Heitler processes, a model-dependent constraint is obtained on the total angular momenta carried by up and down quarks in the nucleon. (orig.)

  4. Spin chain for quantum strings

    International Nuclear Information System (INIS)

    Beisert, N.

    2005-01-01

    We review and compare the integrable structures in N=4 gauge theory and string theory on AdS 5 x S 5 . Recently, Bethe ansaetze for gauge theory/weak coupling and string theory/strong coupling were proposed to describe scaling dimensions in the su(2) subsector. Here we investigate the Bethe equations for quantum string theory, naively extrapolated to weak coupling. Excitingly, we find a spin chain Hamiltonian similar, but not equal, to the gauge theory dilatation operator. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  5. Boosting nearest-neighbour to long-range integrable spin chains

    International Nuclear Information System (INIS)

    Bargheer, Till; Beisert, Niklas; Loebbert, Florian

    2008-01-01

    We present an integrability-preserving recursion relation for the explicit construction of long-range spin chain Hamiltonians. These chains are generalizations of the Haldane–Shastry and Inozemtsev models and they play an important role in recent advances in string/gauge duality. The method is based on arbitrary nearest-neighbour integrable spin chains and it sheds light on the moduli space of deformation parameters. We also derive the closed chain asymptotic Bethe equations. (letter)

  6. Electron affinities: theoretical

    International Nuclear Information System (INIS)

    Kaufman, J.J.

    1976-01-01

    A brief description is given of the conceptual background and formalism of the various ab-initio and semi-ab-initio quantum computational techniques for calculating atomic and molecular electron affinities: Hartree--Fock--Roothaan SCF, configuration interaction (CI), multiconfiguration SCF (MC-SCF), Bethe--Goldstone, superposition of configurations (SOC), ab-initio effective core model potentials, Xα-MS, plus other less common methods. Illustrative and comparative examples of electron affinities calculated by these various methods are presented

  7. Introduction to integrable many-body systems III

    International Nuclear Information System (INIS)

    Bajnok, Z.; Samaj, L.

    2011-01-01

    This is the third part of a three-volume introductory course about integrable systems of interacting bodies. The emphasis is put onto the method of Thermodynamic Bethe Ansatz. Two kinds of integrable models are studied. Systems of itinerant electrons, forming a part of Condensed Matter Physics, involve the Hubbard lattice model of electrons with short-ranged one-site interactions (Sect. 20) and the s-d exchange Kondo model (Sect. 21), describing the scattering of conduction electrons on a spin-s impurity. Methods and basic concepts used in Quantum Field Theory are explained on the integrable (1 + 1)-dimensional sine-Gordon model. We start with the classical description of the model in Sect. 22, analyze its finite energy field configurations (soliton, anti-soliton and breathers) and show its classical integrability. The model is quantized by using two schemes: the conformal (Sect. 23) and Lagrangian (Sect. 24) quantizations. The scattering matrix of the sine-Gordon theory is derived at the full quantum level in the bootstrap scheme and is compared to its classical limit in Sect. 25. The parameters of the scattering matrix are related to those of the Lagrangian by calculating the ground-state energy in an applied magnetic field in two ways: Conformal perturbation theory and Thermodynamic Bethe Ansatz (Sect. 26). The relation of the sine-Gordon theory to the XXZ Heisenberg model, which provides a complete solution of the sine-Gordon model in a finite volume, is pointed out in Sect. 27. The obtained results are applied in Sect. 28. to the derivation of the exact thermodynamics for the (symmetric) two-component Coulomb gas; this is the first classical two-dimensional fluid with exactly solvable thermodynamics (Authors)

  8. Optical conductivity calculation of a k.p model semiconductor GaAs incorporating first-order electron-hole vertex correction

    Science.gov (United States)

    Nurhuda, Maryam; Aziz Majidi, Muhammad

    2018-04-01

    The role of excitons in semiconducting materials carries potential applications. Experimental results show that excitonic signals also appear in optical absorption spectra of semiconductor system with narrow gap, such as Gallium Arsenide (GaAs). While on the theoretical side, calculation of optical spectra based purely on Density Functional Theory (DFT) without taking electron-hole (e-h) interactions into account does not lead to the appearance of any excitonic signal. Meanwhile, existing DFT-based algorithms that include a full vertex correction through Bethe-Salpeter equation may reveal an excitonic signal, but the algorithm has not provided a way to analyze the excitonic signal further. Motivated to provide a way to isolate the excitonic effect in the optical response theoretically, we develop a method of calculation for the optical conductivity of a narrow band-gap semiconductor GaAs within the 8-band k.p model that includes electron-hole interactions through first-order electron-hole vertex correction. Our calculation confirms that the first-order e-h vertex correction reveals excitonic signal around 1.5 eV (the band gap edge), consistent with the experimental data.

  9. Generation of a quantum integrable class of discrete-time or relativistic periodic Toda chains

    International Nuclear Information System (INIS)

    Kundu, Anjan

    1994-01-01

    A new integrable class of quantum models representing a family of different discrete-time or relativistic generalisations of the periodic Toda chain (TC), including that of a recently proposed classical model close to TC [Lett. Math. Phys. 29 (1993) 165] is presented. All such models are shown to be obtainable from a single ancestor model at different realisations of the underlying quantised algebra. As a consequence the 2x2 Lax operators and the associated quantum R-matrices for these models are easily derived ensuring their quantum integrability. It is shown that the functional Bethe ansatz developed for the quantum TC is trivially generalised to achieve separation of variables also for the present models. ((orig.))

  10. The Oskar Klein memorial lectures

    CERN Document Server

    1994-01-01

    The series of Oskar Klein Memorial Lectures is a must-read for those keenly involved or simply interested in exploring the many fascinating aspects of Physics. This volume presents two landmark lectures given by Hans Bethe in October 1990 and Alan H. Guth in June 1991 under the series of Oskar Klein Memorial Lectures. Hans Bethe's lectures dealt with two themes: the astrophysical importance of neutrinos in supernova outbursts and a theoretical account of neutrinos through observations of the neutrino flux from the centre of the sun. Anyone interested in understanding the processes involved in

  11. Microscopic Fermi liquid approach to disordered narrow band systems

    International Nuclear Information System (INIS)

    Kolley, E.; Kolley, W.

    1977-01-01

    A Fermi liquid approach to tightly bound electrons in disordered systems is proposed to evaluate two-particle correlation functions L at T=0 deg K. Starting with a random Hubbard model and using a local ladder approximation in the particle-particle channel the irreducible particle-hole vertex is derived, being the kernel of the Bethe-Salpeter equation for L. CPA vertex corrections to the electrical conductivity and, for the ordered case, the correlation-enhanced paramagnetic susceptibility are calculated

  12. Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. Pt. 2

    International Nuclear Information System (INIS)

    Babbitt, D.; Thomas, L.

    1977-01-01

    In its ground state representation, the infinite, spin 1/2 Heisenberg chain provides a model for spin wave scattering, which entails many features of the quantum mechanical N-body problem. Here, we give a complete eigenfunction expansion for the Hamiltonian of the chain in this representation, for all numbers of spin waves. Our results resolve the questions of completeness and orthogonality of the eigenfunctions given by Bethe for finite chains, in the infinite volume limit. (orig.) [de

  13. Relativistic treatment of fermion-antifermion bound states

    International Nuclear Information System (INIS)

    Lucha, W.; Rupprecht, H.; Schoeberl, F.F.

