WorldWideScience

Sample records for betatrons

  1. Transverse betatron tune measurements

    International Nuclear Information System (INIS)

    Serio, M.

    1989-01-01

    In this paper the concept of the betatron tune and the techniques to measure it are discussed. The smooth approximation is introduced along with the terminology of betatron oscillations, phase advance and tune. Single particle and beam spectra in the presence of synchro-betatron oscillations are treated with emphasis on the consequences of sampling the beam position. After a general presentation of various kinds of beam position monitors and transverse kickers, the time domain and frequency domain analysis of the beam response to a transverse excitation are discussed and several methods and applications of the tune measurements are listed

  2. The tandem betatron accelerator

    International Nuclear Information System (INIS)

    Keinigs, R.

    1991-01-01

    This paper reports that the tandem betatron is a compact, high-current induction accelerator that has the capability to accelerate electrons to an energy of order one gigavolt. Based upon the operating principle of a conventional betatron, the tandem betatron employs two synchronized induction cores operating 180 degrees out of phase. Embedded within the cores are the vacuum chambers, and these are connected by linear transport sections to allow for moving the beam back and forth between the two betatrons. The 180 degree phase shift between the core fluxes permits the circumvention of the flux swing constraint that limits the maximum energy gain of a conventional betatron. By transporting the beam between the synchronized cores, an electron can access more than one acceleration cycle, and thereby continue to gain energy. This added degree of freedom also permits a significant decrease in the size of the magnet system. Biasing coils provide independent control of the confining magnetic field. Provided that efficient beam switching can be performed, it appears feasible that a one gigavolt electron beam can be generated and confined. At this energy, a high current electron beam circulating in a one meter radius orbit could provide a very intense source of short wavelength (λ < 10 nm) synchrotron radiation. This has direct application to the emerging field of x-ray lithography. At more modest energies (10 MeV-30 MEV) a compact tandem betatron could be employed in the fields of medical radiation therapy, industrial radiography, and materials processing

  3. Betatron tune measurement

    International Nuclear Information System (INIS)

    Dinev, D.

    2001-01-01

    On the basis of the comparative review of the methods for the betatron tune measurement in cyclic accelerators of synchrotrons type, the research of these methods is carried out from the point of view of their applicability to Nuclotron. Both methods using measurement of the statistical fluctuations of the beam current (Schottky noise) and methods using coherent beam excitation have been discussed. The emphasis is on the final results of importance for the tune measurement practice. Signal processing is briefly discussed too

  4. Betatrons with kiloampere beams

    International Nuclear Information System (INIS)

    Peterson, J.M.

    1982-11-01

    Although the magnetic-induction method of acceleration used in the betatron is inherently capable of accelerating intense particle beams to high energy, many beam-instability questions arise when beams in the kilo-ampere range are considered. The intense electromagnetic fields produced by the beam, and by the image currents and charges induced in the surrounding walls, can produce very disruptive effects. Several unstable modes of collective oscillation are possible; the suppression of any one of them usually involves energy spread for Landau damping and careful design of the electrical character of the vacuum chamber. The various design criteria are often mutually incompatible. Space-charge detuning can be severe unless large beam apertures and high-energy injection are used. In order to have an acceptably low degree of space-charge detuning in the acceleration of a 10-kilo-ampere electron beam, for example, an injection energy on the order of 50 MeV seems necessary, in which case the forces due to nearby wall images can have a larger effect than the internal forces of the beam. A method of image compensation was invented for reducing the net image forces; it serves also to decrease the longitudinal beam impedance and thus helps alleviate the longitudinal instability as well. In order to avoid the ion-electron collective instability a vacuum in the range of 10 - 8 torr is required for an acceleration time of 1 millisecond. A multi-ring betatron system using the 50-MeV Advanced Test Accelerator at LLNL as an injector was conceptually designed

  5. Energy measurements from betatron oscillations

    International Nuclear Information System (INIS)

    Himel, T.; Thompson, K.

    1989-03-01

    In the Stanford Linear Collider the electron beam is accelerated from 1--50 GeV in a distance of 3 km. The energy is measured and corrected at the end with an energy feedback loop. There are no bends within the linear accelerator itself, so no intermediate energy measurements are made. Errors in the energy profile due to mis-phasing of the rf, or due to calibration errors in the klystrons' rf outputs are difficult to detect. As the total betatron phase advance down the accelerator is about 30 /times/ 2π, an energy error of a few percent can cause a large error in the total phase advance. This in turn degrades the performance of auto-steering programs. We have developed a diagnostic program which generates and measures several betatron oscillations in the accelerator. It then analyzes this oscillation, looking for frequency changes which indicate energy errors. One can then compensate for or correct these energy errors. 6 refs., 1 fig

  6. Experimental results of the betatron sum resonance

    International Nuclear Information System (INIS)

    Wang, Y.; Ball, M.; Brabson, B.

    1993-06-01

    The experimental observations of motion near the betatron sum resonance, ν x + 2ν z = 13, are presented. A fast quadrupole (Panofsky-style ferrite picture-frame magnet with a pulsed power supplier) producing a betatron tune shift of the order of 0.03 at rise time of 1 μs was used. This quadrupole was used to produce betatron tunes which jumped past and then crossed back through a betatron sum resonance line. The beam response as function of initial betatron amplitudes were recorded turn by turn. The correlated growth of the action variables, J x and J z , was observed. The phase space plots in the resonance frame reveal the features of particle motion near the nonlinear sum resonance region

  7. Betatron phase advance measurement at SPEAR

    International Nuclear Information System (INIS)

    Morton, P.L.; Pellegrin, J.L.; Raubenheimer, T.; Ross, M.

    1987-02-01

    There are many reasons to determine the betatron phase advance between two azimuthal positions in a circular accelerator or storage ring. We have measured the betatron phase advance between various pairs of azimuthal points in the SPEAR Storage Ring by two different methods. The first method is to excite a steady state coherent betatron oscillation with a network analyzer. The second method is to excite a free coherent betatron oscillation with an impulse kick, and to digitally sample the transverse position of the beam at the pickup stations. The results of these digital samples are Fourier analyzed with a computer to obtain the phase advance. The second method is discussed, and the experimental results compared to theory

  8. Betatron phase advance measurement at SPEAR

    International Nuclear Information System (INIS)

    Morton, P.L.; Pellegrin, J.L.; Raubenheimer, T.; Ross, M.

    1987-01-01

    There are many reasons to determine the betatron phase advance between two azimuthal positions in a circular accelerator or storage ring. The authors measured the betatron phase advance between various pairs of azimuthal points in the SPEAR Storage Ring by two different methods. The first method is to excite a steady state coherent betatron oscillation with a network analyzer. The second method is to excite a free coherent betatron oscillation with an impulse kick, and to digitally sample the transverse position of the beam at the pickup stations. The results of these digital samples are Fourier analyzed with a computer to obtain the phase advance. The second method is discussed, and the experimental results compared to theory

  9. Betatron tune correction schemes in nuclotron

    International Nuclear Information System (INIS)

    Shchepunov, V.A.

    1992-01-01

    Algorithms of the betatron tune corrections in Nuclotron with sextupolar and octupolar magnets are considered. Second order effects caused by chromaticity correctors are taken into account and sextupolar compensation schemes are proposed to suppress them. 6 refs.; 1 tab

  10. Synchro-betatron resonance excitation in LEP

    International Nuclear Information System (INIS)

    Myers, S.

    1987-01-01

    The excitation of synchrotro-betatron resonances due to spurious dispersion and induced transverse deflecting fields at the RF cavities has been simulated for the LEP storage ring. These simulations have been performed for various possible modes of operation. In particular, a scenario has been studied in which LEP is operated at the maximum possible value of the synchrotron tune throughout the acceleration cycle, in an attempt to maximise the threshold intensity at which the Transverse Mode Coupling Instability (TMCI) occurs. This mode of operation necessitates the crossing of synchro-betatron resonances at some points in the acceleration cycle if low order non-linear machine resonances are to be avoided. Simulations have been performed in which the machine tune is swept across these synchro-betratron resonances at a rate given by the bandwidth of the magnet plus power supply circuits of the main quadrupole chain. The effect of longitudinal and transverse wake-fields on the excitation of these resonances has been investigated. These studies indicate that the distortion of the RF potential well caused by the longitudinal wake fields increases the non-linear content of the synchrotron motion and consequently increases significantly the excitation of the higher order synchro-betatron resonances

  11. Betatron activation analysis of cupriferous flotation pulp

    International Nuclear Information System (INIS)

    Kaminski, R.; Matenko, J.; Mencel, J.; Janiczek, J.; Kielsznia, J.

    1974-01-01

    A method of copper determination in cupriferous flotation pulp by photo-activation analysis using betatron and another equipments of existent ''analytical line'' intended for copper determination in dry samples has been described. An activation has been achieved with 14.9 MeV γ-photons. The excitation activity was investigated by using two scintillation detectors and a fast coincidence circuit with resolution time 80 ns. The precision of method was determined as +- 4.25% in 0.95 confidence level for pulp with concentration 5% Cu and +- 24% for 0.06% Cu. (author)

  12. Dispersion and betatron matching into the linac

    International Nuclear Information System (INIS)

    Decker, F.J.; Adolphsen, C.; Corbett, W.J.; Emma, P.; Hsu, I.; Moshammer, H.; Seeman, J.T.; Spence, W.L.

    1991-05-01

    In high energy linear colliders, the low emittance beam from a damping ring has to be preserved all the way to the linac, in the linac and to the interaction point. In particular, the Ring-To-Linac (RTL) section of the SLAC Linear Collider (SLC) should provide an exact betatron and dispersion match from the damping ring to the linac. A beam with a non-zero dispersion shows up immediately as an increased emittance, while with a betatron mismatch the beam filaments in the linac. Experimental tests and tuning procedures have shown that the linearized beta matching algorithms are insufficient if the actual transport line has some unknown errors not included in the model. Also, adjusting quadrupole strengths steers the beam if it is offset in the quadrupole magnets. These and other effects have lead to a lengthy tuning process, which in the end improves the matching, but is not optimal. Different ideas will be discussed which should improve this matching procedure and make it a more reliable, faster and simpler process. 5 refs., 2 figs

  13. Modified betatron for ion beam fusion

    International Nuclear Information System (INIS)

    Rostoker, N.; Fisher, A.

    1986-01-01

    An intense neutralized ion beam can be injected and trapped in magnetic mirror or tokamak geometry. The details of the process involve beam polarization so that the beam crosses the fringing fields without deflection and draining the polarization when the beam reaches the plasma. Equilibrium requires that a large betatron field be added in tokamak geometry. In mirror geometry a toroidal field must be added by means of a current along the mirror axis. In either case, the geometry becomes that of the modified betatron which has been studied experimentally and theoretically in recent years. We consider beams of d and t ions with a mean energy of 500 kev and a temperature of about 50 kev. The plasma may be a proton plasma with cold ions. It is only necessary for beam trapping or to carry currents. The ion energy for slowing down is initially 500 kev and thermonuclear reactions depend only on the beam temperature of 50 kev which changes very slowly. This new configuration for magnetic confinement fusion leads to an energy gain of 10--20 for d-t reactions whereas previous studies of beam target interaction predicted a maximum energy gain of 3--4. The high beam energy available with pulsed ion diode technology is also essential for advanced fuels. 16 refs., 3 figs

  14. Betatron coupling: Merging Hamiltonian and matrix approaches

    Directory of Open Access Journals (Sweden)

    R. Calaga

    2005-03-01

    Full Text Available Betatron coupling is usually analyzed using either matrix formalism or Hamiltonian perturbation theory. The latter is less exact but provides a better physical insight. In this paper direct relations are derived between the two formalisms. This makes it possible to interpret the matrix approach in terms of resonances, as well as use results of both formalisms indistinctly. An approach to measure the complete coupling matrix and its determinant from turn-by-turn data is presented. Simulations using methodical accelerator design MAD-X, an accelerator design and tracking program, were performed to validate the relations and understand the scope of their application to real accelerators such as the Relativistic Heavy Ion Collider.

  15. Application of betatrons to quality control of structures

    International Nuclear Information System (INIS)

    Klevtsov, V.A.; Matveev, Yu.K.; Trefilov, V.V.

    1986-01-01

    The results of laboratory investigations on the applicability of modificated PMB-6 betatron to quality control of reinforced concrete structures are presented. The investigations have been performed for the purposes of refinement of the technique for detecting voids and establishing real reinforcement. On the basis of experimental investigations the technique and schemes of structure translucence have been developed. Examples of using betatrons for flaw detection of reinforred concrete structures are given

  16. Application of a Betatron in Photonuclear Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D [AB Atomenergi, Nykoeping (Sweden); Mattsson, K; Liden, K [Dept . of Radiation Physics, Univ. of Lund (Sweden)

    1968-08-15

    The present study concerns the determination of fluorine, iodine, lead and mercury by means of photonuclear activation technique using a betatron. The detection limit obtained for the elements in the above given sequence amounted to 3, 50, 400 and 15 {mu}g respectively. The technique has been applied in the determination of iodine in pharmaceuticals. A rotating sample holder device was inserted in the Bremsstrahlung beam of the betatron in order to ensure uniform irradiation of the samples.

  17. Coherent betatron instability in the Tevatron

    International Nuclear Information System (INIS)

    Bogacz, S.A.; Harrison, M.; Ng, K.Y.

    1988-01-01

    The coherent betatron instability was first observed during the recent 1987-88 Tevatron fixed target run. In this operating mode 1000 consecutive bunches are loaded into the machine at 150 GeV with a bunch spacing of 18.8 /times/ 10 -9 sec (53 MHz). The normalized transverse emittance is typically 15 π /times/ 10 -6 m rad in each plane with a longitudinal emittance of about 1.5 eV-sec. The beam is accelerated to 800 GeV in 13 sec. and then it is resonantly extracted during a 23 sec flat top. As the run progressed the bunch intensities were increased until at about 1.4 /times/ 10 10 ppb (protons per bunch) we experienced the onset of a coherent horizontal oscillation taking place in the later stages of the acceleration cycle (>600 GeV). This rapidly developing coherent instability results in a significant emittance growth, which limits machine performance and in a catastrophic scenario it even prevents extraction of the beam. In this paper we will present a simple analytic description of the observed instability. We will show that a combination of a resistive wall coupled bunch effect and a single bunch slow head-tail instability is consistent with the above observations. Finally, a systematic numerical analysis of our model (growth-time vs chromaticity plots) points to the existence of the ≥1 slow head-tail modes as a plausible mechanism for the observed coherent instability. This last claim, as mentioned before, does not have conclusive experimental evidence, although it is based on a very good agreement between the measured values of the instability growth-time and the ones calculated on the basis of our model. 4 refs., 3 figs

  18. High current betatron research at the University of New Mexico

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Len, L.K.

    1987-01-01

    Betatrons are among the simplest of high energy accelerators. Their circuit is equivalent to a step-up transformer; the electron beam forms a multi-turn secondary winding. Circulation of the beam around the flux core allows generation of high energy electrons with relatively small core mass. As with any transformer, a betatron is energy inefficient at low beam current; the energy balance is dominated by core losses. This fact has prompted a continuing investigation of high current betatrons as efficient, compact sources of beta and gamma radiation. A program has been supported at the University of New Mexico by the Office of Naval Research to study the physics of high current electron beams in circular accelerators and to develop practical technology for high power betatrons. Fabrication and assembly of the main ring was completed in January of this year. In contrast to other recent high current betatron experiments the UNM device utilizes a periodic focusing system to contain high current beams during the low energy phase of the acceleration cycle. The reversing cusp fields generated by alternating polarity solenoidal lenses cancel beam drift motions induced by machine errors. In consequence, they have found that the cusp geometry has had significantly better stability properties than a monodirectional toroidal field. In comparison to other minimum-Β geometries such as the Stelllatron cusps have open field lines which facilitate beam injection and neutralization

  19. Betatron radiation from a laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schnell, Michael

    2014-01-01

    The presented thesis investigates the processes which lead to the generation of highenergetic X-ray radiation, also known as ''betatron radiation'', by means of a relativistic laser-plasma interaction. The generated betatron radiation has been extensively characterized by measuring its radiated intensity, energy distribution, far-field beam profile, and source size. It was shown for the first time that betatron radiation can be used as a non-invasive diagnostic tool to retrieve very subtle information on the electron acceleration dynamics within the plasma wave. Furthermore, a compact polarimeter setup has been developed in a unique experiment in which the polarization state of the laser-plasma generated betatron radiation was measured in single-shot mode. This lead to a detailed study of the orientation of the electron trajectory within the plasma interaction. By controlling the injection of the electrons into the plasma wave it was demonstrated that one can tune the polarization state of the emitted X-rays. This result is very promising for further applications, particularly for feeding the electrons into an additional conventional accelerator or a permanent magnet based undulator for the production of intense X-ray beams. During this work, the experimental setup for accelerating electrons and generating high-energy X-ray beams was consistently improved: to enhance both its reliability and stability. Subsequently, the betatron radiation was used as a reliable diagnostic tool of the electron dynamics within the plasma. Parallel to the experimental work, 3-Dimensional Particle-In-Cell (3D-PlC) simulations were performed together with colleagues from the University of Duesseldorf. The simulations included the electron acceleration and the X-ray generation processes together with the recoil force acting on an accelerating electron caused by the emitted radiation during which one can also ascertain its polarization state. The simulations proved to be in good agreement

  20. Inductive-pulsed power supplying system for a betatron electromagnet

    International Nuclear Information System (INIS)

    Otrubyannikov, Yu.A.; Safronov, A.S.

    1984-01-01

    Circuit of producing quasitriangular current pulses designed for the pulsed power supply system of betatron electromagnet is described. Introduction of additional winding into electromagnet provides circuit galvanic isolation, artificial commutation of basic circuit thyristors and inductive power input to the winding during thyristor commutation. The considered system is used for excitation of betatron electromagnet up to 18 MeV. Magnetic field energy equals 1100 Y. The maximal voltage in energy storage capacitor - 4.8 kV. Current amplitude in basic winding - 335 A. The number of loops in basic winding equals 80, in additional one - 32. Current pulse duration in electromagnet-3.8 ms. The system provides operation with controlled current pulse frequency from 0 up to 150 Hz. The maximal consumption power - 18 kW

  1. Linear theory of beam depolarization due to vertical betatron motion

    International Nuclear Information System (INIS)

    Chao, A.W.; Schwitters, R.F.

    1976-06-01

    It is well known that vertical betatron motion in the presence of quantum fluctuations leads to some degree of depolarization of a transversely polarized beam in electron-positron storage rings even for energies away from spin resonances. Analytic formulations of this problem, which require the use of simplifying assumptions, generally have shown that there exist operating energies where typical storage rings should exhibit significant beam polarization. Due to the importance of beam polarization in many experiments, we present here a complete calculation of the depolarization rate to lowest order in the perturbing fields, which are taken to be linear functions of the betatron motion about the equilibrium orbit. The results are applicable to most high energy storage rings. Explicit calculations are given for SPEAR and PEP. 7 refs., 8 figs

  2. Betatron stochastic cooling in the Debuncher: Present and future

    International Nuclear Information System (INIS)

    Visnjic, V.

    1993-07-01

    A detailed study of the betatron stochastic cooling in the Debuncher is presented. First, a complete theoretical model including the emittance-dependent signal-to-noise ratio as well as time-dependent mixing is constructed. The emittance measurements in the Debuncher are described and it is shown that the model is in excellent agreement with the experimental data. The idea of gain shaping is proposed and it is shown that the gain shaping would improve the cooling of the beam. Several proposals for future improvements are studied and appraised, in particular, gain shaping, ramped η, and cryogenic and ''smart'' pickups and kickers. Finally, the demands which the Main Injector will impose on the Debuncher are analyzed and a design of the betatron stochastic cooling system for the Main Injector era is outlined

  3. Long-wavelength negative mass instabilities in high current betatrons

    International Nuclear Information System (INIS)

    Godfrey, B.B.; Hughes, T.P.

    1985-01-01

    Growth rates of negative mass instabilities in conventional and modified betatrons are calculated by analytic methods and by performing three-dimensional particle simulations. In contrast to earlier work, toroidal corrections to the field equations are included in the analytic model. As a result, good agreement with numerical simulations is obtained. The simulations show that the nonlinear development of the instabilities can seriously disrupt the beam

  4. Investigation of betatron instability in a wiggler pumped ion-channel free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Raghavi, A [Physics Department, Payame Noor University, 19395-4697 (Iran, Islamic Republic of); Mehdian, H, E-mail: Raghavi@tmu.ac.ir, E-mail: Mehdian@tmu.ac.ir [Department of Physics, Teacher Training University, Tehran (Iran, Islamic Republic of)

    2011-10-15

    Betatron emission from an ion-channel free electron laser in the presence of a helical wiggler pump and in the high gain regime is studied. The dispersion relation and the frequency of betatron emission are derived. Growth rate is illustrated and maximum growth rate as a function of ion-channel density is considered. Finally, the relation between beam energy, the density of ion channel and the region of betatron emission is discussed.

  5. Measurement of betatron-tune in the KEK 12 GeV-PS/J-PARC

    International Nuclear Information System (INIS)

    Miura, Takako; Toyama, Takeshi; Igarashi, Susumu; Hayashi, Naoki

    2004-01-01

    Measurement of betatron-tune in the KEK 12 GeV-PS is performed by using band limited white noise which excites coherent betatron oscillations via stripline unit. We compared the results of the measurement for betatron oscillation amplitude with the result of calculation, and confirmed the consistency. The design of the tune-monitor in J-PARC was also discussed applying this result. (author)

  6. Measurement of the betatron phase advance and betatron amplitude ratio at the SPP-barS collider

    International Nuclear Information System (INIS)

    Bossart, R.; Scandale, W.

    1987-01-01

    A technique for the precise measurement of lattice functions in a hadron collider has been developed. The betatron functions on either side of the two low beta insertions of the SPS collider have been determined from the measured amplitude and phase of horizontal beam oscillations with a peak amplitude of 40 μm. Four directional couplers and four synchronous receivers working at 200 MHz monitor the betatron oscillations of the beam excited by the fast deflectors of the damper. A fast Fourier transform of the signals provides the phase and amplitude ratio of the beam oscillations between any pair of monitors. The relative amplitude and phase of the beam oscillations can be measured with an accuracy of 0 in phase. For achieving such an accuracy a special calibration method has been implemented to determine the propagation times and amplification factors of the measuring equipment, using the intensity signals of the beam itself. The same equipment can be used also for measuring the beam transfer function by injecting white noise into the beam deflectors

  7. Bruno Touschek: From Betatrons to Electron-Positron Colliders

    Science.gov (United States)

    Bernardini, Carlo; Pancheri, Giulia; Pellegrini, Claudio

    Bruno Touschek’s life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders and storage rings, and made important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology, environmental sciences and cultural heritage studies. We describe Touschek’s life in Austria, where he was born, in Germany, where he participated in the construction of a betatron during WWII, and in Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his lifestyle and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE.

  8. Fast betatron tune controller for circulating beam in a synchrotron

    International Nuclear Information System (INIS)

    Endo, Takuyuki; Hatanaka, Kichiji; Sato, Kenji

    1997-01-01

    When rf quadrupole (RFQ) electric field is applied to the circulating beam in a synchrotron, an equation of motion is reduced to Mathieu's Equation. A new analytical method to obtain an approximate solution has been developed, while a numerical computation was usually applied. Translating the behavior of approximate solution into terms of an RFQ electric field and betatron oscillation, a fast tune control can be achieved by rapid tuning of both amplitude and frequency of rf voltage. This process could be applied to suppress a tune shift caused by a space charge effect and to control a slow beam extraction with a low ripple. We have started another analytical computation using Hamiltonian with perturbation of RFQ and the results of this computation also suggest that it is applicable to slow beam extraction. The fast tune controller has been constructed and the beam test will be performed at HIMAC synchrotron in cooperation of RCNP and NIRS. (author)

  9. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING

    International Nuclear Information System (INIS)

    LUO, Y.; PILAT, F.; ROSER, T.

    2004-01-01

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed

  10. Synchro-betatron resonance due to gap voltage asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Baartman, R

    1992-11-01

    RF cavities for synchrotrons are not in general axially symmetric. This can be due, for example, to the location of the input power coupling loop. It can cause the voltage on one side of the accelerating gap to be different from that on the other side. Associated with this asymmetry is an rf magnetic field which deflects a beam particle by an amount depending upon its rf phase. The deflection can accumulate if the betatron tune is situated on a synchrotron sideband of the integer resonance. We develop the theory for this resonance and apply it to the KAON Factory Booster and to the SSC LEB. We find that the upper limit on allowable voltage asymmetry across the beam pipe is 0.1% in both cases. (author) 5 refs., 1 tab.

  11. The effects of betatron phase advances on beam-beam and its compensation in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Fischer, W.; Gu, X.; Tepikian, S.; Trbojevic, D.

    2011-03-28

    In this article we perform simulation studies to investigate the effects of betatron phase advances between the beam-beam interaction points on half-integer resonance driving term, second order chromaticty and dynamic aperture in RHIC. The betatron phase advances are adjusted with artificial matrices inserted in the middle of arcs. The lattices for the 2011 RHIC polarized proton (p-p) run and 2010 RHIC Au-Au runs are used in this study. We also scan the betatron phase advances between IP8 and the electron lens for the proposed Blue ring lattice with head-on beam-beam compensation.

  12. Algorithms for a Precise Determination of the Betatron Tune

    CERN Document Server

    Bartolini, R; Giovannozzi, Massimo; Todesco, Ezio; Scandale, Walter

    1996-01-01

    In circular accelerators the precise knowledge of the betatron tune is of paramount importance both for routine operation and for theoretical investigations. The tune is measured by sampling the transverse position of the beam for N turns and by performing the FFT of the stored data. One can also evaluate it by computing the Average Phase Advance (APA) over N turns. These approaches have an intrinsic error proportional to 1/N. However, there are special cases where either a better precision or a faster measurement is desired. More efficient algorithms can be used, as those suggested by E.Asseo [1] and recently by J. Laskar [2]. They provide tune estimates by far more precise than those of a plain FFT, as discussed in Ref. [3]. Another important isssue is the effect of the finite resolution of the instrumentation used to measure the beam position. This introduces a noise and the frequency response of the beam is modified [4,5} thus reducing the precision by which the tune is determined. In Section 2 we recall ...

  13. Iron-free betatrons - short radiation pulse generators for roentgenography of fast-going processes

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovskij, A P; Zenkov, D I; Kuropatkin, Yu P; Mironenko, V D; Suvorov, V N [All-Russian Scientific Research Inst. of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    The possibilities of further increasing the current in high-current iron-free betatrons are studied. The efficiency of electron capture has been successfully increased by introducing local disturbances of the betatron magnetic field. At the optimum ratios of the disturbing and the betatron field, and at the optimum winding geometry as for the field disturbances and their attenuation rate, a multi-revolution electron capture has been achieved. The dependence of the circulating current on the injection energy was studied at the optimized facility with a porcelain accelerating chamber and a conducting cover. The experimental dependence is close to the calculated one. The maximum circulating current achieved was 28030 A which is the record value for circular accelerators. (J.U.). 1 tab., 5 figs., 2 refs.

  14. Tune shift and betatron modulations due to insertion devices in SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.

    1989-12-01

    SPEAR will soon operate as a dedicated synchrotron radiation source with up to 5 beamlines fed from insertion devices. These magnets introduce additional focusing forces into the storage ring lattice which increase the vertical betatron tune and modulate the beam envelope in the vertical plane. The lattice simulation code 'GEMINI' is used to evaluate the tune shifts and estimate the degree of betatron modulation as each magnetic insertion device is brought up to full power. A program is recommended to correct the tunes with the FODO cell quadrupoles. 4 refs., 8 figs., 1 tab

  15. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    International Nuclear Information System (INIS)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A.R.; Zigler, A.

    2016-01-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  16. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); “Tor Vergata” University, via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Dabagov, S. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); P.N. Lebedev Physical Institute RAS, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU “MEPhI”, Kashirskoe highway 31, 115409 Moscow (Russian Federation); Ferrario, M.; Filippi, F. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A. [Dipartimento SBAI Universitá di Roma ‘La Sapienza’, via Antonio Scarpa 14/16, 00161 Rome (Italy); Paroli, B. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Pompili, R. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Zigler, A. [Racah Institute of Physics Hebrew University of Jerusalem (Israel)

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  17. Synchro-betatron resonances driven by the beam-beam interaction

    International Nuclear Information System (INIS)

    Furman, M.A.

    1994-01-01

    We present a selective summary of the discussions on beam-beam-driven synchrobetatron resonances at the 6th Advanced ICFA Beam Dynamics Workshop on the subject ''Synchro-Betatron Resonances,'' held in Funchal (Madeira, Portugal), October 24--30, 1993

  18. Therapy by stationary photon fields from a 42 MeV betatron using wedge filters

    International Nuclear Information System (INIS)

    Wicke, L.; Kaercher, K.H.; Naesiger, H.; Prokosch, E.; Vienna Univ.

    1975-01-01

    The dose distribution in photon beams from a 42 MeV betatron using wedge filters of lead with different angles of slope is described. The wedge coefficient to be considered at a field size of 10 x 10 cm is given. The scope for isodoses modified by wedge filters is discussed with regard to stationary-field photon therapy. (orig.) [de

  19. Correction of dispersion and the betatron functions in the CEBAF accelerator

    International Nuclear Information System (INIS)

    Lebedev, V.A.; Bickley, M.; Schaffner, S.; Zeijts, J. van; Krafft, G.A.; Watson, C.

    1996-01-01

    During the commissioning of the CEBAF accelerator, correction of dispersion and momentum compaction, and, to a lesser extent, transverse transfer matrices were essential for robust operation. With changing machine conditions, repeated correction was found necessary. To speed the diagnostic process the authors developed a method which allows one to rapidly track the machine optics. The method is based on measuring the propagation of 30 Hz modulated betatron oscillations downstream of a point of perturbation. Compared to the usual methods of dispersion or difference orbit measurement, synchronous detection of the beam displacement, as measured by beam position monitors, offers significantly improved speed and accuracy of the measurements. The beam optics of the accelerator was altered to decrease lattice sensitivity at critical points and to simplify control of the betatron function match. The calculation of the Courant-Snyder invariant from signals of each pair of nearby beam position monitors has allowed one to perform on-line measurement and correction of the lattice properties

  20. The effects of betatron motion on the preservation of FEL microbunching

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-05-15

    In some options for circular polarization control at X-ray FELs, a helical radiator is placed a few ten meters distance behind the baseline undulator. If the microbunch structure induced in the baseline (planar) undulator can be preserved, intense coherent radiation is emitted in the helical radiator. The effects of betatron motion on the preservation of micro bunching in such in-line schemes should be accounting for. In this paper we present a comprehensive study of these effects. It is shown that one can work out an analytical expression for the debunching of an electron beam moving in a FODO lattice, strictly valid in the asymptote for a FODO cell much shorter than the betatron function. Further on, numerical studies can be used to demonstrate that the validity of such analytical expression goes beyond the abovementioned asymptote, and can be used in much more a general context. Finally, a comparison with Genesis simulations is given. (orig.)

  1. The effects of betatron motion on the preservation of FEL microbunching

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-05-01

    In some options for circular polarization control at X-ray FELs, a helical radiator is placed a few ten meters distance behind the baseline undulator. If the microbunch structure induced in the baseline (planar) undulator can be preserved, intense coherent radiation is emitted in the helical radiator. The effects of betatron motion on the preservation of micro bunching in such in-line schemes should be accounting for. In this paper we present a comprehensive study of these effects. It is shown that one can work out an analytical expression for the debunching of an electron beam moving in a FODO lattice, strictly valid in the asymptote for a FODO cell much shorter than the betatron function. Further on, numerical studies can be used to demonstrate that the validity of such analytical expression goes beyond the abovementioned asymptote, and can be used in much more a general context. Finally, a comparison with Genesis simulations is given. (orig.)

  2. Automatic Correction of Betatron Coupling in the LHC Using Injection Oscillations

    CERN Document Server

    Persson, T; Jacquet, D; Kain, V; Levinsen, Y; McAteer, M-J; Maclean, E; Skowronski, P; Tomas, R; Vanbavinckhove, G; Miyamoto, R

    2013-01-01

    The control of the betatron coupling at injection and during the energy ramp is critical for the safe operation of the tune feedback and for the dynamic aperture. In the LHC every fill is preceded by the injection of a pilot bunch with low intensity. Using the injection oscillations from the pilot bunch we are able to measure the coupling at each individual BPM. The measurement is used to calculate a global coupling correction. The correction is based on the use of two orthogonal knobs which correct the real and imaginary part of the difference resonance term f1001, respectively. This method to correct the betatron coupling has been proven successful during the normal operation of the LHC. This paper presents the method used to calculate the corrections and its performance.

  3. Successful betatron acceleration of kiloampere electron rings in RECE-Christa

    International Nuclear Information System (INIS)

    Taggart, D.P.; Parker, M.R.; Hopman, H.J.; Jayakumar, R.; Fleischmann, H.H.

    1984-01-01

    This paper reports on betatron acceleration experiments using the space-charge-neutralized electron rings in the RECE-Christa device. Magnetic probe and x-ray-absorption measurements indicate that electron ring currents of up to 2 kA were accelerated to 3.3 +- 0.3 MeV without indication of instabilities. A similar neutralization and acceleration method also appears applicable to electron rings generated in B/sub theta/-free configurations

  4. Landau damping due to tune spreads in betatron amplitude and momentum

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tran, P.; Weng, W.T.

    1989-01-01

    Due to the large space charge transverse impedance in a low energy synchrotron, the coherent tune shift causes the Landau damping to be ineffective in damping the transverse coherent motion. We analyze the effect of Landau damping that is caused by the tune spreads of the betatron amplitude (space charge and/or octupole) and momentum. We find that the Landau damping becomes more significant in our two dimensional analysis. 5 refs

  5. Approximate method for calculating heat conditions in the magnetic circuits of transformers and betatrons

    International Nuclear Information System (INIS)

    Loginov, V.S.

    1986-01-01

    A technique for engineering design of two-dimensional stationary temperature field of rectangular cross section blending pile with inner heat release under nonsymmetrical cooling conditions is suggested. Area of its practical application is determined on the basis of experimental data known in literature. Different methods for calculating temperature distribution in betatron magnetic circuit are compared. Graph of maximum temperature calculation error on the basis of approximated expressions with respect to exact solution is given

  6. Experimental investigation of a small-sized betatron with superposed magnetization

    International Nuclear Information System (INIS)

    Kas'yanov, V.A.; Rychkov, M.V.; Filimonov, A.A.; Furman, Eh.G.; Chakhlov, V.L.; Chertov, A.S.; Shtejn, M.M.

    2001-01-01

    The aim of the paper is to study possibilities of small-sized betatrons (SSB) with direct current superposed magnetization (DSM). It is shown that DSM permits to decrease the SSB weight and cost of the electromagnet and capacitor storage and to shape the prolonged beam dump. It is noted that the DSM realization has the most expediency in SSB operating in a short-time mode [ru

  7. Coherent betatron instability driven by electrostatic separators: Stability analysis of the Tevatron

    International Nuclear Information System (INIS)

    Harfoush, F.A.; Bogacz, S.A.

    1989-03-01

    This paper outlines possible intensity limits due to the coherent betatron motion for the upgraded Tevatron with the electrostatic separators. Numerical simulation shows that this new vacuum chamber structure dominates the high frequency part of the coupling impedance spectrum and more likely will excite a slow head-tail instability. A simple stability analysis yields the characteristic growth-time of the unstable modes. 4 refs., 4 figs., 1 tab

  8. High-speed radiography and x-ray cinematography by high-current betatrons

    International Nuclear Information System (INIS)

    Akimochkin, Yu.V.; Akulov, G.V.; Leunov, F.G.; Moskalev, V.A.; Ryabukhin, V.L.

    1979-01-01

    The paper provides a description of an equipment system comprising a pair of 25 MeV high-current betatrons and an X-ray drum-type cinecamera for high-speed radiography and X-ray cinematography for use when studying dynamics of objects moving at a rate of 0.5 - 3.0 km/s as well as in X-ray cinematography of processes at a rate of up to 1 m/s. (author)

  9. Betatron emission as a diagnostic for injection and acceleration mechanisms in laser plasma accelerators

    International Nuclear Information System (INIS)

    Corde, S; Thaury, C; Phuoc, K Ta; Lifschitz, A; Lambert, G; Lundh, O; Brijesh, P; Sebban, S; Rousse, A; Faure, J; Malka, V; Arantchuk, L

    2012-01-01

    Betatron x-ray emission in laser plasma accelerators is a promising compact source that may be an alternative to conventional x-ray sources, based on large scale machines. In addition to its potential as a source, precise measurements of betatron emission can reveal crucial information about relativistic laser–plasma interaction. We show that the emission length and the position of the x-ray emission can be obtained by placing an aperture mask close to the source, and by measuring the beam profile of the betatron x-ray radiation far from the aperture mask. The position of the x-ray emission gives information on plasma wave breaking and hence on the laser non-linear propagation. Moreover, the measurement of the longitudinal extension helps one to determine whether the acceleration is limited by pump depletion or dephasing effects. In the case of multiple injections, it is used to retrieve unambiguously the position in the plasma of each injection. This technique is also used to study how, in a capillary discharge, the variations of the delay between the discharge and the laser pulse affect the interaction. The study reveals that, for a delay appropriate for laser guiding, the x-ray emission only occurs in the second half of the capillary: no electrons are injected and accelerated in the first half. (paper)

  10. Characteristics of a betatron core for extraction in a proton-ion medical synchrotron

    CERN Document Server

    Badano, L

    1997-01-01

    Medical synchrotrons for radiation therapy require a very stable extraction of the beam over a period of about one second. The techniques for applying resonant extraction to achieve this long spill can be classified into two groups, those that move the resonance and those that move the beam. The latter has the great advantage of keeping all lattice functions, and hence the resonance conditions, constant. The present report examines the possibility of using a betatron core to accelerate the waiting ion beam by induction into the resonance. The working principle, the proposed characteristics and the expected performances of this device are discussed. The betatron core is a smooth high-inductance device compared to the small quadrupole lenses that are normally used to move the resonance and is therefore better suited to delivering a very smooth spill. The large stored energy in a betatron core compared to a small quadrupole is also a safety feature since it responds less quickly to transients that could send lar...

  11. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Yoo, Byung Ju; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seung Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 500-712 (Korea, Republic of); Rhee, Yong Joo [Nuclear Data Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Shin, Jung Hun; Jo, Sung Ha [Advanced Photonics Research Institute, GIST, Gwangju 500-712 (Korea, Republic of); Hojbota, Calin; Cho, Byeoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 500-712 (Korea, Republic of)

    2015-12-15

    We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.

  12. Photoneutron source based on a compact 10 MeV betatron

    International Nuclear Information System (INIS)

    Bell, Z.W.; Chaklov, V.L.; Golovkov, V.M.

    1998-01-01

    Accelerator-based photoneutron sources have enjoyed wide use and offer the advantages of long term stability, ease of control and absence of radioactive materials. The authors report here measurements of the yield of photoneutrons from a neutron generator using a compact betatron (466 kg total weight, 900 by 560 by 350 mm betatron dimensions) at the Institute of Introscopy of the Tomsk Polytechnic University. Electrons were accelerated to energies up to 10 MeV and produced a bremsstrahlung beam with a dose rate of 0.16 Gy/min (at 10 MeV, 1 meter from the bremsstrahlung target) to irradiate LiD, Be, depleted U, and Pb neutron-producing targets. The angular distributions of photoneutrons produced by bremsstrahlung beams were measured with a long counter and integrated to determine neutron yield. In addition, neutron time of flight spectra were recorded from all targets using a 15 meter flight path perpendicular to the photon beam. The maximum observed yields were 5.2 x 10 4 n/rad/gram target obtained with LiD, 1.7 x 10 4 n/rad/gram from Be, 3.3 x 10 3 n/rad/gram from U, and 7.5 x 10 2 n/rad/gram from Pb. Optimization of target dimensions, shape, and positioning is expected to increase the yield from the LiD target by a factor of 35. With the increased yield, this compact betatron-based system could find application in the interrogation of waste containers for fissile material

  13. Demonstration of no feasibility of a crystalline beam in a Betatron Magnet II

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1993-01-01

    This paper investigates the feasibility of a Crystalline Beam in a weak-focusing Betatron Magnet. The curvature effect due to the bending magnet is also investigated. The case of circular one- dimensional string of electrically-charged particles is examined. It is found that the motion is unstable due to the dependence of the precession movement with the radial displacement. That is a form of negative-mass instability which can be avoided with an alternating-focussing structure. The calculation of the particle-particle interaction as well as of the forces due to the external magnetic field is done directly in the laboratory frame

  14. Thyristor current-pulse generator for betatron electromagnet with independent low-voltage supply

    International Nuclear Information System (INIS)

    Baginskii, B.A.; Makarevich, V.N.; Shtein, M.M.

    1989-01-01

    A thyristor generator is described that produces unipolar current pulses in the winding of a betatron electromagnet. The voltage on the electro-magnet is increased and the shape of the current pulses is improved by use of an intermediate inductive storage device. The current pulses have a duration of 11 msec, an amplitude of 190 A, and a repetition frequency of 50 Hz. The maximum magnetic-field energy is 450 J, the voltage on the electromagnet winding is 1.5 kV, and the supply voltage is 27 V

  15. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons

    International Nuclear Information System (INIS)

    Welch, D.R.; Cohen, S.A.; Genoni, T.C.; Glasser, A.H.

    2010-01-01

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments.

  16. Correction of vertical dispersion and betatron coupling for the CLIC damping ring

    CERN Document Server

    Korostelev, M S

    2006-01-01

    The sensitivity of the CLIC damping ring to various kinds of alignment errors has been studied. Without any correction, fairly small vertical misalignments of the quadrupoles and, in particular, the sextupoles, introduce unacceptable distortions of the closed orbit as well as intolerable spurious vertical dispersion and coupling due to the strong focusing optics of the damping ring. A sophisticated beam-based correction scheme has been developed to bring the design target emittances and the dynamic aperture back to the ideal value. The correction using dipolar correctors and several skew quadrupole correctors allows a minimization of the closed-orbit distortion, the cross-talk between vertical and horizontal closed orbits, the residual vertical dispersion and the betatron coupling.

  17. Temporal profile of betatron radiation from laser-driven electron accelerators

    Czech Academy of Sciences Publication Activity Database

    Horný, Vojtěch; Nejdl, Jaroslav; Kozlová, Michaela; Krůs, Miroslav; Boháček, Karel; Petržílka, Václav; Klimo, Ondřej

    2017-01-01

    Roč. 24, č. 6 (2017), č. článku 063107. ISSN 1070-664X R&D Projects: GA ČR GA15-03118S; GA MŠk LQ1606; GA MŠk(CZ) LM2015083; GA MŠk(CZ) LD14089 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162; GA MŠk(CZ) LM2015042 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : X-ray betatron * laser * X-ray pulses Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (FZU-D) Impact factor: 2.115, year: 2016 http://aip.scitation.org/doi/full/10.1063/1.4985687

  18. Demonstration of no feasibility of a Crystalline Beam in a Betatron Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, A.G.

    1993-09-13

    This technical report investigates the feasibility of a Crystalline Beam in a weak-focussing storage ring like a Betatron. At the same time the curvature effect due to the bending magnet is also investigated. As a special case, the example of a circular one-dimensional string of electrically charged particles is examined. It is found that the motion of the particles is unstable due to the dependence of the precession movement with respect to each other on their radial displacement. That is a form of negative-mass instability which can be avoided with an alternating-focussing structure corresponding to a transition energy above the energy of the particles. The calculation of the particle-particle interaction as well as of the forces due to the external magnetic field is done directly in the laboratory frame. The retarded potential expressions are used at this purpose.

  19. Betatron-collimation Studies for Heavy Ions in the FCC-hh

    CERN Multimedia

    Logothetis Agaliotis, Efstathios

    2018-01-01

    One of the biggest challenges in the design of the FCC-hh is the collimation system. From LHC experience it is known that a collimation system optimized for proton cleaning has a significantly reduced efficiency for heavy ions. The study presented in this contribution evaluates the betatron-collimation efficiency for the heavy-ion operation with lead nuclei at a beam energy of 50 Z TeV in the system designed for proton operation. The fragmentation processes of the main beam particles in the primary collimator are simulated with FLUKA and fragments are individually tracked with SixTrack until being lost in the downstream aperture. In this way a first-impact loss-map is obtained, identifying locations where high energy deposition are to be expected. This provides a first-level assessment of feasibility and allows to include countermeasures in the conceptual accelerator design.

  20. Performance of a correlator filter in betatron tune measurements and damping on the NSLS booster

    International Nuclear Information System (INIS)

    Galayda, J.

    1985-01-01

    A ''compensated correlator filter'', described by Kramer, et al. has been used for measurement and damping of betatron oscillations in the NSLS booster. The filter consists of a zero-degree power splitter, a 180-degree splitter, a length of 7/8'' air dielectric coaxial cable, and a short length of RG-58 cable. Connected to a beam position monitor, the output of the filter is proportional to the difference in transverse position of each bunch on subsequent turns. The useful bandwidth of the filter for damping rigid bunch oscillations extends from 10 MHz to 250 MHz, in contrast with the gigahertz bandwidth requirements for stochastic cooling, for which the filter was originally proposed. Attenuation of all rotation harmonics in this bandwidth is 40 to 60 dB

  1. Neutron doses to personnel from a 24 MeV betatron

    International Nuclear Information System (INIS)

    Beckham, W.A; Entwistle, R.F.

    1987-01-01

    Neutrons are produced by bombardment of most materials by high-energy photons. Because the x-ray shielding around high-energy x-ray generators may not have been designed with neutrons in mind there may be unexpected contributions to the radiation doses of staff working in the immediate vicinity. Neutron fluxes in the working area close to an Allis-Chalmers 24 MeV betatron have been measured using a lithium-6-loaded scintillator and the dose rates calculated. Hazard of staff has been found to be low; typical dose-equivalent rates in occupied areas range from 0.0042 to 0.012 mrem/hour. The flux of fast neutrons in the treatment room was found to be essentially zero. Measurements of neutron flux may be routinely performed using the scintillation detector (NE 912) described, and could usefully form part of the acceptance protocol for any new accelerator

  2. Betatron tomography with the use of non-linear backprojection techniques

    International Nuclear Information System (INIS)

    Baranov, V.A.; Temnik, A.K.; Chakhlov, V.L.; Chekalin, A.S.

    1995-01-01

    The testing of heavy components under non-steady-state condition (at erection and building sites, at jigs, for testing of welded joints and valving of oil and gas pipelines, power and boiler plants repair, building construction and for testing of castings and welded joints of large thickness) traditionally belongs to most pressing NDT problems. One of essential prerequisites for success at this point was the elaboration of appropriate high energy radiation sources, in particular small size pulse betatrons like MIB-4 and MIB-6 with the energy 4 and 6 MeV. Now, taking into account the new possibilities of tomography, the adaptation of fresh methods of cross-sectional visualisation (like non-linear tomosynthesis) to this conventional problem-solving area is of special interest. (orig./RHM)

  3. New microfocus bremsstrahlung source based on betatron B-18 for high-resolution radiography and tomography

    Science.gov (United States)

    Rychkov, M. M.; Kaplin, V. V.; Malikov, E. L.; Smolyanskiy, V. A.; Stepanov, I. B.; Lutsenko, A. S.; Gentsel'man, V.; Vas'kovskiy, I. K.

    2018-01-01

    New microfocus source of hard bremsstrahlung (photon energy > 1 MeV), based on the betatron B-18 with a narrow Ta target inside, for high-resolution radiography and tomography is presented. The first studies of the source demonstrate its possibilities for practical applications to detect the microdefects in products made from heavy materials and to control gaps in joints of parts of composite structures of engineering facilities. The radiography method was used to investigate a compound object consisting of four vertically arranged steel bars between which surfaces were exposed gaps of 10 μm in width. The radiographic image of the object, obtained with a magnification of 2.4, illustrates the good sensitivity of detecting the gaps between adjacent bars, due to the small width of the linear focus of the bremsstrahlung source.

  4. Photoneutron source based on a compact 10 MeV betatron

    International Nuclear Information System (INIS)

    Chakhlov, V.L.; Bell, Z.W.; Golovkov, V.M.; Shtein, M.M.

    1999-01-01

    Accelerator-based photoneutron sources have enjoyed wide use and offer the advantages of long term stability, ease of control and absence of radioactive materials. We report here measurements of the yield of photoneutrons from a neutron generator using a compact betatron. Electrons were accelerated to energies up to 10 MeV and produced a bremsstrahlung beam with a dose rate of 0.16 Gy/min (at 10 MeV, 1 m from the bremsstrahlung target) to irradiate LiD, Be, depleted U, and Pb neutron-producing targets. The angular distributions of photoneutrons produced by bremsstrahlung beams were measured with a 'long' counter and integrated to determine neutron yield. In addition, neutron time of flight spectra were recorded from all targets using a 15.5 m flight path perpendicular to the photon beam. The maximum observed yields were 4.6x10 7 n/s obtained with 1 kg of LiD, 5.7x10 7 n/s from a 3.3 kg Be block, 6.2x10 6 n/s from 1.5 kg of depleted U, and 7.0x10 6 n/s from 10.7 kg of Pb. Optimization of target dimensions, shape, and positioning is expected to increase the yield from the LiD target by a factor of 35, while optimization of the other targets is expected to yield at most a factor of 10. With the increased yield and a deuteride target, this compact betatron-based system could find application in the interrogation of waste containers for fissile material

  5. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 61005 (Korea, Republic of); Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Cho, Byoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 61005 (Korea, Republic of)

    2016-07-15

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1–10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.

