Where are the roots of the Bethe Ansatz equations?
Energy Technology Data Exchange (ETDEWEB)
Vieira, R.S., E-mail: rsvieira@df.ufscar.br; Lima-Santos, A., E-mail: dals@df.ufscar.br
2015-10-02
Changing the variables in the Bethe Ansatz Equations (BAE) for the XXZ six-vertex model we had obtained a coupled system of polynomial equations. This provided a direct link between the BAE deduced from the Algebraic Bethe Ansatz (ABA) and the BAE arising from the Coordinate Bethe Ansatz (CBA). For two magnon states this polynomial system could be decoupled and the solutions given in terms of the roots of some self-inversive polynomials. From theorems concerning the distribution of the roots of self-inversive polynomials we made a thorough analysis of the two magnon states, which allowed us to find the location and multiplicity of the Bethe roots in the complex plane, to discuss the completeness and singularities of Bethe's equations, the ill-founded string-hypothesis concerning the location of their roots, as well as to find an interesting connection between the BAE with Salem’s polynomials.
Bethe ansatz equations for open spin chains from giant gravitons
International Nuclear Information System (INIS)
Nepomechie, Rafael I.
2009-01-01
We investigate the open spin chain describing the scalar sector of the Y = 0 giant graviton brane at weak coupling. We provide a direct proof of integrability in the SU(2) and SU(3) sectors by constructing the transfer matrices. We determine the eigenvalues of these transfer matrices in terms of roots of the corresponding Bethe ansatz equations (BAEs). Based on these results, we propose BAEs for the full SO(6) sector. We find that, in the weak-coupling limit, the recently-proposed all-loop BAEs essentially agree with those proposed in the present work.
Wang, Chunguang
Integrable quantum spin chains have close connections to integrable quantum field. theories, modern condensed matter physics, string and Yang-Mills theories. Bethe. ansatz is one of the most important approaches for solving quantum integrable spin. chains. At the heart of the algebraic structure of integrable quantum spin chains is. the quantum Yang-Baxter equation and the boundary Yang-Baxter equation. This. thesis focuses on four topics in Bethe ansatz. The Bethe equations for the isotropic periodic spin-1/2 Heisenberg chain with N. sites have solutions containing ±i/2 that are singular: both the corresponding energy and the algebraic Bethe ansatz vector are divergent. Such solutions must be carefully regularized. We consider a regularization involving a parameter that can be. determined using a generalization of the Bethe equations. These generalized Bethe. equations provide a practical way of determining which singular solutions correspond. to eigenvectors of the model. The Bethe equations for the periodic XXX and XXZ spin chains admit singular. solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to bephysical, in which case they correspond to genuine eigenvalues and eigenvectors of. the Hamiltonian. We analyze the ground state of the open spin-1/2 isotropic quantum spin chain. with a non-diagonal boundary term using a recently proposed Bethe ansatz solution. As the coefficient of the non-diagonal boundary term tends to zero, the Bethe roots. split evenly into two sets: those that remain finite, and those that become infinite. We. argue that the former satisfy conventional Bethe equations, while the latter satisfy a. generalization of the Richardson-Gaudin equations. We derive an expression for the. leading correction to the boundary energy in terms of the boundary parameters. We argue that the Hamiltonians for A(2) 2n open quantum spin chains
ODE/IM correspondence and Bethe ansatz for affine Toda field equations
Directory of Open Access Journals (Sweden)
Katsushi Ito
2015-07-01
Full Text Available We study the linear problem associated with modified affine Toda field equation for the Langlands dual gˆ∨, where gˆ is an untwisted affine Lie algebra. The connection coefficients for the asymptotic solutions of the linear problem are found to correspond to the Q-functions for g-type quantum integrable models. The ψ-system for the solutions associated with the fundamental representations of g leads to Bethe ansatz equations associated with the affine Lie algebra gˆ. We also study the A2r(2 affine Toda field equation in massless limit in detail and find its Bethe ansatz equations as well as T–Q relations.
O(N)-matrix difference equations and a nested Bethe ansatz
International Nuclear Information System (INIS)
Babujian, Hrachya M; Foerster, Angela; Karowski, Michael
2012-01-01
A system of O(N)-matrix difference equations is solved by means of the off-shell version of the nested algebraic Bethe ansatz. In the nesting process, a new object, the Π-matrix, is introduced to overcome the complexities of the O(N)-group structure. The highest weight property of the solutions is proved and some explicit examples are discussed. (paper)
Jurco, B.
2003-01-01
We describe an integrable model, related to the Gaudin magnet, and its relation to the matrix model of Brezin, Itzykson, Parisi and Zuber. Relation is based on Bethe ansatz for the integrable model and its interpretation using orthogonal polynomials and saddle point approximation. Lagre $N$ limit of the matrix model corresponds to the thermodynamic limit of the integrable system. In this limit (functional) Bethe ansatz is the same as the generating function for correlators of the matrix models.
Algebraic Bethe ansatz for the Izergin-Korepin R matrix
International Nuclear Information System (INIS)
Tarasov, V.O.
1989-01-01
The authors propose a generalization of the algebraic Bethe ansatz for the Izergin-Korepin R matrix - the simplest unstudied odd-dimensional solution of the Yang-Baxter equation - and they discuss some related questions. The first section of the paper is an introduction. In the second they indicate a way of generalizing the algebraic Bethe ansatz to the case of the Izergin-Korepin R matrix. The simplest monodromy matrices (L operators) for this R matrix are described in the third section. The fourth section is devoted to the proof of the proposed generalization of the algebraic Bethe ansatz
Thermodynamic Bethe ansatz with Haldane statistics
International Nuclear Information System (INIS)
Bytsko, A.G.; Fring, A.
1998-01-01
We derive the thermodynamic Bethe ansatz equation for the situation in which the statistical interaction of a multi-particle system is governed by Haldane statistics. We formulate a macroscopical equivalence principle for such systems. Particular CDD ambiguities play a distinguished role in compensating the ambiguity in the exclusion statistics. We derive Y-systems related to generalized statistics. We discuss several fermionic, bosonic and anyonic versions of affine Toda field theories and Calogero-Sutherland type models in the context of generalized statistics. (orig.)
Algebraic Bethe ansatz for 19-vertex models with reflection conditions
International Nuclear Information System (INIS)
Utiel, Wagner
2003-01-01
In this work we solve the 19-vertex models with the use of algebraic Bethe ansatz for diagonal reflection matrices (Sklyanin K-matrices). The eigenvectors, eigenvalues and Bethe equations are given in a general form. Quantum spin chains of spin one derived from the 19-vertex models were also discussed
Off-diagonal Bethe ansatz for exactly solvable models
Wang, Yupeng; Cao, Junpeng; Shi, Kangjie
2015-01-01
This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems.
Introduction to the thermodynamic Bethe ansatz
van Tongeren, Stijn J.
2016-08-01
We give a pedagogical introduction to the thermodynamic Bethe ansatz, a method that allows us to describe the thermodynamics of integrable models whose spectrum is found via the (asymptotic) Bethe ansatz. We set the stage by deriving the Fermi-Dirac distribution and associated free energy of free electrons, and then in a similar though technically more complicated fashion treat the thermodynamics of integrable models, focusing first on the one-dimensional Bose gas with delta function interaction as a clean pedagogical example, secondly the XXX spin chain as an elementary (lattice) model with prototypical complicating features in the form of bound states, and finally the {SU}(2) chiral Gross-Neveu model as a field theory example. Throughout this discussion we emphasize the central role of particle and hole densities, whose relations determine the model under consideration. We then discuss tricks that allow us to use the same methods to describe the exact spectra of integrable field theories on a circle, in particular the chiral Gross-Neveu model. We moreover discuss the simplification of TBA equations to Y systems, including the transition back to integral equations given sufficient analyticity data, in simple examples.
Bethe Ansatz and supersymmetric vacua
International Nuclear Information System (INIS)
Nekrasov, Nikita; Shatashvili, Samson
2009-01-01
Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T 2 . A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.
Bethe ansatz and ordinary differential equation correspondence for degenerate Gaudin models
El Araby, Omar; Gritsev, Vladimir; Faribault, Alexandre
2012-03-01
In this work, we generalize the numerical approach to Gaudin models developed earlier by us [Faribault, El Araby, Sträter, and Gritsev, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.235124 83, 235124 (2011)] to degenerate systems, showing that their treatment is surprisingly convenient from a numerical point of view. In fact, high degeneracies not only reduce the number of relevant states in the Hilbert space by a non-negligible fraction, they also allow us to write the relevant equations in the form of sparse matrix equations. Moreover, we introduce an inversion method based on a basis of barycentric polynomials that leads to a more stable and efficient root extraction, which most importantly avoids the necessity of working with arbitrary precision. As an example, we show the results of our procedure applied to the Richardson model on a square lattice.
Conformal partition functions of critical percolation from D 3 thermodynamic Bethe Ansatz equations
Morin-Duchesne, Alexi; Klümper, Andreas; Pearce, Paul A.
2017-08-01
Using the planar Temperley-Lieb algebra, critical bond percolation on the square lattice can be reformulated as a loop model. In this form, it is incorporated as {{ L}}{{ M}}(2, 3) in the Yang-Baxter integrable family of logarithmic minimal models {{ L}}{{ M}}( p, p\\prime) . We consider this model of percolation in the presence of boundaries and with periodic boundary conditions. Inspired by Kuniba, Sakai and Suzuki, we rewrite the recently obtained infinite Y-system of functional equations. In this way, we obtain nonlinear integral equations in the form of a closed finite set of TBA equations described by a D 3 Dynkin diagram. Following the methods of Klümper and Pearce, we solve the TBA equations for the conformal finite-size corrections. For the ground states of the standard modules on the strip, these agree with the known central charge c = 0 and conformal weights Δ1, s for \\renewcommand≥≥slant} s\\in {{ Z}≥slant 1} with Δr, s=\\big((3r-2s){\\hspace{0pt}}^2-1\\big)/24 . For the periodic case, the finite-size corrections agree with the conformal weights Δ0, s , Δ1, s with \\renewcommand{≥{≥slant} s\\in\\frac{1}{2}{{ Z}≥slant 0} . These are obtained analytically using Rogers dilogarithm identities. We incorporate all finite excitations by formulating empirical selection rules for the patterns of zeros of all the eigenvalues of the standard modules. We thus obtain the conformal partition functions on the cylinder and the modular invariant partition function (MIPF) on the torus. By applying q-binomial and q-Narayana identities, it is shown that our refined finitized characters on the strip agree with those of Pearce, Rasmussen and Zuber. For percolation on the torus, the MIPF is a non-diagonal sesquilinear form in affine u(1) characters given by the u(1) partition function Z2, 3(q)=Z2, 3{Circ}(q) . The u(1) operator content is {{ N}}Δ, \\barΔ=1 for Δ=\\barΔ=-\\frac{1}{24}, \\frac{35}{24} and {{ N}}Δ, \\barΔ=2 for
Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE
Jiang, Yunfeng; Zhang, Yang
2018-03-01
In this paper and upcoming ones, we initiate a systematic study of Bethe ansatz equations for integrable models by modern computational algebraic geometry. We show that algebraic geometry provides a natural mathematical language and powerful tools for understanding the structure of solution space of Bethe ansatz equations. In particular, we find novel efficient methods to count the number of solutions of Bethe ansatz equations based on Gröbner basis and quotient ring. We also develop analytical approach based on companion matrix to perform the sum of on-shell quantities over all physical solutions without solving Bethe ansatz equations explicitly. To demonstrate the power of our method, we revisit the completeness problem of Bethe ansatz of Heisenberg spin chain, and calculate the sum rules of OPE coefficients in planar N=4 super-Yang-Mills theory.
Bethe ansatz solution of the closed anisotropic supersymmetric U model with quantum supersymmetry
International Nuclear Information System (INIS)
Hibberd, Katrina; Roditi, Itzhak; Links, Jon; Foerster, Angela
1999-11-01
The nested algebraic Bethe Ansatz is presented for the anisotropic supersymmetric U model maintaining quantum a supersymmetry. The Bethe Ansatz equations of the model are obtained on a one-dimensional closed lattice and an expression for the energy is given. (author)
Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li, E-mail: wlyang@nwu.edu.cn [Institute of Modern Physics, Northwest University, Xian 710069 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2013-10-01
Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–Q relation and the Bethe ansatz equations are derived.
Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions
International Nuclear Information System (INIS)
Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2013-01-01
Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–Q relation and the Bethe ansatz equations are derived
Bethe ansatz study for ground state of Fateev Zamolodchikov model
International Nuclear Information System (INIS)
Ray, S.
1997-01-01
A Bethe ansatz study of a self-dual Z N spin lattice model, originally proposed by V. A. Fateev and A. B. Zamolodchikov, is undertaken. The connection of this model to the Chiral Potts model is established. Transcendental equations connecting the zeros of Fateev endash Zamolodchikov transfer matrix are derived. The free energies for the ferromagnetic and the anti-ferromagnetic ground states are found for both even and odd spins. copyright 1997 American Institute of Physics
Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models
Directory of Open Access Journals (Sweden)
Sh. Khachatryan
2015-10-01
Full Text Available We extend basic properties of two dimensional integrable models within the Algebraic Bethe Ansatz approach to 2+1 dimensions and formulate the sufficient conditions for the commutativity of transfer matrices of different spectral parameters, in analogy with Yang–Baxter or tetrahedron equations. The basic ingredient of our models is the R-matrix, which describes the scattering of a pair of particles over another pair of particles, the quark-anti-quark (meson scattering on another quark-anti-quark state. We show that the Kitaev model belongs to this class of models and its R-matrix fulfills well-defined equations for integrability.
Bethe ansatz solutions of the τ{sub 2}-model with arbitrary boundary fields
Energy Technology Data Exchange (ETDEWEB)
Xu, Xiaotian; Hao, Kun; Yang, Tao [Institute of Modern Physics, Northwest University,Xian 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xian 710069 (China); Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics,Institute of Physics, Chinese Academy of Sciences,Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter,Beijing (China); School of Physical Sciences, University of Chinese Academy of Sciences,Beijing (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University,Xian 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences,Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University,Xian 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xian 710069 (China)
2016-11-11
The quantum τ{sub 2}-model with generic site-dependent inhomogeneity and arbitrary boundary fields is studied via the off-diagonal Bethe Ansatz method. The eigenvalues of the corresponding transfer matrix are given in terms of an inhomogeneous T−Q relation, which is based on the operator product identities among the fused transfer matrices and the asymptotic behavior of the transfer matrices. Moreover, the associated Bethe Ansatz equations are also obtained.
Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
Directory of Open Access Journals (Sweden)
Samuel Belliard
2013-11-01
Full Text Available We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations formally similar to the ones obtained in the periodic case or with diagonal boundaries.
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
Energy Technology Data Exchange (ETDEWEB)
Cirilo António, N., E-mail: nantonio@math.ist.utl.pt [Centro de Análise Funcional e Aplicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Manojlović, N., E-mail: nmanoj@ualg.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Prof. Gama Pinto 2, PT-1649-003 Lisboa (Portugal); Departamento de Matemática, F.C.T., Universidade do Algarve, Campus de Gambelas, PT-8005-139 Faro (Portugal); Salom, I., E-mail: isalom@ipb.ac.rs [Institute of Physics, University of Belgrade, P.O. Box 57, 11080 Belgrade (Serbia)
2014-12-15
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
Cirilo António, N.; Manojlović, N.; Salom, I.
2014-12-01
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.
Bethe ansatz approach to quantum sine Gordon thermodynamics and finite temperature excitations
International Nuclear Information System (INIS)
Zotos, X.
1982-01-01
Takahashi and Suzuki (TS) using the Bethe ansatz method developed a formalism for the thermodynamics of the XYZ spin chain. Translating their formalism to the quantum sine-Gordon system, the thermodynamics and finite temperature elementary excitations are analyzed. Criteria imposed by TS on the allowed states simply correspond to the condition of normalizability of the wave functions. A set of coupled nonlinear integral equations for the thermodynamic equilibrium densities for particular values of the coupling constant in the attractive regime is derived. Solving numerically these Bethe ansatz equations, curves of the specific heat as a function of temperature are obtained. The soliton contribution peaks at a temperature of about 0.4 soliton masses shifting downward as the classical limit is approached. The weak coupling regime is analyzed by deriving the Bethe ansatz equations including the charged vacuum excitations. It is shown that they are necessary for a consistent presentation of the thermodynamics
A universality test of the quantum string Bethe ansatz
DEFF Research Database (Denmark)
Freyhult, L.; Kristjansen, C.
2006-01-01
We show that the quantum corrected string Bethe ansatz passes an important universality test by demonstrating that it correctly incorporates the non-analytical terms in the string sigma model one-loop correction for rational three-spin strings with two out of the three spins identical. Subsequent......, we use the quantum corrected string Bethe ansatz to predict the exact form of the non-analytic terms for the generic rational three-spin string.......We show that the quantum corrected string Bethe ansatz passes an important universality test by demonstrating that it correctly incorporates the non-analytical terms in the string sigma model one-loop correction for rational three-spin strings with two out of the three spins identical. Subsequently...
Combinatorics of Generalized Bethe Equations
Kozlowski, Karol K.; Sklyanin, Evgeny K.
2013-10-01
A generalization of the Bethe ansatz equations is studied, where a scalar two-particle S-matrix has several zeroes and poles in the complex plane, as opposed to the ordinary single pole/zero case. For the repulsive case (no complex roots), the main result is the enumeration of all distinct solutions to the Bethe equations in terms of the Fuss-Catalan numbers. Two new combinatorial interpretations of the Fuss-Catalan and related numbers are obtained. On the one hand, they count regular orbits of the permutation group in certain factor modules over {{Z}^M}, and on the other hand, they count integer points in certain M-dimensional polytopes.
The Yangians, Bethe ansatz and combinatorics
International Nuclear Information System (INIS)
Kirillov, A.N.; Reshetikhin, N.Yu.
1986-01-01
An axiomatic definition of a quantum monodromy matrix and the representations of its corresponding Hopf algebra are discussed. The connection between the quantum inverse transform method and the representation theory of a symmetric group is considered. A new approach to the completeness problem of Bethe vectors is also given. (orig.)
From tricritical Ising to critical Ising by thermodynamic Bethe ansatz
International Nuclear Information System (INIS)
Zamolodchikov, A.B.
1991-01-01
A simple factorized scattering theory is suggested for the massless Goldstone fermions of the trajectory flowing from the tricritical Ising fixed point to the critical Ising one. The thermodynamic Bethe ansatz approach is applied to this scattering theory to support its interpretation both analytically and numerically. As a generalization a sequence of massless TBA systems is proposed which seems relevant for the trajectories interpolating between two successive minimal CFT models M p and M p-1 . (orig.)
Long-range psu(2,2|4) Bethe ansatze for gauge theory and strings
International Nuclear Information System (INIS)
Beisert, Niklas; Staudacher, Matthias
2005-01-01
We generalize various existing higher-loop Bethe ansatze for simple sectors of the integrable long-range dynamic spin chain describing planar N=4 super-Yang-Mills theory to the full psu(2,2|4) symmetry and, asymptotically, to arbitrary loop order. We perform a large number of tests of our conjectured equations, such as internal consistency, comparison to direct three-loop diagonalization and expected thermodynamic behavior. In the special case of the su(1|2) subsector, corresponding to a long-range t-J model, we are able to derive, up to three loops, the S-matrix and the associated nested Bethe ansatz from the gauge theory dilatation operator. We conjecture novel all-order S-matrices for the su(1|2) and su(1,1|2) subsectors, and show that they satisfy the Yang-Baxter equation. Throughout the paper, we muse about the idea that quantum string theory on AdS 5 xS 5 is also described by a psu(2,2|4) spin chain. We propose asymptotic all-order Bethe equations for this putative ''string chain'', which differ in a systematic fashion from the gauge theory equations
Correlation functions of the spin chains. Algebraic Bethe Ansatz approach
International Nuclear Information System (INIS)
Kitanine, N.
2007-09-01
Spin chains are the basic elements of integrable quantum models. These models have direct applications in condense matter theory, in statistical physics, in quantum optics, in field theory and even in string theory but they are also important because they enable us to solve, in an exact manner, non-perturbative phenomena that otherwise would stay unresolved. The method described in this work is based on the algebraic Bethe Ansatz. It is shown how this method can be used for the computation of null temperature correlation functions of the Heisenberg 1/2 spin chain. The important point of this approach is the solution of the inverse quantum problem given by the XXZ spin chain. This solution as well as a simple formulae for the scalar product of the Bethe states, have enabled us to get the most basic correlation functions under the form of multiple integrals. The formalism of multiple integrals open the way for asymptotic analysis for a few physical quantities like the probability of vacuum formation. It is worth noticing that this formalism can give exact results for two-point functions that are the most important correlation functions for applications. A relationship has been discovered between these multiple integrals and the sum of the form factors. The results have been extended to dynamical correlation functions. (A.C.)
Nested Bethe Ansatz for Spin Ladder Model with Open Boundary Conditions
International Nuclear Information System (INIS)
Wu Junfang; Zhang Chunmin; Yue Ruihong; Li Runling
2005-01-01
The nested Bethe ansatz (BA) method is applied to find the eigenvalues and the eigenvectors of the transfer matrix for spin-ladder model with open boundary conditions. Based on the reflection equation, we find the general diagonal solution, which determines the general boundary interaction in the Hamiltonian. We introduce the spin-ladder model with open boundary conditions. By finding the solution K ± of the reflection equation which determines the nontrivial boundary terms in the Hamiltonian, we diagonalize the transfer matrix of the spin-ladder model with open boundary conditions in the framework of nested BA.
The q-deformed analogue of the Onsager algebra: Beyond the Bethe ansatz approach
International Nuclear Information System (INIS)
Baseilhac, Pascal
2006-01-01
The spectral properties of operators formed from generators of the q-Onsager non-Abelian infinite-dimensional algebra are investigated. Using a suitable functional representation, all eigenfunctions are shown to obey a second-order q-difference equation (or its degenerate discrete version). In the algebraic sector associated with polynomial eigenfunctions (or their discrete analogues), Bethe equations naturally appear. Beyond this sector, where the Bethe ansatz approach is not applicable in related massive quantum integrable models, the eigenfunctions are also described. The spin-half XXZ open spin chain with general integrable boundary conditions is reconsidered in light of this approach: all the eigenstates are constructed. In the algebraic sector which corresponds to special relations among the parameters, known results are recovered
Manojlović, N.; Salom, I.
2017-10-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
International Nuclear Information System (INIS)
Manojlović, N.; Salom, I.
2017-01-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
Directory of Open Access Journals (Sweden)
N. Manojlović
2017-10-01
Full Text Available The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity
Directory of Open Access Journals (Sweden)
Azat M. Gainutdinov
2016-08-01
Full Text Available For generic values of q, all the eigenvectors of the transfer matrix of the Uqsl(2-invariant open spin-1/2 XXZ chain with finite length N can be constructed using the algebraic Bethe ansatz (ABA formalism of Sklyanin. However, when q is a root of unity (q=eiπ/p with integer p≥2, the Bethe equations acquire continuous solutions, and the transfer matrix develops Jordan cells. Hence, there appear eigenvectors of two new types: eigenvectors corresponding to continuous solutions (exact complete p-strings, and generalized eigenvectors. We propose general ABA constructions for these two new types of eigenvectors. We present many explicit examples, and we construct complete sets of (generalized eigenvectors for various values of p and N.
Asymptotic Bethe ansatz S-matrix and Landau-Lifshitz-type effective 2d actions
International Nuclear Information System (INIS)
Roiban, R; Tirziu, A; Tseytlin, A A
2006-01-01
Motivated by the desire to relate Bethe ansatz equations for anomalous dimensions found on the gauge-theory side of the AdS/CFT correspondence to superstring theory on AdS 5 x S 5 we explore a connection between the asymptotic S-matrix that enters the Bethe ansatz and an effective two-dimensional quantum field theory. The latter generalizes the standard 'non-relativistic' Landau-Lifshitz (LL) model describing low-energy modes of ferromagnetic Heisenberg spin chain and should be related to a limit of superstring effective action. We find the exact form of the quartic interaction terms in the generalized LL-type action whose quantum S-matrix matches the low-energy limit of the asymptotic S-matrix of the spin chain of Beisert, Dippel and Staudacher (BDS). This generalizes to all orders in the 't Hooft coupling λ an earlier computation of Klose and Zarembo of the S-matrix of the standard LL model. We also consider a generalization to the case when the spin-chain S-matrix contains an extra 'string' phase and determine the exact form of the LL 4-vertex corresponding to the low-energy limit of the ansatz of Arutyunov, Frolov and Staudacher (AFS). We explain the relation between the resulting 'non-relativistic' non-local action and the second-derivative string sigma model. We comment on modifications introduced by strong-coupling corrections to the AFS phase. We mostly discuss the SU(2) sector but also present generalizations to the SL(2) and SU(1|1) sectors, confirming universality of the dressing phase contribution by matching the low-energy limit of the AFS-type spin-chain S-matrix with tree-level string-theory S-matrix
International Nuclear Information System (INIS)
Slavnov, N.A.
1989-01-01
The Bethe ansatz method is widely used to investigate two-dimensional completely integrable models. In the framework of the quantum inverse scattering method it has proved to be possible to construct an algebraic scheme of the Bethe ansatz, and this has been successfully applied to calculation of correlation functions. One of the important questions of the method is that of the scalar products of the wave functions. In particular, knowledge of the properties of the scalar products is necessary for investigating the form factors and correlation function. In the present paper the author considers a generalized model with R matrix of the model of the nonlinear Schroedinger equation. The main formulas and notation are given in Sec. 2. In Sec. 3 he calculates the scalar product of an arbitrary function and an eigenfunction of the Hamiltonian. The generalized two-site model is introduced in Sec. 4. In Sec. 5 he calculates the form factor of the particle number operator
International Nuclear Information System (INIS)
Mishra, A.K.; Kishore, R.
2009-01-01
The exact nested Bethe ansatz solution for the one dimensional (1-D) U infinity Hubbard model show that the state vectors are a product of spin-less fermion and spin wavefunctions, or an appropriate superposition of such factorized wavefunctions. The spin-less fermion component of the wavefunctions ensures no double occupancy at any site. It had been demonstrated that the nested Bethe ansatz wavefunctions in the U infinity limit obey orthofermi statistics. Gutzwiller projection operator formalism is the another well known technique employed to handle U infinity Hubbard model. In general, this approach does not lead to spin-less fermion wavefunctions. Therefore, the nested Bethe ansatz and Gutzwiller projection operator approach give rise to different kinds of the wavefunctions for the U infinity limit of 1-D Hubbard Hamiltonian. To compare the consequences of this dissimilarity in the wavefunctions, we have obtained the ground state energy of a finite system consisting of three particles on a four site closed chain. It is shown that in the nested Bethe ansatz implemented through orthofermion algebra, all the permissible 2 3 spin configurations are degenerate in the ground state. This eight fold degeneracy of the ground state is absent in the Gutzwiller projection operator approach. This finding becomes relevant in the context of known exact U infinity results, which require that all the energy levels are 2 N -fold degenerate for an N particle system.
Energy Technology Data Exchange (ETDEWEB)
Milewski, J., E-mail: jsmilew@wp.pl [Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań (Poland); Lulek, B., E-mail: barlulek@amu.edu.pl [East European State Higher School, ul. Tymona Terleckiego 6, 37-700 Przemyśl (Poland); Lulek, T., E-mail: tadlulek@prz.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); East European State Higher School, ul. Tymona Terleckiego 6, 37-700 Przemyśl (Poland); Łabuz, M., E-mail: labuz@univ.rzeszow.pl [University of Rzeszow, Institute of Physics, Rejtana 16a, 35-959 Rzeszów (Poland); Stagraczyński, R., E-mail: rstag@prz.edu.pl [Rzeszow University of Technology, The Faculty of Mathematics and Applied Physics, Powstańców Warszawy 6, 35-959 Rzeszów (Poland)
2014-02-01
The exact Bethe eigenfunctions for the heptagonal ring within the isotropic XXX model exhibit a doubly degenerated energy level in the three-deviation sector at the centre of the Brillouin zone. We demonstrate an explicit construction of these eigenfunctions by use of algebraic Bethe Ansatz, and point out a relation of degeneracy to parity conservation, applied to the configuration of strings for these eigenfunctions. Namely, the internal structure of the eigenfunctions (the 2-string and the 1-string, with opposite quasimomenta) admits generation of two mutually orthogonal eigenfunctions due to the fact that the strings which differ by their length are distinguishable objects.
Bethe Ansatz and exact form factors of the O(N) Gross Neveu-model
International Nuclear Information System (INIS)
Babujian, Hrachya M.; Foerster, Angela; Karowski, Michael
2016-01-01
We apply previous results on the O(N) Bethe Ansatz http://dx.doi.org/10.1088/1751-8113/45/5/055207, http://arxiv.org/abs/1204.3479, http://dx.doi.org/10.1007/JHEP11(2013)089 to construct a general form factor formula for the O(N) Gross-Neveu model. We examine this formula for several operators, such as the energy momentum, the spin-field and the current. We also compare these results with the 1/N expansion of this model and obtain full agreement. We discuss bound state form factors, in particular for the three particle form factor of the field. In addition for the two particle case we prove a recursion relation for the K-functions of the higher level Bethe Ansatz.
Thermodynamic Bethe Ansatz for the Spin-1/2 Staggered XXZ- Model
Mkhitaryan, V. V.; Sedrakyan, A. G.
2003-01-01
We develop the technique of Thermodynamic Bethe Ansatz to investigate the ground state and the spectrum in the thermodynamic limit of the staggered $XXZ$ models proposed recently as an example of integrable ladder model. This model appeared due to staggered inhomogeneity of the anisotropy parameter $\\Delta$ and the staggered shift of the spectral parameter. We give the structure of ground states and lowest lying excitations in two different phases which occur at zero temperature.
Energy Technology Data Exchange (ETDEWEB)
Kitanine, N
2007-09-15
Spin chains are the basic elements of integrable quantum models. These models have direct applications in condense matter theory, in statistical physics, in quantum optics, in field theory and even in string theory but they are also important because they enable us to solve, in an exact manner, non-perturbative phenomena that otherwise would stay unresolved. The method described in this work is based on the algebraic Bethe Ansatz. It is shown how this method can be used for the computation of null temperature correlation functions of the Heisenberg 1/2 spin chain. The important point of this approach is the solution of the inverse quantum problem given by the XXZ spin chain. This solution as well as a simple formulae for the scalar product of the Bethe states, have enabled us to get the most basic correlation functions under the form of multiple integrals. The formalism of multiple integrals open the way for asymptotic analysis for a few physical quantities like the probability of vacuum formation. It is worth noticing that this formalism can give exact results for two-point functions that are the most important correlation functions for applications. A relationship has been discovered between these multiple integrals and the sum of the form factors. The results have been extended to dynamical correlation functions. (A.C.)
Quantum quench dynamics of the attractive one-dimensional Bose gas via the coordinate Bethe ansatz
Directory of Open Access Journals (Sweden)
Jan C. Zill, Tod M. Wright, Karen V. Kheruntsyan, Thomas Gasenzer, Matthew J. Davis
2018-02-01
Full Text Available We use the coordinate Bethe ansatz to study the Lieb-Liniger model of a one-dimensional gas of bosons on a finite-sized ring interacting via an attractive delta-function potential. We calculate zero-temperature correlation functions for seven particles in the vicinity of the crossover to a localized solitonic state and study the dynamics of a system of four particles quenched to attractive interactions from the ideal-gas ground state. We determine the time evolution of correlation functions, as well as their temporal averages, and discuss the role of bound states in shaping the postquench correlations and relaxation dynamics.
Bethe ansatz for two-magnon scattering states in 2D and 3D Heisenberg–Ising ferromagnets
Bibikov, P. N.
2018-04-01
Two different versions of Bethe ansatz are suggested for evaluation of scattering two-magnon states in 2D and 3D Heisenberg–Ising ferromagnets on square and simple cubic lattices. It is shown that the two-magnon sector is subdivided on two subsectors related to non-interacting and scattering magnons. The former subsector possess an integrable regular dynamics and may be described by a natural modification of the usual Bethe Ansatz. The latter one is characterized by a non-integrable chaotic dynamics and may be treated only within discrete degenerative version of Bethe Ansatz previously suggested by the author. Some of these results are generalized for multi-magnon states of the Heisenberg–Ising ferromagnet on a D dimensional hyper cubic lattice. Dedicated to the memory of L D Faddeev.
A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons
International Nuclear Information System (INIS)
Hibberd, K.E.; Dunning, C.; Links, J.
2006-01-01
We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane
Log-gamma directed polymer with fixed endpoints via the replica Bethe Ansatz
International Nuclear Information System (INIS)
Thiery, Thimothée; Le Doussal, Pierre
2014-01-01
We study the model of a discrete directed polymer (DP) on a square lattice with homogeneous inverse gamma distribution of site random Boltzmann weights, introduced by Seppalainen (2012 Ann. Probab. 40 19–73). The integer moments of the partition sum, Z n -bar , are studied using a transfer matrix formulation, which appears as a generalization of the Lieb–Liniger quantum mechanics of bosons to discrete time and space. In the present case of the inverse gamma distribution the model is integrable in terms of a coordinate Bethe Ansatz, as discovered by Brunet. Using the Brunet-Bethe eigenstates we obtain an exact expression for the integer moments of Z n -bar for polymers of arbitrary lengths and fixed endpoint positions. Although these moments do not exist for all integer n, we are nevertheless able to construct a generating function which reproduces all existing integer moments and which takes the form of a Fredholm determinant (FD). This suggests an analytic continuation via a Mellin–Barnes transform and we thereby propose a FD ansatz representation for the probability distribution function (PDF) of Z and its Laplace transform. In the limit of a very long DP, this ansatz yields that the distribution of the free energy converges to the Gaussian unitary ensemble (GUE) Tracy-Widom distribution up to a non-trivial average and variance that we calculate. Our asymptotic predictions coincide with a result by Borodin et al (2013 Commun. Math. Phys. 324 215–32) based on a formula obtained by Corwin et al (2011 arXiv:1110.3489) using the geometric Robinson–Schensted–Knuth (gRSK) correspondence. In addition we obtain the dependence on the endpoint position and the exact elastic coefficient at a large time. We argue the equivalence between our formula and that of Borodin et al. As we will discuss, this provides a connection between quantum integrability and tropical combinatorics. (paper)
Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications
International Nuclear Information System (INIS)
Martins, M.J.; Melo, C.S.
2009-01-01
We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U q [SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.
Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications
Martins, M. J.; Melo, C. S.
2009-10-01
We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U[SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.
Bethe-salpeter equation from many-body perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Sander, Tobias; Starke, Ronald; Kresse, Georg [Computational Materials Physics, University of Vienna, Sensengasse 8/12, 1090 Vienna (Austria)
2013-07-01
The Green function formalism is a powerful tool to calculate not only electronic structure within the quasi-particle (QP) picture, but it also gives access to optical absorption spectra. Starting from QP energies within the GW method, the polarizability, as central quantity, is calculated from the solution of a Bethe-Salpeter-like equation (BSE). It is usually solved within the Tamm-Dancoff Approximation (TDA) which neglects the coupling of resonant (positive frequency branch) and anti-resonant (negative frequency branch) excitations. In this work we solve the full BSE (beyond TDA) based on self-consistently calculated QP orbitals and energies for typical systems. The dielectric function is averaged over many low dimensional shifted k-meshes to obtain k-point converged results. We compare the results to recently introduced approximation to the BSE kernel. Additionally, the time-evolution ansatz is employed to calculate the polarizability, which avoids the direct solution of the BSE.
Site-occupation embedding theory using Bethe ansatz local density approximations
Senjean, Bruno; Nakatani, Naoki; Tsuchiizu, Masahisa; Fromager, Emmanuel
2018-06-01
Site-occupation embedding theory (SOET) is an alternative formulation of density functional theory (DFT) for model Hamiltonians where the fully interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a noninteracting) one. It provides a rigorous framework for combining wave-function (or Green function)-based methods with DFT. In this work, exact expressions for the per-site energy and double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative solutions to the Hubbard and single-impurity Anderson models are constructed and tested on a one-dimensional ring. The self-consistent calculation of the embedded impurity wave function has been performed with the density-matrix renormalization group method. It has been shown that promising results are obtained in specific regimes of correlation and density. Possible further developments have been proposed in order to provide reliable embedding functionals and potentials.
Nataf, Pierre; Mila, Frédéric
2018-04-01
We develop an efficient method to perform density matrix renormalization group simulations of the SU(N ) Heisenberg chain with open boundary conditions taking full advantage of the SU(N ) symmetry of the problem. This method is an extension of the method previously developed for exact diagonalizations and relies on a systematic use of the basis of standard Young tableaux. Concentrating on the model with the fundamental representation at each site (i.e., one particle per site in the fermionic formulation), we have benchmarked our results for the ground-state energy up to N =8 and up to 420 sites by comparing them with Bethe ansatz results on open chains, for which we have derived and solved the Bethe ansatz equations. The agreement for the ground-state energy is excellent for SU(3) (12 digits). It decreases with N , but it is still satisfactory for N =8 (six digits). Central charges c are also extracted from the entanglement entropy using the Calabrese-Cardy formula and agree with the theoretical values expected from the SU (N) 1 Wess-Zumino-Witten conformal field theories.
Knitting Ansatz and solutions to Yang-Baxter equation
International Nuclear Information System (INIS)
Zhang Jun; Guo Hanying; Yan Hong
1997-01-01
The authors suggest a new method, named knitting Ansatz, to generate solutions to Yang-Baxter equation with lower dimensional representations of braid group. To support this Ansatz, the authors work out an example of a new 16 x 16 R-matrix constructed along this idea, with two 4 x 4 braid group representations of familiar 6-vertex type with different q-parameters
The Bethe-Salpeter equation with fermions
International Nuclear Information System (INIS)
Efimov, G.V.