    1990-01-01

    We discuss the relativistic treatment of fermion-antifermion bound states by an effective-Hamiltonian method which imitates their description in terms of nonrelativistic potential models: the effective interaction potential, to be used in a Schroedinger equation which incorporates relativistic kinematics, is derived from the underlying quantum field theory. This approach is equivalent to the instantaneous approximation to the Bethe-Salpeter equation called Salpeter equation but comes closer to physical intuition than the latter one. (Author) 14 refs

  14. Polylogs, thermodynamics and scaling functions of one-dimensional quantum many-body systems

    International Nuclear Information System (INIS)

    Guan, X-W; Batchelor, M T

    2011-01-01

    We demonstrate that the thermodynamics of one-dimensional Lieb-Liniger bosons can be accurately calculated in analytic fashion using the polylog function in the framework of the thermodynamic Bethe ansatz. The approach does away with the need to numerically solve the thermodynamic Bethe ansatz (Yang-Yang) equation. The expression for the equation of state allows the exploration of Tomonaga-Luttinger liquid physics and quantum criticality in an archetypical quantum system. In particular, the low-temperature phase diagram is obtained, along with the scaling functions for the density and compressibility. It has been shown recently by Guan and Ho (arXiv:1010.1301) that such scaling can be used to map out the criticality of ultracold fermionic atoms in experiments. We show here how to map out quantum criticality for Lieb-Liniger bosons. More generally, the polylog function formalism can be applied to a wide range of Bethe ansatz integrable quantum many-body systems which are currently of theoretical and experimental interest, such as strongly interacting multi-component fermions, spinor bosons and mixtures of bosons and fermions. (fast track communication)

  15. Spectrum of quantum transfer matrices via classical many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Gorsky, A. [ITEP,Bolshaya Cheremushkinskaya str. 25, 117218, Moscow (Russian Federation); MIPT,Inststitutskii per. 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Zabrodin, A. [ITEP,Bolshaya Cheremushkinskaya str. 25, 117218, Moscow (Russian Federation); MIPT,Inststitutskii per. 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Institute of Biochemical Physics,Kosygina str. 4, 119991, Moscow (Russian Federation); National Research University Higher School of Economics,Myasnitskaya str. 20, 101000, Moscow (Russian Federation); Zotov, A. [ITEP,Bolshaya Cheremushkinskaya str. 25, 117218, Moscow (Russian Federation); MIPT,Inststitutskii per. 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Steklov Mathematical Institute, RAS,Gubkina str. 8, 119991, Moscow (Russian Federation)

    2014-01-15

    In this paper we clarify the relationship between inhomogeneous quantum spin chains and classical integrable many-body systems. It provides an alternative (to the nested Bethe ansatz) method for computation of spectra of the spin chains. Namely, the spectrum of the quantum transfer matrix for the inhomogeneous gl{sub n}-invariant XXX spin chain on N sites with twisted boundary conditions can be found in terms of velocities of particles in the rational N-body Ruijsenaars-Schneider model. The possible values of the velocities are to be found from intersection points of two Lagrangian submanifolds in the phase space of the classical model. One of them is the Lagrangian hyperplane corresponding to fixed coordinates of all N particles and the other one is an N-dimensional Lagrangian submanifold obtained by fixing levels of N classical Hamiltonians in involution. The latter are determined by eigenvalues of the twist matrix. To support this picture, we give a direct proof that the eigenvalues of the Lax matrix for the classical Ruijsenaars-Schneider model, where velocities of particles are substituted by eigenvalues of the spin chain Hamiltonians, calculated through the Bethe equations, coincide with eigenvalues of the twist matrix, with certain multiplicities. We also prove a similar statement for the gl{sub n} Gaudin model with N marked points (on the quantum side) and the Calogero-Moser system with N particles (on the classical side). The realization of the results obtained in terms of branes and supersymmetric gauge theories is also discussed.

  16. Cytomorphologic features distinguishing Bethesda category IV thyroid lesions from parathyroid

    Directory of Open Access Journals (Sweden)

    Simon Sung

    2017-01-01

    Full Text Available Background: Thyroid follicular cells share similar cytomorphological features with parathyroid. Without a clinical suspicion, the distinction between a thyroid neoplasm and an intrathyroidal parathyroid can be challenging. The aim of this study was to assess the distinguishing cytomorphological features of parathyroid (including intrathyroidal and Bethesda category IV (Beth-IV thyroid follicular lesions, which carry a 15%–30% risk of malignancy and are often followed up with surgical resection. Methods: A search was performed to identify “parathyroid” diagnoses in parathyroid/thyroid-designated fine-needle aspirations (FNAs and Beth-IV thyroid FNAs (follicular and Hurthle cell, all with diagnostic confirmation through surgical pathology, immunocytochemical stains, Afirma® analysis, and/or clinical correlation. Unique cytomorphologic features were scored (0-3 or noted as present versus absent. Statistical analysis was performed using R 3.3.1 software. Results: We identified five FNA cases with clinical suspicion of parathyroid neoplasm, hyperthyroidism, or thyroid lesion that had an eventual final diagnosis of the parathyroid lesion (all female; age 20–69 years and 12 Beth-IV diagnoses (11 female, 1 male; age 13–64 years. The following cytomorphologic features are useful distinguishing features (P value: overall pattern (0.001, single cells (0.001, cell size compared to red blood cell (0.01, nuclear irregularity (0.001, presence of nucleoli (0.001, nuclear-to-cytoplasmic ratio (0.007, and nuclear chromatin quality (0.028. Conclusions: There are cytomorphologic features that distinguish Beth-IV thyroid lesions and (intrathyroidal parathyroid. These features can aid in rendering correct diagnoses and appropriate management.

  17. Which are the risk factors in the pricing of Personal Pension Plans in Spain?

    Directory of Open Access Journals (Sweden)

    Yaiza García Padrón

    2006-06-01

    Full Text Available The aim of this paper is to analyse if the Arbirtrage Pricing Theory or the model suggested by Chen et al. (1986 can efficiently explain the variability of the cross-sectional returns on the Personal Pension Plans in Spain between 1995-2003, as well as to find their sources of risks. To test both models we have followed the traditional two-step cross-sectional regressions by Fama and MacBeth (1973. The results of our analysis show two significant risk factors derived from the fixed-income market: nonanticipated changes in the interest rate term structure and the default risk premium.Este artigo analisa se o modelo APT ou o modelo sugerido por Chen et al. (1986 podem explicar de maneira eficiente a variabilidade dos rendimentos de seção cruzada dos Planos de Pensões do Sistema Individual em Espanha durante 1995-2003, bem como determina quais são seus fatores de risco. A metodologia de contraste utilizada foi a proposta por Fama and MacBeth (1973 na versão de múltiplas variáveis explicativas. Os resultados da análise mostram dois fatores de risco relevantes derivados do mercado de renda fixa: mudanças não antecipadas na estrutura temporária da taxa de juros e prima por risco de insolvência.

  18. Distribution of separated energy and injected charge at normal falling of fast electron beam on target

    CERN Document Server

    Smolyar, V A; Eremin, V V

    2002-01-01

    In terms of a kinetic equation diffusion model for a beam of electrons falling on a target along the normal one derived analytical formulae for distributions of separated energy and injected charge. In this case, no empirical adjustable parameters are introduced to the theory. The calculated distributions of separated energy for an electron plate directed source within infinite medium for C, Al, Sn and Pb are in good consistency with the Spencer data derived on the basis of the accurate solution of the Bethe equation being the source one in assumption of a diffusion model, as well

  19. Distribution of separated energy and injected charge at normal falling of fast electron beam on target

    International Nuclear Information System (INIS)

    Smolyar, V.A.; Eremin, A.V.; Eremin, V.V.

    2002-01-01

    In terms of a kinetic equation diffusion model for a beam of electrons falling on a target along the normal one derived analytical formulae for distributions of separated energy and injected charge. In this case, no empirical adjustable parameters are introduced to the theory. The calculated distributions of separated energy for an electron plate directed source within infinite medium for C, Al, Sn and Pb are in good consistency with the Spencer data derived on the basis of the accurate solution of the Bethe equation being the source one in assumption of a diffusion model, as well [ru

  20. Price returns efficiency of the Shanghai A-Shares

    Science.gov (United States)

    Long, Wang Jiang; Jaaman, Saiful Hafizah; Samsudin, Humaida Banu

    2014-06-01

    Beta measured from the capital asset pricing model (CAPM) is the most widely used risk to estimate expected return. In this paper factors that influence Shanghai A-share stock return based on CAPM are explored and investigated. Price data of 312 companies listed on Shanghai Stock Exchange (SSE) from the year 2000 to 2011 are investigated. This study employed the Fama-MacBeth cross-sectional method to avoid weakness of traditional CAPM. In addition, this study improves the model by adjusting missing data. Findings of this study justifies that systematic risk can explain the portfolios' returns of China SSE stock market.

  1. BEC-BCS crossover in a (p+ip)-wave pairing Hamiltonian coupled to bosonic molecular pairs

    International Nuclear Information System (INIS)

    Dunning, Clare; Isaac, Phillip S.; Links, Jon; Zhao, Shao-You

    2011-01-01

    We analyse a (p+ip)-wave pairing BCS Hamiltonian, coupled to a single bosonic degree of freedom representing a molecular condensate, and investigate the nature of the BEC-BCS crossover for this system. For a suitable restriction on the coupling parameters, we show that the model is integrable and we derive the exact solution by the algebraic Bethe ansatz. In this manner we also obtain explicit formulae for correlation functions and compute these for several cases. We find that the crossover between the BEC state and the strong pairing p+ip phase is smooth for this model, with no intermediate quantum phase transition.