  6. Multiple resonance compensation for betatron coupling and its equivalence with matrix method

    CERN Document Server

    De Ninno, G

    1999-01-01

    Analyses of betatron coupling can be broadly divided into two categories: the matrix approach that decouples the single-turn matrix to reveal the normal modes and the hamiltonian approach that evaluates the coupling in terms of the action of resonances in perturbation theory. The latter is often regarded as being less exact but good for physical insight. The common opinion is that the correction of the two closest sum and difference resonances to the working point is sufficient to reduce the off-axis terms in the 4X4 single-turn matrix, but this is only partially true. The reason for this is explained, and a method is developed that sums to infinity all coupling resonances and, in this way, obtains results equivalent to the matrix approach. The two approaches is discussed with reference to the dynamic aperture. Finally, the extension of the summation method to resonances of all orders is outlined and the relative importance of a single resonance compared to all resonances of a given order is analytically desc...

  7. Positron Source from Betatron X-rays Emitted in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.K.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Barnes, C.D.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; Krejcik, P.; O' Connell, C.L.; Siemann, R.; Walz, D.R.; /SLAC; Deng, S.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2006-04-21

    In the E-167 plasma wakefield accelerator (PWFA) experiments in the Final Focus Test Beam (FFTB) at the Stanford Linear Accelerator Center (SLAC), an ultra-short, 28.5 GeV electron beam field ionizes a neutral column of Lithium vapor. In the underdense regime, all plasma electrons are expelled creating an ion column. The beam electrons undergo multiple betatron oscillations leading to a large flux of broadband synchrotron radiation. With a plasma density of 3 x 10{sup 17}cm{sup -3}, the effective focusing gradient is near 9 MT/m with critical photon energies exceeding 50 MeV for on-axis radiation. A positron source is the initial application being explored for these X-rays, as photo-production of positrons eliminates many of the thermal stress and shock wave issues associated with traditional Bremsstrahlung sources. Photo-production of positrons has been well-studied; however, the brightness of plasma X-ray sources provides certain advantages. In this paper, we present results of the simulated radiation spectra for the E-167 experiments, and compute the expected positron yield.

  8. Improved control of the betatron coupling in the Large Hadron Collider

    Science.gov (United States)

    Persson, T.; Tomás, R.

    2014-05-01

    The control of the betatron coupling is of importance for safe beam operation in the LHC. In this article we show recent advancements in methods and algorithms to measure and correct coupling. The benefit of using a more precise formula relating the resonance driving term f1001 to the ΔQmin is presented. The quality of the coupling measurements is increased, with about a factor 3, by selecting beam position monitor (BPM) pairs with phase advances close to π/2 and through data cleaning using singular value decomposition with an optimal number of singular values. These improvements are beneficial for the implemented automatic coupling correction, which is based on injection oscillations, presented in the article. Furthermore, a proposed coupling feedback for the LHC is presented. The system will rely on the measurements from BPMs equipped with a new type of high resolution electronics, diode orbit and oscillation, which will be operational when the LHC restarts in 2015. The feedback will combine the coupling measurements from the available BPMs in order to calculate the best correction.

  9. Improved control of the betatron coupling in the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    T. Persson

    2014-05-01

    Full Text Available The control of the betatron coupling is of importance for safe beam operation in the LHC. In this article we show recent advancements in methods and algorithms to measure and correct coupling. The benefit of using a more precise formula relating the resonance driving term f_{1001} to the ΔQ_{min} is presented. The quality of the coupling measurements is increased, with about a factor 3, by selecting beam position monitor (BPM pairs with phase advances close to π/2 and through data cleaning using singular value decomposition with an optimal number of singular values. These improvements are beneficial for the implemented automatic coupling correction, which is based on injection oscillations, presented in the article. Furthermore, a proposed coupling feedback for the LHC is presented. The system will rely on the measurements from BPMs equipped with a new type of high resolution electronics, diode orbit and oscillation, which will be operational when the LHC restarts in 2015. The feedback will combine the coupling measurements from the available BPMs in order to calculate the best correction.

  10. Synchronisation of the LHC Betatron Coupling and Phase Advance Measurement System

    CERN Document Server

    Gasior, M

    2014-01-01

    The new LHC Diode ORbit and OScillation (DOROS) system will provide beam position readings with submicrometre resolution and at the same time will be able to perform measurements of local betatron coupling and beam phase advance with micrometre beam excitation. The oscillation sub-system employs gain-controlled RF amplifiers, shared with the orbit system, and followed by dedicated diode detectors to demodulate the beam oscillation signals into the kHz frequency range, subsequently digitized by multi-channel 24-bit ADCs. The digital signals are processed in each front-end with an FPGA and the results of reduced throughput are sent using an Ethernet protocol to a common concentrator, together with the orbit data. The phase advance calculation between multiple Beam Position Monitors (BPMs) requires that all DOROS front-ends have a common phase reference. This paper presents methods used to generate such a reference and to maintain a stable synchronous sampling on all system front-ends. The performance of the DOR...

  11. A normal form approach to the theory of nonlinear betatronic motion

    International Nuclear Information System (INIS)

    Bazzani, A.; Todesco, E.; Turchetti, G.; Servizi, G.

    1994-01-01

    The betatronic motion of a particle in a circular accelerator is analysed using the transfer map description of the magnetic lattice. In the linear case the transfer matrix approach is shown to be equivalent to the Courant-Snyder theory: In the normal coordinates' representation the transfer matrix is a pure rotation. When the nonlinear effects due to the multipolar components of the magnetic field are taken into account, a similar procedure is used: a nonlinear change of coordinates provides a normal form representation of the map, which exhibits explicit symmetry properties depending on the absence or presence of resonance relations among the linear tunes. The use of normal forms is illustrated in the simplest but significant model of a cell with a sextupolar nonlinearity which is described by the quadratic Henon map. After recalling the basic theoretical results in Hamiltonian dynamics, we show how the normal forms describe the different topological structures of phase space such as KAM tori, chains of islands and chaotic regions; a critical comparison with the usual perturbation theory for Hamilton equations is given. The normal form theory is applied to compute the tune shift and deformation of the orbits for the lattices of the SPS and LHC accelerators, and scaling laws are obtained. Finally, the correction procedure of the multipolar errors of the LHC, based on the analytic minimization of the tune shift computed via the normal forms, is described and the results for a model of the LHC are presented. This application, relevant for the lattice design, focuses on the advantages of normal forms with respect to tracking when parametric dependences have to be explored. (orig.)

  12. Kinetic description of self-field effects on laser and betatron emission in wiggler-pumped ion-channel free electron lasers

    International Nuclear Information System (INIS)

    Alimohamadi, M; Mehdian, H; Hasanbeigi, A

    2011-01-01

    The effects of self-fields on the free electron lasers (FELs) with a helical wiggler and ion-channel guiding are considered. The steady-state orbits for a single electron in this configuration are obtained. The rate of change of axial velocity with energy, the characteristic function Φ, is derived and studied numerically. A kinetic approach has been used to get the effects of self-field on the FEL and betatron gain formula in the low-gain-pre-pass limit. It is shown that betatron gain is smaller than FEL gain. We also found a gain decrement (enhancement), arising from diamagnetism (paramagnetism) generated by the self-magnetic field for group I (group II) orbits. It is interesting that the gain enhancement is found for the non-relativistic part of group II orbits. The FEL gain and betatron gain have also been investigated for different relativistic factors γ.

  13. Evaluation of the combined betatron and momentum cleaning in point 3 in terms of cleaning efficiency and energy deposition for the LHC Collimation upgrade

    CERN Document Server

    Lari, L; Boccone, V; Brugger, M; Cerutti, F; Ferrari, A; Rossi, A; Versaci, R; Vlachoudis, V; Wollmann, D; Mereghetti, A; Faus-Golfe, A

    2011-01-01

    The Phase I LHC Collimation System Upgrade could include moving part of the Betatron Cleaning from LHC Point 7 to Point 3 to improve both operation flexibility and intensity reach. In addition, the partial relocation of beam losses from the current Betatron cleaning region at Point 7 will mitigate the risks of Single Event Upsets to equipment installed in adjacent and partly not sufficient shielded areas. The combined Betatron and Momentum Cleaning at Point 3 implies that new collimators have to be added as well as to implement a new collimator aperture layout. This paper shows the whole LHC Collimator Efficiency variation with the new layout at different beam energies. As part of the evaluation, energy deposition distribution in the IR3 region give indications about the effect of this new implementations not only on the collimators themselves but also on the other beam line elements as well as in the IR3 surrounding areas.

  14. Study of the Betatron and Compton X-ray sources produced in laser wakefield acceleration of electrons

    International Nuclear Information System (INIS)

    Ferri, Julien

    2016-01-01

    An ultra-short and ultra-intense laser pulse propagating in a low-density gas can accelerate in its wake a part of the electrons ionized from the gas to relativistic energies of a few hundreds of MeV over distances of a few millimeters only. During their acceleration, as a consequence of their transverse motion, these electrons emit strongly collimated X-rays in the forward direction, which are called betatron radiations. The characteristics of this source turn it into an interesting tool for high-resolution imagery.In this thesis, we explore three different axis to work on this source using simulations on the Particles-In-Cells codes CALDER and CALDER-Circ. We first study the creation of a betatron X-ray source with kilo-joule and pico-second laser pulses, for which duration and energy are then much higher than usual in this domain. In spite of the unusual laser parameters, we show that X-ray sources can still be generated, furthermore in two different regimes.In a second study, the generally observed discrepancies between experiments and simulations are investigated. We show that the use of realistic laser profiles instead of Gaussian ones in the simulations strongly degrades the performances of the laser-plasma accelerator and of the betatron source. Additionally, this leads to a better qualitative and quantitative agreement with the experiment. Finally, with the aim of improving the X-ray emission, we explore several techniques based on the manipulation of the plasma density profile used for acceleration. We find that both the use of a transverse gradient and of a density step increases the amplitude of the electrons transverse motions, and then increases the radiated energy. Alternatively, we show that this goal can also be achieved through the transition from a laser wakefield regime to a plasma wakefield regime induced by an increase of the density. The laser wakefield optimizes the electron acceleration whereas the plasma wakefield favours the X

  15. Nu shifts in betatron oscillations from uniform perturbations in the presence of non-linear magnetic guide fields

    International Nuclear Information System (INIS)

    Crebbin, K.C.

    1985-05-01

    Uniform magnetic field perturbations cause a closed orbit distortion in a circular accelerator. If the magnetic guide field is non-linear these perturbations can also cause a Nu shift in the betatron oscillations. Such a shift in radial Nu values has been observed in the Bevalac while studying the low energy resonant extraction system. In the Bevalac, the radial perturbation comes from the quadrants being magnetically about 0.8% longer than 90 0 . The normal effect of this type of perturbation is a radial closed orbit shift and orbit distortion. The Nu shift, associated with this type of perturbation in the presence of a non-linear guide field, is discussed in this paper. A method of handling the non-linear n values is discussed as well as the mechanism for the associated Nu shift. Computer calculations are compared to measurements. 2 refs., 4 figs

  16. Relative measurements of fast neutron contamination in 18-MV photon beams from two linear accelerators and a betatron

    International Nuclear Information System (INIS)

    Gur, D.; Bukovitz, A.G.; Rosen, J.C.; Holmes, B.G.

    1979-01-01

    Fast neutron contamination in photon beams in the 20 MV range have been reported in recent years. In order to determine if the variations were due mainly to differences in measurement procedures, or inherent in the design of the accelerators, three different 18-MV (BJR) photon beams were compared using identical analytical techniques. The units studied were a Philips SL/75-20 and a Siemens Mevatron-20 linear accelerators and a Schimadzu betatron. Gamma spectroscopy of an activated aluminum foil was the method used. By comparing the relative amounts of neutron contamination, errors associated with absolute measurements such as detector efficiency and differences in activation foils were eliminated. Fast neutron contaminations per rad of x rays in a ratio of 6.7:3.7:1 were found for the Philips, Schimadzu and Siemens accelerators, respectively

  17. Pump requirements for betatron-generated femtosecond X-ray laser at saturation from inner-shell transitions

    International Nuclear Information System (INIS)

    Ribiere, M.; Grunenwald, J.; Ribeiro, P.; Sebban, S.; Phuoc, K.Ta; Gautier, J.; Kozlova, M.; Zeitoun, P.; Rousse, A.; Jacquemot, S.; Cheron, B.G.

    2012-01-01

    We study pump requirements to produce femtosecond X-ray laser pulses at saturation from inner-shell transitions in the amplified spontaneous emission regime. Since laser-based betatron radiation is considered as the pumping source, we first study the impact of the driving laser power on its intensity. Then we investigate the amplification behavior of the K-a transition of nitrogen at 3.2 nm (395 eV) from radiative transfer calculations coupled with kinetics modeling of the ion population densities. We show that the saturation regime may be experimentally achieved by using PW-class laser-accelerated electron bunches. Finally, we show that this X-ray laser scheme can be extended to heavier atoms and we calculate pump requirements to reach saturation at 1.5 nm (849 eV) from the K-a transition of neon. (authors)

  18. The production of radioisotopes with a betatron using an internal bombarding technique; Production de radioisotopes par bombardement interne dans un betatron; Proizvodstvo radioizotopov s pomoshch'yu betatrona s ispol'zovaniem metoda vnutrennej bombardirovki; Obtencion de radioisotopos por bombardeo interno en el betatron

    Energy Technology Data Exchange (ETDEWEB)

    Morinaga, H [Department of Physics, Tohoku University, Sendai (Japan)

    1962-01-15

    A new technique for producing radioisotopes of high specific activity with a betatron has been developed and is being used successfully. Materials to be activated are placed inside the doughnut at the end of a blind cylinder inserted from outside; thus samples are bombarded under one atmosphere just behind the bremsstrahlung target where the radiation intensity is extremely high. The saturation activity of Cu{sup 62} produced on a small piece of copper exceeded 1 mc, and the highest specific activity obtainable was approximately 500 times that produced in a conventional arrangement. So far, this internal-target technique has been used only for nuclear spectroscopy work; eight new species of radioactive isotopes (Co{sup 63}, Ga{sup 75}, As{sup 81}, In{sup 121}, In{sup 123}, Tm{sup 173}, Tm{sup 175} and Ac{sup 231}) have been identified and several new isomers have been found. The feasibility of this bombarding technique opens neiv possibilities, since medical, industrial or research betatrons may now be used, for isotope production. Short-lived isotopes are often more convenient in various applications because of their fast decay and high-energy radiation, and they may be made readily without any special skill. (author) [French] On a mis au point et utilise avec succes line technique nouvelle pour la production de radioisotopes d'activite specifique elevee dans un betatron. Les matieres a activer sont placees a l'interieur d'un tube toroidal, a l'extremite d'un cylindre a ouverture unique introduit de l'exterieur; les echantillons se trouvent ainsi bombardes, sous une atmosphere, juste derriere la cible de rayonnement de freinage, a l'endroit ou l'intensite du rayonnement est extremement elevee. L'activite de saturation du {sup 62}Cu produite sur de petits morceaux de cuivre depassait 1 millicurie et l'activite specifique la plus elevee que l'on ait pu obtenir egalait environ 500 fois l'activite produite dans un dispositif classique. Jusqu'a present, cette technique

  19. Theses. Beam studies for the CERN antiproton decelerator and a new interpretation of the resonance theory for betatron motion

    Energy Technology Data Exchange (ETDEWEB)

    De Ninno, G

    1999-07-01

    The two parts of the thesis are a mission-oriented task devoted to solve some practical problems of the Antiproton Decelerator (AD) project at CERN, and a theoretical study leading to a new method for representing and compensating betatron resonances. The AD is a new machine (at the moment under commissioning at CERN) that will allow the collection and the deceleration of an antiproton beam from 3.5 GeV/c down to 100 MeV/c (the momentum favoured for the foreseen physics experiments). The need to employ the AD magnets over a wide range required a careful study of their characteristics. The presence of a solenoid inside the AD electron cooling device generates linear coupling between the transverse degrees of freedom of the single-particle motion. Coupling can lead to operational problems and therefore a compensation scheme had tobe designed. The long-standing problem has been solved of how to establish a relationship between the two standard methods for dealing with linear coupling: the matrix approach and the Hamiltonian approach. The bridge was built by including in the Hamiltonian approach in the high frequency part of the perturbative Hamiltonian due to coupling. The procedure was generalised to the nonlinear case and, a new method was proposed for dealing both with linear and nonlinear resonances. (author)

  20. Theses. Beam studies for the CERN antiproton decelerator and a new interpretation of the resonance theory for betatron motion

    International Nuclear Information System (INIS)

    De Ninno, G.

    1999-01-01

    The two parts of the thesis are a mission-oriented task devoted to solve some practical problems of the Antiproton Decelerator (AD) project at CERN, and a theoretical study leading to a new method for representing and compensating betatron resonances. The AD is a new machine (at the moment under commissioning at CERN) that will allow the collection and the deceleration of an antiproton beam from 3.5 GeV/c down to 100 MeV/c (the momentum favoured for the foreseen physics experiments). The need to employ the AD magnets over a wide range required a careful study of their characteristics. The presence of a solenoid inside the AD electron cooling device generates linear coupling between the transverse degrees of freedom of the single-particle motion. Coupling can lead to operational problems and therefore a compensation scheme had to be designed. The long-standing problem has been solved of how to establish a relationship between the two standard methods for dealing with linear coupling: the matrix approach and the Hamiltonian approach. The bridge was built by including in the Hamiltonian approach in the high frequency part of the perturbative Hamiltonian due to coupling. The procedure was generalised to the nonlinear case and, a new method was proposed for dealing both with linear and nonlinear resonances. (author)

  1. High-quality electron beam generation and bright betatron radiation from a cascaded laser wakefield accelerator (Conference Presentation)

    Science.gov (United States)

    Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Yu, Changhai; Wang, Cheng; Liu, Jiaqi; Qing, Zhiyong; Ming, Fang; Xu, Yi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2017-05-01

    betatron radiation via manipulating the e-beam transverse oscillation in the wakefield. Very brilliant quasi-monochromatic betatron x-rays in tens of keV with significant enhancement both in photon yield and peak energy have been generated. Besides, by employing a self-synchronized all-optical Compton scattering scheme, in which the electron beam collided with the intense driving laser pulse via the reflection of a plasma mirror, we produced tunable quasi-monochromatic MeV γ-rays ( 33% full-width at half-maximum) with a peak brilliance of 3.1×1022 photons s-1 mm-2 mrad-2 0.1% BW at 1 MeV, which is one order of magnitude higher than ever reported value in MeV regime to the best of our knowledge. 1. J. S. Liu, et al., Phys. Rev. Lett. 107, 035001 (2011). 2. X. Wang, et al., Nat. Commun. 4, 1988 (2013). 3. W. P. Leemans, et al., Phys. Rev. Lett. 113, 245002 (2014) 4. W. T. Wang et al., Phys. Rev. Lett. 117, 124801 (2016). 5. Z. J. Zhang et al., Phys. Plasmas 23, 053106 (2016). 6. C. H. Yu et al., Sci. Rep. 6, 29518 (2016).

  2. Delayed radionecrosis of the cerebral hemispheres following betatron electron beam irradiation for scalp cancer. Pathological and clinical findings in one case

    International Nuclear Information System (INIS)

    Buge, A.; Escourolle, R.; Rancurel, G.; Gray, F.; Pertuiset, B.F.

    1979-01-01

    Three years following an irradiation by the Betatron's electron beam of an epithelioma in left parieto occipital area of the scalp in a female patient aged 77, early suffering from high blood pressure, a fatal pseudo-tumoral brain necrosis occurs presenting as a rapidly increasing from of Wernicke's aphasia. The necropsy shows intense radionecrosis lesions of the brain and the bone, free of any parenchymatous malignant proliferation note-wortly for the striking density of microvascular changes as previously described in radiation therapy. The case observed some years ago, allows to definite again the limits doses of the extracranial irradiations now estimated at 1760 rets. That is the 'Nominal Standard Dose' (NSD) measured by rets and taking into account the number of seances (N) and the duration of irradiation (T) which would be to take the place of 'the total dose' (D) (rads). These dosimetric criteria themselves must be adjusted to the age and the vascular features of each patient [fr

  3. Delayed radionecrosis of the cerebral hemispheres following betatron electron beam irradiation for scalp cancer. Pathological and clinical findings in one case

    Energy Technology Data Exchange (ETDEWEB)

    Buge, A; Escourolle, R; Rancurel, G; Gray, F; Pertuiset, B F [Clinique Neurologique de la Salpetriere, 75 - Paris (France)

    1979-01-01

    Three years following an irradiation by the Betatron's electron beam of an epithelioma in left parieto occipital area of the scalp in a female patient aged 77, early suffering from high blood pressure, a fatal pseudo-tumoral brain necrosis occurs presenting as a rapidly increasing from of Wernicke's aphasia. The necropsy shows intense radionecrosis lesions of the brain and the bone, free of any parenchymatous malignant proliferation note-wortly for the striking density of microvascular changes as previously described in radiation therapy. The case observed some years ago, allows to definite again the limits doses of the extracranial irradiations now estimated at 1760 rets. That is the 'Nominal Standard Dose' (NSD) measured by rets and taking into account the number of seances (N) and the duration of irradiation (T) which would be to take the place of 'the total dose' (D) (rads). These dosimetric criteria themselves must be adjusted to the age and the vascular features of each patient.

  4. Optical simulations of laser focusing for optimization of laser betatron

    Czech Academy of Sciences Publication Activity Database

    Stanke, Ladislav; Thakur, Anita; Šmíd, Michal; Gu, Yanjun; Falk, Kateřina

    2017-01-01

    Roč. 12, May (2017), 1-14, č. článku P05004. ISSN 1748-0221 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : matter * accelerator modelling and simulations * multi-particle dynamics * single-particle dynamics * Beam Optics Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.220, year: 2016

  5. Forming of electron beams from a betatron by foils scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A P; Shishov, V A [N.N. Petrov Research Inst. of Oncology, Leningrad (USSR). Laboratory of High Energics

    1976-12-01

    The technique of forming electron beams by one scattering foil and one compensating foil is discussed. This method provides a means for producing large-size uniform dose distributions with much smaller losses in dose rate as compared with conventional beam forming by ine foil. Moreover, the energy losses involved in this process and the background of concomitant bremsstrahlung are much less. A techinque of calculation to determine approximate parameters of the compensating foils is described.

  6. Experience of our new monitor for betatron therapy unit

    International Nuclear Information System (INIS)

    Kanno, Takenori; Sato, Hisao; Abe, Shunsuke; Suyama, Sachio.

    1975-01-01

    The amount of high energy electron beams is instable owing to lots of factors. As a matter of course, we should be careful in controling the amount of beams and it is also necessary to improve the beam monitoring apparatuses to make them stable. We have improved a usual monitor and had experiments with it. Here is the report. (1) An ordinary monitor is influenced by humidity, air atmosphere induced noise from an apparatus and so on. We made a new monitor with due regard to these factors. When the count is set to 100 with a usual monitor, the standard dose meter (ionex) indicate is 280 R in 16 MeV and the lowest one is 198 R. Between standard dose meter (ionex) and usual monitor is 82 R. With the trial monitor, the highest integrated dose is 103 R and the lowest one is 89 R. The difference is only 14 R and we are satisfied with the result. We gain this value after 16 months' trial. (2) The chamber is made air tight and has a double structure with a collection electrode sandwiched between high tension charging electrodes. In this way, we can eliminate the influences of humidity and induced noise from an apparatus itself and we can putup ion collection efficiency without widening the distance between the electrodes. As for the indicator circuit, we can get an input signal with a big s/n ratio and so we need not use high impedance resistors in the input circuitry. There is little affect from humidity and induced noise, and the circuit is stable. The indicator circuit has a complete electronic system, therefore counting speed is greatly improved and we can measure a large amount of beams in a short time. The trial monitor has four measuring ranges and so measuring is easily done. Our monitor has a circuit tester, too, and we can test the measuring circuit on occasion. (auth.)

  7. Study of betatron oscillations in a constant field and alternating gradient accelerator; Etude des oscillations betatron dans l'accelerateur a champ fixe et a gradient alterne

    Energy Technology Data Exchange (ETDEWEB)

    Lauzanne, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The conditions for the stability of a constant energy particle beam circulating in the magnetic field of the F.F.A.G. accelerator are studied. By a mathematical study it is possible to derive the equations for the equilibrium orbit and for the low amplitude oscillations, and the expressions for the amplitude stability limits of the beam. For this, approximation methods are used, in particular the linearization of the differential equations of the movement, and the method of gradual approximation. Numerical investigations carried out with the help of the IBM 7090 computer make it possible to judge the precision of the results given by the theory. A systematic variation of the parameters makes it possible to understand more clearly the mechanism of the amplitude variations of the trajectories. Finally, for the radial sector model, the possibility of introducing zones free from the magnetic field is considered. The case of short straight sections, respecting the field periodicity, and of that of long straight sections creating super-periods are considered. For the two cases are given solutions which should lead to a practical machine. (author) [French] On etudie les conditions de stabilite d'un faisceau de particules circulant a energie constante dans le champ magnetique de l'accelerateur F.F.A.G. Une etude mathematique permet d'etablir les equations de l'orbite d'equilibre et des oscillations de faible amplitude, les expressions des limites de stabilite en amplitude du faisceau. On emploie a cet effet des methodes d'approximation, essentiellement la linearisation des equations differentielles du mouvement et la methode de l'approximation douce. Des investigations numeriques effectuees a l'aide de la calculatrice IBM 7090 permettent d'apprecier l'exactitude des resultats fournis par la theorie. Une variation systematique des parametres permet de mieux comprendre le mecanisme des variations d'amplitude des trajectoires. On etudie enfin, pour le modele a secteur radial, la possibilite d'intercaler des zones non soumises au champ magnetique. On envisage les cas de sections droites courtes, respectant la periodicite du champ, et de sections droites longues qui creent des superperiodes. On indique dans les deux cas quelles solutions semblent conduire a des machines viables. (auteur)

  8. On electron betatron motion and electron injection in laser wakefield accelerators

    Czech Academy of Sciences Publication Activity Database

    Matsuoka, T.; McGuffey, C.; Cummings, P.G.; Bulanov, S.S.; Chvykov, V.; Dollar, F.; Horovitz, Y.; Kalinchenko, Galina; Krushelnick, K.; Rousseau, P.; Thomas, A.G.R.; Yanovsky, V.; Maksimchuk, A.

    2015-01-01

    Roč. 56, č. 8 (2015), s. 1-8 ISSN 0741-3335 Institutional support: RVO:68378271 Keywords : accelerators * beams and electromagnetism * nuclear physics * plasma physics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.404, year: 2015

  9. Study for magnets and electronics protection in the LHC Betatron-cleaning insertion

    International Nuclear Information System (INIS)

    Magistris, Matteo; Ferrari, Alfredo; Santana, Mario; Tsoulou, Katerina; Vlachoudis, Vasilis

    2006-01-01

    The collimation system of the future LHC at CERN is a challenging project, since the transverse energy intensities of the LHC beams are three orders of magnitude greater than at other current facilities. The two cleaning insertions (IR3 and IR7) housing the collimators will be among the most radioactive areas of LHC. The 1.5 km long IR7 insertion was fully implemented with the Monte Carlo cascade code FLUKA. Extensive simulations were performed to estimate the radiation level along the tunnel, as well as the energy deposition in the most critical elements. In particular, this paper discusses the latest results of the FLUKA studies, including the design of passive absorbers (to protect warm magnets) and a comparison of W and Cu as material for the active absorber jaws (to protect cold magnets). Any electronic device operating in strong radiation fields such as those expected for the LHC tunnel will undergo degradation. A shielding study was done to reduce radiation damage to the electronics

  10. Dispersion and betatron function correction in the Advanced Photon Source storage ring using singular value decomposition

    International Nuclear Information System (INIS)

    Emery, L.

    1999-01-01

    Magnet errors and off-center orbits through sextuples perturb the dispersion and beta functions in a storage ring (SR), which affects machine performance. In a large ring such as the Advanced Photon Source (APS), the magnet errors are difficult to determine with beam-based methods. Also the non-zero orbit through sextuples result from user requests for steering at light source points. For expediency, a singular value decomposition (SVD) matrix method analogous to orbit correction was adopted to make global corrections to these functions using strengths of several quadrupoles as correcting elements. The direct response matrix is calculated from the model of the perfect lattice. The inverse is calculated by SVD with a selected number of singular vectors. Resulting improvement in the lattice functions and machine performance will be presented

  11. Analytic calculation of the dynamical aperture for the two dimensional betatron motion in storage rings

    International Nuclear Information System (INIS)

    Hagel, J.; Moshammer, H.

    1988-01-01

    In this paper the authors study the on- momentum nonlinear equations of motion for the coupled transverse motion of a single charged particle in a storage ring. The authors seek for the maximum initial linear amplitudes in the two transverse directions x and y which lead to bounded particle motion as t tends to infinity. Although the authors restrict themselves to sextupole fields in this paper, the authors may easily extend the method to any order multipole. The aim of this work is to derive an analytic approximate expression for the dynamical aperture. The authors approach the solutions of x and y by use of a classical secular perturbation theory. Every coefficient of the perturbation series can be expressed as an analytic function of all the lower order coefficients. Although perturbation theory if it is evaluated to certain specific order leads only to an approximation in terms of bounded (trigonometric) functions the authors may derive information about the stability limit by considering the convergency radius of the general perturbation. This is done in the present paper by deriving an approximate analytic expression for the n-th order perturbation contribution of the whole series using only results up to second order. The actual calculations have been performed for the fully two dimensional case but for simplicity the authors shall explain only the one dimensional case of the pure horizontal motion

  12. Synchro-Betatron Stop-Bands Due to a Single Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A

    2004-06-17

    We analyze the stop-band due to crab cavities for horizontal tunes that are either close to integers or close to half integers. The latter case is relevant for today's electron/positron colliders. We compare this stop-band to that created by dispersion in an accelerating cavity and show that a single typical crab cavity creates larger stop-bands than a typical dispersion at an accelerating cavity. We furthermore analyze whether it is beneficial to place the crab cavity at a position where the dispersion and its slope vanish. We find that this choice is worth while if the horizontal tune is close to a half integer, but not if it is close to an integer. Furthermore we find that stop-bands can be avoided when the horizontal tune is located at a favorable side of the integer or the half integer. While we are here concerned with the installation of a single crab cavity in a storage ring, we show that the stop-bands can be weakened, although not eliminated, significantly when two crab cavities per ring are chosen suitably.

  13. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhang

    2016-10-01

    Full Text Available Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In addition to particle acceleration, this scheme can also induce the emission of high energy photons at ∼O(10–100  MeV. Our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.

  14. Application of split field technique with 42 MeV betatron bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, V; Caha, A; Krystof, V; Ott, O [Vyzkumny Ustav Klinicke a Experimentalni Onkologie, Brno (Czechoslovakia)

    1977-03-01

    The split field technique of external irradiation in oncology is described. A 120x28x79 mm lead shielding block was manufactured for a bremsstrahlung radiation with 42 MeV maximum energy. The block was secured to a holder whose design corresponded to tube holders. The block shielding capacity was tested by phantom measurements at a focal depth of 130 mm and at a distance of the block from the phantom surface of 990 mm. For the 42 MeV bremsstrahlung the reduction was found to be 15% of the focal dose in the 20x20 cm/sup 2/ field in the focal depth at a distance of 1200 mm from the bremsstrahlung focus. Dose distribution was established by using two opposite fields in combination as well as by the courses of the maximum and the relative doses in variation with the female patient's antero-posterior diameter. The results show that the split field technique permits a short adjustment time, is simple and reproducible. As against cobalt application, the beam characteristics permit reducing the integral dose.

  15. A non-linear canonical formalism for the coupled synchro-betatron motion of protons with arbitrary energy

    International Nuclear Information System (INIS)

    Barber, D.P.; Ripken, G.; Schmidt, F.

    1987-05-01

    We investigate the motion of protons of arbitrary energy (below and above transition energy) in a storage ring. The motion is described both in terms of the fully six-dimensional formalism with the canonical variables x, p x , z, p z , σ = s - v 0 . t, η = ΔE/E 0 = p σ and in terms of a dispersion formalism with new variables x, p x , z, p z , σ, p σ . Since the dispersion function is introduced into the equations of motion via a canonical transformation the symplectic structure of these equations is completely preserved. In this formulation it is then possible to define three uncoupled linear (unperturbed) oscillation modes which are described by phase ellipses. Perturbations manifest themselves as deviations from these ellipses. The equations of motion are solved within the framework of the fully six-dimensional formalism. (orig.)

  16. Application of the photoactivation analysis method with the use of betatron in the Polish copper mining industry

    International Nuclear Information System (INIS)

    Janiczek, J.; Kielsznia, R.; Olszewski, J.; Matenko, J.; Mencel, J.

    1976-01-01

    The review of chemical methods used for defining of copper contents in the ore output and flotation process is done. The photoactivation analysis buil in a copper mine is described. The results of works, that have been carried out in the laboratory during two years, are presented. (author)

  17. The influence of coupled synchrotron-betatron resonances on the extracted beam of the stretcher ring ELSA

    International Nuclear Information System (INIS)

    Neckenig, M.

    1987-09-01

    For the correction of the chromaticity for horizontal and vertical direction each four sextupoles are installed in ELSA. At a working point near 14/3 their influence on the quantity of the stable region of the transverse phase space is essentially smaller than that of the extraction sextupoles. On the other hand the latter lie at positions of low dispersion so that their influence on the chromaticity is negligible; therefore chromaticity correction and choice of the stable phase-space region are not strongly mutually dependent which will be of advance for the later operation. In extraction with corrected chromaticity the electrons are extracted only because of their different position in the transverse phase space which leads to a timely alteration of the η coordinate and by this to a migration of the extracted beam. Consequences of this are the strongly against extraction without chromaticity correction increased emittance and the doubled momentum uncertainty of the beam. Of advance however is the high extraction efficiency of 80% and the small number of the electrons remaining in the ring (below 2%). (orig./HSI) [de

  18. Digital Signal Processing Applications and Implementation for Accelerators Digital Notch Filter with Programmable Delay and Betatron Phase Adjustment for the PS, SPS and LHC Transverse Dampers

    CERN Document Server

    Rossi, V

    2002-01-01

    In the framework of the LHC project and the modifications of the SPS as its injector, I present the concept of global digital signal processing applied to a particle accelerator, using Field Programmable Gate Array (FPGA) technology. The approach of global digital synthesis implements in numerical form the architecture of a system, from the start up of a project and the very beginning of the signal flow. It takes into account both the known parameters and the future evolution, whenever possible. Due to the increased performance requirements of today's projects, the CAE design methodology becomes more and more necessary to handle successfully the added complexity and speed of modern electronic circuits. Simulation is performed both for behavioural analysis, to ensure conformity to functional requirements, and for time signal analysis (speed requirements). The digital notch filter with programmable delay for the SPS Transverse Damper is now fully operational with fixed target and LHC-type beams circulating in t...

  19. Stability and amplitude ranges of two dimensional non-linear oscillations with periodical Hamiltonian applied to betatron oscillations in circular particle accelerators: Part 1 and Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, R

    1957-03-07

    A mechanical system of two degrees of freedom is considered which can be described by a system of canonical differential equations. The Hamiltonian is assumed to be explicitly time-dependent with period 2. The aim is to bring this system by a sequence of canonical and periodical transformations into a form where the new Hamiltonian is constant and as simple as possible. The general theory is then brought to a stage where it becomes immediately applicable to given particular cases, particularly to circular particle accelerators. More general results are given on exciting strengths of different subresonance lines of equal order, on symmetry relations and on the one-dimensional case. An example is also given where the theory is overstressed and its predictions become wrong.

  20. Observation and analysis of oscillations in linear accelerators

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1991-11-01

    This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations

  1. Experimental studies to the dose distribution from pendulum irradiation of the middle part of the ESOPHAGUS with electrons and X-rays from a 42 MeV betatron

    International Nuclear Information System (INIS)

    Bark, R.

    1973-01-01

    Experimental studies of the dose distributions in the area of the middle esophagus resulting from pendulum irradiation with electrons and X-rays are reported. In these studies the energy and the arrangement of the pendulum angle were to be varied so as to generate the maximum possible dose decrease from the focal area to the healthy tissue. The electron energies used were 30 and 42 MeV, the energies of ultrahard X-rays were 42 MV. All studies carried out with the different pendulum angles indicated that electron therapy is in no way capable of meeting the existing requirements in terms of low exposures of the lung, bone marrow and skin. However, the use of ultrahard X-rays offers much better dose distribution conditions. These can be achieved only by bi-segmental pendulum irradiation under a bilateral angle of 70 0 (30 0 dorsal, 40 0 ventral). (orig./RF) [de

  2. On the stability, the periodic solutions and the resolution of certain types of non linear equations, and of non linearly coupled systems of these equations, appearing in betatronic oscillations

    International Nuclear Information System (INIS)

    Valat, J.

    1960-12-01

    Universal stability diagrams have been calculated and experimentally checked for Hill-Meissner type equations with square-wave coefficients. The study of these equations in the phase-plane has then made it possible to extend the periodic solution calculations to the case of non-linear differential equations with periodic square-wave coefficients. This theory has been checked experimentally. For non-linear coupled systems with constant coefficients, a search was first made for solutions giving an algebraic motion. The elliptical and Fuchs's functions solve such motions. The study of non-algebraic motions is more delicate, apart from the study of nonlinear Lissajous's motions. A functional analysis shows that it is possible however in certain cases to decouple the system and to find general solutions. For non-linear coupled systems with periodic square-wave coefficients it is then possible to calculate the conditions leading to periodic solutions, if the two non-linear associated systems with constant coefficients fall into one of the categories of the above paragraph. (author) [fr

  3. A low vertical β mode for the LNLS UVX electron storage ring

    International Nuclear Information System (INIS)

    Lin, Liu; Tavares, P.

    1991-01-01

    An operation mode with low vertical betatron function in one of the long dispersion free straight sections of the LNLS UVX Electron Storage Ring is studied for applications with small gap insertions. The flexibility of this lattice is analyzed regarding two aspects: the range of variation of the vertical betatron tune and the ability to set the betatron functions to high/low values in the insertion straights

  4. Application of digital beam position processor Libera on tune measurement

    International Nuclear Information System (INIS)

    Zhang Chunhui; Sun Baogen; Cao Yong; Lu Ping; Li Jihao

    2006-01-01

    Digital signal processing (DSP) is widely used in the field of beam diagnostics. Especially, DSP achieves very good performance in beam position signal analysis and betatron tune measurement. In Hefei light source, when beam was excited by narrow-band Gaussian white nose, Libera, a digital beam position processor, was used to process the signals from beam position monitor (BPM), which contained betatron oscillation. Fast Fourier transform (FFT) was applied to finding out betatron resonance frequency, from which the decimal part of betatron oscillation tune was calculated. By this means, the measure of horizontal tune was 3.5352 and the measure of vertical tune is 2.6299. (authors)

  5. Fundamentals of particle beam dynamics and phase space

    International Nuclear Information System (INIS)

    Weng, W.T.; Mane, S.R.

    1991-01-01

    This report discusses the following topics on synchrotron accelerators: Transverse motion---betatron oscillations; machine lattice; representation of a particle beam; and longitudinal motion---synchrotron oscillations

  6. Reminder of Lagrange-Hamilton formalism and of the corpuscular optics invariants

    International Nuclear Information System (INIS)

    Griess, F.

    1958-01-01

    Hamiltonian formalism - Canonical transformations - Invariants of Liouville, Helmholtz-Lagrange, Busch, Stoermer and Lagrange - Synchrotron's Hamiltonian - Betatron oscillation damping. (author) [fr

  7. Nonlinear dynamics in Nuclotron

    International Nuclear Information System (INIS)

    Dinev, D.

    1997-01-01

    The paper represents an extensive study of the nonlinear beam dynamics in the Nuclotron. Chromatic effects, including the dependence of the betatron tunes on the amplitude, and chromatic perturbations have been investigated taking into account the measured field imperfections. Beam distortion, smear, dynamic aperture and nonlinear acceptance have been calculated for different particle energies and betatron tunes

  8. Reminder of Lagrange-Hamilton formalism and of the corpuscular optics invariants; Rappel du formalisme de Lagrange-Hamilton et sur les invariants de l'optique corpusculaire

    Energy Technology Data Exchange (ETDEWEB)

    Griess, F.

    1958-03-14

    Hamiltonian formalism - Canonical transformations - Invariants of Liouville, Helmholtz-Lagrange, Busch, Stoermer and Lagrange - Synchrotron's Hamiltonian - Betatron oscillation damping. (author) [French] Formalisme Hamiltonien. Transformations canoniques. Invariants de Liouville, Helmholtz-Lagrange, Busch, Stoermer et Lagrange, Hamiltonien pour le synchrotron, Amortissement des oscillations betatrons (auteur)

  9. On the stability, the periodic solutions and the resolution of certain types of non linear equations, and of non linearly coupled systems of these equations, appearing in betatronic oscillations; Sur la stabilite, les solutions periodiques et la resolution de certaines categories d'equations et systemes d'equations differentielles couplees non lineaires apparaissant dans les oscillations betatroniques

    Energy Technology Data Exchange (ETDEWEB)

    Valat, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-12-15

    Universal stability diagrams have been calculated and experimentally checked for Hill-Meissner type equations with square-wave coefficients. The study of these equations in the phase-plane has then made it possible to extend the periodic solution calculations to the case of non-linear differential equations with periodic square-wave coefficients. This theory has been checked experimentally. For non-linear coupled systems with constant coefficients, a search was first made for solutions giving an algebraic motion. The elliptical and Fuchs's functions solve such motions. The study of non-algebraic motions is more delicate, apart from the study of nonlinear Lissajous's motions. A functional analysis shows that it is possible however in certain cases to decouple the system and to find general solutions. For non-linear coupled systems with periodic square-wave coefficients it is then possible to calculate the conditions leading to periodic solutions, if the two non-linear associated systems with constant coefficients fall into one of the categories of the above paragraph. (author) [French] Pour les equations du genre de Hill-Meissner a coefficients creneles, on a calcule des diagrammes universels de stabilite et ceux-ci ont ete verifies experimentalement. L'etude de ces equations dans le plan de phase a permis ensuite d'etendre le calcul des solutions periodiques au cas des equations differentielles non lineaires a coefficients periodiques creneles. Cette theorie a ete verifiee experimentalement. Pour Jes systemes couples non lineaires a coefficients constants, on a d'abord cherche les solutions menant a des mouvements algebriques. Les fonctions elliptiques et fuchsiennes uniformisent de tels mouvements. L'etude de mouvements non algebriques est plus delicate, a part l'etude des mouvements de Lissajous non lineaires. Une analyse fonctionnelle montre qu'il est toutefois possible dans certains cas de decoupler le systeme et de trouver des solutions generales. Pour les systemes couples non lineaires a coefficients periodiques creneles, il est alors possible de calculer les conditions menant a des solutions periodiques, si les deux systemes non lineaires adjoints a coefficients constants, entrent dans une des categories du paragraphe precedent. (auteur)

  10. Off-bucket Proton Losses during Ramping

    CERN Document Server

    Catalan-Lasheras, N

    1998-01-01

    In this paper, we report a study undertaken to determine whether longitudinal and transverse amplitudes become coupled before the loss of the off-bucket protons during the ramp. We compute the synchro tron as well as the betatron tune changes with momentum and determine if synchro-betatron resonances blow-up the transverse particle amplitude. A strong coupling might allow a betatron cleaning of the se particles before they are outside the momentum acceptance of the machine. We show that this is not the case, justifying the need of momentum cleaning.

  11. Chromaticity tracking using a phase modulation technique

    International Nuclear Information System (INIS)

    Tan, C.Y.; Fermilab

    2007-01-01

    In the classical chromaticity measurement technique, chromaticity is measured by measuring the change in betatron tune as the RF frequency is varied. This paper will describe a novel way of measuring chromaticity: we will phase modulate the RF with a known sine wave and then phase demodulate the betatron frequency. The result is a line in Fourier space which corresponds to the frequency of our sine wave modulation. The peak of this sine wave is proportional to chromaticity. For this technique to work, a tune tracker PLL system is required because it supplies the betatron carrier frequency. This method has been tested in the Tevatron and we will show the results here

  12. A nonlinear analysis of the EHF booster

    International Nuclear Information System (INIS)

    Colton, E.P.; Shi, D.

    1987-01-01

    We have analyzed particle motion at 1.2 GeV with assumption of nonlinearities arising from non-linear space charge forces and from the lattice sextupoles which are tuned to cancel the machine chromaticity. In the first case the motion is as expected and there are no problems as long as the x and y betatron tunes are separated by an integer or more. In the second case the motion is stable so long as the betatron amplitudes do not exceed values corresponding to beam normalized emittance of 100 mm-mr; when this occurs the effects of fifth-order betatron resonances are observed. 3 refs

  13. Reconstruction of lattice parameters and beam momentum distribution from turn-by-turn beam position monitor readings in circular accelerators

    Directory of Open Access Journals (Sweden)

    C. S. Edmonds

    2014-05-01

    Full Text Available In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position measurements is presented. Further analysis of the same beam position monitor data allows estimates to be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam. The methods are tested through application to data taken on the linear nonscaling fixed field alternating gradient accelerator, EMMA.

  14. Simulation study of the beam-beam interaction at SPEAR

    International Nuclear Information System (INIS)

    Tennyson, J.

    1980-01-01

    A two dimensional simulation study of the beam-beam interaction at SPEAR indicates that quantum fluctuations affecting the horizontal betatron oscillation play a critical role in the vertical beam blowup

  15. A simple way to characterize linear coupling in a storage ring

    International Nuclear Information System (INIS)

    Wolski, Andrzej

    2004-01-01

    The techniques of normal form analysis, well known in the literature, can be used to provide a straightforward characterization of linear betatron dynamics in a coupled lattice. Here, we consider both the beam distribution and the betatron oscillations in a storage ring, assuming that the beam emittances and betatron actions respectively are provided as parameters. We find that the beta functions for uncoupled motion generalize in a simple way to the coupled case. Defined in the way that we propose, the beta functions remain well behaved (positive and finite) under all circumstances, and have essentially the same physical significance for the beam size and betatron oscillations as in the uncoupled case. We discuss a technique for making direct measurements of the ratio of the coupled lattice functions at different points in the lattice

  16. Collins' bypass for the main ring

    International Nuclear Information System (INIS)

    Ohnuma, S.

    1982-01-01

    Design of the bypass for the main ring at Fermilab is discussed. Specific design features discussed include space, path length, geometric closure, matching of betatron functions, and external dispersion. Bypass parameters are given

  17. Recent rebatron studies

    International Nuclear Information System (INIS)

    Prakash, A.; Marsh, S.J.; Dialetis, D.; Agritellis, C.; Sprangle, P.; Kapetanakos, C.A.

    1985-01-01

    The rebatron is a high-current compact accelerator concept with differs from the modified betatron and the stellatron. In the latter devices, the acceleration mechanism is the relatively slow betatron mechanism. In the rebatron, there is rapid acceleration of the electron as the beam repeatedly passes through a small (few centimeters long) high-gradient accelerating gap, the beam being recirculated through the gap in a single toroidal beam line of major radius ∼ 1m. Whereas the betatron acceleration typically boosts the electron energy by 2 MeV per pass so that the beam attains a given final energy rapidly (in a few μsec) in a few revolutions, as compared to thousands of revolutions needed in a 50 MeV betatron. Hence the name REBATRON (Rapid Electron Beam Acceleration device). The rapid acceleration eases the problem of growth of beam instabilities and makes fractional synchrotron losses small

  18. Application research of tune measurement system in Hefei light source

    International Nuclear Information System (INIS)

    Sun Baogen; He Duohui; Xu Hongliang; Lu Ping; Wang Junhua; Gao Yunfeng; Wang Lin; Liu Jinying

    2002-01-01

    The author introduces the measurement and research of some beam parameters using tune measurement system for Hefei Light Source (HLS), which include the betatron tune, beta function, natural chromaticity, corrected chromaticity, and central frequency. Additionally, it also describes the measurement of the influence of DC clearing electrodes on the betatron tune shift and gives some measurement results. The measurement results are compared with the theoretical values and they are in good agreement

  19. Experimental studies of nonlinear beam dynamics

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Ball, M.; Brabson, B.; Collins, J.; Curtis, S.A.; Derenchuck, V.; DuPlantis, D.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Hamilton, B.; Jones, W.P.; Lamble, W.; Lee, S.Y.; Li, D.; Minty, M.G.; Sloan, T.; Xu, G.; Chao, A.W.; Ng, K.Y.; Tepikian, S.