2007-01-01
The Bethe-Salpeter (BS) equation in the ladder approximation is studied within a fermion theory: two fermion fields (constituents) with mass m interacting via an exchange of a scalar field with mass μ. The BS equation can be written in the form of an integral equation in the configuration Euclidean x-space with the symmetric kernel K for which Tr K 2 = ∞ due to the singular character of the fermion propagator. This kernel is represented in the form K = K 0 + K I . The operator K 0 with Tr K 0 2 ∞ is of the 'fall at the center' potential type and describes a continuous spectrum only. Besides the presence of this operator leads to a restriction on the value of the coupling constant. The kernel K I with Tr K I 2 2 c 2 and the variational procedure of calculations of eigenvalues and eigenfunctions can be applied. The quantum pseudoscalar and scalar mesodynamics is considered. The binding energy of the state 1 + (deuteron) as a function of the coupling constant is calculated in the framework of the procedure formulated above. It is shown that this bound state is absent in the pseudoscalar mesodynamics and does exist in the scalar mesodynamics. A comparison with the non-relativistic Schroedinger picture is made. (author)
International Nuclear Information System (INIS)
Garbaczewski, P.
1982-01-01
Previously we have found that the semiclassical sine--Gordon/Thirring spectrum can be received in the absence of quantum solitons via the spin 1/2 approximation of the quantized sine--Gordon system on a lattice. Later on, we have recovered the Hilbert space of quantum soliton states for the sine--Gordon system. In the present paper we present a derivation of the Bethe Ansatz eigenstates for the generalized ice model in this soliton Hilbert space. We demonstrate that via ''Wick rotation'' of a fundamental parameter of the ice model one arrives at the Bethe Ansatz eigenstates of the quantum sine--Gordon system. The latter is a ''local transition matrix'' ancestor of the coventional sine--Gordon/Thirring model, as derived by Faddeev et al. within the quantum inverse-scattering method. Our result is essentially based on the N< infinity,Δ = 1,m<<1 regime. Consequently, the spectrum received, though resembling the semiclassical one, does not coincide with it at all
Colored Quantum Algebra and Its Bethe State
International Nuclear Information System (INIS)
Wang Jin-Zheng; Jia Xiao-Yu; Wang Shi-Kun
2014-01-01
We investigate the colored Yang—Baxter equation. Based on a trigonometric solution of colored Yang—Baxter equation, we construct a colored quantum algebra. Moreover we discuss its algebraic Bethe ansatz state and highest wight representation. (general)
Cole's ansatz and extensions of Burgers' equation
International Nuclear Information System (INIS)
Tasso, H.
1976-01-01
A sequence of nonlinear partial differential equations is constructed. It contains all equation whose solutions can be obtained from applying the Cole-Hopf transformation to linear partial differential equations. An exemple is usub(t) = (u 3 )sub(x) + 3/2(u 2 )sub(xx) + usub(xxx). (orig.) [de
International Nuclear Information System (INIS)
Skrypnyk, T.
2009-01-01
We construct quantum integrable systems associated with non-skew-symmetric gl(2)-valued classical r-matrices. We find a new explicit multiparametric family of such the non-skew-symmetric classical r-matrices. We consider two classes of examples of the corresponding integrable systems, namely generalized Gaudin systems with and without an external magnetic field. In the case of arbitrary r-matrices diagonal in a standard gl(2)-basis, we calculate the spectrum of the corresponding quantum integrable systems using the algebraic Bethe ansatz. We apply these results to a construction of integrable fermionic models and obtain a wide class of integrable Bardeen-Cooper-Schrieffer (BCS)-type fermionic Hamiltonians containing the pairing and electrostatic interaction terms. We also consider special cases when the corresponding integrable Hamiltonians contain only pairing interaction term and are exact analogs of the 'reduced BCS Hamiltonian' of Richardson
Five-dimensional Monopole Equation with Hedge-Hog Ansatz and Abel's Differential Equation
Kihara, Hironobu
2008-01-01
We review the generalized monopole in the five-dimensional Euclidean space. A numerical solution with the Hedge-Hog ansatz is studied. The Bogomol'nyi equation becomes a second order autonomous non-linear differential equation. The equation can be translated into the Abel's differential equation of the second kind and is an algebraic differential equation.
Glueball properties from the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Kellermann, Christian
2012-01-01
For over thirty years bound states of gluons are an outstanding problem of both theoretical and experimental physics. Being predicted by Quantum-Chromodynamics their experimental confirmation is one of the foremost goals of large experimental facilities currently under construction like FAIR in Darmstadt. This thesis presents a novel approach to the theoretical determination of physical properties of bound states of two gluons, called glueballs. It uses the consistent combination of Schwinger-Dyson equations for gluons and ghosts and appropriate Bethe-Salpeter equations describing their corresponding bound-states. A rigorous derivation of both sets of equations, starting from an 2PI effective action is given as well as a general determination of appropriate decompositions of Bethe-Salpeter amplitudes to a given set of quantum numbers of a glueball. As an application example bound state masses of glueballs in a simple truncation scheme are calculated. (orig.)
Excited charmonium states from Bethe-Salpeter Equation
Czech Academy of Sciences Publication Activity Database
Šauli, Vladimír; Bicudo, P.
2012-01-01
Roč. 7, 043 (2012), s. 1-10 ISSN 1824-8039. [International Workshop on QCD Green’s Functions. Tranto, 05.09.2011-09.09.2011] R&D Projects: GA MŠk(CZ) LG11005 Institutional research plan: CEZ:AV0Z10480505 Keywords : charmonium * Bethe-Salpeter Equation Subject RIV: BE - Theoretical Physics http:// pos .sissa.it/archive/conferences/136/043/QCD-TNT-II_043.pdf
Covariant solutions of the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Williams, A.G.; Kusaka, K.; Simpson, K.M.
1997-01-01
There is a need for covariant solutions of bound state equations in order to construct realistic QCD based models of mesons and baryons. Furthermore, we ideally need to know the structure of these bound states in all kinematical regimes, which makes a direct solution in Minkowski space (without any 3-dimensional reductions) desirable. The Bethe-Salpeter equation (BSE) for bound states in scalar theories is reformulated and solved for arbitrary scattering kernels in terms of a generalized spectral representation directly in Minkowski space. This differs from the conventional Euclidean approach, where the BSE can only be solved in ladder approximation after a Wick rotation. (author)
Sequential Bethe vectors and the quantum Ernst system
International Nuclear Information System (INIS)
Niedermaier, M.; Samtleben, H.
2000-01-01
We give a brief review on the use of Bethe Ansatz techniques to construct solutions of recursive functional equations which emerged in a bootstrap approach to the quantum Ernst system. The construction involves two particular limits of a rational Bethe Ansatz system with complex inhomogeneities. First, we pinch two insertions to the critical value. This links Bethe systems with different number of insertions and leads to the concept of sequential Bethe vectors. Second, we study the semiclassical limit of the system in which the scale parameter of the insertions tends to infinity. (author)
An ansatz for solving nonlinear partial differential equations in mathematical physics.
Akbar, M Ali; Ali, Norhashidah Hj Mohd
2016-01-01
In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.
A systematic approach to sketch Bethe-Salpeter equation
Directory of Open Access Journals (Sweden)
Qin Si-xue
2016-01-01
Full Text Available To study meson properties, one needs to solve the gap equation for the quark propagator and the Bethe-Salpeter (BS equation for the meson wavefunction, self-consistently. The gluon propagator, the quark-gluon vertex, and the quark–anti-quark scattering kernel are key pieces to solve those equations. Predicted by lattice-QCD and Dyson-Schwinger analyses of QCD’s gauge sector, gluons are non-perturbatively massive. In the matter sector, the modeled gluon propagator which can produce a veracious description of meson properties needs to possess a mass scale, accordingly. Solving the well-known longitudinal Ward-Green-Takahashi identities (WGTIs and the less-known transverse counterparts together, one obtains a nontrivial solution which can shed light on the structure of the quark-gluon vertex. It is highlighted that the phenomenologically proposed anomalous chromomagnetic moment (ACM vertex originates from the QCD Lagrangian symmetries and its strength is proportional to the magnitude of dynamical chiral symmetry breaking (DCSB. The color-singlet vector and axial-vector WGTIs can relate the BS kernel and the dressed quark-gluon vertex to each other. Using the relation, one can truncate the gap equation and the BS equation, systematically, without violating crucial symmetries, e.g., gauge symmetry and chiral symmetry.
Solution of the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.
1988-01-01
A solution is obtained of the Bethe--Salpeter equation for positronium in the field of linearly and circularly polarized plane electromagnetic waves at frequencies much higher than atomic. It is not assumed that the field is weak
Validity of various approximations for the Bethe-Salpeter equation and their WKB quantization
International Nuclear Information System (INIS)
Silvestre-Brac, B.; Bilal, A.; Gignoux, C.; Schuck, P.
1984-01-01
The validity of the instantaneous approximation for the Bethe-Salpeter equation is questioned within the framework of the simple scalar-scalar model of Cutkosky. Detailed numerous results for various approximations are compared to the exact ones. WKB quantization is applied to these relativistic approximations. An unexpected question arises: is the currently used Bethe-Salpeter equation (i.e., the ladder approximation) well suited to describe two interacting relativistic particles
Approximate, analytic solutions of the Bethe equation for charged particle range
Swift, Damian C.; McNaney, James M.
2009-01-01
By either performing a Taylor expansion or making a polynomial approximation, the Bethe equation for charged particle stopping power in matter can be integrated analytically to obtain the range of charged particles in the continuous deceleration approximation. Ranges match reference data to the expected accuracy of the Bethe model. In the non-relativistic limit, the energy deposition rate was also found analytically. The analytic relations can be used to complement and validate numerical solu...
Stochastic integration of the Bethe-Salpeter equation for two bound fermions
International Nuclear Information System (INIS)
Salomon, M.
1988-09-01
A non-perturbative method using a Monte Carlo algorithm is used to integrate the Bethe-Salpeter equation in momentum space. Solutions for two scalars and two fermions with an arbitrary coupling constant are calculated for bound states in the ladder approximation. The results are compared with other numerical methods. (Author) (13 refs., 2 figs.)
The connection of two-particle relativistic quantum mechanics with the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Sazdjian, H.
1986-02-01
We show the formal equivalence between the wave equations of two-particle relativistic quantum mechanics, based on the manifestly covariant hamiltonian formalism with constraints, and the Bethe-Salpeter equation. This is achieved by algebraically transforming the latter so as to separate it into two independent equations which match the equations of hamiltonian relativistic quantum mechanics. The first equation determines the relative time evolution of the system, while the second one yields a three-dimensional eigenvalue equation. A connection is thus established between the Bethe-Salpeter wave function and its kernel on the one hand and the quantum mechanical wave function and interaction potential on the other. For the sector of solutions of the Bethe-Salpeter equation having non-relativistic limits, this relationship can be evaluated in perturbation theory. We also device a generalized form of the instantaneous approximation which simplifies the various expressions involved in the above relations. It also permits the evaluation of the normalization condition of the quantum mechanical wave function as a three-dimensional integral
Perturbation theory for the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.; Litskevich, I.K.
1990-01-01
The completeness and orthogonality of the solutions of the Bethe-Salpeter equation is proven. A correct derivation of perturbation-theory equations is given. A generalization that includes the field of a plane electromagnetic wave is proposed. The rate of one-photon annihilation of positronium in this field is calculated. If the one-photon decay is allowed, the stationary states of the system are found (states of light-positronium)
Energy Technology Data Exchange (ETDEWEB)
Dorkin, S M [Dal` nevostochnyj Gosudarstvennyj Univ., Vladivostok (Russian Federation); Kaptar` , L P; Semikh, S S [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of Theoretical Physics
1997-12-31
The problem of calculating the energy spectrum of a two-fermion bound state within the Bethe-Salpeter formalism is discussed. An expansion of the kernel of the spinor-spinor Bethe-Salpeter equation in the ladder approximation is found in terms of a bi-orthogonal basis of the generalized Gilbert-Schmidt series for symmetric equations of the Fredholm type. According to this expansion, a new method of solving the Bethe-Salpeter equation and finding the mass spectrum is proposed. Methodological result of numerical solutions of equations with scalar interaction is presented. (author). 20 refs., 3 figs.
International Nuclear Information System (INIS)
Williams, A.G.
1998-01-01
There is a need for covariant solutions of bound state equations in order to construct realistic QCD based models of mesons and baryons. Furthermore, we ideally need to know the structure of these bound states in all kinematical regimes, which makes a direct solution in Minkowski space (without any 3-dimensional reductions) desirable. The Bethe-Salpeter equation (BSE) for bound states in scalar theories is reformulated and solved for arbitrary scattering kernels in terms of a generalized spectral representation directly in Minkowski space. This differs from the conventional Euclidean approach, where the BSE can only be solved in ladder approximation after a Wick rotation. An application of covariant Bethe-Salpeter solutions to a quark-diquark model of the nucleon is also briefly discussed. (orig.)
Numerical studies of the Bethe-Salpeter equation for a two-fermion bound state
de Paula, W.; Frederico, T.; Salmè, G.; Viviani, M.
2018-03-01
Some recent advances on the solution of the Bethe-Salpeter equation (BSE) for a two-fermion bound system directly in Minkowski space are presented. The calculations are based on the expression of the Bethe-Salpeter amplitude in terms of the so-called Nakanishi integral representation and on the light-front projection (i.e. the integration of the light-front variable k - = k 0 - k 3). The latter technique allows for the analytically exact treatment of the singularities plaguing the two-fermion BSE in Minkowski space. The good agreement observed between our results and those obtained using other existing numerical methods, based on both Minkowski and Euclidean space techniques, fully corroborate our analytical treatment.
Bound states of quarks calculated with stochastic integration of the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Salomon, M.
1992-07-01
We have computed the masses, wave functions and sea quark content of mesons in their ground state by integrating the Bethe-Salpeter equation with a stochastic algorithm. This method allows the inclusion of a large set of diagrams. Inspection of the kernel of the equation shows that q-q-bar pairs with similar constituent masses in a singlet spin state exhibit a high bound state which is not present in other pairs. The pion, kaon and eta belongs to this category. 19 refs., 2 figs., 2 tabs
On string solutions of Bethe equations in N=4 supersymmetric Yang-Mills theory
International Nuclear Information System (INIS)
Bytsko, A.G.; Shenderovich, I.E.
2007-12-01
The Bethe equations, arising in description of the spectrum of the dilatation operator for the su(2) sector of the N=4 supersymmetric Yang-Mills theory, are considered in the anti-ferromagnetic regime. These equations are deformation of those for the Heisenberg XXX magnet. It is proven that in the thermodynamic limit roots of the deformed equations group into strings. It is proven that the corresponding Yang's action is convex, which implies uniqueness of solution for centers of the strings. The state formed of strings of length (2n+1) is considered and the density of their distribution is found. It is shown that the energy of such a state decreases as n grows. It is observed that non-analyticity of the left hand side of the Bethe equations leads to an additional contribution to the density and energy of strings of even length. Whence it is concluded that the structure of the anti-ferromagnetic vacuum is determined by the behaviour of exponential corrections to string solutions in the thermodynamic limit and possibly involves strings of length 2. (orig.)
On string solutions of Bethe equations in N=4 supersymmetric Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Bytsko, A.G. [Rossijskaya Akademiya Nauk, St. Petersburg (Russian Federation). Inst. Matematiki]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Shenderovich, I.E. [St. Petersburg State Univ. (Russian Federation). Physics Dept.
2007-12-15
The Bethe equations, arising in description of the spectrum of the dilatation operator for the su(2) sector of the N=4 supersymmetric Yang-Mills theory, are considered in the anti-ferromagnetic regime. These equations are deformation of those for the Heisenberg XXX magnet. It is proven that in the thermodynamic limit roots of the deformed equations group into strings. It is proven that the corresponding Yang's action is convex, which implies uniqueness of solution for centers of the strings. The state formed of strings of length (2n+1) is considered and the density of their distribution is found. It is shown that the energy of such a state decreases as n grows. It is observed that non-analyticity of the left hand side of the Bethe equations leads to an additional contribution to the density and energy of strings of even length. Whence it is concluded that the structure of the anti-ferromagnetic vacuum is determined by the behaviour of exponential corrections to string solutions in the thermodynamic limit and possibly involves strings of length 2. (orig.)
Stieltjes-Bethe equations in higher genus and branched coverings with even ramifications
Korotkin, Dmitry
2018-02-01
We describe projective structures on a Riemann surface corresponding to monodromy groups which have trivial SL (2) monodromies around singularities and trivial PSL (2) monodromies along homologically non-trivial loops on a Riemann surface. We propose a natural higher genus analog of Stieltjes-Bethe equations. Links with branched projective structures and with Hurwitz spaces with ramifications of even order are established. We find a higher genus analog of the genus zero Yang-Yang function (the function generating accessory parameters) and describe its similarity and difference with Bergman tau-function on the Hurwitz spaces.
A separable approximation of the NN-Paris-potential in the framework of the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Schwarz, K.; Haidenbauer, J.; Froehlich, J.
1985-09-01
The Bethe-Salpeter equation is solved with a separable kernel for the most important nucleon-nucleon partial wave states. We employ the Ernst Shakin-Thaler method in the framework of minimal relativity (Blankenbeckler-Sugar equation) to generate a separable representation of the meson-theoretical Paris potential. These separable interactions, which closely approximate the on-shell- and half-off-shell behaviour of the Paris potential, are then cast into a covariant form for application in the Bethe-Salpeter equation. The role of relativistic effects is discussed with respect to on-shell and off-shell properties of the NN-system. (Author)
Solution to Bethe-Salpeter equation via Mellin-Barnes transform
International Nuclear Information System (INIS)
Allendes, Pedro; Kniehl, Bernd; Kondrashuk, Igor; Rojas Medar, Marko; Notte Cuello, Eduardo A.
2012-06-01
We consider Mellin-Barnes transform of triangle ladder-like scalar diagram in d=4 dimensions. It is shown how multi-fold MB transform of the momentum integral corresponding to any number of rungs is reduced to two-fold MB transform. For this purpose we use Belokurov-Usyukina reduction method for four-dimensional scalar integrals in the position space. The result is represented in terms of Euler ψ-function and its derivatives. We derive new formulas for MB two-fold integration in the complex planes of two complex variables. We demonstrate that these formulas solve Bethe-Salpeter equation. We comment on further applications of solution to Bethe-Salpeter equation for vertices in N=4 supersymmetric Yang-Mills theory. We show that the recursive property of MB transforms observed in the present work for that kind of diagrams has nothing to do with quantum field theory, theory of integral transforms, or with theory of polylogarithms in general, but has an origin in a simple recursive property for smooth functions which can be shown by using basic methods of mathematical analysis.
Solution to Bethe-Salpeter equation via Mellin-Barnes transform
Energy Technology Data Exchange (ETDEWEB)
Allendes, Pedro [Concepcion Univ. (Chile). Dept. de Fisica; Kniehl, Bernd [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor; Rojas Medar, Marko [Univ. del Bio-Bio, Chillan (Chile). Dept. de Ciencias Basicas; Notte Cuello, Eduardo A. [Univ. de La Serena (Chile). Facultad de Ciencias
2012-06-15
We consider Mellin-Barnes transform of triangle ladder-like scalar diagram in d=4 dimensions. It is shown how multi-fold MB transform of the momentum integral corresponding to any number of rungs is reduced to two-fold MB transform. For this purpose we use Belokurov-Usyukina reduction method for four-dimensional scalar integrals in the position space. The result is represented in terms of Euler {psi}-function and its derivatives. We derive new formulas for MB two-fold integration in the complex planes of two complex variables. We demonstrate that these formulas solve Bethe-Salpeter equation. We comment on further applications of solution to Bethe-Salpeter equation for vertices in N=4 supersymmetric Yang-Mills theory. We show that the recursive property of MB transforms observed in the present work for that kind of diagrams has nothing to do with quantum field theory, theory of integral transforms, or with theory of polylogarithms in general, but has an origin in a simple recursive property for smooth functions which can be shown by using basic methods of mathematical analysis.
Bethe-Salpeter equation for fermion-antifermion system in the ladder approximation
International Nuclear Information System (INIS)
Fukui, Ichio; Seto, Noriaki; Yoshida, Toshihiro.
1977-01-01
The Bethe-Salpeter (B-S) equation is important for studying hadron physics. Especially intensive investigation on the fermion-antifermion B-S equation is indispensable for the phenomenological studies of hardrons. However, many components of the B-S amplitude and the Wick-rotated integral kernel of non-Fredholm type have prevented from knowing details the solutions even in the ladder approximation. Some particular solutions are known in case of the vanishing four-momenta of bound states. The B-S equation for the bound state of fermion-anti-fermion system interacting through vector (axial-vector) particle exchange was studied in the ladder approximation with Feynman gauge. The reduced equations were obtained for suitably decomposed amplitude, and it is shown that, in the S-wave case, the coupled equations separate into two parts. In the nonrelativistic limit, large components of the amplitude satisfy the Wick-Cutkosky equation, and small components are expressed in terms of the large ones. Equations are derived for the equal-time amplitudes. (Kobatake, H.)
Projecting the Bethe-Salpeter Equation onto the Light-Front and Back: A Short Review
International Nuclear Information System (INIS)
Frederico, T.; Salme, G.
2011-01-01
The technique of projecting the four-dimensional two-body Bethe-Salpeter equation onto the three-dimensional Light-Front hypersurface, combined with the quasi-potential approach, is briefly illustrated, by placing a particular emphasis on the relation between the projection method and the effective dynamics of the valence component of the Light-Front wave function. Some details on how to construct the Fock expansion of both (a) the Light-Front effective interaction and (b) the electromagnetic current operator, satisfying the proper Ward-Takahashi identity, will be presented, addressing the relevance of the Fock content in the operators living onto the Light-Front hypersurface. Finally, the generalization of the formalism to the three-particle case will be outlined. (author)
Bethe-Salpeter equation for non-self conjugate mesons in a power-law potential
International Nuclear Information System (INIS)
Ikhdair, S.M.
1992-07-01
We develop an approach to the solution of the spinless Bethe-Salpeter equation for the different-mass case. Although the calculations are developed for spin-zero particles in any arbitrary spherically symmetric potential, the non-Coulombic effective power-law potential is used as a kernel to produce the spin-averaged bound states of the non-self-conjugate mesons. The analytical formulae are also applicable to the self-conjugate mesons in the equal-mass case. The flavor-independent case is investigated in this work. The calculations are carried out to the third-order correction of the energy series. Results are consistent with those obtained before. (author). 14 refs, 1 tab
International Nuclear Information System (INIS)
Chen Baoqiu; Ma Zhongyu
1992-01-01
Relativistic microscopic optical potential of nucleon-nucleus is derived from the relativistic Brueckner-Bethe-Goldstone (RBBG) equation. The complex effective mass of a nucleon is determined by a fit to 200 MeV p- 40 Ca scattering data. The relativistic microscopic optical potentials with this effective mass are obtained from RBBG for p- 16O , 40 Ca, 90 Zr and 208 Pb scattering in energy range from 160 to 800 MeV. The microscopic optical potential is used to study the proton- 40 Ca scattering problem at 200 MeV. The results, such as differential cross section, analyzing power and spin rotation function are compared with those calculated from phenomenological relativistic optical potential
Chen, Jiao-Kai
2018-04-01
We present one reduction of the Bethe-Salpeter equation for the bound states composed of two off-mass-shell constituents. Both the relativistic effects and the virtuality effects can be considered in the obtained spinless virtuality distribution equation. The eigenvalues of the spinless virtuality distribution equation are perturbatively calculated and the bound states e+e-, μ+μ-, τ+τ-, μ+e-, and τ+e- are discussed.
International Nuclear Information System (INIS)
Schwarz, K.; Froehlich, J.; Zingl, H.F.K.
1980-01-01
The Bethe-Salpeter equation is solved in closed form with the help of a four dimensional separable 'potential'. For possible applications to three-nucleon investigations the authors have fitted all nucleon-nucleon S-wave phase shifts in a sufficient way by this method; in addition they also present an example for a P-wave. (Auth.)
Low-lying qq(qq)-bar states in a relativistic model based on the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Ram, B.; Kriss, V.
1985-01-01
Low-lying qq(qq)-bar states are analysed in a previously given relativistic model based on the Bethe-Salpeter equation. It is not got M-diquonia, P-mesonia, or meson molecules, but it is got T-diquonia
Multi-Regge limit of the n-gluon bubble ansatz
Energy Technology Data Exchange (ETDEWEB)
Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Schomerus, V.; Sprenger, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-07-15
We investigate n-gluon scattering amplitudes in the multi-Regge region of N=4 supersymmetric Yang-Mills theory at strong coupling. Through a careful analysis of the thermodynamic bubble ansatz (TBA) for surfaces in AdS{sub 5} with n-g(lu)on boundary conditions we demonstrate that the multi-Regge limit probes the large volume regime of the TBA. In reaching the multi-Regge regime we encounter wall-crossing in the TBA for all n>6. Our results imply that there exists an auxiliary system of algebraic Bethe ansatz equations which encode valuable information on the analytical structure of amplitudes at strong coupling.
Bethe vectors for XXX-spin chain
Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei
2014-11-01
The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included.
Bethe vectors for XXX-spin chain
International Nuclear Information System (INIS)
Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei
2014-01-01
The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included
Efficient implementation of core-excitation Bethe-Salpeter equation calculations
Gilmore, K.; Vinson, John; Shirley, E. L.; Prendergast, D.; Pemmaraju, C. D.; Kas, J. J.; Vila, F. D.; Rehr, J. J.
2015-12-01
We present an efficient implementation of the Bethe-Salpeter equation (BSE) method for obtaining core-level spectra including X-ray absorption (XAS), X-ray emission (XES), and both resonant and non-resonant inelastic X-ray scattering spectra (N/RIXS). Calculations are based on density functional theory (DFT) electronic structures generated either by ABINIT or QuantumESPRESSO, both plane-wave basis, pseudopotential codes. This electronic structure is improved through the inclusion of a GW self energy. The projector augmented wave technique is used to evaluate transition matrix elements between core-level and band states. Final two-particle scattering states are obtained with the NIST core-level BSE solver (NBSE). We have previously reported this implementation, which we refer to as OCEAN (Obtaining Core Excitations from Ab initio electronic structure and NBSE) (Vinson et al., 2011). Here, we present additional efficiencies that enable us to evaluate spectra for systems ten times larger than previously possible; containing up to a few thousand electrons. These improvements include the implementation of optimal basis functions that reduce the cost of the initial DFT calculations, more complete parallelization of the screening calculation and of the action of the BSE Hamiltonian, and various memory reductions. Scaling is demonstrated on supercells of SrTiO3 and example spectra for the organic light emitting molecule Tris-(8-hydroxyquinoline)aluminum (Alq3) are presented. The ability to perform large-scale spectral calculations is particularly advantageous for investigating dilute or non-periodic systems such as doped materials, amorphous systems, or complex nano-structures.
International Nuclear Information System (INIS)
Sagmeister, S.
2009-01-01
The aim of this work is to compare two state-of-the-art methods for the investigation of excitonic effects in solids, namely Time-Dependent Density Functional Theory (TDDFT) and Many-Body Perturbation Theory (MBPT), for selected simple gap systems as well as semiconducting polymers. Within TDDFT, the linear response framework is used and the Dyson equation for the density-density response function is solved, whereas within MBPT, the Bethe-Salpeter equation (BSE) for the electron-hole correlation function is solved. The dielectric function is obtained as a last step. Both techniques take into account the excitonic effects caused by the interaction of electron-hole pairs. In the former these effects are included in the exchange-correlation (xc) kernel, whereas in the latter they are located in the interaction kernel of the BSE. Kohn-Sham single-particle wave functions obtained from Density Functional Theory within the linearized augmented planewave (LAPW) method are used to calculate all relevant quantities of the formalism. For the simple systems GaAs, Si and LiF are chosen. The role of several approximations to the xc kernel is studied and it is found that for GaAs and Si simple semi-empirical models provide a dielectric function in accordance with the BSE. For the case of LiF, being a system with a weak screening and a strongly bound exciton, only an xc kernel derived from MBPT yields reasonable results but still a slight discrepancy to the BSE is observed. Finally, the semiconducting polymers poly-acetylene and poly(phenylene-vinylene) (PPV) are studied. For both materials the concept of semi-empirical approximations to the xc kernel turns out to be ambiguous due to their low-dimensional character. In the case of poly-acetylene, the xc kernel derived from MBPT yields a dielectric function which is in close but not exact agreement with the one obtained from the BSE. (author) [de
Norm of Bethe vectors in models with gl(m|n symmetry
Directory of Open Access Journals (Sweden)
A. Hutsalyuk
2018-01-01
Full Text Available We study quantum integrable models solvable by the nested algebraic Bethe ansatz and possessing gl(m|n-invariant R-matrix. We compute the norm of the Hamiltonian eigenstates. Using the notion of a generalized model we show that the square of the norm obeys a number of properties that uniquely fix it. We also show that a Jacobian of the system of Bethe equations obeys the same properties. In this way we prove a generalized Gaudin hypothesis for the norm of the Hamiltonian eigenstates.
Expanding the Bethe/Gauge dictionary
Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz
2017-11-01
We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.
Gaudin, Michel
2014-01-01
Michel Gaudin's book La fonction d'onde de Bethe is a uniquely influential masterpiece on exactly solvable models of quantum mechanics and statistical physics. Available in English for the first time, this translation brings his classic work to a new generation of graduate students and researchers in physics. It presents a mixture of mathematics interspersed with powerful physical intuition, retaining the author's unmistakably honest tone. The book begins with the Heisenberg spin chain, starting from the coordinate Bethe Ansatz and culminating in a discussion of its thermodynamic properties. Delta-interacting bosons (the Lieb-Liniger model) are then explored, and extended to exactly solvable models associated to a reflection group. After discussing the continuum limit of spin chains, the book covers six- and eight-vertex models in extensive detail, from their lattice definition to their thermodynamics. Later chapters examine advanced topics such as multi-component delta-interacting systems, Gaudin magnets and...
On the history of a stochastic ansatz for solving the transport equation
International Nuclear Information System (INIS)
Williams, M.M.R.
2010-01-01
A very useful approximate tool for understanding the role of random material properties on solutions of the transport equation is described and its historical derivation given. The development of this stochastic tool, from its introduction by Randall, to its use in describing current problems involving dichotomic or pseudo-dichotomic Markov processes is discussed.
The average kinetic energy of the heavy quark in Λb in the Bethe-Salpeter equation approach
International Nuclear Information System (INIS)
Guo, X.-H.; Wu, H.-K.
2007-01-01
In the previous paper, based on the SU(2) f xSU(2) s heavy quark symmetries of the QCD Lagrangian in the heavy quark limit, the Bethe-Salpeter equation for the heavy baryon Λ b was established with the picture that Λ b is composed of a heavy quark and a scalar light diquark. In the present work, we apply this model to calculate μ π 2 for Λ b , the average kinetic energy of the heavy quark inside Λ b . This quantity is particularly interesting since it can be measured in experiments and since it contributes to the inclusive semileptonic decays of Λ b when contributions from higher order terms in 1/M b expansions are taken into account and consequently influences the determination of the Cabibbo-Kobayashi-Maskawa matrix elements V ub and V cb . We find that μ π 2 for Λ b is 0.25GeV 2 ∼0.95GeV 2 , depending on the parameters in the model including the light diquark mass and the interaction strength between the heavy quark and the light diquark in the kernel of the BS equation. We also find that this result is consistent with the value of μ π 2 for Λ b which is derived from the experimental value of μ π 2 for the B meson with the aid of the heavy quark effective theory
International Nuclear Information System (INIS)
Hartwig, J. T.; Stokman, J. V.
2013-01-01
We realize an extended version of the trigonometric Cherednik algebra as affine Dunkl operators involving Heaviside functions. We use the quadratic Casimir element of the extended trigonometric Cherednik algebra to define an explicit nonstationary Schrödinger equation with delta-potential. We use coordinate Bethe ansatz methods to construct solutions of the nonstationary Schrödinger equation in terms of generalized Bethe wave functions. It is shown that the generalized Bethe wave functions satisfy affine difference Knizhnik-Zamolodchikov equations as functions of the momenta. The relation to the vector valued root system analogs of the quantum Bose gas on the circle with delta-function interactions is indicated.
Energy Technology Data Exchange (ETDEWEB)
Hilger, T.; Krassnigg, A. [University of Graz, NAWI Graz, Institute of Physics, Graz (Austria); Gomez-Rocha, M. [ECT*, Villazzano, Trento (Italy)
2017-09-15
We investigate the light-quarkonium spectrum using a covariant Dyson-Schwinger-Bethe-Salpeter-equation approach to QCD. We discuss splittings among as well as orbital angular momentum properties of various states in detail and analyze common features of mass splittings with regard to properties of the effective interaction. In particular, we predict the mass of anti ss exotic 1{sup -+} states, and identify orbital angular momentum content in the excitations of the ρ meson. Comparing our covariant model results, the ρ and its second excitation being predominantly S-wave, the first excitation being predominantly D-wave, to corresponding conflicting lattice-QCD studies, we investigate the pion-mass dependence of the orbital-angular-momentum assignment and find a crossing at a scale of m{sub π} ∝ 1.4 GeV. If this crossing turns out to be a feature of the spectrum generated by lattice-QCD studies as well, it may reconcile the different results, since they have been obtained at different values of m{sub π}. (orig.)
DEFF Research Database (Denmark)
Yan, Jun; Jacobsen, Karsten W.; Thygesen, Kristian S.
2012-01-01
-dimensional systems of graphene and hexagonal boron-nitride (h-BN) we find good agreement with previous many-body calculations. For the graphene/h-BN interface we find that the fundamental and optical gaps of the h-BN layer are reduced by 2.0 and 0.7 eV, respectively, compared to freestanding h-BN. This reduction......We present an efficient implementation of the Bethe-Salpeter equation (BSE) for optical properties of materials in the projector augmented wave method Grid-based projector-augmented wave method (GPAW). Single-particle energies and wave functions are obtained from the Gritsenko, Leeuwen, Lenthe...
Differential equations and integrable models: the SU(3) case
International Nuclear Information System (INIS)
Dorey, Patrick; Tateo, Roberto
2000-01-01
We exhibit a relationship between the massless a 2 (2) integrable quantum field theory and a certain third-order ordinary differential equation, thereby extending a recent result connecting the massless sine-Gordon model to the Schroedinger equation. This forms part of a more general correspondence involving A 2 -related Bethe ansatz systems and third-order differential equations. A non-linear integral equation for the generalised spectral problem is derived, and some numerical checks are performed. Duality properties are discussed, and a simple variant of the non-linear equation is suggested as a candidate to describe the finite volume ground state energies of minimal conformal field theories perturbed by the operators phi 12 , phi 21 and phi 15 . This is checked against previous results obtained using the thermodynamic Bethe ansatz
Energy Technology Data Exchange (ETDEWEB)
Janyszek, H [Uniwersytet Mikolaja Kopernika, Torun (Poland). Instytut Fizyki
1974-01-01
A new modified quasirelativistic equation (different from that of Breit) for N charged Dirac particles in the external stationary electromagnetic field is proposed. This equation is an amplified quantum-mechanical Bethe-Salpeter equation obtained by adding (in a semi-phenomenological manner) terms which take into account radiative corrections. The application of this approximate equations is limited to third order terms in the fine structure constant ..cap alpha...
Generalization of the Davydov Ansatz by squeezing
Energy Technology Data Exchange (ETDEWEB)
Grossmann, Frank; Werther, Michael [Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden (Germany); Chen, Lipeng; Zhao, Yang [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)
2016-12-20
We propose an extension of the Davydov Ansatz employing displaced squeezed states in the oscillator Hilbert space. The Dirac–Frenkel variational principle is used to derive the modified equations for the variational parameters. First numerical studies of the dynamics of the spin-boson model with a single bosonic degree of freedom reveal an overall improvement of the results as compared to the standard Davydov Ansatz.
Bethe states of the trigonometric SU(3) spin chain with generic open boundaries
Sun, Pei; Xin, Zhirong; Qiao, Yi; Wen, Fakai; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Tao; Yang, Wen-Li; Shi, Kangjie
2018-06-01
By combining the algebraic Bethe ansatz and the off-diagonal Bethe ansatz, we investigate the trigonometric SU (3) model with generic open boundaries. The eigenvalues of the transfer matrix are given in terms of an inhomogeneous T - Q relation, and the corresponding eigenstates are expressed in terms of nested Bethe-type eigenstates which have well-defined homogeneous limit. This exact solution provides a basis for further analyzing the thermodynamic properties and correlation functions of the anisotropic models associated with higher rank algebras.
Thermodynamic Bethe ansatz for boundary sine-Gordon model
International Nuclear Information System (INIS)
Lee, Taejun; Rim, Chaiho
2003-01-01
(R-channel) TBA is elaborated to find the effective central charge dependence on the boundary parameters for the massless boundary sine-Gordon model with the coupling constant (8π)/β 2 =1+λ with λ a positive integer. Numerical analysis of the massless boundary TBA demonstrates that at an appropriate boundary parameter range (cusp point) there exists a singularity crossing phenomena and this effect should be included in TBA to have the right behavior of the effective central charge
Bethe ansatz approach to quench dynamics in the Richardson model
Faribault, A.D.P.; Calabrese, P.; Caux, J.S.
2009-01-01
By instantaneously changing a global parameter in an extended quantum system, an initially equilibrated state will afterwards undergo a complex nonequilibrium unitary evolution whose description is extremely challenging. A nonperturbative method giving a controlled error in the long time limit
Bhatnagar, Shashank; Alemu, Lmenew
2018-02-01
In this work we calculate the mass spectra of charmonium for 1 P ,…,4 P states of 0++ and 1++, for 1 S ,…,5 S states of 0-+, and for 1 S ,…,4 D states of 1- along with the two-photon decay widths of the ground and first excited states of 0++ quarkonia for the process O++→γ γ in the framework of a QCD-motivated Bethe-Salpeter equation (BSE). In this 4 ×4 BSE framework, the coupled Salpeter equations are first shown to decouple for the confining part of the interaction (under the heavy-quark approximation) and are analytically solved, and later the one-gluon-exchange interaction is perturbatively incorporated, leading to mass spectral equations for various quarkonia. The analytic forms of wave functions obtained are used for the calculation of the two-photon decay widths of χc 0. Our results are in reasonable agreement with data (where available) and other models.