  2. Study of tau-pair production at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (Poland). Faculty of Physics and Applied Computer Science; Adamus, M. [Institute for Nuclear Studies, Warsaw (PL)] (and others)

    2010-12-15

    A study of events containing two tau leptons with high transverse momentum has been performed with the ZEUS detector at HERA, using a data sample corresponding to an integrated luminosity of 0.33 fb{sup -1}. The tau candidates were identified from their decays into electrons, muons or hadronic jets. The number of tau-pair candidates has been compared with the prediction from the Standard Model, where the largest contribution is expected from Bethe-Heitler processes. The total visible cross section was extracted. Standard Model expectations agree well with the measured distributions, also at high invariant mass of the tau pair. (orig.)

  3. Unitary Dynamics of Strongly Interacting Bose Gases with the Time-Dependent Variational Monte Carlo Method in Continuous Space

    Science.gov (United States)

    Carleo, Giuseppe; Cevolani, Lorenzo; Sanchez-Palencia, Laurent; Holzmann, Markus

    2017-07-01

    We introduce the time-dependent variational Monte Carlo method for continuous-space Bose gases. Our approach is based on the systematic expansion of the many-body wave function in terms of multibody correlations and is essentially exact up to adaptive truncation. The method is benchmarked by comparison to an exact Bethe ansatz or existing numerical results for the integrable Lieb-Liniger model. We first show that the many-body wave function achieves high precision for ground-state properties, including energy and first-order as well as second-order correlation functions. Then, we study the out-of-equilibrium, unitary dynamics induced by a quantum quench in the interaction strength. Our time-dependent variational Monte Carlo results are benchmarked by comparison to exact Bethe ansatz results available for a small number of particles, and are also compared to quench action results available for noninteracting initial states. Moreover, our approach allows us to study large particle numbers and general quench protocols, previously inaccessible beyond the mean-field level. Our results suggest that it is possible to find correlated initial states for which the long-term dynamics of local density fluctuations is close to the predictions of a simple Boltzmann ensemble.

  4. Kohn-Luttinger superconductivity in monolayer and bilayer semimetals with the Dirac spectrum

    International Nuclear Information System (INIS)

    Kagan, M. Yu.; Mitskan, V. A.; Korovushkin, M. M.

    2014-01-01

    The effect of Coulomb interaction in an ensemble of Dirac fermions on the formation of superconducting pairing in monolayer and bilayer doped graphene is studied using the Kohn-Luttinger mechanism disregarding the Van der Waals potential of the substrate and impurities. The electronic structure of graphene is described using the Shubin-Vonsovsky model taking into account the intratomic, interatomic, and interlayer (in the case of bilayer graphene) Coulomb interactions between electrons. The Cooper instability is determined by solving the Bethe-Saltpeter integral equation. The renormalized scattering amplitude is obtained with allowance for the Kohn-Luttinger polarization contributions up to the second order of perturbation theory in the Coulomb interaction. It plays the role of effective interaction in the Bethe-Salpeter integral equation. It is shown that the allowance for the Kohn-Luttinger renormalizations as well as intersite Coulomb interaction noticeably affects the competition between the superconducting phases with the f-wave and d + id-wave symmetries of the order parameter. It is demonstrated that the superconducting transition temperature for an idealized graphene bilayer with significant interlayer Coulomb interaction between electrons is noticeably higher than in the monolayer case

  5. Onset of superfluidity in hot asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Alm, T.; Roepke, G.; Friman, B.L.

    1991-05-01

    The onset of superfluidity in hot asymmetric nuclear matter is studied within a generalized Beth-Uhlenbeck approach. The finite tempeature t-matrix is of the Bethe-Goldstone type and contains hole-hole propagation not considered in the Brueckner G-matrix approach. It is shown that the phase contour for the onset of superfluidity in this approach is identical to that obtained within Gorkov's approach to BCS theory. Results for the realistic Paris potential imply that the critical temperature in the neutron-proton triplet channel is on the order of 6-8 MeV and thus much larger than that for singlet pairing. (orig.)

  6. A structure preserving Lanczos algorithm for computing the optical absorption spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Meiyue [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Div.; Jornada, Felipe H. da [Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Div.; Lin, Lin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Div.; Univ. of California, Berkeley, CA (United States). Dept. of Mathematics; Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Div.; Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Louie, Steven G. [Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Div.

    2016-11-16

    We present a new structure preserving Lanczos algorithm for approximating the optical absorption spectrum in the context of solving full Bethe-Salpeter equation without Tamm-Dancoff approximation. The new algorithm is based on a structure preserving Lanczos procedure, which exploits the special block structure of Bethe-Salpeter Hamiltonian matrices. A recently developed technique of generalized averaged Gauss quadrature is incorporated to accelerate the convergence. We also establish the connection between our structure preserving Lanczos procedure with several existing Lanczos procedures developed in different contexts. Numerical examples are presented to demonstrate the effectiveness of our Lanczos algorithm.

  7. Studies of fast reactor disassembly using a Bethe-Tait computer code

    International Nuclear Information System (INIS)

    Ludwig, J.C.

    1978-10-01

    The advantages of the fast reactor are given and the general design outlined. Loss of Flow and Transient Overpower faults are possible; the potential consequences of such incidents are analysed using a deterministic approach. The course of an incident is split into several stages; of these only predisassembly and disassembly are considered. Predisassembly computer codes are described in general, and several particular codes are examined in more detail, based on a literature survey. The results and implications of disassembly calculations using the code EXTRA are presented. Here, the effects of several factors, such as the presence of retained fission gases and possible restraints on fuel motion, are investigated. Some comparisons are made with published results from the VENUS-II disassembly code. A general conclusion is that under some circumstances, the yield predicted during disassembly is relatively insensitive to modelling assumptions, and a simple code such as EXTRA may prove adequate if explicit core displacements are not required. A major factor in determining the yield of the disassembly phase is confirmed as being the rate of reactivity insertion during disassembly, as predicted by a predisassembly code. (U.K.)

  8. A fully microscopic model of 200 MeV proton-{sup 12}C elastic and inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Karataglidis, S; Dortmans, P J; Amos, K; de Swiniarski, R

    1996-03-01

    An effective two nucleon (NN) interaction in the nuclear medium is defined from an accurate mapping of the NN g matrices obtained by solving the Brueckner-Bethe-Goldstone equations for infinite nuclear matter. That effective interaction is used in a fully microscopic calculation of the nonlocal effective proton-{sup 12}C interaction from which are obtained predictions of the differential cross section and analysing power for 200 MeV elastic scattering. The relative motion wave functions so found are used as the distorted waves in a distorted wave approximation (DWA) study of select inelastic scattering events. The effective NN interaction is used as the transition operator in those calculations. The relevant nuclear spectroscopy for the elastic and DWA (p, p`) calculations is found from a full (0 + 2) {Dirac_h}{omega} shell model evaluation of the positive parity states while a restricted (1 + 3){Dirac_h}{omega} has been used to give the negative parity states. Results are compared with those of the 0p-shell model of Cohen and Kurath or with those based upon axially symmetric, projected Hartree-Fock calculations. The diverse structure model wave functions are assessed by using them in calculations to compare with measured longitudinal, transverse electric and transverse magnetic form factors from electron scattering to many of the excited states of {sup 12}C. Using those models of the structure of {sup 12}C in the completely microscopic model of the elastic and inelastic scattering of 200 MeV protons, good fits have been found to the cross section and analysing power data. 50 refs., 3 tabs., 20 figs.