    1992-01-01

    The nonlinear beam dynamics of transverse betatron oscillations were studied experimentally at the Indiana University Cyclotron Facility cooler ring. Motion in one dimension was measured for betatron tunes near the third, fourth, fifth, and seventh integer resonances. This motion is described by coupling between the transverse modes of motion and nonlinear field errors. The Hamiltonian for nonlinear particle motion near the third- and fourth-integer-resonance conditions has been deduced

  20. SRS Behaviour with a superconducting 5-Tesla wiggler insertion

    International Nuclear Information System (INIS)

    Suller, V.P.; Marks, N.; Poole, M.W.; Walker, R.P.

    1983-01-01

    A 5 Tesla superconducting wavelength shifting wiggler magnet has been inserted into the SRS lattice. Observations have been made of the behaviour of the stored electron beam with the magnet powered. Betatron tune shifts and modulation of the betatron function have been measured and good agreement obtained with theory. Closed orbit changes have been examined and the stored beam lifetime optimised. The magnet is fully operational and is producing intense x-ray beams for users

  1. Programmable high power beam damper for the Tevatron

    International Nuclear Information System (INIS)

    Crisp, J.; Goodwin, R.; Gerig, R.

    1985-06-01

    A bunch-by-bunch beam damper has been developed for the Fermilab Tevatron. The system reduces betatron oscillation amplitudes and incorporates some useful machine diagnostics. The device is programmable via look-up tables so the output is an arbitrary function, on a bunch-by-bunch basis, of the beam displacement. We are presently using this feature to measure the betatron tune throughout the acceleration cycle. 4 refs

  2. Calorimetric determination of electron beam output

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, J; Kovar, Z; Jandejsek, L [Ceskoslovenska Akademie Ved, Prague. Ustav Radiologicke Dozimetrie

    1979-07-01

    Two types of portable graphite calorimeter are described having modified replaceable absorbers allowing measurements of energy flux density in betatron electron beams in a range of 4 to 50 MeV. In a range of 4 to 20 MeV the total measurement error was about 1%. The results are discussed of the standardization of Siemens and Ostron medical betatrons using the said calorimeters.

  3. Measurement and correction of chromaticity in Hefei light source

    International Nuclear Information System (INIS)

    Sun Baogen; Xu Hongliang; He Duohui; Wang Junhua; Lu Ping

    2001-01-01

    The measurement and correction of chromaticity for Hefei light source is introduced. The natural chromaticity is obtained by detecting the variation of the betatron tune with the main dipole field strength. The correction chromaticity is obtained by detecting the variation of the betatron tune with the RF frequency. The theoretic analysis and formula for the two methods is given. The measurement results of chromaticity are given

  4. Some trends in the develpment of electron accelerators

    International Nuclear Information System (INIS)

    Petrov, I.I.

    1976-01-01

    Trends of further development of electron linear accelerators, betatrons and microtrons based upon the first stage of theoretic-information forecasting technique as well as upon the first stage of regressive analysis have been considered. An analysis of dynamics of scientific and technical publications and patenting dynamics has shown that electron linear accelerators are the most promising whereas further elaboration of betatrons is considered fruitless

  5. Transverse wakefield effects in the two-beam accelerator

    International Nuclear Information System (INIS)

    Selph, F.; Sessler, A.

    1986-01-01

    Transverse wakefield effects in the high-gradient accelerating structure of the two-beam accelerator (TBA) are analyzed theoretically using three different models. The first is a very simple two-particle model, the second is for a beam with uniform charge distribution, constant betatron wavelength, and a linear wake approximation. Both of these models give analytic scaling laws. The third model has a Gaussian beam (represented by 11 superparticles), energy variation across the bunch, acceleration, variation of betatron focusing with energy, and variation of the wakefield from linearity. The three models are compared, and the third model is used to explore the wakefield effects when accelerator parameters such as energy, energy spread, injection energy, accelerating gradient, and betatron wavelength are varied. Also explored are the sensitivity of the beam to the wakefield profile to the longitudinal charge distribution. Finally, in consideration of wakefield effects, possible parameters of a TBA are presented. (orig./HSI)

  6. Orbit and optics distortion in fixed field alternating gradient muon accelerators

    Directory of Open Access Journals (Sweden)

    Shinji Machida

    2007-11-01

    Full Text Available In a linear nonscaling fixed field alternating gradient (FFAG accelerator, betatron tunes vary over a wide range and a beam has to cross integer and half-integer tunes several times. Although it is plausible to say that integer and half-integer resonances are not harmful if the crossing speed is fast, no quantitative argument exists. With tracking simulation, we studied orbit and optics distortion due to alignment and magnet errors. It was found that the concept of integer and half-integer resonance crossing is irrelevant to explain beam behavior in a nonscaling FFAG when acceleration is fast and betatron tunes change quickly. In a muon FFAG accelerator, it takes 17 turns for acceleration and the betatron tunes change more than 10, for example. Instead, the orbit and optics distortion is excited by random dipole and quadrupole kicks. The latter causes beam size growth because the beam starts tumbling in phase space, but not necessarily with emittance growth.

  7. Normal form analysis of linear beam dynamics in a coupled storage ring

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Woodley, Mark D.

    2004-01-01

    The techniques of normal form analysis, well known in the literature, can be used to provide a straightforward characterization of linear betatron dynamics in a coupled lattice. Here, we consider both the beam distribution and the betatron oscillations in a storage ring. We find that the beta functions for uncoupled motion generalize in a simple way to the coupled case. Defined in the way that we propose, the beta functions remain well behaved (positive and finite) under all circumstances, and have essentially the same physical significance for the beam size and betatron oscillation amplitude as in the uncoupled case. Application of this analysis to the online modeling of the PEP-II rings is also discussed

  8. Luminosity lifetime in the Tevatron

    International Nuclear Information System (INIS)

    Jackson, G.; Finley, D.; Johnson, R.P.; Kerns, Q.; McCarthy, J.; Siemann, R.; Zhang, P.

    1988-01-01

    Since the inauguration of colliding proton-antiproton operations in 1987, the Tevatron has exhibited luminosity lifetimes shorter than expected. During a typical colliding beam storage period, called a store, luminosity is calculated periodically by measuring the charge and emittances of each bunch. The growth of the transverse bunch emittances is the dominant cause of luminosity deterioration. Throughout, this period, the position spectrum of the bunches exhibited betatron signals larger than expected from Schottky noise. A model assuming externally driven betatron oscillations explains both the betatron signals and the emittance growth. A program is underway to improve the Tevatron luminosity lifetime. The abort kickers have been identified as sources of emittance growth, and some quadrupole power supplies are further candidates. Because the horizontal dispersion through the RF cavities is nonzero, RF phase noise has been investigated. Noise in the main dipole regulation circuit has also been studied. 13 refs., 4 figs

  9. Preliminary Studies Of A Phase Modulation Technique For Measuring Chromaticity

    International Nuclear Information System (INIS)

    Tan, C.-Y.

    2006-01-01

    The classical method for measuring chromaticity is to slowly modulate the RF frequency and then measure the betatron tune excursion. The technique that is discussed in this paper instead modulates the phase of the RF and then the chromaticity is obtained by phase demodulating the betatron tune. This technique requires knowledge of the betatron frequency in real time in order for the phase to be demodulated. Fortunately, the Tevatron has a tune tracker based on the phase locked loop principle which fits this requirement. A preliminary study with this technique has showed that it is a promising method for doing continuous chromaticity measurement and raises the possibility of doing successful chromaticity feedback with it

  10. Correction of Magnetic Optics and Beam Trajectory Using LOCO Based Algorithm with Expanded Experimental Data Sets

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A.; Edstrom, D.; Emanov, F. A.; Koop, I. A.; Perevedentsev, E. A.; Rogovsky, Yu. A.; Shwartz, D. B.; Valishev, A.

    2017-03-28

    Precise beam based measurement and correction of magnetic optics is essential for the successful operation of accelerators. The LOCO algorithm is a proven and reliable tool, which in some situations can be improved by using a broader class of experimental data. The standard data sets for LOCO include the closed orbit responses to dipole corrector variation, dispersion, and betatron tunes. This paper discusses the benefits from augmenting the data with four additional classes of experimental data: the beam shape measured with beam profile monitors; responses of closed orbit bumps to focusing field variations; betatron tune responses to focusing field variations; BPM-to-BPM betatron phase advances and beta functions in BPMs from turn-by-turn coordinates of kicked beam. All of the described features were implemented in the Sixdsimulation software that was used to correct the optics of the VEPP-2000 collider, the VEPP-5 injector booster ring, and the FAST linac.

  11. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    Science.gov (United States)

    Petrenko, A. V.; Valishev, A. A.; Lebedev, V. A.

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  12. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    Directory of Open Access Journals (Sweden)

    A. V. Petrenko

    2011-09-01

    Full Text Available Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  13. Theoretical aspects of some collective instabilities in high-energy particle storage rings

    International Nuclear Information System (INIS)

    Ruggiero, F.

    1986-01-01

    After an introduction to single-particle dynamics, based on a unified Hamiltonian treatment of betatron and synchrotron oscillations, we consider two examples of collective instabilities which can limit the performances of high-energy storage rings: the transverse mode coupling instability, due to wake fields, and the incoherent beam-beam instability. Special emphasis is placed on the localization of the interactions between particles and surrounding structures, such as the accelerating RF cavities. We derive an exact invariant for the linearized synchrotron motion and, starting from the Vlasov equation, we discuss the coherent synchro-betatron resonances caused by localized impedance. Under suitable assumptions, we show that the effect of the beam-beam kicks in electron-positron machines can be described by new diffusive terms in a ''renormalized'' Fokker-Planck equation and is therefore equivalent to an additional source of noise for the betatron oscillations. (orig.)

  14. Acceleration region influence on beam parameters on stripping foil

    International Nuclear Information System (INIS)

    Samsonov, E.V.; Tomic, S.

    1999-01-01

    Some formulas describing the beam parameters on the stripping foil (SF) as a function of the radial amplitude of betatron oscillations and energy gain are derived. The results computed by these formulas are in good agreement with the results of the numerical calculations. Obtained results show that between the radial emittance and the energy spread exists parametric dependence via amplitude of radial betatron oscillations. This conclusion allows one to create a working diagram of expected beam parameters on SF. This diagram may be particularly useful for the extraction system designers since it gives relationship between parameters considered as the extraction system input parameters. (author)

  15. Visual observation of digitalised signals by workstations

    International Nuclear Information System (INIS)

    Navratil, J.; Akiyama, A.; Mimashi, T.

    1994-01-01

    The idea to have on-line information about the behavior of betatron tune, as a first step to the future automatic control of TRISTAN accelerator tune, appeared near the end of 1991. At the same time, other suggestions concerning a rejuvenation of the existing Control System arose and therefore the newly created project ''System for monitoring betatron tune'' (SMBT) started with several goals: - to obtain new on-line information about the beam behavior during the acceleration time, - to test the way of possible extension and replacement of the existing control system of TRISTAN, - to get experience with the workstation and XWindow software

  16. Double layer -- a particle accelerator in the magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xiangrong [Los Alamos National Laboratory

    2015-07-16

    Slides present the material under the following topics: Introduction (What is a double layer (DL)? Why is it important? Key unsolved problems); Theory -- time-independent solutions of 1D Vlasov--Poisson system; Particle-in-cell simulations (Current-driven DLs); and Electron acceleration by DL (Betatron acceleration). Key problems include the generation mechanism, stability, and electron acceleration. In summary, recent observations by Van Allen Probes show large number of DLs in the outer radiation belt, associated with enhanced flux of relativistic electrons. Simulations show that ion acoustic double layers can be generated by field-aligned currents. Thermal electrons can gain energy via betatron acceleration in a dipole magnetic field.

  17. Common mode noise on the main Tevatron bus and associated beam emittance growth

    International Nuclear Information System (INIS)

    Zhang, P.; Johnson, R.P.; Kuchnir, M.; Siergiej, D.; Wolff, D.

    1991-05-01

    Overlap of betatron tune frequencies with the power supply noise spectrum can cause transverse beam emittance growth in a storage ring. We have studied this effect for tunes near the integer, where the betatron frequency is low. By injecting noise onto the main power supply bus, it was determined that common mode noise was the dominant source of emittance growth. A noise suppression feed-back loop was then used to reduce the noise and the emittance growth. These experiments are described as are investigations of the common mode propagation along the Tevatron bus and measurements of the fields generated by common mode excitation of isolated Tevatron magnets. 3 refs., 4 figs

  18. Measurement and correction of accelerator optics

    International Nuclear Information System (INIS)

    Zimmerman, F.

    1998-06-01

    This report reviews procedures and techniques for measuring, correcting and controlling various optics parameters of an accelerator, including the betatron tune, beta function, betatron coupling, dispersion, chromaticity, momentum compaction factor, and beam orbit. The techniques described are not only indispensable for the basic set-up of an accelerator, but in addition the same methods can be used to study more esoteric questions as, for instance, dynamic aperture limitations or wakefield effects. The different procedures are illustrated by examples from several accelerators, storage rings, as well as linacs and transport lines

  19. Classical and modern power spectrum estimation for tune measurement in CSNS RCS

    International Nuclear Information System (INIS)

    Yang Xiaoyu; Xu Taoguang; Fu Shinian; Zeng Lei; Bian Xiaojuan

    2013-01-01

    Precise measurement of betatron tune is required for good operating condition of CSNS RCS. The fractional part of betatron tune is important and it can be measured by analyzing the signals of beam position from the appointed BPM. Usually these signals are contaminated during the acquisition process, therefore several power spectrum methods are used to improve the frequency resolution. In this article classical and modern power spectrum methods are used. In order to compare their performance, the results of simulation data and IQT data from J-PARC RCS are discussed. It is shown that modern power spectrum estimation has better performance than the classical ones, though the calculation is more complex. (authors)

  20. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Laboratory, Upton, Long Island, NY 11973 (United States); Huang, Xiaobiao, E-mail: xiahuang@slac.stanford.edu [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2016-08-21

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  1. Global Decoupling on the RHIC Ramp

    CERN Document Server

    Luo, Yun; Della Penna, Al; Fischer, Wolfram; Laster, Jonathan S; Marusic, Al; Pilat, Fulvia Caterina; Roser, Thomas; Trbojevic, Dejan

    2005-01-01

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). In the polarized proton run, the betatron tunes are required to keep almost constant on the ramp to avoid spin resonance line crossing and the beam polarization loss. Some possible correction schemes on the ramp, like three-ramp correction, the coupling amplitude modulation and the coupling phase modulaxtion, have been found. The principles of these schemes are shortly reviewed and compared. Operational results of their applications on the RHIC ramps are given.

  2. Design status of the 2.5 GeV National Synchrotron Light Source x-ray ring

    International Nuclear Information System (INIS)

    Krinsky, S.; Blumberg, L.; Bittner, J.; Galayda, J.; Heese, R.; Schuchman, J.C.; van Steenbergen, A.

    1979-01-01

    The present state of the design of the 2.5 GeV electron storage ring for the National Synchrotron Light Source is described. This ring will serve as a dedicated source of synchrotron radiation in the wavelength range 0.1 A to 30 A. While maintaining the basic high brigtness features of the eariler developed lattice structure, recent work resulted in a more economical magnet system, is simplified chromaticity corrections, and improved distribution of the X-ray beam lines. In addition, the adequacy of the dynamic aperture for stable betatron oscillations has been verified for a variety of betatron tunes

  3. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  4. TRACKING SIMULATIONS NEAR HALF-INTEGER RESONANCE AT PEP-II

    International Nuclear Information System (INIS)

    Nosochkov, Yuri

    2003-01-01

    Beam-beam simulations predict that PEP-II luminosity can be increased by operating the horizontal betatron tune near and above a half-integer resonance. However, effects of the resonance and its synchrotron sidebands significantly enhance betatron and chromatic perturbations which tend to reduce dynamic aperture. In the study, chromatic variation of horizontal tune near the resonance was minimized by optimizing local sextupoles in the Interaction Region. Dynamic aperture was calculated using tracking simulations in LEGO code. Dependence of dynamic aperture on the residual orbit, dispersion and β distortion after correction was investigated

  5. Tuning the arcs of the SLAC linear collider

    International Nuclear Information System (INIS)

    Fieguth, T.; Bambade, P.; Barklow, T.; Brown, K.L.; Bulos, F.; Burke, D.L.; Fischer, G.E.; Hutton, A.; Jung, C.; Kheifets, S.A.; Komamiya, S.; Mattison, T.; Murray, J.J.; Phinney, N.; Ritson, D.M.; Sands, M.; Sheppard, J.C.; Spence, W.; Toge, N.; Weinstein, A.; Haissinski, J.; Placidi, M.

    1988-01-01

    New experience with the operation of the SLC Arcs is described. Each of these Arcs consists of sequential second-order achromats. Initial measurements showed that the betatron phase advances were systematically offset from the design values. This effect, combined with the abrupt rolls of the achromats needed to follow the local terrain, led to strong cross-plane coupling and to growth of the betatron oscillations. The methods and modifications developed to establish proper operation of the Arcs are described in this paper

  6. Chicane and wiggler based bunch compressors for future linear colliders

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.; Emma, P.; Kheifets, S.

    1993-05-01

    In this paper, we discuss bunch compressors for future linear colliders. In the past, the bunch compression optics has been based upon achromatic cells using strong sextupoles to correct the dispersive and betatron chromaticity. To preserve the very small emittances required in most future collider designs, these schemes tend to have very tight alignment tolerances. Here, we describe bunch compressors based upon magnetic chicanes or wigglers which do need sextupoles to correct the chromatic emittance dilution. The dispersive chromaticity cancels naturally and the betatron chromaticity is not a significant source of emittance dilution. Thus, these schemes allow for substantially reduced alignment tolerances. Finally, we present a detailed design for the NLC linear collider

  7. Results of postoperative radiotherapy and radiation of recurrent tumours, observed in adenomas of the pituitary gland operated at a primary stage

    International Nuclear Information System (INIS)

    Oettle, E.

    1987-01-01

    This retrospective study included 134 patients showing adenomas of the pituitary gland. It was found that radiotherapy carried out immediately after surgery was superior to radiation commencing only after tumour recidivation. Treatment was predominantly based an 'ultrahard' X-rays (betatron), to a lesser extent on cobalt-60 gamma rays. (MBC) [de

  8. Dynamic Aperture Studies for SPEAR 3

    International Nuclear Information System (INIS)

    Nosochkov, Yuri

    1999-01-01

    The SSRL is investigating an accelerator upgrade project to replace the present 130 nm.rad FODO lattice with an 18 nm.rad double bend achromat lattice: SPEAR 3. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including optimization of linear optics, betatron tune, chromaticity and coupling correction, and effects of machine errors and insertion devices

  9. The partial Siberian snake experiment at the Brookhaven AGS

    International Nuclear Information System (INIS)

    Huang, H.; Caussyn, D.D.; Ellison, T.; Jones, B.; Lee, S.Y.; Schwandt, P.; Ahren, L.; Alessi, J.; Bleser, E.J.; Bunce, G.; Cameron, P.; Courant, E.D.; Foelsche, H.W.; Gardner, C.J.; Geller, J.; Lee, Y.Y.; Makdisi, Y.I.; Mane, S.R.; Ratner, L.; Reece, K.; Roser, T.; Skelly, J.F.; Soukas, A.; Tepikian, S.; Thern, R.E.; van Asselt, W.; Spinka, H.; Teng, L.; Underwood, D.G.; Yokosawa, A.; Wienands, U.; Bharadwaj, V.; Hsueh, S.; Hiramatsu, S.; Mori, Y.; Sato, H.; Yokoya, K.

    1992-01-01

    We are building a 4.7 Tesla-meter room temperature solenoid to be installed in a 10-foot long AGS straight section. This experiment will test the idea of using a partial snake to correct all depolarizing imperfection resonances and also test the feasibility of betatron tune jump in correction intrinsic resonances in the presence of a partial snake

  10. Thousand TeV in the center of mass: introduction to high-energy storage rings

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1982-09-01

    The lecture discusses, in a pedagogic way, a hypothetical 500 TeV proton storage ring accelerator. It gives machine parameters, discusses linear optics and betatron motions, surveys questions of errors, tolerances and nonlinear resonances, and discusses some of the demands on the detection apparatus, especially the apparent inevitability of multiple interactions per bunch crossing

  11. A Fokker-Planck treatment of stochastic particle motion within the framework of a fully coupled 6-dimensional formalism for electron-positron storage rings including classical spin motion in linear approximation

    International Nuclear Information System (INIS)

    Barber, D.P.; Heinemann, K.; Mais, H.; Ripken, G.

    1991-12-01

    In the following report we investigate stochastic particle motion in electron-positron storage ring in the framework of a Fokker-Planck treatment. The motion is described by using the canonical variables χ, p χ , z, p z , σ = s - cxt, p σ = ΔE/E 0 of the fully six-dimensional formalism. Thus synchrotron- and betatron-oscillations are treated simultaneously taking into account all kinds of coupling (synchro-betatron coupling and the coupling of the betatron oscillations by skew quadrupoles and solenoids). In order to set up the Fokker-Planck equation, action-angle variables of the linear coupled motion are introduced. The averaged dimensions of the bunch, resulting from radiation damping of the synchro-betatron oscillations and from an excitation of these oscillations by quantum fluctuations, are calculated by solving the Fokker-Planck equation. The surfaces of constant density in the six-dimensional phase space, given by six-dimensional ellipsoids, are determined. It is shown that the motion of such an ellipsoid under the influence of external fields can be described by six generating orbit vectors which may be combined into a six-dimenional matrix B(s). This 'bunch-shape matrix', B(s), contains complete information about the configuration of the bunch. Classical spin diffusion in linear approximation has also been included so that the dependence of the polarization vector on the orbital phase space coordinates can be studied and another derivation of the linearized depolarization time obtained. (orig.)

  12. Large-area electron irradiation in lymphoproliferative diseases; Velkoplosne elektronove ozarovani u lymfoproliferativnich onemocneni

    Energy Technology Data Exchange (ETDEWEB)

    Doleckova, M; Kutova, J; Sabatka, J; Kralova, D [Onkologicke Oddeleni, Nemocnice Ceske Budejovice, Ceske Budejovice (Czech Republic)

    1998-12-31

    The authors` experience in the treatment of skin lymphomas by using a betatron and a linear accelerator is highlighted. Special attention is paid to the technique where the patient is rotated in order to improve the dose distribution. (P.A.). 2 tabs., 3 graphs, 15 photos.

  13. Nonlinear dynamics aspects of particle accelerators

    International Nuclear Information System (INIS)

    Araki, H.; Ehlers, J.; Hepp, K.; Kippenhahn, R.; Weidenmuller, A.; Zittartz, J.

    1986-01-01

    This book contains 18 selections. Some of the titles are: Integrable and Nonintegrable Hamiltonian Systems; Nonlinear Dynamics Aspects of Modern Storage Rings; Nonlinear Beam-Beam Resonances; Synchro-Betatron Resonances; Review of Beam-Beam Simulations; and Perturbation Method in Nonlinear Dynamics

  14. Electromagnetic Waves Dispersion and Interaction of an Annular Beam-Ion Channel System in Plasma Waveguide

    Directory of Open Access Journals (Sweden)

    Jixiong Xiao

    2017-01-01

    Full Text Available A linear theory for the electromagnetic properties and interactions of an annular beam-ion channel system in plasma waveguide is presented. The dispersion relations for two families of propagating modes, including the electrostatic and transverse magnetic modes, are derived. The dependencies of the dispersion behavior and interaction for different wave modes on the thickness of the annular beam and betatron oscillation frequency are studied in detail by numerical calculations. The results show that the inner and outer radii of the beam have different influences on propagation properties of the electrostatic and electromagnetic modes with different betatron oscillation parameters. In the weak ion channel situation, the two types of electrostatic waves, that is, space charge and betatron modes, have no interaction with the transverse magnetic modes. However, in the strong ion channel situation, the transverse magnetic modes will have two branches and a low frequency mode emerged as the new branch. In this case, compared with the solid beam case, the betatron modes not only can interact with the high frequency branch at small wavenumber but also can interact with the low frequency branch at large wavenumber.

  15. Influence of vertical dispersion and crossing angle on the performance of the LHC

    CERN Document Server

    Leunissen, L H A

    1999-01-01

    Misalignments, magnetic field deviations and the beam crossing angle induce closed orbit deviations and residual dispersions at the interaction points (IPs) of the LHC. At IP1 and IP5, the horizontal and vertical dispersion functions are approximately ±2 cm while at IP2 and IP8 they can reach values up to 50 cm. A numerical study of the excitation of synchro-betatron resonances by crossing angles and dispersions shows that the beam size changes by less than 5% and has corresponding effects on the luminosity. Since the effects of bunch length are important in this context we have used the numerical code BBC for the study. When the betatron tunes are close to a synchro-betatron resonance excited by the crossing angle the amplitude of particle oscillations increases. The superposition of vertical dispersion modifies the strength of the resonance. For example, sidebands of the resonance 13Qx = 4 yield an increase of the amplitude of the betatron oscillation by less than 10 % at an initial amplitude of 5s. Includ...

  16. Determination of linear optics functions from turn-by-turn data

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y; Gianfelice-Wendt, E, E-mail: alexahin@fnal.gov [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510 (United States)

    2011-10-15

    A method for evaluation of coupled optics functions, detection of strong perturbing elements, determination of BPM calibration errors and tilts using turn-by-turn (TBT) data is presented as well as the new version of the Hamiltonian perturbation theory of betatron oscillations the method is based upon. An example of application of the considered method to the Tevatron is given.

  17. SCHOTTKY MEASUREMENTS DURING RHIC 2000

    International Nuclear Information System (INIS)

    CAMERON, P.; CUPOLO, J.; DEGEN, C.; HAMMONS, L.; KESSELMAN, M.; LEE, R.; MEYER, A.; SIKORA, R.

    2001-01-01

    The 2GHz Schottky system was a powerful diagnostic during RHIC 2000 commissioning. A continuous monitor without beam excitation, it provided betatron tune, chromaticity, momentum spread relative emittance, and synchrotron tune. It was particularly useful during transition studies. In addition, a BPM was resonated at 230MHz for Schottky measurements

  18. Simple model with damping of the mode-coupling instability

    Energy Technology Data Exchange (ETDEWEB)

    Pestrikov, D V [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-08-01

    In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)

  19. Required accuracy of tune measurement and parametrization of chromaticity control

    International Nuclear Information System (INIS)

    Maas, R.

    1991-02-01

    The betatron tunes v x and v y will be measured by Fourier-analyzing a BPM signal generated by a beam which received a fast ( kick /f rev ) equals the fractional part of the tune, a beam blow-up can be observed. In this note the required accuracy of such a tune measurement is discussed. (author). 6 schemes

  20. Czechoslovak congress of radiology with international participation

    International Nuclear Information System (INIS)

    1986-01-01

    The booklet contains 125 abstracts of papers presented at the congress, dealing with diagnostic and therapeutic applications of X-rays, 60 Co, 137 Cs, betatron radiation, with scintigraphy, angiography, lymphography, with radiosensitizers, contrast media and with a host of activities performed and results achieved at radiological departments. (A.K.)

  1. AGS slow extraction improvements

    International Nuclear Information System (INIS)

    Glenn, J.W.; Smith, G.A.; Sandberg, J.N.; Repeta, L.; Weisberg, H.

    1979-01-01

    Improvement of the straightness of the F5 copper septum increased the AGS slow extraction efficiency from approx. 80% to approx. 90%. Installation of an electrostatic septum at H2O, 24 betatron wavelengths upstream of F5, further improved the extraction efficiency to approx. 97%

  2. CESAR, 2 MeV electron storage ring; construction period; deflector.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1962-01-01

    One of the 2 electrostatic deflectors (lying on its side) for monoturn injection of the beam from the van de Graaff. They bring the beam close and parallel to the closed orbit. 1/4 of a betatron wavelength downstream from the 2nd deflector, a pulsed inflector corrects the angle.

  3. 1000-TeV in the Center-Of-Mass: Introduction to High-Energy Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J D

    1982-09-01

    The lecture discusses, in a pedagogic way, a hypothetical 500 TeV proton storage ring accelerator. It gives machine parameters, discusses linear optics and betatron motions, surveys questions of errors, tolerances and nonlinear resonances, and discusses some of the demands on the detection apparatus, especially the apparent inevitability of multiple interactions per bunch crossing. (GHT)

  4. The profile of the electron beam in the PTB synchrotron, and its influence on radiometric measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Kaase, H.

    1976-01-01

    A simple method is described to determine the beam profile in an electron synchrotron; the measured results are compared with calculated values. Moreover, the influence of synchrotron- and betatron-oscillations on synchrotron radiation measurements is discussed, and a method is given to correct this. (orig.) [de

  5. RF fields due to Schottky noise in a coasting particle beam

    CERN Document Server

    Faltin, L

    1977-01-01

    The RF fields inside a rectangular chamber excited by the Schottky noise current inherently present in a coasting particle beam are calculated, using a simple beam model. Vertical betatron oscillations are assumed. The power flow accompanying the beam is given as well as the resulting characteristic impedance. Numerical results are presented.

  6. Suppression of resistive instability of a bunched beam in the UNK first stage using a digital recursive filter in the feedback circuit

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.; Korenev, I.L.; Yudin, L.A.

    1993-01-01

    Technique and new fast system of proton bunch beam coherent betatron oscillations suppression in the UNK first stage are suggested. The system comprises two beam monitors and two pushers. Differential equations are reduced to linear difference matrix equation which is investigated for stability using unilateral Z-transformation. 10 refs

  7. Measurement and stabilization of the longitudinal and transversal tune on the fast energy ramp at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, Maren [Electron Stretcher Accelerator ELSA, Physikalisches Institut, Universitaet Bonn (Germany)

    2008-07-01

    At the electron stretcher accelerator ELSA, an external beam of unpolarized or polarized electrons is supplied to experimental set-ups. In order to correct for dynamic effects caused by eddy currents induced on the fast energy ramp, the accelerator tunes have to measured in situ with high precision. The measurements of betatron tunes during the fast energy ramp are based on the excitation of coherent betatron oscillations generated by a pulsed kicker magnet. The betatron frequency is determined by a Fourier analysis of the measured oscillations of the beam position. This technique was successfully applied to measure the horizontal tune on the fast energy ramp. During the fast energy ramp shifts of the betatron tune caused by eddy currents are induced. These tune shifts are measured and corrected when operating the accelerator with polarized beam. Measurements of coherent synchrotron oscillations will also be presented. These are excited by a phase modulation of the acceleration voltage using an electrical phase shifter in the reference RF signal path.

  8. Possible limits of plasma linear colliders

    Science.gov (United States)

    Zimmermann, F.

    2017-07-01

    Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.

  9. Results of primary and postoperative radiotherapy of malignant tumours of the larynx and posterior pharynx

    International Nuclear Information System (INIS)

    Poppele, G.

    1980-01-01

    In a study on the epidemiology of laryngeal and pharyngeal tumours, a coincidence was found between established alcohol abuse and tumours of the two organs. The results of surgery followed by gammatron radiotherapy (laryngeal tumours) or betatron therapy (pharyngeal tumours) are prescuted and discussed. (APR) [de

  10. Transverse effects in UV FELs

    International Nuclear Information System (INIS)

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-01-01

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium's UV FEL

  11. The chromatic correction in RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Lee, S.Y.; Dell, G.F.; Hahn, H.; Parzen, G.

    1987-01-01

    The scheme for the correction of chromatic effects in the Relativistic Heavy Ion Collider at BNL is discussed. This scheme uses six families of sextupoles excited by four independent power supplies, and provides adequate control of linear and quadratic terms in the tune vs momentum dependence and reduces the variation of the betatron amplitude, vs momentum

  12. Radiation testing of thick-wall objects using a linear accelerator or Co-60

    International Nuclear Information System (INIS)

    Depending on the energy required, a 60 Co source or various types of betatrons and linear accelerators may be used for radiation testing of thick-walled metal parts. While 60 Co sources are easily transported, accelerators are not, but a transportable linear accelerator is described

  13. Synchrotron radiation based on laser-plasma interaction in the relativistic range

    International Nuclear Information System (INIS)

    Albert, F.

    2007-12-01

    This work illustrates the experimental characterization of a new compact X-ray source: the Betatron X-ray source. It is the first time that collimated hard X-ray source is produced by laser. Through the focusing of an ultra-intense laser radiation (30 TW, 30 fs) on a helium plasma, the ponderomotive force linked to the light intensity gradient expels the plasma electrons forming an accelerating cavity in the wake of the laser plasma. Some electrons trapped in the back of this structure, are accelerated and oscillate to produce X-radiation. This document is composed of 8 chapters. The first one is a presentation of the topic. The second chapter gives an account of the physics behind the laser-plasma interaction in the relativistic range and for ultra-short pulses. The third chapter presents the theoretical characteristics of the Betatron X-ray source. This chapter begins with an analogy with current synchrotron radiation and the radiation emitted by an electron undergoing Betatron oscillations is described in terms of power, spectral intensity and photon flux. The fourth chapter is dedicated to the numerical simulation of the Betatron radiation. The trajectories of the electrons are computed from the equation of motion, taking into account longitudinal and transverse forces. The radiation emission term is then computed from the radiation equation detailed in the previous chapter. The fifth chapter presents the experimental setting to produce Betatron X-rays. The sixth chapter gives the experimental characterization of the source (size, divergence and spectrum) on one hand, and on the other hand studies how source flux and spectra vary when laser and plasma parameters change. The seventh chapter presents experimental methods used to characterize the electrons trajectories in the plasma wiggler. The last chapter draws some perspectives on this source in terms of improvement and uses. (A.C.)

  14. Modeling classical and quantum radiation from laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    M. Chen

    2013-03-01

    Full Text Available The development of models and the “Virtual Detector for Synchrotron Radiation” (vdsr code that accurately describe the production of synchrotron radiation are described. These models and code are valid in the classical and linear (single-scattering quantum regimes and are capable of describing radiation produced from laser-plasma accelerators (LPAs through a variety of mechanisms including betatron radiation, undulator radiation, and Thomson/Compton scattering. Previous models of classical synchrotron radiation, such as those typically used for undulator radiation, are inadequate in describing the radiation spectra from electrons undergoing small numbers of oscillations. This is due to an improper treatment of a mathematical evaluation at the end points of an integration that leads to an unphysical plateau in the radiation spectrum at high frequencies, the magnitude of which increases as the number of oscillation periods decreases. This is important for betatron radiation from LPAs, in which the betatron strength parameter is large but the number of betatron periods is small. The code vdsr allows the radiation to be calculated in this regime by full integration over each electron trajectory, including end-point effects, and this code is used to calculate betatron radiation for cases of experimental interest. Radiation from Thomson scattering and Compton scattering is also studied with vdsr. For Thomson scattering, radiation reaction is included by using the Sokolov method for the calculation of the electron dynamics. For Compton scattering, quantum recoil effects are considered in vdsr by using Monte Carlo methods. The quantum calculation has been benchmarked with the classical calculation in a classical regime.

  15. Status report of the baseline collimation system of CLIC. Part I

    CERN Document Server

    Resta-Lopez, J.; Dalena, B.; Fernandez-Hernando, J.L.; Jackson, F.; Schulte, D.; Seryi, A.; Tomas, R.

    2011-01-01

    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the opti...

  16. Status report of the baseline collimation system of CLIC. Part II

    CERN Document Server

    Resta-Lopez, J.; Dalena, B.; Fernandez-Hernando, J.L.; Jackson, F.; Schulte, D.; Seryi, A.; Tomas, R.

    2011-01-01

    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the opti...

  17. AGS - The ISR computer program for synchrotron design, orbit analysis and insertion matching

    International Nuclear Information System (INIS)

    Keil, E.; Marti, Y.; Montague, B.W.; Sudboe, A.

    1975-01-01

    This is a detailed guide to the use of the current version of a FORTRAN program for carrying out computations required in the design or modification of alternating-gradient synchrotrons and storage rings. The program, which runs on the CDC 7600 computer at CERN, computes linear transformation functions, and modifications of parameters to achieve specified properties; it tracks sets of particle trajectories, finds closed orbits when elements of the structure are displaced, computes the equilibrium orbit, designs closed-orbit bumps, tracks betatron functions through the structure, and matches insertions in the structure to specified betatron and dispersion functions. The report supersedes CERN 69-5 (AGS - The ISR computer system for synchrotron design and orbit analysis, by E. Keil and P. Strolin). (Author)

  18. Theoretical treatment of transverse feedback systems with memory

    International Nuclear Information System (INIS)

    Cornacchia, M.; Wang, J.M.

    1981-01-01

    The differential equation of the dipole moment of coherent oscillations in the presence of a feedback system is derived. The analysis, which starts in the time domain, is extended to the frequency domain; this allows a straightforward derivation of the damping rate for both coasting and bunched beams. The damping rate is expressed in terms of the transfer function of the feedback system and in a general form which takes into account the β-function and betatron phase modulation along the beam trajectory, the effect of memory arising from the finiteness of the system bandwidth, the effect of the time delay and of the betatron phase advance between detector and kicker. Some examples of the dependence of the damping rate on the feedback parameters are given

  19. Quantum lifetime in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1977-02-01

    One of the mechanisms which contribute to beam lifetime in electron storage rings is the quantum emission of energetic photons causing particles to be lost from the rf bucket. This quantum lifetime is among other things important in defining the required aperture in a storage ring. An approximate expression of quantum lifetime, predicted by a one-dimensional model which takes into account only the betatron motion, has been used in most storage ring designs. If the beam is aperture-limited at a position with nonzero dispersion, both the betatron and synchrotron motions have to be included and a two-dimensional model must be used. An exact expression of quantum lifetime for the one-dimensional case and an approximate expression for the two-dimensional case are given

  20. Quantum lifetime in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1977-01-01

    One of the mechanisms which contributes to beam lifetime in electron storage rings is the quantum emission of energetic photons causing particles to be lost from the rf bucket. This quantum lifetime is among other things important in defining the required aperture in a storage ring. An approximate expression of quantum lifetime, predicted by a one-dimensional model which takes into account only the betatron motion, has been used in most storage ring designs. If the beam is aperture-limited at a position with nonzero dispersion, both the betatron and synchrotron motions have to be included, and a two-dimensional model must be used. An exact expression of quantum lifetime for the one-dimensional case and an approximate expression for the two-dimensional case are given

  1. MEASUREMENTS AND MODELING OF EDDY CURRENT EFFECTS IN BNL'S AGS BOOSTER

    International Nuclear Information System (INIS)

    BROWN, K.A.; AHRENS, L.; GARDNER, C.; GLENN, J.W.; HARVEY, M.; MENG, W.; ZENO, K.

    2006-01-01

    Recent beam experiments at BNL's AGS Booster have enabled us to study in more detail the effects of eddy currents on the lattice structure and our control over the betatron tune. The Booster is capable of operating at ramp rates as high as 9 T/sec. At these ramp rates eddy currents in the vacuum chambers significantly alter the fields and gradients seen by the beam as it is accelerated. The Booster was designed with these effects in mind and to help control the field uniformity and linearity in the Booster Dipoles special vacuum chambers were designed with current windings to negate the affect of the induced eddy currents. In this report results from betatron tune measurements and eddy current simulations will be presented. We will then present results from modeling the accelerator using the results of the magnetic field simulations and compare these to the measurements

  2. An Influence of 7.5 T Superconducting Wiggler on Beam Parameters of Siberia-2 Storage Ring

    International Nuclear Information System (INIS)

    Korchuganov, Vladimir; Valentinov, Alexander; Mezentsev, Nikolai

    2007-01-01

    At present the dedicated synchrotron radiation source Siberia-2 in Kurchatov Institute operates with electron energy 2.5 GeV and current up to 200 mA. In order to expand spectral range of SR and to increase brightness an installation of 7.5 T 19-pole superconducting wiggler is planned at the end of 2006. Now the wiggler is under fabrication in BINP, Novosibirsk. Such high level of a magnetic field in the wiggler will have a great influence on electron beam parameters of Siberia-2. Changes of these parameters (betatron tunes, horizontal emittance of the electron beam, momentum compaction, energy spread etc.) are discussed in the report. Different methods of compensation (global and local) of betatron functions distortion are presented. Much attention is paid to dynamic aperture calculations using analytical approximation of magnetic field behavior in transverse horizontal direction

  3. Applications of differential algebra to single-particle dynamics in storage rings

    International Nuclear Information System (INIS)

    Yan, Y.

    1991-09-01

    Recent developments in the use of differential algebra to study single-particle beam dynamics in charged-particle storage rings are the subject of this paper. Chapter 2 gives a brief review of storage rings. The concepts of betatron motion and synchrotron motion, and their associated resonances, are introduced. Also introduced are the concepts of imperfections, such as off-momentum, misalignment, and random and systematic errors, and their associated corrections. The chapter concludes with a discussion of numerical simulation principles and the concept of one-turn periodic maps. In Chapter 3, the discussion becomes more focused with the introduction of differential algebras. The most critical test for differential algebraic mapping techniques -- their application to long-term stability studies -- is discussed in Chapter 4. Chapter 5 presents a discussion of differential algebraic treatment of dispersed betatron motion. The paper concludes in Chapter 6 with a discussion of parameterization of high-order maps

  4. Current pulse generator of an induction accelerator electromagnet

    International Nuclear Information System (INIS)

    Baginskij, B.A.; Makarevich, V.N.; Shtejn, M.M.

    1987-01-01

    Thyristor generator forming in betatron electromagnet coil sinusoidal and quasisinusoidal current unipolar pulses, the field being deforced at the beginning of acceleration cycle, and with the pulse flat top in the cycle end, is described. The current amplitude is controlled by pulse-phase method. The current pulse time shift permitted to decrease the loss rate in the accumulating capacitor. The generator is used in systems with 1-10 ms pulse duration, electromagnet magnetic field maximal energy - 45-450 J, the voltage amplitude in the coil 960-1500 V and amplitude of the current passing the coil 100-500 A, the repetition frequency being 50-200 Hz. In particular, the generator is used to supply betatrons designed for defectoscopy in nonstationary conditions, the accelerated electron energy being 4, 6, 8 and 15 MeV

  5. Landau damping dynamic aperture and octupole in LHC

    CERN Document Server

    Gareyte, Jacques; Ruggiero, F

    1997-01-01

    Maximization of the dynamic aperture and Landau damping of the collective instabilities are partly conflicting requirements. On the one hand, the non-linearities of the lattice must be minimized at large oscillation amplitude to guarantee the stability of the single particle motion. On the other hand, a spread of the betatron frequencies is necessary to guarantee the stability of the collective motion of bunches of particles; this requires the introduction of non-linearities effective at small amplitudes. We show in this note that the `natural' spread of betatron tunes due to the field imperfections is inadequate or Landau damping. An octupole scheme is required to provide collective stability at high energy. At low energy it may be used to find the optimum between the correction of the octupolar field imperfections and Landau damping. The solution of the stability problem taking into account the two degrees of freedom of the transverse motion allows a significant saving in octupole strength: 144 octupoles wi...

  6. Beam Manipulation with an RF Dipole

    International Nuclear Information System (INIS)

    Bai, M.

    1999-01-01

    Coherent betatron motion adiabatically excited by an RF dipole has been successfully employed to overcome strong intrinsic spin depolarization resonances in the AGS, while a solenoid partial snake has been used to correct imperfection spin resonances. The experimental results showed that a full spin flip was obtained in passing through an intrinsic spin resonance when all the beam particles were forced to oscillate coherently at a large amplitude without diluting the beam emittance. With this method, they have successfully accelerated polarized beam up to 23.5 GeV/c. A new type of second order spin resonances was also discovered. As a non-destructive manipulation, this method can also be used for nonlinear beam dynamics studies and beam diagnosis such as measuring phase advance and betatron amplitude function

  7. The damper for the transverse instabilities of the SPS

    CERN Document Server

    Bossart, Rudolf; Gareyte, Jacques; de Raad, Bastiaan; Rossi, V

    1979-01-01

    For beam intensities above 10/sup 12/ protons per pulse in the SPS, collective transverse beam instabilities develop with frequencies between 15 kHz and 3 MHz because of the resistive wall effect of the vacuum chamber. An active feedback system with an electrostatic deflector has been installed in the SPS for damping the resistive wall instabilities in both the vertical and horizontal planes. Measurements have been made to determine the threshold and growth rate of these instabilities. As a novel application, the damper can be used also for the excitation of small coherent betatron oscillations. A phase-locked loop tracks the beam oscillations and provides a continuous display of the betatron wave-number Q during the cycle. (4 refs).

  8. High energy photon emission from wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Farinella, D. M., E-mail: dfarinel@uci.edu; Lau, C. K.; Taimourzadeh, S.; Hwang, Y.; Abazajian, K.; Canac, N.; Taborek, P.; Tajima, T. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Zhang, X. M., E-mail: zhxm@siom.ac.cn [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Koga, J. K., E-mail: koga.james@qst.go.jp [Kansai Photon Science Institute, Japan Atomic Energy Agency (JAEA), Kizugawa, Kyoto 619-0215 (Japan); Ebisuzaki, T., E-mail: ebisu@riken.jp [RIKEN, Wako, Saitama 351-0198 (Japan)

    2016-07-15

    Experimental evidence has accumulated to indicate that wakefield acceleration (WFA) accompanies intense and sometimes coherent emission of radiation such as from betatron radiation. The investigation of this issue has additional impetus nowadays because we are learning (1) there is an additional acceleration process of the ponderomotive acceleration; (2) WFA may become relevant in much higher density regimes; (3) WFA has been proposed as the mechanism for extreme high energy cosmic ray acceleration and gamma ray bursts for active galactic nuclei. These require us to closely examine the radiative mechanisms in WFA anew. We report studies of radiation from wakefield (self-injected betatron) and ponderomotive (laser field) mechanisms in scalings of the frequency and intensity of the driver, as well as the plasma density.

  9. Algorithms for tracking of charged particles in circular accelerators

    International Nuclear Information System (INIS)

    Iselin, F.Ch.

    1986-01-01

    An important problem in accelerator design is the determination of the largest stable betatron amplitude. This stability limit is also known as the dynamic aperture. The equations describing the particle motion are non-linear, and the Linear Lattice Functions cannot be used to compute the stability limits. The stability limits are therefore usually searched for by particle tracking. One selects a set of particles with different betatron amplitudes and tracks them for many turns around the machine. The particles which survive a sufficient number of turns are termed stable. This paper concentrates on conservative systems. For this case the particle motion can be described by a Hamiltonian, i.e. tracking particles means application of canonical transformations. Canonical transformations are equivalent to symplectic mappings, which implies that there exist invariants. These invariants should not be destroyed in tracking

  10. A conceptual solution for a beam halo collimation system for the Future Circular hadron-hadron Collider (FCC-hh)

    Science.gov (United States)

    Fiascaris, M.; Bruce, R.; Redaelli, S.

    2018-06-01

    We present the first conceptual solution for a collimation system for the hadron-hadron option of the Future Circular Collider (FCC-hh). The collimation layout is based on the scaling of the present Large Hadron Collider collimation system to the FCC-hh energy and it includes betatron and momentum cleaning, as well as dump protection collimators and collimators in the experimental insertions for protection of the final focus triplet magnets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at injection and collision energy taking into account mechanical and optics imperfections. The performance of the system is then assessed through the analysis of normalized halo distributions and complete loss maps for an ideal lattice. The performance limitations are discussed and a solution to improve the system performance with the addition of dispersion suppression collimators around the betatron cleaning insertion is presented.

  11. Tune measurement in the NSLS booster synchrotron

    International Nuclear Information System (INIS)

    Blum, E.B.; Nawrocky, R.

    1993-01-01

    The NSLS booster synchrotron can accelerate an electron beam from approximately 80 to 750 MeV in 0.7 sec. The betatron tunes can change during acceleration by as much as 0.1 units, causing beam loss as they cross resonance lines. Precise measurements with a conventional swept spectrum analyzer have always been difficult because of the rapid variation of tune as the magnets are ramped. We are now using a system based on a Tektronix 3052 digital spectrum analyzer that can obtain a complete frequency spectrum over a 10 MHz bandwidth in 200 μsec. Betatron oscillations are stimulated for the measurements by applying white noise to the beam through stripline electrodes. We will describe the instrumentation, our measurements of tune as a function time during the acceleration cycle, and the resulting improvements to the booster operation

  12. Optimization of treatment of children with 3 stage Hodgkin's disease

    International Nuclear Information System (INIS)

    Kobikov, S.Kh.

    1989-01-01

    147 children younger than 15 years suffering from the 3rd stage of Hodgkins children is performed using gamma therapeutic Rocus type devices and betatron (B5M-25) and linear accelerator (LUEh-25) of 15-27.5 MeV energy electrons. Immediate and delayed treatment results are evaluated. Unfavourable clinical factors effecting the recurrence frequency are revealed. Inconsistence of supporting chemotherapy in the reduction of the number of recurrents is confirmed

  13. R.R. Wilson prize lecture: Adventures with accelerators

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1993-01-01

    This paper is a very concise history of the authors experiences with particle accelerators, spanning his first experiences as a graduate student, through his professional career. His first experiences were visiting labs in Washington DC, and seeing equipment delivered to his school so large walls had to be moved for access. He saw larger machines in England, and was at GE when early betatrons were built, and when the first functional synchrotron was built

  14. Orbit dynamics for unstable linear motion

    International Nuclear Information System (INIS)

    Parzen, G.