TBA equations for excited states in the sine-Gordon model
International Nuclear Information System (INIS)
Balog, Janos; Hegedus, Arpad
2004-01-01
We propose thermodynamic Bethe ansatz (TBA) integral equations for multi-particle soliton (fermion) states in the sine-Gordon (massive Thirring) model. This is based on T-system and Y-system equations, which follow from the Bethe ansatz solution in the light-cone lattice formulation of the model. Even and odd charge sectors are treated on an equal footing, corresponding to periodic and twisted boundary conditions, respectively. The analytic properties of the Y-system functions are conjectured on the basis of the large volume solution of the system, which we find explicitly. A simple relation between the TBA Y-functions and the counting function variable of the alternative non-linear integral equation (Destri-de Vega equation) description of the model is given. At the special value β 2 = 6π of the sine-Gordon coupling, exact expressions for energy and momentum eigenvalues of one-particle states are found
Energy Technology Data Exchange (ETDEWEB)
Bhatnagar, Shashank [Department of Physics, Addis Ababa University, PO Box 101739, Addis Ababa (Ethiopia); Li Shiyuan [Department of Physics, Shandong University, Jinan, 250100 (China)
2006-07-15
We employ the framework of the Bethe-Salpeter equation under a covariant instantaneous ansatz to study the leptonic decays of vector mesons. The structure of the hadron-quark vertex function {gamma} is generalized to include various Dirac covariants (other than i{gamma} . {epsilon}) from their complete set. They are incorporated in accordance with a naive power counting rule order-by-order in powers of the inverse of the meson mass. The decay constants for {rho}, {omega} and {phi} mesons are calculated with the incorporation of leading-order covariants.
International Nuclear Information System (INIS)
Bhatnagar, Shashank; Li Shiyuan
2006-01-01
We employ the framework of the Bethe-Salpeter equation under a covariant instantaneous ansatz to study the leptonic decays of vector mesons. The structure of the hadron-quark vertex function Γ is generalized to include various Dirac covariants (other than iγ . ε) from their complete set. They are incorporated in accordance with a naive power counting rule order-by-order in powers of the inverse of the meson mass. The decay constants for ρ, ω and φ mesons are calculated with the incorporation of leading-order covariants
Malik, G P
2016-01-01
Given the Debye temperature of an elemental superconductor (SC) and its Tc, BCS theory enables one to predict the value of its gap 0 at T = 0, or vice versa. This monograph shows that non-elemental SCs can be similarly dealt with via the generalized BCS equations (GBCSEs) which, given any two parameters of the set {Tc, 10, 20 > 10}, enable one to predict the third. Also given herein are new equations for the critical magnetic field and critical current density of an elemental and a non-elemental SC — equations that are derived directly from those that govern pairing in them. The monograph includes topics that are usually not covered in any one text on superconductivity, e.g., BCS-BEC crossover physics, the long-standing puzzle posed by SrTiO3, and heavy-fermion superconductors — all of which are still imperfectly understood and therefore continue to avidly engage theoreticians. It suggests that addressing the Tcs, s and other properties (e.g., number densities of charge carriers) of high-Tc SCs via GBCSE...
Energy Technology Data Exchange (ETDEWEB)
Hilger, Thomas Uwe
2012-04-11
The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D- anti D and B- anti B mesons as a function of the nuclear matter density and investigate the impact of various condensates in linear density approximation. The analysis also includes D{sub s} and D{sup *}{sub 0} mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. The complementarity of mass shift and broadening is discussed. An alternative approach which utilizes coupled Dyson-Schwinger and Bethe-Salpeter equations for quark-antiquark bound states is investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex plane numerically and test the possibility to widen the applicability of the method to the sector of heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit but without dynamical chiral symmetry breaking.
Quarkonia in the Bethe--Salpeter formalism with background fields
International Nuclear Information System (INIS)
Mathur, Y.K.; Mitra, A.N.
1989-01-01
A QCD-oriented Bethe--Salpeter (BS) equation for a q bar q system is formulated in which the quark 4-momenta p μ are modified as p μ →p μ -gA μ (x) in the inverse propagators therein, and a Fock--Schwinger (FS) gauge expansion is employed for the gluon fields A μ (x). The first term (∼x μ ) of the FS representation yields a harmonic kernel when the BS equation is reduced to a 3-dimensional level via the null-plane ansatz (NPA). It also generates a spin-dependent interaction proportional to (j 1 +s 1 )·(j 2 +s 2 ), in close parallel to a J·S term generated by a vector-like (γ (1) gamma(2)) harmonic model for the q bar q interaction proposed earlier by the Delhi Group. A possible mechanism for confinement in an asymptotically linear scene is proposed within the BS framework, taking cue partly from the suggestions of multiple correlation effects (Shifman), and partly from the postulation of stochastic fields (Simonov)
Excited states by analytic continuation of TBA equations
International Nuclear Information System (INIS)
Dorey, P.; Tateo, R.
1996-01-01
We suggest an approach to the problem of finding integral equations for the excited states of an integrable model, starting from the thermodynamic Bethe ansatz equations for its ground state. The idea relies on analytic continuation through complex values of the coupling constant, and an analysis of the monodromies that the equations and their solutions undergo. For the scaling Lee-Yang model, we find equations in this way for the one- and two-particle states in the spin-zero sector, and suggest various generalisations. Numerical results show excellent agreement with the truncated conformal space approach, and we also treat some of the ultraviolet and infrared asymptotics analytically. (orig.)
An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems
DEFF Research Database (Denmark)
Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.
2016-01-01
beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly...
Construction of Bethe Salpeter wave functions and applications in QCD
International Nuclear Information System (INIS)
Gromes, D.
1993-01-01
We suggest an ansatz for the Bethe Salpeter wave function which is strictly covariant, obeys the spectrum conditions, and has the correct non relativistic limit. As a first simple application we present a wave function for the pion. It contains two parameters, one of them being the quark mass. The decay constant and the form factor derived from this are in excellent agreement with the data. (orig.)
Experimental observation of Bethe strings
Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois
2018-02-01
Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.
Indian Academy of Sciences (India)
2018-03-06
Mar 6, 2018 ... These theories formed the deep conceptual foundations of modern ... wrote on nuclear theory in the 1930's, often called 'Bethe's Bible', ... tions to solid state physics, fluid dynamics, shock waves, radar theory and reactor.
Garwin, Richard L.; Von Hippel, Frank
Hans Bethe, who died on March 6 at the age of 98, was exemplary as a scientist; a citizen-advocate seeking to stem the arms race; and an individual of warmth, generosity, tenacity, and modest habits. Bethe made major contributions to several areas of physics during his academic career. He earned a Nobel Prize in 1967 for his research into how the sun generates its energy by converting hydrogen to helium using carbon as a nuclear catalyst. A few years later, he made central contributions to the secret US World War II nuclear-weapon development programs (the "Manhattan Project").
Temperature quantization from the TBA equations
International Nuclear Information System (INIS)
Frolov, Sergey; Suzuki, Ryo
2009-01-01
We analyze the Thermodynamic Bethe Ansatz equations for the mirror model which determine the ground state energy of the light-cone AdS 5 xS 5 superstring living on a cylinder. The light-cone momentum of string is equal to the circumference of the cylinder, and is identified with the inverse temperature of the mirror model. We show that the natural requirement of the analyticity of the Y-functions leads to the quantization of the temperature of the mirror model which has never been observed in any other models.
Gaudin, M.; Caux, J.-S.
2014-01-01
Michel Gaudin's book La fonction d'onde de Bethe is a uniquely influential masterpiece on exactly solvable models of quantum mechanics and statistical physics. Available in English for the first time, this translation brings his classic work to a new generation of graduate students and researchers
International Nuclear Information System (INIS)
Sen, S.; Roy Chowdhury, A.
1989-06-01
The nonlinear Alfven waves are governed by the Vector Derivative nonlinear Schroedinger (VDNLS) equation, which for parallel or quasi parallel propagation reduces to the Derivative Nonlinear Schroedinger (DNLS) equation for the circularly polarized waves. We have formulated the Quantum Inverse problem for a new type of Nonlinear Schroedinger Equation which has many properties similar to the usual NLS problem but the structure of classical and quantum R matrix are distinctly different. The commutation rules of the scattering data are obtained and the Algebraic Bethe Ansatz is formulated to derive the eigenvalue equation for the energy of the excited states. 10 refs
Obituary: Hans Albrecht Bethe, 1906-2005
Wijers, Ralph
2007-12-01
now call the "Bethe Ansatz." Soon after his acceptance of an assistant professorship at Tübingen in 1932, he had to flee Hitler's Germany because his mother was Jewish. Bethe went to the Bragg Institute in Manchester, England, where he worked again with Peierls. In 1934, Cornell University unexpectedly offered him a position as part of R. Clifton Gibbs's expansion of the physics department; he accepted and stayed there for the rest of his life. Right from the start, Bethe enjoyed America and its atmosphere very much. His first activity there was to write the "Bethe Bible": three articles in Reviews of Modern Physics to educate his colleagues in theoretical nuclear physics. Then he did the work that astrophysicists will still appreciate him most for, and which brought him the 1967 Nobel Prize. Having worked with George Gamow's student Charles Critchfield (at Gamow's suggestion) on the proton-proton chain for nuclear fusion in the Sun (published in 1938), Bethe was initially a bit discouraged with Arthur Eddington's estimates of the Solar core temperature; their calculations did not agree well with the observed solar luminosity. However, at the Washington conference in 1937, he heard of Strömgren's new estimates of the solar interior, which brought his and Critchfield's theory into much better agreement with the data. Fairly soon after the meeting, Bethe also worked out the process whereby more massive stars must accomplish hydrogen fusion, in what we now call the CNO cycle. Curiously, Bethe held up its publication briefly in order to compete for a prize for the best unpublished paper on energy production in stars. He did win, and used the money in part to bring his mother to the United States; eventually, the paper appeared in Physics Review in 1939, and founded a whole branch of astrophysics. The war brought Bethe to the Manhattan project, of which he became one of the intellectual leaders. He ploughed through problems theoretical and practical by attacking them
Bethe-Salpeter amplitudes and static properties of the deuteron
International Nuclear Information System (INIS)
Kaptari, L.P.; Bondarenko, S.G.; Khanna, F.C.; Kaempfer, B.; Technische Univ. Dresden
1996-04-01
Extended calculations of the deuteron's static properties, based on the numerical solution of the Bethe-Salpeter equation, are presented. A formalism is developed, which provides a comparative analysis of the covariant amplitudes in various representations and nonrelativistic wave functions. The magnetic and quadrupole moments of the deuteron are calculated in the Bethe-Salpeter formalism and the role of relativistic corrections is discussed. (orig.)
Reformulating the TBA equations for the quark anti-quark potential and their two loop expansion
International Nuclear Information System (INIS)
Bajnok, Zoltán; Balog, János; Correa, Diego H.; Hegedűs, Árpád; Massolo, Fidel I. Schaposnik; Tóth, Gábor Zsolt
2014-01-01
The boundary thermodynamic Bethe Ansatz (BTBA) equations introduced in http://dx.doi.org/10.1007/JHEP08(2012)134http://dx.doi.org/10.1007/JHEP10(2013)135 to describe the cusp anomalous dimension contain imaginary chemical potentials and singular boundary fugacities, which make its systematic expansion problematic. We propose an alternative formulation based on real chemical potentials and additional source terms. We expand our equations to double wrapping order and find complete agreement with the direct two-loop gauge theory computation of the cusp anomalous dimension
Loop equations and topological recursion for the arbitrary-$\\beta$ two-matrix model
Bergère, Michel; Marchal, Olivier; Prats-Ferrer, Aleix
2012-01-01
We write the loop equations for the $\\beta$ two-matrix model, and we propose a topological recursion algorithm to solve them, order by order in a small parameter. We find that to leading order, the spectral curve is a "quantum" spectral curve, i.e. it is given by a differential operator (instead of an algebraic equation for the hermitian case). Here, we study the case where that quantum spectral curve is completely degenerate, it satisfies a Bethe ansatz, and the spectral curve is the Baxter TQ relation.
Spectral ansatz in quantum electrodynamics
International Nuclear Information System (INIS)
Atkinson, D.; Slim, H.A.
1979-01-01
An ansatz of Delbourgo and Salam for the spectral representation of the vertex function in quantum electrodynamics. The Ward-Takahashi identity is respected, and the electron propagator does not have a ghost. The infra-red and ultraviolet behaviours of the electron propagator in this theory are considered, and a rigorous existence theorem for the propagator in the Yennie gauge is presented
On the completeness of the set of Bethe-Hulthen solutions of the linear Heisenberg system
International Nuclear Information System (INIS)
Caspers, W J; Labuz, M; Wal, A
2006-01-01
In this work we formulate the standard form of the solutions of the Heisenberg chain with periodic boundary conditions and show that these solutions can be transformed into the well-known Bethe-Hulthen solutions. The standard form is found by solving the secular problem, separated according to the irreducible representations of the translation group. The relevant parameters exp(ik j ) of the Bethe-Hulthen solutions are found from a set of linear equations with coefficients derived from the standard solutions. This correspondence between standard and Bethe-Hulthen solutions realizes the completeness of the Bethe-Hulthen method
Differential-algebraic solutions of the heat equation
Buchstaber, Victor M.; Netay, Elena Yu.
2014-01-01
In this work we introduce the notion of differential-algebraic ansatz for the heat equation and explicitly construct heat equation and Burgers equation solutions given a solution of a homogeneous non-linear ordinary differential equation of a special form. The ansatz for such solutions is called the $n$-ansatz, where $n+1$ is the order of the differential equation.
Algebraic Bethe Ansatz scheme for relativistic integrable field theories in continuum
International Nuclear Information System (INIS)
Bhattacharya, G.; Ghosh, S.
1989-01-01
The linear problem associated with the Lax operator of the classical sine-Gordon theory can be recast into the monodromy matrix form that can be extended to quantum theory as well. Product of the quantum monodromy matrices has contributions from the singularities arising out of the operator product expansions of sine-Gordon field. This enables one to find the star-triangle relations. This is a generalization of the method used by Thacker for the non-relativistic nonlinear Schrodinger field theory. In the infinite volume limit, it leads to an unambiguous description of the algebra involving the scattering data operators. Starting from a vacuum the module of physical states are constructed by the application of chains of the scattering operators and they turn out to have definite eigenvalues of energy and momentum
Algebraic Bethe ansatz for a quantum integrable derivative nonlinear Schroedinger model
International Nuclear Information System (INIS)
Basu-Mallick, B.; Bhattacharyya, Tanaya
2002-01-01
We find that the quantum monodromy matrix associated with a derivative nonlinear Schroedinger (DNLS) model exhibits U(2) or U(1,1) symmetry depending on the sign of the related coupling constant. By using a variant of quantum inverse scattering method which is directly applicable to field theoretical models, we derive all possible commutation relations among the operator valued elements of such monodromy matrix. Thus, we obtain the commutation relation between creation and annihilation operators of quasi-particles associated with DNLS model and find out the S-matrix for two-body scattering. We also observe that, for some special values of the coupling constant, there exists an upper bound on the number of quasi-particles which can form a soliton state for the quantum DNLS model
Nonlinear integral equations for thermodynamics of the sl(r + 1) Uimin-Sutherland model
International Nuclear Information System (INIS)
Tsuboi, Zengo
2003-01-01
We derive traditional thermodynamic Bethe ansatz (TBA) equations for the sl(r+1) Uimin-Sutherland model from the T-system of the quantum transfer matrix. These TBA equations are identical to the those from the string hypothesis. Next we derive a new family of nonlinear integral equations (NLIEs). In particular, a subset of these NLIEs forms a system of NLIEs which contains only a finite number of unknown functions. For r=1, this subset of NLIEs reduces to Takahashi's NLIE for the XXX spin chain. A relation between the traditional TBA equations and our new NLIEs is clarified. Based on our new NLIEs, we also calculate the high-temperature expansion of the free energy
TBA-like integral equations from quantized mirror curves
Energy Technology Data Exchange (ETDEWEB)
Okuyama, Kazumi [Department of Physics, Shinshu University,Matsumoto 390-8621 (Japan); Zakany, Szabolcs [Département de Physique Théorique, Université de Genève,Genève, CH-1211 (Switzerland)
2016-03-15
Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local ℙ{sup 2}. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.
TBA-like integral equations from quantized mirror curves
Okuyama, Kazumi; Zakany, Szabolcs
2016-03-01
Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local P2. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.
Energy Technology Data Exchange (ETDEWEB)
Links, Jon, E-mail: jrl@maths.uq.edu.au
2017-03-15
Solutions of the classical Yang–Baxter equation provide a systematic method to construct integrable quantum systems in an algebraic manner. A Lie algebra can be associated with any solution of the classical Yang–Baxter equation, from which commuting transfer matrices may be constructed. This procedure is reviewed, specifically for solutions without skew-symmetry. A particular solution with an exotic symmetry is identified, which is not obtained as a limiting expansion of the usual Yang–Baxter equation. This solution facilitates the construction of commuting transfer matrices which will be used to establish the integrability of a multi-species boson tunnelling model. The model generalises the well-known two-site Bose–Hubbard model, to which it reduces in the one-species limit. Due to the lack of an apparent reference state, application of the algebraic Bethe Ansatz to solve the model is prohibitive. Instead, the Bethe Ansatz solution is obtained by the use of operator identities and tensor product decompositions.
An exponential multireference wave-function Ansatz
International Nuclear Information System (INIS)
Hanrath, Michael
2005-01-01
An exponential multireference wave-function Ansatz is formulated. In accordance with the state universal coupled-cluster Ansatz of Jeziorski and Monkhorst [Phys. Rev. A 24, 1668 (1981)] the approach uses a reference specific cluster operator. In order to achieve state selectiveness the excitation- and reference-related amplitude indexing of the state universal Ansatz is replaced by an indexing which is based on excited determinants. There is no reference determinant playing a particular role. The approach is size consistent, coincides with traditional single-reference coupled cluster if applied to a single-reference, and converges to full configuration interaction with an increasing cluster operator excitation level. Initial applications on BeH 2 , CH 2 , Li 2 , and nH 2 are reported
Practitioner Profile: An Interview with Beth Crittenden
Directory of Open Access Journals (Sweden)
Martie Gillen
2016-12-01
Full Text Available Beth Crittenden offers financial wellness coaching to people who want growth both professionally and personally. Beth has been working with finances as a focus since 2009, after training in somatic psychology, healthy communication in relationship, and mindful meditation practices and theory.
On the central quadric ansatz: integrable models and Painlevé reductions
International Nuclear Information System (INIS)
Ferapontov, E V; Huard, B; Zhang, A
2012-01-01
It was observed by Tod (1995 Class. Quantum Grav.12 1535–47) and later by Dunajski and Tod (2002 Phys. Lett. A 303 253–64) that the Boyer–Finley (BF) and the dispersionless Kadomtsev–Petviashvili (dKP) equations possess solutions whose level surfaces are central quadrics in the space of independent variables (the so-called central quadric ansatz). It was demonstrated that generic solutions of this type are described by Painlevé equations P III and P II , respectively. The aim of our paper is threefold: (1) Based on the method of hydrodynamic reductions, we classify integrable models possessing the central quadric ansatz. This leads to the five canonical forms (including BF and dKP). (2) Applying the central quadric ansatz to each of the five canonical forms, we obtain all Painlevé equations P I –P VI , with P VI corresponding to the generic case of our classification. (3) We argue that solutions coming from the central quadric ansatz constitute a subclass of two-phase solutions provided by the method of hydrodynamic reductions. (paper)
Anomalous magnetic nucleon moments in a Bethe-Salpeter model
International Nuclear Information System (INIS)
Chak Wing Chan.
1978-01-01
We investigate the anomalous magnetic moment of the nucleon in a field theoretic many-channel model for the electromagnetic form factors of the N anti N, the ππ, the K anti K, the πω and the πrho systems. Propagator self-energy corrections from the Ward idendity and phenomenological strong vertex corrections are both included. The photon is coupled minimally to pions, kaons and nucleons with power multiplicative renormalization. With solutions in the framework of the Bethe-Salpeter equation we obtain a value 1.84 for the isovector moment and a value -0.02 for the isoscalar moment. (orig.)
The spin-3/2 Blume-Capel model on the Bethe lattice using the recursion method
International Nuclear Information System (INIS)
Albayrak, Erhan; Keskin, Mustafa
2000-01-01
The spin-3/2 Blume-Capel model is solved on the Bethe lattice using the exact recursion equations. The nature of the variation of the Curie temperature with the ratio of the single-ion anisotropy term to the exchange-coupling constant is studied and the phase diagrams are constructed on the Bethe lattice with the co-ordination numbers q=3 and 6. A comparison is made with the results of the other approximation schemes
The spin-3/2 Blume-Capel model on the Bethe lattice using the recursion method
Albayrak, E
2000-01-01
The spin-3/2 Blume-Capel model is solved on the Bethe lattice using the exact recursion equations. The nature of the variation of the Curie temperature with the ratio of the single-ion anisotropy term to the exchange-coupling constant is studied and the phase diagrams are constructed on the Bethe lattice with the co-ordination numbers q=3 and 6. A comparison is made with the results of the other approximation schemes.
Nonlinear integral equations for the sausage model
Ahn, Changrim; Balog, Janos; Ravanini, Francesco
2017-08-01
The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.
Entanglement entropy in quantum many-particle systems and their simulation via ansatz states
International Nuclear Information System (INIS)
Barthel, Thomas
2009-01-01
A main topic of this thesis is the development of efficient numerical methods for the simulation of strongly correlated quantum lattice models. For one-dimensional systems, the density-matrix renormalization-group (DMRG) is such a very successful method. The physical states of interest are approximated within a certain class of ansatz states. These ansatz states are designed in a way that the number of degrees of freedom are prevented from growing exponentially. They are the so-called matrix product states. The first part of the thesis, therefore, provides analytical and numerical analysis of the scaling of quantum nonlocality with the system size or time in different, physically relevant scenarios. For example, the scaling of Renyi entropies and their dependence on boundary conditions is derived within the 1+1-dimensional conformal field theory. Conjectures and analytical indications concerning the properties of entanglement entropy in critical fermionic and bosonic systems are confirmed numerically with high precision. For integrable models in the thermodynamic limit, general preconditions are derived under which subsystems converge to steady states. These steady states are non-thermal and retain information about the initial state. It is shown that the entanglement entropy in such steady states is extensive. For short times, the entanglement entropy grows typically linearly with time, causing an exponential increase in computation costs for the DMRG method. The second part of the thesis focuses on the development and improvement of the abovementioned numerical techniques. The time-dependent DMRG is complemented with an extrapolation technique for the evaluated observables. In this way, the problem of the entropy increase can be circumvented, allowing for a precise determination of spectral functions. The method is demonstrated using the example of the Heisenberg antiferromagnet and results are compared to Bethe-Ansatz data for T=0 and quantum Monte Carlo data
Entanglement entropy in quantum many-particle systems and their simulation via ansatz states
Energy Technology Data Exchange (ETDEWEB)
Barthel, Thomas
2009-12-10
A main topic of this thesis is the development of efficient numerical methods for the simulation of strongly correlated quantum lattice models. For one-dimensional systems, the density-matrix renormalization-group (DMRG) is such a very successful method. The physical states of interest are approximated within a certain class of ansatz states. These ansatz states are designed in a way that the number of degrees of freedom are prevented from growing exponentially. They are the so-called matrix product states. The first part of the thesis, therefore, provides analytical and numerical analysis of the scaling of quantum nonlocality with the system size or time in different, physically relevant scenarios. For example, the scaling of Renyi entropies and their dependence on boundary conditions is derived within the 1+1-dimensional conformal field theory. Conjectures and analytical indications concerning the properties of entanglement entropy in critical fermionic and bosonic systems are confirmed numerically with high precision. For integrable models in the thermodynamic limit, general preconditions are derived under which subsystems converge to steady states. These steady states are non-thermal and retain information about the initial state. It is shown that the entanglement entropy in such steady states is extensive. For short times, the entanglement entropy grows typically linearly with time, causing an exponential increase in computation costs for the DMRG method. The second part of the thesis focuses on the development and improvement of the abovementioned numerical techniques. The time-dependent DMRG is complemented with an extrapolation technique for the evaluated observables. In this way, the problem of the entropy increase can be circumvented, allowing for a precise determination of spectral functions. The method is demonstrated using the example of the Heisenberg antiferromagnet and results are compared to Bethe-Ansatz data for T=0 and quantum Monte Carlo data
Hans Bethe, Powering the Stars, and Nuclear Physics
dropdown arrow Site Map A-Z Index Menu Synopsis Hans Bethe, Energy Production in Stars, and Nuclear Physics physics, built atomic weapons, and called for a halt to their proliferation. Bethe's dual legacy is one of Laboratory] from 1943 to 1946. Prior to joining the Manhattan Project, Bethe taught physics at Cornell
Obituary: Hans Albrecht Bethe, 1906-2005
Wijers, R.
2007-01-01
One of the unquestioned giants of physics and astrophysics, Hans Bethe, died on 6 March 2005, at the venerable age of 98, in his home town of Ithaca, New York. Seven decades of contributing to research and a Nobel Prize for his work on stellar hydrogen burning make a listing of his honors
Ansatz from nonlinear optics applied to trapped Bose-Einstein condensates
International Nuclear Information System (INIS)
Keceli, Murat; Ilday, F. Oe.; Oktel, M. Oe.
2007-01-01
A simple analytical ansatz, which has been used to describe the intensity profile of the similariton laser (a laser with self-similar propagation of ultrashort pulses), is used as a variational wave function to solve the Gross-Pitaevskii equation for a wide range of interaction parameters. The variational form interpolates between the noninteracting density profile and the strongly interacting Thomas-Fermi profile smoothly. The simple form of the ansatz is modified for both cylindrically symmetric and completely anisotropic harmonic traps. The resulting ground-state density profile and energy are in very good agreement with both the analytical solutions in the limiting cases of interaction and the numerical solutions in the intermediate regime
Excited TBA equations I: Massive tricritical Ising model
International Nuclear Information System (INIS)
Pearce, Paul A.; Chim, Leung; Ahn, Changrim
2001-01-01
We consider the massive tricritical Ising model M(4,5) perturbed by the thermal operator phi (cursive,open) Greek 1,3 in a cylindrical geometry and apply integrable boundary conditions, labelled by the Kac labels (r,s), that are natural off-critical perturbations of known conformal boundary conditions. We derive massive thermodynamic Bethe ansatz (TBA) equations for all excitations by solving, in the continuum scaling limit, the TBA functional equation satisfied by the double-row transfer matrices of the A 4 lattice model of Andrews, Baxter and Forrester (ABF) in Regime III. The complete classification of excitations, in terms of (m,n) systems, is precisely the same as at the conformal tricritical point. Our methods also apply on a torus but we first consider (r,s) boundaries on the cylinder because the classification of states is simply related to fermionic representations of single Virasoro characters χ r,s (q). We study the TBA equations analytically and numerically to determine the conformal UV and free particle IR spectra and the connecting massive flows. The TBA equations in Regime IV and massless RG flows are studied in Part II
The Generalized Coherent State ansatz: Application to quantum electron-vibrational dynamics
Energy Technology Data Exchange (ETDEWEB)
Borrelli, Raffaele, E-mail: raffaele.borrelli@unito.it [DISAFA, Università di Torino, I-10095 Grugliasco (Italy); Gelin, Maxim F. [Departement of Chemistry, Technische Universität München, D-85747 Garching (Germany)
2016-12-20
A new ansatz for molecular vibronic wave functions based on a superposition of time-dependent Generalized Coherent States is developed and analysed. The methodology is specifically tailored to describe the time evolution of the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave packet parameters are obtained by using the Dirac–Frenkel time-dependent variational principle. The methodology is used to describe the quantum dynamical behavior of a model polaron system and its scaling and convergence properties are discussed and compared with numerically exact results.
Obituary: Beth Brown (1969-2008)
Bregman, Joel
2011-12-01
The astronomical community lost one of its most buoyant and caring individuals when Beth Brown died, unexpectedly, at the age of 39 from a pulmonary embolism. Beth Brown was born in Roanoke, Virginia where she developed a deep interest in astronomy, science, and science fiction (Star Trek). After graduating as the valedictorian of William Fleming High School's Class of 1987, she attended Howard University, where she graduated summa cum laude in 1991 with a bachelor's degree in astrophysics. Following a year in the graduate physics program at Howard, she entered the graduate program in the Department of Astronomy at the University of Michigan, the first African-American woman in the program. She received her PhD in 1998, working with X-ray observations of elliptical galaxies from the Röntgen Satellite (ROSAT; Joel Bregman was her advisor). She compiled and analyzed the first large complete sample of such galaxies with ROSAT and her papers in this area made an impact in the field. Following her PhD, Beth Brown held a National Academy of Science & National Research Council Postdoctoral Research Fellowship at NASA's Goddard Space Flight Center. Subsequently, she became a civil servant at the National Space Science Data Center at GSFC, where she was involved in data archival activities as well as education and outreach, a continuing passion in her life. In 2006, Brown became an Astrophysics Fellow at GSFC, during which time she worked as a visiting Assistant Professor at Howard University, where she taught and worked with students and faculty to improve the teaching observatory. At the time of her death, she was eagerly looking forward to a new position at GSFC as the Assistant Director for Science Communications and Higher Education. Beth Brown was a joyous individual who loved to work with people, especially in educating them about our remarkable field. Her warmth and openness was a great aid in making accessible explanations of otherwise daunting astrophysical
Mixed spin-((1)/(2)) and spin-1 Blume-Capel Ising ferrimagnetic system on the Bethe lattice
International Nuclear Information System (INIS)
Albayrak, Erhan; Keskin, Mustafa
2003-01-01
The mixed spin-((1)/(2)) and spin-1 Blume-Capel Ising ferrimagnetic system is studied on the Bethe lattice by using the exact recursion equations. Exact expressions for the magnetization, the quadrupolar moment, the Curie temperature and the free energy are found and the phase diagrams are constructed on the Bethe lattice with the coordination numbers q=3, 4, 5 and 6. The existence of a tricritical point is investigated for different values of q. The results are compared with those of other approximate methods and with the exact result on the Bethe lattice by using a discrete nonlinear map and also the exact results that are available for the case of the honeycomb lattice
Centenary Birth Anniversary of E. W. Beth (1908-1964)
Bagni, Giorgio T.
2008-01-01
Evert Willem Beth (1908-1964) was a Dutch logician, mathematician and philosopher, whose work mainly concerned the foundations of mathematics. Beth was among the founders of the Commission Internationale pour l'Etude et l'Amelioration de l'Enseignement des Mathematiques and was a member of the Central Committee of the International Commission on…
Single-time reduction of bethe-salpeter formalism for two-fermion system
International Nuclear Information System (INIS)
Arkhipov, A.A.
1988-01-01
The single-time reduction method proposed in other refs. for the system of two scalar particles is generalized for the case of two-fermion system. A self-consistent procedure of single-time reduction has been constructed both in terms of the Bethe-Salpeter wave function and in terms of the Green's function of two-fermion system. Three-dimensional dynamic equations have been obtained for single-time wave functions and two-time Green's functions of a two-fermion system and the Schroedinger structure of the equations obtained is shown to be a consequence of the causality structure of the local QFT. 32 refs
Exact tensor network ansatz for strongly interacting systems
Zaletel, Michael P.
It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.
Hopf structure and Green ansatz of deformed parastatistics algebras
Energy Technology Data Exchange (ETDEWEB)
Aneva, Boyka [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, bld. Tsarigradsko chaussee 72, BG-1784 Sofia (Bulgaria); Popov, Todor [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, bld. Tsarigradsko chaussee 72, BG-1784 Sofia (Bulgaria)
2005-07-22
Deformed parabose and parafermi algebras are revised and endowed with Hopf structure in a natural way. The noncocommutative coproduct allows for construction of parastatistics Fock-like representations, built out of the simplest deformed Bose and Fermi representations. The construction gives rise to quadratic algebras of deformed anomalous commutation relations which define the generalized Green ansatz.
Model of pair aggregation on the Bethe lattice
DEFF Research Database (Denmark)
Baillet, M.V.-P.; Pacheco, A.F.; Gómez, J.B.
1997-01-01
We extend a recent model of aggregation of pairs of particles, analyzing the case in which the supporting framework is a Bethe lattice. The model exhibits a critical behavior of the percolation theory type....
Overlaps of partial Néel states and Bethe states
International Nuclear Information System (INIS)
Foda, O; Zarembo, K
2016-01-01
Partial Néel states are generalizations of the ordinary Néel (classical anti-ferromagnet) state that can have arbitrary integer spin. We study overlaps of these states with Bethe states. We first identify this overlap with a partial version of reflecting-boundary domain-wall partition function, and then derive various determinant representations for off-shell and on-shell Bethe states. (paper: quantum statistical physics, condensed matter, integrable systems)
Nuclear forces the making of the physicist Hans Bethe
Schweber, Silvan S
2012-01-01
On the fiftieth anniversary of Hiroshima, Nobel-winning physicist Hans Bethe called on his fellow scientists to stop working on weapons of mass destruction. What drove Bethe, the head of Theoretical Physics at Los Alamos during the Manhattan Project, to renounce the weaponry he had once worked so tirelessly to create? That is one of the questions answered by "Nuclear Forces", a riveting biography of Bethe's early life and development as both a scientist and a man of principle. As Silvan Schweber follows Bethe from his childhood in Germany, to laboratories in Italy and England, and on to Cornell University, he shows how these differing environments were reflected in the kind of physics Bethe produced. Many of the young quantum physicists in the 1930s, including Bethe, had Jewish roots, and Schweber considers how Liberal Judaism in Germany helps explain their remarkable contributions. A portrait emerges of a man whose strategy for staying on top of a deeply hierarchical field was to tackle only those problems h...
Delta and Omega electromagnetic form factors in a Dyson-Schwinger/Bethe-Salpeter approach
Energy Technology Data Exchange (ETDEWEB)
Diana Nicmorus, Gernot Eichmann, Reinhard Alkofer
2010-12-01
We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.
Selected Works Of Hans A Bethe (With Commentary)
International Nuclear Information System (INIS)
Bethe, Hans A.
1997-01-01
Hans A Bethe received the Nobel Prize for Physics in 1967 for his work on the production of energy in stars. A living legend among the physics community, he helped to shape classical physics into quantum physics and increased the understanding of the atomic processes responsible for the properties of matter and of the forces governing the structures of atomic nuclei. This collection of papers by Prof Bethe dates from 1928, when he received his PhD, to now. It covers several areas and reflects the many contributions in research and discovery made by one of the most important and eminent physicists of all time. Special commentaries have been written by Prof Bethe to complement the selected papers
Quantum Waveguide Properties of Bethe Lattices with a Ring
International Nuclear Information System (INIS)
Zhi-Ping, Lin; Zhi-Lin, Hou; You-Yan, Liu
2008-01-01
Based on waveguide theory we investigate electronic transport properties of Bethe lattices with a mesoscopic ring threaded by a magnetic flux. The generalized eigen-function method (GEM) is used to calculate the transmission and reflection coefficients up to the fifth generation of Bethe lattices. The relationships among the transmission coefficient T, magnetic flux φ and wave vector kl are investigated in detail. The numerical results are shown by the three-dimensional plots and contour maps. Some resonant-transmission features and the symmetry of the transmission coefficient T to flux φ are observed and discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Exact solution of the XXX Gaudin model with generic open boundaries
Hao, Kun; Cao, Junpeng; Yang, Tao; Yang, Wen-Li
2015-03-01
The XXX Gaudin model with generic integrable open boundaries specified by the most general non-diagonal reflecting matrices is studied. Besides the inhomogeneous parameters, the associated Gaudin operators have six free parameters which break the U(1) -symmetry. With the help of the off-diagonal Bethe ansatz, we successfully obtained the eigenvalues of these Gaudin operators and the corresponding Bethe ansatz equations.
Exact solutions of sl-boson system in U(2l + 1) reversible O(2l + 2) transitional region
Zhang Xin
2002-01-01
Exact eigen-energies and the corresponding wavefunctions of the interacting sl-boson system in U(2l + 1) reversible O(2l +2) transitional region are obtained by using an algebraic Bethe Ansatz with the infinite dimensional Lie algebraic technique. Numerical algorithm for solving the Bethe Ansatz equations by using mathematical package is also outlined
Machon, Uwe Rainer
2009-01-01
Ziel der Dissertation „Entwicklung von Cysteinproteaseinhibitoren – ein klassischer und ein kombinatorischer Ansatz zur Inhibitoroptimierung“ war die Optimierung von neuen Inhibitoren von Falcipain-2 und Rhodesain als neue potentielle Wirkstoffe gegen Malaria bzw. die Schlafkrankheit über zwei verschiedene Methoden. Es handelt sich hierbei um einen klassischen und einen kombinatorischen Ansatz. Der klassische Ansatz basiert auf einer Struktur, deren Aktivität per Zufall entdeckt wurde. In Scr...
Pionierin der Religionspsychologie: Marianne Beth (1890-1984)
Belzen, J.A.
2010-01-01
This article deals with the contributions to the psychology of religion made by Dr. Marianne Beth (1890-1984), an almost totally forgotten pioneer of the psychology of religion. The article especially contextualizes her initiative to turn "unbelief" into a topic for research in psychology of
Hans Bethe, Quantum Mechanics, and the Lamb Shift
Indian Academy of Sciences (India)
addressed by Bethe in his own inimitable style: He was returning to ... the solution in the train itself (!), on his return journey ... was a viable atomic model to account for some cru- ... The WS conditions in turn were based on the Hamilton-.
Supersymmetric two-particle equations
International Nuclear Information System (INIS)
Sissakyan, A.N.; Skachkov, N.B.; Shevchenko, O.Yu.