  9. Topological approximation of the nonlinear Anderson model

    Science.gov (United States)

    Milovanov, Alexander V.; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  10. Auxiliary matrices for the six-vertex model at qN = 1 and a geometric interpretation of its symmetries

    International Nuclear Information System (INIS)

    Korff, Christian

    2003-01-01

    The construction of auxiliary matrices for the six-vertex model at a root of unity is investigated from a quantum group theoretic point of view. Employing the concept of intertwiners associated with the quantum loop algebra U q (s-tilde l-tilde 2 ) at q N = 1, a three-parameter family of auxiliary matrices is constructed. The elements of this family satisfy a functional relation with the transfer matrix allowing one to solve the eigenvalue problem of the model and to derive the Bethe ansatz equations. This functional relation is obtained from the decomposition of a tensor product of evaluation representations and involves auxiliary matrices with different parameters. Because of this dependence on additional parameters, the auxiliary matrices break in general the finite symmetries of the six-vertex model, such as spin-reversal or spin-conservation. More importantly, they also lift the extra degeneracies of the transfer matrix due to the loop symmetry present at rational coupling values. The extra parameters in the auxiliary matrices are shown to be directly related to the elements in the enlarged centre Z of the algebra U q (s-tilde l-tilde 2 ) at q N = 1. This connection provides a geometric interpretation of the enhanced symmetry of the six-vertex model at rational coupling. The parameters labelling the auxiliary matrices can be interpreted as coordinates on a hypersurface Spec Z subset of C 4 which remains invariant under the action of an infinite-dimensional group G of analytic transformations, called the quantum coadjoint action

  11. Covariant meson-baryon scattering with chiral and large Nc constraints

    International Nuclear Information System (INIS)

    Lutz, M.F.M.; Kolomeitsev, E.E.

    2001-05-01

    We give a review of recent progress on the application of the relativistic chiral SU(3) Lagrangian to meson-baryon scattering. It is shown that a combined chiral and 1/N c expansion of the Bethe-Salpeter interaction kernel leads to a good description of the kaon-nucleon, antikaon-nucleon and pion-nucleon scattering data typically up to laboratory momenta of p lab ≅ 500 MeV. We solve the covariant coupled channel Bethe-Salpeter equation with the interaction kernel truncated to chiral order Q 3 where we include only those terms which are leading in the large N c limit of QCD. (orig.)

  12. Relativistic three-body approach to NN scattering at intermediate energies

    International Nuclear Information System (INIS)

    van Faassen, E.; Tjon, J.A.

    1986-01-01

    The Bethe-Salpeter equation for coupled-channel N-Δ scattering is extended to satisfy unitarity in the NN and NNπ sectors. The procedure eliminates the unitarity violations characteristic of the standard ladder Bethe-Salpeter equation in the inelastic region, and improves the description of pion production near threshold. Results are presented for the NN phase shift and a number of observables up to 1 GeV. In particular, the 1D 2 inelasticity is found to be considerably smaller than found from phase shift analysis. In this context, the importance of the pion deuteron channel for the inelasticity parameter of is pointed out. 33 refs., 16 figs., 4 tabs

  13. Hans Bethe, the Sun and the Neutrinos

    Indian Academy of Sciences (India)

    and the stars remained a major puzzle in science, which led to many ..... per sec at Davis's huge tank of the detecting fluid, only about one neutrino per three days interacted. That is the meaning of. 'weak interaction'. See S N Ganguli, Neutrinos and our .... To understand neutrino oscillation, one must think of neutrino as a ...

  14. Cubierta plegada para el templo Beth Torah

    Directory of Open Access Journals (Sweden)

    Spolter, Gerald

    1963-10-01

    Full Text Available Quite recently, at the North Miami Beach Jewish park in Florida, a new temple has been completed, which is remarkable because of its metal roof structure, which is quite original, within present day trends of contemporary architecture. It has been sought to convey the impression that this roof floats on its supports, which consist of stone walls and four stiffeners. The folds shown by the roof externally are also visible from the inside. The building extends along two axes, which coincide with the two gables; along which run two beams made up of laminated sections reinforced by four angle sections. At certain points the roof cantilevers nearly 8 metres beyond its supports. The main entrance consists of a kind of arch closed with a panel into which a number of star shaped openings have been left. This is an arrangement that has both charm and an obvious symbolism. The building was initiated by setting up the gable beams with the aid of an auxiliary scaffolding, and the rest of the structure was erected in subsequent stages.El nuevo parque judío de North Miami Beach, en Florida, Estados Unidos, cuenta recientemente con un nuevo templo con cubierta de estructura metálica, muy original y, arquitectónicamente, dentro de las actuales tendencias. El sistema ha sido calificado de cubierta plegada por unos y de estructura especial por otros; aparte su denominación, una vez terminada, presenta un aspecto agradable y una interesante aplicación. Se ha tratado el conseguir dar la sensación de que esta cubierta flota sobre sus apoyos, constituidos por muros de mampostería y cuatro estribos. En el interior el techo acusa los pliegues que aparecen en el exterior. El edificio presenta dos direcciones principales, cuyos ejes coinciden con los de los caballetes Las vigas que constituyen las dos cumbreras son perfiles laminados reforzados con cuatro angulares. Algunas partes de la cubierta vuelan hasta 7,9 m, en forma de ménsulas. La entrada principal está constituida por una especie de arco, cerrado con una pantalla en la que se han dejado unos huecos en forma de estrella que tienen gracia y simbolismo indudables. La construcción se inició montando las cumbreras convenientemente apoyadas con un entramado auxiliar y siguiendo después el montaje del resto de los elementos estructurales.

  15. Correlations of zero-entropy critical states in the XXZ model: integrability and Luttinger theory far from the ground state

    Directory of Open Access Journals (Sweden)

    R. Vlijm, I. S. Eliëns, J. -S. Caux

    2016-10-01

    Full Text Available Pumping a finite energy density into a quantum system typically leads to `melted' states characterized by exponentially-decaying correlations, as is the case for finite-temperature equilibrium situations. An important exception to this rule are states which, while being at high energy, maintain a low entropy. Such states can interestingly still display features of quantum criticality, especially in one dimension. Here, we consider high-energy states in anisotropic Heisenberg quantum spin chains obtained by splitting the ground state's magnon Fermi sea into separate pieces. Using methods based on integrability, we provide a detailed study of static and dynamical spin-spin correlations. These carry distinctive signatures of the Fermi sea splittings, which would be observable in eventual experimental realizations. Going further, we employ a multi-component Tomonaga-Luttinger model in order to predict the asymptotics of static correlations. For this effective field theory, we fix all universal exponents from energetics, and all non-universal correlation prefactors using finite-size scaling of matrix elements. The correlations obtained directly from integrability and those emerging from the Luttinger field theory description are shown to be in extremely good correspondence, as expected, for the large distance asymptotics, but surprisingly also for the short distance behavior. Finally, we discuss the description of dynamical correlations from a mobile impurity model, and clarify the relation of the effective field theory parameters to the Bethe Ansatz solution.

  16. The packing of two species of polygons on the square lattice

    International Nuclear Information System (INIS)

    Dei Cont, David; Nienhuis, Bernard

    2004-01-01

    We decorate the square lattice with two species of polygons under the constraint that every lattice edge is covered by only one polygon and every vertex is visited by both types of polygons. We end up with a 24-vertex model which is known in the literature as the fully packed double loop model (FPL 2 ). In the particular case in which the fugacities of the polygons are the same, the model admits an exact solution. The solution is obtained using coordinate Bethe ansatz and provides a closed expression for the free energy. In particular, we find the free energy of the four-colouring model and the double Hamiltonian walk and recover the known entropy of the Ice model. When both fugacities are set equal to 2 the model undergoes an infinite-order phase transition

  17. Conformal partition functions of critical percolation from D 3 thermodynamic Bethe Ansatz equations

    Science.gov (United States)

    Morin-Duchesne, Alexi; Klümper, Andreas; Pearce, Paul A.

    2017-08-01

    Using the planar Temperley-Lieb algebra, critical bond percolation on the square lattice can be reformulated as a loop model. In this form, it is incorporated as {{ L}}{{ M}}(2, 3) in the Yang-Baxter integrable family of logarithmic minimal models {{ L}}{{ M}}( p, p\\prime) . We consider this model of percolation in the presence of boundaries and with periodic boundary conditions. Inspired by Kuniba, Sakai and Suzuki, we rewrite the recently obtained infinite Y-system of functional equations. In this way, we obtain nonlinear integral equations in the form of a closed finite set of TBA equations described by a D 3 Dynkin diagram. Following the methods of Klümper and Pearce, we solve the TBA equations for the conformal finite-size corrections. For the ground states of the standard modules on the strip, these agree with the known central charge c  =  0 and conformal weights Δ1, s for \\renewcommand≥≥slant} s\\in {{ Z}≥slant 1} with Δr, s=\\big((3r-2s){\\hspace{0pt}}^2-1\\big)/24 . For the periodic case, the finite-size corrections agree with the conformal weights Δ0, s , Δ1, s with \\renewcommand{≥{≥slant} s\\in\\frac{1}{2}{{ Z}≥slant 0} . These are obtained analytically using Rogers dilogarithm identities. We incorporate all finite excitations by formulating empirical selection rules for the patterns of zeros of all the eigenvalues of the standard modules. We thus obtain the conformal partition functions on the cylinder and the modular invariant partition function (MIPF) on the torus. By applying q-binomial and q-Narayana identities, it is shown that our refined finitized characters on the strip agree with those of Pearce, Rasmussen and Zuber. For percolation on the torus, the MIPF is a non-diagonal sesquilinear form in affine u(1) characters given by the u(1) partition function Z2, 3(q)=Z2, 3{Circ}(q) . The u(1) operator content is {{ N}}Δ, \\barΔ=1 for Δ=\\barΔ=-\\frac{1}{24}, \\frac{35}{24} and {{ N}}Δ, \\barΔ=2 for

  18. Excited states by analytic continuation of TBA equations

    International Nuclear Information System (INIS)

    Dorey, P.; Tateo, R.