    1997-01-01

    A treatment is given of the orbit dynamics for linear unstable motion that allows for the zeros in the beta function and makes no assumptions about the realness of the betatron and phase functions. The phase shift per turn is shown to be related to the beta function and the number of zeros the beta function goes through per turn. The solutions of the equations of motion are found in terms of the beta function

  15. Orbit dynamics for unstable linear motion

    International Nuclear Information System (INIS)

    Parzen, G.

    1996-04-01

    A treatment is given of the orbit dynamics for linear unstable motion that allows for the zeros in the beta function and makes no assumption about the realness of the betatron and phase functions. The phase shift per turn is shown to be related to the beta function and the number of zeros the beta function goes through per turn. The solutions of the equations of motion are found in terms of the beta function

  16. Tolerances for the vertical emittance in damping rings

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1991-11-01

    Future damping rings for linear colliders will need to have very small vertical emittances. In the limit of low beam current, the vertical emittance is primarily determined by the vertical dispersion and the betatron coupling. In this paper, the contributions to these effects from random misalignments are calculated and tolerances are derived to limit the vertical emittance with a 95% confidence level. 10 refs., 5 figs

  17. Shadow photography method for beam emittance measurement

    International Nuclear Information System (INIS)

    Kashkovskij, V.V.; Lisin, V.A.

    1988-01-01

    Improved technique of shadow photography which allows to measure rather simply and accurately the angular distribution of electrons extracted from betatron is described. Measurement accuracy of particle flight angles is determined by setting of rods relatively to the plane of photographic paper sheet, their diameter and shadow trace length. Incidental angle deviation of rod axes contributes mainly into the error. Mean root-square error constituted 2-3% according to the results of several measurements of angles

  18. Single-Particle Quantum Dynamics in a Magnetic Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Marco

    2001-02-01

    We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.

  19. Phase advance and β function measurements using model-independent analysis

    OpenAIRE

    Chun-xi Wang; Vadim Sajaev; Chih-Yuan Yao

    2003-01-01

    Phase advance and β function are basic lattice functions characterizing the linear properties of an accelerator lattice. Accurate and efficient measurements of these quantities are important for commissioning and operating a machine. For rings with little coupling, we report a new method to measure these lattice functions based on the model-independent analysis technique, which uses beam histories of excited betatron oscillations measured simultaneously at a large number of beam position moni...

  20. Simulations of Various Driving Mechanisms for the 3rd Order Resonant Extraction from the MedAustron Medical Synchrotron

    CERN Document Server

    Feldbauer, G; Dorda, U

    2011-01-01

    The MedAustron medical synchrotron is based on the CERN-PIMMS design and its technical implementation by CNAO [1]. This document elaborates on studies performed on the baseline betatron-core driven extraction method and investigates the feasibility of alternative resonance driving mechanisms like RF-knockout, RF-noise and the lattice tune. Single particle tracking results are presented, explained and compared to analytical results.

  1. Diffractive bremsstrahlung at high-β{sup *} LHC. Case study

    Energy Technology Data Exchange (ETDEWEB)

    Chwastowski, Janusz J.; Czekierda, Sabina; Staszewski, Rafal; Trzebinski, Maciej [The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Krakow (Poland)

    2017-04-15

    Feasibility studies of the measurement of the exclusive diffractive bremsstrahlung cross-section in proton-proton scattering at the centre of mass energy of 13 TeV at the LHC are reported. Present studies were performed for the low luminosity LHC running with the betatron function value of 90 m using the ATLAS associated forward detectors ALFA and ZDC. A simplified approach to the event simulation and reconstruction is used. The background influence is also discussed. (orig.)

  2. Scaling Laws for Dynamic Aperture due to Chromatic Sextupoles

    CERN Document Server

    Scandale, Walter

    1997-01-01

    Scaling laws for the dynamic aperture due to chromatic sextupoles are investigated. The problem is addressed in a simplified lattice model containing 4 N identical cells and one linear betatron phase shifter to break the overall cell-lattice symmetry. Two families of chromatic sextupoles are used to compensate the natural chromaticity. Analytical formulae for the dynamic apertur as a function of the number of cells and of the cell length are found and confirmed through computer tracking.

  3. Feedback implementation options and issues for B factory accelerators

    International Nuclear Information System (INIS)

    Fox, J.D.; Briggs, D.; Eisen, N.; Hindi, H.; Hosseini, W.; Oxoby, G.; Linscott, I.; Coiro, O.; Ghigo, A.; Serio, M.; Lambertson, G.; Voelker, F.

    1992-09-01

    The proposed B factory accelerator facilities will require active feedback systems to control multibunch instabilities. These feedback systems must operate in machines with thousands of circulating bunches and with short (2--4 ns) interbunch intervals. The functional requirements for transverse (betatron) and longitudinal (synchrotron) feedback systems are presented. Several possible implementation options are discussed and system requirements developed. Conceptual designs are presented for the PEP II transverse and longitudinal feedback systems

  4. Beam Diagnosis and Lattice Modeling of the Fermilab Booster

    International Nuclear Information System (INIS)

    Huang, Xiaobiao

    2005-01-01

    A realistic lattice model is a fundamental basis for the operation of a synchrotron. In this study various beam-based measurements, including orbit response matrix (ORM) and BPM turn-by-turn data are used to verify and calibrate the lattice model of the Fermilab Booster. In the ORM study, despite the strong correlation between the gradient parameters of adjacent magnets which prevents a full determination of the model parameters, an equivalent lattice model is obtained by imposing appropriate constraints. The fitted gradient errors of the focusing magnets are within the design tolerance and the results point to the orbit offsets in the sextupole field as the source of gradient errors. A new method, the independent component analysis (ICA) is introduced to analyze multiple BPM turn-by-turn data taken simultaneously around a synchrotron. This method makes use of the redundancy of the data and the time correlation of the source signals to isolate various components, such as betatron motion and synchrotron motion, from raw BPM data. By extracting clean coherent betatron motion from noisy data and separates out the betatron normal modes when there is linear coupling, the ICA method provides a convenient means to measure the beta functions and betatron phase advances. It also separates synchrotron motion from the BPM samples for dispersion function measurement. The ICA method has the capability to separate other perturbation signals and is robust over the contamination of bad BPMs. The application of the ICA method to the Booster has enabled the measurement of the linear lattice functions which are used to verify the existing lattice model. The transverse impedance and chromaticity are measured from turn-by-turn data using high precision tune measurements. Synchrotron motion is also observed in the BPM data. The emittance growth of the Booster is also studied by data taken with ion profile monitor (IPM). Sources of emittance growth are examined and an approach to cure

  5. Numerical methods for characterization of synchrotron radiation based on the Wigner function method

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2014-06-01

    Full Text Available Numerical characterization of synchrotron radiation based on the Wigner function method is explored in order to accurately evaluate the light source performance. A number of numerical methods to compute the Wigner functions for typical synchrotron radiation sources such as bending magnets, undulators and wigglers, are presented, which significantly improve the computation efficiency and reduce the total computation time. As a practical example of the numerical characterization, optimization of betatron functions to maximize the brilliance of undulator radiation is discussed.

  6. Advanced nonlinear theory: Long-term stability at the SSC

    International Nuclear Information System (INIS)

    Heifets, S.

    1987-01-01

    This paper discussed the long-term stability of the particle beams in the Superconducting Super Collider. In particular the dynamics of a single particle beam is considered in depth. The topics of this paper include: the Hamiltonian of this particle approach, perturbation theory, canonical transformations, interaction of the resonances, structure of the phase space, synchro-Betatron oscillations, modulation diffusion and noise-resonance interaction. 36 refs

  7. Renormalization theory of beam-beam interaction in electron-positron colliders

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1989-07-01

    This note is devoted to explaining the essence of the renormalization theory of beam-beam interaction for carrying out analytical calculations of equilibrium particle distributions in electron-positron colliding beam storage rings. Some new numerical examples are presented such as for betatron tune dependence of the rms beam size. The theory shows reasonably good agreements with the results of computer simulations. 5 refs., 6 figs

  8. Schottky signal analysis: tune and chromaticity computation

    CERN Document Server

    Chanon, Ondine

    2016-01-01

    Schottky monitors are used to determine important beam parameters in a non-destructive way. The Schottky signal is due to the internal statistical fluctuations of the particles inside the beam. In this report, after explaining the different components of a Schottky signal, an algorithm to compute the betatron tune is presented, followed by some ideas to compute machine chromaticity. The tests have been performed with offline and/or online LHC data.

  9. Chromaticity measurement via the fourier spectrum of transverse oscillations

    International Nuclear Information System (INIS)

    Xi Yang

    2004-01-01

    Turn-by-turn data from a single BPM includes information on the chromaticity in sidebands displaced above and below the betatron frequency by an amount of the synchrotron frequency. It may be necessary to induce small amplitude synchrotron oscillation by giving the beam a small kick. Power spectrum of the BPM data gives clear chromatic sidebands, and they can be applied to the chromaticity measurement in the Fermilab Booster

  10. Design consideration of relativistic klystron two-beam accelerator for suppression of beam-break-up

    International Nuclear Information System (INIS)

    Li, H.; Houck, T.L.; Yu, S.; Goffeney, N.

    1994-03-01

    It is demonstrated in this simulation study that by using the scheme of operating rf extraction structures on the betatron nodes of electron drive beam in conjunction with adequate de-Q-ing, appropriate choice of geometries for the rf structures (reducing transverse impedence) and/or staggered tuning we can suppress the overall growth of transverse instabilities to 4 e-folds in a relativistic klystron two-beam accelerator with 200 extraction cavities

  11. Suppression of transverse instabilities by fast feedback in the Fermilab booster

    International Nuclear Information System (INIS)

    Ankenbrandt, C.; Higgins, E.F. Jr.; Johnson, R.P.

    1977-01-01

    Systems to damp radial and vertical instabilities of individual rf bunches in the Fermilab Booster are being implemented. The positions of individual bunches are derived from stripline pickups. The position information is transmitted over a variable delay, amplified, and applied to deflectors after one almost complete revolution, 6.25 horizontal and 6.75 vertical betatron wavelengths downstream of the pickup. Motivation, system concepts, design considerations, and initial operating experience are described

  12. Overview of accelerators in medicine

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-06-01

    Accelerators used for medicine include synchrotrons, cyclotrons, betatrons, microtrons, and electron, proton, and light ion linacs. Some accelerators which were formerly found only at physics laboratories are now being considered for use in hospital-based treatment and diagnostic facilities. This paper presents typical operating parameters for medical accelerators and gives specific examples of clinical applications for each type of accelerator, with emphasis on recent developments in the field

  13. Results from the AGS Booster transverse damper

    International Nuclear Information System (INIS)

    Russo, D.; Brennan, M.; Meth, M.; Roser, T.

    1993-01-01

    To reach the design intensity of 1.5 x 10 13 protons per pulse in the AGS Booster, transverse coupled bunch instabilities with an estimated growth rate of 1500s -1 have to be dampened. A prototype transverse damper has been tested successfully using a one turn digital delay and closed orbit suppression implemented in a programmable gate array. An updated damper, which includes an algorithm to optimize damping for a changing betatron rune, will also be presented

  14. TOTEM physics

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, G.; Aurola, A.; Avati, V.; Berardi, V.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Calicchio, M.; Capurro, F.; Catanesi, M.G.; Ciocci, M.A.; Cuneo, S.; Da Vi' a, C.; Deile, M.; Dimovasili, E.; Eggert, K.; Eraluoto, M.; Ferro, F.; Giachero, A.; Hasi, J.; Haug, F.; Heino, J.; Hilden, T.; Jarron, P.; Kalliopuska, J.; Kaspar, J.; Kok, A.; Kundrat, V.; Kurvinen, K.; Lami, S.; Lamsa, J.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lippmaa, J.; Lokajfeek, M.; LoVetere, M.; Macina, D.; Macri, M.; Meucci, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Niewiadomski, H.; Noschis, E.; Ojala, J.; Oljemark, F.; Orava, R.; Oriunno, M.; Osterberg, K.; Paoletti, R.; Perrot, A.L.; Radermacher, E.; Radicioni, E.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Saramad, S.; Sauli, F.; Scribano, A.; Sette, G.; Smotlacha, J.; Snoeys, W.; Taylor, C.; Toppinen, A.; Trummal, A.; Turini, N.; Van Remortel, N.; Verardo, L.; Verdier, A.; Watts, S.; Whitmore, J

    2005-07-01

    This article discusses the physics programme of the TOTEM experiment at the LHC (Large Hadron Collider in CERN). A new special beam optics with {beta}{sup *} 90 m (betatron value), enabling the measurements of the total cross-section, elastic pp scattering and diffractive phenomena already at early LHC runs, is explained. For this and the various other TOTEM running scenarios, the acceptances of the leading proton detectors and of the forward tracking stations for some physics processes are described. (authors)

  15. New initiatives for producing high current electron accelerators

    International Nuclear Information System (INIS)

    Faehl, R.J.; Keinigs, R.K.; Pogue, E.W.

    1996-01-01

    New classes of compact electron accelerators able to deliver multi-kiloamperes of pulsed 10-50 MeV electron beams are being studied. One class is based upon rf linac technology with dielectric-filled cavities. For materials with ε/ε o >>1, the greatly increased energy storage permits high current operation. The second type is a high energy injected betatron. Circulating current limits scale as Β 2 γ 3

  16. Spin motion at and near orbital resonance in storage rings with Siberian snakes I. At orbital resonance

    International Nuclear Information System (INIS)

    Barber, D.P.; Vogt, M.

    2006-12-01

    Here, and in a sequel, we invoke the invariant spin field to provide an in-depth study of spin motion at and near low order orbital resonances in a simple model for the effects of vertical betatron motion in a storage ring with Siberian Snakes. This leads to a clear understanding, within the model, of the behaviour of the beam polarization at and near so-called snake resonances in proton storage rings. (orig.)

  17. Landau Damping of the Weak Head-Tail Instability at Tevatron

    CERN Document Server

    Ivanov, Petr M; Annala, Jerry; Lebedev, Valeri; Shiltsev, Vladimir

    2005-01-01

    Landau damping of the head-tail modes in Tevatron beam with the help of octupole-generated betatron tune spreads permits to reduce chromaticity from 15-20 units to zero thus significantly improving the beam lifetime. The octupole strengths have been experimentally optimized at different stages of the Tevatron operation, from proton injection to collision. Predictions of the analytical Landau damping model are compared with the experimental results.

  18. Measurement of the transfer function of the main SPS Quadrupoles

    CERN Document Server

    Dinius, A; Semanaz, P; CERN. Geneva. SPS and LEP Division

    1998-01-01

    During two short MD's we have measured the transfer function (amplitude and phase) of the main quadrupole string QD. By the word string we mean the global effect of power supplies, magnets and the eddy current effects of the vacuum chamber. This paper presents the measurement procedure and the results, which are needed for the design of a real-time feedback system for the betatron tunes ( Qloop).

  19. Particle accelerators in the Czech lands

    International Nuclear Information System (INIS)

    Janovsky, I.

    2007-01-01

    The paper is structured as follows: A short look into history of accelerators; Particle accelerators in the Czech lands (Accelerators at the Institute of Nuclear Physics; Accelerators at the Faculty of Mathematics and Physics, Charles University; Czechoslovak betatron, accelerators for non-destructive testing and radiotherapy; Czechoslovak high-frequency linear electron accelerator; Czechoslovak-Soviet microtron; Accelerators at the State Research Institute of Textiles; Accelerators at the Kablo Vrchlabi plant; and Cyclotrons in the medical sector. (P.A.)

  20. Suppression of radiation excitation in focusing environment

    International Nuclear Information System (INIS)

    Huang, Z.; Ruth, R.D.

    1996-12-01

    Radiation damping and quantum excitation in an electron damping ring and a straight focusing channel are reviewed. They are found to be the two limiting cases in the study of a general bending and focusing combined system. In the intermediate regime where the radiation formation length is comparable to the betatron wavelength, quantum excitation can be exponentially suppressed by focusing field. This new regime may have interesting applications in the generation of ultra-low emittance beams

  1. Low emittance lattice optimization using a multi-objective evolutionary algorithm

    International Nuclear Information System (INIS)

    Gao Weiwei; Wang Lin; Li Weimin; He Duohui

    2011-01-01

    A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure. (authors)

  2. Liver insulinase and insulin-like activity of the blood plasma in irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhikhareva, A I; Dokshina, G A [Tomskij Gosudarstvennyj Univ. (USSR)

    1975-05-01

    Comparative quantitative analysis of the functional effect of radiation on the activity of liver insulinase of irradiated rats has shown that the insulinase activity of the blood plasma decreases (21-45%) one to three days after the exposure at betatron. Insulinase activity of the liver extracts is also inhibited (16-22%) as compared to intact liver extracts. Twelve days after the exposure and later, insulin-like activity of the plasma and the enzyme activity increase up to 37 per cent.

  3. Clinical meaning of radiodermatitis considering the surface dose of supervoltage electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, T [Kanazawa Univ. (Japan). School of Paramedicine; Rikimaru, S; Kakishita, M; Kuranishi, M

    1975-12-01

    In our experience using supervoltage betatron electron beam, the skin surface dose of the electron decreased when the energy became either greater or less than 18 MeV. When we considered 18 MeV to be a 100% dose, the dose with 4 MeV, which was the least amount, corresponded to 81% of the dose. The skin surface dose of 10 MeV betatron electrons or more became greater than the 90% standard tumor dose. An external irradiation of more than 10 MeV should not be applied to neoplasms of which the curative ratio is less than 1.0. Therefore another methods such as intraoperative irradiation, should be used. The surface skin dose about 4 to 6 MeV betatron postoperative irradiation, particularly after resection of breast cancer, was less than the skin dose with 10 MeV. Close care should be taken to prevent hot lesions which are caused by duplication of irradiation fields. It should be kept in mind that the late effects of hot lesions caused by electron beam irradiation with an energy of 10 MeV or more are serious.

  4. The clinical meaning of radiodermatitis considering the surface dose of supervoltage electron beam

    International Nuclear Information System (INIS)

    Hiraki, Tatsunosuke; Rikimaru, Shigeho; Kakishita, Masao; Kuranishi, Makoto.

    1975-01-01

    In our experience using supervoltage betatron electron beam, the skin surface dose of the electron decreased when the energy became either greater of less than 18 MeV. When we considered 18 MeV to be a 100% dose, the dose with 4 MeV, which was the least amount, corresponded to 81% of the dose. The skin surface dose of 10 MeV betatron electrons or more became greater than the 90% standard tumor dose. An external irradiation of more than 10 MeV should not be applied to neoplasms of which the curative ratio is less than 1.0. Therefore another methods such as intraoperative irradiation, should be used. The surface skin dose about 4-6 MeV betatron postoperative irradiation, particularly after resection of breast cancer, was less than the skin dose with 10 MeV. Close care should be taken to prevent hot lesions which are caused by duplication of irradiation fields. It should be kept in mind that the late effects of hot lesions caused by electron beam irradiation with an energy of 10 MeV or more are serious. (Kashu, E.)

  5. Successful observation of Schottky signals at the Tevatron collider

    International Nuclear Information System (INIS)

    Goldberg, D.A.; Lambertson, G.R.

    1989-08-01

    We have constructed a Schottky detector for the Tevatron collider in the form of a high-Q (∼5000) cavity which operates at roughly 2 GHz, well above the frequency at which the Tevatron's single-bunch frequency spectrum begins to roll off. Initial spectra obtained from the detector show clearly observable Schottky betatron lines, free of coherent contaminants; also seen are the ''common-mode'' longitudinal signals due to the offset of the beam from the detector center. The latter signals indicate that at 2 GHz, the coherent single-bunch spectrum from the detector is reduced by >80 dB; therefore, in normal collider operation, the Schottky betatron lines are >40 dB greater than their coherent counterparts. We describe how the data we have obtained give information on transverse and longitudinal emittances, synchrotron frequency, and betatron tunes, as well as reveal what may be previously unobserved phenomena. Space limitations restrict us to presenting only as much data as should be necessary to convince even the skeptical reader of the validity of the claim made in the paper's title. 3 refs., 2 figs

  6. X-ray Synchrotron Radiation in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  7. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    International Nuclear Information System (INIS)

    Antipov, S.A.; Nagaitsev, S.; Valishev, A.

    2017-01-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R and D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.

  8. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    Science.gov (United States)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.

  9. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to a resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.

  10. Laser wakefield generated X-ray probe for femtosecond time-resolved measurements of ionization states of warm dense aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Mo, M. Z.; Chen, Z.; Tsui, Y. Y.; Fedosejevs, R. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Fourmaux, S.; Saraf, A.; Otani, K.; Kieffer, J. C. [INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes, Québec J3X 1S2 (Canada); Ng, A. [Department of Physics and Astronomy, University of British Columbia, British Columbia V6T 1Z1 (Canada)

    2013-12-15

    We have developed a laser wakefield generated X-ray probe to directly measure the temporal evolution of the ionization states in warm dense aluminum by means of absorption spectroscopy. As a promising alternative to the free electron excited X-ray sources, Betatron X-ray radiation, with femtosecond pulse duration, provides a new technique to diagnose femtosecond to picosecond transitions in the atomic structure. The X-ray probe system consists of an adjustable Kirkpatrick-Baez (KB) microscope for focusing the Betatron emission to a small probe spot on the sample being measured, and a flat Potassium Acid Phthalate Bragg crystal spectrometer to measure the transmitted X-ray spectrum in the region of the aluminum K-edge absorption lines. An X-ray focal spot size of around 50 μm was achieved after reflection from the platinum-coated 10-cm-long KB microscope mirrors. Shot to shot positioning stability of the Betatron radiation was measured resulting in an rms shot to shot variation in spatial pointing on the sample of 16 μm. The entire probe setup had a spectral resolution of ∼1.5 eV, a detection bandwidth of ∼24 eV, and an overall photon throughput efficiency of the order of 10{sup −5}. Approximately 10 photons were detected by the X-ray CCD per laser shot within the spectrally resolved detection band. Thus, it is expected that hundreds of shots will be required per absorption spectrum to clearly observe the K-shell absorption features expected from the ionization states of the warm dense aluminum.

  11. Gamma radiography and its technological application; Gammagraphie et techniques annexes

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, G [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1962-07-01

    After the presentation of gamma radiography and X-ray radiography, the author compare both techniques showing, in particular, the greater utility of gamma radiography in industrial diagnostic and more particularly on works site diagnostic. Problem of using radiography and safety consideration will be studied. Figures shows two radiography equipment which have been designed for gamma radiography respecting the safety regulations required by the Radioisotope Inter-ministerial Commission. In the second part, different techniques and uses of gamma radiography are briefly described : xerography, neutron radiography, fluoroscopy and imaging amplifier, tomography, betatrons and linear accelerators. Cost analysis will discussed in conclusion. (M.P.)

  12. Space Charge Effects

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  13. The optical design of the spin manipulation system for the SLAC Linear Collider

    International Nuclear Information System (INIS)

    Fieguth, T.H.

    1989-03-01

    The optical design of the beam transport lines between the SLAC Linac and the electron damping ring and the design of part of the Linac lattice itself will be modified to accommodate three superconducting solenoids for the purpose of manipulating the polarization of the electron beam. In order to allow arbitrary orientation of the polarization vector, this design will be capable of compensating the fields of two independent solenoids for arbitrary strengths ranging to 7.0 T-m. The method of dealing with the coupling of the betatron functions and the method of handling both the electron and positron beams in the common region are discussed. 8 refs., 5 figs

  14. Calibration of the Nonlinear Accelerator Model at the Diamond Storage Ring

    CERN Document Server

    Bartolini, Riccardo; Rowland, James; Martin, Ian; Schmidt, Frank

    2010-01-01

    The correct implementation of the nonlinear ring model is crucial to achieve the top performance of a synchrotron light source. Several dynamics quantities can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these methods are based on the analysis of turn-by-turn data of excited betatron oscillations. We present the experimental results of the campaign of measurements carried out at the Diamond. A combination of Frequency Map Analysis (FMA) and detuning with momentum measurements has allowed a precise calibration of the nonlinear model capable of reproducing the nonlinear beam dynamics in the storage ring

  15. Operational status of the transverse multibunch feedback system at Diamond

    International Nuclear Information System (INIS)

    Uzun, I.; Abbott, M.; Heron, M.T.; Morgan, A.F.D.; Rehm, G.

    2012-01-01

    A transverse multibunch feedback (TMBF) system is in operation at Diamond Light Source to damp coupled-bunch instabilities up to 250 MHz in both the vertical and horizontal planes. It comprises an in-house designed and built analogue front end combined with a Libera Bunch-by-Bunch feedback processor and output stripline kickers. FPGA-based feedback electronics is used to implement several diagnostic features in addition to the basic feedback functionality. This paper reports on the current operational status of the TMBF system along with its characteristics. Also discussed are operational diagnostic functionalities including continuous measurement of the betatron tune and chromaticity. (authors)

  16. Use of regularization method in the determination of ring parameters and orbit correction

    International Nuclear Information System (INIS)

    Tang, Y.N.; Krinsky, S.

    1993-01-01

    We discuss applying the regularization method of Tikhonov to the solution of inverse problems arising in accelerator operations. This approach has been successfully used for orbit correction on the NSLS storage rings, and is presently being applied to the determination of betatron functions and phases from the measured response matrix. The inverse problem of differential equation often leads to a set of integral equations of the first kind which are ill-conditioned. The regularization method is used to combat the ill-posedness

  17. Skew quad compensation for SPEAR minibeta optics

    International Nuclear Information System (INIS)

    Wille, K.

    1984-06-01

    With the new minibeta insertion for SPEAR the betatron coupling and the perturbations of beam optics caused by the solenoid field of the MARK III detector can't be compensated by the simple coils used so far. Therefore another scheme with four skew quads arranged in two families has been chosen. Even though this scheme doesn't compensate the effect of the solenoid on the beam completely, the residual emittance coupling is much less than 1% which should be sufficient under all running conditions. The major advantage of this concept is its simplicity

  18. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    1977-03-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  19. Matrix formulation of the particle motion in crystalline beams

    International Nuclear Information System (INIS)

    Haffmans, A.F.; Maletic, D.; Ruggiero, A.G.

    1994-01-01

    To investigate the properties of Crystalline Beams in their ground state, the equations of motion of a single ion and the envelope equations are derived. It is possible to express the status of motion with a set of transfer matrices associated to each of the magnet elements of the storage ring. By inspection of the eigenvalues of the total transfer matrix one then determines the onset of crystalline structures and the stability limits. An analytical approach is also possible, based on the estimate of the shifting of the frequencies of oscillation, betatron and longitudinal, and on the approaching of a major half-integral stopband resonance driven by the space charge

  20. More Options for the NLC Bunch Compressors (LCC-0035)

    International Nuclear Information System (INIS)

    Emma, P.

    2004-01-01

    The present bunch compressor design for the NLC allows control of the final bunch length by way of changes to the horizontal betatron phase advance of the 180 o -turnaround arc. This adjustability requirement significantly constrains the design and cost optimization of the system and excludes the possibility of using permanent magnet quadrupoles in the arc. To relieve this constraint, and to avoid the very strong arc focusing required at the upper limits of the bunch length range, we explore an option of bunch length control using the first compressor stage, with the arc optics fixed

  1. Interaction of crystalline beams with a storage ring lattice

    International Nuclear Information System (INIS)

    Hofmann, I.; Struckmeier, J.

    1989-01-01

    We present the results of numerical calculations for beams in realistic storage ring lattices under conditions, where crystalline order could be expected, at least in principle. In particular we discuss the effect of space charge, envelope instabilities, bending magnets and of cooling strength. Our conclusions on the lattice design require high symmetry and a small betatron tune. For three-dimensional ordering we find in addition that typically an e-folding of cooling is necessary after each bending section. The formation of order in a one- dimensional chain puts no restriction on the lattice, and a fraction of an e-folding of cooling once per revolution has been found sufficient. (orig.)

  2. Exploration of horizontal intrinsic spin resonances with two partial Siberian snakes

    Directory of Open Access Journals (Sweden)

    F. Lin

    2007-04-01

    Full Text Available Two partial Siberian snakes were used to avoid all the spin imperfection and vertical intrinsic resonances in the alternating gradient synchrotron (AGS at Brookhaven National Laboratory. However, the horizontal betatron motion can cause polarization loss resulting from the nonvertical stable spin direction in the presence of two partial snakes. This type of resonance, called a horizontal intrinsic spin resonance, was observed and systematically studied in the AGS. A simplified analytic model and numerical simulation have been developed to compare with experimental data. Properties of the horizontal intrinsic resonance are discussed.

  3. Multibunch feedback: Strategy, technology and implementation options

    International Nuclear Information System (INIS)

    Fox, J.D.; Eisen, N.; Hindi, H.; Oxoby, G.; Sapozhnikov, L.; Linscott, I.; Serio, M.

    1992-10-01

    The proposed next generation accelerator and synchrotron light facilities will require active feedback systems to control multi-bunch instabilities. These feedback systems must operate in machines with thousands of circulating bunches and with short (2--4 ns) interbunch intervals. The functional requirements for transverse (betatron) and longitudinal (synchrotron) feedback systems are presented. Several possible implementation options are discussed and system requirements developed. Results are presented from a digital signal processing based synchrotron oscillation damper operating at the SSRL/SLAC SPEAR storage ring

  4. Limitations on plasma acceleration due to synchrotron losses

    International Nuclear Information System (INIS)

    Barletta, W.A.; Lee, E.P.; Bonifacio, R.; De Salvo, L.

    1999-01-01

    In this letter we consider the effect of synchrotron radiation losses due to the betatron motion of the electron beam in its self-induced magnetic field in a plasma accelerator taking into account the charge neutralization factor. The most favorable case is where the plasma density is smaller than the beam density. The contrary regime is strongly disfavored by the synchrotron radiation loss for beams with characteristics for TeV energies. In both cases we find that upon increasing the plasma density the synchrotron losses kill the acceleration process, so that there are limitations on the maximum allowable plasma density

  5. Spectral function calculation of angle wakes, wake moments, and misalignment wakes for the SLAC Damped Detuned Structures (DDS)

    International Nuclear Information System (INIS)

    Jones, R.M.; Miller, R.H.; Kroll, N.M.

    1997-05-01

    Transverse wake functions so far reported for the SLAC DDS have been limited to those caused by uniform offset of the drive beam in a straight perfectly aligned structure. The complete description of the betatron oscillations of wake coupled bunches requires an array of wake functions, referred to as moments. Modifications of these arrays induced by structure misalignments are also of interest. In this paper we express the array elements in terms of a spectral function array. Examples are given based upon DDS1

  6. Acceleration of polarized proton in high energy accelerators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1991-01-01

    In low to medium energy accelerators, betatron tune jumps and vertical orbit harmonic correction methods have been used to overcome the intrinsic and imperfection resonances. At high energy accelerators, snakes are needed to preserve polarization. The author analyzes the effects of snake resonances, snake imperfections, and overlapping resonances on spin depolarization. He discusses also results of recent snake experiments at the IUCF Cooler Ring. The snake can overcome various kinds of spin depolarization resonances. These experiments pointed out further that partial snake can be used to cure the imperfection resonances in low to medium energy accelerators

  7. POLARIZED BEAMS: 2 - Partial Siberian Snake rescues polarized protons at Brookhaven

    International Nuclear Information System (INIS)

    Huang, Haixin

    1994-01-01

    To boost the level of beam polarization (spin orientation), a partial 'Siberian Snake' was recently used to overcome imperfection depolarizing resonances in the Brookhaven Alternating Gradient Synchrotron (AGS). This 9-degree spin rotator recently permitted acceleration with no noticeable polarization loss. The intrinsic AGS depolarizing resonances (which degrade the polarization content) had been eliminated by betatron tune jumps, but the imperfection resonances were compensated by means of harmonic orbit corrections. However, at high energies these orbit corrections are difficult and tedious and a Siberian Snake became an attractive alternative

  8. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs

  9. Stochastic cooling equipment at the ISR

    CERN Multimedia

    1983-01-01

    The photo shows (centre) an experimental set-up for stochastic cooling of vertical betatron oscillations, used at the ISR in the years before the ICE ring was built. Cooling times of about 30 min were obtained in the low intensity range (~0.3 A). To be noted the four 50 Ohm brass input/output connections with cooling fins, and the baking-out sheet around the cylinder. On the left one sees a clearing electrode box allowing the electrode current to be measured, and the pressure seen by the beam to be evaluated.

  10. Quantitative analysis of trapping probability for quasi-integrable two degree of freedom maps

    CERN Document Server

    Bazzani, A; Hernalsteens, C; Williams, J

    2014-01-01

    A key ingredient for the Multi-Turn Extraction (MTE) at the CERN Proton Synchrotron is the beam trapping in stable islands of transverse phase space. In a previous paper a method allowing analytical estimation of the fraction of beam trapped into resonance islands as a function of the Hamiltonian parameters has been presented. Such amethod applies to one-degree of freedom models of betatronic motion. In this paper, the analysis is extended to the more realistic and challenging case of two-degree of freedom systems, in which the interplay between the horizontal and vertical motion is fully included. Numerical simulations are presented and the results are discussed in detail.

  11. Characteristics of therapeutic electron beams and their determination from depth dose curves

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, J; Pernicka, F [Ceskoslovenska Akademie Ved, Prague. Ustav Dozimetrie Zareni

    1980-09-01

    The distribution of absorbed dose in the environment irradiated with broad beams of high-energy electrons is analyzed physically and therapeutically. A number of parameters are defined with the aid of which the beams of electrons may be characterized in great detail and compared. The theoretical calculations of individual parameters are compared with the values measured using the Ostron betatron in the central axis of the beam at a distance of 65 cm from the target; the differences found are ascribed to the spectrum of electrons, the scattering of electrons on the homogenizing foils, collimators, monitoring chambers, etc.

  12. Active and passive compensation of APPLE II-introduced multipole errors through beam-based measurement

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ting-Yi; Huang, Szu-Jung; Fu, Huang-Wen; Chang, Ho-Ping; Chang, Cheng-Hsiang [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Hwang, Ching-Shiang [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 30050, Taiwan (China)

    2016-08-01

    The effect of an APPLE II-type elliptically polarized undulator (EPU) on the beam dynamics were investigated using active and passive methods. To reduce the tune shift and improve the injection efficiency, dynamic multipole errors were compensated using L-shaped iron shims, which resulted in stable top-up operation for a minimum gap. The skew quadrupole error was compensated using a multipole corrector, which was located downstream of the EPU for minimizing betatron coupling, and it ensured the enhancement of the synchrotron radiation brightness. The investigation methods, a numerical simulation algorithm, a multipole error correction method, and the beam-based measurement results are discussed.

  13. Tevatron as an SSC prototype; experience versus predictions

    International Nuclear Information System (INIS)

    Johnson, R.P.

    1984-01-01

    Early machine experiments on the Tevatron which are relevant to the SSC are discussed. Despite the preliminary nature of the data, there have been some interesting observations which may influence the design of the SSC. In particular, comparisons of measured betatron tunes, chromaticities, and resonance line widths with those predicted from computer simulations using magnetic field measurements have been made; the predictability for low order phenomena seems acceptable. Coasting beam studies indicate long lifetime and lack of strong resonance driving terms. Low energy studies of beam behavior indicate that a dynamic range of a factor of 15 from injection to operation energy should be possible

  14. In situ particle acceleration and physical conditions in radio tail galaxies

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.; Scott, J.S.

    1976-01-01

    A model for the objects known as radio tail galaxies is presented. Independent plasmons emerging from an active radio galaxy into an intracluster medium become turbulent due to Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The turbulence produces both in situ betatron and second order Fermi acceleration. Predictions of the dependence of spectral index and flux on distance along the tail match observations well. Fitting provides values of physical parameters in the tail. The relevance of this method of particle acceleration for the problem of the origin of X-ray emission in clusters of galaxies is discussed

  15. The 53Cr(γ,p)52V cross section

    International Nuclear Information System (INIS)

    Baciu, G.; Catana, D.; Galateanu, V.; Niculescu, R.I.V.

    1979-01-01

    The cross section of the photonuclear reaction 53 Cr(γ,p) 52 V between 14.4 MeV and 27 MeV was determined by the activation method. Chromium with natural isotopic abundance was irradiated in the bremsstrahlung beam of a betatron and γ rays were measured with a Ge(Li) spectrometer. Interfering reactions 52 Cr(n,p) 52 V and 54 Cr(γ,np) 52 V were evaluated. The stucture of the cross section curve is interpreted in terms of isospin splitting. (author)

  16. Chromatic effects in the superconducting accelerator NUCLOTRON

    International Nuclear Information System (INIS)

    Dinev, D.

    1998-01-01

    A systematic study of the chromatic effects in the superconducting heavy ion synchrotron NUCLOTRON in the JINR, Dubna has been performed. The natural chromaticity has been evaluated taking into account the effect of the dipole magnets. The impact of the systematic and random imperfections in the magnetic field of dipoles on the chromaticity and the dependence of the betatron tunes on the amplitude of oscillations have been investigated. The strengths of the sextupole corrections necessary to cancel the chromaticity have been calculated. The chromatic perturbations have been studied by the means of the Montague chromatic functions (author)

  17. The influence of radiation therapy on cardiac pacemakers

    International Nuclear Information System (INIS)

    Coles, J.R.; Ciddor, G.S.

    1980-01-01

    The results of an investigation to determine the influence on pacemaking of ionizing radiation and electromagnetic radiation from a number of radiotherapy machines are reported. In vitro tests were carried out on unipolar cardiac pacemakers of the ventricular inhibited type. The pacemakers were largely unaffected by the environment of clinical radiotherapy machines. Ionizing radiation had no detrimental effect on the pacemakers and electromagnetic interference caused only temporary single-beat inhibition at most. With the betatron used, malfunction of the pacemakers regularly occurred whilst in their inhibited made of operation. The demand function became disabled allowing competitive asynchronous pulses to be produced

  18. The influence of radio- and chemotherapy on DNA repair of peripheral lymphocytes of tumor patients

    International Nuclear Information System (INIS)

    Klein, W.; Alth, G.; Klein, H.; Koren, H.

    1979-07-01

    The influence of radiotherapy and chemotherapy, respectively, on DNA excision repair was investigated in lymphocytes of the peripheral blood of 10 and 5 patients with malignancies. No effects on DNA repair were found using only betatrone of 60 Co-irradiation under normal conditions. Combination of both irradiation schedules over a longer period of therapy provoked an inhibition of DNA repair. Chemotherapy inhibits DNA repair immediately after starting therapy, but after relatively short time, the extent of DNA repair increases above normal level. (author)

  19. Long-term stability of orbits in storage rings

    International Nuclear Information System (INIS)

    Warnock, R.L.; Ruth, R.D.

    1990-06-01

    We describe a numerical method to establish long-term bounds on nonlinear Hamiltonian motion. By bounding the change in a nearly constant action variable, uniformly in initial condition, one can predict stability for N turns by tracking many orbits for a member of turns of N 0 much less than N. In a first application to a model sextupole lattice in a region of strong nonlinearity, we predict stability of betatron motion in two degrees of freedom for 10 8 turns. 5 refs., 3 figs

  20. Orbital parameters of proton and deuteron beams in the NICA collider with solenoid Siberian snakes

    International Nuclear Information System (INIS)

    Kovalenko, A D; Butenko, A V; Kekelidze, V D; Mikhaylov, V A; Kondratenko, M A; Filatov, Yu N; Kondratenko, A M

    2016-01-01

    Two solenoid Siberian snakes are required to obtain ion polarization in the “spin transparency” mode of the NICA collider. The field integrals of the solenoid snakes for protons and deuterons at maximum momentum of 13.5 GeV/c are equal to 2×50 T·m and 2×160 T·m respectively. The snakes introduce strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in NICA collider with solenoid snakes are presented. (paper)

  1. Studies of polarized beam acceleration and Siberian Snakes

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1992-01-01

    We studied depolarization mechanisms of polarized proton acceleration in high energy accelerators with snakes and found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune of imperfection resonances, each snake resonance splits into two. Thus the available betatron tune space becomes smaller. Some constraints on polarized beam colliders were also examined

  2. Spin Transparency Mode in the NICA Collider with Solenoid Siberian Snakes for Proton and Deuteron Beam

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2017-12-01

    Two solenoid Siberian Snakes are required to obtain ion polarization in spin transparency mode of the NICA collider. The snake solenoids with a total field integral of 2×50 T·m are placed into the straight sections of the NICA collider. It allows one to control polarization of protons and deuterons up to 13.5 GeV/c and 4 GeV/c respectively. The snakes introduce a strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in the NICA collider with solenoid Snakes are presented.

  3. Wakefield effects in a linear collider

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    1986-12-01

    In this paper the wakefields for the Stanford Linear Accelerator Center (SLAC) accelerating structure are first discussed, and then some considerations dealing with the longitudinal wakefields are described. The main focus is on the effects of the transverse wakefield on the beam, including the case when there is an energy variation along the bunch. The use of an energy spread to inhibit emittance growth in a linac, indeed to damp the oscillations of the core of the bunch to below the unperturbed betatron oscillations, (in a process that is similar to Landau Damping) is qualitatively detailed. The example of the SLC, including errors, is also in detail

  4. Computer simulation of the emittance growth due to noise in large hadron colliders

    International Nuclear Information System (INIS)

    Lebedev, V.

    1993-03-01

    The problem of emittance growth due to random fluctuations of the magnetic field in a hadron collider is considered. The results of computer simulations are compared with the analytical theory developed earlier. A good agreement was found between the analytical theory predictions and the computer simulations for the collider tunes located far enough from high order betatron resonances. The dependencies of the emittance growth rate on noise spectral density, beam separation at the Interaction Point (IP) and value of beam separation at long range collisions are studied. The results are applicable to the Superconducting Super Collider (SSC)

  5. Effect of non-ideal characteristics of an adder on the efficiency of data storage during scintillation radiometric testing with the use of pulse radiations

    International Nuclear Information System (INIS)

    Nedavnij, O.I.

    1983-01-01

    Problems of statistical summation of electric signals during scintillation radiometric control using pulse sources-betatrons and X-ray apparatus haVe been considered. Using calculation and experimental ways it is shown that non-ideal nature of adder, conditioned by energy consumption in the process of summation, hampers the information storage to a greater degree than in the case of difference of summed signals amplitudes with similar statistical weights. A new algorithm of television introscope operation, permitting to increase the efficiency of data storage is suggested

  6. Nonlinear Theory of Nonparaxial Laser Pulse Propagation in Plasma Channels

    International Nuclear Information System (INIS)

    Esarey, E.; Schroeder, C. B.; Shadwick, B. A.; Wurtele, J. S.; Leemans, W. P.

    2000-01-01

    Nonparaxial propagation of ultrashort, high-power laser pulses in plasma channels is examined. In the adiabatic limit, pulse energy conservation, nonlinear group velocity, damped betatron oscillations, self-steepening, self-phase modulation, and shock formation are analyzed. In the nonadiabatic limit, the coupling of forward Raman scattering (FRS) and the self-modulation instability (SMI) is analyzed and growth rates are derived, including regimes of reduced growth. The SMI is found to dominate FRS in most regimes of interest. (c) 2000 The American Physical Society

  7. γ -Ray Generation from Plasma Wakefield Resonant Wiggler

    Science.gov (United States)

    Lei, Bifeng; Wang, Jingwei; Kharin, Vasily; Zepf, Matt; Rykovanov, Sergey

    2018-03-01

    A flexible gamma-ray radiation source based on the resonant laser-plasma wakefield wiggler is proposed. The wiggler is achieved by inducing centroid oscillations of a short laser pulse in a plasma channel. Electrons (self-)injected in such a wakefield experience both oscillations due to the transverse electric fields and energy gain due to the longitudinal electric field. The oscillations are significantly enhanced when the laser pulse centroid oscillations are in resonance with the electron betatron oscillations, extending the radiation spectrum to the gamma-ray range. The polarization of the radiation can be easily controlled by adjusting the injection of the laser pulse into the plasma channel.

  8. Transverse-Longitudinal Coupling Effect in Laser Bunch Slicing

    International Nuclear Information System (INIS)

    Shimada, M.; Katoh, M.; Adachi, M.; Kimura, S.; Tanikawa, T.; Hosaka, M.; Yamamoto, N.; Takashima, Y.; Takahashi, T.

    2009-01-01

    We report turn-by-turn observation of coherent synchrotron radiation (CSR) produced by the laser bunch slicing technique at an electron storage ring operated with a small momentum compaction factor. CSR emission was intermittent, and its interval depended strongly on the betatron tune. This peculiar behavior of the CSR could be interpreted as a result of coupling between the transverse and longitudinal motion of the electrons. This is the first observation of such an effect, which would be important not only for controlling the CSR emission but also for generating and transporting ultrashort electron bunches or electron bunches with microdensity structures in advanced accelerators.

  9. WE7000 network for KEK Proton Synchrotron

    International Nuclear Information System (INIS)

    Yamaguchi, Yuji; Yagyu, Hiroshi

    2000-01-01

    A new PC-Based measurement system, WE7000, has been developed. The WE7000 is based on a new concept and the leading-edge technologies, such as 250 Mbps high speed optical fiber network and complete Plug and Play mechanism. This paper describes an application to the betatron oscillation monitor and a magnetic field monitor of beam extraction system for neutrino experiment at 12 GeV Proton Synchrotron (PS) Accelerator in High Energy Accelerator Organization (KEK). It was found that these system are very effective in the operation of the accelerator. (author)

  10. Labor security in radiation flaw detection

    International Nuclear Information System (INIS)

    Margulis, U.Ya.; Chistov, E.D.; Partolin, O.F.; Pertsov, V.A.; Momzhiev, B.N.; Sprygaev, I.F.

    1986-01-01

    Problems of ensuring safe labour conditions in radiation flaw detection are considered. Methods for ionizing radiation protection are given calculating techniques for shielding flaw detectors and stationary structures are presented as well. Safe methods of nondestructive testing of items under field conditions, in a shop and special laboratories using gamma- and X-ray flaw detectors, betatrons, electron accelerators are described. Attention is paid to the principles of radiation factor stantardization as well as radiation monitoring. Analysis of accidents and recommendations on their prevention and liquidation of accidental consequences are given

  11. Achromatic Cooling Channel with Li Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2002-04-29

    A linear cooling channel with Li lenses, solenoids, and 201 MHz RF cavities is considered. A special lattice design is used to minimize chromatic aberrations by suppression of several betatron resonances. Transverse emittance of muon beam decreases from 2 mm to 0.5 mm at the channel of about 110 m length. Longitudinal heating is modest, therefore transmission of the channel is rather high: 96% without decay and 90% with decay. Minimal beam emittance achievable by similar channel estimated as about 0.25 mm at surface field of Li lenses 10 T.

  12. Generation of hemispherical fast electron waves in the presence of preplasma in ultraintense laser-matter interaction

    Czech Academy of Sciences Publication Activity Database

    Yang, H.X.; Ma, Y.Y.; Xu, H.; Shao, F.Q.; Yu, M.Y.; Yin, Y.; Zhuo, H.B.; Borghesi, Marco

    2013-01-01

    Roč. 31, č. 3 (2013), s. 379-386 ISSN 0263-0346 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : betatron resonance * electron plasma waves * ponderomotive force * preplasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.701, year: 2013

  13. Emittance Growth due to Crab Cavity Ramping for LHC Beam-1 Lattice

    CERN Document Server

    Morita, A

    2008-01-01

    In LHC upgrade scenarios using global crab crossing, it is desired to turn on the crab cavity only at top energy. Turning on the crab cavity could increase the emittance of the stored beam, since the transverse kick of the crab cavity excites betatron oscillations. For a sufficiently slow ramping speed of the crab cavity voltage, however, the changes in z-dependent closed orbit are sufficiently adiabatic that the emittance growth becomes negligible. In order to determine the safe ramping speed of the LHC crab-cavity voltage, the dependence of the emittance growth on the ramping speed is estimated via a 6D particle-tracking simulation.

  14. Performance of the main ring magnet power supply of the KEK 12 GeV proton synchrotron

    International Nuclear Information System (INIS)

    Sato, H.; Sueno, T.; Toyama, T.; Mikawa, Ml; Toda, M.; Matsumoto, S.; Nakano, M.

    1992-01-01

    The main ring magnet power supply of the KEK 12 GeV PS consists of several twelve-pulse thyristor rectifiers with dc filters, of two reactive power compensators with tuned ac harmonic filters and of an analog and digital hybrid control system. In order to obtain well defined parameters-such as absolute precision of beam energy, stable beam position, tracking between focusing and bending fields to fix the betatron tune, stable acquisition of extracted beam spill etc.-one wants to operate this large pulsed power supply with high current reproducibility and low residual current ripple. In this paper, several stabilization techniques are applied in order to meet these requirements

  15. Advances in radiographic NDI of pipe systems; Fortschritte bei der Durchstrahlungspruefung von Rohrleitungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Morgner, W. [NSQ HAUK, Ludwigshafen (Germany); Hauk, T. [NSQ HAUK, Ludwigshafen (Germany); Tschachlov, V. [NSQ HAUK, Tomsk (Russian Federation)

    1995-12-31

    The paper discusses the application of a small-sized betatron and its operational parameters, and its uses for very small angle tomography of medium-filled pipes or a thick weld. Other aspects discussed are the handling of large numbers of X-ray images by means of an X-ray manipulator, film digitalization, and data management of imaging data. (orig./MM) [Deutsch] Dieser Beitrag behandelt die Anwendung eines Kleinbetatrons und seiner Leistungsparameter, damit durchgefuehrte Durchstrahlungspruefungen an mediumgefuellten Rohren und eine an einer dicken Schweissnaht realisierte Wenigwinkeltomographie. Bezueglich der Beherrschung einer Grosszahl von Roentgenaufnahmen wird ueber einen Roentgenmanipulator, die Filmdigitalisierung und das Datenmanagement von Bilddaten berichtet. (orig./MM)

  16. Beam stability in synchrotrons with digital transverse feedback systems in dependence on beam tunes

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.