1986-01-01
In the framework of the scalar superfield model, a particular case of which is the well-known Wess-Zumino model, the supersymmetric Schwinger equations are found. On their basis with the use of the second Legendre transformation the two-particle supersymmetric Edwards and Bethe-Salpeter equations are derived. A connection of the kernels and inhomogeneous terms of these equations with generating functional of the second Legendre transformation is found
Ein Integraler Gestalt-Ansatz fuer Therapie und Beratung
Directory of Open Access Journals (Sweden)
Martina Gremmler-Fuhr
2005-06-01
Full Text Available Zusammenfassung: In diesem Text stellen wir unseren Ansatz für Psychotherapie und Beratung auf dem Hintergrund des integralen Paradigmas dar. Wir erläutern zunächst kurz vier Anforderungen an ein integrales Konzept in diesem professionellen Bereich: Umgang mit Komplexität und Vielperspektivität, Berücksichtigung gerichteter, vieldimensionaler Entwicklung, Orientierungs- und Sinngebungsfunktion, Realisierung relationaler Qualitäten in der Arbeit. Nach einer Begriffsbestimmung von „Therapie“, „Beratung“ und „Bildung“ charakterisieren wir das seit vielen Jahren von uns entwickelte Konzept für den Integralen Gestalt-Ansatz unter den Fragen nach (1 den Intentionen und Aufgaben von Therapie und Beratung, (2 der Gestaltung der Kommunikation und Beziehung, (3 der Art der Problemdefinition und dem Umgang mit Diagnostik sowie (4 den Strategien und Methoden – alle unter Rückkopplung an die zuvor erläuterten Anforderungen an ein integrales Konzept. Abstract: In this text we present our approach to psychotherapy and counseling on the background of the integral paradigm. We shortly explain four major requirements for such an integral concept: handling complexity and multi-perspectivity, considering directed and multi-dimensional development, offering orientation and meaning, relational qualities. After defining the terms „psychotherapy“, „counselling“, and „education“ we present our concept for the Integral Gestalt Approach which we have developed and evaluated for many years by dealing with four questions: (1 the intentions and tasks of therapy and counselling, (2 the formation of communication and relationship, (3 the specific way of defining problems and using diagnostics, and (4 the strategies and methods – all related back to the major requirements of an integral concept.
Euclidean to Minkowski Bethe-Salpeter amplitude and observables
International Nuclear Information System (INIS)
Carbonell, J.; Frederico, T.; Karmanov, V.A.
2017-01-01
We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)
Euclidean to Minkowski Bethe-Salpeter amplitude and observables
Energy Technology Data Exchange (ETDEWEB)
Carbonell, J. [Universite Paris-Sud, IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France); Frederico, T. [Instituto Tecnologico de Aeronautica, DCTA, Sao Jose dos Campos (Brazil); Karmanov, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)
2017-01-15
We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)
Bethe-Salpeter analysis of the radiative pion disintegration
Energy Technology Data Exchange (ETDEWEB)
Abad, J.; Pacheco, A.F. (Zaragoza Univ. (Spain). Dept. de Fisica Teorica); Rodriguez-Trias, R.; Esteve, J.G. (Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies)
1990-04-01
The structure-dependent amplitude of the decay {pi}{yields}e{nu}{gamma} is evaluated in the framework of a Bethe-Salpeter description for the pion. We assume a general B-S wave function in the S-wave. Within this hypothesis, we show that the gauge invariance constrains the different contributions of the wave functions to the amplitude, resulting in the vanishing of the axial form factor. (orig.).
Covariant Bethe-Salpeter wave functions for heavy hadrons
International Nuclear Information System (INIS)
Hussain, F.
1992-09-01
In recent years the dynamics of heavy mesons and baryons has considerably simplified by the development of the so-called heavy quark effective theory (HQET). A covariant formulation of heavy meson and heavy baryon decays in the leading order of the HQET is presented. The method is based on a Bethe-Salpeter formulation in the limit of the heavy quark mass going to infinity. 15 refs, 4 figs
Quantum graphs with the Bethe-Sommerfeld property
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Turek, Ondřej
2017-01-01
Roč. 8, č. 3 (2017), s. 305-309 ISSN 2220-8054 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : periodic quantum graphs * gap number * delta-coupling * rectangular lattice graph * scale-invariant coupling * Bethe-Sommerfeld conjecture * golden mean Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Periodic quantum graphs from the Bethe-Sommerfeld perspective
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Turek, Ondřej
2017-01-01
Roč. 50, č. 45 (2017), č. článku 455201. ISSN 1751-8113 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : quantum graphs * Bethe-Sommerfeld conjecture * vertex coupling * Diophantine approximation * periodic structure Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.857, year: 2016
Singular solitons and other solutions to a couple of nonlinear wave equations
International Nuclear Information System (INIS)
Inc Mustafa; Ulutaş Esma; Biswas Anjan
2013-01-01
This paper addresses the extended (G'/G)-expansion method and applies it to a couple of nonlinear wave equations. These equations are modified the Benjamin—Bona—Mahoney equation and the Boussinesq equation. This extended method reveals several solutions to these equations. Additionally, the singular soliton solutions are revealed, for these two equations, with the aid of the ansatz method
GW and Bethe-Salpeter study of small water clusters
Energy Technology Data Exchange (ETDEWEB)
Blase, Xavier, E-mail: xavier.blase@neel.cnrs.fr; Boulanger, Paul [CNRS, Institut NEEL, F-38042 Grenoble (France); Bruneval, Fabien [CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette (France); Fernandez-Serra, Marivi [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Duchemin, Ivan [INAC, SP2M/L-Sim, CEA/UJF Cedex 09, 38054 Grenoble (France)
2016-01-21
We study within the GW and Bethe-Salpeter many-body perturbation theories the electronic and optical properties of small (H{sub 2}O){sub n} water clusters (n = 1-6). Comparison with high-level CCSD(T) Coupled-Cluster at the Single Double (Triple) levels and ADC(3) Green’s function third order algebraic diagrammatic construction calculations indicates that the standard non-self-consistent G{sub 0}W{sub 0}@PBE or G{sub 0}W{sub 0}@PBE0 approaches significantly underestimate the ionization energy by about 1.1 eV and 0.5 eV, respectively. Consequently, the related Bethe-Salpeter lowest optical excitations are found to be located much too low in energy when building transitions from a non-self-consistent G{sub 0}W{sub 0} description of the quasiparticle spectrum. Simple self-consistent schemes, with update of the eigenvalues only, are shown to provide a weak dependence on the Kohn-Sham starting point and a much better agreement with reference calculations. The present findings rationalize the theory to experiment possible discrepancies observed in previous G{sub 0}W{sub 0} and Bethe-Salpeter studies of bulk water. The increase of the optical gap with increasing cluster size is consistent with the evolution from gas to dense ice or water phases and results from an enhanced screening of the electron-hole interaction.
Supersymmetric quasipotential equations
International Nuclear Information System (INIS)
Zaikov, R.P.
1981-01-01
A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru
Integrable Floquet dynamics, generalized exclusion processes and "fused" matrix ansatz
Vanicat, Matthieu
2018-04-01
We present a general method for constructing integrable stochastic processes, with two-step discrete time Floquet dynamics, from the transfer matrix formalism. The models can be interpreted as a discrete time parallel update. The method can be applied for both periodic and open boundary conditions. We also show how the stationary distribution can be built as a matrix product state. As an illustration we construct parallel discrete time dynamics associated with the R-matrix of the SSEP and of the ASEP, and provide the associated stationary distributions in a matrix product form. We use this general framework to introduce new integrable generalized exclusion processes, where a fixed number of particles is allowed on each lattice site in opposition to the (single particle) exclusion process models. They are constructed using the fusion procedure of R-matrices (and K-matrices for open boundary conditions) for the SSEP and ASEP. We develop a new method, that we named "fused" matrix ansatz, to build explicitly the stationary distribution in a matrix product form. We use this algebraic structure to compute physical observables such as the correlation functions and the mean particle current.
On the path integral representation of the Wigner function and the Barker–Murray ansatz
International Nuclear Information System (INIS)
Sels, Dries; Brosens, Fons; Magnus, Wim
2012-01-01
The propagator of the Wigner function is constructed from the Wigner–Liouville equation as a phase space path integral over a new effective Lagrangian. In contrast to a paper by Barker and Murray (1983) , we show that the path integral can in general not be written as a linear superposition of classical phase space trajectories over a family of non-local forces. Instead, we adopt a saddle point expansion to show that the semiclassical Wigner function is a linear superposition of classical solutions for a different set of non-local time dependent forces. As shown by a simple example the specific form of the path integral makes the formulation ideal for Monte Carlo simulation. -- Highlights: ► We derive the quantum mechanical propagator of the Wigner function in the path integral representation. ► We show that the Barker–Murray ansatz is incomplete, explain the error and provide an alternative. ► An example of a Monte Carlo simulation of the semiclassical path integral is included.
Yeung, Chuck
2018-06-01
The assumption that the local order parameter is related to an underlying spatially smooth auxiliary field, u (r ⃗,t ) , is a common feature in theoretical approaches to non-conserved order parameter phase separation dynamics. In particular, the ansatz that u (r ⃗,t ) is a Gaussian random field leads to predictions for the decay of the autocorrelation function which are consistent with observations, but distinct from predictions using alternative theoretical approaches. In this paper, the auxiliary field is obtained directly from simulations of the time-dependent Ginzburg-Landau equation in two and three dimensions. The results show that u (r ⃗,t ) is equivalent to the distance to the nearest interface. In two dimensions, the probability distribution, P (u ) , is well approximated as Gaussian except for small values of u /L (t ) , where L (t ) is the characteristic length-scale of the patterns. The behavior of P (u ) in three dimensions is more complicated; the non-Gaussian region for small u /L (t ) is much larger than that in two dimensions but the tails of P (u ) begin to approach a Gaussian form at intermediate times. However, at later times, the tails of the probability distribution appear to decay faster than a Gaussian distribution.
Two site spin correlation function in Bethe-Peierls approximation for Ising model
Energy Technology Data Exchange (ETDEWEB)
Kumar, D [Roorkee Univ. (India). Dept. of Physics
1976-07-01
Two site spin correlation function for an Ising model above Curie temperature has been calculated by generalising Bethe-Peierls approximation. The results derived by a graphical method due to Englert are essentially the same as those obtained earlier by Elliott and Marshall, and Oguchi and Ono. The earlier results were obtained by a direct generalisation of the cluster method of Bethe, while these results are derived by retaining that class of diagrams , which is exact on Bethe lattice.
An exact conformal symmetry Ansatz on Kaluza-Klein reduced TMG
Moutsopoulos, George; Ritter, Patricia
2011-11-01
Using a Kaluza-Klein dimensional reduction, and further imposing a conformal Killing symmetry on the reduced metric generated by the dilaton, we show an Ansatz that yields many of the known stationary axisymmetric solutions to TMG.
Datengeleitetes Lernen im studienbegleitenden Deutschunterricht am Beispiel des KoGloss-Ansatzes
Dubova, Agnese; Proveja, Egita
2016-01-01
Der vorliegende Aufsatz stellt den sprachdidaktischen Ansatz KoGloss vor und beschreibt die Möglichkeiten seines Einsatzes im studienbegleitenden Deutschunterricht. Als eine der Formen des datengeleiteten Lernens ermöglicht der KoGloss-Ansatz eine forschungsorientierte und lernerzentrierte Herangehensweise, die insbesondere im akademischen Sprachunterricht gefragt ist. Eine korpusbasierte Erschließung von (Fach-)Wörtern und komplexen sprachlichen Mustern, das learning by doing, die Kooperatio...
Soliton solutions of some nonlinear evolution equations with time ...
Indian Academy of Sciences (India)
Abstract. In this paper, we obtain exact soliton solutions of the modified KdV equation, inho- mogeneous nonlinear Schrödinger equation and G(m, n) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the ...
Duffin-Kemmer-Petiau equation under a scalar Coulomb interaction
International Nuclear Information System (INIS)
Hassanabadi, H.; Yazarloo, B. H.; Zarrinkamar, S.; Rajabi, A. A.
2011-01-01
Approximate analytical solutions of a Duffin-Kemmer-Petiau (DKP) equation are obtained via an elegant ansatz after successive transformations. Apart from the wide application of the DKP equation in both cosmology and theoretical nuclear physics as well as the physical significance of the Coulomb interaction, this is particularly important as we have provided a solution to the corresponding Heun equation.
Physics over easy Breakfasts with Beth and physics
Azaroff, L V
2010-01-01
During a sequence of meals, the author relates the principal features of physics in easy-to-understand conversations with his wife Beth. Beginning with the studies of motion by Galileo and Newton through to the revolutionary theories of relativity and quantum mechanics in the 20th century, all important aspects of electricity, energy, magnetism, gravity and the structure of matter and atoms are explained and illustrated. The second edition similarly recounts the more recent application of these theories to nanoparticles, Bose-Einstein condensates, quantum entanglement and quantum computers. By
Multifield stochastic particle production: beyond a maximum entropy ansatz
Energy Technology Data Exchange (ETDEWEB)
Amin, Mustafa A.; Garcia, Marcos A.G.; Xie, Hong-Yi; Wen, Osmond, E-mail: mustafa.a.amin@gmail.com, E-mail: marcos.garcia@rice.edu, E-mail: hxie39@wisc.edu, E-mail: ow4@rice.edu [Physics and Astronomy Department, Rice University, 6100 Main Street, Houston, TX 77005 (United States)
2017-09-01
We explore non-adiabatic particle production for N {sub f} coupled scalar fields in a time-dependent background with stochastically varying effective masses, cross-couplings and intervals between interactions. Under the assumption of weak scattering per interaction, we provide a framework for calculating the typical particle production rates after a large number of interactions. After setting up the framework, for analytic tractability, we consider interactions (effective masses and cross couplings) characterized by series of Dirac-delta functions in time with amplitudes and locations drawn from different distributions. Without assuming that the fields are statistically equivalent, we present closed form results (up to quadratures) for the asymptotic particle production rates for the N {sub f}=1 and N {sub f}=2 cases. We also present results for the general N {sub f} >2 case, but with more restrictive assumptions. We find agreement between our analytic results and direct numerical calculations of the total occupation number of the produced particles, with departures that can be explained in terms of violation of our assumptions. We elucidate the precise connection between the maximum entropy ansatz (MEA) used in Amin and Baumann (2015) and the underlying statistical distribution of the self and cross couplings. We provide and justify a simple to use (MEA-inspired) expression for the particle production rate, which agrees with our more detailed treatment when the parameters characterizing the effective mass and cross-couplings between fields are all comparable to each other. However, deviations are seen when some parameters differ significantly from others. We show that such deviations become negligible for a broad range of parameters when N {sub f}>> 1.
Analytical and numerical solutions of the Schrödinger–KdV equation
Indian Academy of Sciences (India)
solitary wave ansatz method is used to carry out the integration of the ..... Exact rational travelling wave solutions of SKdV equation obtained by the ...... Air Force Office of Scientific Research (AFOSR) under the award number: W54428-RT-.
The Bethe Sum Rule and Basis Set Selection in the Calculation of Generalized Oscillator Strengths
DEFF Research Database (Denmark)
Cabrera-Trujillo, Remigio; Sabin, John R.; Oddershede, Jens
1999-01-01
Fulfillment of the Bethe sum rule may be construed as a measure of basis set quality for atomic and molecular properties involving the generalized oscillator strength distribution. It is first shown that, in the case of a complete basis, the Bethe sum rule is fulfilled exactly in the random phase...
Null-plane formulation of Bethe-Salpeter qqq dynamics: Baryon mass spectra
International Nuclear Information System (INIS)
Kulshreshtha, D.S.; Mitra, A.N.
1988-01-01
The Bethe-Salpeter (BS) equation for a qqq system is formulated in the null-plane approximation (NPA) for the BS wave function, as a direct generalization of a corresponding QCD-motivated formalism developed earlier for qq-bar systems. The confinement kernel is assumed vector type (γ/sub μ//sup (1)/γ/sub μ//sup (2)/) for both qq-bar and qq pairs, with identical harmonic structures, and with the spring constant proportional, among other things, to the running coupling constant α/sub s/ (for an explicit QCD motivation). The harmonic kernel is given a suitable Lorentz-invariant definition [not D'Alembertian 2 δ 4 (q)], which is amenable to NPA reduction in a covariant form. The reduced qqq equation in NPA is solved algebraically in a six-dimensional harmonic-oscillator (HO) basis, using the techniques of SO(2,1) algebra interlinked with S 3 symmetry. The results on the nonstrange baryon mass spectra agree well with the data all the way up to N = 6, thus confirming the asymptotic prediction M∼N/sup 2/3/ characteristic of vector confinement in HO form. There are no extra parameters beyond the three basic constants (ω 0 ,C 0 ,m/sub u//sub d/) which were earlier found to provide excellent fits to meson spectra (qq-bar)
Exact solutions of space-time fractional EW and modified EW equations
International Nuclear Information System (INIS)
Korkmaz, Alper
2017-01-01
The bright soliton solutions and singular solutions are constructed for the space-time fractional EW and the space-time fractional modified EW (MEW) equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform (FCT) and properties of modified Riemann–Liouville derivative. Then, various ansatz method are implemented to construct the solutions for both equations.
Low-temperature excitations within the Bethe approximation
International Nuclear Information System (INIS)
Biazzo, I; Ramezanpour, A
2013-01-01
We propose the variational quantum cavity method to construct a minimal energy subspace of wavevectors that are used to obtain some upper bounds for the energy cost of the low-temperature excitations. Given a trial wavefunction we use the cavity method of statistical physics to estimate the Hamiltonian expectation and to find the optimal variational parameters in the subspace of wavevectors orthogonal to the lower-energy wavefunctions. To this end, we write the overlap between two wavefunctions within the Bethe approximation, which allows us to replace the global orthogonality constraint with some local constraints on the variational parameters. The method is applied to the transverse Ising model and different levels of approximations are compared with the exact numerical solutions for small systems. (paper)
Y-system for γ-deformed ABJM theory
Energy Technology Data Exchange (ETDEWEB)
Chen, Hui-Huang; Liu, Peng [Institute of High Energy Physics, and Theoretical Physics Center for Science Facilities,Chinese Academy of Sciences,19B Yuquan Road, Beijing 100049 (China); University of Chinese Academy of Sciences,19A Yuquan Road, Beijing 100049 (China); Wu, Jun-Bao [School of Science, University of Tianjin,92 Weijin Road, Tianjin 300072 (China); School of Physics and Nuclear Energy Engineering, Beihang University,37 Xueyuan Road, Beijing 100191 (China); Institute of High Energy Physics, and Theoretical Physics Center for Science Facilities,Chinese Academy of Sciences,19B Yuquan Road, Beijing 100049 (China); University of Chinese Academy of Sciences,19A Yuquan Road, Beijing 100049 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Road, Beijing 100871 (China)
2017-03-27
We investigate the integrable aspects of the planar γ-deformed ABJM theory and propose the twisted asymptotic Bethe ansatz equations. A more general method through a twisted generating functional is discussed, based on which, the asymptotic large L solution of Y-system is modified in order to match the asymptotic Bethe ansatz equations. Several applications of our method in the sl(2)-like sector and some important examples in β-deformed ABJM are presented as well.
The exact solution and the finite-size behaviour of the Osp(1vertical stroke 2)-invariant spin chain
International Nuclear Information System (INIS)
Martins, M.J.
1995-01-01
We have solved exactly the Osp(1vertical stroke 2) spin chain by the Bethe ansatz approach. Our solution is based on an equivalence between the Osp(1vertical stroke 2) chain and a certain special limit of the Izergin-Korepin vertex model. The completeness of the Bethe ansatz equations is discussed for a system with four sites and the appearance of special string structures is noted. The Bethe ansatz presents an important phase factor which distinguishes the even and odd sectors of the theory. The finite-size properties are governed by a conformal field theory with central charge c=1. (orig.)
A note on the three dimensional sine--Gordon equation
Shariati, Ahmad
1996-01-01
Using a simple ansatz for the solutions of the three dimensional generalization of the sine--Gordon and Toda model introduced by Konopelchenko and Rogers, a class of solutions is found by elementary methods. It is also shown that these equations are not evolution equations in the sense that solution to the initial value problem is not unique.
New solitary wave solutions to the modified Kawahara equation
International Nuclear Information System (INIS)
Wazwaz, Abdul-Majid
2007-01-01
In this work we use the sine-cosine method, the tanh method, the extended tanh method, and ansatze of hyperbolic functions for analytic treatment for the modified Kawahara equation. New solitons solutions and periodic solutions are formally derived. The change of the parameters, that will drastically change the characteristics of the equation, is examined. The employed approaches are reliable and manageable
Generalized hedgehog ansatz and Gribov copies in regions with nontrivial topologies
Canfora, Fabrizio; Salgado-Rebolledo, Patricio
2013-02-01
In this paper the arising of Gribov copies both in Landau and Coulomb gauges in regions with nontrivial topologies but flat metric, (such as closed tubes S1×D2, or R×T2) will be analyzed. Using a novel generalization of the hedgehog ansatz beyond spherical symmetry, analytic examples of Gribov copies of the vacuum will be constructed. Using such ansatz, we will also construct the elliptic Gribov pendulum. The requirement of absence of Gribov copies of the vacuum satisfying the strong boundary conditions implies geometrical constraints on the shapes and sizes of the regions with nontrivial topologies.
Relativistic three-particle dynamical equations: I. Theoretical development
International Nuclear Information System (INIS)
Adhikari, S.K.; Tomio, L.; Frederico, T.
1993-11-01
Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, three dimensional scattering integral equations satisfying constrains of relativistic unitarity and covariance are rederived. These equations were first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence it is shown to perform and relate dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, several three dimensional three-particle scattering equations satisfying constraints of relativistic unitary and covariance are derived. Two of these three-particle equations are related by a transformation of variables as in the two-particle case. The three-particle equations obtained are very practical and suitable for performing relativistic scattering calculations. (author)
Semeriyanov, F.; Saphiannikova, M.; Heinrich, G.
2009-11-01
Our study is based on the work of Stinchcombe (1974 J. Phys. C: Solid State Phys. 7 179) and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of the inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi (1974 Phys. Rev. B 9 4575) for the regular lattice.
International Nuclear Information System (INIS)
Semeriyanov, F; Saphiannikova, M; Heinrich, G
2009-01-01
Our study is based on the work of Stinchcombe (1974 J. Phys. C: Solid State Phys. 7 179) and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of the inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi (1974 Phys. Rev. B 9 4575) for the regular lattice.
A Political End to a Pioneering Career: Marianne Beth and the Psychology of Religion
Directory of Open Access Journals (Sweden)
Jacob A. Belzen
2011-07-01
Full Text Available Although forgotten in both Religionswissenschaft (the Science of Religion and psychology, Marianne Beth (1880-1984, initially trained as a lawyer and already in 1928 called a “leading European woman”, must be considered as one of the female pioneers of these fields. She has been active especially in the psychology of religion, a field in which she, together with her husband Karl Beth, founded a research institute, an international organization and a journal. In 1932, the Beths organized in Vienna (where Karl was a professor the largest conference ever in the history of the psychology of religion. Because of her Jewish descent, Marianne Beth fled to the USA when Austria was annexed by Nazi Germany in 1938. This brought an abrupt end to her career as researcher and writer. The article reconstructs Marianne Beth’s path into psychology, analyzes some of her work and puts her achievements in an international perspective.
Lepton-pair production of a light pseudoscalar particle via the Bethe-Heitler process
International Nuclear Information System (INIS)
Kim, B.R.; Stamm, C.
1983-01-01
Bethe-Heitler processes of light pseudoscalar particles off nuclei are at present very important experimentally. For these processes we present our results which seem to differ from previous theoretical calculations found in the literature. (orig.)
Generalized Bethe-Negele inequalities for excited states in muonic atoms
International Nuclear Information System (INIS)
Klarsfeld, S.
1976-11-01
Rigorous upper and lower bounds are derived for the Bethe logarithms in excited states of muonic atoms. Comparison with previous empirical estimates shows that the latter are inadequate in certain cases
Algebraic structure of the Green's ansatz and its q-deformed analogue
International Nuclear Information System (INIS)
Palev, T.D.
1994-08-01
The algebraic structure of the Green's ansatz is analyzed in such a way that its generalization to the case of q-deformed para-Bose and para-Fermi operators is becoming evident. To this end the underlying Lie (super) algebraic properties of the parastatistics are essentially used. (author). 41 refs
International Nuclear Information System (INIS)
Nasri, Salah; Schechter, Joseph; Moussa, Sherif
2004-01-01
We further study the previously proposed ansatz, Tr(M ν )=0, for a prediagonal light Majorana type neutrino mass matrix. If CP violation is neglected this enables one to use the existing data on squared mass differences to estimate (up to a discrete ambiguity) the neutrino masses themselves. If it is assumed that only the conventional CP phase is present, the ansatz enables us to estimate this phase in addition to all three masses. If it is assumed that only the two Majorana CP phases are present, the ansatz enables us to present a one parameter family of solutions for the masses and phases. This enables us to obtain a simple 'global' view of lepton number violation effects. Furthermore using an SO(10) motivation for the ansatz suggests an amusing toy (clone) model in which the heavy neutrinos have the same mixing pattern and mass ratios as the light ones. In this case only their overall mass scale is not known (although it is constrained by the initial motivation). Using this toy model we make a rough estimate of the magnitude of the baryon to photon ratio induced by the leptogenesis mechanism. Solutions close to the CP conserving cases seem to be favored
Cluster-Bethe-Lattice study of a planar antiferromagnet: Rb2NiF4
International Nuclear Information System (INIS)
Cruz, G.A.C. de la; Silva, C.E.T.G. da
1979-01-01
A discussion of the Cluster-Bethe-Lattice method is presented for a planar antiferromagnet for which the hamiltonian parameters are known and the one-magnon density of states may be computed exactly. All the square clusters of 1 to 121 atoms are studied both connected to and isolated from the Bethe lattices. It is shown that, even for the largest cluster treated, the approximation is still far from the exact result. It is discussed the limitations of the method [pt
A cluster-bethe-lattice approach to spin-waves in dilute ferromagnets
International Nuclear Information System (INIS)
Salzberg, J.B.; Silva, C.E.T.G. da; Falicov, L.M.
1975-01-01
The spin-wave spectra of a dilute ferromagnet within the cluster-bethe-lattice approximation is studied. Short range order effects for the alloy are included. A study of finite size clusters connected at their edges to Bethe lattices of the same coordination number allows one to determine:(i) the stability condition for the magnetic system; (ii) the continuum spin-wave local density of states and (iii) the existence of localized states below and above the continuum states
Bethe, Oppenheimer, Teller and the Fermi Award: Norris Bradbury Speaks
Energy Technology Data Exchange (ETDEWEB)
Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-04-28
In 1956 the Enrico Fermi Presidential Award was established to recognize scientists, engineers, and science policymakers who gave unstintingly over their careers to advance energy science and technology. The first recipient was John von Neumann. .1 Among those scientists who were thought eligible for the award were Hans Bethe, J. Robert Oppenheimer, and Edward Teller. In 1959 Norris Bradbury was asked to comment on the relative merits of each these three men, whom he knew well from their affiliation with Los Alamos. Below is a reproduction of the letter Bradbury sent to Dr. Warren C. Johnson of the AEC’s General Advisory Committee(GAC) containing his evaluation of each man. The letter might surprise those not accustomed to Bradbury’s modus operandi of providing very detailed and forthright answers to the AEC. The letter, itself, was found in cache of old microfilm. Whether because of the age of the microfilm or the quality of the filming process, portions of the letter are not legible. Where empty brackets appear, the word or words could not be read or deduced. Words appearing in brackets are guesses that appear, from the image, to be what was written. These guesses, of course, are just that – guesses.
LSZ asymptotic condition and dynamic equations in quantum field theory
International Nuclear Information System (INIS)
Arkhipov, A.A.; Savrin, V.I.
1983-01-01
Some techniques that may be appropriate for the derivation of dynamic equations in quantum field theory are considered. A new method of deriving equations based on the use of LSZ asymptotic condition is described. It is proved that with the help of this method it becomes possible to obtain equations for wave functions both of scattering and bound states. Work is described in several papers under the dame title. The first paper is devoted to the Bethe-Salpeter equation
Analytical and numerical solutions of the Schrödinger–KdV equation
Indian Academy of Sciences (India)
The Schrödinger–KdV equation with power-law nonlinearity is studied in this paper. The solitary wave ansatz method is used to carry out the integration of the equation and obtain one-soliton solution. The ′/ method is also used to integrate this equation. Subsequently, the variational iteration method and homotopy ...
Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [UMR 5672 du CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)
2010-12-15
We describe a Bethe ansatz based method to derive, starting from a multiple integral representation, the long-distance asymptotic behavior at finite temperature of the density-density correlation function in the interacting onedimensional Bose gas. We compute the correlation lengths in terms of solutions of non-linear integral equations of the thermodynamic Bethe ansatz type. Finally, we establish a connection between the results obtained in our approach with the correlation lengths stemming from the quantum transfer matrix method. (orig.)
International Nuclear Information System (INIS)
Ekiz, Cesur; Albayrak, Erhan; Keskin, Mustafa.
2003-01-01
The multicritical behaviour of the spin-((3)/(2)) Blume-Emery-Griffiths model with bilinear and biquadratic exchange interactions and single-ion crystal field is studied on the Bethe lattice by introducing two-sublattices A and B within the exact recursion equations. Exact expressions for the free energy, the Curie or second-order phase transition temperatures, as well as for the magnetization and quadrupolar moment order parameters are obtained. The general procedure of investigation of critical properties is discussed and phase diagrams are obtained, in particular, for negative biquadratic couplings. The phase diagram of the model exhibits a rich variety of behaviours. Results are compared with other approximate methods
Intriguing solutions of the Bethe-Salpeter equation for radially excited pseudoscalar charmonia
Czech Academy of Sciences Publication Activity Database
Šauli, Vladimír
2014-01-01
Roč. 90, č. 1 (2014), 016005 ISSN 1550-7998 Institutional support: RVO:61389005 Keywords : quantum chromodynamics * confinement * quarks * gluons Subject RIV: BE - Theoretical Physics Impact factor: 4.643, year: 2014
Comment on 'New ansatz for metric operator calculation in pseudo-Hermitian field theory'
International Nuclear Information System (INIS)
Bender, Carl M.; Benincasa, Gregorio; Jones, H. F.
2009-01-01
In a recent Brief Report by Shalaby, a new first-order perturbative calculation of the metric operator for an iφ 3 scalar field theory is given. It is claimed that the incorporation of derivative terms in the ansatz for the metric operator results in a local solution, in contrast to the nonlocal solution previously obtained by Bender, Brody, and Jones. Unfortunately, Shalaby's calculation is not valid because of sign errors.
Random-fractal Ansatz for the configurations of two-dimensional critical systems.
Lee, Ching Hua; Ozaki, Dai; Matsueda, Hiroaki
2016-12-01
Critical systems have always intrigued physicists and precipitated the development of new techniques. Recently, there has been renewed interest in the information contained in the configurations of classical critical systems, whose computation do not require full knowledge of the wave function. Inspired by holographic duality, we investigated the entanglement properties of the classical configurations (snapshots) of the Potts model by introducing an Ansatz ensemble of random fractal images. By virtue of the central limit theorem, our Ansatz accurately reproduces the entanglement spectra of actual Potts snapshots without any fine tuning of parameters or artificial restrictions on ensemble choice. It provides a microscopic interpretation of the results of previous studies, which established a relation between the scaling behavior of snapshot entropy and the critical exponent. More importantly, it elucidates the role of ensemble disorder in restoring conformal invariance, an aspect previously ignored. Away from criticality, the breakdown of scale invariance leads to a renormalization of the parameter Σ in the random fractal Ansatz, whose variation can be used as an alternative determination of the critical exponent. We conclude by providing a recipe for the explicit construction of fractal unit cells consistent with a given scaling exponent.
Testing invisible momentum ansatze in missing energy events at the LHC
Kim, Doojin; Matchev, Konstantin T.; Moortgat, Filip; Pape, Luc
2017-08-01
We consider SUSY-like events with two decay chains, each terminating in an invisible particle, whose true energy and momentum are not measured in the detector. Nevertheless, a useful educated guess about the invisible momenta can still be obtained by optimizing a suitable invariant mass function. We review and contrast several proposals in the literature for such ansatze: four versions of the M T 2-assisted on-shell reconstruction (MAOS), as well as several variants of the on-shell constrained M 2 variables. We compare the performance of these methods with regards to the mass determination of a new particle resonance along the decay chain from the peak of the reconstructed invariant mass distribution. For concreteness, we consider the event topology of dilepton t\\overline{t} events and study each of the three possible subsystems, in both a t\\overline{t} and a SUSY example. We find that the M 2 variables generally provide sharper peaks and therefore better ansatze for the invisible momenta. We show that the performance can be further improved by preselecting events near the kinematic endpoint of the corresponding variable from which the momentum ansatz originates.
Topological soliton solutions for some nonlinear evolution equations
Directory of Open Access Journals (Sweden)
Ahmet Bekir
2014-03-01
Full Text Available In this paper, the topological soliton solutions of nonlinear evolution equations are obtained by the solitary wave ansatz method. Under some parameter conditions, exact solitary wave solutions are obtained. Note that it is always useful and desirable to construct exact solutions especially soliton-type (dark, bright, kink, anti-kink, etc. envelope for the understanding of most nonlinear physical phenomena.
Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study
International Nuclear Information System (INIS)
Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.
2016-01-01
The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions. - Highlights: • The magnetic properties of bilayer on the Bethe lattice have been investigated. • The transition temperature has been deduced. • The magnetic coercive filed has been established.
Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2016-03-01
The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions. - Highlights: • The magnetic properties of bilayer on the Bethe lattice have been investigated. • The transition temperature has been deduced. • The magnetic coercive filed has been established.
Mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000, Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2015-11-01
The magnetic properties of spins-S and σ Ising model on the Bethe lattice have been investigated by using the Monte Carlo simulation. The thermal total magnetization and magnetization of spins S and σ with the different exchange interactions, different external magnetic field and different temperatures have been studied. The critical temperature and compensation temperature have been deduced. The magnetic hysteresis cycle of Ising ferrimagnetic system on the Bethe lattice has been deduced for different values of exchange interactions between the spins S and σ, for different values of crystal field and for different sizes. The magnetic coercive filed has been deduced. - Highlights: • The magnetic properties of Bethe lattice have been investigated. • The critical temperature and compensation temperature have been deduced. • The magnetic coercive filed has been deduced.
Degeneration of Bethe subalgebras in the Yangian of gl_n
Ilin, Aleksei; Rybnikov, Leonid
2018-04-01
We study degenerations of Bethe subalgebras B( C) in the Yangian Y(gl_n), where C is a regular diagonal matrix. We show that closure of the parameter space of the family of Bethe subalgebras, which parameterizes all possible degenerations, is the Deligne-Mumford moduli space of stable rational curves \\overline{M_{0,n+2}}. All subalgebras corresponding to the points of \\overline{M_{0,n+2}} are free and maximal commutative. We describe explicitly the "simplest" degenerations and show that every degeneration is the composition of the simplest ones. The Deligne-Mumford space \\overline{M_{0,n+2}} generalizes to other root systems as some De Concini-Procesi resolution of some toric variety. We state a conjecture generalizing our results to Bethe subalgebras in the Yangian of arbitrary simple Lie algebra in terms of this De Concini-Procesi resolution.
Bayesian extraction of the parton distribution amplitude from the Bethe-Salpeter wave function
Gao, Fei; Chang, Lei; Liu, Yu-xin
2017-07-01
We propose a new numerical method to compute the parton distribution amplitude (PDA) from the Euclidean Bethe-Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe-Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method (MEM). The Nakanishi weight function as well as the corresponding light-front parton distribution amplitude (PDA) can be well determined. We confirm prior work on PDA computations, which was based on different methods.
Pessoa em Bethânia: os versos do desassossego na voz do encantamento
Barros, Andre Luiz Calsone
2013-01-01
Pessoa em Bethânia tem por tema a recriação dos versos de Caeiro no espetáculo Rosa dos Ventos O Show Encantado, tendo por intérprete Maria Bethânia. O corpus é o Poema VIII de Alberto Caeiro, heterônimo de Fernando Pessoa, da obra O Guardador de Rebanhos (1911 1912), transformado em roteiro dramáticomusical e tornado performance no espetáculo Rosa dos Ventos. Reinterpretado por meio da voz, do corpo, da música e dos mais variados recursos cênicos, o poema de Fernando ...
Height probabilities in the Abelian sandpile model on the generalized finite Bethe lattice
Chen, Haiyan; Zhang, Fuji
2013-08-01
In this paper, we study the sandpile model on the generalized finite Bethe lattice with a particular boundary condition. Using a combinatorial method, we give the exact expressions for all single-site probabilities and some two-site joint probabilities. As a by-product, we prove that the height probabilities of bulk vertices are all the same for the Bethe lattice with certain given boundary condition, which was found from numerical evidence by Grassberger and Manna ["Some more sandpiles," J. Phys. (France) 51, 1077-1098 (1990)], 10.1051/jphys:0199000510110107700 but without a proof.
Comment on the analysis of Bethe-Salpeter scattering states by Hormozdiari and Huang
International Nuclear Information System (INIS)
Tryon, E.P.
1978-01-01
The analysis of Bethe-Salpeter scattering states by Hormozdiari and Huang appears to contain invalid mathematical arguments. When these arguments are rectified, one arrives at substantially different conclusions. In particular, the prescription of Hormozdiari and Huang for constructing such states does not seem applicable to any process occurring in nature
Deep inelastic scattering on the deuteron in the Bethe-Salpeter formalism
International Nuclear Information System (INIS)
Kaptari, L.P.; Kazakov, K.Yu.; Umnikov, A.Yu.; Khanna, F.C.
1996-01-01
The nuclear effects in the spin structure functions of the deuteron g 1 and b 2 are estimated in a fully covariant approach of the Bethe-Salpeter formalism. The construction of the relativistic wave function of the deuteron is discussed in detail. Numerical results for g 1 and b 2 are compared with nonrelativistic results and relativistic corrections are discussed [ru
Heavy quark effective theory, interpolating fields and Bethe-Salpeter amplitudes
International Nuclear Information System (INIS)
Hussain, F.; Thomspon, G.
1994-07-01
We use the LSZ reduction theorem and interpolating fields, along with the heavy quark effective theory, to investigate the structure of the Bethe-Salpeter amplitude for heavy hadrons. We show how a simple form of this amplitude, used extensively in heavy hadron decay calculations, follows naturally up to O(1/M) from these field theoretic considerations. (author). 13 refs, 1 tab
Mertz, Leslie
2018-01-01
Work is already underway to bring blockchain technology to the healthcare industry, and hospital administrators are trying to figure out what it can do for them, their clinicians, and their patients. That includes administrators at Beth Israel Deaconess Medical Center, a leading academic medical center located in Boston.
A political end to a pioneering career: Marianne Beth and the psychology of religion
Belzen, J.A.
2011-01-01
Although forgotten in both Religionswissenschaft (the Science of Religion) and psychology, Marianne Beth (1880-1984), initially trained as a lawyer and already in 1928 called a "leading European woman", must be considered as one of the female pioneers of these fields. She has been active especially
Graph theory and the Virasoro master equation
International Nuclear Information System (INIS)
Obers, N.A.J.