    1996-01-01

    We suggest an approach to the problem of finding integral equations for the excited states of an integrable model, starting from the thermodynamic Bethe ansatz equations for its ground state. The idea relies on analytic continuation through complex values of the coupling constant, and an analysis of the monodromies that the equations and their solutions undergo. For the scaling Lee-Yang model, we find equations in this way for the one- and two-particle states in the spin-zero sector, and suggest various generalisations. Numerical results show excellent agreement with the truncated conformal space approach, and we also treat some of the ultraviolet and infrared asymptotics analytically. (orig.)

  19. Charge parity exotic mesons

    International Nuclear Information System (INIS)

    Burden, C.J.

    1998-01-01

    Full text: Evidence for a meson with exotic quantum numbers J PC 1 -+ , the ρ(1405), has been observed at the AGS at Brookhaven and Crystal Barrel at CERN. This meson is exotic to the extent that its quantum numbers are not consistent with the generalised Pauli exclusion principle applied to the naive constituent quark model. In a fully relativistic field theoretic treatment, however, there is nothing in principle to preclude the existence of charge parity exotics. Using our earlier covariant Bethe-Salpeter model of light-quark mesons with no new parameter fitting we demonstrate the existence of a q - q-bar bound state with the quantum numbers of the ρ

  20. Meson-meson bound state in a 2+1 lattice QCD model with two flavors and strong coupling

    International Nuclear Information System (INIS)

    Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, Antonio Francisco

    2005-01-01

    We consider the existence of bound states of two mesons in an imaginary-time formulation of lattice QCD. We analyze an SU(3) theory with two flavors in 2+1 dimensions and two-dimensional spin matrices. For a small hopping parameter and a sufficiently large glueball mass, as a preliminary, we show the existence of isoscalar and isovector mesonlike particles that have isolated dispersion curves (upper gap up to near the two-particle threshold ∼-4lnκ). The corresponding meson masses are equal up to and including O(κ 3 ) and are asymptotically of order -2lnκ-κ 2 . Considering the zero total isospin sector, we show that there is a meson-meson bound state solution to the Bethe-Salpeter equation in a ladder approximation, below the two-meson threshold, and with binding energy of order bκ 2 ≅0.02359κ 2 . In the context of the strong coupling expansion in κ, we show that there are two sources of meson-meson attraction. One comes from a quark-antiquark exchange. This is not a meson exchange, as the spin indices are not those of the meson particle, and we refer to this as a quasimeson exchange. The other arises from gauge field correlations of four overlapping bonds, two positively oriented and two of opposite orientation. Although the exchange part gives rise to a space range-one attractive potential, the main mechanism for the formation of the bound state comes from the gauge contribution. In our lattice Bethe-Salpeter equation approach, this mechanism is manifested by an attractive distance-zero energy-dependent potential. We recall that no bound state appeared in the one-flavor case, where the repulsive effect of Pauli exclusion is stronger

  1. Signal generation in gas detectors

    International Nuclear Information System (INIS)

    Stillman, A.

    1993-01-01

    This tutorial describes the generation of electrical signals in gas detectors. Ionization of the gas by the passage of charged particles generates these signals. Starting with the Bethe-Bloch equation, the treatment is a general introduction to the production of ion-pairs in gas devices. I continue with the characterization of the ionization as an electrical signal, and calculate the signal current in a simple example. Another example demonstrates the effect of space charge on the design of a detector. The AGS Booster ionization profile monitor is a model for this calculation

  2. Essays in theoretical physics in honour of Dirk Ter Haar

    CERN Document Server

    Parry, W E

    2013-01-01

    Essays in Theoretical Physics: In Honour of Dirk ter Haar is devoted to Dirk ter Haar, detailing the breadth of Dirk's interest in physics. The book contains 15 chapters, with some chapters elucidating stellar dynamics with non-classical integrals; a mean-field treatment of charge density waves in a strong magnetic field; electrodynamics of two-dimensional (surface) superconductors; and the Bethe Ansatz and exact solutions of the Kondo and related magnetic impurity models. Other chapters focus on probing the interiors of neutron stars; macroscopic quantum tunneling; unitary transformation meth

  3. Three-body unitarity with isobars revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mai, M.; Hu, B. [The George Washington University, Washington, DC (United States); Doering, M. [The George Washington University, Washington, DC (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Pilloni, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Szczepaniak, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Indiana University, Center for Exploration of Energy and Matter, Bloomington, IN (United States); Indiana University, Physics Department, Bloomington, IN (United States)

    2017-09-15

    The particle exchange model of hadron interactions can be used to describe three-body scattering under the isobar assumption. In this study we start from the 3 → 3 scattering amplitude for spinless particles, which contains an isobar-spectator scattering amplitude. Using a Bethe-Salpeter Ansatz for the latter, we derive a relativistic three-dimensional scattering equation that manifestly fulfills three-body unitarity and two-body unitarity for the sub-amplitudes. This property holds for energies above breakup and also in the presence of resonances in the sub-amplitudes. (orig.)

  4. Progress in understanding heavy-ion stopping

    Energy Technology Data Exchange (ETDEWEB)

    Sigmund, P., E-mail: sigmund@sdu.dk [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark); Schinner, A. [Institut für Experimentalphysik, Johannes Kepler Universität, A-4040 Linz (Austria)

    2016-09-01

    We report some highlights of our work with heavy-ion stopping in the energy range where Bethe stopping theory breaks down. Main tools are our binary stopping theory (PASS code), the reciprocity principle, and Paul’s data base. Comparisons are made between PASS and three alternative theoretical schemes (CasP, HISTOP and SLPA). In addition to equilibrium stopping we discuss frozen-charge stopping, deviations from linear velocity dependence below the Bragg peak, application of the reciprocity principle in low-velocity stopping, modeling of equilibrium charges, and the significance of the so-called effective charge.

  5. Progress in understanding heavy-ion stopping

    International Nuclear Information System (INIS)

    Sigmund, P.; Schinner, A.

    2016-01-01

    We report some highlights of our work with heavy-ion stopping in the energy range where Bethe stopping theory breaks down. Main tools are our binary stopping theory (PASS code), the reciprocity principle, and Paul’s data base. Comparisons are made between PASS and three alternative theoretical schemes (CasP, HISTOP and SLPA). In addition to equilibrium stopping we discuss frozen-charge stopping, deviations from linear velocity dependence below the Bragg peak, application of the reciprocity principle in low-velocity stopping, modeling of equilibrium charges, and the significance of the so-called effective charge.

  6. Gauge-string duality for superconformal deformations of N = 4 Super Yang-Mills theory

    International Nuclear Information System (INIS)

    Frolov, Sergey A.; Roiban, Radu; Tseytlin, Arkady A.

    2005-01-01

    We analyze in detail the relation between an exactly marginal deformation of N = 4 SYM - the Leigh-Strassler or 'β-deformation' - and its string theory dual (recently constructed in hep-th/0502086) by comparing energies of semiclassical strings to anomalous dimensions of gauge-theory operators in the two-scalar sector. We stress the existence of integrable structures on the two sides of the duality. In particular, we argue that the integrability of strings in AdS 5 x S 5 implies the integrability of the deformed world sheet theory with real deformation parameter. We compare the fast string limit of the worldsheet action in the sector with two angular momenta with the continuum limit of the coherent state action of an anisotropic XXZ spin chain describing the one-loop anomalous dimensions of the corresponding operators and find a remarkable agreement for all values of the deformation parameter. We discuss some of the properties of the Bethe Ansatz for this spin chain, solve the Bethe equations for small number of excitations and comment on higher loop properties of the dilatation operator. With the goal of going beyond the leading order in the 't Hooft expansion we derive the analog of the Bethe equations on the string-theory side, and show that they coincide with the thermodynamic limit of the Bethe equations for the spin chain. We also compute the 1/J corrections to the anomalous dimensions of operators with large R-charge (corresponding to strings with angular momentum J) and match them to the 1-loop corrections to the fast string energies. Our results suggest that the impressive agreement between the gauge theory and semiclassical strings in AdS 5 x S 5 is part of a larger picture underlying the gauge/gravity duality

  7. Quenching of orbital momentum by crystalline fields in a multichannel Kondo impurity

    International Nuclear Information System (INIS)

    Schlottmann, P.; Lee, K.