    2011-01-01

    The beam stability problem in synchrotrons with a digital transverse feedback system (TFS) is studied. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit measured at the location of the beam position monitor (BPM). It is shown that the area and configuration of the beam stability separatrix depend on the beam tune, the feedback gain, the phase balance between the phase advance from BPM to DK and the phase response of the feedback chain at the betatron frequency

  17. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    International Nuclear Information System (INIS)

    Kostyukov, I.Yu.; Shvets, G.; Fisch, N.J.; Rax, J.M.

    2001-01-01

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made

  18. Catalog of Audiovisual Productions. Volume 3. Air Force and Miscellaneous DoD Productions

    Science.gov (United States)

    1984-06-01

    operation of betatrons, cyclotrons, synchrotrons , etc. For atomic and molecular structure and spectra, see T/02 CrhAisILr. For application, see 0...STRATOSPHERE 0/03 SYNCHRONOUS SATELLITES X/02 STRAW J/06 SYNCHROTRONS T/06 STREAMS(iMETEOROLOGY), JET D/CS SYNTAX B/10 STRUCTURAL ENGINEERING F/12...ENEMIES 50579-DF JOHNNY LINGOGOD26B0 GODF TEA FOR ELSA 26927-OF RESURRECTION OF JOE C HAMMOND 5OSSO.DF CIPHER IN THE SNOW 26505-OF LAND OF THE BRAVE 2692

  19. Design features and operational characteristics of the PEP beam-transport and injection system

    International Nuclear Information System (INIS)

    Peterson, J.M.; Brown, K.L.; Truher, J.B.

    1981-03-01

    The PEP beam-transport system was designed to transmit 4-to-15 GeV electron and positron beams from the SLAC linac within a +- 0.8% momentum band, to have flexible tuning of the betatron and off-momentum functions for matching into the PEP storage ring, and to have convenient operating characteristics. The transport lines were brought into operation quickly and have operated well. Electron injection has been consistent and efficient and relatively easy to accomplish. Positron injection also has been satisfactory but is variable and more sensitive to ring conditions

  20. Emittance growth from transient coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Bohn, C.L.; Li, R.; Bisognano, J.J.

    1996-01-01

    If the energies of individual particles in a bunch change as the bunch traverses a bending system, even if it is achromatic, betatron oscillations can be excited. Consequently, the transverse emittance of the bunch will grow as it moves downstream. Short bunches may be particularly susceptible to emission of coherent synchrotron radiation which can act back on the particles to change their energies and trajectories. Because a bend spans a well-defined length and angle, the bunch-excited wakefield and its effect back on the bunch are inherently transient. We outline a recently developed theory of this effect and apply it to example bending systems

  1. Integrable RCS as a Proposed Replacement for Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Valishev, Alexander [Fermilab

    2017-03-07

    Integrable optics is an innovation in particle accelerator design that potentially enables a greater betatron tune spread and damps collective instabilities. An integrable rapid-cycling synchrotron (RCS) would be an effective replacement for the Fermilab Booster, as part of a plan to reach multi-MW beam power at 120 GeV for the Fermilab high-energy neutrino program. We provide an example integrable lattice with features of a modern RCS - dispersion-free drifts, low momentum compaction factor, superperiodicity, chromaticity correction, bounded beta functions, and separate-function magnets.

  2. Summary of Working Group I - beam-beam instability with crossing angle

    International Nuclear Information System (INIS)

    Chen, T.

    1995-06-01

    This report is a summary report from a panel addressing the problem of beam-beam instability in colliding beams at finite crossing angles. This problem arises in the process of increasing luminosity in large circular particle factories. The primary means of increasing luminosity comes down to increasing the number of bunches in each beam, while decreasing the spacing between bunches. This situation favors finite crossing angle collision schemes. However such schemes allow synchro-betatron coupling, as transverse and longitudinal energies are mixed. The authors summarize their discussions on this problem, and the present state of experience with such schemes

  3. Laser wakefield accelerator based light sources: potential applications and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  4. Computer programs in accelerator physics

    International Nuclear Information System (INIS)

    Keil, E.

    1984-01-01

    Three areas of accelerator physics are discussed in which computer programs have been applied with much success: i) single-particle beam dynamics in circular machines, i.e. the design and matching of machine lattices; ii) computations of electromagnetic fields in RF cavities and similar objects, useful for the design of RF cavities and for the calculation of wake fields; iii) simulation of betatron and synchrotron oscillations in a machine with non-linear elements, e.g. sextupoles, and of bunch lengthening due to longitudinal wake fields. (orig.)

  5. Gamma radiography and its technological application

    International Nuclear Information System (INIS)

    Courtois, G.

    1962-01-01

    After the presentation of gamma radiography and X-ray radiography, the author compare both techniques showing, in particular, the greater utility of gamma radiography in industrial diagnostic and more particularly on works site diagnostic. Problem of using radiography and safety consideration will be studied. Figures shows two radiography equipment which have been designed for gamma radiography respecting the safety regulations required by the Radioisotope Inter-ministerial Commission. In the second part, different techniques and uses of gamma radiography are briefly described : xerography, neutron radiography, fluoroscopy and imaging amplifier, tomography, betatrons and linear accelerators. Cost analysis will discussed in conclusion. (M.P.)

  6. A resonant beam detector for TEVATRON tune monitoring

    International Nuclear Information System (INIS)

    Martin, D.; Fellenz, B.; Hood, C.; Johnson, M.; Shafer, R.; Siemann, R.; Zurawski, J.

    1989-03-01

    An inductively resonated, balanced stripline pickup has been constructed for observing tune spectra. The device is a sensitive betatron oscillation and Schottky noise pickup, providing 25 dB gain over untuned detectors of like geometry. The electrodes are motorized so the device center and aperture may be remotely adjusted. To tune the resonator onto the 21.4 MHz operating frequency, a motorized capacitor is employed. Quadrature signals from a pair of detectors has enabled observation of individual p and p coherent motions to nanometer levels. 8 refs., 5 figs

  7. Radiation protection and the laws and regulations

    International Nuclear Information System (INIS)

    Takada, Takuo

    1980-01-01

    In hospitals and clinics, when cobalt remote irradiation apparatuses, betatrons and linear accelerators are installed, the provisions of medical and radiation injury prevention laws and other related laws and regulations must be observed. The following matters are described: the laws and regulations concerning the prevention of radiation injuries, the definitions of the therapeutical equipments, the radiation protection standards for such facilities, radiation exposure dose and permissible dose, the procedures concerning the application before usage, the responsibilities of hospitals and clinics for radiation measurement and management, and shielding and shield calculations. (J.P.N.)

  8. Beam separation for p-anti p collisions in a single ring in the multibunch mode

    International Nuclear Information System (INIS)

    Berley, D.; Garren, A.A.; Month, M.

    1978-01-01

    A discussion is given of proton-antiproton colliding beam operation in storage rings. Some means of separating the beams at points where no experiment is being performed seems to be an important feature for a p-anti p colliding beam ring. By exciting a betatron oscillation in some appropriate, localized region, one could create a specific collision point while at the same time cause the p and anti p beams to oscillate in opposition so that their orbits meet at only a small number of points, roughly given by twice the tune, 2ν

  9. Demonstration of coupling correction below the per-mil limit in the LHC

    CERN Document Server

    Maclean, Ewen Hamish; Fartoukh, Stephane; Persson, Tobias Hakan Bjorn; Skowronski, Piotr Krzysztof; Tomas Garcia, Rogelio; Wierichs, David Alexander; CERN. Geneva. ATS Department

    2016-01-01

    Linear coupling between betatron motion in the transverse planes is one of the key optics parameters for any accelerator. It can substantially affect the nonlinear dynamics, influencing both lifetime and the damping of instabilities, as well as affecting the ability to measure and control the linear optics. A review of published material revealed no account of coupling having been corrected significantly below the per-mil level in any hadron accelerator. This note reports the achievement of a sub-per-mil coupling correction during an LHC Machine Development study.

  10. RESONANT BPM FOR CONTINUOUS TUNE MEASUREMENT IN RHIC

    International Nuclear Information System (INIS)

    KESSELMAN, M.; CAMERON, P.; CUPOLO, J.

    2001-01-01

    A movable Beam Position Monitor (BPM) using shorted stripline Pick-Up Electrode (NE) elements has been resonated using matching stub techniques to achieve a relatively high Q resonance at about 230MHz. This PUE has been used in a feasibility study of phase-locked-loop tune measurement [1], using a lock-in amplifier and variable frequency generator to continuously track betatron tune in RHIC, as well as to observe Schottky signals of the Gold beam. The approach to providing a high Q PUE for difference mode signals, simulation studies, and the results of initial tests will be presented

  11. Suppression of tilting instability of a compact torus by energetic particle beams

    International Nuclear Information System (INIS)

    Nomura, Yasuyuki.

    1984-11-01

    It is shown that the tilting instability of a compact torus can be suppressed by toroidally circulating energetic particle beams. The stabilizing mechanism is based on the properties of the forced oscillation in the motion of beam particles in a plasma ring. The required beam current for the stabilization is estimated to be sufficiently small compared to the plasma current in the case that the angular velocity of beam particles is close to the betatron frequency. This stabilizing method is applied to a field reversed configuration. Effects of the plasma surface current and beam divergences are also examined. (author)

  12. Lattice function measurement with TBT BPM data

    International Nuclear Information System (INIS)

    Yang, M.J.

    1995-06-01

    At Fermilab Main Ring some of the Beam Position Monitors (BPM) are instrumented with Turn-By-Turn (TBT) capability to record up to 1,024 consecutive turns of BPM data for each given trigger. For example, there are 9 horizontal plane and 8 vertical plane BPM's in the sector D3 and D4. The BPM data, which records the betatron oscillation, is fitted to obtain beam parameters x, x', y, y', and Δp/p, using the calculated beam line transfer matrix. The resulted TBT beam parameters (x, x') or (y, y') are fitted to ellipses to obtain the lattice function β, α, and the emittance associated with the betatron oscillation. The tune of the machine can be calculated from the phase space angles of the successive turns, in the normalized phase space. The beam parameters can also be used to extract transfer matrix to be used for local and global coupling analysis. The process of fitting the BPM data produces information that can be used to diagnose problems such as calibration, noise level and polarity. Being available at every turn and at changing beam position the information carries a lot of statistical power. Since most of the BPM's are located at high beta location only the x and y beam position information is not simultaneously available. The BPM data fitting processing essentially bridged the gap

  13. Electron Model of Linear-Field FFAG

    CERN Document Server

    Koscielniak, Shane R

    2005-01-01

    A fixed-field alternating-gradient accelerator (FFAG) that employs only linear-field elements ushers in a new regime in accelerator design and dynamics. The linear-field machine has the ability to compact an unprecedented range in momenta within a small component aperture. With a tune variation which results from the natural chromaticity, the beam crosses many strong, uncorrec-table, betatron resonances during acceleration. Further, relativistic particles in this machine exhibit a quasi-parabolic time-of-flight that cannot be addressed with a fixed-frequency rf system. This leads to a new concept of bucketless acceleration within a rotation manifold. With a large energy jump per cell, there is possibly strong synchro-betatron coupling. A few-MeV electron model has been proposed to demonstrate the feasibility of these untested acceleration features and to investigate them at length under a wide range of operating conditions. This paper presents a lattice optimized for a 1.3 GHz rf, initial technology choices f...

  14. Dynamic Aperture Extrapolation in Presence of Tune Modulation

    CERN Document Server

    Giovannozzi, Massimo; Todesco, Ezio

    1998-01-01

    In hadron colliders, such as the Large Hadron Collider (LHC) to be built at CERN, the long-term stability of the single-particle motion is mostly determined by the field-shape quality of the superconducting magnets. The mechanism of particle loss may be largely enhanced by modulation of betatron tunes, induced either by synchro-betatron coupling (via the residual uncorrected chromaticity), or by unavoidable power supply ripple. This harmful effect is investigated in a simple dynamical system model, the Henon map with modulated linear frequencies. Then, a realistic accelerator model describing the injection optics of the LHC lattice is analyzed. Orbital data obtained with long-term tracking simulations ($10^5$-$10^7$ turns) are post-processed to obtain the dynamic aperture. It turns out that the dynamic aperture can be interpolated using a simple mpirical formula, and it decays proportionally to a power of the inverse logarithm of the number of turns. Furthermore, the extrapolation of tracking data at $10^5$ t...

  15. Dose levels due to neutrons in the vicinity of high energy medical accelerators

    International Nuclear Information System (INIS)

    McGinley, P.H.; Wood, M.; Sohrabi, M.; Mills, M.; Rodriguez, R.

    1976-01-01

    High energy photons are generated for use in radiation therapy by the decelleration of electrons in metal targets. Fast neutrons are also generated as a result of (γ, n) and (e, e'n) interactions in the target, beam compensator filter, and collimator material. In this work the adsorbed dose to neutrons was measured at the center of a 10 x 10 cm photon beam and 5 cm outside of the beam edge for a number of treatment units. Dose levels due to slow and fast neutrons were also established outside of the treatment rooms and a Bonner sphere neutron spectrometer system was employed to determine the neutron energy spectrum due to stray neutron radiation at each accelerator. For the linac it was found that the neutron dose at the beam center was 0.0039% of the photon dose and values of 0.049% and 0.053% were observed for the Allis Chalmers betatron and the Brown Boveri Betatron. Dose equivalent rates in the range of 0.3 to 22.5 mrem/hr were measured for points outside the treatment rooms when the accelerators were operated at a photon dose rate of 100 rad/min at the treatment position

  16. MD1878: Operation with primary collimators at tighter settings

    CERN Document Server

    AUTHOR|(CDS)2078850; Amorim, David; Biancacci, Nicolo; Bruce, Roderik; Buffat, Xavier; Carver, Lee Robert; Fiascaris, Maria; Mereghetti, Alessio; Redaelli, Stefano; Rossi, Roberto; Salvachua Ferrando, Belen Maria; Soderen, Martin; Trad, Georges; CERN. Geneva. ATS Department

    2017-01-01

    Primary (TCP) collimators of the betatron cleaning insertion determine the betatron cut of the LHC beam. During the 2016 they were set at 5.5 nominal beam sigmas at 6.5 TeV (i.e. by using a normalized emittance ε* = 3:5 μm is used). Reducing their settings is a possible way to push the ß* at the LHC, which depends on the collimation hierarchy. This study aims at understanding possible limitations of operating the LHC with tighter settings of the primary collimators. This is a crucial input to the choice of operational configuration in terms of ß* at the LHC as well as at the HL-LHC. This study follows a successful MD done in block 3 to understand limitations from TCP impedance [1]. The outcome of this MD can also have an impact for the design of the FCC collimation system, which is currently based on the present TCP gaps. Studies of beam stability as a function of octupole current, transverse feedback gain (ADT) and transverse separation at the IPs were also carried out.

  17. Dynamics of laser mass-limited foil interaction at ultra-high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T. P., E-mail: tongpu@nudt.edu.cn [College of Science, National University of Defense Technology, Changsha 410073 (China); State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073 (China); Sheng, Z. M. [Key Laboratory for Laser Plasmas (MoE) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, Y.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q. [College of Science, National University of Defense Technology, Changsha 410073 (China); Pukhov, A. [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf (Germany)

    2014-05-15

    By using three-dimensional particle-in-cell simulations with synchrotron radiation damping incorporated, dynamics of ultra-intense laser driven mass-limited foils is presented. When a circularly polarized laser pulse with a peak intensity of ∼10{sup 22} W/cm{sup 2} irradiates a mass-limited nanofoil, electrons are pushed forward collectively and a strong charge separation field forms which acts as a “light sail” and accelerates the protons. When the laser wing parts overtake the foil from the foil boundaries, electrons do a betatron-like oscillation around the center proton bunch. Under some conditions, betatron-like resonance takes place, resulting in energetic circulating electrons. Finally, bright femto-second x rays are emitted in a small cone. It is also shown that the radiation damping does not alter the foil dynamics radically at considered laser intensities. The effects of the transverse foil size and laser polarization on x-ray emission and foil dynamics are also discussed.

  18. Fast digital transverse feedback system for bunch train operation in CESR

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J T; Billing, M G; Dobbins, J A [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies; and others

    1996-08-01

    We have developed a time domain transverse feedback system with the high bandwidth needed to control transverse instabilities when the CESR e{sup +}e{sup -} collider is filled with trains of closely spaced bunches. This system is based on parallel digital processors and a stripline driver. It is capable of acting on arbitrary patterns of bunches having a minimum spacing of 14 ns. Several simplifying features have been introduced. A single shorted stripline kicker driven by one power amplifier is used to control both counter-rotating beams. The desired feedback phase is achieved by sampling the bunch position at a single location on two independently selectable beam revolutions. The system adapts to changes in the betatron tune, bunch pattern, or desired damping rate through the loading of new parameters into the digital processors via the CESR control system. The feedback system also functions as a fast gated bunch current monitor. Both vertical and horizontal loops are now used in CESR operation. The measured betatron damping rates with the transverse feedback system in operation are in agreement with the analytical prediction and a computer simulation developed in connection with this work. (author)

  19. Combined Ramp and Squeeze to 6.5 TeV in the LHC

    CERN Document Server

    Solfaroli Camillocci, Matteo; Tomás, Rogelio; Wenninger, Jorg

    2016-01-01

    The cycle of the LHC is composed of an energy ramp followed by a betatron squeeze, needed to reduce the beta- star value in the interaction points. Since Run 1, studies have been carried out to investigate the feasibility of combining the two operations, thus considerably reducing the duration of the operational cycle. In Run 2, the LHC is operating at the energy of 6.5 TeV that requires a much longer cycle than that of Run 1. Therefore, the performance gains from a Combined Ramp and Squeeze (CRS) is more interesting. Merging the energy ramp and the betatron squeeze could result in a gain of several minutes for each LHC cycle. With increasing maturity of LHC operation, it is now possible to envisage more complex beam manipulations; this paper describes the first machine experiment with beam, aiming at validating the combination of ramp and squeeze, which was performed in 2015, during a machine development phase. The operation experience with the LHC run at 2.51 TeV, when CRS down to 4 meters was deployed and ...

  20. Examples of analysis by activation; Exemples d'analyse par activation

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    We were used various nuclear reactions to do some analysis by neutron or by X-ray activation. We used the french reactor core Zoe as neutrons sources and an Allis-Chalmers betatron as X-rays sources for the dosage of the light elements. The described processes were revealed fast and particularly useful for determination of traces. The fact that most of them don't require any chemical operations, is especially substantial when the solubilization of the sample is difficult. (M.B.) [French] Nous avons utilise des reactions nucleaires diverses pour effectuer des analyses par activation neutronique ou par rayon X. Nous avons utilise la pile francaise Zoe comme sources de neutrons et un betatron Allis-Chalmers comme sources de rayons X pour le dosage des elements legers. Les procedes decrits se sont reveles rapides et particulierement utiles dans la determination des traces. Le fait que, pour la plupart, ils n'exigent pas d'operations chimiques, est particulierement appreciable lorsque la solubilisation des echantillons est difficile. (M.B.)

  1. Radiotherapy for cancer of the pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, Tadao; Tobe, Takakichi; Abe, Mitsuyuki; Takahashi, Masaharu; Shibamoto, Yuta

    1984-11-01

    Twelve patiens with cancer of the pancreas underwent intraoperative radiation (n=5) or external radiation (n=7) therapy. Of the five patients with intraoperative radiotheray, three patients who had pancreatectomy received a dose of 2,500--3,000 rad on the 6--10 MeV Betatron. One patient developed radiation pancreatitis and died 0.7 month after the surgery. One died of hepatic metastasis 8.5 months after the surgery, however, recurrence was not found in the radiation field. The other one is alive for 1.5 months after the surgery. For two patients with unresectable cancer, a dose of 2,500--3,000 rad using 13--16 MeV Betatron was irradiated intraoperatively. These two patients are alive for 0.5 and 1.0 months after the surgery. Seven patients were treated with external beam radiation with a dose of 2,800--5,000 rad using 10 MeV lineac x-ray. Of two patients with pancreatectomy, one died of recurrent disease 13.4 months after the surgery and one is alive for 9.5 months after the surgery. In five patients with distant metastases to the liver, lung or peritoneal dissemination, external beam irradiation did not produce any prolongation of their survivals, however, remarkable effects on performance status were obtained (J.P.N.).

  2. Radiotherapy for cancer of the pancreas

    International Nuclear Information System (INIS)

    Manabe, Tadao; Tobe, Takakichi; Abe, Mitsuyuki; Takahashi, Masaharu; Shibamoto, Yuta

    1984-01-01

    Twelve patiens with cancer of the pancreas underwent intraoperative radiation (n=5) or external radiation (n=7) therapy. Of the five patients with intraoperative radiotheray, three patients who had pancreatectomy received a dose of 2,500--3,000 rad on the 6--10 MeV Betatron. One patient developed radiation pancreatitis and died 0.7 month after the surgery. One died of hepatic metastasis 8.5 months after the surgery, however, recurrence was not found in the radiation field. The other one is alive for 1.5 months after the surgery. For two patients with unresectable cancer, a dose of 2,500--3,000 rad using 13--16 MeV Betatron was irradiated intraoperatively. These two patients are alive for 0.5 and 1.0 months after the surgery. Seven patients were treated with external beam radiation with a dose of 2,800--5,000 rad using 10 MeV lineac x-ray. Of two patients with pancreatectomy, one died of recurrent disease 13.4 months after the surgery and one is alive for 9.5 months after the surgery. In five patients with distant metastases to the liver, lung or peritoneal dissemination, external beam irradiation did not produce any prolongation of their survivals, however, remarkable effects on performance status were obtained (J.P.N.)

  3. Final 6D Muon Ionization Colling using Strong Focusing Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Hart, T. L. [Mississippi U.; Acosta, J. G. [Mississippi U.; Cremaldi, L. M. [Mississippi U.; Oliveros, S. J. [Mississippi U.; Summers, D. J. [Mississippi U.; Neuffer, D. V. [Fermilab

    2016-11-15

    Abstract Low emittance muon beam lines and muon colliders are potentially a rich source of BSM physics for future exper- imenters. A muon beam normalized emittance of ax,y,z = (280, 280, 1570)µm has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to achieve a normalized transverse emittance of 100 µm and complete 6D cooling. The low beta regions, as low as 5 mm, produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam transversely. Equilibrium transverse emittance is linearly proportional to the transverse betatron function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 µm at the expense of longitudinal emittance for a high energy lepton collider. Cooling challenges include chromaticity correction, ssband overlap, quadrupole acceptance, and staying in phase with RF.

  4. LHC Report: Production and small angles

    CERN Multimedia

    Jan Uythoven for the LHC team

    2012-01-01

    The last two weeks have seen steady luminosity production. The total luminosity of ATLAS and CMS exceeded 19 fb-1, while LHCb reached 1.8 fb-1 and ALICE, 6 pb-1.   As reported in previous LHC reports, the continuous running with large beam intensities is resulting in beam-induced heating of certain elements, such as the synchrotron light monitor (BSRT), the ALFA detector and the injection kicker magnets. These first two elements had shown a sudden increase in temperature in the previous weeks - but only for the components that are on the counter-clockwise rotating beam. By making slight changes to the radiofrequency parameters, which affect the bunch length, the power spectrum of the beam was changed. This significantly reduced the observed heating of the BSRT and the ALFA detector. Another improvement was recently made to the measurement process of the number of transverse oscillations of the beam in one turn, known as the “betatron tune”. The frequency of the betatron tune ...

  5. PROGRESS IN TUNE, COUPLING, AND CHROMATICITY MEASUREMENT AND FEEDBACK DURING RHIC RUN 7

    Energy Technology Data Exchange (ETDEWEB)

    CAMERON,P.; DELLAPENNA, A.; HOFF, L.; LUO, Y.; MARUSIC, A.; SCHULTHEISS, C.; TEPIKIAN, S.; ET AL.

    2007-06-25

    Tune feedback was first implemented in RHIC in 2002, as a specialist activity. The transition of the tune feedback system to full operational status was impeded by dynamic range problems, as well as by overall loop instabilities driven by large coupling. The dynamic range problem was solved by the CERN development of the Direct Diode Detection Analog Front End. Continuous measurement of all projections of the betatron eigenmodes made possible the world's first implementation of coupling feedback during beam acceleration, resolving the problem of overall loop instabilities. Simultaneous tune and coupling feedbacks were utilized as specialist activities for ramp development during the 2006 RHIC run. At the beginning of the 2007 RHIC run there remained two obstacles to making these feedbacks fully operational in RHIC - chromaticity measurement and control, and the presence of strong harmonics of the power line frequency in the betatron spectrum. We report on progress in tune, coupling, and chromaticity measurement and feedback, and discuss the relevance of our results to LHC commissioning.

  6. Errors in measuring transverse and energy jitter by beam position monitors

    Energy Technology Data Exchange (ETDEWEB)

    Balandin, V.; Decking, W.; Golubeva, N.

    2010-02-15

    The problem of errors, arising due to finite BPMresolution, in the difference orbit parameters, which are found as a least squares fit to the BPM data, is one of the standard and important problems of accelerator physics. Even so for the case of transversely uncoupled motion the covariance matrix of reconstruction errors can be calculated ''by hand'', the direct usage of obtained solution, as a tool for designing of a ''good measurement system'', does not look to be fairly straightforward. It seems that a better understanding of the nature of the problem is still desirable. We make a step in this direction introducing dynamic into this problem, which at the first glance seems to be static. We consider a virtual beam consisting of virtual particles obtained as a result of application of reconstruction procedure to ''all possible values'' of BPM reading errors. This beam propagates along the beam line according to the same rules as any real beam and has all beam dynamical characteristics, such as emittances, energy spread, dispersions, betatron functions and etc. All these values become the properties of the BPM measurement system. One can compare two BPM systems comparing their error emittances and rms error energy spreads, or, for a given measurement system, one can achieve needed balance between coordinate and momentum reconstruction errors by matching the error betatron functions in the point of interest to the desired values. (orig.)

  7. Estimation of a beam centering error in the JAERI AVF cyclotron

    International Nuclear Information System (INIS)

    Fukuda, M.; Okumura, S.; Arakawa, K.; Ishibori, I.; Matsumura, A.; Nakamura, N.; Nara, T.; Agematsu, T.; Tamura, H.; Karasawa, T.

    1999-01-01

    A method for estimating a beam centering error from a beam density distribution obtained by a single radial probe has been developed. Estimation of the centering error is based on an analysis of radial beam positions in the direction of the radial probe. Radial motion of a particle is described as betatron oscillation around an accelerated equilibrium orbit. By fitting the radial beam positions of several consecutive turns to an equation of the radial motion, not only amplitude of the centering error but also frequency of the radial betatron oscillation and energy gain per turn can be evaluated simultaneously. The estimated centering error amplitude was consistent with a result of an orbit simulation. This method was exceedingly helpful for minimizing the centering error of a 10 MeV proton beam during the early stages of acceleration. A well-centered beam was obtained by correcting the magnetic field with a first harmonic produced by two pairs of harmonic coils. In order to push back an orbit center to a magnet center, currents of the harmonic coils were optimized on the basis of the estimated centering error amplitude. (authors)

  8. Laser-wakefield accelerators for medical phase contrast imaging: Monte Carlo simulations and experimental studies

    Science.gov (United States)

    Cipiccia, S.; Reboredo, D.; Vittoria, Fabio A.; Welsh, G. H.; Grant, P.; Grant, D. W.; Brunetti, E.; Wiggins, S. M.; Olivo, A.; Jaroszynski, D. A.

    2015-05-01

    X-ray phase contrast imaging (X-PCi) is a very promising method of dramatically enhancing the contrast of X-ray images of microscopic weakly absorbing objects and soft tissue, which may lead to significant advancement in medical imaging with high-resolution and low-dose. The interest in X-PCi is giving rise to a demand for effective simulation methods. Monte Carlo codes have been proved a valuable tool for studying X-PCi including coherent effects. The laser-plasma wakefield accelerators (LWFA) is a very compact particle accelerator that uses plasma as an accelerating medium. Accelerating gradient in excess of 1 GV/cm can be obtained, which makes them over a thousand times more compact than conventional accelerators. LWFA are also sources of brilliant betatron radiation, which are promising for applications including medical imaging. We present a study that explores the potential of LWFA-based betatron sources for medical X-PCi and investigate its resolution limit using numerical simulations based on the FLUKA Monte Carlo code, and present preliminary experimental results.

  9. Study on off-momentum tail scraping in the LHC

    CERN Document Server

    Mirarchi, D; Bruce, R; CERN. Geneva. ATS Department

    2014-01-01

    A study on o-momentum tail population in the LHC was performed through collimator scraping at high dispersion region. High intensity measurements at the end of a physics ll with 25ns bunch spacing were carried out on 16th December 2012, using primary collimators (TCPs) in the momentum cleaning insertion (IR3) as scrapers. The o-momentum cuts were applied up to the level where the IR3 primary collimator is the aperture bottleneck for all particles outside the bucket, and the TCPs in the betatron cleaning insertion (IR7) are still the primary restriction of aperture of the machine in the transverse plane for particles inside the bucket. This because whether a particle is lost in IR3 or IR7 is not given only by the momentum oset but also by the betatron amplitude, as explained in the text. A signicant decay of the abort gap (AG) population was observed, while moving in the collimator jaw on the side where particles with negative o-momentum are expected. The level of the AG popupation achieved was at a similar le...

  10. Fast digital transverse feedback system for bunch train operation in CESR

    International Nuclear Information System (INIS)

    Rogers, J.T.; Billing, M.G.; Dobbins, J.A.

    1996-01-01

    We have developed a time domain transverse feedback system with the high bandwidth needed to control transverse instabilities when the CESR e + e - collider is filled with trains of closely spaced bunches. This system is based on parallel digital processors and a stripline driver. It is capable of acting on arbitrary patterns of bunches having a minimum spacing of 14 ns. Several simplifying features have been introduced. A single shorted stripline kicker driven by one power amplifier is used to control both counter-rotating beams. The desired feedback phase is achieved by sampling the bunch position at a single location on two independently selectable beam revolutions. The system adapts to changes in the betatron tune, bunch pattern, or desired damping rate through the loading of new parameters into the digital processors via the CESR control system. The feedback system also functions as a fast gated bunch current monitor. Both vertical and horizontal loops are now used in CESR operation. The measured betatron damping rates with the transverse feedback system in operation are in agreement with the analytical prediction and a computer simulation developed in connection with this work. (author)

  11. ELECTRON ACCELERATION IN CONTRACTING MAGNETIC ISLANDS DURING SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Borovikov, D.; Tenishev, V.; Gombosi, T. I. [University of Michigan, Department of Climate and Space Sciences and Engineering, 2455 Hayward Street, Ann Arbor, MI 48104-2143 (United States); Guidoni, S. E. [The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064 (United States); DeVore, C. R.; Karpen, J. T.; Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-20

    Electron acceleration in solar flares is well known to be efficient at generating energetic particles that produce the observed bremsstrahlung X-ray spectra. One mechanism proposed to explain the observations is electron acceleration within contracting magnetic islands formed by magnetic reconnection in the flare current sheet. In a previous study, a numerical magnetohydrodynamic simulation of an eruptive solar flare was analyzed to estimate the associated electron acceleration due to island contraction. That analysis used a simple analytical model for the island structure and assumed conservation of the adiabatic invariants of particle motion. In this paper, we perform the first-ever rigorous integration of the guiding-center orbits of electrons in a modeled flare. An initially isotropic distribution of particles is seeded in a contracting island from the simulated eruption, and the subsequent evolution of these particles is followed using guiding-center theory. We find that the distribution function becomes increasingly anisotropic over time as the electrons’ energy increases by up to a factor of five, in general agreement with the previous study. In addition, we show that the energized particles are concentrated on the Sunward side of the island, adjacent to the reconnection X-point in the flare current sheet. Furthermore, our analysis demonstrates that the electron energy gain is dominated by betatron acceleration in the compressed, strengthened magnetic field of the contracting island. Fermi acceleration by the shortened field lines of the island also contributes to the energy gain, but it is less effective than the betatron process.

  12. Beam loss caused by edge focusing of injection bump magnets and its mitigation in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2016-01-01

    Full Text Available In the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, transverse injection painting is utilized not only to suppress space-charge induced beam loss in the low energy region but also to mitigate foil scattering beam loss during charge-exchange injection. The space-charge induced beam loss is well minimized by the combination of modest transverse painting and full longitudinal painting. But, for sufficiently mitigating the foil scattering part of beam loss, the transverse painting area has to be further expanded. However, such a wide-ranging transverse painting had not been realized until recently due to beta function beating caused by edge focusing of pulsed injection bump magnets during injection. This beta function beating additionally excites random betatron resonances through a distortion of the lattice superperiodicity, and its resultant deterioration of the betatron motion stability causes significant extra beam loss when expanding the transverse painting area. To solve this issue, we newly installed pulse-type quadrupole correctors to compensate the beta function beating. This paper presents recent experimental results on this correction scheme for suppressing the extra beam loss, while discussing the beam loss and its mitigation mechanisms with the corresponding numerical simulations.

  13. Implications of shorter cells in PEP

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1975-01-01

    Further studies on the beam-stay-clear requirements in PEP led to the conclusion that the vertical aperture needed to be enlarged. There are two main reasons for that: Observations at SPEAR indicate that the aperture should be large enough for a fully coupled beam. Full coupling of the horizontal and vertical betatron oscillations occurs not only occasionally when the energy, tune or betatron function at the interaction point is changed but also due to the beam/endash/beam effect of two strong colliding beams. The second reason for an increased aperture requirement is the nonlinear perturbation of the particle trajectories by the sextupoles. This perturbation increases a fully coupled beam by another 50% to 80%. Both effects together with a +-5 mm allowance for closed orbit perturbation result in a vertical beam-stay-clear in the bending magnets of +-4.8 to +-5.6 cm, compared to the present +-2.0 cm. This beam-stay-clear, together with additional space for vacuum chamber, etc., leads to very costly bending magnets. In this note, a shorter cell length is proposed which would reduce considerably the vertical beam-stay-clear requirements in the bending magnets. 7 figs

  14. The beam slow extraction from a magnetic ring of Moscow meson facility

    International Nuclear Information System (INIS)

    Gusev, O.A.; Malitsky, N.D.; Severgin, Yu.P.; Titov, V.A.; Shukeilo, I.A.; Aseev, V.N.; Grachev, M.I.; Lobashev, V.M.; Ostroumov, P.N.; Ponomaryov, O.V.

    1990-01-01

    The beam slow extraction from the circular accelerators or stretcher rings is generally realized by the resonant excitation of betratron oscillations. A precise betatron frequency control is proved to be quite necessary for high-efficient slow ejection. The Coulomb field turns out to have a significant influence upon the slow extraction from the high-current medium energy proton storage rings. It prevents resonant excitation at a reasonable rate and reduces the ejection efficiency. The proton storage ring of Moscow meson facility is an example of a stretcher with a noticeable beam space charge. The detailed investigation of the resonant ejection, having been performed for our stretcher, resulted in the conclusion that extracted beam average current should be limited by the value of 50 mA, which is only 10% of the linac design current. The search for the alternative version to the resonant ejection made us to analyze in details and to develop an old-fashioned method, based on the radial betatron oscillation excitation while the beam is being gradually shifted onto the thin target. (author) 5 refs., 4 figs

  15. Experience with a high-brightness storage ring: the NSLS 750 MeV vuv ring

    International Nuclear Information System (INIS)

    Galayda, J.

    1984-01-01

    The NSLS vuv ring is the first implementation of the proposals of R. Chasman and G.K. Green for a synchrotron radiation source with enhanced brightness: its lattice is a series of achromatic bends with two zero-gradient dipoles each, giving small damped emittance; and these bends are connected by straight sections with zero dispersion to accommodate wigglers and undulators without degrading the radiation damping properties of the ring. The virtues of the Chasman-Green lattice, its small betatron and synchrotron emittances, may be understood with some generality; e.g. the electron γm 0 c 2 energy and the number of achromatic bends M sets a lower limit on the betatron emittance of e/sub x/ > 7.7 x 10 -13 γ 2 /M meter-radians. There is strong interest in extrapolation of this type of lattice to 6 GeV and to 32 achromatic bends. The subject of this report is the progress toward achieving performance in the vuv ring limited by the radiation damping parameters optimized in its design. 14 refs., 4 figs., 1 tab

  16. Phase mixing of transverse oscillations in the linear and nonlinear regimes for IFR relativistic electron beam propagation

    International Nuclear Information System (INIS)

    Shokair, I.R.

    1991-01-01

    Phase mixing of transverse oscillations changes the nature of the ion hose instability from an absolute to a convective instability. The stronger the phase mixing, the faster an electron beam reaches equilibrium with the guiding ion channel. This is important for long distance propagation of relativistic electron beams where it is desired that transverse oscillations phase mix within a few betatron wavelengths of injection and subsequently an equilibrium is reached with no further beam emittance growth. In the linear regime phase mixing is well understood and results in asymptotic decay of transverse oscillations as 1/Z 2 for a Gaussian beam and channel system, Z being the axial distance measured in betatron wavelengths. In the nonlinear regime (which is likely mode of propagation for long pulse beams) results of the spread mass model indicate that phase mixing is considerably weaker than in the regime. In this paper we consider this problem of phase mixing in the nonlinear regime. Results of the spread mass model will be shown along with a simple analysis of phase mixing for multiple oscillator models. Particle simulations also indicate that phase mixing is weaker in nonlinear regime than in the linear regime. These results will also be shown. 3 refs., 4 figs

  17. Advanced Diagnostics of Lattice Parameters in Hadron Colliders

    CERN Document Server

    Koutchouk, Jean-Pierre

    2003-01-01

    With a beam stored energy exceeding by several orders of magnitude the quench level of the magnets and non-negligible non-linear field components, the control of the beam dynamics and losses in LHC must be very precise. This is a strong incentive to strengthen as much as possible the potential of beam diagnostics. This paper reviews some of the developments in various laboratories that appear to have a large potential. They either allow for a much better access to classical beam parameters or for the measurement of quantities formerly not accessible. Examples are a fast measurement of the betatron tunes, the use of PLL for reliable tune tracking and feedback, new methods or ideas to measure the chromaticity with the potential of feedback systems and similarly for the betatron coupling, the measurement of high-order non-linear fields and resonances and the potential of AC dipole excitation. This list is bound to be incomplete as the field is fortunately very dynamic.

  18. Geometric beam coupling impedance of LHC secondary collimators

    Science.gov (United States)

    Frasciello, Oscar; Tomassini, Sandro; Zobov, Mikhail; Salvant, Benoit; Grudiev, Alexej; Mounet, Nicolas

    2016-02-01

    The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep beam instabilities under control and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are among the major impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were higher by about a factor of 2 with respect to the theoretical predictions based on the LHC impedance model up to 2012. In that model the resistive wall impedance has been considered as the dominating impedance contribution for collimators. By carefully simulating also their geometric impedance we have contributed to the update of the LHC impedance model, reaching also a better agreement between the measured and simulated betatron tune shifts. During the just ended LHC Long Shutdown I (LSI), TCS/TCT collimators were replaced by new devices embedding BPMs and TT2-111R ferrite blocks. We present here preliminary estimations of their broad-band impedance, showing that an increase of about 20% is expected in the kick factors with respect to previous collimators without BPMs.

  19. Independent component analysis applied to long bunch beams in the Los Alamos Proton Storage Ring

    Science.gov (United States)

    Kolski, Jeffrey S.; Macek, Robert J.; McCrady, Rodney C.; Pang, Xiaoying

    2012-11-01

    Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis, ICA is more robust to noise, coupling, and nonlinearity. The conventional ICA application to turn-by-turn position data from multiple beam position monitors (BPMs) yields information about cross-BPM correlations. With this scheme, multi-BPM ICA has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch revealing correlations of particle motion within the beam bunch. We digitize beam signals of the long bunch at the Los Alamos Proton Storage Ring with a single device (BPM or fast current monitor) for an entire injection-extraction cycle. ICA of the digitized beam signals results in source signals, which we identify to describe varying betatron motion along the bunch, locations of transverse resonances along the bunch, measurement noise, characteristic frequencies of the digitizing oscilloscopes, and longitudinal beam structure.

  20. Independent component analysis applied to long bunch beams in the Los Alamos Proton Storage Ring

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Kolski

    2012-11-01

    Full Text Available Independent component analysis (ICA is a powerful blind source separation (BSS method. Compared to the typical BSS method, principal component analysis, ICA is more robust to noise, coupling, and nonlinearity. The conventional ICA application to turn-by-turn position data from multiple beam position monitors (BPMs yields information about cross-BPM correlations. With this scheme, multi-BPM ICA has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch revealing correlations of particle motion within the beam bunch. We digitize beam signals of the long bunch at the Los Alamos Proton Storage Ring with a single device (BPM or fast current monitor for an entire injection-extraction cycle. ICA of the digitized beam signals results in source signals, which we identify to describe varying betatron motion along the bunch, locations of transverse resonances along the bunch, measurement noise, characteristic frequencies of the digitizing oscilloscopes, and longitudinal beam structure.

  1. Errors in measuring transverse and energy jitter by beam position monitors

    International Nuclear Information System (INIS)

    Balandin, V.; Decking, W.; Golubeva, N.

    2010-02-01

    The problem of errors, arising due to finite BPMresolution, in the difference orbit parameters, which are found as a least squares fit to the BPM data, is one of the standard and important problems of accelerator physics. Even so for the case of transversely uncoupled motion the covariance matrix of reconstruction errors can be calculated ''by hand'', the direct usage of obtained solution, as a tool for designing of a ''good measurement system'', does not look to be fairly straightforward. It seems that a better understanding of the nature of the problem is still desirable. We make a step in this direction introducing dynamic into this problem, which at the first glance seems to be static. We consider a virtual beam consisting of virtual particles obtained as a result of application of reconstruction procedure to ''all possible values'' of BPM reading errors. This beam propagates along the beam line according to the same rules as any real beam and has all beam dynamical characteristics, such as emittances, energy spread, dispersions, betatron functions and etc. All these values become the properties of the BPM measurement system. One can compare two BPM systems comparing their error emittances and rms error energy spreads, or, for a given measurement system, one can achieve needed balance between coordinate and momentum reconstruction errors by matching the error betatron functions in the point of interest to the desired values. (orig.)

  2. Toward fully self-consistent simulation of the interaction of E-Clouds and beams with WARP-POSINST

    International Nuclear Information System (INIS)

    Furman, M.A.; Furman, M.A.; Celata, C.M.; Sonnad, K.; Venturini, M.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Vay, J.-L.

    2007-01-01

    To predict the evolution of electron clouds and their effect on the beam, the high energy physics community has relied so far on the complementary use of 'buildup' and 'single/multi-bunch instability' reduced descriptions. The former describes the evolution of electron clouds at a given location in the ring, or 'station', under the influence of prescribed beams and external fields [1], while the latter (sometimes also referred as the 'quasi-static' approximation [2]) follows the interaction between the beams and the electron clouds around the accelerator with prescribed initial distributions of electrons, assumed to be concentrated at a number of discrete 'stations' around the ring. Examples of single bunch instability codes include HEADTAIL [3], QuickPIC [4, 5], and PEHTS [6]. By contrast, a fully self-consistent approach, in which both the electron cloud and beam distributions evolve simultaneously under their mutual influence without any restriction on their relative motion, is required for modeling the interaction of high-intensity beams with electron clouds for heavy-ion beam-driven fusion and warm-dense matter science. This community has relied on the use of Particle-In-Cell (PIC) methods through the development and use of the WARP-POSINST code suite [1, 7, 8]. The development of novel numerical techniques (including adaptive mesh refinement, and a new 'drift-Lorentz' particle mover for tracking charged particles in magnetic fields using large time steps) has enabled the first application of WARP-POSINST to the fully self-consistent modeling of beams and electron clouds in high energy accelerators [9], albeit for only a few betatron oscillations. It was recently observed [10] that there exists a preferred frame of reference which minimizes the number of computer operations needed to simulate the interaction of relativistic objects. This opens the possibility of reducing the cost of fully self-consistent simulations for the interaction of ultrarelativistic

  3. The Problems of Controlling Defects in the Materials Used for the First Czechoslovak Nuclear-Power Station

    International Nuclear Information System (INIS)

    Radislav, Filipp

    1965-01-01

    cassettes. In radiographing thick welds, betatrons of Czechoslovak manufacture are used. The paper describes the methods used for testing and the results obtained and compares the Czechoslovak 15-MeV betatron with the Siemens' betatron. (author) [fr

  4. Proceedings of the workshop on future hadron facilities in the US

    International Nuclear Information System (INIS)

    1994-01-01

    This report discusses the following topics on future hadron facilities: Workshop on future hadron facilities in the US; 30 x 30 TeV-summary report; A high luminosity, 2 x 2 TeV collider in the tevatron tunnel; magnets working group; cryogenics discussion; vacuum report; antiproton source production; injector working group; interaction region working group; lattice/beam dynamics working group; LEBT for high-luminosity colliders; some notes on long-range beam-beam effects for the 2TeV collider; synchrotron radiation masks for high energy proton accelerators. Emittance preservation in a proton synchrotron; beam-beam interaction effects on betatron tunes; analytic solutions for phase trombone modules; and chromatic corrections of RHIC when one or two insertions is at Β* = 0.5m

  5. Multiturn extraction and injection by means of adiabatic capture in stable islands of phase space

    Directory of Open Access Journals (Sweden)

    R. Cappi

    2004-02-01

    Full Text Available Recently a novel approach has been proposed for performing multiturn extraction from a circular machine. Such a technique consists of splitting the beam by means of stable islands created in transverse phase space by magnetic elements creating nonlinear fields, such as sextupoles and octupoles. Provided a slow time variation of the linear tune is applied, adiabatic with respect to the betatron motion, the islands can be moved in phase space and eventually charged particles may be trapped inside the stable structures. This generates a certain number of well-separated beamlets. Originally, this principle was successfully tested using a fourth-order resonance. In this paper the approach is generalized by considering other types of resonances as well as the possibility of performing multiple multiturn extractions. The results of numerical simulations are presented and described in detail. Of course, by time reversal, the proposed approach could be used also for multiturn injection.

  6. The beam diagnosis system for ELSA. Das Strahldiagnosesystem fuer ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Schillo, M.

    1991-10-01

    A beam diagnostic system, which is based on capacitive beam-position monitors combined with fast electronics, has been developed for the Bonn Electron Stretcher Accelerator ELSA. The position signal of each monitor is digitized at an adjustable sampling rate and the most recent 8192 position and intensity values are buffered. This allows a wide range of different beam diagnostic measurements. The main purpose is the closed-orbit correction, which can be carried out on various time scales. To optimize the duty factor of the extracted beam, the system can also be used as a fast relative intensity monitor resolving the intensity distribution of the bunches or of the injected beam. It is designed to support betatron tune and phase measurements with very high accuracy, offering the choice to select any of the beam position monitors. This enables the measuring of many optical parameters. Furthermore any pair of suitable monitors can be used for experimental particle tracking or phase space measurements. (orig.).

  7. Cancellation of the centrifugal space-charge force

    International Nuclear Information System (INIS)

    Lee, E.P.

    1990-01-01

    The transverse dynamics of high-energy electrons confined in curved geometry are examined, including the effects of space-charge-induced fields. Attention is restricted to the centrifugal-space-charge force, which is the result of noncancellation of beam-induced transverse electric and magnetic fields in the curved geometry. This force is shown to be nearly cancelled in the evaluation of the horizontal tune and chromaticity by another, often overlooked term in the equation of motion. The additional term is the consequence of oscillations of the kinetic energy, which accompany betatron oscillations in the beam-induced electric potential. In curved geometry this term is of first order in the amplitude of the radial oscillation. A highly simplified system model is employed so that physical effects appear in as clear a form as possible. We assume azimuthal and median plane symmetry, static fields, and ultrarelativistic particle velocity (1/γ 2 ->0). (author) 9 refs

  8. Characterization and monitoring of transverse beam tails

    International Nuclear Information System (INIS)

    Seeman, J.T.; Decker, F.J.; Hsu, I.; Young, C.