1991-01-01
A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equation is given. By studying ansaetze of the master equation, the author obtains exact solutions and gains insight in the structure of large slices of affine-Virasoro space. He finds an isomorphism between the constructions in the ansatz SO(n) diag , which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabeled graphs of order n. On the one hand, the conformal constructions, are classified by the graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graph of graph theory. He also defines a class of magic Lie group bases in which the Virasoro master equation admits a simple metric ansatz {g metric }, whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g metric is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n) diag in the Cartesian basis of SO(n), and the ansatz SU(n) metric in the Pauli-like basis of SU(n). Finally, he defines the 'sine-area graphs' of SU(n), which label the conformal field theories of SU(n) metric , and he notes that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g metric
Web-based description of the space radiation environment using the Bethe-Bloch model
Cazzola, Emanuele; Calders, Stijn; Lapenta, Giovanni
2016-01-01
Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe-Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most important
Energy Technology Data Exchange (ETDEWEB)
Semeriyanov, F; Saphiannikova, M; Heinrich, G [Leibniz Institute of Polymer Research Dresden, Hohe str. 6, 01069 Dresden (Germany)], E-mail: fsemeriyanov@yahoo.de
2009-11-20
Our study is based on the work of Stinchcombe (1974 J. Phys. C: Solid State Phys. 7 179) and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of the inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi (1974 Phys. Rev. B 9 4575) for the regular lattice.
International Nuclear Information System (INIS)
Chen Yong; Wang Qi; Li Biao
2005-01-01
Based on a new general ansatz and a general subepuation, a new general algebraic method named elliptic equation rational expansion method is devised for constructing multiple travelling wave solutions in terms of rational special function for nonlinear evolution equations (NEEs). We apply the proposed method to solve Whitham-Broer-Kaup equation and explicitly construct a series of exact solutions which include rational form solitary wave solution, rational form triangular periodic wave solutions and rational wave solutions as special cases. In addition, the links among our proposed method with the method by Fan [Chaos, Solitons and Fractals 2004;20:609], are also clarified generally
ODE/IM correspondence and modified affine Toda field equations
Energy Technology Data Exchange (ETDEWEB)
Ito, Katsushi; Locke, Christopher
2014-08-15
We study the two-dimensional affine Toda field equations for affine Lie algebra g{sup ^} modified by a conformal transformation and the associated linear equations. In the conformal limit, the associated linear problem reduces to a (pseudo-)differential equation. For classical affine Lie algebra g{sup ^}, we obtain a (pseudo-)differential equation corresponding to the Bethe equations for the Langlands dual of the Lie algebra g, which were found by Dorey et al. in study of the ODE/IM correspondence.
Energy Technology Data Exchange (ETDEWEB)
Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2016-01-01
The magnetic properties of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice have been studied by using the Monte Carlo simulations. The ground state phase diagrams of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice has been obtained. The thermal total magnetization and magnetization of spins-5/2 and spin-2 with the different exchange interactions, external magnetic field and temperatures have been studied. The critical temperature have been deduced. The magnetic hysteresis cycle on the Bethe lattice has been deduced for different values of exchange interactions, for different values of crystal field and for different sizes. The magnetic coercive field has been deduced. - Highlights: • The alternate mixed spin-5/2 and -2 on the Bethe lattice is studied. • The critical temperature has been deduced. • The magnetic coercive filed has been deduced.
Accuracy of the Bethe approximation for hyperparameter estimation in probabilistic image processing
International Nuclear Information System (INIS)
Tanaka, Kazuyuki; Shouno, Hayaru; Okada, Masato; Titterington, D M
2004-01-01
We investigate the accuracy of statistical-mechanical approximations for the estimation of hyperparameters from observable data in probabilistic image processing, which is based on Bayesian statistics and maximum likelihood estimation. Hyperparameters in statistical science correspond to interactions or external fields in the statistical-mechanics context. In this paper, hyperparameters in the probabilistic model are determined so as to maximize a marginal likelihood. A practical algorithm is described for grey-level image restoration based on a Gaussian graphical model and the Bethe approximation. The algorithm corresponds to loopy belief propagation in artificial intelligence. We examine the accuracy of hyperparameter estimation when we use the Bethe approximation. It is well known that a practical algorithm for probabilistic image processing can be prescribed analytically when a Gaussian graphical model is adopted as a prior probabilistic model in Bayes' formula. We are therefore able to compare, in a numerical study, results obtained through mean-field-type approximations with those based on exact calculation
The Beer/Bethe/Uexküll paper (1899) and misinterpretations surrounding 'vitalistic behaviorism'.
Mildenberger, Florian
2006-01-01
In the history of behaviorism the paper of the three physiologists Theodor Beer, Albrecht Bethe and Jakob von Uexküll from 1899 plays an important role. Many researchers were influenced by this paper and identified it as fundamental for objective psychological research. But during the period of its adoption (1900-1925) psychologists did not notice that Beer, Bethe and Uexküll had distanced themselves from their own paper, because it had been ignored in physiological and biological discussions. Moreover, one of the three (Beer) had to resign from the scientific community because of private scandal and another one (Uexküll) changed all of his views and left the base of objective science for subjective vitalism. However, this did not change his adoption of behaviorism.
Comultiplication in ABCD algebra and scalar products of Bethe wave functions
International Nuclear Information System (INIS)
Mikhailov, A.
1995-01-01
The representation of scalar products of Bethe wave functions in terms of dual fields, plays an important role in the theory of completely integrable models. The proof is based on the explicit expression for the open-quotes seniorclose quotes coefficient, which was guessed in the Izergin paper and then proved to satisfy some recurrent relations, which determine it unambiguously. In this paper we present an alternative proof based on direct computation. It uses the operation of comultiplication in the ABCD-algebra
International Nuclear Information System (INIS)
Kakehashi, Yoshiro; Chandra, Sumal
2016-01-01
We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi–Dirac function for the d electrons with e g symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data. (author)
Kakehashi, Yoshiro; Chandra, Sumal
2016-04-01
We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.
Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit
Gruber, Thomas; Liao, Ke; Tsatsoulis, Theodoros; Hummel, Felix; Grüneis, Andreas
2018-04-01
Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h -BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.
Electronic structure of disordered binary alloys with short range correlation in Bethe lattice
International Nuclear Information System (INIS)
Moreno, I.F.
1987-01-01
The determination of the electronic structure of a disordered material along the tight-binding model when applied to a Bethe lattice. The diagonal as well as off-diagonal disorder, are considered. The coordination number on the Bethe is fixed lattice to four (Z=4) that occurs in most compound semiconductors. The main proposal was to study the conditions under which a relatively simple model of a disordered material, i.e, a binary alloy, could account for the basic properties of transport or more specifically for the electronic states in such systems. By using a parametrization of the pair probability the behaviour of the electronic density of states (DOS) for different values of the short range order parameter, σ, which makes possible to treat the segregated, random and alternating cases, was analysed. In solving the problem via the Green function technique in the Wannier representation a linear chain of atoms was considered and using the solution of such a 1-D system the problem of the Bethe lattice which is constructed using such renormalized chains as elements, was solved. The results indicate that the obtained DOS are strongly dependent on the correlation assumed for the occupancy in the lattice. (author) [pt
Hu, Q.; Vidal, G.
2017-07-01
The generalization of the multiscale entanglement renormalization ansatz (MERA) to continuous systems, or cMERA [Haegeman et al., Phys. Rev. Lett. 110, 100402 (2013), 10.1103/PhysRevLett.110.100402], is expected to become a powerful variational ansatz for the ground state of strongly interacting quantum field theories. In this Letter, we investigate, in the simpler context of Gaussian cMERA for free theories, the extent to which the cMERA state |ΨΛ⟩ with finite UV cutoff Λ can capture the spacetime symmetries of the ground state |Ψ ⟩. For a free boson conformal field theory (CFT) in 1 +1 dimensions, as a concrete example, we build a quasilocal unitary transformation V that maps |Ψ ⟩ into |ΨΛ⟩ and show two main results. (i) Any spacetime symmetry of the ground state |Ψ ⟩ is also mapped by V into a spacetime symmetry of the cMERA |ΨΛ⟩. However, while in the CFT, the stress-energy tensor Tμ ν(x ) (in terms of which all the spacetime symmetry generators are expressed) is local, and the corresponding cMERA stress-energy tensor Tμν Λ(x )=V Tμ ν(x )V† is quasilocal. (ii) From the cMERA, we can extract quasilocal scaling operators OαΛ(x ) characterized by the exact same scaling dimensions Δα, conformal spins sα, operator product expansion coefficients Cα β γ, and central charge c as the original CFT. Finally, we argue that these results should also apply to interacting theories.
Loop expansion around the Bethe approximation through the M-layer construction
Altieri, Ada; Chiara Angelini, Maria; Lucibello, Carlo; Parisi, Giorgio; Ricci-Tersenghi, Federico; Rizzo, Tommaso
2017-11-01
For every physical model defined on a generic graph or factor graph, the Bethe M-layer construction allows building a different model for which the Bethe approximation is exact in the large M limit, and coincides with the original model for M=1 . The 1/M perturbative series is then expressed by a diagrammatic loop expansion in terms of so-called fat diagrams. Our motivation is to study some important second-order phase transitions that do exist on the Bethe lattice, but are either qualitatively different or absent in the corresponding fully connected case. In this case, the standard approach based on a perturbative expansion around the naive mean field theory (essentially a fully connected model) fails. On physical grounds, we expect that when the construction is applied to a lattice in finite dimension there is a small region of the external parameters, close to the Bethe critical point, where strong deviations from mean-field behavior will be observed. In this region, the 1/M expansion for the corrections diverges, and can be the starting point for determining the correct non-mean-field critical exponents using renormalization group arguments. In the end, we will show that the critical series for the generic observable can be expressed as a sum of Feynman diagrams with the same numerical prefactors of field theories. However, the contribution of a given diagram is not evaluated by associating Gaussian propagators to its lines, as in field theories: one has to consider the graph as a portion of the original lattice, replacing the internal lines with appropriate one-dimensional chains, and attaching to the internal points the appropriate number of infinite-size Bethe trees to restore the correct local connectivity of the original model. The actual contribution of each (fat) diagram is the so-called line-connected observable, which also includes contributions from sub-diagrams with appropriate prefactors. In order to compute the corrections near to the critical
International Nuclear Information System (INIS)
Tian Lixin; Yin Jiuli
2004-01-01
In this paper, we introduce the fully nonlinear generalized Camassa-Holm equation C(m,n,p) and by using four direct ansatzs, we obtain abundant solutions: compactons (solutions with the absence of infinite wings), solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions and obtain kink compacton solutions and nonsymmetry compacton solutions. We also study other forms of fully nonlinear generalized Camassa-Holm equation, and their compacton solutions are governed by linear equations
Hau, Jan-Niklas; Oberlack, Martin; Chagelishvili, George
2017-04-01
We present a unifying solution framework for the linearized compressible equations for two-dimensional linearly sheared unbounded flows using the Lie symmetry analysis. The full set of symmetries that are admitted by the underlying system of equations is employed to systematically derive the one- and two-dimensional optimal systems of subalgebras, whose connected group reductions lead to three distinct invariant ansatz functions for the governing sets of partial differential equations (PDEs). The purpose of this analysis is threefold and explicitly we show that (i) there are three invariant solutions that stem from the optimal system. These include a general ansatz function with two free parameters, as well as the ansatz functions of the Kelvin mode and the modal approach. Specifically, the first approach unifies these well-known ansatz functions. By considering two limiting cases of the free parameters and related algebraic transformations, the general ansatz function is reduced to either of them. This fact also proves the existence of a link between the Kelvin mode and modal ansatz functions, as these appear to be the limiting cases of the general one. (ii) The Lie algebra associated with the Lie group admitted by the PDEs governing the compressible dynamics is a subalgebra associated with the group admitted by the equations governing the incompressible dynamics, which allows an additional (scaling) symmetry. Hence, any consequences drawn from the compressible case equally hold for the incompressible counterpart. (iii) In any of the systems of ordinary differential equations, derived by the three ansatz functions in the compressible case, the linearized potential vorticity is a conserved quantity that allows us to analyze vortex and wave mode perturbations separately.
Yang-Yang method for the thermodynamics of one-dimensional multi-component interacting fermions
International Nuclear Information System (INIS)
Lee, J Y; Guan, X W; Batchelor, M T
2011-01-01
Using Yang and Yang's particle-hole description, we present a thorough derivation of the thermodynamic Bethe ansatz equations for a general SU(κ) fermionic system in one dimension for both the repulsive and attractive regimes under the presence of an external magnetic field. These equations are derived from Sutherland's Bethe ansatz equations by using the spin-string hypothesis. The Bethe ansatz root patterns for the attractive case are discussed in detail. The relationship between the various phases of the magnetic phase diagrams and the external magnetic fields is given for the attractive case. We also give a quantitative description of the ground-state energies for both strongly repulsive and attractive regimes.
On solving the Schrödinger equation for a complex deictic potential ...
Indian Academy of Sciences (India)
Making use of an ansatz for the eigenfunction, we investigate closed-form solutions of the Schrödinger equation for an even power complex deictic potential and its variant in one dimension. For this purpose, extended complex phase-space approach is utilized and nature of the eigenvalue and the corresponding ...
Free energy calculations, enhanced by a Gaussian ansatz, for the "chemical work" distribution.
Boulougouris, Georgios C
2014-05-15
The evaluation of the free energy is essential in molecular simulation because it is intimately related with the existence of multiphase equilibrium. Recently, it was demonstrated that it is possible to evaluate the Helmholtz free energy using a single statistical ensemble along an entire isotherm by accounting for the "chemical work" of transforming each molecule, from an interacting one, to an ideal gas. In this work, we show that it is possible to perform such a free energy perturbation over a liquid vapor phase transition. Furthermore, we investigate the link between a general free energy perturbation scheme and the novel nonequilibrium theories of Crook's and Jarzinsky. We find that for finite systems away from the thermodynamic limit the second law of thermodynamics will always be an inequality for isothermal free energy perturbations, resulting always to a dissipated work that may tend to zero only in the thermodynamic limit. The work, the heat, and the entropy produced during a thermodynamic free energy perturbation can be viewed in the context of the Crooks and Jarzinsky formalism, revealing that for a given value of the ensemble average of the "irreversible" work, the minimum entropy production corresponded to a Gaussian distribution for the histogram of the work. We propose the evaluation of the free energy difference in any free energy perturbation based scheme on the average irreversible "chemical work" minus the dissipated work that can be calculated from the variance of the distribution of the logarithm of the work histogram, within the Gaussian approximation. As a consequence, using the Gaussian ansatz for the distribution of the "chemical work," accurate estimates for the chemical potential and the free energy of the system can be performed using much shorter simulations and avoiding the necessity of sampling the computational costly tails of the "chemical work." For a more general free energy perturbation scheme that the Gaussian ansatz may not be
International Nuclear Information System (INIS)
Gupta, K.K.; Mitra, A.N.; Singh, N.N.
1990-01-01
A new relativistic definition of the reduced mass (μ 12 ) of a q bar q pair, so as to be in conformity with the standard Wightman-Garding definition of its relative four-momenta q μ , is introduced into the kernel of an ongoing Bethe-Salpeter (BS) program on a two-tier basis. The new definition of μ 12 (involving the hadron mass M) is found to produce a natural Regge asymptotic behavior (M 2 ∼N) in the hadron mass spectra, while retaining the property of an asymptotically linear (∼r) confinement in the three-dimensional structure of the BS kernel. The relativistic structure of μ 12 is responsible for a significant improvement in the fits to the ground-state masses of q bar q and Q bar q mesons as compared to its nonrelativistic definition m 1 m 2 /(m 1 +m 2 ). The leptonic decay constants f p and the charge radii thus calculated are also in excellent agreement with data (π,k) where available, while f p predictions for Q bar q mesons have good overlap with recent lattice predictions. Further, the scaling property (∼k μ -2 ) of the hadron's electromagnetic form factor at large k 2 is a consequence of the ''on-shell'' form of its null-plane wave function. All these results (which are indicated in the barest outline) are preceded by a perspective summary of the theoretical premises and practical working of the BS equation with a four-fermion interaction kernel as a necessary background on a two-tier basis
Probabilistic image processing by means of the Bethe approximation for the Q-Ising model
International Nuclear Information System (INIS)
Tanaka, Kazuyuki; Inoue, Jun-ichi; Titterington, D M
2003-01-01
The framework of Bayesian image restoration for multi-valued images by means of the Q-Ising model with nearest-neighbour interactions is presented. Hyperparameters in the probabilistic model are determined so as to maximize the marginal likelihood. A practical algorithm is described for multi-valued image restoration based on the Bethe approximation. The algorithm corresponds to loopy belief propagation in artificial intelligence. We conclude that, in real world grey-level images, the Q-Ising model can give us good results
The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice
International Nuclear Information System (INIS)
Queiroz, S.L.A. de.
1977-07-01
The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author) [pt
Study of Y and Lu iron garnets using Bethe-Peierls-Weiss method
Goveas, Neena; Mukhopadhyay, G.; Mukhopadhyay, P.
1994-11-01
We study here the magnetic properties of Y- and Lu- Iron Garnets using the Bethe- Peierls-Weiss method modified to suit complex systems like these Garnets. We consider these Garnets as described by Heisenberg Hamiltonian with two sublattices (a,d) and determine the exchange interaction parameters Jad, Jaa and Jdd by matching the exerimental susceptibility curves. We find Jaa and Jdd to be much smaller than those determined by Néel theory, and consistent with those obtained by the study of spin wave spectra; the spin wave dispersion relation constant obtained using these parameters gives good agreement with the experimental values.
Bethe-Salpeter kernels and particle structure in the Yukawa2 quantum field theory
International Nuclear Information System (INIS)
Cooper, A.S.
1981-01-01
The author discusses the extension to the (weakly coupled) Yukawa quantum field theory in two space-time dimensions (Y 2 ), with equal bare masses, of some techniques used in the analysis of particle structure for weakly coupled even P(PHI) 2 . In particular he considers existence, regularity, and decay properties for the inverse two point functions and various Bethe-Salpeter kernels of the theory. These properties suffice to ensure that in the +-2 fermion sectors the mass spectrum is discrete below 2m 0 and the S-matrix is unitary up to 2m 0 + epsilon. (Auth.)
A Cluster-Bethe lattice treatment for the F-center in alkali-halides
International Nuclear Information System (INIS)
Queiroz, S.L.A. de; Koiller, B.; Maffeo, B.; Brandi, H.S.
1977-01-01
The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Cluster-Bethe lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second- neighbors to it, respectively, cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides [pt
XY vs X Mixer in Quantum Alternating Operator Ansatz for Optimization Problems with Constraints
Wang, Zhihui; Rubin, Nicholas; Rieffel, Eleanor G.
2018-01-01
Quantum Approximate Optimization Algorithm, further generalized as Quantum Alternating Operator Ansatz (QAOA), is a family of algorithms for combinatorial optimization problems. It is a leading candidate to run on emerging universal quantum computers to gain insight into quantum heuristics. In constrained optimization, penalties are often introduced so that the ground state of the cost Hamiltonian encodes the solution (a standard practice in quantum annealing). An alternative is to choose a mixing Hamiltonian such that the constraint corresponds to a constant of motion and the quantum evolution stays in the feasible subspace. Better performance of the algorithm is speculated due to a much smaller search space. We consider problems with a constant Hamming weight as the constraint. We also compare different methods of generating the generalized W-state, which serves as a natural initial state for the Hamming-weight constraint. Using graph-coloring as an example, we compare the performance of using XY model as a mixer that preserves the Hamming weight with the performance of adding a penalty term in the cost Hamiltonian.
Mass matrix ansatz and lepton flavor violation in the two-Higgs doublet model-III
International Nuclear Information System (INIS)
Diaz-Cruz, J.L.; Noriega-Papaqui, R.; Rosado, A.
2004-01-01
Predictive Higgs-boson-fermion couplings can be obtained when a specific texture for the fermion mass matrices is included in the general two-Higgs doublet model. We derive the form of these couplings in the charged lepton sector using a Hermitian mass matrix ansatz with four-texture zeros. The presence of unconstrained phases in the vertices φ i l i l j modifies the pattern of flavor-violating Higgs boson interactions. Bounds on the model parameters are obtained from present limits on rare lepton flavor-violating processes, which could be extended further by the search for the decay τ→μμμ and μ-e conversion at future experiments. The signal from Higgs boson decays φ i →τμ could be searched for at the CERN Large Hadron Collider, while e-μ transitions could produce a detectable signal at a future eμ collider, through the reaction e + μ - →h 0 →τ + τ -
Dynamic equations for gauge-invariant wave functions
International Nuclear Information System (INIS)
Kapshaj, V.N.; Skachkov, N.B.; Solovtsov, I.L.
1984-01-01
The Bethe-Salpeter and quasipotential dynamic equations for wave functions of relative quark motion, have been derived. Wave functions are determined by the gauge invariant method. The V.A. Fock gauge condition is used in the construction. Despite the transl tional noninvariance of the gauge condition the standard separation of variables has been obtained and wave function doesn't contain gauge exponents
Semi-classical analysis of the inner product of Bethe states
International Nuclear Information System (INIS)
Bettelheim, Eldad; Kostov, Ivan
2014-01-01
We study the inner product of two Bethe states, one of which is taken on-shell, in an inhomogeneous XXX chain in the Sutherland limit, where the number of magnons is comparable with the length L of the chain and the magnon rapidities arrange in a small number of macroscopically large Bethe strings. The leading order in the large L limit is known to be expressed through a contour integral of a dilogarithm. Here we derive the sub-leading term. Our analysis is based on a new contour-integral representation of the inner product in terms of a Fredholm determinant. We give two derivations of the sub-leading term. Besides a direct derivation by solving a Riemann–Hilbert problem, we give a less rigorous, but more intuitive derivation by field-theoretical methods. For that we represent the Fredholm determinant as an expectation value in a Fock space of chiral fermions and then bosonize. We construct a collective field for the bosonized theory, the short wave-length part of which may be evaluated exactly, while the long wave-length part is amenable to a 1/L expansion. Our treatment thus results in a systematic 1/L expansion of structure factors within the Sutherland limit. (paper)
Orbifolded Konishi from the Mirror TBA
de Leeuw, M.; van Tongeren, S.J.
2011-01-01
Starting with a discussion of the general applicability of the simplified mirror thermodynamic Bethe ansatz (TBA) equations to simple deformations of the AdS5 × S5 superstring, we proceed to study a specific type of orbifold to which the undeformed simplified TBA equations directly apply. We then
International Nuclear Information System (INIS)
Wallace, Christine
2001-01-01
Assessment of research records of Boron Neutron Capture Therapy was conducted at Brookhaven National Laboratory and Beth Israel Deaconess Medical Center using the Code of Federal Regulations, FDA Regulations and Good Clinical Practice Guidelines. Clinical data were collected FR-om subjects' research charts, and differences in conduct of studies at both centers were examined. Records maintained at Brookhaven National Laboratory were not in compliance with regulatory standards. Beth Israel's records followed federal regulations. Deficiencies discovered at both sites are discussed in the reports
International Nuclear Information System (INIS)
Biswas, Anjan
2009-01-01
In this Letter, the 1-soliton solution of the Zakharov-Kuznetsov equation with power law nonlinearity and nonlinear dispersion along with time-dependent coefficients is obtained. There are two models for this kind of an equation that are studied. The constraint relation between these time-dependent coefficients is established for the solitons to exist. Subsequently, this equation is again analysed with generalized evolution. The solitary wave ansatz is used to carry out this investigation.
Development of Vector Parabolic Equation Technique for Propagation in Urban and Tunnel Environments
2010-09-01
that of the former is geared towards determining the transport amplitude, having found the eikonal by some other means. Among the principal...FOR MODELING RADIO TRANSMISSION LOSS 1761 We can then use the following asymptotic ansatz (10) where (11) and is the tunnel width [26]. The eikonal is a...equation and equating terms of the same order of , we can define the eikonal and find the vector PE [4] for the straight waveguide (12) where is the
A discussion of the relativistic equal-time equation
International Nuclear Information System (INIS)
Chengrui, Q.; Danhua, Q.
1981-03-01
Ruan Tu-nan et al have proposed an equal-time equation for composite particles which is derived from Bethe-Salpeter (B-S) equation. Its advantage is that the kernel of this equation is a completely definite single rearrangement of the B-S irreducible kernel without any artificial assumptions. In this paper we shall give a further discussion of the properties of this equation. We discuss the behaviour of this equation as the mass of one of the two particles approaches the limit M 2 → infinite in the ladder approximation of single photon exchange. We show that up to order O(α 4 ) this equation is consistent with the Dirac equation. If the crossed two photon exchange diagrams are taken into account the difference between them is of order O(α 6 ). (author)
Chemical potential and the gap equation
International Nuclear Information System (INIS)
Chen Huan; Yuan Wei; Chang Lei; Liu Yuxin; Klaehn, Thomas; Roberts, Craig D.
2008-01-01
In general, the kernel of QCD's gap equation possesses a domain of analyticity upon which the equation's solution at nonzero chemical potential is simply obtained from the in-vacuum result through analytic continuation. On this domain the single-quark number- and scalar-density distribution functions are μ independent. This is illustrated via two models for the gap equation's kernel. The models are alike in concentrating support in the infrared. They differ in the form of the vertex, but qualitatively the results are largely insensitive to the Ansatz. In vacuum both models realize chiral symmetry in the Nambu-Goldstone mode, and in the chiral limit, with increasing chemical potential, they exhibit a first-order chiral symmetry restoring transition at μ≅M(0), where M(p 2 ) is the dressed-quark mass function.
"Her mouth is medicine": Beth Brant and Paula Gunn Allen's decolonizing queer erotics.
Burford, Arianne
2013-01-01
This article asserts the need to recognize the complexity of the theoretical work of more lesbian Native American writers, focusing specifically Beth Brant (Bay of Quinte Mohawk) and Paula Gunn Allen (Laguna Pueblo). Their poetry and short stories provide a theoretically nuanced analysis of how heteronormativity is intertwined in and dependent on colonialism, and thus a methodology for Queer Theory that requires an understanding of it in relation to colonialism. They reject heteronormative Pocahontas fantasies about Native women, offering a lesbian-based tactic for decolonization through the expression of erotic desire. This article demonstrates the endless possibilities for fierce queer resistance, revolutionary change, and healing from the trauma of genocide and the accompanying colonialist heteropatriarchal disciplining of Native women's bodies.
On Condensation Properties of Bethe Roots Associated with the XXZ Chain
Kozlowski, Karol K.
2018-02-01
I prove that the Bethe roots describing either the ground state or a certain class of "particle-hole" excited states of the XXZ spin-1/2 chain in any sector with magnetisation m \\in [0;1/2] exist, are uniquely defined, and form, in the infinite volume limit, a dense distribution on a subinterval of R. The results hold for any value of the anisotropy {Δ ≥ -1}. In fact, I establish an even stronger result, namely the existence of an all order asymptotic expansion of the counting function associated with such roots. As a corollary, these results allow one to prove the existence and form of the infinite volume limit of various observables attached to the model -the excitation energy, momentum, the zero temperature correlation functions, so as to name a few- that were argued earlier in the literature.
La cerámica Khirbet Kerak (Beth Yerah, Israel y la etnicidad: un enfoque alternativo
Directory of Open Access Journals (Sweden)
Bernardo Gandulla
2007-07-01
Full Text Available La cerámica Khirbet Kerak, descubierta en el sudoeste del Mar de Galilea en 1930 por W. F. Albright, ha sido desde entonces motivo de muchas controversias. Las razones de las discusiones en torno a este estilo radican en su carácter aparentemente intrusivo en Palestina, entre el 2800-2400 a.C., puesto que esta cerámica es típica en la Cultura Transcaucásica Temprana o Cultura Kura-Araxes y en Siria Septentrional, durante el Bronce Antiguo, siendo especialmente abundante en la etapa final de este período. Sin embargo los estudios realizados en Beth Shan (Chazan y McGovern, ver n. 17, muestran que los materiales Khirbet Kerak fueron de producción local lo que parece descartar su carácter intrusivo. Por tanto, desde nuestro punto de vista, el “fenómeno Khirbet Kerak” constituye así un hito de singular importancia en la conformación de las tradiciones culturales de Canaan a partir de un sustrato etnocultural común hurrita, en un eje de interacción cultural norte a sur desde la región del Lago Van, que habrá de proyectarse de distintas formas en la macrorregión alcanzando hasta los antiguos hebreos, en cuanto cananeos, como se reflejan en instituciones del derecho privado presentes en las narraciones del Génesis.Palabras clave: Canaán - Bronce Antiguo - Beth Yerah - Khirbet Kerak - Hurritas- Hebreos
Atomic-accuracy prediction of protein loop structures through an RNA-inspired Ansatz.
Directory of Open Access Journals (Sweden)
Rhiju Das
Full Text Available Consistently predicting biopolymer structure at atomic resolution from sequence alone remains a difficult problem, even for small sub-segments of large proteins. Such loop prediction challenges, which arise frequently in comparative modeling and protein design, can become intractable as loop lengths exceed 10 residues and if surrounding side-chain conformations are erased. Current approaches, such as the protein local optimization protocol or kinematic inversion closure (KIC Monte Carlo, involve stages that coarse-grain proteins, simplifying modeling but precluding a systematic search of all-atom configurations. This article introduces an alternative modeling strategy based on a 'stepwise ansatz', recently developed for RNA modeling, which posits that any realistic all-atom molecular conformation can be built up by residue-by-residue stepwise enumeration. When harnessed to a dynamic-programming-like recursion in the Rosetta framework, the resulting stepwise assembly (SWA protocol enables enumerative sampling of a 12 residue loop at a significant but achievable cost of thousands of CPU-hours. In a previously established benchmark, SWA recovers crystallographic conformations with sub-Angstrom accuracy for 19 of 20 loops, compared to 14 of 20 by KIC modeling with a comparable expenditure of computational power. Furthermore, SWA gives high accuracy results on an additional set of 15 loops highlighted in the biological literature for their irregularity or unusual length. Successes include cis-Pro touch turns, loops that pass through tunnels of other side-chains, and loops of lengths up to 24 residues. Remaining problem cases are traced to inaccuracies in the Rosetta all-atom energy function. In five additional blind tests, SWA achieves sub-Angstrom accuracy models, including the first such success in a protein/RNA binding interface, the YbxF/kink-turn interaction in the fourth 'RNA-puzzle' competition. These results establish all-atom enumeration as
On analytic solutions of (1+3)D relativistic ideal hydrodynamic equations
International Nuclear Information System (INIS)
Lin Shu; Liao Jinfeng
2010-01-01
In this paper, we find various analytic (1+3)D solutions to relativistic ideal hydrodynamic equations based on embedding of known low-dimensional scaling solutions. We first study a class of flows with 2D Hubble embedding, for which a single ordinary differential equation for the remaining velocity field can be derived. Using this equation, all solutions with transverse 2D Hubble embedding and power law ansatz for the remaining longitudinal velocity field will be found. Going beyond the power law ansatz, we further find a few solutions with transverse 2D Hubble embedding and nontrivial longitudinal velocity field. Finally we investigate general scaling flows with each component of the velocity fields scaling independently, for which we also find all possible solutions.
Initial states in integrable quantum field theory quenches from an integral equation hierarchy
Directory of Open Access Journals (Sweden)
D.X. Horváth
2016-01-01
Full Text Available We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.
Initial states in integrable quantum field theory quenches from an integral equation hierarchy
Energy Technology Data Exchange (ETDEWEB)
Horváth, D.X., E-mail: esoxluciuslinne@gmail.com [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary); Sotiriadis, S., E-mail: sotiriad@sissa.it [SISSA and INFN, Via Bonomea 265, 34136 Trieste (Italy); Takács, G., E-mail: takacsg@eik.bme.hu [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary)
2016-01-15
We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.
N=4 mechanics, WDVV equations and roots
International Nuclear Information System (INIS)
Galajinsky, Anton; Polovnikov, Kirill; Lechtenfeld, Olaf
2009-01-01
N = 4 superconformal multi-particle quantum mechanics on the real line is governed by two prepotentials, U and F, which obey a system of partial differential equations linear in U and generalizing the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation for F. Putting U≡0 yields a class of models (with zero central charge) which are encoded by the finite Coxeter root systems. We extend these WDVV solutions F in two ways: the A n system is deformed n-parametrically to the edge set of a general orthocentric n-simplex, and the BCF-type systems form one-parameter families. A classification strategy is proposed. A nonzero central charge requires turning on U in a given F background, which we show is outside the reach of the standard root-system ansatz for indecomposable systems of more than three particles. In the three-body case, however, this ansatz can be generalized to establish a series of nontrivial models based on the dihedral groups I 2 (p), which are permutation symmetric if 3 divides p. We explicitly present their full prepotentials.
On reduction and exact solutions of nonlinear many-dimensional Schroedinger equations
International Nuclear Information System (INIS)
Barannik, A.F.; Marchenko, V.A.; Fushchich, V.I.
1991-01-01
With the help of the canonical decomposition of an arbitrary subalgebra of the orthogonal algebra AO(n) the rank n and n-1 maximal subalgebras of the extended isochronous Galileo algebra, the rank n maximal subalgebras of the generalized extended classical Galileo algebra AG(a,n) the extended special Galileo algebra AG(2,n) and the extended whole Galileo algebra AG(3,n) are described. By using the rank n subalgebras, ansatze reducing the many dimensional Schroedinger equations to ordinary differential equations is found. With the help of the reduced equation solutions exact solutions of the Schroedinger equation are considered
Directory of Open Access Journals (Sweden)
Kilic Bulent
2016-01-01
Full Text Available This paper integrates dispersive optical solitons in special optical metamaterials with a time dependent coefficient. We obtained some optical solitons of the aforementioned equation. It is shown that the examined dependent coefficients are affected by the velocity of the wave. The first integral method (FIM and ansatz method are applied to reach the optical soliton solutions of the one-dimensional nonlinear Schrödinger’s equation (NLSE with time dependent coefficients.
International Nuclear Information System (INIS)
Dorey, Patrick; Dunning, Clare; Tateo, Roberto
2007-01-01
This paper reviews a recently discovered link between integrable quantum field theories and certain ordinary differential equations in the complex domain. Along the way, aspects of PT-symmetric quantum mechanics are discussed, and some elementary features of the six-vertex model and the Bethe ansatz are explained. (topical review)
Non-stationary probabilities for the asymmetric exclusion process
Indian Academy of Sciences (India)
A solution of the master equation for a system of interacting particles for finite time and particle density is presented. By using a new form of the Bethe ansatz, the totally asymmetric exclusion process on a ring is solved for arbitrary initial conditions and time intervals.
The sine-Gordon model revisited I
Energy Technology Data Exchange (ETDEWEB)
Niccoli, G.; Teschner, J.
2009-10-15
We study integrable lattice regularizations of the Sine-Gordon model with the help of the Separation of Variables method of Sklyanin and the Baxter Q-operators. This allows us to characterize the spectrum (eigenvalues and eigenstates) completely in terms of polynomial solutions of the Baxter equation with certain properties. This result is analogous to the completeness of the Bethe ansatz. (orig.)
Some spectral equivalences between Schroedinger operators
International Nuclear Information System (INIS)
Dunning, C; Hibberd, K E; Links, J
2008-01-01
Spectral equivalences of the quasi-exactly solvable sectors of two classes of Schroedinger operators are established, using Gaudin-type Bethe ansatz equations. In some instances the results can be extended leading to full isospectrality. In this manner we obtain equivalences between PT-symmetric problems and Hermitian problems. We also find equivalences between some classes of Hermitian operators
The critical 1-arm exponent for the ferromagnetic Ising model on the Bethe lattice
Heydenreich, Markus; Kolesnikov, Leonid
2018-04-01
We consider the ferromagnetic nearest-neighbor Ising model on regular trees (Bethe lattice), which is well-known to undergo a phase transition in the absence of an external magnetic field. The behavior of the model at critical temperature can be described in terms of various critical exponents; one of them is the critical 1-arm exponent ρ which characterizes the rate of decay of the (root) magnetization as a function of the distance to the boundary. The crucial quantity we analyze in this work is the thermal expectation of the root spin on a finite subtree, where the expected value is taken with respect to a probability measure related to the corresponding finite-volume Hamiltonian with a fixed boundary condition. The spontaneous magnetization, which is the limit of this thermal expectation in the distance between the root and the boundary (i.e., in the height of the subtree), is known to vanish at criticality. We are interested in a quantitative analysis of the rate of this convergence in terms of the critical 1-arm exponent ρ. Therefore, we rigorously prove that ⟨σ0⟩ n +, the thermal expectation of the root spin at the critical temperature and in the presence of the positive boundary condition, decays as ⟨σ0 ⟩ n +≈n-1/2 (in a rather sharp sense), where n is the height of the tree. This establishes the 1-arm critical exponent for the Ising model on regular trees (ρ =1/2 ).
QCD-oriented Bethe-Salpeter dynamics for all flavours, light and heavy
International Nuclear Information System (INIS)
Mitra, A.N.
1987-01-01
A QCD oriented Bethe-Salpeter approach with a vector-like confinement which looks harmonic in the instantaneous approximation (IA), was found to describe several features of qanti q and qqq systems (mass spectra and structural properties) adequately, with little extra assumptions. The model had the following drawbacks: (a) The IA, being non-covariant, had restricted the application of the model to slow hadrons; (b) The zero-point energies were poorly described without additional assumptions; (c) The predicted Qanti Q spacings were too large for the data. These limitations have recently been overcome and the model now has a wide sweep of successful predictions, not only on the mass spectra for both light and heavy sectors, but also for transition amplitudes involving fast moving hadrons. A sketchy but consolidated account is given of the main features of the model (as modified through the new assumptions) and the nature of its successes on the experimental front (mostly mass spectra) are indicated. 20 refs
Beth-Uhlenbeck approach for repulsive interactions between baryons in a hadron gas
Vovchenko, Volodymyr; Motornenko, Anton; Gorenstein, Mark I.; Stoecker, Horst
2018-03-01
The quantum mechanical Beth-Uhlenbeck (BU) approach for repulsive hard-core interactions between baryons is applied to the thermodynamics of a hadron gas. The second virial coefficient a2—the "excluded volume" parameter—calculated within the BU approach is found to be temperature dependent, and it differs dramatically from the classical excluded volume (EV) model result. At temperatures T =100 -200 MeV, the widely used classical EV model underestimates the EV parameter for nucleons at a given value of the nucleon hard-core radius by large factors of 3-4. Previous studies, which employed the hard-core radii of hadrons as an input into the classical EV model, have to be re-evaluated using the appropriately rescaled EV parameters. The BU approach is used to model the repulsive baryonic interactions in the hadron resonance gas (HRG) model. Lattice data for the second- and fourth-order net baryon susceptibilities are described fairly well when the temperature dependent BU baryonic excluded volume parameter corresponds to nucleon hard-core radii of rc=0.25 -0.3 fm. Role of the attractive baryonic interactions is also considered. It is argued that HRG model with a constant baryon-baryon EV parameter vN N≃1 fm3 provides a simple yet efficient description of baryon-baryon interaction in the crossover temperature region.