    1995-01-01

    We consider an impurity of spin S interacting via an isotropic spin exchange with conduction electrons of spin 1/2. The conduction electrons can be in n different orbital channels. We assume that crystalline fields split the orbital degrees of freedom into two multiplets, the one with lower energy consisting of n * orbitals and the one of higher energy of n-n * orbitals. The exchange coupling is the same for all channels. We derive the thermodynamic Bethe ansatz equations for this model and discuss the ground-state properties of the impurity as a function of the spin S and the magnetic field. The solution of the ground-state Bethe ansatz equations is obtained numerically. Three situations have to be distinguished when the magnetic field is small compared to the Kondo temperature: (i) If S=n/2 or S=n * /2 the conduction electrons exactly compensate the impurity spin into a singlet ground state, (ii) if S>n/2 the impurity is undercompensated, i.e., only partially compensated leaving an effective spin S-n/2 at low temperatures, and (iii) in all other cases the impurity spin is overcompensated giving rise to critical behavior. The quenching of the orbits by the crystalline field dramatically affects the cases S * /2

  8. Current stopping power analyses

    International Nuclear Information System (INIS)

    Porter, L.E.

    1983-01-01

    Modified Bethe-Bloch stopping power theory permits fairly accurate calculation of energy losses over a broad interval of projectile velocity v = νc insofar as several parameters appearing in the revised Bethe-Bloch formula have been corectly evaluated. Since the parameters cannot in general be ascertained by calculation from first principles, fits of theory to measurement remain the best method of evaluation. The parameters alluded to are: the target mean excitation energy; the shell correction scaling parameters; the composite single free parameter of the Barkas (projectile-z 3 ) effect correction formalism, and the strength of the correction term; the high velocity density effect correction parameter; and the low velocity charge state parameter. These parameters are discussed

  9. Oscillator construction of su(n|m) Q-operators

    Energy Technology Data Exchange (ETDEWEB)

    Frassek, Rouven, E-mail: rfrassek@physik.hu-berlin.de [Institut fuer Mathematik und Institut fuer Physik, Humboldt-Universitaet zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489 Berlin (Germany); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany); Lukowski, Tomasz, E-mail: lukowski@mathematik.hu-berlin.de [Institut fuer Mathematik und Institut fuer Physik, Humboldt-Universitaet zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489 Berlin (Germany); Meneghelli, Carlo, E-mail: carlo@aei.mpg.de [Institut fuer Mathematik und Institut fuer Physik, Humboldt-Universitaet zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489 Berlin (Germany); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany); Staudacher, Matthias, E-mail: matthias@aei.mpg.de [Institut fuer Mathematik und Institut fuer Physik, Humboldt-Universitaet zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489 Berlin (Germany); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)

    2011-09-01

    We generalize our recent explicit construction of the full hierarchy of Baxter Q-operators of compact spin chains with su(n) symmetry to the supersymmetric case su(n|m). The method is based on novel degenerate solutions of the graded Yang-Baxter equation, leading to an amalgam of bosonic and fermionic oscillator algebras. Our approach is fully algebraic, and leads to the exact solution of the associated compact spin chains while avoiding Bethe ansatz techniques. It furthermore elucidates the algebraic and combinatorial structures underlying the system of nested Bethe equations. Finally, our construction naturally reproduces the representation, due to Z. Tsuboi, of the hierarchy of Baxter Q-operators in terms of hypercubic Hasse diagrams.

  10. Dependence of electron inelastic mean free paths on electron energy and materials at low energy region, 1

    International Nuclear Information System (INIS)

    Tanuma, Shigeo; Powell, C.J.; Penn, D.R.

    1990-01-01

    We have proposed a general formula of electron inelastic mean free path (IMFP) to describe the calculated IMFPs over the 50-2000 eV energy range based on the Inokuti's modified Bethe formula for the inelastic scattering cross section. The IMFPs for 50-2000 eV electrons in 27 elements were calculated using Penn's algorithm. The IMFP dependence on electron energy in the range 50-200 eV varies considerably from material to material. These variations are associated with substantial differences in the electron energy-loss functions amongst the material. We also found that the modified Bethe formula by Inokuti could be fitted to the calculated IMFPs in the range 50-2000 eV within 3% relative error. (author)

  11. Explanation of the observed trend in the mean excitation energy of a target as determined using several projectiles

    International Nuclear Information System (INIS)

    Cabrera-Trujillo, R.; Sabin, J.R.; Oddershede, J.

    2003-01-01

    Recently, Porter observed [L.E. Porter, Int. J. Quantum Chem. 90, 684 (2002)] that the mean excitation energy and stopping cross section of a target, obtained from fitting experimental data at given projectile charge to a modified Bethe-Block theory, gives projectile dependent results. The main result of his work is that there is a trend for the inferred target mean excitation energy, to decrease as the projectile atomic number increases. However, this result is inconsistent with the usual definition of the mean excitation energy as a function of target excitation properties only. Here we present an explanation of Porter's results based on the Bethe theory extended to take projectile electronic structure explicitly into account

  12. Medications (for IBS)

    Medline Plus

    Full Text Available ... Anthony J. Lembo, MD, Instructor of Medicine, Harvard Medical School; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA. Last modified on February 23, ...

  13. Cummings/Ju - Harvard; Emory | Division of Cancer Prevention

    Science.gov (United States)

    Principal Investigator: Richard D Cummings, PhDInstitution: Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA Principal Investigator: Tongzhong Ju, MD, PhDInstitution: Emory University, Atlanta, GA |

  14. Medline Plus

    Full Text Available ... for a Total Knee System (University Orthopedics Center, State College, PA, 8/21/2014) Mastectomy Breast Reconstruction: Deep Inferior Epigastric Perforator (Beth Israel Medical Center, New ...

  15. Construction of energy loss function for low-energy electrons in helium

    Energy Technology Data Exchange (ETDEWEB)

    Dayashankar, [Bhabha Atomic Research Centre, Bombay (India). Div. of Radiation Protection

    1976-02-01

    The energy loss function for electrons in the energy range from 50 eV to 1 keV in helium gas has been constructed by considering separately the energy loss in overcoming the ionization threshold, the loss manifested as kinetic energy of secondary electrons and the loss in the discrete state excitations. This has been done by utilizing recent measurements of Opal et al. on the energy spectrum of secondary electrons and incorporating the experimental data on cross sections for twenty-four excited states. The present results of the energy loss function are in good agreement with the Bethe formula for energies above 500 eV. For lower energies, where the Bethe formula is not applicable, the present results should be particularly useful.

  16. Eesti jättis tšetšeeni lapsed viisast ilma / Henrik Roonemaa, Aivi Lindsalu

    Index Scriptorium Estoniae

    Roonemaa, Henrik

    2004-01-01

    Programmi Bridges for Education juht J. Beth Ciesielski selgitab Eesti keeldumist anda viisad Tšetšeenia teismelistele, kes pidid tulema Türisalu laagrisse inglise keelt õppima. Riigikogu liikme Andres Herkeli arvamus

  17. Entanglement entropy of excited states

    International Nuclear Information System (INIS)

    Alba, Vincenzo; Fagotti, Maurizio; Calabrese, Pasquale

    2009-01-01

    We study the entanglement entropy of a block of contiguous spins in excited states of spin chains. We consider the XY model in a transverse field and the XXZ Heisenberg spin chain. For the latter, we developed a numerical application of the algebraic Bethe ansatz. We find two main classes of states with logarithmic and extensive behavior in the dimension of the block, characterized by the properties of excitations of the state. This behavior can be related to the locality properties of the Hamiltonian having a given state as the ground state. We also provide several details of the finite size scaling

  18. Comparison of different boost transformations for the calculation of form factors in relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Theussl, L.; Noguera, S.; Amghar, A.; Desplanques, B.