    1991-05-01

    Low emittance electron beams accelerated to high energy in a linac experience transverse effects (wakefield, filamentation, optics) which produce non-Gaussian projected transverse beam distributions. Characterizations of the beam shapes are difficult because the shapes are asymmetric and change with betatron phase. In this note several methods to describe beam distributions are discussed including an accelerator physics model of these tails. The uses of these characterizations in monitoring the beam emittances in the SLC are described in this paper. First, two dimensional distributions from profile monitor screens are reviewed showing correlated tails. Second, a fitting technique for non-Gaussian one dimensional distributions is used to extract the core from the tail areas. Finally, a model for tail propagation in the linac is given. 3 refs., 6 figs

  9. Non-linear transverse dynamics for storage rings with application to the low-energy antiproton ring (LEAR) at CERN

    International Nuclear Information System (INIS)

    Bengtsson, J.

    1988-01-01

    A tensor equation has been used to derive the equations of motion for the curvilinear coordinate system customary used for accelerators. A Hamiltonian formalism, expanded to third order in the canonical variables, describing the transverse motion in an acceleration has also been developed. Time-dependent perturbation theory has been applied and computerized using a computer algebra system. In particular, the perturbations due to magnetic sextupoles have been calculated to second power in the sextupole strength. The frequency spectra for the betatron motion close to a single resonance has been calculated by using time-independent perturbation theory. It has been shown that information about excited resonances and the type of driving field can be derived from the spectra. In particular, it is possible to obtain the amplitude and the phase of a given resonance. The results have been used to study the perturbations in the Low Energy Antiproton Ring, LEAR at CERN. (With 67 refs.) (author)

  10. Non-linear transverse dynamics for storage rings with applications to the low-energy antiproton ring (LEAR) at CERN

    International Nuclear Information System (INIS)

    Bengtsson, J.

    1988-01-01

    A tensor equation has been used to derive the equations of motion for the curvilinear coordinate system customarily used for particle accelerators. A Hamiltonian formalism, expanded to third order in the canonical variables, has also been developed to describe the transverse motion in an accelerator. Time-dependent perturbation theory has been applied and computerized using a computer-algebra system. In particular, the perturbations due to magnetic sextupoles have been calculated to second power in the sextupole strength. The frequency spectra for the horizontal and the vertical betatron motion close to a single resonance have been calculated using time-independent perturbation theory. It has been shown that information about excited resonances and the type of driving field can be derived from the spectra. In particular, it is possible to obtain the amplitude and the phase of a given resonance. The results have been used to study the perturbations in the Low Energy Antiproton Ring (LEAR) at CERN. (orig.)

  11. Low-emittance Storage Rings

    CERN Document Server

    Wolski, Andrzej

    2014-01-01

    The effects of synchrotron radiation on particle motion in storage rings are discussed. In the absence of radiation, particle motion is symplectic, and the beam emittances are conserved. The inclusion of radiation effects in a classical approximation leads to emittance damping: expressions for the damping times are derived. Then, it is shown that quantum radiation effects lead to excitation of the beam emittances. General expressions for the equilibrium longitudinal and horizontal (natural) emittances are derived. The impact of lattice design on the natural emittance is discussed, with particular attention to the special cases of FODO-, achromat- and theoretical-minimum-emittance-style lattices. Finally, the effects of betatron coupling and vertical dispersion (generated by magnet alignment and lattice tuning errors) on the vertical emittance are considered.

  12. RF-knockout Extraction System for the CNAO Synchrotron

    CERN Document Server

    Carmignani, Nicola; Serio, Mario; Balbinot, Giovanni; Bressi, Erminia; Caldara, Michele; Pullia, Marco; Bosser, Jacques; Venchi, Giuseppe

    2010-01-01

    The National Centre for Oncological Hadrontherapy (CNAO) is a centre in Italy for the treatment of patients affected by tumours with proton and carbon ions beams accelerated in a synchrotron. The synchrotron extraction method is based on the use of a betatron core. This work aims to verify, through a theoretical study and a simulation, the possibility of using the RF-knockout extraction method exploiting the existing hardware. A simulation program has been written to simulate the extraction system of the synchrotron with the purpose to define the parameters of the radio frequency. Two types of radio frequencies have been compared in order to obtain a constant spill with the minimum ripple: a carrier wave with a frequency and amplitude modulation, and a gaussian narrow band noise modulated in amplitude. Results of the simulation and considerations on the kicker characteristics are presented

  13. Quadrupole shunt experiments at SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.; Hettel, R.O.; Nuhn, H.-D.

    1996-05-01

    As part of a program to align and stabilize the SPEAR storage ring, a switchable shunt resistor was installed on each quadrupole to bypass a small percentage of the magnet current. The impact of a quadrupole shunt is to move the electron beam orbit in proportion to the off-axis beam position at the quadrupole, and to shift the betatron tune. Initially, quadrupole shunts in SPEAR were used to position the electron beam in the center of the quadrupoles. This provided readback offsets for nearby beam position monitors, and helped to steer the photon beams with low-amplitude corrector currents. The shunt-induced tune shift measurements were then processed in MAD to derive a lattice model

  14. On-line control of the nonlinear dynamics for synchrotrons

    Science.gov (United States)

    Bengtsson, J.; Martin, I. P. S.; Rowland, J. H.; Bartolini, R.

    2015-07-01

    We propose a simple approach to the on-line control of the nonlinear dynamics in storage rings, based on compensation of the nonlinear resonance driving terms using beam losses as the main indicator of the strength of a resonance. The correction scheme is built on the analysis of the resonance driving terms in first perturbative order and on the possibility of using independent power supplies in the sextupole magnets, which is nowadays present in many synchrotron light sources. Such freedom allows the definition of "smart sextupole knobs" attacking each resonance separately. The compensation scheme has been tested at the Diamond light source and proved to be effective in opening up the betatron tune space, resonance free, available to the electron beam and to improve the beam lifetime.

  15. On-line control of the nonlinear dynamics for synchrotrons

    Directory of Open Access Journals (Sweden)

    J. Bengtsson

    2015-07-01

    Full Text Available We propose a simple approach to the on-line control of the nonlinear dynamics in storage rings, based on compensation of the nonlinear resonance driving terms using beam losses as the main indicator of the strength of a resonance. The correction scheme is built on the analysis of the resonance driving terms in first perturbative order and on the possibility of using independent power supplies in the sextupole magnets, which is nowadays present in many synchrotron light sources. Such freedom allows the definition of “smart sextupole knobs” attacking each resonance separately. The compensation scheme has been tested at the Diamond light source and proved to be effective in opening up the betatron tune space, resonance free, available to the electron beam and to improve the beam lifetime.

  16. Calibration of the nonlinear ring model at the Diamond Light Source

    CERN Document Server

    Bartolini, R; Rehm, G; Martin, I P S

    2011-01-01

    Nonlinear beam dynamics plays a crucial role in defining the performance of a storage ring. The beam lifetime, the injection efficiency, and the dynamic and momentum apertures available to the beam are optimized during the design phase by a proper optimization of the linear lattice and of the distribution of sextupole families. The correct implementation of the design model, especially the nonlinear part, is a nontrivial accelerator physics task. Several parameters of the nonlinear dynamics can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these parameters are extracted from the analysis of turn-by-turn data after the excitation of betatron oscillations of the particles in the ring. We present the experimental results of the campaign of measurements carried out at the Diamond storage ring to characterize the nonlinear beam dynamics. A combination of frequency map analysis with the detuning with momentum measurements has allowed for a precise calibration ...

  17. Beam-based model of broad-band impedance of the Diamond Light Source

    Science.gov (United States)

    Smaluk, Victor; Martin, Ian; Fielder, Richard; Bartolini, Riccardo

    2015-06-01

    In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS) to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  18. Beam-based model of broad-band impedance of the Diamond Light Source

    Directory of Open Access Journals (Sweden)

    Victor Smaluk

    2015-06-01

    Full Text Available In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  19. Measurement of Beam Tunes in the Tevatron Using the BBQ System

    International Nuclear Information System (INIS)

    Edstrom, Dean R.

    2009-01-01

    Measuring the betatron tunes in any synchrotron is of critical importance to ensuring the stability of beam in the synchrotron. The Base Band Tune, or BBQ, measurement system was developed by Marek Gasior of CERN and has been installed at Brookhaven and Fermilab as a part of the LHC Accelerator Research Program, or LARP. The BBQ was installed in the Tevatron to evaluate its effectiveness at reading proton and antiproton tunes at its flattop energy of 980 GeV. The primary objectives of this thesis are to examine the methods used to measure the tune using the BBQ tune measurement system, to incorporate the system into the Fermilab accelerator controls system, ACNET, and to compare the BBQ to existing tune measurement systems in the Tevatron

  20. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    International Nuclear Information System (INIS)

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied

  1. Beam dynamics and optics studies for the LHC injectors upgrade

    CERN Document Server

    Bartosik, Hannes; Benedikt, Michael

    The Large Hadron Collider (LHC) upgrade, which aims at reaching significantly higher luminosities at the experiment sites, requires the existing injector chain to provide proton beams with unprecedented beam intensity and brightness. The required beam parameters are out of reach for the CERN accelerator complex in its present state. Therefore, upgrade possibilities of the existing injectors for mitigating their performance limitations or their partial replacement by new machines have been studied. The transition energy plays a central role for the performance of synchrotrons. Designing a lattice with negative momentum compaction (NMC), i.e. imaginary transition energy, allows avoiding transition crossing and thus the associated performance limitations. In the first part of this thesis, the properties of an NMC cell are studied. The limits of betatron stability are evaluated by a combination of analytical and numerical calculations. The NMC cell is then used for the design study of a new synchrotron called P...

  2. Technical realization of a systematized radiation therapy, founded on the TNM system, of tumors in the regions of the head and neck

    International Nuclear Information System (INIS)

    Ammon, J.; Loeffler, R.; Stockberg, H.; Zeumer, H.

    1978-01-01

    Modern radiation therapy of tumors within the regions of the head and neck regards not only the concept of the target volume but also the probability of affection to the lymphatic chains. Frequency of spread to lymph nodes depends on the size of the primary tumor, and thus the extent of radiotherapeutic practical measures can be conformed to the TNM system. A radiation therapy planned in view of the TNM classification may be termed, therefore, as a systematized radiation therapy. From the standpoint of these considerations irradiation techniques using a telecobalt therapy unit and a betatron have been examined considering the application to individual tumor sites and tumor volumes in the regions of the head and neck. The techniques being most appropriate for tumors of the head and neck, with regard to the various sites or volumes, and taking into account the target volume as well as the lymphatic chains concerned are here presented. (orig.) [de

  3. Quadrupole shunt experiments at SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.; Hettel, R.O.; Nuhn, H.

    1997-01-01

    As part of a program to align and stabilize the SPEAR storage ring, a switchable shunt resistor was installed on each quadrupole to bypass a small percentage of the magnet current. The impact of a quadrupole shunt is to move the electron beam orbit in proportion to the off-axis beam position at the quadrupole and to shift the betatron tune. Initially, quadrupole shunts in SPEAR were used to position the electron beam in the center of the quadrupoles. This provided readback offsets for nearby beam position monitors and helped to steer the photon beams with low-amplitude corrector currents. The shunt-induced tune shift measurements were then processed in MAD to derive a lattice model. copyright 1997 American Institute of Physics

  4. Nonlinear Dynamics in Spear Wigglers

    International Nuclear Information System (INIS)

    2002-01-01

    BL11, the most recently installed wiggler in the SPEAR storage ring at SSRL, produces a large nonlinear perturbation of the electron beam dynamics, which was not directly evident in the integrated magnetic field measurements. Measurements of tune shifts with betatron oscillation amplitude and with closed orbit shifts were used to characterize the nonlinear fields of the SPEAR insertion devices (IDs). Because of the narrow pole width in BL11, the nonlinear fields seen along the wiggling electron trajectory are dramatically different than the flip coil measurements made along a straight line. This difference explains the tune shift measurements and the observed degradation in dynamic aperture. Corrector magnets to cancel the BL11 nonlinear fields are presently under construction

  5. Present and future colliding beam facilities at SLAC

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1977-01-01

    Present state of the 4.1 GeV electron-positron storage ring SPEAR is described. The most important limitations on performance in SPEAR, such as synchrotron-betatron resonances, higher-order mode losses are outlined. Active bunch lengthener was outstalled in SPEAR to reduce the losses. Experiments on the bunch lengthening observed in SPEAR showed that the lengthening mechanism results from bunch instabilities due to the bunch interaction with the environment. SPEAR performance experience provided with effective prototype for directing the design of PEP-the 18 GeV positron-electron storage ring with designed luminosity of 10 32 cm -2 s -1 . Procurements and construction of PEP components are in full swing. The first beam is expeted to go around in the storage ring by October 1979

  6. Computation of integral electron storage ring beam characteristics in the application package DeCA. Version 3.3. A physical model

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Strelkov, M.A.; Zelinskij, A.Yu.

    1993-01-01

    In calculations and optimization of electron storage ring lattices, aside from solving the problem of particle motion stability in the ring and calculating ring structure functions and betatron tune, it is of great importance to determine the integral characteristics such as momentum compaction factor, chromaticity of the lattice, emittance, energy spread, bunch size, beam lifetime, etc. Knowing them, one is able to determine all most important properties which the beam would have in the storage ring, as well as to work out requirements for physical equipment of the ring. In this respect it is of importance to have a possibility of calculating rapidly all the parameters required. This paper describes convenient algorithms for calculating integral beam characteristics in electron storage rings, which are employed in the application package DeCA

  7. Fast and slow neutrons in an 18-MV photon beam from a Philips SL/75-20 linear accelerator

    International Nuclear Information System (INIS)

    Gur, D.; Rosen, J.C.; Bukovitz, A.G.; Gill, A.W.

    1978-01-01

    Fast- and slow-neutron contamination in an 18-MV photon beam from a Philips SL/75-20 linear accelerator has been measured. Aluminum and indium foils were activated to determine fast- and slow-neutron fluence, which were largely independent of field sizes. Measured fast-neutron fluences were typically 13.9 x 10 4 and 4.4 x 10 4 neutrons/cm 2 /rad of x ray inside and 5 cm outside the field, respectively. Slow-neutron fluences, 1.3 x 10 4 neutrons/cm 2 /rad of x ray, remained relatively constant inside and outside the field. The reported results are about three times higher than neutron fluences recently reported with a betatron operated at the same energy

  8. Designing and Building a Collimation System for the High-Intensity LHC Beam

    CERN Document Server

    Assmann, R W; Baishev, I S; Bruno, L; Brugger, M; Chiaveri, Enrico; Dehning, Bernd; Ferrari, A; Goddard, B; Jeanneret, J B; Jiménez, M; Kain, V; Kaltchev, D I; Lamont, M; Ruggiero, F; Schmidt, R; Sievers, P; Uythoven, J; Vlachoudis, V; Vos, L; Wenninger, J

    2003-01-01

    The Large Hadron Collider (LHC) will collide proton beams at 14 TeV c.m. with unprecedented stored intensities. The transverse energy density in the beam will be about three orders of magnitude larger than previously handled in the Tevatron or in HERA, if compared at the locations of the betatron collimators. In particular, the population in the beam halo is much above the quench level of the superconducting magnets. Two LHC insertions are dedicated to collimation with the design goals of preventing magnet quenches in regular operation and preventing damage to accelerator components in case of irregular beam loss. We discuss the challenges for designing and building a collimation system that withstands the high power LHC beam and provides the required high cleaning efficiency. Plans for future work are outlined.

  9. Measurement of Beam Tunes in the Tevatron Using the BBQ System

    Energy Technology Data Exchange (ETDEWEB)

    Edstrom, Dean R.; /Indiana U.

    2009-04-01

    Measuring the betatron tunes in any synchrotron is of critical importance to ensuring the stability of beam in the synchrotron. The Base Band Tune, or BBQ, measurement system was developed by Marek Gasior of CERN and has been installed at Brookhaven and Fermilab as a part of the LHC Accelerator Research Program, or LARP. The BBQ was installed in the Tevatron to evaluate its effectiveness at reading proton and antiproton tunes at its flattop energy of 980 GeV. The primary objectives of this thesis are to examine the methods used to measure the tune using the BBQ tune measurement system, to incorporate the system into the Fermilab accelerator controls system, ACNET, and to compare the BBQ to existing tune measurement systems in the Tevatron.

  10. Development of the cybernetic methods in the new generation of superhigh-energy accelerators

    International Nuclear Information System (INIS)

    Vasil'ev, A.A.; Berezhnoj, V.A.

    1985-01-01

    The problems related to the use of cybernetic methods in case of the development of control systems for superhigh-energy accelerators, particularly for parameters control which determine betatron particle oscillations are discussed. It is pointed out that early in 1960-s the development of the 1 TeV cybernetic accelerating complex consisting of a linear accelerator - injector, booster and main accelerator has been started. The conclusion is drawn that with the increase of accelerator energy, increase of ring magnet perimeter and decrease of vacuum chaber aperture as well as owing to comlication of accelerating complexes complication of operational modes and increase of particle beams intensity the use of cybernetic methods and completely automated control systems created on their base becomes in future still more pressing

  11. Beam size blow-up and current loss in the Fermilab Main Ring during storage

    International Nuclear Information System (INIS)

    Guignard, C.; Month, M.

    1977-01-01

    Observations at Fermilab during storage mode operation show characteristic forms of transverse beam size growth and current loss with time. There are three obvious mechanisms which can produce such blowup. The gas pressure is a source for immediate beam loss by direct nuclear scattering. Protons can also multiple scatter off the orbiting electrons of the gas atoms causing the trasnverse beam size to increase with time. A third mechanism not related to gas pressure is beam growth due to multiple crossing of betatron resonances arising from the synchrotron oscillations of the stored bunches. This simulates a random walk and causes the transverse beam size to grow. This is an attempt to describe the observations with direct nuclear scattering, multiple coulomb scattering, and multiple resonance crossing

  12. Beam diffusion measurements using collimator scans in the LHC

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2013-02-01

    Full Text Available The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  13. Beam-based analysis of day-night performance variations at the SLC linac

    International Nuclear Information System (INIS)

    Decker, F.J.; Akre, R.; Assmann, R.; Bane, K.L.F.; Minty, M.G.; Phinney, N.; Spence, W.L.

    1998-07-01

    Diurnal temperature variations in the linac gallery of the Stanford Linear Collider (SLC) can affect the amplitude and phase of the rf used to accelerate the beam. The SLC employs many techniques for stabilization and compensation of these effects, but residual uncorrected changes still affect the quality of the delivered beam. This paper presents methods developed to monitor and investigate these errors through the beam response. Variations resulting from errors in the rf amplitude or phase can be distinguished by studying six different beam observables: betatron phase advance, oscillation amplitude growth, rms jitter along the linac, measurements of the beam phase with respect to the rf, changes in the required injection phase, and the global energy correction factor. By quantifying the beam response, an uncorrected variation of 14 degree (S-band) during 28 F temperature swings was found in the main rf drive line system between the front and end of the linac

  14. Report of the stochastic cooling subgroup of the RHIC workshop

    International Nuclear Information System (INIS)

    Boussard, D.; Claus, J.; DiMassa, G.; Marriner, J.; Milutinovic, J.; Shafer, R.

    1988-01-01

    We have considered the possibility of stochastic cooling of beams for the RHIC collider. Similar studies have been carried out previously for RHIC and other bunched beam proton machines. The major motivation for cooling at RHIC is to stabilize the growth from intrabeam scattering. We find that cooling rates of the order of 500 sec are theoretically possible for beams of gold ions with γ = 100 if a cooling bandwidth of 10 GHz is used. However, the amount of microwave power which is required is large for momentum cooling and probably not practical. Considerably less power is required for slower rates. We believe that cooling times of 5000 sec for momentum cooling and 1000 sec for betatron cooling might be possible. 5 refs

  15. Particle diffusion from resonance islands in Aladdin at SRC

    International Nuclear Information System (INIS)

    Liu, J.; Crosbie, E.; Teng, L.; Bridges, J.; Ciarlette, D.; Kustom, R.; Voss, D.; Mills, F.; Borland, M.; Symon, K.

    1993-01-01

    The dynamics of the beam in the resonance islands was studied on the electron storage ring Aladdin at the Synchrotron Radiation Center (SRC). The authors especially studied the horizontal third- and fourth-integral resonances driven by sextupole fields in the first and second order. A fast kicker was fired to kick the beam into one of the outboard stable islands. The beam took on a quasi-Gaussian distribution and slowly diffused out of the island. The diffusion rate and its dependence on the strengths of the driving sextupoles and the chromaticity sextupoles were measured by tracing the resonance peak of the betatron oscillation on the spectrum analyzer. Beam positions were also recorded through the data acquisition device which was locked by a pulse-delay circuitry. Interesting results are shown and compared with numerical calculations

  16. Simulation of 4-turn algorithms for reconstructing lattice optic functions from orbit measurements

    International Nuclear Information System (INIS)

    Koscielniak, S.; Iliev, A.

    1994-06-01

    We describe algorithms for reconstructing tune, closed-orbit, beta-function and phase advance from four individual turns of beam orbit acquisition data, under the assumption of coherent, almost linear and uncoupled betatron oscillations. To estimate the beta-function at, and phase advance between, position monitors, we require at least one anchor location consisting of two monitors separated by a drift. The algorithms were submitted to a Monte Carlo analysis to find the likely measurement accuracy of the optics functions in the KAON Factory Booster ring racetrack lattice, assuming beam position monitors with surveying and reading errors, and assuming an imperfect lattice with gradient and surveying errors. Some of the results of this study are reported. (author)

  17. Impedances and beam stability issues of the Fermilab recycler ring

    International Nuclear Information System (INIS)

    Ng, King-Yuen.

    1996-04-01

    The Fermilab Recycler Ring (permanent magnets) will be built on top of the Fermilab Main Injector sharing the same tunnel; its main function is to recycle the anti-protons after a store in the Tevatron and to provide storage for them after after accumulation and cooling in the Accumulator. Estimates of coupling impedances show domination by space charge. Examination of longitudinal instabilities shows that microwave instability will not occur if there are only N = 2.53 x 10 12 anti-protons in the beam. Longitudinal coupling-bunch instability during injection stacking does not appear possible because of long bunch lengths/short bunch gaps and lack of sharp resonances. Transverse instability, on the other hand, cannot be Landau damped by the momentum spread in the beam, but it can be cured by a small spread in the betatron tunes (either from space charge or an octupole)

  18. Nonlinear dynamics aspects of particle accelerators

    International Nuclear Information System (INIS)

    Jowett, J.M.; Turner, S.; Month, M.

    1986-01-01

    These proceedings contain the lectures presented at the named winter school. They deal with the application of dynamical systems to accelerator theory. Especially considered are the statistical description of charged-beam plasmas, integrable and nonintegrable Hamiltonian systems, single particle dynamics and nonlinear resonances in circular accelerators, nonlinear dynamics aspects of modern storage rings, nonlinear beam-beam resonances, synchro-betatron resonances, observations of the beam-beam interactions, the dynamics of the beam-beam interactions, beam-beam simulations, the perturbation method in nonlinear dynamics, theories of statistical equilibrium in electron-positron storage rings, nonlinear dissipative phenomena in electron storage rings, the dynamical aperture, the transition to chaos for area-preserving maps, special processors for particle tracking, algorithms for tracking of charged particles in circular accelerators, the breakdown of stability, and a personal perspective of nonlinear dynamics. (HSI)

  19. Study of depolarization of deuteron and proton beams in the Nuclotron ring

    CERN Document Server

    Golubeva, N Y; Kondratenko, A M; Kondratenko, A M; Mikhajlov, V A; Strokovsky, E A

    2002-01-01

    The scheme for acceleration of polarized deuterons at the Nuclotron accelerator facility includes a cryogenic polarized deuteron source 'Polaris', a 5 MeV/nucl. linac, a superconducting heavy ion synchrotron of a 6 GeV/nucl. energy with 10 s spill slow extraction, thin internal targets and wide net of external beam lines. This scheme also allows one to generate high energy polarized proton and neutron beams with well determined characteristics. There are two principal problems of polarized particle acceleration: to keep spin orientation during beam acceleration and to produce the high ion intensity sufficient for data taking in physics experiments. The first problem is discussed in this paper. The reasons of depolarization effects in the mentioned parts of the Nuclotron have been analysed and four methods of the polarization conserving have been suggested. They are the spin resonance strength compensation increasing of the resonance strength, the betatron tune jump and the spin tune jump. Among their number, ...

  20. An unofficial history of Japanese accelerators. Part 1

    International Nuclear Information System (INIS)

    Inoue, Makoto

    2004-01-01

    History of charged particle accelerators in Japan is reviewed. The nuclear reaction by an accelerator was observed first in 1934 at Taipei in Taiwan, which was a colony of Japan at that time. Before the world war II, three cyclotrons were built at Institute of Physics and Chemistry Research, Osaka University and Kyoto University. After the war, the cyclotrons were destroyed by the occupation army. The construction of accelerators was restarted at 1951, and synchrotrons, betatrons, Van de Graaff accelerators, Cockcroft-Walton accelerators as well as cyclotrons were built at various universities and institutes. To be operated and used by the nuclear physicists from all over Japan, a large-scale accelerator facility, Institute for Nuclear Study, was founded at University of Tokyo. (K.Y.)

  1. Observations of Snake Resonance in RHIC

    CERN Document Server

    Bai, Mei; Lee, Shyh-Yuan; Lin, Fanglei; MacKay, William; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven

    2005-01-01

    Siberian snakes now become essential in the polarized proton acceleration. With proper configuration of Siberian snakes, the spin precession tune of the beam becomes $\\frac{1}{2}$ which avoids all the spin depolarizing resonance. However, the enhancement of the perturbations on the spin motion can still occur when the betatron tune is near some low order fractional numbers, called snake resonances, and the beam can be depolarized when passing through the resonance. The snake resonances have been confirmed in the spin tracking calculations, and observed in RHIC with polarized proton beam. Equipped with two full Siberian snakes in each ring, RHIC provides us a perfect facility for snake resonance studies. This paper presents latest experimental results. New insights are also discussed.

  2. First Observation of a Snake Depolarizing Resonance

    International Nuclear Information System (INIS)

    Phelps, R.; Anferov, V.; Blinov, B.; Crandell, D.; Koutin, S.; Krisch, A.; Liu, T.; Ratner, L.; Wong, V.; Chu, C.; Lee, S.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E.; von Przewoski, B.; Sato, H.

    1997-01-01

    Using a 104MeV stored polarized proton beam and a full Siberian snake, we recently found evidence for a so-called open-quotes snakeclose quotes depolarizing resonance. A full Siberian snake forces the spin tune ν s to be a half integer. Thus, if the vertical betatron tune ν y is set near a quarter integer, then the ν s =n±2ν y second-order snake resonance can depolarize the beam. Indeed, with a full Siberian snake, we found a deep depolarization dip when ν y was equal to 4.756; moreover, when ν y was changed to 4.781, the deep dip disappeared and the polarization was preserved. copyright 1997 The American Physical Society

  3. Application of independent component analysis to ac dipole based optics measurement and correction at the Relativistic Heavy Ion Collider

    Directory of Open Access Journals (Sweden)

    X. Shen

    2013-11-01

    Full Text Available Correction of beta-beat is of great importance for performance improvement of high energy accelerators, like the Relativistic Hadron Ion Collider (RHIC. At RHIC, using the independent component analysis method, linear optical functions are extracted from the turn by turn beam position data of the ac dipole driven betatron oscillation. Despite the constraint of a limited number of available quadrupole correctors at RHIC, a global beta-beat correction scheme using a beta-beat response matrix method was developed and experimentally demonstrated. In both rings, a factor of 2 or better reduction of beta-beat was achieved within available beam time. At the same time, a new scheme of using horizontal closed orbit bump at sextupoles to correct beta-beat in the arcs was demonstrated in the Yellow ring of RHIC at beam energy of 255 GeV, and a peak beta-beat of approximately 7% was achieved.

  4. Ion acceleration in the plasma focus

    International Nuclear Information System (INIS)

    Deutsch, R.

    1982-09-01

    Experimental informations are used to estimate the time dependence of the current density in the plasma focus and the electromagnetic field is determined from the Maxwell equations. The acceleration of the ions in these fields is studied. A detailed analysis of the acceleration in the compression phase, in the expansion phase and during the evolution of the m=O instability is made. It is shown, that the appearance of fast selffocused quasineutral electron beams, as a result of the betatron acceleration, has a decisive importance in the ion acceleration during the m=O constriction. Models for electromagnetic ion acceleration are described for each phase. A concordance with many experimental results can be observed. (orig.)

  5. The transverse damper system for RHIC

    International Nuclear Information System (INIS)

    Xu, J.; Claus, J.; Raka, E.; Ruggiero, A.G.; Shea, T.J.

    1991-01-01

    If the beam is injected with errors x c , x' c (or y c , y' c ) with respect to the closed orbit or disturbed by transverse instabilities, it will execute coherent oscillations and will be diluted in betatron phase space within a time interval of about 1/Δν turns, even if it is properly matched to the focusing characteristics of the lattice, unless there is an effective damper system to prevent this. Here Δν is the tune spread in the beam. Such a damper will not prevent dilution due to mismatches. Without such a damper the emittance of the beam will ultimately develop to a properly centered matched ellipse with an area ε in phase space that is larger than that of the injected one ε 0 which is also matched but off-centered by x c and x' c

  6. Simulation of PEP-II Accelerator Backgrounds Using TURTLE

    CERN Document Server

    Barlow, Roger J; Kozanecki, Witold; Majewski, Stephanie; Roudeau, Patrick; Stocchi, Achille

    2005-01-01

    We present studies of accelerator-induced backgrounds in the BaBar detector at the SLAC B-Factory, carried out using a modified version ofthe DECAY TURTLE simulation package. Lost-particle backgrounds in PEP-II are dominated by a combination of beam-gas bremstrahlung, beam-gas Coulomb scattering, radiative-Bhabha events and beam-beam blow-up. The radiation damage and detector occupancy caused by the associated electromagnetic shower debris can limit the usable luminosity. In order to understand and mitigate such backgrounds, we have performed a full programme of beam-gas and luminosity-background simulations, that include the effects of the detector solenoidal field, detailed modelling of limiting apertures in both collider rings, and optimization of the betatron collimation scheme in the presence of large transverse tails.

  7. The possibility of gamma ray sterilization by using ITU TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Bilge, A.N.; Tugrul, B.; Yavuz, H.

    1988-01-01

    Gamma rays are one of the effective method for sterilization which is preferred for a long time. Generally Co-60 radioisotope sources betatrons or accelerators are used for the sterilization. In this work, it was aimed to find the possibilities of the sterilization by gamma rays obtained in ITU TRIGA Mark-II radial tube. Radiation dosages are measured in the radial tube and several medical products are irradiated. Irradiation is arranged according to the desired dosages. Irradiated sterilized goods (mainly medical products) tested and checked at the Governmental Medical Health Center and results compared with literature. It can be seen that this kind of irradiation is a good tool for sterilization. Unfortunately, because of the stability of the radial tube and impracticality of the system it is rather difficult to compete with industrial system using Co-60 and accelerators. Nevertheless, this type of irradiation is also applicable for the purpose of the sterilization by using ITU TRIGA Mark II. (author)

  8. Technical concept of accelerator plants

    International Nuclear Information System (INIS)

    Arx, A. von

    1973-01-01

    A description is given of the 45-MeV betatron of the so-called asklepitron 45 developed by BBC. The constructional details are particularly gone into which meet the requirements for optimum apparative radiation protection. These specifications consist in a least possible radiation outside the signal field, smallest contamination of the applied useful radiation, a reliable monitoring system and time stability of the beam bundle. The realization of these requirements is explained by means of the way of the magnet construction of the stabilization of the excitation current and of the emission current and control equipment for optimum injection time and radiation energy. Beam aperture and radiation compensation as well as the monitor system for X-rays and electron radiation are described. Finally, the operational safety and available automation are gone into. (ORU/LH) [de

  9. The use of different type of electron beam radiation equipment for biotechnological materials

    International Nuclear Information System (INIS)

    Ferdes, O.; Minea, R.; Oproiu, C.; Ferdes, M.

    1998-01-01

    The potential of using electron beam radiation and bremsstrahlung for some biotechnological materials treatment is presented based on the results of the R and D programme established in 1993 at the Institute of Lasers, Plasma and Radiation Physics Bucharest, Electron Accelerator Laboratory. The main parameters of different electron accelerator types used to process biotechnological materials are presented as these machines were designed, developed and improved. In order to fulfil the radiation processing requirements for biotechnology and environmental protection, betatron, linear and microtron-type electron accelerators are considered and there is an interest to develop a dedicated one as well. The results of irradiation of different biotechnological items as cell cultures, microbial strains, enzymes and biopreparates and cellulose-based wastes are presented

  10. Feedback control of coupled-bunch instabilities

    International Nuclear Information System (INIS)

    Fox, J.D.; Eisen, N.; Hindi, H.; Linscott, I.; Oxoby, G.; Sapozhnikov, L.; Serio, M.

    1993-05-01

    The next generation of synchrotron light sources and particle accelerators will require active feedback systems to control multi-bunch instabilities. Stabilizing hundreds or thousands of potentially unstable modes in these accelerator designs presents many technical challenges. Feedback systems to stabilize coupled-bunch instabilities may be understood in the frequency domain (mode-based feedback) or in the time domain (bunch-by-bunch feedback). In both approaches an external amplifier system is used to create damping fields that prevent coupled-bunch oscillations from growing without bound. The system requirements for transverse (betatron) and longitudinal (synchrotron) feedback are presented, and possible implementation options developed. Feedback system designs based on digital signal-processing techniques are described. Experimental results are shown from a synchrotron oscillation damper in the SSRL/SLAC storage ring SPEAR that uses digital signal-processing techniques

  11. Non-linear beam dynamics tests in the LHC: LHC dynamic aperture MD on Beam 2 (24th of June 2012)

    CERN Document Server

    Maclean, E H; Persson, T H B; Redaelli, S; Schmidt, F; Tomas, R; Uythoven, J

    2013-01-01

    This MD note summarizes measurements performed on LHC Beam 2 during the non-linear machine development (MD) of 24 June 2012. The aim of the measurement was to observe the dynamic aperture of LHC Beam 2, and obtain turn-by-turn (TbT) betatron oscillation data, enabling the study of amplitude detuning and resonance driving terms (RDTs). The regular injections required by the MD also represented an opportunity to test a new coupling feedback routine based on the analysis of injection oscillation data. Initial measurements were performed on the nominal state of the LHC at injection. On completion of this study the Landau octupoles were turned off and corrections for higher-order chromaticities were implemented to reduce the non-linearity of the machine as far as possible. A second set of measurements were then performed. All studies were performed using the LHC aperture kicker (MKA).

  12. Measurements of stability limits for a space-charge-dominated ion beam in a long A.G. transport channel

    International Nuclear Information System (INIS)

    Tiefenback, M.G.; Keefe, D.

    1985-05-01

    The Single Beam Transport Experiment at LBL consists of 82 electrostatic quadrupole lenses arranged in a FODO lattice. Five further lenses provide a matched beam from a high-current high-brightness cesium source for injection into the FODO channel. We call the transport conditions stable if both the emittance and current remain unchanged between the beginning and end of the channel, and unstable if either the emittance grows or the current decreases because of collective effects. We have explored the range of single-particle betatron phase advance per period from sigma 0 = 45 0 to 150 0 to determine the stability limits for the space-charge depressed phase advance, sigma. No lower limit for sigma (down to 7 0 ) has been found at sigma 0 = 60 0 , whereas limits have clearly been identified and mapped in the region of sigma 0 above 90 0

  13. Quadrupole beam-transport experiment for heavy ions under extreme space charge conditions

    International Nuclear Information System (INIS)

    Chupp, W.; Faltens, A.; Hartwig, E.C.

    1983-03-01

    A Cs ion-beam-transport experiment is in progress to study beam behavior under extreme space-charge conditions. A five-lens section matches the beam into a periodic electrostatic quadrupole FODO channel and its behavior is found to agree with predictions. With the available parameters (less than or equal to 200 keV, less than or equal to 20 mA, πepsilon/sub n/ greater than or equal to 10 - 7 π rad-m, up to 41 periods) the transverse (betatron) occillation frequency (nu) can be depressed down to one-tenth of its zero current value (nu/sub 0/), where nu/sup 2/ = nu/sub 0//sup 2/ -#betta#/sub p/ 2 /2, and #betta#/sub p/ is the beam plasma frequency. The current can be controlled by adjustment of the gun and the emittance can be controlled independently by means of a set of charged grids

  14. Beam stability in the ISR

    International Nuclear Information System (INIS)

    Hofmann, A.

    1979-01-01

    There are 3 effects which limit the current in the ISR: the gas desorption by the beam produced ions leads to a pressure rise at a certain beam current. To increase this current limit the vacuum system has been improved continuously which resulted in a maximum beam current of 50 A. The microwave instability leads to a dilution of the longitudinal phase space density during acceleration of the bunches across the chamber and during debunching. This limits the longitudinal density of the final stack and therefore the total current which can be accumulated in the given aperture. The transverse instability of the coasting beam represents another potential limitation of the beam current. This effect is controlled by Landau damping provided by the betatron frequency spread and by feedback systems. The ion induced gas desorption represents the lowest current limit at the top energies. However the other two limitations are not far away and they depend on the proper adjustment of many machine parameters

  15. Hadron therapy at the end of the 20th century

    International Nuclear Information System (INIS)

    Prokes, K.; Lokajicek, M.

    1998-01-01

    An overview of radiotherapy methods (brachytherapy, external irradiation with X-rays, betatrons, linear accelerators, hadron therapy, neutron capture therapy) is given, including their description and basic ways of application. Improved results can be achieved through precise dosimetry, diagnostic preparation, mathematical 3D modelling, procedure simulation and conformal therapy (adaptation of the radiation field to the shape of the target volume and preparation of compensation filters). The use of accelerated protons or ions also contributes to a substantial improvement. Neutron capture therapy is a promising method; the problem of suitable chemical compounds carrying boron 10, to be captured by the neoplasm tissue, and the problem of a suitable source of thermal neutrons are being addressed. (M.D.)

  16. FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

    International Nuclear Information System (INIS)

    Sarchiapone, L.; Brugger, M.; Dehning, B.; Kramer, D.; Stockner, M.; Vlachoudis, V.

    2007-01-01

    One of the crucial elements in terms of machine protection for CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. On-line loss measurements must prevent the superconducting magnets from quenching and protect the machine components from damages due to unforeseen critical beam losses. In order to ensure the BLM's design quality, in the final design phase of the LHC detailed FLUKA Monte Carlo simulations were performed for the betatron collimation insertion. In addition, benchmark measurements were carried out with LHC type BLMs installed at the CERN-EU high-energy Reference Field facility (CERF). This paper presents results of FLUKA calculations performed for BLMs installed in the collimation region, compares the results of the CERF measurement with FLUKA simulations and evaluates related uncertainties. This, together with the fact that the CERF source spectra at the respective BLM locations are comparable with those at the LHC, allows assessing the sensitivity of the performed LHC design studies

  17. FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

    Science.gov (United States)

    Sarchiapone, L.; Brugger, M.; Dehning, B.; Kramer, D.; Stockner, M.; Vlachoudis, V.

    2007-10-01

    One of the crucial elements in terms of machine protection for CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. On-line loss measurements must prevent the superconducting magnets from quenching and protect the machine components from damages due to unforeseen critical beam losses. In order to ensure the BLM's design quality, in the final design phase of the LHC detailed FLUKA Monte Carlo simulations were performed for the betatron collimation insertion. In addition, benchmark measurements were carried out with LHC type BLMs installed at the CERN-EU high-energy Reference Field facility (CERF). This paper presents results of FLUKA calculations performed for BLMs installed in the collimation region, compares the results of the CERF measurement with FLUKA simulations and evaluates related uncertainties. This, together with the fact that the CERF source spectra at the respective BLM locations are comparable with those at the LHC, allows assessing the sensitivity of the performed LHC design studies.

  18. Physics of compact radio sources. I. Particle acceleration and flux variations

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.; Scott, J.S.

    1976-01-01

    The observed patterns of variability of compact radio sources may be explained by assuming that the radio components are plasmons containing relativistic particles, and by applying a model with the following features: (1) the plasmons are ejected at high speed into the interstellar medium in the nuclei of active galaxies: (2) ram pressure confinement of the plasmons leads to Rayleigh-Taylor and Kelvin-Helmholtz instabilities therein; (3) turbulence is thereby introduced into the plasmons; (4) the turbulence amplifies the plasmon magnetic field (for a short period) and this leads to betatron aceleration of the relativistic particles; (5) the turbulence vortices continue to accelerate the particles by the second-order Fermi acceleration mechanism. The emission patterns are the result of the combination of these accelerations and adiabatic losses

  19. Beam profile measurements on RHIC

    International Nuclear Information System (INIS)

    Connolly, R.; Michnoff, R.; Moore, T.; Shea, T.; Tepikian, S.

    2000-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab was commissioned during the summer of 1999. Transverse beam profiles on RHIC are measured with ionization profile monitors (IPMs). An IPM measures beam profiles by collecting the electrons liberated by residual gas ionization by the beam. The detector is placed in the gap of a dipole magnet to force the electrons to travel in straight lines from the beamline center to the collector. One IPM was tested and it measured the profiles of a single gold bunch containing 10 8 ions on consecutive turns. We show an example of one of these profiles giving transverse emittance. Also several profiles are combined into a mountain-range plot which shows betatron oscillations at injection

  20. Photodisintegration of the heavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, R W; Collie, C H

    1950-08-01

    The photothresholds for the emission of neutrons by the following elements have been determined; the threshold in MeV is given in the brackets following the symbol: Pt(6.1 +- 0.1), Au(8.1 +- 0.1), Hg(6.6 +- 0.2), Tl(7.3 +- 0.25), Pb(6.9 +- 0.1), Bi(7.2 +- 0.1), Th(6.9 +- 0.15), U(5.8 +- 0.15). The neutrons were detected by the Szilard-Chalmers method of chemical concentration and the ..gamma.. rays were obtained from a small betatron. Rough values of the total cross sections can be estimated from the results.

  1. Review of single particle dynamics for third generation light sources through frequency map analysis

    Directory of Open Access Journals (Sweden)

    L. Nadolski

    2003-11-01

    Full Text Available Frequency map analysis [J. Laskar, Icarus 88, 266 (1990] is used here to analyze the transverse dynamics of four third generation synchrotron light sources: the ALS, the ESRF, the SOLEIL project, and Super-ACO. Time variations of the betatron tunes give additional information for the global dynamics of the beam. The main resonances are revealed; a one-to-one correspondence between the configuration space and the frequency space can be performed. We stress that the frequency maps, and therefore the dynamics optimization, are highly sensitive to sextupolar strengths and vary in a large amount from one machine to another. The frequency maps can thus be used to characterize the different machines.

  2. Instrumental photoactivation analysis of some elements in steel

    International Nuclear Information System (INIS)

    Galatanu, V.; Timus, D.; Catana, D.

    1985-01-01

    Photoactivation determination of Cr, Ni and Mo had been performed in large representative samples of steel. The disc samples (40 mm diameter and 3,5 mm thickness) were irradiated in the bremstrahlung beam of a 25 MeV betatron, at 0.5 m from the Pt target in order to insure a fairly uniform irradiation. The gamma-rays were detected with a 40 cm Ge(Li) detector coupled to an IR 90 programmable analyser. The concentration determined were between 0,1% and 9% for Ni, 0,4% and 18% for Cr and 0,05% and 1,50% for Mo. The accuracy of the determinations was 10% for lower consentrations and 3% for higher concentrations

  3. Principle of Global Decoupling with Coupling Angle Modulation

    CERN Document Server

    Luo, Yun; Pilat, Fulvia Caterina; Roser, Thomas; Trbojevic, Dejan

    2005-01-01

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). A new scheme coupling phase modulation is found. It introduces a rotating extra coupling into the coupled machine to detect the residual coupling. The eigentune responses are measured with a high resolution phase lock loop (PLL) system. From the minimum and maximum tune splits, the correction strengths are given. The time period occupied by one coupling phase modulation is less than 10 seconds. So it is a very promising solution for the global decoupling on the ramp. In this article the principle of the coupling phase modulation is given. The simulation with the smooth accelerator model is also done. The practical issues concerning its applications are discussed.

  4. Experience with IBS-suppression lattice in RHIC

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Luo, Y.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Bai, M.; Bruno, D.; Cameron, P.; Connolly, R.; Della Penna, A.; Drees, A.; Fedotov, A.; Ganetis, G.; Hoff, L.; Louie, W.; Malitsky, N.; Marr, G.; Marusic, A.; Montag, C.; Pilat, F.; Roser, T.; Trbojevic, D.; Tsoupas, N.

    2008-01-01

    An intra-beam scattering (IBS) is the limiting factor of the luminosity lifetime for RHIC operating with heavy ions. In order to suppress the IBS we designed and implemented new lattice with higher betatron tunes. This lattice had been developed during last three years and had been used for gold ions in yellow ring of the RHIC during d-Au part of the RHIC Run-8. The use of this lattice allowed both significant increases in the luminosity lifetime and the luminosity levels via reduction of beta-stars in the IPS. In this paper we report on the development, the tests and the performance of IBS-suppression lattice in RHIC, including the resulting increases in the peak and the average luminosity. We also report on our plans for future steps with the IBS suppression

  5. Proton cross-talk and losses in the dispersion suppressor regions at the FCC-hh

    CERN Document Server

    AUTHOR|(CDS)2100784; Appleby, Robert Barrie; Krainer, Alexander; Langner, Andy Sven; Abelleira, Jose

    2017-01-01

    Protons that collide at the interaction points of the FCC-hh may contribute to the background in the subsequent detector. Due to the high luminosity of the proton beams this may be of concern. Using DPMJET-III to model 50 TeV proton-proton collisions, tracking studies have been performed with PTC and MERLIN in order to gauge the elastic and inelastic proton cross-talk. High arc losses, particularly in the dispersion suppressor regions, have been revealed. These losses originate mainly from particles with a momentum deviation, either from interaction with a primary collimator in the betatron cleaning insertion, or from the proton-proton collisions. This issue can be mitigated by introducing additional collimators in the dispersion suppressor region. The specific design, lattice integration, and the effect of these collimators on cross-talk is assessed.

  6. Proceedings of the workshop on future hadron facilities in the US

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    This report discusses the following topics on future hadron facilities: Workshop on future hadron facilities in the US; 30 {times} 30 TeV-summary report; A high luminosity, 2 {times} 2 TeV collider in the tevatron tunnel; magnets working group; cryogenics discussion; vacuum report; antiproton source production; injector working group; interaction region working group; lattice/beam dynamics working group; LEBT for high-luminosity colliders; some notes on long-range beam-beam effects for the 2TeV collider; synchrotron radiation masks for high energy proton accelerators. Emittance preservation in a proton synchrotron; beam-beam interaction effects on betatron tunes; analytic solutions for phase trombone modules; and chromatic corrections of RHIC when one or two insertions is at {Beta}* = 0.5m.

  7. The correction of linear lattice gradient errors using an AC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Wang,G.; Bai, M.; Litvinenko, V.N.; Satogata, T.

    2009-05-04

    Precise measurement of optics from coherent betatron oscillations driven by ac dipoles have been demonstrated at RHIC and the Tevatron. For RHIC, the observed rms beta-beat is about 10%. Reduction of beta-beating is an essential component of performance optimization at high energy colliders. A scheme of optics correction was developed and tested in the RHIC 2008 run, using ac dipole optics for measurement and a few adjustable trim quadruples for correction. In this scheme, we first calculate the phase response matrix from the. measured phase advance, and then apply singular value decomposition (SVD) algorithm to the phase response matrix to find correction quadruple strengths. We present both simulation and some preliminary experimental results of this correction.

  8. Singularity and stability in a periodic system of particle accelerators

    Science.gov (United States)

    Cai, Yunhai

    2018-05-01

    We study the single-particle dynamics in a general and parametrized alternating-gradient cell with zero chromaticity using the Lie algebra method. To our surprise, the first-order perturbation of the sextupoles largely determines the dynamics away from the major resonances. The dynamic aperture can be estimated from the topology and geometry of the phase space. In the linearly normalized phase space, it is scaled according to A ¯ ∝ϕ √{L } , where ϕ is the bending angle and L the length of the cell. For the 2 degrees of freedom with equal betatron tunes, the analytical perturbation theory leads us to the invariant or quasi-invariant tori, which play an important role in determining the stable volume in the four-dimensional phase space.

  9. Ion beam dynamics in the acceleration region of the Vincy Cyclotron

    International Nuclear Information System (INIS)

    Tomic, S.; Samsonov, E.

    1998-01-01

    Modern concept of heavy ion cyclotrons assumes a tendency of decreasing the gaps between magnet poles, enabling better efficiency of the magnetic field circuit. This restricts possible solutions of acceleration structure and imposes the necessity of installing the dees in valleys of magnetic structures. This approach, which is accepted in the VINCY Cyclotron, requires a detailed study of the ion beam dynamics in the acceleration region. Consequently, we analyzed ion beams with eta = 1,05 and 0.25 in radial and axial phase space. Also, the energy spread in emittances and the influence of the first harmonic of the magnetic field on the radial betatron oscillations are discussed. The transformation of coherent into incoherent radial oscillations as well as the effect to radial off-centering on the beam vertical size at Walkinshaw resonance location, is pointed out (author)

  10. Chromaticity correction in the TRISTAN phase I main ring with two types of insertion

    International Nuclear Information System (INIS)

    Wu, Yingzhi; Egawa, Kazumi.