Short-distance behavior of the Bethe--Salpeter wave function in the ladder approximation
International Nuclear Information System (INIS)
Guth, A.H.; Soper, D.E.
1975-01-01
We investigate the short-distance behavior of the (Wick-rotated) Bethe--Salpeter wave function for the two spin-1/2 quarks bound by the exchange of a massive vector meson. We use the ladder-model kernel, which has the same p -4 scaling behavior as the true kernel in a theory with a fixed point of the renormalization group at g not equal to 0. For a bound state with the quantum numbers of the pion, the leading asymptotic behavior is chi (q/sup μ/) approx. cq/sup -4 + epsilon(g)/γ 5 , where epsilon (g) =1- (1-g 2 /π 2 ) 1 / 2 . Our method also provides the full asymptotic series, although it should be noted that the nonleading terms will depend on the nonleading behavior of the ladder-model kernel. A general term has the form cq - /sup a/(lnq)/sup n/phi (q/sup μ/), where c is an unknown constant, a may be integral or nonintegral, n is an integer, and phi (q/sup μ/) is a representation function of the rotation group in four dimensions
A Binary-Encounter-Bethe Approach to Simulate DNA Damage by the Direct Effect
Plante, Ianik; Cucinotta, Francis A.
2013-01-01
The DNA damage is of crucial importance in the understanding of the effects of ionizing radiation. The main mechanisms of DNA damage are by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research in this area, many questions on the formation of DNA damage remains. To refine existing DNA damage models, an approach based on the Binary-Encounter-Bethe (BEB) model was developed[1]. This model calculates differential cross sections for ionization of the molecular orbitals of the DNA bases, sugars and phosphates using the electron binding energy, the mean kinetic energy and the occupancy number of the orbital. This cross section has an analytic form which is quite convenient to use and allows the sampling of the energy loss occurring during an ionization event. To simulate the radiation track structure, the code RITRACKS developed at the NASA Johnson Space Center is used[2]. This code calculates all the energy deposition events and the formation of the radiolytic species by the ion and the secondary electrons as well. We have also developed a technique to use the integrated BEB cross section for the bases, sugar and phosphates in the radiation transport code RITRACKS. These techniques should allow the simulation of DNA damage by ionizing radiation, and understanding of the formation of double-strand breaks caused by clustered damage in different conditions.
Energy Technology Data Exchange (ETDEWEB)
Boehme, M.
2004-07-01
Continuos improvement of processes and methodologies is one key element to shorten development time, reduce costs, and improve quality, and therefore to answer growing customer demands and global competition. This work describes a new concept of introducing the principles of parametric modeling to the entire product data model in the area of automotive development. Based on the idea, that not only geometric dimensions can be described by parameters, the method of parametric modeling is applied to the complete product model. The concept assumes four major principles: First, the parameters of the product model are handled independently from their proprietary data formats. Secondly, a strictly hierarchical structure is required for the parametric description of the product. The third principle demands an object-based parameterization. Finally the use of parameter-sets for the description of logical units of the product model tree is part of the concept. Those four principles are addressing the following main objectives: Supporting and improving Simultaneous Engineering, achieving data consistency over all development phases, digital approval of product properties, and incorporation of the design intent into the product model. Further improvement of the automotive development process can be achieved with the introduction of parametric product modeling using the principles described in this paper. (orig.) [German] Die Forderung nach kuerzeren Entwicklungszeiten, Reduzierung der Kosten und verbesserter Qualitaet erfordert eine stetige Verbesserung von Prozessen und Methoden in der Produktentwicklung. In dieser Arbeit wird ein neuer Ansatz vorgestellt, der die Methodik des parametrischen Konstruierens auf das gesamte Produktmodell in der Fahrzeugentwicklung anwendet, und somit weitere Potentiale zur Verbesserung des Produktentstehungsprozesses erschliesst. Ausgehend von der Annahme, dass nicht nur geometrische Abmessungen als Parameter beschrieben werden koennen, wird die
Large-N behaviour of string solutions in the Heisenberg model
Fujita, T; Takahashi, H
2003-01-01
We investigate the large-N behaviour of the complex solutions for the two-magnon system in the S = 1/2 Heisenberg XXZ model. The Bethe ansatz equations are numerically solved for the string solutions with a new iteration method. Clear evidence of the violation of the string configurations is found at N = 22, 62, 121, 200, 299, 417, but the broken states are still Bethe states. The number of Bethe states is consistent with the exact diagonalization, except for one singular state.
Reduction of the Poincare gauge field equations by means of a duality rotation
International Nuclear Information System (INIS)
Mielke, E.W.
1981-10-01
A rather general procedure is developed in order to reduce the two field equations of the Poincare gauge theory of gravity by a modified ansatz for the curvature tensor involving double duality. In the case of quasi-linear Lagrangians of the Yang-Mills type it is shown that non-trivial torsion solutions with duality properties necessarily ''live'' on an Einstein space as metrical background. (author)
Energy Technology Data Exchange (ETDEWEB)
Rath, Biswanath
1988-01-01
An ansatz is developed to find out an analytical expression for energy levels of anharmonic oscillators of the type V(X) X/sup 2//2 + lambdaXsup(2m) (m = 2,3) which is valid for all values of n and all regimes of parameter space. The procedure is extended to find out an analytical expression for the energy levels of the oscillator V(X) X/sup 2//2 + lambda/sub 1/ X/sup 4/ + lambda/sub 2/ X/sup 6/. As a practical application, it has been applied to calculate the characteristics of radiation emitted due to channeling of relativistic positrons between (100) planes in silicon.
Peng, Wei-Qi; Tian, Shou-Fu; Zou, Li; Zhang, Tian-Tian
2018-01-01
In this paper, the extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms is investigated, whose particular cases are the Hirota equation, the Sasa-Satsuma equation and Lakshmanan-Porsezian-Daniel equation by selecting some specific values on the parameters of higher-order terms. We first study the stability analysis of the equation. Then, using the ansatz method, we derive its bright, dark solitons and some constraint conditions which can guarantee the existence of solitons. Moreover, the Ricatti equation extension method is employed to derive some exact singular solutions. The outstanding characteristics of these solitons are analyzed via several diverting graphics.
Equation-of-motion coupled cluster perturbation theory revisited
DEFF Research Database (Denmark)
Eriksen, Janus Juul; Jørgensen, Poul; Olsen, Jeppe
2014-01-01
The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally con- verges towards the full configuration interaction energy limit. The series is based on a Møller-Ples......-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby rem- edying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873138]...
A generalized Bethe-Weizsaecker mass formula for strange hadronic matter
International Nuclear Information System (INIS)
Dover, C.B.; Washington Univ., Seattle, WA; Gal, A.; Washington Univ., Seattle, WA
1992-12-01
The Bethe-Weizsaecker nuclear mass formula is extended to strange hadronic matter composed of nucleons, lambdas and cascade hyperons. The generalized formula contains several volume and symmetry terms constrained by phenomenologically determined λ-nuclear, ξ-nuclear and λλ interaction parameters and by hyperon-hyperon (λλ, λξ, ξξ) interaction parameters suggested by One-Boson-Exchange models. We find that hypernuclei are generally unstable to λλ → ξN conversion. For strange hadronic matter, as function of the baryon number A, the line of strong-interaction stability, along which a large strangeness fraction |S|/A ∼ 0.5 - 1.1 and a low charge fraction q/A approx-lt 0.2 hold, and no fission occurs, is determined. The binding energy per baryon increases monotonically to its bulk limit, B/A → 38 MeV, |S|/A → 1.1 and q/A → 0 for the parameters adopted here assuming that the hyperon species saturate at densities similar to those of protons and neutrons in nuclei. Even in the extreme limit of vanishingly small hyperon-hyperon interaction strengths, strange hadronic matter with B/A → 15 MeV, |S|/A → 0.7 and q/A → 0 in the bulk limit should exist; the mass formula reproduces semi-quantitatively recent mean-field calculations which implicitly assumed weak hyperon-hyperon interactions
A generalized Bethe-Weizaecker mass formula for strange hadronic matter
International Nuclear Information System (INIS)
Dover, C.B.; Gal, A.
1993-01-01
We extend the Bethe- Weizsaecker nuclear mass formula to strange hadronic matter composed of nucleons, lambdas and cascade hyperons. The generalized formula contains several volume and symmetry terms constrained by phenomenologically determined Λ-nuclear, Ξ-nuclear and ΛΛ interaction parameters and by hyperon-hyperon (ΛΛ, ΛΞ, ΞΞ) interaction parameters suggested by one-boson-exchange models. We confirm that multi-Λ hypernuclei are generally unstable to ΛΛ→ΞN conversion. For strange hadronic matter we determine, as function of the baryon number A, the line of strong-interaction stability, along which a large strangeness fraction vertical stroke /Svertical stroke /A∝0.5-1.1 and a low charge fraction q/A< or ∼0.2 hold, and no fission occurs. The binding energy per baryon increases monotonically to its bulk limit, B/A→38 MeV, vertical stroke /Svertical stroke /A→ 1.1 and q/A→0 for the parameters adopted here assuming that the hyperon species saturate at densities similar to those of protons and neutrons in nuclei. Even in the extreme limit of vanishingly small hyperon-hyperon interaction strengths, strange hadronic matter with B/A→15 MeV, vertical stroke /Svertical stroke /A→0.7 and q/A→0 in the bulk limit should exist and our mass formula reproduces semi-quantitatively recent mean-field calculations which implicitly assumed weak hyperon-hyperon interactions. (orig.)
Mixed spin-3/2 and spin-5/2 Ising system on the Bethe lattice
International Nuclear Information System (INIS)
Albayrak, Erhan; Yigit, Ali
2006-01-01
In order to study the critical behaviors of the half-integer mixed spin-3/2 and spin-5/2 Blume-Capel Ising ferrimagnetic system, we have used the exact recursion relations on the Bethe lattice. The system was studied for the coordination numbers with q=3, 4, 5 and 6, and the obtained phase diagrams are illustrated on the (kT c /|J|,D A /|J|) plane for constant values of D B /|J|, the reduced crystal field of the sublattice with spin-5/2, and on the (kT c /|J|,D B /|J|) plane for constant values of D A /|J|, the reduced crystal field of the sublattice with spin-3/2, for q=3 only, since the cases corresponding to q=4, 5 and 6 reproduce results similar to the case for q=3. In addition we have also presented the phase diagram with equal strengths of the crystal fields for q=3, 4, 5 and 6. Besides the second- and first-order phase transitions, the system also exhibits compensation temperatures for appropriate values of the crystal fields. In this mixed spin system while the second-order phase transition lines never cut the reduced crystal field axes as in the single spin type spin-3/2 and spin-5/2 Ising models separately, the first-order phase transition lines never connect to the second-order phase transition lines and they end at the critical points, therefore the system does not give any tricritical points. In addition to this, this mixed-spin model exhibits one or two compensation temperatures depending on the values of the crystal fields, as a result the compensation temperature lines show reentrant behavior
Simple polynomial approximation to modified Bethe formula low-energy electron stopping powers data
Energy Technology Data Exchange (ETDEWEB)
Taborda, A., E-mail: ana.taborda@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 92262 Fontenay-aux-Roses (France); Desbrée, A. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 92262 Fontenay-aux-Roses (France); Reis, M.A. [C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km139.7, 2685-066 Bobadela LRS (Portugal)
2015-08-01
A recently published detailed and exhaustive paper on cross-sections for ionisation induced by keV electrons clearly shows that electron phenomena occurring in parallel with X-ray processes may have been dramatically overlooked for many years, mainly when low atomic number species are involved since, in these cases, the fluorescence coefficient is smaller than the Auger yield. An immediate problem is encountered while attempting to tackle the issue. Accounting for electron phenomena requires the knowledge of the stopping power of electrons within, at least, a reasonably small error. Still, the Bethe formula for stopping powers is known to not be valid for electron energies below 30 keV, and its use leads to values far off experimental ones. Recently, a few authors have addressed this problem and both detailed tables of electron stopping powers for various atomic species and attempts to simplify the calculations, have emerged. Nevertheless, its implementation in software routines to efficiently calculate keV electron effects in materials quickly becomes a bit cumbersome. Following a procedure already used to establish efficient methods to calculate ionisation cross-sections by protons and alpha particles, it became clear that a simple polynomial approximation could be set, which allows retrieving the electronic stopping powers with errors of less than 20% for energies above 500 eV and less than 50% for energies between 50 eV and 500 eV. In this work, we present this approximation which, based on just six parameters, allows to recover electron stopping power values that are less than 20% different from recently published experimentally validated tabulated data.
SU(N)-QCD2 meson equation in next-to-leading order
International Nuclear Information System (INIS)
Durgut, M.; Pak, N.K.
1982-08-01
We compute the 1/N corrections to the meson equation in the regular cut-off scheme. We illustrate that although the quark and gluon self energy and vertex corrections do not vanish explicitly as in the singular cut-off scheme, their contributions to the meson Bethe-Salpeter equation get cancelled within the whole set of contributing diagrams. We also argue that 0(1/N) corrections to the meson equation remove the massless boson from the spectrum in accordance with the Coleman theorem. (author)
An Exact Solution of The Neutron Slowing Down Equation
Energy Technology Data Exchange (ETDEWEB)
Stefanovic, D [Boris Kidric Vinca Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)
1970-07-01
The slowing down equation for an infinite homogeneous monoatomic medium is solved exactly. The cross sections depend on neutron energy. The solution is given in analytical form within each of the lethargy intervals. This analytical form is the sum of probabilities which are given by the Green functions. The calculated collision density is compared with the one obtained by Bednarz and also with an approximate Wigner formula for the case of a resonance not wider than one collision interval. For the special case of hydrogen, the present solution reduces to Bethe's solution. (author)
International Nuclear Information System (INIS)
Grange, P.; Lejeune, A.
1979-01-01
Two, three- and four-body contributions to the binding energy of nuclear matter are evaluated in the framework of the Bethe-Brueckner expansion. Special attention is devoted to the choice of the auxillary single particle field and to the potential diagrams at the level of three- and four-hole lines present when such a field is different from zero. Two nucleon-nucleon interactions are used: a model interaction V 1 and the Reid soft-core interaction. For V 1 our results are compared with those obtained from variational calculations; this comparison supports the reliability of the perturbative expansion. (Auth.)
International Nuclear Information System (INIS)
Ganapathi, V.; Smith, J.
1981-01-01
We analyze the Bethe-Heitler production of muon and heavy-lepton pairs using high-energy muon beams on a variety of targets. We give results for coherent production from a nucleus, for incoherent production from individual protons and neutrons, and for deep-inelastic production. Differential distributions are presented for the final leptons and the effects of experimental cuts are considered. This work complements our previous study of trimuon production via muon radiation, Compton radiation, and hadronic final-state interactions
Resurgent transseries & Dyson–Schwinger equations
Energy Technology Data Exchange (ETDEWEB)
Klaczynski, Lutz, E-mail: klacz@mathematik.hu-berlin.de
2016-09-15
We employ resurgent transseries as algebraic tools to investigate two self-consistent Dyson–Schwinger equations, one in Yukawa theory and one in quantum electrodynamics. After a brief but pedagogical review, we derive fixed point equations for the associated anomalous dimensions and insert a moderately generic log-free transseries ansatz to study the possible strictures imposed. While proceeding in various stages, we develop an algebraic method to keep track of the transseries’ coefficients. We explore what conditions must be violated in order to stay clear of fixed point theorems to eschew a unique solution, if so desired, as we explain. An interesting finding is that the flow of data between the different sectors of the transseries shows a pattern typical of resurgence, i.e. the phenomenon that the perturbative sector of the transseries talks to the nonperturbative ones in a one-way fashion. However, our ansatz is not exotic enough as it leads to trivial solutions with vanishing nonperturbative sectors, even when logarithmic monomials are included. We see our result as a harbinger of what future work might reveal about the transseries representations of observables in fully renormalised four-dimensional quantum field theories and adduce a tentative yet to our mind weighty argument as to why one should not expect otherwise. This paper is considerably self-contained. Readers with little prior knowledge are let in on the basic reasons why perturbative series in quantum field theory eventually require an upgrade to transseries. Furthermore, in order to acquaint the reader with the language utilised extensively in this work, we also provide a concise mathematical introduction to grid-based transseries.
Resurgent transseries & Dyson-Schwinger equations
Klaczynski, Lutz
2016-09-01
We employ resurgent transseries as algebraic tools to investigate two self-consistent Dyson-Schwinger equations, one in Yukawa theory and one in quantum electrodynamics. After a brief but pedagogical review, we derive fixed point equations for the associated anomalous dimensions and insert a moderately generic log-free transseries ansatz to study the possible strictures imposed. While proceeding in various stages, we develop an algebraic method to keep track of the transseries' coefficients. We explore what conditions must be violated in order to stay clear of fixed point theorems to eschew a unique solution, if so desired, as we explain. An interesting finding is that the flow of data between the different sectors of the transseries shows a pattern typical of resurgence, i.e. the phenomenon that the perturbative sector of the transseries talks to the nonperturbative ones in a one-way fashion. However, our ansatz is not exotic enough as it leads to trivial solutions with vanishing nonperturbative sectors, even when logarithmic monomials are included. We see our result as a harbinger of what future work might reveal about the transseries representations of observables in fully renormalised four-dimensional quantum field theories and adduce a tentative yet to our mind weighty argument as to why one should not expect otherwise. This paper is considerably self-contained. Readers with little prior knowledge are let in on the basic reasons why perturbative series in quantum field theory eventually require an upgrade to transseries. Furthermore, in order to acquaint the reader with the language utilised extensively in this work, we also provide a concise mathematical introduction to grid-based transseries.
Connections of the Liouville model and XXZ spin chain
Faddeev, Ludvig D.; Tirkkonen, Olav
1995-02-01
The quantum theory of the Liouville model with imaginary field is considered using the Quantum Inverse Scattering Method. An integrable structure with non-trivial spectral-parameter dependence is developed for lattice Liouville theory by scaling the L-matrix of lattice sine-Gordon theory. This L-matrix yields Bethe ansatz equations for Liouville theory, by the methods of the algebraic Bethe ansatz. Using the string picture of excited Bethe states, the lattice Liouville Bethe equations are mapped to the corresponding spin- {1}/{2} XXZ chain equations. The well developed theory of finite-size corrections in spin chains is used to deduce the conformal properties of the lattice Liouville Bethe states. The unitary series of conformal field theories emerge for Liouville couplings of the form γ = πν/( ν + 1), corresponding to root of unity XXZ anisotropies. The Bethe states give the full spectrum of the corresponding unitary conformal field theory, with the primary states in the Kač table parameterized by a string length K, and the remnant of the chain length mod ( ν + 1).
Connections of the Liouville model and XXZ spin chain
International Nuclear Information System (INIS)
Faddeev, L.D.; Tirkkonen, O.
1995-01-01
The quantum theory of the Liouville model with imaginary field is considered using the Quantum Inverse Scattering Method. An integrable structure with non-trivial spectral-parameter dependence is developed for lattice Liouville theory by scaling the L-matrix of lattice sine-Gordon theory. This L-matrix yields Bethe ansatz equations for Liouville theory, by the methods of the algebraic Bethe ansatz. Using the string picture of excited Bethe states, the lattice Liouville Bethe equations are mapped to the corresponding spin-1/2 XXZ chain equations. The well developed theory of finite-size corrections in spin chains is used to deduce the conformal properties of the lattice Liouville Bethe states. The unitary series of conformal field theories emerge for Liouville couplings of the form γ= πν/(ν+1), corresponding to root of unity XXZ anisotropies. The Bethe states give the full spectrum of the corresponding unitary conformal field theory, with the primary states in the Kac table parameterized by a string length K, and the remnant of the chain length mod (ν+1). (orig.)
Kakehashi, Yoshiro; Chandra, Sumal
2017-03-01
The momentum distribution function (MDF) bands of iron-group transition metals from Sc to Cu have been investigated on the basis of the first-principles momentum dependent local ansatz wavefunction method. It is found that the MDF for d electrons show a strong momentum dependence and a large deviation from the Fermi-Dirac distribution function along high-symmetry lines of the first Brillouin zone, while the sp electrons behave as independent electrons. In particular, the deviation in bcc Fe (fcc Ni) is shown to be enhanced by the narrow eg (t2g) bands with flat dispersion in the vicinity of the Fermi level. Mass enhancement factors (MEF) calculated from the jump on the Fermi surface are also shown to be momentum dependent. Large mass enhancements of Mn and Fe are found to be caused by spin fluctuations due to d electrons, while that for Ni is mainly caused by charge fluctuations. Calculated MEF are consistent with electronic specific heat data as well as recent angle resolved photoemission spectroscopy data.
Moiseiwitsch, B L
2005-01-01
Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco
A Riemann-Hilbert formulation for the finite temperature Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Cavaglià, Andrea [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); Cornagliotto, Martina [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Mattelliano, Massimo; Tateo, Roberto [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy)
2015-06-03
Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily solved numerically. We discuss the emergence of an exact Bethe Ansatz and the link between the TBA approach and the results by Jüttner, Klümper and Suzuki based on the Quantum Transfer Matrix method. We also comment on the analytic continuation mechanism leading to excited states and on the mirror equations describing the finite-size Hubbard model with twisted boundary conditions.
Dyson-Schwinger equations in quantum electrodynamics
International Nuclear Information System (INIS)
Slim, H.A.
1981-01-01
A quantum field theory is completely determined by the knowledge of its Green functions and this thesis is concerned with the Salam and Delbourgo approximation method for the determination of the Green functions. In chapter 2 a Lorentz covariant, canonical formulation for quantum electrodynamics is described. In chapter 3 the definition of the Green functions in quantum electrodynamics is given with a derivation of the Dyson-Schwinger equations. The Ward-Takahashi identities, which are a consequence of current conservation, are derived and finally renormalization is briefly mentioned and the equations for the renormalized quantities are given. The gauge transformations, changing the gauge-parameter, a, discussed in Chapter 2 for the field operators, also have implications for the Green functions, and these are worked out in Chapter 4 for the electron propagator, which is not gauge-invariant. Before developing the main approximation, a simple, non-relativistic model is studied in Chapter 5. It has the feature of being exactly solvable in a way which closely resembles the approximation method of Chapter 6 for relativistic quantum electrodynamics. There the Dyson-Schwinger equations for the electron and photon propagator are studied. In chapter 7, the Johnson-Baker-Willey program of finite quantum electrodynamics is considered, in connection with the Ansatz of Salam and Delbourgo, and the question of a possible fixed point of the coupling constant is considered. In the last chapter, some remarks are made about how the results of the approximation scheme can be improved. (Auth.)
Spectrum of the ballooning Schroedinger equation
International Nuclear Information System (INIS)
Dewar, R.L.
1997-01-01
The ballooning Schroedinger equation (BSE) is a model equation for investigating global modes that can, when approximated by a Wentzel-Kramers-Brillouin (WKB) ansatz, be described by a ballooning formalism locally to a field line. This second order differential equation with coefficients periodic in the independent variable θ k is assumed to apply even in cases where simple WKB quantization conditions break down, thus providing an alternative to semiclassical quantization. Also, it provides a test bed for developing more advanced WKB methods: e.g. the apparent discontinuity between quantization formulae for open-quotes trappedclose quotes and open-quotes passingclose quotes modes, whose ray paths have different topologies, is removed by extending the WKB method to include the phenomena of tunnelling and reflection. The BSE is applied to instabilities with shear in the real part of the local frequency, so that the dispersion relation is inherently complex. As the frequency shear is increased, it is found that trapped modes go over to passing modes, reducing the maximum growth rate by averaging over θ k
Tricomi, FG
2013-01-01
Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff
The decay constants of heavy-light mesons in a two-tier Bethe-Salpeter model
International Nuclear Information System (INIS)
Pagnamenta, A.; Illinois Univ., Chicago, IL; Gupta, K.K.; Mitra, A.N.; Singh, N.N.; Ramanathan, R.
1990-01-01
Leptonic decay widths for pseudoscalar mesons are calculated in a QCD-motivated Bethe-Salpeter formalism on a two-tier basis. This model, which is characterised by a Lorentz-invariant confining kernel that depends on the relativistic reduced mass defined in accordance with the Wightman-Garding definition of the internal 4-momenta q μ , has already shown precision fits to the spectra of qq-bar, qQ-bar and qqq hadrons apart from exhibiting an eplicit Regge-asymptotic behaviour (M 2 ∼N). The leptonic decay constants thus obtained with no free parameters, are (in MeV units), f P =134(π), 166(K); 158(D); 94.9(B), 114(B S ). (author)
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); School of Computational Science, Florida State University, Tallahassee, FL 32306-4120 (United States); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr
2009-05-15
The magnetic properties of the ternary system ABC consisting of spins {sigma}=1/2 , S=1, and m=3/2 are investigated on the Bethe lattice by using the exact recursion relations. We consider both ferromagnetic and antiferromagnetic exchange interactions. The exact expressions for magnetizations and magnetic susceptibilities are found, and thermal behaviors of magnetizations and susceptibilities are studied. We construct the phase diagrams and find that the system exhibits one, two or even three compensation temperatures depending on the values of the interaction parameters in the Hamiltonian. Moreover, the system undergoes a second-order phase transition for the coordination number q{<=}3 and a second- and first-order phase transitions for q>3; hence the system gives a tricritical point. The system also exhibits the reentrant behaviors.
International Nuclear Information System (INIS)
Deviren, Bayram; Canko, Osman; Keskin, Mustafa
2009-01-01
The magnetic properties of the ternary system ABC consisting of spins σ=1/2 , S=1, and m=3/2 are investigated on the Bethe lattice by using the exact recursion relations. We consider both ferromagnetic and antiferromagnetic exchange interactions. The exact expressions for magnetizations and magnetic susceptibilities are found, and thermal behaviors of magnetizations and susceptibilities are studied. We construct the phase diagrams and find that the system exhibits one, two or even three compensation temperatures depending on the values of the interaction parameters in the Hamiltonian. Moreover, the system undergoes a second-order phase transition for the coordination number q≤3 and a second- and first-order phase transitions for q>3; hence the system gives a tricritical point. The system also exhibits the reentrant behaviors
Barbu, Viorel
2016-01-01
This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.
Ansatz for dynamical hierarchies
DEFF Research Database (Denmark)
Rasmussen, S.; Baas, N.A.; Mayer, B.
2001-01-01
Complex, robust functionalities can be generated naturally in at least two ways: by the assembly of structures and by the evolution of structures. This work is concerned with spontaneous formation of structures. We define the notion of dynamical hierarchies in natural systems and show...... the importance of this particular kind of organization for living systems. We then define a framework that enables us to formulate, investigate, and manipulate such dynamical hierarchies. This framework allows us to simultaneously investigate different levels of description together with them interrelationship...... three. Formulating this system as a simple two-dimensional molecular dynamics (MD) lattice gas allows us within one dynamical system to demonstrate the successive emergence of two higher levels (three levels all together) of robust structures with associated properties. Second, we demonstrate how...
Quasi-exactly solvable relativistic soft-core Coulomb models
Energy Technology Data Exchange (ETDEWEB)
Agboola, Davids, E-mail: davagboola@gmail.com; Zhang, Yao-Zhong, E-mail: yzz@maths.uq.edu.au
2012-09-15
By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.
Bukhvostov–Lipatov model and quantum-classical duality
Directory of Open Access Journals (Sweden)
Vladimir V. Bazhanov
2018-02-01
Full Text Available The Bukhvostov–Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1+1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O(3 non-linear sigma model. In our previous work [arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov–Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.
Bukhvostov-Lipatov model and quantum-classical duality
Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Runov, Boris A.
2018-02-01
The Bukhvostov-Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1 + 1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O (3) non-linear sigma model. In our previous work [arxiv:arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov-Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.
Indian Academy of Sciences (India)
regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.
International Nuclear Information System (INIS)
Gross, F.
1986-01-01
Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs
Bright and dark soliton solutions for some nonlinear fractional differential equations
International Nuclear Information System (INIS)
Guner, Ozkan; Bekir, Ahmet
2016-01-01
In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space–time fractional modified Benjamin–Bona–Mahoney (mBBM) equation, the time fractional mKdV equation and the nonlinear fractional Zoomeron equation which gives rise to some new exact solutions. The physical parameters in the soliton solutions: amplitude, inverse width, free parameters and velocity are obtained as functions of the dependent model coefficients. This method is suitable and more powerful for solving other kinds of nonlinear fractional PDEs arising in mathematical physics. Since the fractional derivatives are described in the modified Riemann–Liouville sense. (paper)
Covariant equations for the three-body bound state
International Nuclear Information System (INIS)
Stadler, A.; Gross, F.; Frank, M.
1997-01-01
The covariant spectator (or Gross) equations for the bound state of three identical spin 1/2 particles, in which two of the three interacting particles are always on shell, are developed and reduced to a form suitable for numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames, and all effects which arise from these boosts, including Wigner rotations and p-spin decomposition of the shell-particle, are treated exactly. In their final form, the equations reduce to a coupled set of Faddeev-like double integral equations with additional channels arising from the negative p-spin states of the off-shell particle
Bethe-Salpeter dynamics and the constituent mass concept for heavy quark mesons
International Nuclear Information System (INIS)
Souchlas, N.; Stratakis, D.
2010-01-01
The definition of a quark as heavy requires a comparison of its mass with the nonperturbative chiral symmetry breaking scale which is about 1 GeV (Λ χ ∼1 GeV) or with the scale Λ QCD ∼0.2 GeV that characterizes the distinction between perturbative and nonperturbative QCD. For quark masses significantly larger than these scales, nonperturbative dressing effects, or equivalently nonperturbative self-energy contributions, and relativistic effects are believed to be less important for physical observables. We explore the concept of a constituent mass for heavy quarks in the Dyson-Schwinger equations formalism, for light-heavy and heavy-heavy quark mesons by studying their masses and electroweak decay constants.
International Nuclear Information System (INIS)
Marquette, Ian; Links, Jon
2012-01-01
We study the Bethe ansatz/ordinary differential equation (BA/ODE) correspondence for Bethe ansatz equations that belong to a certain class of coupled, nonlinear, algebraic equations. Through this approach we numerically obtain the generalized Heine–Stieltjes and Van Vleck polynomials in the degenerate, two-level limit for four cases of integrable Bardeen–Cooper–Schrieffer (BCS) pairing models. These are the s-wave pairing model, the p + ip-wave pairing model, the p + ip pairing model coupled to a bosonic molecular pair degree of freedom, and a newly introduced extended d + id-wave pairing model with additional interactions. The zeros of the generalized Heine–Stieltjes polynomials provide solutions of the corresponding Bethe ansatz equations. We compare the roots of the ground states with curves obtained from the solution of a singular integral equation approximation, which allows for a characterization of ground-state phases in these systems. Our techniques also permit the computation of the roots of the excited states. These results illustrate how the BA/ODE correspondence can be used to provide new numerical methods to study a variety of integrable systems. (paper)
Zen, Andrea; Luo, Ye; Sorella, Sandro; Guidoni, Leonardo
2014-01-01
Quantum Monte Carlo methods are accurate and promising many body techniques for electronic structure calculations which, in the last years, are encountering a growing interest thanks to their favorable scaling with the system size and their efficient parallelization, particularly suited for the modern high performance computing facilities. The ansatz of the wave function and its variational flexibility are crucial points for both the accurate description of molecular properties and the capabilities of the method to tackle large systems. In this paper, we extensively analyze, using different variational ansatzes, several properties of the water molecule, namely, the total energy, the dipole and quadrupole momenta, the ionization and atomization energies, the equilibrium configuration, and the harmonic and fundamental frequencies of vibration. The investigation mainly focuses on variational Monte Carlo calculations, although several lattice regularized diffusion Monte Carlo calculations are also reported. Through a systematic study, we provide a useful guide to the choice of the wave function, the pseudopotential, and the basis set for QMC calculations. We also introduce a new method for the computation of forces with finite variance on open systems and a new strategy for the definition of the atomic orbitals involved in the Jastrow-Antisymmetrised Geminal power wave function, in order to drastically reduce the number of variational parameters. This scheme significantly improves the efficiency of QMC energy minimization in case of large basis sets. PMID:24526929
Genus two finite gap solutions to the vector nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Woodcock, Thomas; Warren, Oliver H; Elgin, John N
2007-01-01
A recently published article presents a technique used to derive explicit formulae for odd genus solutions to the vector nonlinear Schroedinger equation. In another article solutions of genus two are derived using a different approach which assumes a separable ansatz. In this communication, the extension of the first technique to the even genus case is discussed, and this extension is carried out explicitly for genus two. Furthermore, a birational mapping is found between the spectral curves that arise in the two approaches. (fast track communication)
Effective self-similar expansion for the Gross-Pitaevskii equation
Modugno, Michele; Pagnini, Gianni; Valle-Basagoiti, Manuel Angel
2018-04-01
We consider an effective scaling approach for the free expansion of a one-dimensional quantum wave packet, consisting in a self-similar evolution to be satisfied on average, i.e., by integrating over the coordinates. A direct comparison with the solution of the Gross-Pitaevskii equation shows that the effective scaling reproduces with great accuracy the exact evolution—the actual wave function is reproduced with a fidelity close to one—for arbitrary values of the interactions. This result represents a proof of concept of the effectiveness of the scaling ansatz, which has been used in different forms in the literature but never compared against the exact evolution.
Self-consistence equations for extended Feynman rules in quantum chromodynamics
International Nuclear Information System (INIS)
Wielenberg, A.
2005-01-01
In this thesis improved solutions for Green's functions are obtained. First the for this thesis essential techniques and concepts of QCD as euclidean field theory are presented. After a discussion of the foundations of the extended approach for the Feynman rules of QCD with a systematic approach for the 4-gluon vertex a modified renormalization scheme for the extended approach is developed. Thereafter the resummation of the Dyson-Schwinger equations (DSE) by the appropriately modified Bethe-Salpeter equation is discussed. Then the leading divergences for the 1-loop graphs of the resummed DSE are determined. Thereafter the equation-of-motion condensate is defined as result of an operator-product expansion. Then the self-consistency equations for the extended approaches are defined and numerically solved. (HSI)
Martirosyan, A; Saakian, David B
2011-08-01
We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs.
International Nuclear Information System (INIS)
Bondarenko, S.G.; Burov, V.V.; Hamamoto, N.; Manabe, Y.; Hosaka, A.; Toki, H.
2005-01-01
Recent results obtained by the application of the Bethe-Salpeter approach to the analysis of elastic electron-deuteron scattering with the separable NN kernel are presented. We analyze the impact of the P waves (negative-energy components) on the electromagnetic properties of the deuteron and compare it with experimental data. It was shown that the contribution of the P waves must be taken into account to explain tensor polarization and charge form factor of the deuteron
Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Li, Yuan-Yuan; Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-02-15
The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.
Energy Technology Data Exchange (ETDEWEB)
Rebolini, Elisa, E-mail: elisa.rebolini@kjemi.uio.no; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr [Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 4 place Jussieu, F-75005 Paris (France)
2016-03-07
We present a range-separated linear-response time-dependent density-functional theory (TDDFT) which combines a density-functional approximation for the short-range response kernel and a frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel. This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT and aims at improving the accuracy of calculations of electronic excitation energies of molecular systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation kernel is given using many-body Green-function theory. Preliminary tests of this range-separated TDDFT method are presented for the calculation of excitation energies of the He and Be atoms and small molecules (H{sub 2}, N{sub 2}, CO{sub 2}, H{sub 2}CO, and C{sub 2}H{sub 4}). The results suggest that the addition of the long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation energies.
Moments of the Bethe surface and total inelastic x-ray scattering cross sections for H2
International Nuclear Information System (INIS)
Sharma, B.S.; Thakkar, A.J.
1987-01-01
Moments, S(j,K), of the generalized oscillator strength distribution are global properties of the Bethe surface. Apart from S(-1,K) which is related to the Waller-Hartree incoherent scattering factor, little is known about these moments for nonzero K. This paper describes high-accuracy calculations of S(1,K) and S(2,K) for molecular hydrogen. Comparison with experiment is made, and the utility of simple asymptotic approximations is confirmed. The moments are used to calculate differential cross sections for the inelastic scattering of x rays using the constant-momentum-transfer and constant-angle theories of Bonham. These cross sections differ from the Waller-Hartree cross sections at large angles thus demonstrating the importance of making corrections to the Waller-Hartree theory if the incoherent scattering factor S(K) is to be extracted from experimental inelastic cross sections. Total cross sections for scattering of 6- and 7-keV photons from H 2 are compared with synchrotron radiation scattering experiments. The calculations suggest that the Bonham constant-angle cross sections agree best with experiment. However, further experimental and theoretical work is needed to obtain firm conclusions about the limitations of Waller-Hartree theory
Directory of Open Access Journals (Sweden)
Maksimova A.A.
2016-01-01
Full Text Available The article presents the analysis carried out by Ph. D. Beth Ann Beschorner (University of Iowa, USA which concerns the training program for parents aimed at teaching them how to arrange the Dialogic reading with their childrenand and which makes it possible to conclude that due to the experience and direct contact with the written language in preschool age the idea of literacy was being formed. The article compares the empirical data obtained independently in different areas of scientific knowledge, i.e., philosophy and psychology: the study of B.A. Beschorner has a lot in common with the principles of cultural-historical psychology, formulated by L. Vygotsky, M. Lisina and other national psychologists. Although B. A. Beschorner do not stick directly to cultural-historical and activity theory, her results correspond with the basic provisions of these theories. The analysis of B.A. Beschorner’s works confirms the commonality of her findings to those obtained in terms of the cultural-historical theory. It proves that scientific thoughts even going in independent ways, may lead to similar results, which ultimately demonstrates the validity of the findings and the versatility of approaches to the problem
International Nuclear Information System (INIS)
Bradley, R.M.