    2003-01-01

    The effect of different boost expressions, pertinent to the instant, front and point forms of relativistic quantum mechanics, is considered for the calculation of the ground-state form factor of a two-body system in simple scalar models. Results with a Galilean boost as well as an explicitly covariant calculation based on the Bethe-Salpeter approach are given for comparison. It is found that the present so-called point-form calculations of form factors strongly deviate from all the other ones. This suggests that the formalism which underlies them requires further elaboration. A proposition in this sense is made. (author)

  19. Characterizing time series: when Granger causality triggers complex networks

    Science.gov (United States)

    Ge, Tian; Cui, Yindong; Lin, Wei; Kurths, Jürgen; Liu, Chong

    2012-08-01

    In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIHMassachusetts Institute of Technology-Beth Israel Hospital. human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.

  20. Integrability for the full spectrum of planar AdS/CFT

    International Nuclear Information System (INIS)

    Gromov, Nikolay; Kazakov, Vladimir; Vieira, Pedro; Porto Univ.

    2009-03-01

    We present a set of functional equations defining the anomalous dimensions of arbitrary local single trace operators in planar N=4 SYM theory. It takes the form of a Y-system based on the integrability of the dual superstring σ-model on the AdS 5 x S 5 background. This Y-system passes some very important tests: it incorporates the full asymptotic Bethe ansatz at large length of operator L, including the dressing factor, and it confirms all recently found wrapping corrections. The recently proposed AdS 4 /CFT 3 duality is also treated in a similar fashion. (orig.)

  1. Nucleosynthesis and Energy Production in Stars: Bethe's Crowning ...

    Indian Academy of Sciences (India)

    Today we understand that the study of the structure and ... periodically if it is unable to maintain this balance. Cre- ... mon source of energy in our day to day life, could not account for the .... The concept of hydrogen burning and the work on bar-.

  2. Light-front Ward-Takahashi identity for two-fermion systems

    International Nuclear Information System (INIS)

    Marinho, J. A. O.; Frederico, T.; Pace, E.; Salme, G.; Sauer, P. U.

    2008-01-01

    We propose a three-dimensional electromagnetic current operator within light-front dynamics that satisfies a light-front Ward-Takahashi identity for two-fermion systems. The light-front current operator is obtained by a quasipotential reduction of the four-dimensional current operator and acts on the light-front valence component of bound or scattering states. A relation between the light-front valence wave function and the four-dimensional Bethe-Salpeter amplitude both for bound or scattering states is also derived, such that the matrix elements of the four-dimensional current operator can be fully recovered from the corresponding light-front ones. The light-front current operator can be perturbatively calculated through a quasipotential expansion, and the divergence of the proposed current satisfies a Ward-Takahashi identity at any given order of the expansion. In the quasipotential expansion the instantaneous terms of the fermion propagator are accounted for by the effective interaction and two-body currents. We exemplify our theoretical construction in the Yukawa model in the ladder approximation, investigating in detail the current operator at the lowest nontrivial order of the quasipotential expansion of the Bethe-Salpeter equation. The explicit realization of the light-front form of the Ward-Takahashi identity is verified. We also show the relevance of instantaneous terms and of the pair contribution to the two-body current and the Ward-Takahashi identity

  3. Hyperon interaction in free space and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Madhumita; Lenske, Horst [Institute for Theoretical Physics, Justus- Liebig-University Giessen (Germany)

    2015-07-01

    Baryon-baryon interactions within the SU(3)-octet are investigated in free space and nuclear matter.A meson exchange model based on SU(3) symmetry is used for determining the interaction. The Bethe-Salpeter equations are solved in a 3-D reduction scheme. In-medium effect has been incorporated by including a two particle Pauli projector operator in the scattering equation. The coupling of the various channels of total strangeness S and conserved total charge is studied in detail. Special attention is paid to the physical thresholds. The density dependence of interaction is clearly seen in the variation of the in-medium low-energy parameters. The approach is compared to descriptions derived from chiral-EFT and other meson-exchange models e.g. the Nijmegen and the Juelich model.

  4. Excited state TBA and renormalized TCSA in the scaling Potts model

    Science.gov (United States)

    Lencsés, M.; Takács, G.

    2014-09-01

    We consider the field theory describing the scaling limit of the Potts quantum spin chain using a combination of two approaches. The first is the renormalized truncated conformal space approach (TCSA), while the second one is a new thermodynamic Bethe Ansatz (TBA) system for the excited state spectrum in finite volume. For the TCSA we investigate and clarify several aspects of the renormalization procedure and counter term construction. The TBA system is first verified by comparing its ultraviolet limit to conformal field theory and the infrared limit to exact S matrix predictions. We then show that the TBA and the renormalized TCSA match each other to a very high precision for a large range of the volume parameter, providing both a further verification of the TBA system and a demonstration of the efficiency of the TCSA renormalization procedure. We also discuss the lessons learned from our results concerning recent developments regarding the low-energy scattering of quasi-particles in the quantum Potts spin chain.

  5. A Gibbs potential expansion with a quantic system made up of a large number of particles; Un developpement du potentiel de Gibbs d'un systeme compose d'un grand nombre de particules

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Claude; Dominicis, Cyrano de [Commissariat a l' energie atomique et aux energies alternatives - CEA, Centre d' Etudes Nucleaires de Saclay, Gif-sur-Yvette (France)

    1959-07-01

    Starting from an expansion derived in a previous work, we study the contribution to the Gibbs potential of the two-body dynamical correlations, taking into account the statistical correlations. Such a contribution is of interest for low density systems at low temperature. In the zero density limit, it reduces to the Beth Uhlenbeck expression of the second virial coefficient. For a system of fermions in the zero temperature limit, it yields the contribution of the Brueckner reaction matrix to the ground state energy, plus, under certain conditions, additional terms of the form exp. (β |Δ|), where the Δ are the binding energies of 'bound states' of the type first discussed by L. Cooper. Finally, we study the wave function of two particles immersed in a medium (defined by its temperature and chemical potential). lt satisfies an equation generalizing the Bethe Goldstone equation for an arbitrary temperature. Reprint of a paper published in 'Nuclear Physics' 10, 1959, p. 181-196 [French] Partant d'un developpement extrait d'un precedent travail, nous etudions la contribution au potentiel de Gibbs des relations dynamiques du systeme de deux corps, en tenant compte des relations statistiques. Une telle contribution presente de l'interet pour les systemes a densite faible et a basse temperature. A la densite limite zero, elle se ramene a l'expression de Beth Uhlenbeck du second coefficient virial. Pour un systeme de fermions a la temperature limite zero, il produit la contribution de la matrice de reaction de Brueckner au niveau fondamental, plus, dans certaines conditions, des termes additionnels de la forme exp. (β |Δ|), ou les Δ sont les energies de liaison des 'etats lies' du premier type, discutes auparavant par L. Cooper. Finalement, on etudie la fonction d'onde de deux particules immerges dans un milieu (definie par sa temperature et son potentiel chimique). Il satisfait a une equation generalisant l'equation de Bethe Goldstone pour une temperature arbitraire

  6. Fulltext PDF

    Indian Academy of Sciences (India)

    This article attempts to acquaint the reader with the seminal ... Introduction. Hans Bethe actually started his physics career as a 'Solid- ... readily available in English translations [3]. 2. .... relevance in understanding the spectra (especially elec-.

  7. Helicity amplitudes and electromagnetic decays of hyperon resonances

    International Nuclear Information System (INIS)

    Cauteren, T. van; Ryckebusch, J.; Metsch, B.; Petry, H.R.

    2005-01-01

    We present results for the helicity amplitudes of the lowest-lying hyperon resonances Y * , computed within the framework of the Bonn Constituent-Quark model, which is based on the Bethe-Salpeter approach. The seven parameters entering the model were fitted to the best-known baryon masses. Accordingly, the results for the helicity amplitudes are genuine predictions. Some hyperon resonances are seen to couple more strongly to a virtual photon with finite Q 2 than to a real photon. Other Y * 's, such as the S 01 (1670) Λ-resonance or the S 11 (1620) Σ-resonance, couple very strongly to real photons. We present a qualitative argument for predicting the behaviour of the helicity asymmetries of baryon resonances at high Q 2 . (orig.)