    1984-07-01

    The TRISTAN main ring now under construction has four insertions. Besides the normal modes in which the four insertions have the same optics, the TRISTAN main ring will be operated in somewhat more complicated configurations with insertions having different optics. This report will consider chromaticity corrections using six families of sextupoles for the TRISTAN main ring with two different insertion types; opposite insertions have the same optics. The strength of correcting sextupoles is determined mainly using the W-correction method. The program PATRICIA is used to track the trajectories of test particles over 800 turns. The results show that the correction scheme adopted allows adequately large amplitudes of betatron and synchrotron oscillations. (author)

  11. General properties of an asymmetric B-factory lattice

    International Nuclear Information System (INIS)

    Autin, B.

    1989-04-01

    Scaling laws consistent with general rules of optimization have been established for colliders of unequal beams. They are valid for any ring deduced from the circular shape by insertion of straight sections. The constraint on the synchrotron motion seems to be met more easily for the head on configuration than for a finite crossing angle. In any case, the equal damping decrement requirement leads to the use of high field dipoles in the low energy ring. If the rules on equal beam size and equal beam-beam tune shift are generally accepted, those on equal damping decrements and equal amplitude of the betatron phase modulation by the synchrotron motion are still controversial matters: below a certain threshold which is still undefined, they may be unimportant. Finally, additional flexibility could be provided by wigglers and radio frequency adjustments. 5 refs

  12. Experimental simulation of ground motion effects

    International Nuclear Information System (INIS)

    Syphers, M.J.; Chao, A.W.; Dutt, S.; Yan, Y.T.; Zhang, P.L.; Ball, M.; Brabson, B.; Budnick, J.; Caussyn, D.D.; Collins, J.; Derenchuk, V.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Hamilton, B.; Huang, H.; Jones, W.P.; Lee, S.Y.; Li, D.; Nagaitsev, S.; Pei, X.; Rondeau, G.; Sloan, T.; Minty, M.G.; Gabella, W.; Ng, K.Y.; Teng, L.; Tepikian, S.

    1993-05-01

    Synchro-betatron coupling in a proton storage ring with electron cooling was studied by modulating a transverse dipole field close to the synchrotron frequency. The combination of the electron cooling and transverse field modulation on the synchrotron oscillation is equivalent to a dissipative parametric resonant system. The proton bunch was observed to split longitudinally into two pieces, or beamlets, converging toward strange attractors of the dissipative system. These phenomena might be important to understanding the effect of ground vibration on the SSC beam, where the synchrotron frequency is about 4 ∼ 7 Hz, and the effect of power supply ripple on the RHIC beam, where the synchrotron frequency ramps through 60 Hz at 17 GeV/c

  13. Experimental simulation of ground motion effects

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M.J.; Chao, A.W.; Dutt, S.; Yan, Y.T.; Zhang, P.L. [Superconducting Super Collider Lab., Dallas, TX (United States); Ball, M.; Brabson, B.; Budnick, J.; Caussyn, D.D.; Collins, J.; Derenchuk, V.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Hamilton, B.; Huang, H.; Jones, W.P.; Lee, S.Y.; Li, D.; Nagaitsev, S.; Pei, X.; Rondeau, G.; Sloan, T. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States); Minty, M.G. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Gabella, W.; Ng, K.Y. [Fermi National Accelerator Lab., Batavia, IL (United States); Teng, L. [Argonne National Lab., IL (United States); Tepikian, S. [Brookhaven National Lab., Upton, NY (United States)

    1993-05-01

    Synchro-betatron coupling in a proton storage ring with electron cooling was studied by modulating a transverse dipole field close to the synchrotron frequency. The combination of the electron cooling and transverse field modulation on the synchrotron oscillation is equivalent to a dissipative parametric resonant system. The proton bunch was observed to split longitudinally into two pieces, or beamlets, converging toward strange attractors of the dissipative system. These phenomena might be important to understanding the effect of ground vibration on the SSC beam, where the synchrotron frequency is about 4 {approximately} 7 Hz, and the effect of power supply ripple on the RHIC beam, where the synchrotron frequency ramps through 60 Hz at 17 GeV/c.

  14. Experimental Simulation of Ground Motion Effects

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-07-11

    Synchro-betatron coupling in a proton storage ring with electron cooling was studied by modulating a transverse dipole field close to the synchrotron frequency. The combination of the electron cooling and transverse field modulation on the synchrotron oscillation is equivalent to a dissipative parametric resonant system. The proton bunch was observed to split longitudinally into two pieces, or beamlets, converging toward strange attractors of the dissipative system. These phenomena might be important to understanding the effect of ground vibration on the SSC beam, where the synchrotron frequency is about 4 {approx} 7 Hz, and the effect of power supply ripple on the RHIC beam, where the synchrotron frequency ramps through 60 Hz at 17 GeV/c.

  15. The Lattice for the 50-50 GeV Muon Collider

    International Nuclear Information System (INIS)

    Ng, K.-Y.; Trbojevic, D.

    1998-02-01

    The lattice design of the 50-50 Gev muon collider is presented. Due to the short lifetime of the 50 GeV muons, the ring needs to be as small as possible. The 4 cm low betas in both planes lead to high betatron functions at the focusing quadrupoles and hence large chromaticities, which must be corrected locally. In order to maintain a low rf voltage of around 10 MV, the momentum-compaction factor must be kept to less than 10 -2 , and therefore the flexible momentum-compaction modules are used in the arcs. The dynamical aperture is larger than 6 to 7 rms beam size for ±5 rms momentum offset. Comments are given and modifications are suggested

  16. Synchronization of the Zero Gradient Synchrotron (ZGS) and the fast-cycling booster II injector

    International Nuclear Information System (INIS)

    Rauchas, A.V.

    1977-01-01

    The planned method of booster injection into the ZGS requires the stacking of two booster beam bunches into the radial betatron phase space of the ZGS and necessitates precise synchronization of the two accelerators during the injection period. The requirement of maintaining independent radio-frequency (rf) steering control does not allow the frequencies of both accelerators to be locked. A synchronizer was developed which detects a coincidence zero crossing of the two rf's, anticipates the next coincidence, and at that time, generates trigger pulses for the booster extraction and ZGS injection systems. It also maintains control of the sequence in which the total phase space area of the ZGS is loaded. Synchronizer accuracy is obtained by using high speed digital logic circuits. Design considerations and system operation are discussed

  17. Control and initial operation of the Fermilab BO low β insertion

    International Nuclear Information System (INIS)

    Finley, D.A.; Johnson, R.P.; Willeke, F.

    1985-06-01

    The operation of the Fermilab BO low β insertion involves the coordinated control of the 4 strings of quadrupoles of the insertion itself along with several magnetic correction elements (20 dipoles for the closed orbit, 2 quad circuits for betatron tunes, 1 skew quad circuit for coupling, and 2 sextupole circuits for chromaticity). When the beam is stored at high energy, these elements must correct the errors induced by the strong superconducting quadrupoles of the insertion as the optics are smoothly changed from the fixed target configuration to the low β state. The techniques and control programs for these manipulations and initial tests using a single coasting beam are described. 6 refs., 4 figs

  18. Preclinical experiments for analysis of tumor regression due to negative pions

    International Nuclear Information System (INIS)

    Blattmann, H.; Cabeza, L.; Fritz-Niggli, H.

    To test the potential therapeutic value of negative pions in comparison with conventional x-rays, cobalt-60 γ rays, and high energy electrons and photons (Betatron), experimental analyses with induced tumors (transplant tumors) after irradiation are to be performed in vivo and in vitro (tumor cell suspensions, cell cultures, spontaneous tumors, carcinoma in ascites form); in addition to tumors primarily of mice, human cell tumors will be used; studies will also be made of cell kinetics with various cell types (normal cells, transformed (malignant) cells, beam-resistant, beam-sensitive types) using cell cultures from Chinese hamsters. An attempt will be made to compare slow- and fast-growing tumors. In a second phase, human tumors in conditioned animals will be tested in situ or as cell cultures. Skin, small intestine, regenerating liver and kidney, together with cell cultures, will serve as normal reaction systems

  19. CAS CERN Accelerator School third general accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    The general course on accelerator physics given in Salamanca, Spain, closely followed those organised by the CERN Accelerator School at Gif-sur-Yvette, Paris in 1984, and at Aarhus, Denmark in 1986 and whose proceedings were published as CERN Yellow Reports 85-19 (1985) and 87-10 (1987) respectively. However, certain topics were treated in a different way, improved or extended, while some new ones were introduced and it is all of these which are included in the present proceedings. The lectures include beam-cooling concepts, Liouville's theorem and emittance, emittance dilution in transfer lines, weak-betatron coupling, diagnostics, while the seminars are on positron and electron sources, linac structures and the LEP L3 experiment, together with industrial aspects of particle accelerators. Also included are errata and addenda to the Yellow Reports mentioned above. (orig.)

  20. Suppression of emittance growth caused by mechanical vibrations of magnetic elements in presence of beam-beam effects in the SSC

    International Nuclear Information System (INIS)

    Lebedev, V.A.; Parkhomchuk, V.V.; Shil'tsev, V.D.; Skrinskij, A.N.

    1991-01-01

    A ground motion produces shifts of storage ring quadrupoles. It strongly influences on the beam behaviour in large proton (anti)proton colliders due to the closed orbit distortion and due to the transverse emittance growth. Calculations of both effects are presented in this paper. An active feedback system is useful for the emittance growth suppression. It is shown that in this case the main parameter which determines the emittance growth is the betatron tune spread due to the beam-beam effects. A simple analytical model is considered which results are in good coincidence with computer simulations. All calculations are adapted to the Superconducting Super Collider (SSC). 13 refs.; 9 figs.; 3 tabs

  1. J-PARC accelerator and neutrino beamline upgrade programme

    Science.gov (United States)

    Friend, M.

    2017-09-01

    The 30 GeV proton beam from the J-PARC Main Ring (MR) accelerator is used to produce a world-class conventional neutrino beam - the neutrino source for the J-PARC long-baseline neutrino programme, including the current T2K experiment and proposed future experiments. Planned upgrades to increase the beam power of the MR from the current ˜400 kW to the design power of 750 kW and beyond, to 1.3+ MW, are underway. These include hardware modifications, such as upgrades of the MR magnet power supplies, RF systems, and feedback systems, as well as a change of the MR beam betatron tune point. Upgrades to the neutrino beamline, such as to the proton beam monitoring, horns, and radioactive material handling, will also be required to accommodate the increased proton beam power. An overview of planned J-PARC MR and neutrino facility upgrades is given.

  2. Transport and acceleration of low-emittance electron beams

    International Nuclear Information System (INIS)

    Henke, H.

    1989-01-01

    Linear accelerators for colliders and for free-electron lasers require beams with both high brightness and low emittance. Their transport and acceleration is limited by single-particle effects originating from injection jitter, from the unavoidable position jitter of components, and from chromaticity. Collective phenomena, essentially due to wake fields acting within the bunch, are most severe in the case of high-frequency structures, i.e. a small aperture. Whilst, in the past, the transverse wake-field effects were believed to be most serious, we know that they can even be beneficial when inducing a corresponding spread in betatron oscillation either by an energy spread along the bunch or by an RF focusing system acting on the bunch scale. This paper evaluates the different effects by simple analytical means after making use of the smooth focusing approximation and the two-particle model. Numerical simulation results are used for verification. 14 refs., 6 figs., 2 tabs

  3. Spin tune dependence on closed orbit in RHIC

    International Nuclear Information System (INIS)

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-01-01

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  4. Ultraviolet and soft X-ray free-electron lasers introduction to physical principles, experimental results, technological challenges

    CERN Document Server

    Schmüser, Peter; Rossbach, Jörg; Fujimori, A; Kühn, J; Müller, T; Steiner, F; Trümper, J; Varma, C; Wölfle, P

    2008-01-01

    In the introduction accelerator-based light sources are considered and a comparison is made between free-electron lasers and conventional quantum lasers. The motion and radiation of relativistic electrons in undulator magnets is discussed. The principle of a low-gain free-electron laser is explained and the pendulum equations are introduced that characterize the electron dynamics in the field of a light wave. The differential equations of the high-gain FEL are derived from the Maxwell equations of electrodynamics. Analytical and numerical solutions of the FEL equations are presented and important FEL parameters are defined, such as gain length, FEL bandwidth and saturation power. A detailed numerical study of the all-important microbunching process is presented. The mechanism of Self Amplified Spontaneous Emission is described theoretically and illustrated with numerous experimental results. Three-dimensional effects such as betatron oscillations and optical diffraction are addressed and their impact on the F...

  5. Beam position monitors for the high brightness lattice

    International Nuclear Information System (INIS)

    Ring, T.

    1985-06-01

    Engineering developments associated with the high brightness lattice and the projected change in machine operating parameters will inherently affect the diagnostics systems and devices installed at present in the storage ring. This is particularly true of the beam position monitoring (BPI) system. The new sixteen unit cell lattice with its higher betatron tune values and the limited space available in the redesigned machine straights for fitting standard BPI vessels forces a fundamental re-evaluation of the beam position monitor system. The design aims for the new system are based on accepting the space limitations imposed while still providing the monitor points required to give good radial and vertical closed orbit plots. The locations of BPI's in the redesigned machine straights is illustrated. A description of the new BPI assemblies and their calibration is given. The BPI's use capacitance button type pick-ups; their response is described. (U.K.)

  6. High-voltage nanosecond pulse shaper

    International Nuclear Information System (INIS)

    Kapishnikov, N.K.; Muratov, V.M.; Shatanov, A.A.

    1987-01-01

    A high-voltage pulse shaper with an output of up to 250 kV, a base duration of ∼ 10 nsec, and a repetition frequency of 50 pulses/sec is described. The described high-voltage nanosecond pulse shaper is designed for one-orbit extraction of an electron beam from a betatron. A diagram of the pulse shaper, which employs a single-stage generator is shown. The shaping element is a low-inductance capacitor bank of series-parallel KVI-3 (2200 pF at 10 kV) or K15-10 (4700 pF at 31.5 kV) disk ceramic capacitors. Four capacitors are connected in parallel and up to 25 are connected in series

  7. The control systems for the CERN Super Proton Synchrotron ring power supplies

    CERN Document Server

    Kuhn, H K

    1981-01-01

    The dedicated control system for the 16 voltage-controlled Main Ring pulsed supplies, allowing the reproduction of the desired B and Q fields to better than +or-2*10/sup -4/ at injection is described. It outlines both the hardware (smoothed function generators) and software side. Current measurements via DVMs or the B train off the reference magnets are used as inputs to the correction algorithm which is based on successive approximation. The algorithm enables the machine operators to trim selectively both the closed orbit and/or the betatron wave number of the machine within 1 to a few cycles. The control system related computer memory requirements are given. (0 refs).

  8. Classical mechanics and electromagnetism in accelerator physics

    CERN Document Server

    Stupakov, Gennady

    2018-01-01

    This self-contained textbook with exercises discusses a broad range of selected topics from classical mechanics and electromagnetic theory that inform key issues related to modern accelerators. Part I presents fundamentals of the Lagrangian and Hamiltonian formalism for mechanical systems, canonical transformations, action-angle variables, and then linear and nonlinear oscillators. The Hamiltonian for a circular accelerator is used to evaluate the equations of motion, the action, and betatron oscillations in an accelerator. From this base, we explore the impact of field errors and nonlinear resonances. This part ends with the concept of the distribution function and an introduction to the kinetic equation to describe large ensembles of charged particles and to supplement the previous single-particle analysis of beam dynamics. Part II focuses on classical electromagnetism and begins with an analysis of the electromagnetic field from relativistic beams, both in vacuum and in a resistive pipe. Plane electromagne...

  9. Stability of anisotropic beams with space charge

    International Nuclear Information System (INIS)

    Hofmann, I.

    1997-07-01

    We calculate coherent frequencies and stability properties of anisotropic or ''non-equipartitioned'' beams with different focusing constants and emittances in the two transverse directions. Based on the self-consistent Vlasov-Poisson equations the dispersion relations of transverse multipole oscillations with quadrupolar, sextupolar and octupolar symmetry are solved numerically. The eigenfrequencies give the coherent space charge tune shift for linear or nonlinear resonances in circular accelerators. We find that for sufficiently large energy anisotropy some of the eigenmodes become unstable in the space-charge-dominated regime. The properties of these anisotropy instabilities are used to show that ''non-equipartitioned'' beams can be tolerated in high-current linear accelerators. It is only in beams with strongly space-charge-depressed betatron tunes where harmful instabilities leading to emittance exchange should be expected. (orig.)

  10. Seismic studies for Fermilab future collider projects

    International Nuclear Information System (INIS)

    Lauh, J.; Shiltsev, V.

    1997-11-01

    Ground motion can cause significant beam emittance growth and orbit oscillations in large hadron colliders due to a vibration of numerous focusing magnets. Larger accelerator ring circumference leads to smaller revolution frequency and, e.g. for the Fermilab Very Large Hadron Collider(VLHC) 50-150 Hz vibrations are of particular interest as they are resonant with the beam betatron frequency. Seismic measurements at an existing large accelerator under operation can help to estimate the vibrations generated by the technical systems in future machines. Comparison of noisy and quiet microseismic conditions might be useful for proper choice of technical solutions for future colliders. This article presents results of wide-band seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, and in two deep tunnels in the Illinois dolomite which is though to be a possible geological environment of the future accelerators

  11. Damping the e-p instability in the SNS accumulator ring

    Science.gov (United States)

    Evans, N. J.; Deibele, C.; Aleksandrov, A.; Xie, Z.

    2018-03-01

    A broadband, digital damper system for both transverse planes developed for the SNS accumulator ring has recently damped the first indications of the broadband 50-150 MHz e-p instability in a 1.2 MW neutron production beam. This paper presents details of the design and operation of the SNS damper system as well as results of active damping of the e-p instability in the SNS ring showing a reduction in power of betatron oscillation over the 10-300 MHz band of up to 70%. The spectral content of the beam during operation, with and without the damper system is presented and performance of the damper system is evaluated.

  12. Optics of beam recirculation in the CEBAF [Continuous Electron Beam Accelerator Facility] cw linac

    International Nuclear Information System (INIS)

    Douglas, D.R.

    1986-01-01

    The use of recirculation in linear accelerator designs requires beam transport systems that will not degrade beam quality. We present a design for the transport lines to be used during recirculation in the CEBAF accelerator. These beam lines are designed to avoid beam degradation through synchrotron radiation excitation or betatron motion mismatch, are insensitive to errors commonly encountered during beam transport, and are optimized for electron beams with energies of 0.5 to 6.0 GeV. Optically, they are linearly isochronous second order achromats based on a ''missing magnet'' FODO structure. We give lattice specifications for, and results of analytic estimates and numerical simulations of the performance of, the beam transport system

  13. Methods of orbit correction system optimization

    International Nuclear Information System (INIS)

    Chao, Yu-Chiu.

    1997-01-01

    Extracting optimal performance out of an orbit correction system is an important component of accelerator design and evaluation. The question of effectiveness vs. economy, however, is not always easily tractable. This is especially true in cases where betatron function magnitude and phase advance do not have smooth or periodic dependencies on the physical distance. In this report a program is presented using linear algebraic techniques to address this problem. A systematic recipe is given, supported with quantitative criteria, for arriving at an orbit correction system design with the optimal balance between performance and economy. The orbit referred to in this context can be generalized to include angle, path length, orbit effects on the optical transfer matrix, and simultaneous effects on multiple pass orbits

  14. Development of an accelerator for X-ray inspection apparatus with high clairvoyance

    CERN Document Server

    Onishi, T

    2002-01-01

    At present, there is no portable X-ray generator usable for non-destructive inspection of thick concretes used for bridges, and so on. To enable on non-destructive inspection of such thick concrete materials with more than 300 mm in thickness, authors developed a new small size accelerator with same acceleration principle as that of betatron. And, the authors also developed two types of new induction accelerators such as 'spiral orbit type' and 'cylindrical type'. Furthermore, development of a detector with excellent sensitivity to X-ray with wavelength suitable for inspection and software for image processing are planned. Here was described acceleration principles of new accelerators, test results on prototypes of the accelerators, and development states on field emission array considering new electron gun alternating thermal one and cold cathode type electron gun using carbon nano-tubes. (G.K.)

  15. Shielding practice

    International Nuclear Information System (INIS)

    Sauermann, P.F.

    1985-08-01

    The basis of shielding practice against external irradiation is shown in a simple way. For most sources of radiation (point sources) occurring in shielding practice, the basic data are given, mainly in the form of tables, which are required to solve the shielding problems. The application of these data is explained and discussed using practical examples. Thickness of shielding panes of glove boxes for α and β radiation; shielding of sealed γ-radiography sources; shielding of a Co-60 radiation source, and of the manipulator panels for hot cells; damping factors for γ radiation and neutrons; shielding of fast and thermal neutrons, and of bremsstrahlung (X-ray tubes, Kr-85 pressure gas cylinders, 42 MeV betatrons, 20 MeV linacs); two-fold shielding (lead glass windows for hot cells, 14 MeV neutron generators); shielding against scattered radiation. (orig./HP) [de

  16. Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons

    International Nuclear Information System (INIS)

    Khotyaintsev, Yu. V.; Cully, C. M.; Vaivads, A.; Andre, M.; Owen, C. J.

    2011-01-01

    We report in situ observations by the Cluster spacecraft of wave-particle interactions in a magnetic flux pileup region created by a magnetic reconnection outflow jet in Earth's magnetotail. Two distinct regions of wave activity are identified: lower-hybrid drift waves at the front edge and whistler-mode waves inside the pileup region. The whistler-mode waves are locally generated by the electron temperature anisotropy, and provide evidence for ongoing betatron energization caused by magnetic flux pileup. The whistler-mode waves cause fast pitch-angle scattering of electrons and isotropization of the electron distribution, thus making the flow braking process nonadiabatic. The waves strongly affect the electron dynamics and thus play an important role in the energy conversion chain during plasma jet braking.

  17. Beam diffusion measurements using collimator scans in the LHC

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Burkart, Florian; Previtali, Valentina; Redaelli, Stefano; Salvachua, Belen; Stancari, Giuliov; Valishev, Alexander

    2013-01-01

    The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  18. MD1271: Effect of low frequency noise on the evolution of the emittance and halo population

    CERN Document Server

    Fitterer, Miriam; Valishev, Alexander; Bruce, Roderik; Hofle, Wolfgang; Hostettler, Michi; Papadopoulou, Parthena Stefania; Papotti, Giulia; Papaphilippou, Yannis; Pellegrini, Dario; Trad, Georges; Valuch, Daniel; Valentino, Gianluca; Wagner, Joschka; Cai, Xu; CERN. Geneva. ATS Department

    2018-01-01

    For the High Luminosity upgrade the β* in IR1 and IR5 will be further reduced compared to the current LHC. As the β* decreases the β-functions in the inner triplet (IT) increase resulting in a higher sensitivity of the HL-LHC to ground motion in the IT region or to increases of the low frequency noise. Noise can in general lead to emittance growth and higher halo population and diffusion rate. However, it is usually assumed in the literature that only frequencies close to the betatron frequencies and sidebands have an effect on the emittance and tail population. To test this theory, an MD was carried out to observe if also low frequency noise can lead to emittance growth and stronger halo population and diffusion. This MD conducted on 24.08.2016 follows a previous MD on 05.11.2015/06.11.2015

  19. Effect of low frequency noise on the evolution of the emittance and halo population

    CERN Document Server

    Fitterer, Miriam; Antoniou, Fanouria; Bravin, Enrico; Bruce, Roderik; Fartoukh, Stephane; Fuchsberger, Kajetan; Hofle, Wolfgang; Gasior, Marek; Jaussi, Michael; Jacquet, Delphine; Kotzian, Gerd; Olexa, Jakub; Papadopoulou, Parthena Stefania; Papotti, Giulia; Papaphilippou, Yannis; Redaelli, Stefano; Salvachua Ferrando, Belen Maria; Stancari, Giulio; Trad, Georges; Valuch, Daniel; Valentino, Gianluca; Wagner, Joschka; Wenninger, Jorg; CERN. Geneva. ATS Department

    2016-01-01

    For the High Luminosity upgrade the β* in IR1 and IR5 will be further reduced compared to the current LHC. As the β* decreases the β-functions in the inner triplet (IT) increase resulting in a higher sensitivity of the HL-LHC to ground motion in the IT region or to increases of the low frequency noise. Noise can in general lead to emittance growth and higher halo population and diffusion rate. However, it is usually assumed in the literature that only frequencies close to the betatron frequencies and sidebands have an effect on the emittance and tail population. To test this theory, an MD was carried out to observe if also low frequency noise can lead to emittance growth and stronger halo population and diffusion.

  20. Why do interstellar grains exist

    International Nuclear Information System (INIS)

    Seab, C.G.; Hollenbach, D.J.; Mckee, C.F.; Tielens, A.G.G.M.

    1986-01-01

    There exists a discrepancy between calculated destruction rates of grains in the interstellar medium and postulated sources of new grains. This problem was examined by modelling the global life cycle of grains in the galaxy. The model includes: grain destruction due to supernovae shock waves; grain injection from cool stars, planetary nebulae, star formation, novae, and supernovae; grain growth by accretion in dark clouds; and a mixing scheme between phases of the interstellar medium. Grain growth in molecular clouds is considered as a mechanism or increasing the formation rate. To decrease the shock destruction rate, several new physical processes, such as partial vaporization effects in grain-grain collisions, breakdown of the small Larmor radius approximation for betatron acceleration, and relaxation of the steady-state shock assumption are included

  1. FARADAY CUP AWARD: High Sensitivity Tune Measurement using Direct Diode Detection

    CERN Document Server

    Gasior, M

    2012-01-01

    Direct Diode Detection (3D) is a technique developed at CERN initially for the LHC tune measurement system, to reach a sensitivity allowing observation of beam betatron oscillations with amplitudes below a micrometre. In this technique simple peak diode detectors are used to convert short beam pulses from a beam position pick-up into slowly varying signals. Their DC components, constituting a large background related to beam offsets, are suppressed by series capacitors, while the small signals related to beam oscillations are passed to the subsequent stages for amplification and filtering. As the demodulated beam oscillation signals are already in the kHz range, their processing is simple and they can be digitised with high resolution audio ADCs. This paper presents the history as well as the adventures of the 3D development and prototyping, along with some technical details. It documents a very efficient collaboration between CERN and Brookhaven National Laboratory (BNL), with contributions from other labora...

  2. Transverse particle acceleration techniques using lasers and masers

    International Nuclear Information System (INIS)

    Schoen, N.C.

    1983-01-01

    The concept discussed herein uses an intense traveling electromagnetic wave, produced by a laser or maser source, to accelerate electrons in the Rayleigh region of a focused beam. Although the possibility of non-synchronous acceleration has been considered, very little analysis of potential device configurations has been reported. Computer simulations of the acceleration process indicate practical figure of merit values in the range of 100 MeV/m for achievable electric field strengths with current technology. The development of compact, high energy electron accelerators will provide an essential component for many new technologies. Such as high power free electron lasers, X-ray and VUV sources, and high power millimeter and microwave devices. Considerable effort has been directed toward studies of new concepts for electron acceleration, including inverse free electron lasers, GYRACS, and modified betatrons

  3. Commissioning of HIRFL-CSR and its Electron Coolers

    International Nuclear Information System (INIS)

    Yang Xiaodong; Zhan Wenlong; Xia Jiawen; Zhao Hongwei; Yuan Youjin; Song Mingtao; Li Jie; Mao Lijun; Lu Wang; Wang Zhixue; Parkhomchuk, Vasily

    2006-01-01

    The brief achievements of HIRFL-CSR commissioning and the achieved parameters of its coolers were presented. With the help of electron cooling code, the cooling time of ion beam were extensive simulated in various parameters of the ion beam in the HIRFL-CSR electron cooling storage rings respectively, such as ion beam energy, initial transverse emittance, and momentum spread. The influence of the machine lattice parameters-betatron function, and dispersion function on the cooling time was investigated. The parameters of electron beam and cooling devices were taken into account, such as effective cooling length, magnetic field strength and its parallelism in cooling section, electron beam size and density. As a result, the lattice parameters of HIRFL-CSR were optimal for electron cooling, and the parameters of electron beam can be optimized according to the parameters of heavy ion beam

  4. Operation of the transverse feedback system at the CERN SPS

    International Nuclear Information System (INIS)

    Bossart, R.; Louwerse, R.; Mourier, J.; Vos, L.

    1987-01-01

    To prevent transverse instabilities at high beam intensity in the SPS, the transverse feedback system for damping the betatron oscillations has been upgraded for larger damping decrements and for increased system's bandwidth. The feedback loop now contains a digital delay line cancellor, so that the damper works with a velocity feedback Δx/Δt, unaffected by the closed orbit position x at the pick-up station. The digital processing of the feedback signal facilitates nonlinear feedback techniques such as antidamping and ''band-bang'' feedback. The ''bang-bang'' feedback provides the maximum possible damping rate of the injection oscillations in the SPS-collider, in order to minimize the emittance increase caused by filamentation. The antidamping nonlinearity provides small continuous beam oscillations of 50 μm amplitude for tracking the machine tune Q with a phase locked loop

  5. Comparison between laboratory measurements, simulations, and analytical predictions of the transverse wall impedance at low frequencies

    CERN Document Server

    Roncarolo, F; Kroyer, T; Metral, E; Mounet, N; Salvant, B; Zotter, B

    2009-01-01

    The prediction of the transverse wall beam impedance at the first unstable betatron line (8 kHz) of the CERN Large Hadron Collider (LHC) is of paramount importance for understanding and controlling the related coupled-bunch instabilities. Until now only novel analytical formulas were available at this frequency. Recently, laboratory measurements and numerical simulations were performed to cross-check the analytical predictions. The experimental results based on the measurement of the variation of a probe coil inductance in the presence of (i) sample graphite plates, (ii) stand-alone LHC collimator jaws, and (iii) a full LHC collimator assembly are presented in detail. The measurement results are compared to both analytical theories and simulations. In addition, the consequences for the understanding of the LHC impedance are discussed.

  6. Nonlinear dynamics aspects of particle accelerators. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Jowett, J M; Turner, S; Month, M

    1986-01-01

    These proceedings contain the lectures presented at the named winter school. They deal with the application of dynamical systems to accelerator theory. Especially considered are the statistical description of charged-beam plasmas, integrable and nonintegrable Hamiltonian systems, single particle dynamics and nonlinear resonances in circular accelerators, nonlinear dynamics aspects of modern storage rings, nonlinear beam-beam resonances, synchro-betatron resonances, observations of the beam-beam interactions, the dynamics of the beam-beam interactions, beam-beam simulations, the perturbation method in nonlinear dynamics, theories of statistical equilibrium in electron-positron storage rings, nonlinear dissipative phenomena in electron storage rings, the dynamical aperture, the transition to chaos for area-preserving maps, special processors for particle tracking, algorithms for tracking of charged particles in circular accelerators, the breakdown of stability, and a personal perspective of nonlinear dynamics. (HSI).

  7. Development and applications of a multi-purpose digital controller with a System-on-Chip FPGA for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kurimoto, Yoshinori, E-mail: kurimoto@post.j-parc.jp [High Energy Accelerator Research Organization (KEK), Ibaraki 319-1195 (Japan); Nakamura, Keigo [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2016-12-21

    J-PARC Main Ring (MR) is a high intensity proton synchrotron which accelerates protons from 3 GeV to 30 GeV. It has operated at a beam intensity of 390 kW and an upgrade toward the megawatt rating is scheduled. For higher beam intensity, some of the accelerator components require more intelligent and complicated functions. To consolidate such functions among various components, we developed multi-purpose digital boards using a System-on-Chip Field-Programmable Gated Array (SoC FPGA). In this paper, we describe the details of our developed boards as well as their possible applications. As an application of the boards, we have successfully performed the measurement of the betatron amplitude function during beam acceleration in J-PARC MR. The experimental setup and results of the measurement are also described in detail.

  8. First β-beating measurement and optics analysis for the CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    M. Aiba

    2009-08-01

    Full Text Available Proton beams were successfully steered through the entire ring of the CERN Large Hadron Collider (LHC on September the 10th of 2008. A reasonable lifetime was achieved for the counterclockwise beam, namely beam 2, after the radiofrequency capture of the particle bunch was established. This provided the unique opportunity of acquiring turn-by-turn betatron oscillations for a maximum of 90 turns right at injection. Transverse coupling was not corrected and chromaticity was estimated to be large. Despite this largely constrained scenario, reliable optics measurements have been accomplished. These measurements together with the application of new algorithms for the reconstruction of optics errors have led to the identification of a dominant error source.

  9. Calculation of 3-D free electron laser gain: Comparison with simulation and generalization to elliptical cross section

    International Nuclear Information System (INIS)

    Chin, Yong Ho; Kim, Kwang-Je; Xie, Ming.

    1992-08-01

    In the previous paper, we have derived a dispersion relation for the free electron laser (FEL) gain in the exponential regime taking account the diffraction and electron's betatron oscillation. Here, we compare the growth rates obtained by solving the dispersion relation with those obtained by simulation calculation for the waterbag and the Gaussian models for the electron's transverse phase space distribution. The agreement is found to be good except for the limiting case where the Rayleigh length is much longer than the gain length (1-D limit). We also generalize the analysis to the case where the electron beam cross section is elliptical as is usually the case in storage rings, and derive the first-order dispersion relation

  10. Beam dynamics issues in an extended relativistic klystron

    International Nuclear Information System (INIS)

    Giordano, G.; Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.

    1995-04-01

    Preliminary studies of beam dynamics in a relativistic klystron were done to support a design study for a 1 TeV relativistic klystron two-beam accelerator (RK-TBA), 11.424 GHz microwave power source. This paper updates those studies. An induction accelerator beam is modulated, accelerated to 10 MeV, and injected into the RK with a rf current of about 1.2 kA. The main portion of the RK is the 300-m long extraction section comprise of 150 traveling-wave output structures and 900 induction accelerator cells. A periodic system of permanent quadrupole magnets is used for focusing. One and two dimensional numerical studies of beam modulation, injection into the main RK, transport and longitudinal equilibrium are presented. Transverse beam instability studies including Landau damping and the ''Betatron Node Scheme'' are presented

  11. Observations of the beam-beam interaction

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1985-11-01

    The observed complexity of the beam-beam interaction is the subject of this paper. The varied observations obtained from many storage rings happen to be sufficiently similar that a prescription can be formulated to describe the behavior of the luminosity as a function of beam current including the peak value. This prescription can be used to interpret various methods for improving the luminosity. Discussion of these improvement methods is accompanied with examples from actual practice. The consequences of reducing the vertical betatron function (one of the most used techniques) to near the value of the bunch length are reviewed. Finally, areas needing further experimental and calculational studies are pointed out as they are uncovered

  12. Perturbation analysis of octupoles in circular accelerators

    International Nuclear Information System (INIS)

    Moohyun Yoon

    1998-01-01

    The octupole effects in a circular accelerator are analyzed using a first-order canonical perturbation theory. It is shown that, to the first order, the nonlinear amplitude-dependent tune shifts due to an octupole are composed of two types: terms of second order and terms of fourth order in betatron-oscillation amplitudes. The fourth-order part of tune shifts is expressed in terms of distortion functions. Distortion functions are also expanded in harmonics to express the higher-order tune shifts in harmonically expanded form. Finally, the results are applied to an accelerator and compared with the results of numerical tracking of particles. Laskar's algorithm for numerical analysis of the fundamental frequency is used to determine tunes from the tracking data, in which the error becomes inversely proportional to the cube of the number of data points. (author)

  13. Proton synchrotron accelerator theory

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1977-01-01

    This is the text of a series of lectures given as part of the CERN Academic Training Programme and primarily intended for young engineers and technicians in preparation for the running-in of the 400 GeV Super Proton Synchrotron (SPS). Following the definition of basic quantities, the problems of betatron motion and the effect of momentum spread and orbital errors on the transverse motion of the beam are reviewed. Consideration is then given to multipole fields, chromaticity and non-linear resonances. After dealing with basic relations governing longitudinal beam dynamics, the space-charge, resistive-wall and other collective effects are treated, with reference to precautions in the SPS to prevent their occurrence. (Auth.)

  14. Fast loss analysis with LHC diamond detectors in 2017

    CERN Document Server

    Gorzawski, Arkadiusz; Fuster Martinez, Nuria; Garcia Morales, Hector; Mereghetti, Alessio; Cai, Xu; Valentino, Gianluca; Appleby, Robert Barrie; CERN. Geneva. ATS Department

    2018-01-01

    We presented some applications of the diamond BLM system installed in the LHC betatron collimation insertion. A selection of results illustrates the potential of this measurement system to understand better the losses at the LHC. Measurements range from the bunch-by-bunch analysis in different phases of the operational cycle, to the frequency analysis of fast losses. This work will continue in 2018, in collaboration with the various teams at CERN. New hardware is planned to improve the system. The addition of one monitor per beam will allow distinguishing the horizontal and vertical contents of losses at primary collimators, thus opening the possibility for a better understanding of loss mechanisms and for further study of correlation with other bunch-by-bunch measurements.

  15. Single-particle And Collective Effects Of Cubic Nonlinearity In The Beam Dynamics Of Proton Synchrotrons

    CERN Document Server

    Tran Hy, J

    1998-01-01

    This thesis describes some new studies of the effects of cubic nonlinearities arising from image-charge forces and octupole magnets on the transverse beam dynamics of proton synchrotrons and storage rings, and also a study of the damping of coherent oscillations using a feed-back damper. In the latter case, various corrective algorithms were modeled using linear one-turn maps. Kicks of fixed amplitude but appropriate sign were shown to provide linear damping and no coherent tune shift, though the rate predicted analytically was somewhat higher than that observed in simulations. This algorithm gave much faster damping (for equal power) than conventional proportional kicks, which damp exponentially. Two single-particle effects of the image-change force were investigated: distortion of the momentum dispersion function and amplitude dependence of the betatron tunes (resulting in tune spread). The former is calculated using transfer maps and the method of undetermined coefficients, the latter by solving the cubic ...

  16. Simple computer model for the nonlinear beam--beam interaction in ISABELLE

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.; Peierls, R.F.

    1979-03-01

    The beam--beam interaction for two counter-rotating continuous proton beams crossing at an angle can be simulated by a 1-dimensional nonlinear force. The model is applicable to ISABELLE as well as to the ISR. Since the interaction length is short compared with the length of the beam orbit, the interaction region is taken to be a point. The problem is then treated as a mapping with the remainder of the system taken to be a rotation of phase given by the betatron tune of the storage ring. The evolution of the mean square amplitude of a given distribution of particles is shown for different beam--beam strengths. The effect of round-off error with resulting loss of accuracy for particle trajectories is discussed. 3 figures

  17. AA injection kicker in its tank

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    For single-turn injection of the antiprotons, a septum at the end of the injection line made the beam parallel to the injection orbit, and a quarter of a betatron-wavelength downstream a fast kicker corrected the angle. Kicker type: lumped delay line. PFN voltage 56 kV. Bending angle 7.5 mrad; kick-strength 0.9 Tm; fall-time 95%-5% in 150 ns. The injection orbit is to the left, the stack orbit to the far right. A fast shutter near the central orbit had to be closed before the kicker fired, so as to protect the stack core from being shaken by the kicker's fringe field. The shutter is shown in closed position.

  18. Optimization of Collimator Jaw Locations for the LHC

    CERN Document Server

    Kaltchev, D I; Servranckx, R V; Jeanneret, J B

    1996-01-01

    A highly effective collimation scheme is required in the LHC to limit heating of the vacuum chamber and superconducting magnets by protons either uncaptured at injection or scattered from the collision points. The proposed system would consist of one set of primary collimators followed by three sets of secondary collimators downstream to clean up protons scattered from the primaries. Each set of collimators would consist of four pairs of jaws - horizontal, vertical, and 45 o and 135 o skew. A study is reported of the optimization of the longitudinal positions of these jaws with the aim of minimizing the maximum betatron amplitudes of protons surviving the collimation system. This is performed using an analytical representation of the action of the jaws and is confirmed by tracking. Significant improvement can be obtained by omitting inactive jaws and adding skew jaws.

  19. Early synchrotron design in the UK, 1945-50

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1994-01-01

    In 1945 it was decided to initiate a programme of synchrotron development under the aegis of the newly formed Atomic Energy Research Establishment at Harwell. The work was carried out at Malvern, in premises used during the war for radar research, mainly by scientists transferred shortly after the end of the war. Two 30 MeV machines were designed and constructed there, partly for use in physics research, and partly as prototypes for larger machines to be built in Glasgow and Oxford. The most notable achievement was the conversion of a small American betatron by Goward and Barnes to become the world's first synchrotron in 1946. The activities of the Malvern team during the five year period from 1945 are described; extensive references to the published literature and laboratory reports are made, but other material not recorded elsewhere is described. (author)

  20. The PEP injection system

    International Nuclear Information System (INIS)

    Brown, K.L.; Avery, R.T.; Peterson, J.M.

    1988-01-01

    A system to transport 10-to-15-GeV electron and positron beams from the Stanford Linear Accelerator and to inject them into the PEP storage ring under a wide variety of lattice configurations has been designed. Optically, the transport line consists of three 360/degree/ phase-shift sections of FODO lattice, with bending magnets interspersed in such a way as to provide achromaticity, convenience in energy and emittance definition, and independent tuning of the various optical parameters for matching into the ring. The last 360/degree/ of phase shift has 88 milliradians of bend in a vertical plane and deposits the beam at the injection septum via a Lambertson magnet. Injection is accomplished by launching the beam with several centimeters of radial betatron amplitude in a fast bump provided by a triad of pulsed kicker magnets. Radiation damping reduces the collective amplitude quickly enough to allow injection at a high repetition rate

  1. Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators

    Science.gov (United States)

    Kaplin, V.; Kuznetsov, S.; Uglov, S.

    2018-05-01

    The use of thin (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.

  2. Collimation quench test with 6.5 TeV proton beams

    CERN Document Server

    Salvachua Ferrando, Belen Maria; Bruce, Roderik; Hermes, Pascal Dominik; Holzer, Eva Barbara; Jacquet, Delphine; Kalliokoski, Matti; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Skordis, Eleftherios; Valentino, Gianluca; Valloni, Alessandra; Wollmann, Daniel; Zerlauth, Markus; CERN. Geneva. ATS Department

    2016-01-01

    We show here the analysis of the MD test that aimed to quench the superconducting magnets in the dispersion suppressor region downstream of the main betatron collimation system. In Run I there were several attempts to quench the magnets in the same region. This was done by exciting the Beam 2 in a controlled way using the transverse damper and generating losses leaking from the collimation cleaning. No quench was achieved in 2013 with a maximum of 1 MW of beam power loss absorbed by the collimation system at 4 TeV beam energy. In 2015 a new collimation quench test was done at 6.5 TeV aiming at similar power loss over longer period, 5-10 s. The main outcome of this test is reviewed.

  3. Overlap knock-out effects in the CERN intersecting storage rings (ISR)

    CERN Document Server

    Gourber, J P; Myers, S

    1977-01-01

    Overlap knock-out arises from an overlap between frequencies present in a bunched beam and the betatron frequencies in a stack. The 'single ring' effect in the interaction of a bunched beam with a stack in the same ring. Here the coupling forces are fairly linear and are transmitted by machine elements. The 'two-ring' effect is the interaction of a bunched beam with a stack in the other ring. Here the coupling forces are nonlinear since they are produced by the beam-beam interaction. A brief outline of the general theory of these effects is given. The single ring and two-ring dipole effects have been observed and shown to cause a large increase in the transverse size of the stacked beam. (4 refs).

  4. Observation of channeling for 6500 GeV/c protons in the crystal assisted collimation setup for LHC

    Energy Technology Data Exchange (ETDEWEB)

    Scandale, W. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Laboratoire de l' Accelerateur Lineaire (LAL), Universite Paris Sud Orsay, Orsay (France); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lechner, A.; Losito, R.; Masi, A.; Mirarchi, D.; Montesano, S.; Redaelli, S. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Rossi, R. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Schoofs, P. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Smirnov, G. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Valentino, G. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Breton, D.; Burmistrov, L.; Chaumat, V.; Dubos, S. [Laboratoire de l' Accelerateur Lineaire (LAL), Universite Paris Sud Orsay, Orsay (France); and others

    2016-07-10

    Two high-accuracy goniometers equipped with two bent silicon crystals were installed in the betatron cleaning insertion of the CERN Large Hadron Collider (LHC) during its long shutdown. First beam tests were recently performed at the LHC with 450 GeV/c and 6500 GeV/c stored proton beams to investigate the feasibility of beam halo collimation assisted by bent crystals. For the first time channeling of 6500 GeV/c protons was observed in a particle accelerator. A strong reduction of beam losses due to nuclear inelastic interactions in the aligned crystal in comparison with its amorphous orientation was detected. The loss reduction value was about 24. Thus, the results show that deflection of particles by a bent crystal due to channeling is effective for this record particle energy.

  5. Emittance and damping of electrons in the neighborhood of resonance fixed points

    International Nuclear Information System (INIS)

    Crosbie, E.A.

    1993-01-01

    The stable fixed points generated by nonlinear field harmonics in a cyclic lattice define a multiturn stable orbit. The position of the orbit for each turn in each magnet of the lattice determines the betatron tunes and lattice dispersion functions describing the linear motion of charged particles with respect to the stable orbit. Since the position of the fixed points is dependent in part on the central orbit tune, it turns out that the multiturn orbit dispersion function depends to a large extent on the central orbit chromaticity. In particular, the horizontal partition number can be made to vary from values less than zero (horizontal antidamping for electrons) to values greater than three (longitudinal antidamping). The central orbit chromaticity therefore plays a major role in determining the characteristic emittance of an electron beam with respect to the multiturn orbit

  6. Particle diffusion from resonance islands in Aladdin at SRC

    International Nuclear Information System (INIS)

    Liu, J.; Crosbie, E.; Teng, L.; Bridges, J.; Ciarlette, D.; Kustom, R.; Voss, D.; Mills, F.; Borland, M.; Symon, K.

    1993-01-01

    The dynamics of the beam in the resonance islands was studied on the electron storage ring Aladdin at the Synchrotron Radiation Center (SRC). The authors especially studied the horizontal third- and fourth-integral resonances driven by sextupole fields in the first and second order. A fast kicker was fired to kick the beam into one of the outboard stable islands. The beam took on a quasi-Gaussian distribution and slowly diffused out of the island. The diffusion rate and its dependence on the strengths of the driving sextupoles and the chromaticity sextupoles were measured by tracing the resonance peak of the betatron oscillation on the spectrum analyzer. Beam positions were also recorded through the data acquisition device which was clocked by a pulse-delay circuitry. Interesting results are shown and compared with numerical calculations

  7. Space Charge Effects and Advanced Modelling for CERN Low Energy Machines

    CERN Document Server

    AUTHOR|(CDS)2088716; Rumolo, Giovanni

    The strong space charge regime of future operation of CERN’s circular particle accelerators is investigated and mitigation strategies are developed in the framework of the present thesis. The intensity upgrade of the injector chain of Large Hadron Collider (LHC) prepares the particle accelerators to meet the requirements of the High-Luminosity LHC project. Producing the specified characteristics of the future LHC beams imperatively relies on injecting brighter bunches into the Proton Synchrotron Booster (PSB), the downstream Proton Synchrotron (PS) and eventually the Super Proton Synchrotron (SPS). The increased brightness, i.e. bunch intensity per transverse emittance, entails stronger beam self-fields which can lead to harmful interaction with betatron resonances. Possible beam emittance growth and losses as a consequence thereof threaten to degrade the beam brightness. These space charge effects are partly mitigated by the upgrade of the PSB and PS injection energies. Nevertheless, the space charge tune ...

  8. A Hardware transverse beam frequency response simulator

    International Nuclear Information System (INIS)

    Ning, J.; Tan, C.Y.

    2005-01-01

    We built an electronic instrument that can mimic the transverse beam frequency response. The instrument consists of (1) a time delay circuit with an analog-to-digital converter (ADC) which contains a first-in-first-out random assess memory (FIFO RAM) and a digital-to-analog converter (DAC); (2) a variable phase shifter circuit which is based on an all pass filter with a bandwidth of 25kHz to 30kHz and (3) a commutating filter which is a nonlinear band pass filter. With this instrument, we can dynamically adjust the betatron tune, the synchrotron tune, and the chromaticity. Using this instrument, we are able to test other beam systems without using actual beam

  9. Observation of channeling for 6500 GeV/c protons in the crystal assisted collimation setup for LHC

    International Nuclear Information System (INIS)

    Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lechner, A.; Losito, R.; Masi, A.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Rossi, R.; Schoofs, P.; Smirnov, G.; Valentino, G.; Breton, D.; Burmistrov, L.; Chaumat, V.; Dubos, S.

    2016-01-01

    Two high-accuracy goniometers equipped with two bent silicon crystals were installed in the betatron cleaning insertion of the CERN Large Hadron Collider (LHC) during its long shutdown. First beam tests were recently performed at the LHC with 450 GeV/c and 6500 GeV/c stored proton beams to investigate the feasibility of beam halo collimation assisted by bent crystals. For the first time channeling of 6500 GeV/c protons was observed in a particle accelerator. A strong reduction of beam losses due to nuclear inelastic interactions in the aligned crystal in comparison with its amorphous orientation was detected. The loss reduction value was about 24. Thus, the results show that deflection of particles by a bent crystal due to channeling is effective for this record particle energy.