1985-01-01
Part I studies the effect of quantum fluctuations of the phase on the low temperature behavior of two models of Josephson junction chains with Coulomb interactions taken into account. The first model, which represents a chain of junctions close to a ground plane, is the Hamiltonian version of the two-dimensional XY model in one space and one time dimension. In the second model, the charging energy for a single junction in the chain is just the parallel-plate capacitor energy. It is shown that quantum fluctuations produce exponential decay of the order parameter correlation junction for any finite value of the junction capacitance. Part II deals with two types of directed aggregation on the Bethe lattice - directed diffusion-limited aggregation DDLA and ballistic aggregation (BA). In the DDLA problem on finite lattices, an exact nonlinear recursion relation is constructed for the probability distribution of the density. The mean density tends to zero as the lattice size is taken into infinity. Using a mapping between the model with perfect adhesion on contact and another model with a particular value of the adhesion probability, it is shown that the adhesion probability is irrelevant over an interval of values
A note on the boundary spin s XXZ chain
International Nuclear Information System (INIS)
Doikou, Anastasia
2007-01-01
The open spin s XXZ model with non-diagonal boundaries is considered. Within the algebraic Bethe ansatz framework and in the spirit of earlier works we derive suitable reference states. The derivation of the reference state is the crucial point in this investigation, and it involves the solution of sets of difference equations. For the spin s representation, expressed in terms of difference operators, the pseudo-vacuum is identified in terms of q-hypergeometric series. Having specified such states we then build the Bethe states and also identify the spectrum of the model for generic values of the anisotropy parameter q
Hadronic bound states in SU(2) from Dyson-Schwinger equations
Energy Technology Data Exchange (ETDEWEB)
Vujinovic, Milan [Karl-Franzens-Universitaet Graz, Institut fuer Physik, Graz (Austria); Williams, Richard [Justus-Liebig-Universitaet Giessen, Institut fuer Theoretische Physik, Giessen (Germany)
2015-03-01
By using the Dyson-Schwinger/Bethe-Salpeter formalism in Euclidean spacetime, we calculate the ground state spectrum of J ≤ 1 hadrons in an SU(2) gauge theory with two fundamental fermions. We show that the rainbow-ladder truncation, commonly employed in QCD studies, is unsuitable for a description of an SU(2) theory. This we remedy by truncating at the level of the quark-gluon vertex Dyson-Schwinger equation in a diagrammatic expansion. Results obtained within this novel approach show good agreement with lattice studies. These findings emphasize the need to use techniques more sophisticated than rainbow-ladder when investigating generic strongly interacting gauge theories. (orig.)
Differential Equations Compatible with KZ Equations
International Nuclear Information System (INIS)
Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.
2000-01-01
We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions
On the scattering over the GKP vacuum
International Nuclear Information System (INIS)
Fioravanti, Davide; Piscaglia, Simone; Rossi, Marco
2014-01-01
By converting the asymptotic Bethe Ansatz (ABA) of N=4 SYM into non-linear integral equations, we find 2D scattering amplitudes of excitations on top of the GKP vacuum. We prove that this is a suitable and powerful set-up for the understanding and computation of the whole S-matrix. We show that all the amplitudes depend on the fundamental scalar–scalar one
On the particle excitations in the XXZ spin chain
Energy Technology Data Exchange (ETDEWEB)
Ovchinnikov, A.A., E-mail: ovch@ms2.inr.ac.ru
2013-12-09
We continue to study the excited states for the XXZ spin chain corresponding to the complex roots of the Bethe Ansatz equations with the imaginary part equal to π/2. We propose the particle–hole symmetry which relates the eigenstates build up from the two different pseudovacuum states. We find the XXX spin chain limit for the eigenstates with the complex roots. We also comment on the low-energy excited states for the XXZ spin chain.
Staircase Models from Affine Toda Field Theory
Dorey, P; Dorey, Patrick; Ravanini, Francesco
1993-01-01
We propose a class of purely elastic scattering theories generalising the staircase model of Al. B. Zamolodchikov, based on the affine Toda field theories for simply-laced Lie algebras g=A,D,E at suitable complex values of their coupling constants. Considering their Thermodynamic Bethe Ansatz equations, we give analytic arguments in support of a conjectured renormalisation group flow visiting the neighbourhood of each W_g minimal model in turn.
Generic boundary scattering in the open XXZ chain
International Nuclear Information System (INIS)
Doikou, Anastasia
2008-01-01
The open critical XXZ spin chain with a general right boundary and a trivial diagonal left boundary is considered. Within this framework we propose a simple computation of the exact generic boundary S-matrix (with diagonal and non-diagonal entries), starting from the 'bare' Bethe ansatz equations. Our results as anticipated coincide with the ones obtained by Ghoshal and Zamolodchikov, after assuming suitable identifications of the bulk and boundary parameters
Lattice Paths and the Constant Term
International Nuclear Information System (INIS)
Brak, R; Essam, J; Osborn, J; Owczarek, A L; Rechnitzer, A
2006-01-01
We firstly review the constant term method (CTM), illustrating its combinatorial connections and show how it can be used to solve a certain class of lattice path problems. We show the connection between the CTM, the transfer matrix method (eigenvectors and eigenvalues), partial difference equations, the Bethe Ansatz and orthogonal polynomials. Secondly, we solve a lattice path problem first posed in 1971. The model stated in 1971 was only solved for a special case - we solve the full model
Spinless Salpeter equation: Laguerre bounds on energy levels
International Nuclear Information System (INIS)
Lucha, W.; Schoeberl, F.F.
1996-08-01
The spinless Salpeter equation may be considered either as a standard approximation to the Bethe-Salpeter formalism, designed for the description of bound states within a relativistic quantum field theory, or as the most simple, to a certain extent relativistic generalization of the customary non relativistic Schroedinger formalism. Because of the presence of the rather difficult-to-handle square-root operator of the relativistic kinetic energy in the corresponding Hamiltonian, very frequently the corresponding (discrete) spectrum of energy eigenvalues cannot be determined analytically. Therefore, we show how to calculate, by some clever choice of basis vectors in the Hilbert space of solutions, for the rather large class of power-law potentials, at least (sometimes excellent) upper bounds on these energy eigenvalues, for the lowest-lying levels this even analytically. (author)
Meson spectra from two-body dirac equations with minimal interactions
International Nuclear Information System (INIS)
Crater, H.W.; Becker, R.L.; Wong, C.Y.
1991-01-01
Many authors have used two-body relativistic wave equations with spin in nonperturbative numerical quark model calculations of the meson spectrum. Usually, they adopt a truncation of the Bethe-Salpeter equation of QED and/or scalar. QED and replace the static Coulomb interactions of those field theories with a semiphenomenological Q bar Q potential whose insertion in the Breit terms give the corresponding spin corrections. However, the successes of these wave equations in QED have invariably depended on perturbative treatment of the terms in each beyond the Coulomb terms. There have been no successful nonperturbative numerical test of two-body quantum wave equations in QED, because in most equations the effective potentials beyond the Coulomb are singular and can only be treated perturbatively. This is a glaring omission that we rectify here for the case of the two-body Dirac equations of constraint dynamics. We show in this paper that a nonperturbative numerical treatment of these equations for QED yields the same spectral results as a perturbative treatment of them which in turn agrees with the standard spectral results for positronium and muonium. This establishes that the vector and scalar interaction structures of our equations accurately incorporate field theoretic interactions in a bone fide relativistic wave equation. The last portion of this work will report recent quark model calculations using these equations with the Adler-Piran static Q bar Q potential
Liouville and Painleve equations and Yang--Mills strings
International Nuclear Information System (INIS)
Saclioglu, C.K.
1984-01-01
Stringlike solutions of the self-dual Yang--Mills equations (dimensionally reduced to R 2 ) are sought. A multistring Ansatz results in the sinh--Gordon and Liouville equations. According to a general theorem, the solutions must be either real and singular and have infinite action, or complex and nonsingular, with zero action. In the Liouville case, explicit arbitrarily separated n-string solutions of both classes are given. The magnetic flux for these solutions is found to be the Chern class of a Kaehler manifold, and it consequently assumes quantized values 4πn/e. The axisymmetric version of the sinh--Gordon is solved by the third Painleve transcendent P 3 , using the results on P 3 by Wu et al. [Phys. Rev. B 13, 316 (1976)] and McCoy et al. [J. Math. Phys. 18, 10 (1977)]. The axisymmetric case can be cast into the Ernst equation framework for the generation of further solutions. In the Appendix, the Euclideanized Ernst equation is shown to give self-dual Gibbons--Hawking gravitational instantons
A comprehensive treatment of electromagnetic interactions and the three-body spectator equations
Energy Technology Data Exchange (ETDEWEB)
Jiri Adam; Jay Van Orden
2004-10-01
We present a general derivation the three-body spectator (Gross) equations and the corresponding electromagnetic currents. As in previous paper on two-body systems, the wave equations and currents are derived from those for Bethe-Salpeter equation with the help of algebraic method using a concise matrix notation. The three-body interactions and currents introduced by the transition to the spectator approach are isolated and the matrix elements of the e.m. current are presented in detail for system of three indistinguishable particles, namely for elastic scattering and for two and three body break-up. The general expressions are reduced to the one-boson-exchange approximation to make contact with previous work. The method is general in that it does not rely on introduction of the electromagnetic interaction with the help of the minimal replacement. It would therefore work also for other external fields.
Exact solution of nonrelativistic Schrodinger equation for certain central physical potential
International Nuclear Information System (INIS)
Bose, S.K.; Gupta, N.
1998-01-01
It is obtained here a class/classes of exact solution of the nonrelativistic Schrodinger equation for certain central potentials of physical interest by using proper ansatz/ansatze. The explicit expressions of energy eigenvalue and eigenfunction are obtained for each solution. These solutions are valid when for, in general, each solutions an interrelation between the parameters of the potential and the orbital-angular-momentum quantum number l is satisfied. These solutions, besides having an aesthetic appeal, can be used as benchmark to test the accuracy of nonperturbative methods, which sometimes yield wrong results, of solving the Schrodinger equation. The exact solution for the following central potentials, which are relevant in different areas of physics, have been obtained: 1) V(r)=ar 6 + br 4 + cr 2 ; 2) V(r)=ar 2 + br + c/r; 3) V(r)=r 2 + λr 2 /(1+gr 2 ); 4) V(r)= a/r + b/(r+λ); 5a) V(r)=a/r + b/r 2 +c/r 3 +d/r 4 ; 5)b V(r)=a/r 2 + b/r 2 + c/r 4 + d/r 6 ; 6a) V(r)=a/r 1/2 + b/r 3/2 ; 6b) V(r)=ar 2/3 + br -2/3 + cr -4/3
Exact ground-state correlation functions of an atomic-molecular Bose–Einstein condensate model
Links, Jon; Shen, Yibing
2018-05-01
We study the ground-state properties of an atomic-molecular Bose–Einstein condensate model through an exact Bethe Ansatz solution. For a certain range of parameter choices, we prove that the ground-state Bethe roots lie on the positive real-axis. We then use a continuum limit approach to obtain a singular integral equation characterising the distribution of these Bethe roots. Solving this equation leads to an analytic expression for the ground-state energy. The form of the expression is consistent with the existence of a line of quantum phase transitions, which has been identified in earlier studies. This line demarcates a molecular phase from a mixed phase. Certain correlation functions, which characterise these phases, are then obtained through the Hellmann–Feynman theorem.
International Nuclear Information System (INIS)
Shore, B.W.
1981-01-01
The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence
International Nuclear Information System (INIS)
Airapetian, A.; Akopov, Z.
2009-09-01
Hard exclusive leptoproduction of real photons from an unpolarized proton target is studied in an effort to elucidate generalized parton distributions. The data accumulated during the years 1996-2005 with the HERMES spectrometer are analyzed to yield asymmetries with respect to the combined dependence of the cross section on beam helicity and charge, thereby revealing previously unseparated contributions from deeply virtual Compton scattering and its interference with the Bethe-Heitler process. The integrated luminosity is sufficient to show correlated dependences on two kinematic variables, and provides the most precise determination of the dependence on only the beam charge. (orig.)
An Exactly Solvable Supersymmetric Model of Semimagic Nuclei
International Nuclear Information System (INIS)
Balantekin, A. B.; Gueven, Nurtac; Pehlivan, Yamac
2008-01-01
A simple model of nucleons coupled to angular momentum zero (s-pairs) occupying the valance shell of a semi-magic nuclei is considered. The model has a separable, orbit dependent pairing interaction which dominates over the kinetic term. It is shown that such an interaction leads to an exactly solvable model whose (0 + ) eigenstates and energies can be computed very easily with the help of the algebraic Bethe ansatz method. It is also shown that the model has a supersymmetry which connects the spectra of some semimagic nuclei. The results obtained from this model for the semimagic Ni isotopes from 58 Ni to 68 Ni are given. In addition, a new and easier technique for calculating the energy eigenvalues from the Bethe ansatz equations is also presented.
Envelope compact and solitary pattern structures for the GNLS(m,n,p,q) equations
International Nuclear Information System (INIS)
Yan Zhenya
2006-01-01
In this Letter, to further understand the role of nonlinear dispersion in the generalized nonlinear Schrodinger equation, we introduce and study the generalized nonlinear Schrodinger equation with nonlinear dispersion (called GNLS(m,n,p,q) equation): iu t +a(u vertical bar u vertical bar n-1 ) xx +bu vertical bar u vertical bar m-1 +ic(u vertical bar u vertical bar p-1 ) xxx +id(u vertical bar u vertical bar q-1 ) x =0. Some new envelope compacton solutions and solitary pattern solutions of GNLS(m,n,p,q) equation are obtained via the gauge transformation and some direct ansatze. In particular, it is shown that GNLS(m,n,p,q) equation with linear dispersion gives rise to envelope compactons and solitary patterns, which implies that nonlinear dispersion is not necessary condition for GNLS(m,n,p,q) equation to admit envelope compactons and solitary patterns. Moreover, some unusually local conservation laws are presented for GNLS + (n,n,n,n) equation and GNLS - (n,n,n,n) equation, respectively
Murdin, P.
2000-11-01
Physicist, born in Strasburg, Germany (present-day France), Nobel prizewinner (1967). As professor of physics at Cornell University he worked out the nuclear reactions occurring in the Sun. He worked on the development of the atomic bomb in the Manhatten project, and, after the second World War, pursued again research on stellar nuclear energy sources and the origin of the chemical elements in th...
Polylogs, thermodynamics and scaling functions of one-dimensional quantum many-body systems
International Nuclear Information System (INIS)
Guan, X-W; Batchelor, M T
2011-01-01
We demonstrate that the thermodynamics of one-dimensional Lieb-Liniger bosons can be accurately calculated in analytic fashion using the polylog function in the framework of the thermodynamic Bethe ansatz. The approach does away with the need to numerically solve the thermodynamic Bethe ansatz (Yang-Yang) equation. The expression for the equation of state allows the exploration of Tomonaga-Luttinger liquid physics and quantum criticality in an archetypical quantum system. In particular, the low-temperature phase diagram is obtained, along with the scaling functions for the density and compressibility. It has been shown recently by Guan and Ho (arXiv:1010.1301) that such scaling can be used to map out the criticality of ultracold fermionic atoms in experiments. We show here how to map out quantum criticality for Lieb-Liniger bosons. More generally, the polylog function formalism can be applied to a wide range of Bethe ansatz integrable quantum many-body systems which are currently of theoretical and experimental interest, such as strongly interacting multi-component fermions, spinor bosons and mixtures of bosons and fermions. (fast track communication)
Time-periodic solutions of the Benjamin-Ono equation
Energy Technology Data Exchange (ETDEWEB)
Ambrose , D.M.; Wilkening, Jon
2008-04-01
We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one of the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations.
Time-periodic solutions of the Benjamin-Ono equation
International Nuclear Information System (INIS)
Ambrose, D.M.; Wilkening, Jon
2008-01-01
We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one of the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations
Exact solutions of Fisher and Burgers equations with finite transport memory
International Nuclear Information System (INIS)
Kar, Sandip; Banik, Suman Kumar; Ray, Deb Shankar
2003-01-01
The Fisher and Burgers equations with finite memory transport, describing reaction-diffusion and convection-diffusion processes, respectively have recently attracted a lot of attention in the context of chemical kinetics, mathematical biology and turbulence. We show here that they admit exact solutions. While the speed of the travelling wavefront is dependent on the relaxation time in the Fisher equation, memory effects significantly smoothen out the shock wave nature of the Burgers solution, without any influence on the corresponding wave speed. We numerically analyse the ansatz for the exact solution and show that for the reaction-diffusion system the strength of the reaction term must be moderate enough not to exceed a critical limit to allow a travelling wave solution to exist for appreciable finite memory effect
Exact solutions of Fisher and Burgers equations with finite transport memory
Kar, S; Ray, D S
2003-01-01
The Fisher and Burgers equations with finite memory transport, describing reaction-diffusion and convection-diffusion processes, respectively have recently attracted a lot of attention in the context of chemical kinetics, mathematical biology and turbulence. We show here that they admit exact solutions. While the speed of the travelling wavefront is dependent on the relaxation time in the Fisher equation, memory effects significantly smoothen out the shock wave nature of the Burgers solution, without any influence on the corresponding wave speed. We numerically analyse the ansatz for the exact solution and show that for the reaction-diffusion system the strength of the reaction term must be moderate enough not to exceed a critical limit to allow a travelling wave solution to exist for appreciable finite memory effect.
Parametric reduced models for the nonlinear Schrödinger equation.
Harlim, John; Li, Xiantao
2015-05-01
Reduced models for the (defocusing) nonlinear Schrödinger equation are developed. In particular, we develop reduced models that only involve the low-frequency modes given noisy observations of these modes. The ansatz of the reduced parametric models are obtained by employing a rational approximation and a colored-noise approximation, respectively, on the memory terms and the random noise of a generalized Langevin equation that is derived from the standard Mori-Zwanzig formalism. The parameters in the resulting reduced models are inferred from noisy observations with a recently developed ensemble Kalman filter-based parametrization method. The forecasting skill across different temperature regimes are verified by comparing the moments up to order four, a two-time correlation function statistics, and marginal densities of the coarse-grained variables.
International Nuclear Information System (INIS)
Yan Zhenya
2002-01-01
In this paper, an auto-Baecklund transformation is presented for the generalized Burgers equation: u t +u xy + αuu y +αu x ∂ -1 x u y =0 (α is constant) by using an ansatz and symbolic computation. Particularly, this equation is transformed into a (1+2)-dimensional generalized heat equation ω t + ω xy =0 by the Cole-Hopf transformation. This shows that this equation is C-integrable. Abundant types of new soliton-like solutions are obtained by virtue of the obtained transformation. These solutions contain n-soliton-like solutions, shock wave solutions and singular soliton-like solutions, which may be of important significance in explaining some physical phenomena. The approach can also be extended to other types of nonlinear partial differential equations in mathematical physics
Partial Differential Equations
1988-01-01
The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.
Equating error in observed-score equating
van der Linden, Willem J.
2006-01-01
Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of
International Nuclear Information System (INIS)
Hermanns, S; Bonitz, M; Balzer, K
2013-01-01
The nonequilibrium description of quantum systems requires, for more than two or three particles, the use of a reduced description to be numerically tractable. Two possible approaches are based on either reduced density matrices or nonequilibrium Green functions (NEGF). Both concepts are formulated in terms of hierarchies of coupled equations—the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for the reduced density operators and the Martin-Schwinger-hierarchy (MS) for the Green functions, respectively. In both cases, similar approximations are introduced to decouple the hierarchy, yet still many questions regarding the correspondence of both approaches remain open. Here we analyze this correspondence by studying the generalized Kadanoff–Baym ansatz (GKBA) that reduces the NEGF to a single-time theory. Starting from the BBGKY-hierarchy we present the approximations that are necessary to recover the GKBA result both, with Hartree-Fock propagators (HF-GKBA) and propagators in second Born approximation. To test the quality of the HF-GKBA, we study the dynamics of a 4-electron Hubbard nanocluster starting from a strong nonequilibrium initial state and compare to exact results and the Wang-Cassing approximation to the BBGKY hierarchy presented recently by Akbari et al. [1].
Space distribution and energy straggling of charged particles via Fokker-Planck equation
International Nuclear Information System (INIS)
Manservisi, S.; Molinari, V.; Nespoli, A.
1996-01-01
The Fokker-Planck equation describing a beam of charged particles entering a homogeneous medium is solved here for a stationary case. Interactions are taken into account through Coulomb cross-section. Starting from the charged-particle distribution as a function of velocity and penetration depth, some important kinetic quantities are calculated, like mean velocity, range and the loss of energy per unit space. In such quantities the energy straggling is taken into account. This phenomenon is not considered in the continuous slowing-down approximation that is commonly used to obtain the range and the stopping power. Finally the well-know Bohr of Bethe formula is found as a first-order approximation of the Fokker-Planck equation
Relativistic two-and three-particle scattering equations using instant and light-front dynamics
International Nuclear Information System (INIS)
Adhikari, S.K.; Tomio, L.; Frederico, T.
1992-01-01
Starting from the Bethe-Salpeter equation for two particles in the ladder approximation and integrating over the time component of momentum we derive three dimensional scattering integral equations satisfying constraints of unitarity and relativity, both employing the light-front and instant-form variables. The equations we arrive at are those first derived by Weinberg and by Blankenbecler and Sugar, and are shown to be related by a transformation of variables. Hence we show how to perform and relate identical dynamical calculation using these two equations. We extends this procedure to the case of three particles interacting via two-particle separable potentials. Using light-front and instant form variables we suggest a couple of three dimensional three-particle scattering equations satisfying constraints of two and three-particle unitarity and relativity. The three-particle light-front equation is shown to be approximately related by a transformation of variables to one of the instant-form three-particle equations. (author)
International Nuclear Information System (INIS)
Wang Qi; Chen Yong; Zhang Hongqing
2005-01-01
With the aid of computerized symbolic computation, a new elliptic function rational expansion method is presented by means of a new general ansatz, in which periodic solutions of nonlinear partial differential equations that can be expressed as a finite Laurent series of some of 12 Jacobi elliptic functions, is more powerful than exiting Jacobi elliptic function methods and is very powerful to uniformly construct more new exact periodic solutions in terms of rational formal Jacobi elliptic function solution of nonlinear partial differential equations. As an application of the method, we choose a (2+1)-dimensional dispersive long wave equation to illustrate the method. As a result, we can successfully obtain the solutions found by most existing Jacobi elliptic function methods and find other new and more general solutions at the same time. Of course, more shock wave solutions or solitary wave solutions can be gotten at their limit condition
Lindau, Anne-Kathrin; Hottenroth, Daniela; Lindner, Martin
2016-01-01
Der in den deutschen Nationalparken seit mehreren Jahren thematisierte und praktizierte Ansatz der Wildnisbildung stellt möglicherweise einen neuen Zugang zur Bildung für nachhaltige Entwicklung (BNE) in der universitären Lehrer/innenbildung im Fach Geographie dar. Am Beispiel des DBU-geförderten Projektes „Wildnis macht stark“ wird eine Konzeption für die Umsetzung von Wildnisbildung im Rahmen des Geographie-Lehramtsstudiums vorgestellt und mit ersten Forschungsergebnissen zur Wirksamkeit in...
Blakley, G. R.
1982-01-01
Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)
Handbook of integral equations
Polyanin, Andrei D
2008-01-01
This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.
Kinetic equations and fluctuations in μspace of one-component dilute plasmas
International Nuclear Information System (INIS)
Tokuyama, Michio; Mori, Hazime
1977-01-01
Kinetic equations for a spatially coarse-grained electron density in μ phase space A(p, r; t) with a length cutoff b and for its fluctuations are studied by a scaling method and a time-convolutionless approach developed by the present authors. An electron gas with a small plasma parameter epsilon=1/c (lambda sub(D)) 3 has three characteristic lengths; the Landau cutoff r sub(L)=epsilon lambda sub(D), the Debye length lambda sub(D)=√k sub(B)T/4πe 2 c and the mean free path l sub(f)=lambda sub(D)/epsilon, e and c being electronic charge and mean electron density, respectively. It is shown that there are two characteristic regions of the length cutoff b. One is a coherent region where r sub(L)<< b<< lambda sub(D). Its characteristic scaling is c→0, b→infinity, t→infinity with b√c and t√c being kept constant. The Vlasov equation is derived in this limit. The other is a kinetic region where lambda sub(D)<< b<< l sub(f). Its characteristic scaling is c→0, b→infinity, t→infinity with bc and tc being kept constant. The Vlasov term disappears and the Balescu-Lenard-Boltzmann-Landau equation, which is free of divergence for both close and distant collisions, is derived in this limit. It is shown that the fluctuations of A(p, r; t) obey a Markov process with scaling exponents α=0, β=1/2 in the coherent region near thermal equilibrium, while they obey a Gaussian Markov process with α=0, β=1 in the kinetic region. The present theory does not need the factorization ansatz and Bogoliubov's functional ansatz. (auth.)
The critical boundary RSOS M(3,5) model
El Deeb, O.
2017-12-01
We consider the critical nonunitary minimal model M(3, 5) with integrable boundaries and analyze the patterns of zeros of the eigenvalues of the transfer matrix and then determine the spectrum of the critical theory using the thermodynamic Bethe ansatz ( TBA) equations. Solving the TBA functional equation satisfied by the transfer matrices of the associated A 4 restricted solid-on-solid Forrester-Baxter lattice model in regime III in the continuum scaling limit, we derive the integral TBA equations for all excitations in the ( r, s) = (1, 1) sector and then determine their corresponding energies. We classify the excitations in terms of ( m, n) systems.
Directory of Open Access Journals (Sweden)
Gutwald Rebecca
2015-07-01
Full Text Available Resilienz wird in der Psychologie und Sozialpädagogik häufig als positiv angesehen. In der Armutsbekämpfung ist diese Sichtweise durchaus nachvollziehbar, insbesondere in der Prävention von Kinderarmut: wenn Resilienz das ist, was ein Kind in die Lage versetzt, die Risiken und negativen Folgen von Armut besser zu bewältigen, scheint es sinnvoll, diese Fähigkeit bei Kindern zu fördern. Mein Beitrag befürwortet diesen Befund, plädiert aber dafür, dass die Resilienzdebatte der Untermauerung durch Argumente aus der praktischen Philosophie bedarf, da das, was häufig als Resilienz bezeichnet wird, nicht immer positiv zu bewerten ist. Ziel meines Beitrags ist es, den Resilienzdiskurs im Rahmen der Kinderarmutsbekämpfung in einer normativen Theorie zu verankern: im Capability Ansatz von Amartya Sen. Resilienz wird damit, so meine These, zu einem fundamental normativen Begriff. Mein Beitrag gliedert sich in drei Teile: Zuerst wird auf die Grundideen des CA und die Stellung von Kindheit darin eingegangen. Im zweiten Teil wird der Resilienzbegriff im Kontext von Kinderarmutsprävention charakterisiert. Der dritte Teil widmet sich den Verbindungslinien zwischen der Resilienzdiskussion und dem CA. Leitgedanke ist dabei, dass der CA die menschliche Handlungsfähigkeit als normativ grundlegend auszeichnet. Auf dieser Basis lässt sich überzeugend beurteilen, warum Armut bei Kindern höchst problematisch ist und welches Ziel in der Resilienzförderung verfolgt werden soll. Wie ich argumentieren werde, ist die Bereitstellung von capabilities auch die gerechtigkeitstheoretische Basis von Resilienzförderung in der Praxis. Der Beitrag schließt mit Impulsen, welche, so meine Hoffnung, für eine weitere Diskussion der Normativität von Resilienz dienlich sein können.
Baxter Q-operators and representations of Yangians
International Nuclear Information System (INIS)
Bazhanov, Vladimir V.; Frassek, Rouven; Lukowski, Tomasz; Meneghelli, Carlo; Staudacher, Matthias
2011-01-01
We develop a new approach to Baxter Q-operators by relating them to the theory of Yangians, which are the simplest examples for quantum groups. Here we open up a new chapter in this theory and study certain degenerate solutions of the Yang-Baxter equation connected with harmonic oscillator algebras. These infinite-state solutions of the Yang-Baxter equation serve as elementary, 'partonic' building blocks for other solutions via the standard fusion procedure. As a first example of the method we consider gl(n) compact spin chains and derive the full hierarchy of operatorial functional equations for all related commuting transfer matrices and Q-operators. This leads to a systematic and transparent solution of these chains, where the nested Bethe equations are derived in an entirely algebraic fashion, without any reference to the traditional Bethe Ansatz techniques.
Introduction to differential equations
Taylor, Michael E
2011-01-01
The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen
Uraltseva, N N
1995-01-01
This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p
International Nuclear Information System (INIS)
Chen, Yong; Shanghai Jiao-Tong Univ., Shangai; Chinese Academy of sciences, Beijing
2005-01-01
A general method to uniformly construct exact solutions in terms of special function of nonlinear partial differential equations is presented by means of a more general ansatz and symbolic computation. Making use of the general method, we can successfully obtain the solutions found by the method proposed by Fan (J. Phys. A., 36 (2003) 7009) and find other new and more general solutions, which include polynomial solutions, exponential solutions, rational solutions, triangular periodic wave solution, soliton solutions, soliton-like solutions and Jacobi, Weierstrass doubly periodic wave solutions. A general variable-coefficient two-dimensional KdV equation is chosen to illustrate the method. As a result, some new exact soliton-like solutions are obtained. planets. The numerical results are given in tables. The results are discussed in the conclusion
International Nuclear Information System (INIS)
Lebedev, D.R.
1979-01-01
Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown
International Nuclear Information System (INIS)
Teh, R.
1989-07-01
Here I would like to show a general way of writing the gauge potentials A μ α for which the SU(2) Yang-Mills equations of motion can be simplified and become solvable. A number of exact solutions can be obtained from these simplified equations of motion. (author). 14 refs
Analytic self-similar solutions of the Oberbeck–Boussinesq equations
International Nuclear Information System (INIS)
Barna, I.F.; Mátyás, L.
2015-01-01
In this article we will present pure two-dimensional analytic solutions for the coupled non-compressible Newtonian–Navier–Stokes — with Boussinesq approximation — and the heat conduction equation. The system was investigated from E.N. Lorenz half a century ago with Fourier series and pioneered the way to the paradigm of chaos. We present a novel analysis of the same system where the key idea is the two-dimensional generalization of the well-known self-similar Ansatz of Barenblatt which will be interpreted in a geometrical way. The results, the pressure, temperature and velocity fields are all analytic and can be expressed with the help of the error functions. The temperature field shows a strongly damped single periodic oscillation which can mimic the appearance of Rayleigh–Bénard convection cells. Finally, it is discussed how our result may be related to nonlinear or chaotic dynamical regimes
On solutions of Einstein and Einstein-Yang-Mills equations with (maximal) conformal subsymmetries
International Nuclear Information System (INIS)
Sinzinkayo, S.; Demaret, J.
1985-01-01
The maximal subgroups of the conformal group (which have in common as a subgroup the group of pure spatial rotations) are considered as isometry groups of conformally flat space-times. The corresponding cosmological solutions of Einstein's field equations are identified. For each of them, the possibility is investigated that it could be generated by an SU(2) Yang-Mills field built, via the Corrigan-Fairlie-'t Hooft-Wilczek ansatz, from a scalar field identical with the square root of the conformal factor defining the space-time metric tensor. In particular, the Einstein cosmological model can be generated in this manner, but in the framework of strong gravity only, a micro-Einstein universe being then viewed as a possible model for a hadron. (author)
Dynamics of excited instantons in the system of forced Gursey nonlinear differential equations
Energy Technology Data Exchange (ETDEWEB)
Aydogmus, F., E-mail: fatma.aydogmus@gmail.com [Istanbul University, Department of Physics, Faculty of Science (Turkey)
2015-02-15
The Gursey model is a 4D conformally invariant pure fermionic model with a nonlinear spinor self-coupled term. Gursey proposed his model as a possible basis for a unitary description of elementary particles following the “Heisenberg dream.” In this paper, we consider the system of Gursey nonlinear differential equations (GNDEs) formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey instantons can be affected by excitations. For this, the regular and chaotic numerical solutions of forced GNDEs are investigated by constructing their Poincaré sections in phase space. A hierarchical cluster analysis method for investigating the forced GNDEs is also presented.
Fractional Schroedinger equation
International Nuclear Information System (INIS)
Laskin, Nick
2002-01-01
Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations
Ordinary differential equations
Greenberg, Michael D
2014-01-01
Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps
Beginning partial differential equations
O'Neil, Peter V
2014-01-01
A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or
International Nuclear Information System (INIS)
Ichiguchi, Katsuji
1998-01-01
A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)
Singular stochastic differential equations
Cherny, Alexander S
2005-01-01
The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.
Y-system and quasi-classical strings
Energy Technology Data Exchange (ETDEWEB)
Gromov, Nikolay [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg INP, Gatchina, St. Petersburg (Russian Federation)
2009-11-15
Recently Kazakov, Vieira and the author conjectured the Y-system set of equations describing the planar spectrum of AdS/CFT. In this paper we solve the Y-system equations in the strong coupling scaling limit. We show that the quasi-classical spectrum of string moving inside AdS{sub 3} x S{sup 1} matches precisely with the prediction of the Y-system. Thus the Y-system, unlike the asymptotic Bethe ansatz, describes correctly the spectrum of one-loop string energies including all exponential finite size corrections. This gives a very non-trivial further support in favor of the conjecture. (orig.)
Haldane's statistical interactions and universal properties of anyon systems
International Nuclear Information System (INIS)
Protogenov, A.
1995-03-01
The exclusion principle of fractional statistics proposed by Haldane is applied to systems with internal degrees of freedom. The symmetry of these systems is included in the statistical interaction matrix which contains the Cartan matrix of Lie algebras. The solutions of the equations for the statistical weights, which coincide with the thermodynamic Bethe ansatz equations are determined in the high temperature limit by the squares of q-deformed dimensions of irreducible representations. The entropy and other thermodynamic properties of anyon systems in this limit are completely characterized by the algebraic structure of symmetry in the universal form. (author). 39 refs
Five-loop anomalous dimension of twist-two operators
Energy Technology Data Exchange (ETDEWEB)
Lukowski, T. [Institute of Physics, Jagellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Rej, A. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Velizhanin, V.N., E-mail: velizh@mail.desy.d [Theoretical Physics Department, Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina, 188300 St. Petersburg (Russian Federation)
2010-05-21
In this article we calculate the five-loop anomalous dimension of twist-two operators in the planar N=4 SYM theory. Firstly, using reciprocity, we derive the contribution of the asymptotic Bethe ansatz. Subsequently, we employ the first finite-size correction for the AdS{sub 5}xS{sup 5} sigma model to determine the wrapping correction. The anomalous dimension found in this way passes all known tests provided by the NLO BFKL equation and double-logarithmic constraints. This result thus furnishes an infinite number of experimental data for testing the veracity of the recently proposed spectral equations for planar AdS/CFT correspondence.
International Nuclear Information System (INIS)
Porter, L.E.; Bryan, S.R.
1980-01-01
Three independent sets of measurements of the stopping power of solid elemental targets for alpha particles were previously analyzed in terms of basic Bethe-Bloch theory with the low velocity projectile-z 3 correction term included. These data for Al, Si, Ni, Ge, Se, Y, Ag and Au have now been analyzed with the Bloch projectile-z 4 term and a revised projectile-z 3 term incorporated in the Bethe-Bloch formula, the projectile-z 3 revision having been effected by variation of the single free parameter of the projectile-z 3 effect formalism. The value of this parameter, fixed at 1.8 in previous studies, which counteracts inclusion of the projectile-z 4 term is 1.3 +- 0.1 for all target elements except Si. (orig.)
Planck constant as spectral parameter in integrable systems and KZB equations
Levin, A.; Olshanetsky, M.; Zotov, A.
2014-10-01
We construct special rational gl N Knizhnik-Zamolodchikov-Bernard (KZB) equations with Ñ punctures by deformation of the corresponding quantum gl N rational R-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is τ. At the level of classical mechanics the deformation parameter τ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Next, we notice that the identities underlying generic (elliptic) KZB equations follow from some additional relations for the properly normalized R-matrices. The relations are noncommutative analogues of identities for (scalar) elliptic functions. The simplest one is the unitarity condition. The quadratic (in R matrices) relations are generated by noncommutative Fay identities. In particular, one can derive the quantum Yang-Baxter equations from the Fay identities. The cubic relations provide identities for the KZB equations as well as quadratic relations for the classical r-matrices which can be treated as halves of the classical Yang-Baxter equation. At last we discuss the R-matrix valued linear problems which provide gl Ñ CM models and Painlevé equations via the above mentioned identities. The role of the spectral parameter plays the Planck constant of the quantum R-matrix. When the quantum gl N R-matrix is scalar ( N = 1) the linear problem reproduces the Krichever's ansatz for the Lax matrices with spectral parameter for the gl Ñ CM models. The linear problems for the quantum CM models generalize the KZ equations in the same way as the Lax pairs with spectral parameter generalize those without it.
Energy Technology Data Exchange (ETDEWEB)
Helal, M A [Mathematics Department, Faculty of Science, Cairo University (Egypt); Seadawy, A R [Mathematics Department, Faculty of Science, Beni-Suef University (Egypt)], E-mail: mahelal@yahoo.com, E-mail: aly742001@yahoo.com
2009-09-15
The derivative nonlinear Schroedinger equation (DNLSE) arises as a physical model for ultra-short pulse propagation. In this paper, the existence of a Lagrangian and the invariant variational principle (i.e. in the sense of the inverse problem of calculus of variations through deriving the functional integral corresponding to a given coupled nonlinear partial differential equations) for two-coupled equations describing the nonlinear evolution of the Alfven wave with magnetosonic waves at a much larger scale are given and the functional integral corresponding to those equations is derived. We found the solutions of DNLSE by choice of a trial function in a region of a rectangular box in two cases, and using this trial function, we find the functional integral and the Lagrangian of the system without loss. Solution of the general case for the two-box potential can be obtained on the basis of a different ansatz where we approximate the Jost function using polynomials of order n instead of the piecewise linear function. An example for the third order is given for illustrating the general case.