  8. Mitmekesises universumis on praegu matriarhaat / Siram

    Index Scriptorium Estoniae

    Siram, pseud., 1968-

    2009-01-01

    Rahvusvahelise tegevuskunstifestivali "Diverse Universe" performance'i-programmist Pärnus. Eseohe Arhebameni (Nigeeria), rühmituse Rubensid, Rachel Hoffmani (USA) ja Sindy Butzi (Saksamaa), kollektiivi protoPLAY (Inglismaa/Jaapan), Orion Maxted, Beth Greenhalgh, Yoko Ishiguro) performance'itest

  9. Medications (for IBS)

    Medline Plus

    Full Text Available ... Beth Israel Deaconess Medical Center, Boston, MA. Last modified on February 23, 2015 at 12:18:55 ... Dietary Fiber 12 Week Elimination Diet for IBS Rice-Based Foods Low-FODMAP Diet What Are FODMAPs? ...

  10. Medications (for IBS)

    Medline Plus

    Full Text Available ... J. Lembo, MD, Instructor of Medicine, Harvard Medical School; Division of Gastroenterology, Beth Israel Deaconess Medical Center, ... About IFFGD Our Mission Awareness Activities Advocacy Activities Research Leadership Industry Council Contact us IBS Treatment Working ...

  11. Loglines. September - October 2011

    Science.gov (United States)

    2011-10-01

    Deputy Director, Strategic Communications Jack Hooper Loglines Staff Managing Editor Kathleen T. Rhem Editor Jacob Boyer Writer Beth Reece Writer...recommendation from a presidential commission headed by former President Herbert Hoover to coordinate procurement, storage, distribution and

  12. Medline Plus

    Full Text Available ... Baptist Hospital, Miami, FL, 10/17/2013) Mastectomy Breast Reconstruction: Deep Inferior Epigastric Perforator (Beth Israel Medical Center, New York, NY, 1/11/2008) Ovarian Cancer Scarless Hysterectomy (Baptist Hospital, Miami, FL, 10/17/ ...

  13. Microscopic models for hadronic form factors and vertex functions

    International Nuclear Information System (INIS)

    Santhanam, I.; Bhatnagar, S.; Mitra, A.N.

    1990-01-01

    We review the status of nucleon (N) and few-nucleon form factors (f.f.'s) from the view-point of a gradual unfolding of successively inner degrees of freedom (d.o.f.) with increase in q 2 . To this end we focus attention on the problem of a microscopic formulation of hadronic vertex functions (v.f.) from the point of view of their key role in understanding the physics of a large variety of few-hadron reactions on the one hand, and their practical usefulness in articulating the internal dynamics of hadron and few-hadron systems on the other hand. The criterion of an integrated view from low-energy spectroscopy to high-q 2 amplitudes is employed to emphasize the desirability of formulations in terms of relativistic dynamical equations based on Lorentz and gauge invariance in preference to phenomenological models, which often require additional assumptions beyond their original premises to extend their applicability domains. In this respect, the practical possibilities of the Bethe-Salpeter equation (BSE) in articulating the necessary dynamical ingredients are emphasized on a two-tier basis, the basis constants (3) being pre-determined from the mass spectral data (1 st stage) in preparation for the construction of the hadron-quark vertex functions (2 nd stage). An explicit construction is outlined for meson-quark and baryon-quark vertex functions as well as of meson-nucleon vertex functions in a stepwise fashion. The role of the latter as basic parameter-free ingredients is discussed for possible use in the more serious treatment in the current literature of quark-meson level (α) and meson-isobar (β) d.o.f. in 2-N and 3-N form factor studies. Since most of these studies are characterized by the use of RGM techniques at the six-quark level, a comparative discussion is also given of several contemporary RGM based models. Finally, the concrete prospects for employing such hardon-quark vertex functions for evaluating pp-bar annihilation amplitudes are briefly indicated

  14. Jet structure in lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Kitazoe, T.; Morii, T.

    1980-01-01

    Materialization processes are studied in lepton-nucleon scattering on the assumption that all incoming and outgoing hadrons have a localized space-time structure described in terms of the Bethe-Salpeter (BS) amplitude. It is shown on the basis of loop diagrams that a coordination of strongly Lorentz contracted BS amplitudes has a key role in deriving two-jet structure. The formalism manifests two distinct models, depending on the parameters which represent the ranges of a BS amplitude. One is a strongly ordered cascade model which is in accordance with a naive quark cascade model. The other is an uncorrelated jet model which corresponds to an uncorrelated Monte Carlo calculation and it fails to be described as a cascade process. The former model predicts an equal spacing momentum distribution in rapidity space. The latter predicts symmetrical distributions in Feynman x-space. Several observable quantities are presented to discriminate between these two models. (orig.)

  15. Effect of ladder diagrams on optical absorption spectra in a quasiparticle self-consistent GW framework

    Science.gov (United States)

    Cunningham, Brian; Grüning, Myrta; Azarhoosh, Pooya; Pashov, Dimitar; van Schilfgaarde, Mark

    2018-03-01

    We present an approach to calculate the optical absorption spectra that combines the quasiparticle self-consistent GW method [Phys. Rev. B 76, 165106 (2007), 10.1103/PhysRevB.76.165106] for the electronic structure with the solution of the ladder approximation to the Bethe-Salpeter equation for the macroscopic dielectric function. The solution of the Bethe-Salpeter equation has been implemented within an all-electron framework, using a linear muffin-tin orbital basis set, with the contribution from the nonlocal self-energy to the transition dipole moments (in the optical limit) evaluated explicitly. This approach addresses those systems whose electronic structure is poorly described within the standard perturbative GW approaches with density-functional theory calculations as a starting point. The merits of this approach have been exemplified by calculating optical absorption spectra of a strongly correlated transition metal oxide, NiO, and a narrow gap semiconductor, Ge. In both cases, the calculated spectrum is in good agreement with the experiment. It is also shown that for systems whose electronic structure is well-described within the standard perturbative GW , such as Si, LiF, and h -BN , the performance of the present approach is in general comparable to the standard GW plus Bethe-Salpeter equation. It is argued that both vertex corrections to the electronic screening and the electron-phonon interaction are responsible for the observed systematic overestimation of the fundamental band gap and spectrum onset.

  16. Self-consistent approach to the eletronic problem in disordered solids

    International Nuclear Information System (INIS)

    Taguena-Martinez, J.; Barrio, R.A.; Martinez, E.; Yndurain, F.

    1984-01-01

    It is developed a simple formalism which allows us to perform a self consistent non-parametrized calculation in a non-periodic system, by finding out the thermodynamically averaged Green's function of a cluster Bethe lattice system. (Author) [pt

  17. Belief Propagation Algorithm for Portfolio Optimization Problems.

    Science.gov (United States)

    Shinzato, Takashi; Yasuda, Muneki

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.

  18. Belief Propagation Algorithm for Portfolio Optimization Problems.

    Directory of Open Access Journals (Sweden)

    Takashi Shinzato

    Full Text Available The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.

  19. A polêmica sobre o blog “O mundo precisa de poesia”: uma análise semiótica

    Directory of Open Access Journals (Sweden)

    Rafael Batista Andrade

    2012-04-01

    Full Text Available Este artigo tem o objetivo de analisar duas notícias publicadas nos jornais O globo e Folha de São Paulo, disponibilizadas online, sobre o projeto “O mundo precisa de poesia”, da intérprete brasileira Maria Bethânia. Os pressupostos teóricos assumidos para a realização das análises estão ancorados em algumas categorias do percurso gerativo de sentido da Teoria Semiótica francesa. Mais especificamente aquelas que estão enquadradas nos níveis narrativo e discursivo. Espera-se que este trabalho possa contribuir para um quadro de reflexões sobre o blog em geral e, em particular, sobre uma paródia do blog de Maria Bethânia, que nos remete à questão do bullying nesse espaço digital.

  20. Classical/quantum integrability in AdS/CFT

    International Nuclear Information System (INIS)

    Kazakov, V.A.; Marshakov, A.; Minahan, J.A.; Zarembo, K.

    2004-01-01

    We discuss the AdS/CFT duality from the perspective of integrable systems and establish a direct relationship between the dimension of single trace local operators composed of two types of scalar fields in N=4 super Yang-Mills and the energy of their dual semiclassical string states in AdS(5) x S(5). The anomalous dimensions can be computed using a set of Bethe equations, which for 'long' operators reduces to a Riemann-Hilbert problem. We develop a unified approach to the long wavelength Bethe equations, the classical ferromagnet and the classical string solutions in the SU(2) sector and present a general solution, governed by complex curves endowed with meromorphic differentials with integer periods. Using this solution we compute the anomalous dimensions of these long operators up to two loops and demonstrate that they agree with string-theory predictions. (author)