Self-dual form of Ruijsenaars–Schneider models and ILW equation with discrete Laplacian
Directory of Open Access Journals (Sweden)
A. Zabrodin
2018-02-01
Full Text Available We discuss a self-dual form or the Bäcklund transformations for the continuous (in time variable glN Ruijsenaars–Schneider model. It is based on the first order equations in N+M complex variables which include N positions of particles and M dual variables. The latter satisfy equations of motion of the glM Ruijsenaars–Schneider model. In the elliptic case it holds M=N while for the rational and trigonometric models M is not necessarily equal to N. Our consideration is similar to the previously obtained results for the Calogero–Moser models which are recovered in the non-relativistic limit. We also show that the self-dual description of the Ruijsenaars–Schneider models can be derived from complexified intermediate long wave equation with discrete Laplacian by means of the simple pole ansatz likewise the Calogero–Moser models arise from ordinary intermediate long wave and Benjamin–Ono equations.
International Nuclear Information System (INIS)
Zhalij, Alexander
2002-01-01
We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field
Functional equations with causal operators
Corduneanu, C
2003-01-01
Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.
Directory of Open Access Journals (Sweden)
Karim Fathi
2010-07-01
really integrated Peace and Conflict Researcher should be familiar with epistemological and heuristic contexts, but also metatheoretical and theoretical contexts as well. Abstract - Deutsch Angesichts immer komplexerer Konflikte in der Friedens- und Konfliktforschung (Friedens- und Konfliktforschung sind Metatheorien von Nöten, die diese unübersichtliche Vielfalt unterschiedlicher Methoden zu integrieren vermögen. Im Rahmen des vorliegenden Papers soll hierzu ein konzeptioneller Vorschlag skizziert werden, indem zwei holistische und bekannte Ansätze der mediativen Konfliktbearbeitung in einem integrativen Kontext diskutiert werden:- Der Konfliktmanagement-Ansatz nach Prof. Dr. Friedrich Glasl (2004.- Die Transcend-Methode nach Prof. Dr. Johan Galtung (2000. Den theoretischen Rahmen, auf den sich die Überlegungen dieser Arbeit stützen, liefert der Integrale Ansatz (IA von Ken Wilber (2001 – eine viel diskutierte philosophische „Theorie von Allem“, die im Rahmen der Friedens- und Konfliktforschung jedoch noch weitgehend unberücksichtigt geblieben ist. Daher ist es im Rahmen der Arbeit von weiterem Interesse den IA auf seinen Mehrwert für eine integrierte Friedens- und Konfliktforschung zu untersuchen.Die Untersuchung verlief wie folgt: 1. Vorstellung der in der Untersuchung berücksichtigten Ansätze: a. Der Konfliktmanagement-Ansatz von Glasl unterscheidet eine Vielzahl von Kategorien und Ansatzmomenten, die ein komplexes Interventionsspektrum ergeben. Sehr wichtig ist hierbei unter anderem die Berücksichtigung von Eskalationsstufen, die eine Unterscheidung zwischen perzeptions- (niedrige Eskalation, gefühls- (mittlere Eskalation und verhaltensorientierten (hohe Eskalation Maßnahmen ermöglichen. b. Die Konflikttransformation nach Galtung zeichnet sich unter anderem durch dreigeteilte Schematisierungen aus, die ein komplexes Verständnis von Gewalt (direkt, kulturell, strukturell, Konflikt (Verhalten, Annahmen, Widerspruch und Frieden (Gewaltlosigkeit
Partial differential equations
Evans, Lawrence C
2010-01-01
This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
Differential equations for dummies
Holzner, Steven
2008-01-01
The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
Directory of Open Access Journals (Sweden)
K. Banoo
1998-01-01
equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.
Solving Ordinary Differential Equations
Krogh, F. T.
1987-01-01
Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.
Reactimeter dispersion equation
A.G. Yuferov
2016-01-01
The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...
Differential equations I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.
International Nuclear Information System (INIS)
Laenen, E.
1995-01-01
We propose a new evolution equation for the gluon density relevant for the region of small x B . It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multigluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed α s . We find that the effects of multigluon correlations on the deep-inelastic structure function are small. (orig.)
Manca, V.; Salibra, A.; Scollo, Giuseppe
1990-01-01
Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either
Alternative equations of gravitation
International Nuclear Information System (INIS)
Pinto Neto, N.
1983-01-01
It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt
Energy Technology Data Exchange (ETDEWEB)
Yagi, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies
1993-11-01
A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite {beta} that we solve the perpendicular component of Ohm`s law to conserve the physical energy while ensuring the relation {del} {center_dot} j = 0.
International Nuclear Information System (INIS)
Yagi, M.; Horton, W.
1993-11-01
A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that we solve the perpendicular component of Ohm's law to conserve the physical energy while ensuring the relation ∇ · j = 0
International Nuclear Information System (INIS)
Yagi, M.; Horton, W.
1994-01-01
A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that the perpendicular component of Ohm's law be solved to ensure ∇·j=0 for energy conservation
African Journals Online (AJOL)
The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...
M. Hazewinkel (Michiel)
1995-01-01
textabstractDedication: I dedicate this paper to Prof. P.C. Baayen, at the occasion of his retirement on 20 December 1994. The beautiful equation which forms the subject matter of this paper was invented by Wouthuysen after he retired. The four complex variable Wouthuysen equation arises from an
The generalized Fermat equation
Beukers, F.
2006-01-01
This article will be devoted to generalisations of Fermat’s equation xn + yn = zn. Very soon after the Wiles and Taylor proof of Fermat’s Last Theorem, it was wondered what would happen if the exponents in the three term equation would be chosen differently. Or if coefficients other than 1 would
Applied partial differential equations
Logan, J David
2004-01-01
This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...
T-systems and Y-systems in integrable systems
International Nuclear Information System (INIS)
Kuniba, Atsuo; Nakanishi, Tomoki; Suzuki, Junji
2011-01-01
T- and Y-systems are ubiquitous structures in classical and quantum integrable systems. They are difference equations having a variety of aspects related to commuting transfer matrices in solvable lattice models, q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, cluster algebras with coefficients, periodicity conjectures of Zamolodchikov and others, dilogarithm identities in conformal field theory, difference analog of L-operators in KP hierarchy, Stokes phenomena in 1D Schroedinger problem, AdS/CFT correspondence, Toda field equations on discrete spacetime, Laplace sequence in discrete geometry, Fermionic character formulas and combinatorial completeness of Bethe ansatz, Q-system and ideal gas with exclusion statistics, analytic and thermodynamic Bethe ansaetze, quantum transfer matrix method and so forth. This review is a collection of short reviews on these topics which can be read more or less independently. (topical review)
T-systems and Y-systems in integrable systems
Energy Technology Data Exchange (ETDEWEB)
Kuniba, Atsuo [Institute of Physics, University of Tokyo, Komaba, Tokyo 153-8902 (Japan); Nakanishi, Tomoki [Graduate School of Mathematics, Nagoya University, Nagoya 464-8604 (Japan); Suzuki, Junji, E-mail: atsuo@gokutan.c.u-tokyo.ac.jp [Department of Physics, Faculty of Science, Shizuoka University, Ohya 836 (Japan)
2011-03-11
T- and Y-systems are ubiquitous structures in classical and quantum integrable systems. They are difference equations having a variety of aspects related to commuting transfer matrices in solvable lattice models, q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, cluster algebras with coefficients, periodicity conjectures of Zamolodchikov and others, dilogarithm identities in conformal field theory, difference analog of L-operators in KP hierarchy, Stokes phenomena in 1D Schroedinger problem, AdS/CFT correspondence, Toda field equations on discrete spacetime, Laplace sequence in discrete geometry, Fermionic character formulas and combinatorial completeness of Bethe ansatz, Q-system and ideal gas with exclusion statistics, analytic and thermodynamic Bethe ansaetze, quantum transfer matrix method and so forth. This review is a collection of short reviews on these topics which can be read more or less independently. (topical review)
Oscillator construction of su(n|m) Q-operators
Energy Technology Data Exchange (ETDEWEB)
Frassek, Rouven, E-mail: rfrassek@physik.hu-berlin.de [Institut fuer Mathematik und Institut fuer Physik, Humboldt-Universitaet zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489 Berlin (Germany); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany); Lukowski, Tomasz, E-mail: lukowski@mathematik.hu-berlin.de [Institut fuer Mathematik und Institut fuer Physik, Humboldt-Universitaet zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489 Berlin (Germany); Meneghelli, Carlo, E-mail: carlo@aei.mpg.de [Institut fuer Mathematik und Institut fuer Physik, Humboldt-Universitaet zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489 Berlin (Germany); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany); Staudacher, Matthias, E-mail: matthias@aei.mpg.de [Institut fuer Mathematik und Institut fuer Physik, Humboldt-Universitaet zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489 Berlin (Germany); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)
2011-09-01
We generalize our recent explicit construction of the full hierarchy of Baxter Q-operators of compact spin chains with su(n) symmetry to the supersymmetric case su(n|m). The method is based on novel degenerate solutions of the graded Yang-Baxter equation, leading to an amalgam of bosonic and fermionic oscillator algebras. Our approach is fully algebraic, and leads to the exact solution of the associated compact spin chains while avoiding Bethe ansatz techniques. It furthermore elucidates the algebraic and combinatorial structures underlying the system of nested Bethe equations. Finally, our construction naturally reproduces the representation, due to Z. Tsuboi, of the hierarchy of Baxter Q-operators in terms of hypercubic Hasse diagrams.
Geon-type solutions of the non-linear Heisenberg-Klein-Gordon equation
International Nuclear Information System (INIS)
Mielke, E.W.; Scherzer, R.
1980-10-01
As a model for a ''unitary'' field theory of extended particles we consider the non-linear Klein-Gordon equation - associated with a ''squared'' Heisenberg-Pauli-Weyl non-linear spinor equation - coupled to strong gravity. Using a stationary spherical ansatz for the complex scalar field as well as for the background metric generated via Einstein's field equation, we are able to study the effects of the scalar self-interaction as well as of the classical tensor forces. By numerical integration we obtain a continuous spectrum of localized, gravitational solitons resembling the geons previously constructed for the Einstein-Maxwell system by Wheeler. A self-generated curvature potential originating from the curved background partially confines the Schroedinger type wave functions within the ''scalar geon''. For zero angular momentum states and normalized scalar charge the spectrum for the total gravitational energy of these solitons exhibits a branching with respect to the number of nodes appearing in the radial part of the scalar field. Preliminary studies for higher values of the corresponding ''principal quantum number'' reveal that a kind of fine splitting of the energy levels occurs, which may indicate a rich, particle-like structure of these ''quantized geons''. (author)
Hyperbolic partial differential equations
Witten, Matthew
1986-01-01
Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M
Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning
2001-01-01
Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which
Differential equations problem solver
Arterburn, David R
2012-01-01
REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and
Local instant conservation equations
International Nuclear Information System (INIS)
Delaje, Dzh.
1984-01-01
Local instant conservation equations for two-phase flow are derived. Derivation of the equation starts from the recording of integral laws of conservation for a fixed reference volume, containing both phases. Transformation of the laws, using the Leibniz rule and Gauss theory permits to obtain the sum of two integrals as to the volume and integral as to the surface. Integrals as to the volume result in local instant differential equations, in particular derivatives for each phase, and integrals as to the surface reflect local instant conditions of a jump on interface surface
Beginning partial differential equations
O'Neil, Peter V
2011-01-01
A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres
Ordinary differential equations
Miller, Richard K
1982-01-01
Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,
Uncertain differential equations
Yao, Kai
2016-01-01
This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.
Classical and Quantum Nonlinear Integrable Systems: Theory and Application
International Nuclear Information System (INIS)
Brzezinski, Tomasz
2003-01-01
This is a very interesting collection of introductory and review articles on the theory and applications of classical and quantum integrable systems. The book reviews several integrable systems such as the KdV equation, vertex models, RSOS and IRF models, spin chains, integrable differential equations, discrete systems, Ising, Potts and other lattice models and reaction--diffusion processes, as well as outlining major methods of solving integrable systems. These include Lax pairs, Baecklund and Miura transformations, the inverse scattering method, various types of the Bethe Ansatz, Painleve methods, the dbar method and fusion methods to mention just a few. The book is divided into two parts, each containing five chapters. The first part is devoted to classical integrable systems and introduces the subject through the KdV equation, and then proceeds through Painleve analysis, discrete systems and two-dimensional integrable partial differential equations, to culminate in the review of solvable lattice models in statistical physics, solved through the coordinate and algebraic Bethe Ansatz methods. The second part deals with quantum integrable systems, and begins with an outline of unifying approaches to quantum, statistical, ultralocal and non-ultralocal systems. The theory and methods of solving quantum integrable spin chains are then described. Recent developments in applying Bethe Ansatz methods in condensed matter physics, including superconductivity and nanoscale physics, are reviewed. The book concludes with an introduction to diffusion-reaction processes. Every chapter is devoted to a different subject and is self-contained, and thus can be read separately. A reader interesting in classical methods of solitons, such as the methods of solving the KdV equation, can start from Chapter 1, while a reader interested in the Bethe Ansatz method can immediately proceed to Chapter 5, and so on. Thus the book should appeal and be useful to a wide range of theoretical
Ye, LvZhou; Zhang, Hou-Dao; Wang, Yao; Zheng, Xiao; Yan, YiJing
2017-08-21
An efficient low-frequency logarithmic discretization (LFLD) scheme for the decomposition of fermionic reservoir spectrum is proposed for the investigation of quantum impurity systems. The scheme combines the Padé spectrum decomposition (PSD) and a logarithmic discretization of the residual part in which the parameters are determined based on an extension of the recently developed minimum-dissipaton ansatz [J. J. Ding et al., J. Chem. Phys. 145, 204110 (2016)]. A hierarchical equations of motion (HEOM) approach is then employed to validate the proposed scheme by examining the static and dynamic system properties in both the Kondo and noninteracting regimes. The LFLD scheme requires a much smaller number of exponential functions than the conventional PSD scheme to reproduce the reservoir correlation function and thus facilitates the efficient implementation of the HEOM approach in extremely low temperature regimes.
International Nuclear Information System (INIS)
Hou, Dong; Xu, RuiXue; Zheng, Xiao; Wang, Shikuan; Wang, Rulin; Ye, LvZhou; Yan, YiJing
2015-01-01
Several recent advancements for the hierarchical equations of motion (HEOM) approach are reported. First, we propose an a priori estimate for the optimal number of basis functions for the reservoir memory decomposition. Second, we make use of the sparsity of auxiliary density operators (ADOs) and propose two ansatzs to screen out all the intrinsic zero ADO elements. Third, we propose a new truncation scheme by utilizing the time derivatives of higher-tier ADOs. These novel techniques greatly reduce the memory cost of the HEOM approach, and thus enhance its efficiency and applicability. The improved HEOM approach is applied to simulate the coherent dynamics of Aharonov–Bohm double quantum dot interferometers. Quantitatively accurate dynamics is obtained for both noninteracting and interacting quantum dots. The crucial role of the quantum phase for the magnitude of quantum coherence and quantum entanglement is revealed
Applied partial differential equations
Logan, J David
2015-01-01
This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...
Nonlinear differential equations
Energy Technology Data Exchange (ETDEWEB)
Dresner, L.
1988-01-01
This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.
Tsintsadze, Nodar L.; Tsintsadze, Levan N.
2008-01-01
A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.
Equations For Rotary Transformers
Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.
1988-01-01
Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.
Problems in differential equations
Brenner, J L
2013-01-01
More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.
Applied partial differential equations
DuChateau, Paul
2012-01-01
Book focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included.
Nonlinear differential equations
International Nuclear Information System (INIS)
Dresner, L.
1988-01-01
This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics
Saaty, Thomas L
1981-01-01
Covers major types of classical equations: operator, functional, difference, integro-differential, and more. Suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." - Math Reviews. 1964 edition.
SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER
Collier, D.M.; Meeks, L.A.; Palmer, J.P.
1960-05-10
A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.
Structural Equations and Causation
Hall, Ned
2007-01-01
Structural equations have become increasingly popular in recent years as tools for understanding causation. But standard structural equations approaches to causation face deep problems. The most philosophically interesting of these consists in their failure to incorporate a distinction between default states of an object or system, and deviations therefrom. Exploring this problem, and how to fix it, helps to illuminate the central role this distinction plays in our causal thinking.
Thermodynamics of Inozemtsev's elliptic spin chain
Energy Technology Data Exchange (ETDEWEB)
Klabbers, Rob, E-mail: rob.klabbers@desy.de
2016-06-15
We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.
Thermodynamics of Inozemtsev's elliptic spin chain
International Nuclear Information System (INIS)
Klabbers, Rob
2016-01-01
We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.
Equations of radiation hydrodynamics
International Nuclear Information System (INIS)
Mihalas, D.
1982-01-01
The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is esential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations; and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved will be presented
Quantum linear Boltzmann equation
International Nuclear Information System (INIS)
Vacchini, Bassano; Hornberger, Klaus
2009-01-01
We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.
Covariant field equations in supergravity
Energy Technology Data Exchange (ETDEWEB)
Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)
2017-12-15
Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Covariant field equations in supergravity
International Nuclear Information System (INIS)
Vanhecke, Bram; Proeyen, Antoine van
2017-01-01
Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Differential Equation over Banach Algebra
Kleyn, Aleks
2018-01-01
In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.
A novel long range spin chain and planar N=4 super Yang-Mills
International Nuclear Information System (INIS)
Beisert, N.; Dippel, V.; Staudacher, M.
2004-01-01
We probe the long-range spin chain approach to planar N=4 gauge theory at high loop order. A recently employed hyperbolic spin chain invented by Inozemtsev is suitable for the SU(2) subsector of the state space up to three loops, but ceases to exhibit the conjectured thermodynamic scaling properties at higher orders. We indicate how this may be bypassed while nevertheless preserving integrability, and suggest the corresponding all-loop asymptotic Bethe ansatz. We also propose the local part of the all-loop gauge transfer matrix, leading to conjectures for the asymptotically exact formulae for all local commuting charges. The ansatz is finally shown to be related to a standard inhomogeneous spin chain. A comparison of our ansatz to semi-classical string theory uncovers a detailed, non-perturbative agreement between the corresponding expressions for the infinite tower of local charge densities. However, the respective Bethe equations differ slightly, and we end by refining and elaborating a previously proposed possible explanation for this disagreement. (author)
Statistical mechanics for a class of quantum statistics
International Nuclear Information System (INIS)
Isakov, S.B.
1994-01-01
Generalized statistical distributions for identical particles are introduced for the case where filling a single-particle quantum state by particles depends on filling states of different momenta. The system of one-dimensional bosons with a two-body potential that can be solved by means of the thermodynamic Bethe ansatz is shown to be equivalent thermodynamically to a system of free particles obeying statistical distributions of the above class. The quantum statistics arising in this way are completely determined by the two-particle scattering phases of the corresponding interacting systems. An equation determining the statistical distributions for these statistics is derived
Solving the open XXZ spin chain with nondiagonal boundary terms at roots of unity
International Nuclear Information System (INIS)
Nepomechie, Rafael I.
2002-01-01
We consider the open XXZ quantum spin chain with nondiagonal boundary terms. For bulk anisotropy value η=((iπ)/(p+1)), p=1,2,..., we propose an exact (p+1)-order functional relation for the transfer matrix, which implies Bethe-ansatz-like equations for the corresponding eigenvalues. The key observation is that the fused spin-((p+1)/(2)) transfer matrix can be expressed in terms of a lower-spin transfer matrix, resulting in the truncation of the fusion hierarchy
About the differential calculus on the quantum groups
International Nuclear Information System (INIS)
Bernard, D.
1992-01-01
Given a solution R of the Yang-Baxter equation admitting a quasi-triangular decomposition we define a quasi-triangular quantum Lie algebra. We describe how to any quasi-triangular quantum Lie algebra U(G R ) is associated a Hopf algebra F(G R ) with a differential calculus on it such that the algebra of the quantum Lie derivatives is the algebra U(G R ). This allows us to make the connection between the differential calculus on quantum groups and the exchange algebras of the algebraic Bethe ansatz. (orig.)
The thermodynamic limit and the finite-size behaviour of the fundamental Sp(2N) spin chain
International Nuclear Information System (INIS)
Martins, M.J.
2002-01-01
This paper is concerned with the study of the fundamental integrable Sp(2N) spin chain. The Bethe ansatz equations are solved by special string structure which allows us to determine the bulk limit properties. We present evidences that the critical properties of the system are governed by the product of N c=1 conformal field theories and therefore different from that of the Sp(2N) Wess-Zumino-Witten theory. We argue that many of our findings can be generalized to include anisotropic symplectic spin chains. The possible relevance of our results to the physics of the spin-orbital spin chains are also discussed
Quasi-exact solvability of the one-dimensional Holstein model
International Nuclear Information System (INIS)
Pan Feng; Dai Lianrong; Draayer, J P
2006-01-01
The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is solved by using a Bethe ansatz in analogue to that for the one-dimensional spinless Fermi-Hubbard model. Excitation energies and the corresponding wavefunctions of the model are determined by a set of partial differential equations. It is shown that the model is, at least, quasi-exactly solvable for the two-site case, when the phonon frequency, the electron-phonon coupling strength and the hopping integral satisfy certain relations. As examples, some quasi-exact solutions of the model for the two-site case are derived. (letter to the editor)
Three-body unitarity with isobars revisited
Energy Technology Data Exchange (ETDEWEB)
Mai, M.; Hu, B. [The George Washington University, Washington, DC (United States); Doering, M. [The George Washington University, Washington, DC (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Pilloni, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Szczepaniak, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Indiana University, Center for Exploration of Energy and Matter, Bloomington, IN (United States); Indiana University, Physics Department, Bloomington, IN (United States)
2017-09-15
The particle exchange model of hadron interactions can be used to describe three-body scattering under the isobar assumption. In this study we start from the 3 → 3 scattering amplitude for spinless particles, which contains an isobar-spectator scattering amplitude. Using a Bethe-Salpeter Ansatz for the latter, we derive a relativistic three-dimensional scattering equation that manifestly fulfills three-body unitarity and two-body unitarity for the sub-amplitudes. This property holds for energies above breakup and also in the presence of resonances in the sub-amplitudes. (orig.)
Integrability for the full spectrum of planar AdS/CFT
International Nuclear Information System (INIS)
Gromov, Nikolay; Kazakov, Vladimir; Vieira, Pedro; Porto Univ.
2009-03-01
We present a set of functional equations defining the anomalous dimensions of arbitrary local single trace operators in planar N=4 SYM theory. It takes the form of a Y-system based on the integrability of the dual superstring σ-model on the AdS 5 x S 5 background. This Y-system passes some very important tests: it incorporates the full asymptotic Bethe ansatz at large length of operator L, including the dressing factor, and it confirms all recently found wrapping corrections. The recently proposed AdS 4 /CFT 3 duality is also treated in a similar fashion. (orig.)
Transport equation solving methods
International Nuclear Information System (INIS)
Granjean, P.M.
1984-06-01
This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr
Introduction to partial differential equations
Greenspan, Donald
2000-01-01
Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.
Energy Technology Data Exchange (ETDEWEB)
Stiehler, Johannes
1995-12-15
The dissertation uses the Multiconfiguration Self-Consistent Field Approach to specify the electronic wave function of N electron atoms in a static electrical field. It presents numerical approaches to describe the wave functions and introduces new methods to compute the numerical Fock equations. Based on results computed with an implemented computer program the universal application, flexibility and high numerical precision of the presented approach is shown. RHF results and for the first time MCSCF results for polarizabilities and hyperpolarizabilities of various states of the atoms He to Kr are discussed. In addition, an application to interpret a plasma spectrum of gallium is presented. (orig.)
Quadratic Diophantine equations
Andreescu, Titu
2015-01-01
This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.
Stochastic porous media equations
Barbu, Viorel; Röckner, Michael
2016-01-01
Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.
Boussinesq evolution equations
DEFF Research Database (Denmark)
Bredmose, Henrik; Schaffer, H.; Madsen, Per A.
2004-01-01
This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic...... Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over...... a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave...
Equations of mathematical physics
Tikhonov, A N
2011-01-01
Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri
Iteration of adjoint equations
International Nuclear Information System (INIS)
Lewins, J.D.
1994-01-01
Adjoint functions are the basis of variational methods and now widely used for perturbation theory and its extension to higher order theory as used, for example, in modelling fuel burnup and optimization. In such models, the adjoint equation is to be solved in a critical system with an adjoint source distribution that is not zero but has special properties related to ratios of interest in critical systems. Consequently the methods of solving equations by iteration and accumulation are reviewed to show how conventional methods may be utilized in these circumstances with adequate accuracy. (author). 3 refs., 6 figs., 3 tabs
Systematic Equation Formulation
DEFF Research Database (Denmark)
Lindberg, Erik
2007-01-01
A tutorial giving a very simple introduction to the set-up of the equations used as a model for an electrical/electronic circuit. The aim is to find a method which is as simple and general as possible with respect to implementation in a computer program. The “Modified Nodal Approach”, MNA, and th......, and the “Controlled Source Approach”, CSA, for systematic equation formulation are investigated. It is suggested that the kernel of the P Spice program based on MNA is reprogrammed....
Partial differential equations
Agranovich, M S
2002-01-01
Mark Vishik's Partial Differential Equations seminar held at Moscow State University was one of the world's leading seminars in PDEs for over 40 years. This book celebrates Vishik's eightieth birthday. It comprises new results and survey papers written by many renowned specialists who actively participated over the years in Vishik's seminars. Contributions include original developments and methods in PDEs and related fields, such as mathematical physics, tomography, and symplectic geometry. Papers discuss linear and nonlinear equations, particularly linear elliptic problems in angles and gener
Generalized estimating equations
Hardin, James W
2002-01-01
Although powerful and flexible, the method of generalized linear models (GLM) is limited in its ability to accurately deal with longitudinal and clustered data. Developed specifically to accommodate these data types, the method of Generalized Estimating Equations (GEE) extends the GLM algorithm to accommodate the correlated data encountered in health research, social science, biology, and other related fields.Generalized Estimating Equations provides the first complete treatment of GEE methodology in all of its variations. After introducing the subject and reviewing GLM, the authors examine th
Li, Tatsien
2017-01-01
This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.
Analysis of wave equation in electromagnetic field by Proca equation
International Nuclear Information System (INIS)
Pamungkas, Oky Rio; Soeparmi; Cari
2017-01-01
This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)
Comparison of Kernel Equating and Item Response Theory Equating Methods
Meng, Yu
2012-01-01
The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…
Test equating methods and practices
Kolen, Michael J
1995-01-01
In recent years, many researchers in the psychology and statistical communities have paid increasing attention to test equating as issues of using multiple test forms have arisen and in response to criticisms of traditional testing techniques This book provides a practically oriented introduction to test equating which both discusses the most frequently used equating methodologies and covers many of the practical issues involved The main themes are - the purpose of equating - distinguishing between equating and related methodologies - the importance of test equating to test development and quality control - the differences between equating properties, equating designs, and equating methods - equating error, and the underlying statistical assumptions for equating The authors are acknowledged experts in the field, and the book is based on numerous courses and seminars they have presented As a result, educators, psychometricians, professionals in measurement, statisticians, and students coming to the subject for...
Indian Academy of Sciences (India)
The Raychaudhuri equation is central to the understanding of gravitational attraction in ... of K Gödel on the ideas of shear and vorticity in cosmology (he defines the shear. (eq. (8) in [1]) .... which follows from the definition of the scale factor l.
Generalized reduced magnetohydrodynamic equations
International Nuclear Information System (INIS)
Kruger, S.E.
1999-01-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics
Calculus & ordinary differential equations
Pearson, David
1995-01-01
Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.
Indian Academy of Sciences (India)
research, teaching and practice related to the analysis and design ... its variants, are present in a large number of ma- chines used in daily ... with advanced electronics, sensors, control systems and computing ... ted perfectly well with the rapidly developing comput- .... velopment of the Freudenstein equation using Figure 3.
Differential Equation of Equilibrium
African Journals Online (AJOL)
user
ABSTRACT. Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak. Laplace transformation was used to solve the governing ...
Equational binary decision diagrams
J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)
2000-01-01
textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and
Directory of Open Access Journals (Sweden)
Hatem Mejjaoli
2008-12-01
Full Text Available We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.
Structural Equation Model Trees
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2013-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
ANTHROPOMETRIC PREDICTIVE EQUATIONS FOR ...
African Journals Online (AJOL)
Keywords: Anthropometry, Predictive Equations, Percentage Body Fat, Nigerian Women, Bioelectric Impedance ... such as Asians and Indians (Pranav et al., 2009), ... size (n) of at least 3o is adjudged as sufficient for the ..... of people, gender and age (Vogel eta/., 1984). .... Fish Sold at Ile-Ife Main Market, South West Nigeria.
Indian Academy of Sciences (India)
However, one can associate the term with any solution of nonlinear partial differential equations (PDEs) which (i) represents a wave of permanent form, (ii) is localized ... In the past several decades, many methods have been proposed for solving nonlinear PDEs, such as ... space–time fractional derivative form of eq. (1) and ...
Fay, Temple H.
2010-01-01
Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…
Guiding center drift equations
International Nuclear Information System (INIS)
Boozer, A.H.
1979-03-01
The quations for particle guiding center drift orbits are given in a new magnetic coordinate system. This form of the equations not only separates the fast motion along the lines from the slow motion across, but also requires less information about the magnetic field than many other formulations of the problem
dimensional nonlinear evolution equations
Indian Academy of Sciences (India)
in real-life situations, it is important to find their exact solutions. Further, in ... But only little work is done on the high-dimensional equations. .... Similarly, to determine the values of d and q, we balance the linear term of the lowest order in eq.
Stochastic nonlinear beam equations
Czech Academy of Sciences Publication Activity Database
Brzezniak, Z.; Maslowski, Bohdan; Seidler, Jan
2005-01-01
Roč. 132, č. 1 (2005), s. 119-149 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA201/01/1197 Institutional research plan: CEZ:AV0Z10190503 Keywords : stochastic beam equation * stability Subject RIV: BA - General Mathematics Impact factor: 0.896, year: 2005
Savoy, L. G.
1988-01-01
Describes a study of students' ability to balance equations. Answers to a test on this topic were analyzed to determine the level of understanding and processes used by the students. Presented is a method to teach this skill to high school chemistry students. (CW)
Lectures on partial differential equations
Petrovsky, I G
1992-01-01
Graduate-level exposition by noted Russian mathematician offers rigorous, transparent, highly readable coverage of classification of equations, hyperbolic equations, elliptic equations and parabolic equations. Wealth of commentary and insight invaluable for deepening understanding of problems considered in text. Translated from the Russian by A. Shenitzer.
Quantum equations from Brownian motions
International Nuclear Information System (INIS)
Rajput, B.S.
2011-01-01
Classical Schrodinger and Dirac equations have been derived from Brownian motions of a particle, it has been shown that the classical Schrodinger equation can be transformed to usual Schrodinger Quantum equation on applying Heisenberg uncertainty principle between position and momentum while Dirac Quantum equation follows it's classical counter part on applying Heisenberg uncertainly principle between energy and time without applying any analytical continuation. (author)
Directory of Open Access Journals (Sweden)
Frank W Stahnisch
2016-02-01
Full Text Available Until the beginning 1930s the traditional dogma that the human central nervous system did not possess any abilities to adapt functionally to degenerative processes and external injuries loomed large in the field of the brain sciences (Hirnforschung. Cutting-edge neuroanatomists, such as the luminary Wilhelm Waldeyer (1836–1921 in Germany or the Nobel Prize laureate Santiago Ramón y Cajal (1852–1934 in Spain, debated any regenerative and thus plastic properties in the human brain. A renewed interest arose in the scientific community to investigate the pathologies and the healing processes in the human central nervous system after the return of the high number of brain injured war veterans from the fronts during and after the First World War (1914–1918. A leading research center in this area was the Institute for the Scientific Study of the Effects of Brain Injuries, which the neurologist Ludwig Edinger (1855–1918 had founded shortly before the war. This article specifically deals with the physiological research on nerve fiber plasticity by Albrecht Bethe (1872–1954 at the respective institute of the University of Frankfurt am Main. Bethe conducted here his paradigmatic experimental studies on the pathophysiological and clinical phenomena of peripheral and central nervous system regeneration.
Elements of partial differential equations
Sneddon, Ian Naismith
1957-01-01
Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory.Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent st
On generalized fractional vibration equation
International Nuclear Information System (INIS)
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-01-01
Highlights: • The paper presents a generalized fractional vibration equation for arbitrary viscoelastically damped system. • Some classical vibration equations can be derived from the developed equation. • The analytic solution of developed equation is derived under some special cases. • The generalized equation is particularly useful for developing new fractional equivalent linearization method. - Abstract: In this paper, a generalized fractional vibration equation with multi-terms of fractional dissipation is developed to describe the dynamical response of an arbitrary viscoelastically damped system. It is shown that many classical equations of motion, e.g., the Bagley–Torvik equation, can be derived from the developed equation. The Laplace transform is utilized to solve the generalized equation and the analytic solution under some special cases is derived. Example demonstrates the generalized transfer function of an arbitrary viscoelastic system.
Methods for Equating Mental Tests.
1984-11-01
1983) compared conventional and IRT methods for equating the Test of English as a Foreign Language ( TOEFL ) after chaining. Three conventional and...three IRT equating methods were examined in this study; two sections of TOEFL were each (separately) equated. The IRT methods included the following: (a...group. A separate base form was established for each of the six equating methods. Instead of equating the base-form TOEFL to itself, the last (eighth
equateIRT: An R Package for IRT Test Equating
Directory of Open Access Journals (Sweden)
Michela Battauz
2015-12-01
Full Text Available The R package equateIRT implements item response theory (IRT methods for equating different forms composed of dichotomous items. In particular, the IRT models included are the three-parameter logistic model, the two-parameter logistic model, the one-parameter logistic model and the Rasch model. Forms can be equated when they present common items (direct equating or when they can be linked through a chain of forms that present common items in pairs (indirect or chain equating. When two forms can be equated through different paths, a single conversion can be obtained by averaging the equating coefficients. The package calculates direct and chain equating coefficients. The averaging of direct and chain coefficients that link the same two forms is performed through the bisector method. Furthermore, the package provides analytic standard errors of direct, chain and average equating coefficients.
Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.
2018-01-01
We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.
DEFF Research Database (Denmark)
Dyre, Jeppe
1995-01-01
energies chosen randomly according to a Gaussian. The random-walk model is here derived from Newton's laws by making a number of simplifying assumptions. In the second part of the paper an approximate low-temperature description of energy fluctuations in the random-walk modelthe energy master equation...... (EME)is arrived at. The EME is one dimensional and involves only energy; it is derived by arguing that percolation dominates the relaxational properties of the random-walk model at low temperatures. The approximate EME description of the random-walk model is expected to be valid at low temperatures...... of the random-walk model. The EME allows a calculation of the energy probability distribution at realistic laboratory time scales for an arbitrarily varying temperature as function of time. The EME is probably the only realistic equation available today with this property that is also explicitly consistent...
Classical Diophantine equations
1993-01-01
The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...
Flavored quantum Boltzmann equations
International Nuclear Information System (INIS)
Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean
2010-01-01
We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.
Causal electromagnetic interaction equations
International Nuclear Information System (INIS)
Zinoviev, Yury M.
2011-01-01
For the electromagnetic interaction of two particles the relativistic causal quantum mechanics equations are proposed. These equations are solved for the case when the second particle moves freely. The initial wave functions are supposed to be smooth and rapidly decreasing at the infinity. This condition is important for the convergence of the integrals similar to the integrals of quantum electrodynamics. We also consider the singular initial wave functions in the particular case when the second particle mass is equal to zero. The discrete energy spectrum of the first particle wave function is defined by the initial wave function of the free-moving second particle. Choosing the initial wave functions of the free-moving second particle it is possible to obtain a practically arbitrary discrete energy spectrum.
Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation
Directory of Open Access Journals (Sweden)
Hamidreza Rezazadeh
2014-05-01
Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.
Equations of multiparticle dynamics
International Nuclear Information System (INIS)
Chao, A.W.
1987-01-01
The description of the motion of charged-particle beams in an accelerator proceeds in steps of increasing complexity. The first step is to consider a single-particle picture in which the beam is represented as a collection on non-interacting test particles moving in a prescribed external electromagnetic field. Knowing the external field, it is then possible to calculate the beam motion to a high accuracy. The real beam consists of a large number of particles, typically 10 11 per beam bunch. It is sometimes inconvenient, or even impossible, to treat the real beam behavior using the single particle approach. One way to approach this problem is to supplement the single particle by another qualitatively different picture. The commonly used tools in accelerator physics for this purpose are the Vlasov and the Fokker-Planck equations. These equations assume smooth beam distributions and are therefore strictly valid in the limit of infinite number of micro-particles, each carrying an infinitesimal charge. The hope is that by studying the two extremes -- the single particle picture and the picture of smooth beam distributions -- we will be able to describe the behavior of our 10 11 -particle system. As mentioned, the most notable use of the smooth distribution picture is the study of collective beam instabilities. However, the purpose of this lecture is not to address this more advanced subject. Rather, it has the limited goal to familiarize the reader with the analytical tools, namely the Vlasov and the Fokker-Planck equations, as a preparation for dealing with the more advanced problems at later times. We will first derive these equations and then illustrate their applications by several examples which allow exact solutions
Electroweak evolution equations
International Nuclear Information System (INIS)
Ciafaloni, Paolo; Comelli, Denis
2005-01-01
Enlarging a previous analysis, where only fermions and transverse gauge bosons were taken into account, we write down infrared-collinear evolution equations for the Standard Model of electroweak interactions computing the full set of splitting functions. Due to the presence of double logs which are characteristic of electroweak interactions (Bloch-Nordsieck violation), new infrared singular splitting functions have to be introduced. We also include corrections related to the third generation Yukawa couplings
Differential equations with Mathematica
Abell, Martha L
2004-01-01
The Third Edition of the Differential Equations with Mathematica integrates new applications from a variety of fields,especially biology, physics, and engineering. The new handbook is also completely compatible with recent versions of Mathematica and is a perfect introduction for Mathematica beginners.* Focuses on the most often used features of Mathematica for the beginning Mathematica user* New applications from a variety of fields, including engineering, biology, and physics* All applications were completed using recent versions of Mathematica