  10. Accumulator ring lattice for the national spallation neutron source

    International Nuclear Information System (INIS)

    Gardner, C.J.; Lee, Y.Y.; Luccio, A.U.

    1997-01-01

    The Accumulator Ring for the proposed National Spallation Neutron Source (NSNS) is to accept a 1.03 millisecond beam pulse from a 1 GeV Proton Linac at a repetition rate of 60 Hz. For each beam pulse, 10 14 protons are to be accumulated via charge-exchange injection. A 295 nanosecond gap in the beam, maintained by an rf system, will allow for extraction to an external target for the production of neutrons by spallation. This paper describes the four-fold symmetric lattice that has been chosen for the ring. The lattice contains four long dispersion-free straight sections to accomodate injection, extraction, rf cavities, and beam scraping respectively. The four-fold symmetry allows for easy adjustment of the tunes and flexibility in the placement of correction elements, and ensures that potentially dangerous betatron structure resonances are avoided

  11. First Design of a Proton Collimation System for 50 TeV FCC-hh

    CERN Document Server

    Fiascaris, Maria; Mirarchi, Daniele; Redaelli, Stefano

    2016-01-01

    We present studies aimed at defining a first conceptual solution for a collimation system for the hadron-hadron option for the Future Circular Collider (FCC-hh). The baseline collimation layout is based on the scaling of the present LHC collimation system to the FCC-hh energy. It currently includes a dedicated betatron cleaning insertion as well as collimators in the experimental insertions to protect the inner triplets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at top energy taking into account mechanical and optics imperfections. Based on these studies the collimator settings needed to protect the machine are defined. The performance of the collimation system is then assessed with particle tracking simulation tools assuming a perfect machine.

  12. About the possibility to manufacture a 200 MeV Microtron, with a 50 μA average intensity and operating in quasi-steady regime; Sur la possibilite de realiser un Microtron de 200 MeV, de 50 μA d'intensite moyenne et fonctionnant en regime quasi-stationnaire

    Energy Technology Data Exchange (ETDEWEB)

    Bruck, H.; Leleux, G.; Proy, J.; Thirion, J.

    1958-12-15

    The authors report a preliminary study aimed at performing a rough assessment of the development and manufacturing of an electron accelerator (a 200 MeV Microtron with a 50 μA average intensity), and of the theoretical and technological difficulties, of the general characteristics and cost of such a development. After some generalities about the Microtron (principle, trajectory stability, operation on a sub-resonance, practical experiment, use of straight sections, ultimate limit of energy), the report addresses the issue of synchronism and phase stability. It proposes a description and an analysis of the accelerator device (required HF power, HF wavelength, shunt resistance, guide structure, efficiency optimum conditions, guide with recirculation, power of UHF tubes), discusses the choice of the main characteristics of the Microtron (injection energy and guide length, potential increase per lap), addresses the issues of beam focusing and guiding (Betatron oscillation). It finally reports an economic study which assesses the installation cost.

  13. Wakefields and Instabilities in Linear Accelerators

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    When a charged particle travels across the vacuum chamber of an accelerator, it induces electromagnetic fields, which are left mainly behind the generating particle. These electromagnetic fields act back on the beam and influence its motion. Such an interaction of the beam with its surro undings results in beam energy losses, alters the shape of the bunches, and shifts the betatron and synchrotron frequencies. At high beam current the fields can even lead to instabilities, thus limiting the performance of the accelerator in terms of beam quality and current intensity. We discuss in this lecture the general features of the electromagnetic fields, introducing the concepts of wakefields and giving a few simple examples in cylindrical geometry. We then show the effect of the wakefields on the dynamics of a beam in a linac, dealing in particular with the beam breakup instability and how to cure it.

  14. A potpourri of impedance measurements at the advanced photon source storage ring

    International Nuclear Information System (INIS)

    Sereno, N.S.; Chae, Y.C.; Harkay, K.C.; Lumpkin, A.H.; Milton, S.V.; Yang, B.X.

    1997-01-01

    Machine coupling impedances were determined in the APS storage ring from measurements of the bunch length, synchronous phase, and synchrotron and betatron tunes vs single-bunch current. The transverse measurements were performed for various numbers of small gap insertion device (ID) chambers installed in the ring. The transverse impedance is determined from measurements of the transverse tunes and bunch length as a function of single-bunch current. The shift in the synchrotron tune was measured as a function of bunch current from which the total cavity impedance was extracted. The loss factor was determined by measuring the relative synchronous phase as a function of bunch current. The longitudinal resistive impedance is calculated using the loss factor dependence on the bunch length. From these results, the authors can estimate what the impedance would be for a full set of ID chambers

  15. Global coupling and decoupling of the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Y.C.; Liu, J.; Teng, L.C.

    1993-07-01

    This paper describes a study of controlling the coupling between the horizontal and the vertical betatron oscillations in the 7-GeV Advanced Photon Source (APS) storage ring. First, we investigate the strengthening of coupling using two families of skew quadrupoles. Twenty skew quadrupoles are arranged in the 40 sectors of the storage ring and powered in such a way so as to generate both quadrature components of the required 21st harmonic. The numerical results from tracking a single particle are presented for the various configurations of skew quadrupoles. Second, we describe the global decoupling procedure to minimize the unwanted coupling effects. These are mainly due to the random roll errors of normal quadruples. It is shown that even with the rather large rms roll error of 2 mrad, the coupling effects can be compensated for with 20 skew quadrupoles each having maximum strength one order of magnitude lower than the typical normal quadrupole strength.

  16. Generating Low Beta Regions with Quadrupoles for Final Muon Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, J. G. [Mississippi U.; Cremaldi, L. M. [Mississippi U.; Hart, T. L. [Mississippi U.; Oliveros, S. J. [Mississippi U.; Summers, D. J. [Mississippi U.; Neuffer, D. V. [Fermilab

    2017-05-01

    Muon beams and colliders are rich sources of new physics, if muons can be cooled. A normalized rms transverse muon emittance of 280 microns has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL, G4beamline, and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to approach a normalized transverse emittance of 100 microns and finish 6D muon cooling. The low beta regions produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam. Equilibrium transverse emittance is linearly proportional to the beta function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 microns at the expense of longitudinal emittance for a high energy lepton collider. Work remains to be done on chromaticity correction.

  17. Epicyclic helical channels for parametric resonance ionization cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johson, Rolland Paul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Muons, Inc., Batavia, IL (United States)

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  18. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  19. On the ''circular vacuum noise'' in electron storage rings

    International Nuclear Information System (INIS)

    Rosu, H.

    1992-02-01

    We clarify in some essential points the proposal of Bell and Leinaas to measure the circular Unruh effect in storage rings. In particular the term 'circular Unruh effect' is inappropriate and should be replaced by the better 'circular vacuum noise'. This concept has been used by Takagi in his PTP Supplement of 1986 and corresponds best to the BL discussion. The BL resonance behavior does not fit to the SPEAR first order betatron resonance at 3.605 GeV, but of course, the real experimental situation is much more complicated, corresponding, as a matter of fact, to the rather general term 'synchrotron noise'. The detailed aspects of the synchrotron noise are, as yet, not very well understood. Besides, the much more practical accelerator jargon is to be preferred. We also include a section with comments on radiometry at storage rings. (author). 27 refs

  20. Birth and next future of SATURNE II

    International Nuclear Information System (INIS)

    Vienet, R.

    1978-01-01

    The renewal SATURNE project started in 1974. SATURNE I desassembling began in may 1977 and in july 1978 with the new ring, we just get more that ten to the eleventh particules in the very first hour of starting. The main parameters of SATURNE II was presented at the IX 0 International Conference on High Energy Accelerator at Stanford in may 1974 (Proceedings p. 615). SATURNE II is a strong focusing synchrotron and the injected particules fill the synchrotron space with very few betatron oscillation. So a small emittance external beam should be obtained, which is very important for experimental nuclear physics. The realization main difficulties will be mentionned. The results obtained with the first days beam will be presented. We will described the forecasted characteristics of the accelerator and the experimental areas to be reached in 1979

  1. A GUI tool for beta function measurement using MATLAB

    International Nuclear Information System (INIS)

    Chen Guangling; Tian Shunqiang; Liu Guimin; Jiang Bocheng

    2009-01-01

    The beta function measurement is used to detect the shift in the betatron tune as the strength of an individual quadrupole magnet is varied. A GUI (graphic user interface) tool for the beta function measurement is developed using the MATLAB program language in the Linux environment, which facilitates the commissioning of the Shanghai Synchrotron Radiation Facility (SSRF) storage ring. In this paper, we describe the design of the application and give some measuring results and discussions about the definition of the measurement. The program has been optimized to solve some restrictions of the AT tracking code. After the correction with LOCO (linear optics from closed orbits), the horizontal and the vertical root mean square values (rms values) can be reduced to 0.12 and 0.10. (authors)

  2. Ion shaking in the 200 MeV XLS-ring

    International Nuclear Information System (INIS)

    Bozoki, E.; Kramer, S.L.

    1992-01-01

    It has been shown that ions, trapped inside the beam's potential, can be removed by the clearing electrodes when the amplitude of the ion oscillation is increased by vertically shaking the ions. We will report on a similar experiment in the 200 Mev XLS ring. The design of the ion clearing system for the ring and the first results obtained, were already reported. In the present series of experiments, RF voltage was applied on a pair of vertical strip-lines. The frequency was scanned in the range of the ion (from H 2 to CO 2 ) bounce frequencies in the ring (1--10 MHz). The response of the beam size, vertical betatron tune and lifetime was studied

  3. Evaluation of the synchrotron close orbit

    International Nuclear Information System (INIS)

    Bashmakov, Yu.A.; Karpov, V.A.

    1991-01-01

    The knowledge of the closed orbit position is an essential condition for the effective work of any accelerator. Therefore questions of calculations, measurements and controls have great importance. For example, during injection of particles into a synchrotron, the amplitudes of their betatron oscillations may become commensurable with the working region of the synchrotron. This makes one pay attention at the problem of formation of the optimum orbit with use of correcting optical elements. In addition, it is often necessary to calculate such an orbit at the end of the acceleration cycle when particles are deposited at internal targets or removed from the synchrotron. In this paper, the computation of the close orbit is reduced to a determination at an arbitrarily chosen azimuth of the eigenvector of the total transfer matrix of the synchrotron ring and to tracing with this vector desired orbit. The eigenvector is found as a result of an iteration

  4. Classical dynamics with curl forces, and motion driven by time-dependent flux

    International Nuclear Information System (INIS)

    Berry, M V; Shukla, Pragya

    2012-01-01

    For position-dependent forces whose curl is non-zero (‘curl forces’), there is no associated scalar potential and therefore no obvious Hamiltonian or Lagrangean and, except in special cases, no obvious conserved quantities. Nevertheless, the motion is nondissipative (measure-preserving in position and velocity). In a class of planar motions, some of which are exactly solvable, the curl force is directed azimuthally with a magnitude varying with radius, and the orbits are usually spirals. If the curl is concentrated at the origin (for example, the curl force could be an electric field generated by a changing localized magnetic flux, as in the betatron), a Hamiltonian does exist but violates the rotational symmetry of the force. In this case, reminiscent of the Aharonov–Bohm effect, the spiralling is extraordinarily slow. (paper)

  5. Ion effects in the SLC electron damping ring under exceptionally poor vacuum conditions

    International Nuclear Information System (INIS)

    Zimmermann, F.; Krejcik, P.; Minty, M.; Pritzkau, D.; Raubenheimer, T.; Ross, M.; Woodley, M.

    1997-10-01

    In 1996, due to a catastrophic kicker chamber failure in the SLC electron damping ring, the ring vacuum system was contamianted for several months. During this time, the vertical emittance of the beam extracted from the ring was increased by a large factor (4--20). The emittance slowly decreased as the vacuum pressure gradually improved. At the same time, an intermittent vertical instability was observed. Both the emittance blow-up and the instability behavior depended strongly on beam current, ring pressure, number of bunches in the ring (1 or 2), duty cycle, store time and betatron tunes. In this report, the authors describe the observations, and compare them with predictions from classical ion-trapping and ion-instability theories

  6. Skew chromaticity

    International Nuclear Information System (INIS)

    Peggs, S.; Dell, G.F.

    1994-01-01

    The on-momentum description of linear coupling between horizontal and vertical betatron motion is extended to include off-momentum particles, introducing a vector quantity called the ''skew chromaticity''. This vector tends to be long in large superconducting storage rings, where it restricts the available working space in the tune plane, and modifies collective effect stability criteria. Skew chromaticity measurements at the Cornell Electron Storage Ring (CESR) and at the Fermilab Tevatron are reported, as well as tracking results from the Relativistic Heavy Ion Collider (RHIC). The observation of anomalous head-tail beam Iowa new the tune diagonal in the Tevatron are explained in terms of the extended theory, including modified criteria for headtail stability. These results are confirmed in head-tail simulations. Sources of skew chromaticity are investigated

  7. New Spectral Method for Halo Particle Definition in Intense Mis-matched Beams

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.

    2011-04-27

    An advanced spectral analysis of a mis-matched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.

  8. Beam based alignment of the SLC final focus sextupoles

    International Nuclear Information System (INIS)

    Emma, P.; Irwin, J.; Phinney, N.; Raimondi, P.; Toge, N.; Walker, N.J.; Ziemann, V.

    1993-05-01

    The strong demagnification inherent in final focus systems requires local cancellation of the resulting chromaticty. Strong sextupole pair separated by a -I transform are positioned π/2 in the betatron phase away from the Interaction Point (IP) in order to cancel chromatic aberrations primarily due to the final quadrupoles. Sextupole alignment is critical in order to provide orthogonal tuning of the chromaticty and, in the case of the SLC, to limit the third and higher order optical aberrations generated from misaligned and 'nested' horizontal and vertical sextupole pairs. Reported here is a novel technique for aligning the beam centroid to the sextupole centers, which uses measurements of the criticality dependent parameter - the beam size at the IP. Results for the SLC final focus sextupoles are presented, where a resolution of <50 μm is achieved

  9. Study on the feasibilities of nondestructive testing based on bremsstrahlung albedo

    International Nuclear Information System (INIS)

    Zhalsaraev, B.Zh.; Meshcheryakov, R.P.

    1980-01-01

    Presented are the results of experimental studies of the characteristics of gamma radiation reflected from homogeneous and laminated targets irradiated by 15 MeV betatron bremsstrahlung. Considered are the possibilities of simultaneous testing of thickness and of effective atomic number of materials, identification of heterogeneity of their structure, determination of the parameters of the media which are concealed by the layers of light substances of considerable thickness. The results obtained testify the usability of bremsstrahlung backscattering for contactless or remote control and differentiation of various media and objects, for the analysis and prospecting of surface ore manifestation and for processing control at the concentrating mills as well. The efficiency of the above method is underlined

  10. TUR and postoperative megavolt inrradiation in urinary bladder cancer

    International Nuclear Information System (INIS)

    Haschek, H.; Kaercher, K.H.; Studler, G.

    1984-01-01

    100 patients suffering from infiltrating urinary bladder cancer underwent transurethral resection followed by external megavolt irradiation (Betatron) are presented. The value of irradiation and its role in the actual therapeutic concept is discussed. The results of the combined therapy in infiltrative urinary bladder cancer using transurethral resection and megavolt irradiation are demonstrated according to stage (T 2 , T 3 ) and histological grading (G 2 , G 3 ). The 5-years survival rate amounts around 80%, in deep infiltrating bladder cancer about 50%. The morbidity of postoperative megavolt therapy was negligible. The results are superior to megavolt therapy alone and approach the one achieved by radical surgery; in addition the possibility of salvage-cystectomy remains open. (Author)

  11. Identifying Lattice, Orbit, And BPM Errors in PEP-II

    International Nuclear Information System (INIS)

    Decker, F.-J.; SLAC

    2005-01-01

    The PEP-II B-Factory is delivering peak luminosities of up to 9.2 · 10 33 1/cm 2 · l/s. This is very impressive especially considering our poor understanding of the lattice, absolute orbit and beam position monitor system (BPM). A few simple MATLAB programs were written to get lattice information, like betatron functions in a coupled machine (four all together) and the two dispersions, from the current machine and compare it the design. Big orbit deviations in the Low Energy Ring (LER) could be explained not by bad BPMs (only 3), but by many strong correctors (one corrector to fix four BPMs on average). Additionally these programs helped to uncover a sign error in the third order correction of the BPM system. Further analysis of the current information of the BPMs (sum of all buttons) indicates that there might be still more problematic BPMs

  12. Adaptive matching of the iota ring linear optics for space charge compensation

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab; Bruhwiler, D. L. [RadiaSoft, Boulder; Cook, N. [RadiaSoft, Boulder; Hall, C. [RadiaSoft, Boulder

    2016-10-09

    Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be i proved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re matching with full account of space charge in the linear approximation for the case of Fermilab’s IOTA ring. The method is based on a search for initial second moments that give closed solution and, at the same predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters

  13. Optics Measurements and Matching of TT2-TT10 Line for Injection of the LHC Beam in the SPS

    CERN Document Server

    Benedetto, E

    2008-01-01

    A well matched injection in the SPS is very important for preserving the emittance of the LHC beam. The paper presents the algorithms used for the analysis and the results of the 2007 optics measurements campaign done in the transfer line TT2-TT10 and in the SPS. The dispersion is computed by varying the beam momentum and recording the offsets at the BPMs, while the Twiss parameters and emittance measurements in TT2-TT10 are performed with beam profile monitors equipped with OTR screens. Finally, on the basis of such measurements, a betatron and dispersion matching of TT2-TT10 for injection in the SPS has been performed and successfully put in operation since October 2007.

  14. Intraoperative radiotherapy for cancer of the pancreas

    International Nuclear Information System (INIS)

    Manabe, Tadao; Nagai, Toshihiro; Tobe, Takayoshi; Shibamoto, Yuta; Takahashi, Masaharu; Abe, Mitsuyuki

    1985-01-01

    Seven patients treated by intraoperative radiotherapy for cancer of the pancreas were evaluated. Three patients undergoing pancreaticoduodenectomy for cancer of the head of the pancreas received a dose of 2,500--3,000 rad (6--10 MeV Betatron) intraoperatively with or without external beam irradiation at a dose of 2,520 rad (10 MeV lineac X-ray). One patient developed radiation pancreatitis and died 0.8 month after surgery. Autopsy revealed the degeneration of cancer cells in the involved superior mesenteric artery. One died of hepatic metastasis 8.5 months after surgery, however, recurrence was not found in the irradiation field. The other patient who had external beam irradiation combined with intraoperative radiotherapy is alive 7.5 months after surgery. Four patients with unresectable cancer of the body of the pancreas received a dose of 2,500--3,000 rad (13--18 MeV Betatron) intraoperatively with or without external beam irradiation at a dose of 1,500--5,520 rad (10 MeV lineac X-ray). One patient died of peritonitis carcinomatosa 3.0 months after surgery. One patient died of DIC 0.6 month after surgery. Two patients are alive 1.0 and 6.5 months after surgery. In these patients with intraoperative radiotherapy for unresectable cancer of the pancreas, remarkable effects on relief of pain and shrinkage of tumor were obtained. Further pursuit of intraoperative and external beam radiotherapies in combination with pancreatectomy should be indicated in an attempt to prolong survival of patient with cancer of the pancreas. (author)

  15. Inhibitory effect of Cystenosine on leukopenia by radiation

    International Nuclear Information System (INIS)

    Sakurai, Tomoyasu; Nishio, Masamichi; Sako, Ken; Koizumi, Yoichi; Komura, Ryuzo

    1977-01-01

    Cystenosine, composed of Cysteine and Inosine, was given to the patients with malignant tumors during radiotherapy. As radiotherapy, lineac x-ray 60 Co-γ ray, and 4 MV-betatron were used. Except betatron, a daily dose of 200 to 250 rads was given four times a week, and a total dose reached 5000 to 6000 rads. Administration of Cystenosine was started simultaneously with the onset of the radiotherapy, and 6 tablets a day were given. Of 40 subjects, the drug was very effective in 45 per cents, effective in 37.5 per cents, and ineffective in 17.5 per cents. The effective rate was 82.5 per cents, if the cases with effective and very effective were considered as effective. Of the patients, in whom irradiation field was larger than 15 x 15 cm, the drug was effective in 67 per cents and ineffective in 33 per cents. On the other hand, it was effective in 95 per cents of the patients, in whom irradiation field was middle or small and the size was under above size. Carcinostatic substances were concomitantly given to many of the patients, in whom malignant lymphoma and breast cancer were metastasized in a large extent. In 7 of 9 patients (77.8 per cents), hematopoietic disturbances were inhibited, and prearranged courses of therapy were effectively completed. Although the variation of the number of the blood platelets was not always parallel to that of leukocytes, interruption of the treatment because of the decrease of the blood platelets was found in none of the patients. Neither subjective not objective side effects were seen after the administration of Cystenosine. (Kumagai, S.)

  16. Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail

    Science.gov (United States)

    Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.

    2017-12-01

    Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.

  17. From laser-plasma accelerators to femtosecond X-ray sources: study, development and applications

    International Nuclear Information System (INIS)

    Corde, S.

    2012-01-01

    During the relativistic interaction between a short and intense laser pulse and an underdense plasma, electrons can be injected and accelerated up to hundreds of MeV in an accelerating structure formed in the wake of the pulse: this is the so-called laser-plasma accelerator. One of the major perspectives for laser-plasma accelerators resides in the realization of compact sources of femtosecond x-ray beams. In this thesis, two x-ray sources was studied and developed. The betatron radiation, intrinsic to laser-plasma accelerators, comes from the transverse oscillations of electrons during their acceleration. Its characterization by photon counting revealed an x-ray beam containing 10"9 photons, with energies extending above 10 keV. We also developed an all-optical Compton source producing photons with energies up to hundreds of keV, based on the collision between a photon beam and an electron beam. The potential of these x-ray sources was highlighted by the realization of single shot phase contrast imaging of a biological sample. Then, we showed that the betatron x-ray radiation can be a powerful tool to study the physics of laser-plasma acceleration. We demonstrated the possibility to map the x-ray emission region, which gives a unique insight into the interaction, permitting us for example to locate the region where electrons are injected. The x-ray angular and spectral properties allow us to gain information on the transverse dynamics of electrons during their acceleration. (author)

  18. Study of a microwave power source for a two-beam accelerator

    International Nuclear Information System (INIS)

    Houck, T.L.

    1994-01-01

    A theoretical and experimental study of a microwave power source suitable for driving a linear e + e - collider is reported. The power source is based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept, is driven by a 5-MeV, 1-kA induction accelerator electron beam, and operates at X-band frequencies. The development of a computer code to simulate the transverse beam dynamics of an intense relativistic electron beam transiting a system of microwave resonant structures is presented. This code is time dependent with self-consistent beam-cavity interactions and uses realistic beam parameters. Simulations performed with this code are compared with analytical theory and experiments. The concept of spacing resonant structures at distances equal to the betatron wavelength of the focusing system to suppress the growth of transverse instabilities is discussed. Simulations include energy spread over the beam to demonstrate the effect of Landau damping and establish the sensitivity of the betatron wavelength spacing scheme to errors in the focusing system. The design of the Reacceleration Experiment is described in detail and includes essentially all the issues related to a full scale RK-TBA microwave source. A total combined power from three output structures in excess of 170 MW with an amplitude stability of ±4% over a 25 ns pulse was achieved. The results of the experiment are compared to simulations used during the design phase to validate the various codes and methods used. The primary issue for the RK-TBA concept is identified as transverse beam instability associated with the excitation of higher order modes in the resonant structures used for extracting microwave power from the modulated beam. This work represents the first successful experimental demonstration of repeated cycles of microwave energy extraction from and reacceleration of a modulated beam

  19. The Role of Pickup Ion Dynamics Outside of the Heliopause in the Limit of Weak Pitch Angle Scattering: Implications for the Source of the IBEX Ribbon

    Science.gov (United States)

    Zirnstein, E. J.; Heerikhuisen, J.; Dayeh, M. A.

    2018-03-01

    We present a new model of the Interstellar Boundary Explorer (IBEX) ribbon based on the secondary energetic neutral atom (ENA) mechanism, under the assumption that there is negligible pitch angle scattering of pickup ions (PUIs) outside the heliopause. Using the results of an MHD-plasma/kinetic-neutral simulation of the heliosphere, we generate PUIs in the outer heliosheath, solve their transport using guiding center theory, and compute ribbon ENA fluxes at 1 au. We implement several aspects of the PUI dynamics, including (1) parallel motion along the local interstellar magnetic field (ISMF), (2) advective transport with the interstellar plasma, (3) the mirror force acting on PUIs propagating along the ISMF, and (4) betatron acceleration of PUIs as they are advected within an increasing magnetic field toward the heliopause. We find that ENA fluxes at 1 au are reduced when PUIs are allowed to move along the ISMF, and ENA fluxes are reduced even more by the inclusion of the mirror force, which pushes particles away from IBEX lines of sight. Inclusion of advection and betatron acceleration do not result in any significant change in the ribbon. Interestingly, the mirror force reduces the ENA fluxes from the inner edge of the ribbon more than those from its outer edge, effectively reducing the ribbon’s width by ∼6° and increasing its radius projected on the sky. This is caused by the asymmetric draping of the ISMF around the heliopause, such that ENAs from the ribbon’s inner edge originate closer to the heliopause, where the mirror force is strongest.

  20. Stochastic cooling

    International Nuclear Information System (INIS)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron

  1. Beam size blow-up and current loss in the Fermilab main ring during storage

    International Nuclear Information System (INIS)

    Guignard, G.; Month, M.

    1977-01-01

    Observations at Fermilab during the storage mode of operation show characteristic forms of transverse beam size growth and current loss with time. There are three obvious mechanisms which can produce such blowup. The gas pressure is a source for immediate beam loss by direct nuclear scattering. Protons can also multiple Coulomb scatter off the orbiting electrons of the gas atoms causing the transverse beam size to increase with time, t. This effect is therefore also proportional to the gas pressure. A third mechanism not related to the gas pressure is beam growth due to multiple crossing of betatron resonances arising from the synchrotron oscillations of the stored bunches. This simulates a random walk and causes the transverse beam size to grow with √t. An attempt is made to describe the observations with direct nuclear scattering, multiple coulomb scattering and multiple resonance crossing. In addition to the loss rate from direct nuclear scattering, the presence of betatron resonances also contribute to particle loss. In fact this latter effect becomes dominant after the beam size reaches a critical value. This critical size is referred to as the resonance aperture. It is the size at which ''fast'' resonance crossing is no longer valid. The stopband width becomes so large (due both to emittance growth as well as the increase in magnetic field distortions) that particles are locked into the resonance and are extracted to the physical aperture. The model is described in a phenomenological way, and the coefficients involved are estimated. Theoretical curves for transverse beam growth and loss rate are plotted and compared with some measured values. Finally, some general comments are given

  2. Measurements of fuse and resistor characteristics for multi-megajoule capacitor bank application

    International Nuclear Information System (INIS)

    McDonald, K.F.; Smith, T.; Golden, J.; Conley, B.

    1986-01-01

    Experimental tests have been conducted on commercially available fuses and resistors under fast high voltage pulsed (10 μsec) conditions to determine their ability to protect capacitor bank components during faults. NRL's Modified Betatron Accelerator uses two multi-megajoule capacitor banks to power the toroidal and betatron magnetic field coils. The expensive high energy density capacitors in these banks must be protected from excessive peak current, voltage reversal, or charging beyond their electrical ratings in the occurrence of a fault. Adequate protection can be obtained with fuses and resistors in series with each parallel connected capacitor. The fuses must open reliably and hold off high voltage D.C. (10 - 20 kV), and the resistors must conduct high current and di/dt without failing from energy deposition or magnetic forces. The performance of the commercial fuses is well documented at low AC frequencies and currents (60 Hz/100 A) but data was not previously available for the fast high current pulsed conditions that prevail under actual fault conditions. A 20 kV 200 kJ, low inductance capacitor bank and ignitron switch were used to conduct the experiments. Peak currents in the fuses were approximately 170 kA at t - 6.5 μs. The final fuse hold-off voltage exceeded 8 kV. Currents in the resistors ranged from - 20 - 40 kA per resistor. The experimental results have been compared to the manufacturers data from minimum melt and maximum let-through and to exploding bridge wire computer models

  3. Possible operation of the European XFEL with ultra-low emittance beams

    International Nuclear Information System (INIS)

    Brinkmann, R.; Schneidmiller, E.A.; Yurkov, M.V.

    2010-01-01

    Recent successful lasing of the Linac Coherent Light Source (LCLS) in the hard x-ray regime and the experimental demonstration of a possibility to produce low-charge bunches with ultra-small normalized emittance have lead to the discussions on optimistic scenarios of operation of the European XFEL. In this paper we consider new options that make use of low-emittance beams, a relatively high beam energy, tunable-gap undulators, and a multibunch capability of this facility. We study the possibility of operation of a spontaneous radiator (combining two of them, U1 and U2, in one beamline) in the SASE mode in the designed photon energy range 20-90 keV and show that it becomes possible with ultra-low emittance electron beams similar to those generated in LCLS. As an additional attractive option we consider the generation of powerful soft X-ray and VUV radiation by the same electron bunch for pump-probe experiments, making use of recently invented compact afterburner scheme. We also propose a betatron switcher as a simple, cheap, and robust solution for multi-color operation of SASE1 and SASE2 undulators, allowing to generate 2 to 5 X-ray beams of different independent colors from each of these undulators for simultaneous multi-user operation. We describe a scheme for pump-probe experiments, based on a production of two different colors by two closely spaced electron bunches (produced in photoinjector) with the help of a very fast betatron switcher. Finally, we discuss how without significant modifications of the layout the European XFEL can become a unique facility that continuously covers with powerful, coherent radiation a part of the electromagnetic spectrum from far infrared to gamma-rays. (orig.)

  4. Equilibrium beam distribution in an electron storage ring near linear synchrobetatron coupling resonances

    Directory of Open Access Journals (Sweden)

    Boaz Nash

    2006-03-01

    Full Text Available Linear dynamics in a storage ring can be described by the one-turn map matrix. In the case of a resonance where two of the eigenvalues of this matrix are degenerate, a coupling perturbation causes a mixing of the uncoupled eigenvectors. A perturbation formalism is developed to find eigenvalues and eigenvectors of the one-turn map near such a linear resonance. Damping and diffusion due to synchrotron radiation can be obtained by integrating their effects over one turn, and the coupled eigenvectors can be used to find the coupled damping and diffusion coefficients. Expressions for the coupled equilibrium emittances and beam distribution moments are then derived. In addition to the conventional instabilities at the sum, integer, and half-integer resonances, it is found that the coupling can cause an instability through antidamping near a sum resonance even when the symplectic dynamics are stable. As one application of this formalism, the case of linear synchrobetatron coupling is analyzed where the coupling is caused by dispersion in the rf cavity, or by a crab cavity. Explicit closed-form expressions for the sum/difference resonances are given along with the integer/half-integer resonances. The integer and half-integer resonances caused by coupling require particular care. We find an example of this with the case of a crab cavity for the integer resonance of the synchrotron tune. Whether or not there is an instability is determined by the value of the horizontal betatron tune, a unique feature of these coupling-caused integer or half-integer resonances. Finally, the coupled damping and diffusion coefficients along with the equilibrium invariants and projected emittances are plotted as a function of the betatron and synchrotron tunes for an example storage ring based on PEP-II.

  5. Inhibitory effect of Cystenosine on leukopenia by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T; Nishio, M; Sako, K; Koizumi, Y; Komura, R [National Hospital of Sapporo (Japan)

    1977-07-01

    Cystenosine, composed of Cysteine and Inosine, was given to the patients with malignant tumors during radiotherapy. As radiotherapy, lineac x-ray /sup 60/Co-..gamma.. ray, and 4 MV-betatron were used. Except betatron, a daily dose of 200 to 250 rads was given four times a week, and a total dose reached 5000 to 6000 rads. Administration of Cystenosine was started simultaneously with the onset of the radiotherapy, and 6 tablets a day were given. Of 40 subjects, the drug was very effective in 45 per cents, effective in 37.5 per cents, and ineffective in 17.5 per cents. The effective rate was 82.5 per cents, if the cases with effective and very effective were considered as effective. Of the patients, in whom irradiation field was larger than 15 x 15 cm, the drug was effective in 67 per cents and ineffective in 33 per cents. On the other hand, it was effective in 95 per cents of the patients, in whom irradiation field was middle or small and the size was under above size. Carcinostatic substances were concomitantly given to many of the patients, in whom malignant lymphoma and breast cancer were metastasized in a large extent. In 7 of 9 patients (77.8 per cents), hematopoietic disturbances were inhibited, and prearranged courses of therapy were effectively completed. Although the variation of the number of the blood platelets was not always parallel to that of leukocytes, interruption of the treatment because of the decrease of the blood platelets was found in none of the patients. Neither subjective not objective side effects were seen after the administration of Cystenosine.

  6. Studies and measurements of linear coupling and nonlinearities in hadron circular accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Franchi, A.

    2006-07-01

    In this thesis a beam-based method has been developed to measure the strength and the polarity of corrector magnets (skew quadrupoles and sextupoles) in circular accelerators. The algorithm is based on the harmonic analysis (via FFT) of beam position monitor (BPM) data taken turn by turn from an accelerator in operation. It has been shown that, from the differences of the spectral line amplitudes between two consecutive BPMs, both the strength and the polarity of non-linear elements placed in between can be measured. The method has been successfully tested using existing BPM data from the SPS of CERN. A second beam-based method has been studied for a fast measurement and correction of betatron coupling driven by skew quadrupole field errors and tilted focusing quadrupoles. In this thesis it has been shown how the correction for minimizing the coupling stop band C can be performed in a single machine cycle from the harmonic analysis of multi-BPM data. The method has been successfully applied to RHIC. A third theoretical achievement is a new description of the betatron motion close to the difference resonance in presence of linear coupling. New formulae describing the exchange of RMS resonances have been derived here making use of Lie algebra providing a better description of the emittance behavior. A new way to decouple the equations of motion and explicit expressions for the individual single particle invariants have been found. For the first time emittance exchange studies have been carried out in the SIS-18 of GSI. Applications of this manipulation are: emittance equilibration under consideration for future operations of the SIS-18 as booster for the SIS-100; emittance transfer during multi-turn injection to improve the efficiency and to protect the injection septum in high intensity operations, by shifting part of the horizontal emittance into the vertical plane. Multi-particle simulations with 2D PIC space-charge solver have been run to infer heuristic scaling

  7. Studies and measurements of linear coupling and nonlinearities in hadron circular accelerators

    International Nuclear Information System (INIS)

    Franchi, A.

    2006-01-01

    In this thesis a beam-based method has been developed to measure the strength and the polarity of corrector magnets (skew quadrupoles and sextupoles) in circular accelerators. The algorithm is based on the harmonic analysis (via FFT) of beam position monitor (BPM) data taken turn by turn from an accelerator in operation. It has been shown that, from the differences of the spectral line amplitudes between two consecutive BPMs, both the strength and the polarity of non-linear elements placed in between can be measured. The method has been successfully tested using existing BPM data from the SPS of CERN. A second beam-based method has been studied for a fast measurement and correction of betatron coupling driven by skew quadrupole field errors and tilted focusing quadrupoles. In this thesis it has been shown how the correction for minimizing the coupling stop band C can be performed in a single machine cycle from the harmonic analysis of multi-BPM data. The method has been successfully applied to RHIC. A third theoretical achievement is a new description of the betatron motion close to the difference resonance in presence of linear coupling. New formulae describing the exchange of RMS resonances have been derived here making use of Lie algebra providing a better description of the emittance behavior. A new way to decouple the equations of motion and explicit expressions for the individual single particle invariants have been found. For the first time emittance exchange studies have been carried out in the SIS-18 of GSI. Applications of this manipulation are: emittance equilibration under consideration for future operations of the SIS-18 as booster for the SIS-100; emittance transfer during multi-turn injection to improve the efficiency and to protect the injection septum in high intensity operations, by shifting part of the horizontal emittance into the vertical plane. Multi-particle simulations with 2D PIC space-charge solver have been run to infer heuristic scaling

  8. An interpretation of Jupiter's decametric radiation and the terrestrial kilometric radiation as direct amplified gyroemission

    International Nuclear Information System (INIS)

    Melrose, D.B.

    1976-01-01

    Electron streams precipitating from a planetary magnetosphere can cause gyroemission in the x-mode to be amplified provided the following conditions are satisfied: (a) β/sub perpendicular/ 0 2 > approx. β/sub parallel/ 0 and, (b) abs. value β/sub s/ > f/sub p/ 2 /f/sub b/ 2 , where β/sub s/c, β/sub perpendicular/ 0 , and β/sub parallel/ 0 2 c 2 are the mean parallel velocity and the mean square perpendicular and parallel velocity spreads, respectively, and where f/sub p/ and f/sub B/ are the plasma frequency and the electron cyclotron frequency, respectively. The required anisotropy β/sub perpendicular/ 0 2 approx. > β/sub parallel/ 0 is assumed to be set up through the betatron effect, i.e., due to the stream propagating in the direction of increasing magnetic induction B. The back-reaction of the amplified emission on the stream causes β/sub perpendicular/ 0 2 to decrease. A steady state is set up with the anisotropy maintained near the threshold value β/sub perpendicular/ 0 2 approx. =β/sub parallel/ 0 , and with the excess perpendicular energy, which is gained through the betatron effect, transferred to the escaping radiation.This mechanism can account for the gross features of Jupiter's decametric emission (DAM) and for its terrestrial counterpart, the auroral kilometric radiation (AKR). The required number density in the precipitating electrons is n 1 > approx. 20 cm -3 for DAM and n 1 > approx. 2 cm -3 for AKR. Most of the power in DAM at higher frequencies ( > approx. 20MHz) is directed to higher latitudes and is not seen from the Earth. The polarization of DAM and the ray paths in the Jovian magnetosphere are discussed. The observed characteristics of ''inverted V'' auroral electron precipitation events, which correlate with AKR, appear to satisfy all the requirements of the theory. AKR should contain fine structure on a time scale approx.1μs

  9. Lifetime and performance of NSLS storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Halama, H.J.

    1988-01-01

    The performance of synchrotron light sources is measured primarily in terms of beam lifetime, beam size, and the recovery of normal operation after a section of the machine has been brought to atmospheric pressure. The beam lifetime and the beam size depend on the following phenomena: Beam gas interaction which can be either elastic or inelastic scattering on residual gas nuclei or electrons. With the exception of low energy machines, this phenomenon represents the main limiting factor on lifetime; Beam interaction with trapped ions causing both beam loss and defocussing. Residual gas molecules are ionized both by circulating beam and synchrotron radiation. The cross sections for both processes are comparable. The effects of this phenomenon are most troublesome at low energies. The problem can be eliminated by switching to positron beams. Installing clearing electrodes has also been successful; Intrabeam scattering (Touschek effect) is caused by Coulomb scattering among electrons of the same bunch as they execute betatron oscillations. The Touschek effect is strongly dependent on energy and in general is a problem only in low energy machines; and Various instabilities causing both slow and fast beam decay which have been observed in both NSLS rings. A special case due to dust particles that fall into the electron beam is commonly observed in early stages of conditioning. Coherent collective instabilities will not be discussed in this paper. 19 refs., 4 figs., 1 tab.

  10. Challenges of in-vacuum and cryogenic permanent magnet undulator technologies

    Directory of Open Access Journals (Sweden)

    Jui-Che Huang

    2017-06-01

    Full Text Available An in-vacuum undulator (IVU provides a means to reach high-brilliance x rays in medium energy storage rings. The development of short period undulators with low phase errors creates the opportunity for an unprecedented brilliant light source in a storage ring. Since the spectral quality from cryogenic permanent magnet undulators (CPMUs has surpassed that of IVUs, NdFeB or PrFeB CPMUs have been proposed for many new advanced storage rings to reach high brilliance x-ray photon beams. In a low emittance ring, not only the performance of the undulator but also the choice of the lattice functions are important design considerations. Optimum betatron functions and a zero-dispersion function shall be provided in the straight sections for IVU/CPMUs. In this paper, relevant factors and design issues for IVUs and CPMUs are discussed together with many technological challenges in short period undulators associated with beam induced–heat load, phase errors, and the deformation of support girders.

  11. The polarized electron beam at ELSA

    International Nuclear Information System (INIS)

    Hoffmann, M.; Drachenfels, W. von; Frommberger, F.; Gowin, M.; Hillert, W.; Husmann, D.; Keil, J.; Helbing, K.; Michel, T.; Naumann, J.; Speckner, T.; Zeitler, G.

    2001-01-01

    The future medium energy physics program at the electron stretcher accelerator ELSA of Bonn University mainly relies on experiments using polarized electrons in the energy range from 1 to 3.2 GeV. To provide a polarized beam with high polarization and sufficient intensity a dedicated source has been developed and set into operation. To prevent depolarization during acceleration in the circular accelerators several depolarizing resonances have to be corrected for. Intrinsic resonances are compensated using two pulsed betatron tune jump quadrupoles. The influence of imperfection resonances is successfully reduced applying a dynamic closed orbit correction in combination with an empirical harmonic correction on the energy ramp. In order to minimize beam depolarization, both types of resonances and the correction techniques have been studied in detail. It turned out that the polarization in ELSA can be conserved up to 2.5 GeV and partially up to 3.2 GeV which is demonstrated by measurements using a Moeller polarimeter installed in the external GDH1-beamline

  12. Acceleration of polarized electrons in the Bonn electron-accelerator facility ELSA; Beschleunigung polarisierter Elektronen in der Bonner Elektronen-Beschleunigeranlage ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, M.

    2001-12-01

    The future medium energy physics program at the electron stretcher accelerator ELSA of Bonn University mainly relies on experiments using polarized electrons in the energy range from 1 to 3.2 GeV. To prevent depolarization during acceleration in the circular accelerators several depolarizing resonances have to be corrected for. Intrinsic resonances are compensated using two pulsed betatron tune jump quadrupoles. The influence of imperfection resonances is successfully reduced applying a dynamic closed orbit correction in combination with an empirical harmonic correction on the energy ramp. Both types of resonances and the correction techniques have been studied in detail. The imperfection resonances were used to calibrate the energy of the stretcher ring with high accuracy. A new technique to extract the beam with horizontal oriented polarization was sucessfully installed. For all energies a polarized electron beam with more than 50% polarization can now be supplied to the experiments at ELSA, which is demonstrated by measurements using a Moeller polarimeter installed in the external beamline. (orig.)

  13. The physics of crystalline beams

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1995-01-01

    It seems that the time has come in the pursuit of lower and lower beam temperatures to start focusing more detailed attention to the reality of storage rings--conventional cooling techniques and measures of temperature are generally not the appropriate ones at the lowest temperatures. Finding solutions to these serious problems does not appear to be impossible, but these considerations must be kept in mind in designing new storage rings with the aim to approach the regime of ordered three-dimensional beams. In particular, such rings will have to: Use calculations of the lattice with the full effects of space charge included. (N.B. averaged over time, space charge exactly cancels the focusing fields for a cold beam and therefore must be explicitly included.) Find technical solutions and incorporate several of; cooling to introduce a longitudinal velocity gradient and favor constant angular velocity; high multiplicity in bending and focusing elements; stronger focusing (high betatron tune); and high symmetry in the ring design. Finally, simulations should try to incorporate as much realism as possible, with larger repeating cells and more detailed descriptions of the lattice

  14. An energy monitor for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Geske, G. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Klinik und Poliklinik des Bereiches Medizin)

    1990-09-01

    A monitor useful for checks of the energy selector scale of medical electron accelerators was developed and tested. It consists of a linear array of flat ionization chambers sandwiched between absorber plates of low-Z material. The first chamber at the electron beam entrance may be used to produce a reference signal S{sub r}, if not another suitable reference signal is taken. The following chambers are electrically connected and deliver the measuring signal S{sub m}. A clinical dosimeter can be used for recording current or charge. The energy-dependent electron range parameters R{sub p}, R{sub 50} and R{sub 80} in water vary as linear functions of the ratio reference singal/measuring signal. The best linear fit was obtained for the half value layer R{sub 50}. Three types of the energy monitor are described, and experimental results obtained with a linear accelerator and a betatron between 5 and 25 MeV are reported. Uncertainties for checks of R{sub 50} with a calibrated energy monitor were not larger than 1 to 2 mm. Theoretical considerations by a computer model support these results. (orig./HP).

  15. An energy monitor for electron accelerators

    International Nuclear Information System (INIS)

    Geske, G.

    1990-01-01

    A monitor useful for checks of the energy selector scale of medical electron accelerators was developed and tested. It consists of a linear array of flat ionization chambers sandwiched between absorber plates of low-Z material. The first chamber at the electron beam entrance may be used to produce a reference signal S r , if not another suitable reference signal is taken. The following chambers are electrically connected and deliver the measuring signal S m . A clinical dosimeter can be used for recording current or charge. The energy-dependent electron range parameters R p , R 50 and R 80 in water vary as linear functions of the ratio reference singal/measuring signal. The best linear fit was obtained for the half value layer R 50 . Three types of the energy monitor are described, and experimental results obtained with a linear accelerator and a betatron between 5 and 25 MeV are reported. Uncertainties for checks of R 50 with a calibrated energy monitor were not larger than 1 to 2 mm. Theoretical considerations by a computer model support these results. (orig./HP) [de

  16. Long term results in radiotherapy of prostatic cancer

    International Nuclear Information System (INIS)

    Bagshaw, M.A.; Ray, G.R.; Cox, R.S.

    1987-01-01

    Discounting skin cancer, prostatic cancer remains second only to lung cancer in incidence in the United States. Colon Cancer is a close third. The incidence of lung cancer has started to decline slightly in the male, while prostatic cancer continues to increase, no doubt related to the aging of the population. Radiation therapy was first used in the treatment of prostatic cancer in the United States about 1915, having been introduced as intracavitary radium treatments by the American urologist, Hugh Young. External beam irradiation was used in the 1930's, but mostly for palliation of ureteral and vascular obstruction. Definitive use was first described by other investigators in the 1940's' however, attention changed to hormonal manipulation following Huggin's discovery of the dependency of prostate cancer on male hormone. Improved radiation therapy sources were invented, such as Cobalt 60 units, linear accelerators and betatrons, stimulated a reinvestigation of the definitive use of radiation therapy to prostate cancer in the 1950's. According to the current American College of Surgeon's survey of patterns of care of patients with prostate cancer, the use of external beam irradiation for the treatment of prostatic cancer has doubled in the United States during the past decade; however, apparently in Europe, hormone deprivation remains the therapeutic standard

  17. [Forensic medical implications of histomorphological changes in the bone and cartilage tissues under effect of radiation].

    Science.gov (United States)

    Osipenkova-Vichtomova, T K

    2013-01-01

    The objective of the present work was to study roentgenological, microscopic, and histomorphological changes in the bone and cartilage tissues under effect of different doses of gamma-ray radiation from Gammatron-2 (GUT Co 400) and betatron bremsstrahlung radiation (25 MeV). The total radiation dose varied from 9.6 Gy to 120 Gy per unit area during 5-8 weeks. The study included 210 patients at the age from 7 to 82 years (97 men and 113 women). Histomorphological studies were carried out using samples of bone and cartilage tissues taken from different body regions immediately after irradiation and throughout the follow-up period of up to 4 years 6 months. Control samples were the unexposed bone and cartilage tissues from the same subjects (n = 14). The tissues were stained either with eosin and hematoxylin or by Van Gieson's and Mallory's methods. Gomori's nonspecific staining was used to detect acid and alkaline phosphatase activities. Moreover, argyrophilic substance was identified in the cartilaginous tissue. Best's carmine was used for glycogen staining and Weigert's stain for elastic fibers. Metachromasia was revealed by toluidine blue staining and fat by the sudan III staining technique. In addition, the ultrastructure of cartilaginous tissue was investigated. Taken together, these methods made it possible to identify the signs of radiation-induced damage to the bone and cartilage tissues in conjunction with complications that are likely to develop at different periods after irradiation including such ones as spontaneous fractures, deforming arthrosis and radiation-induced tumours.

  18. The order for enforcing the law concerning prevention from radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    1977-01-01

    The radioactive isotopes stipulated in Item 2, Article 2 of the Law Concerning Prevention from Radiation Hazards due to Radisotopes (hereinafter referred to as the Law) are the isotopes emitting radiation, their compounds, and those containing these isotopes or compounds. The radiation-generating apparatuses in Item 3, Article 2 of the Law are cyclotron, synchrotron, synchrocyclotron, linear accelerator, betatron, Van de Graaff accelerator, Cockcroft Walton accelerator, the apparatuses generating radiation by accelerating charged particles, which are designated by the Director of the Science and Technology Agency as necessary for preventing radiation injuries. Those who want to use, sell or dispose of radioactive isotopes should file applications for approval or notices with required documents. The approval should be obtained for each factory or place of business. The amount of completely sealed radioactive isotopes specified by the cabinet order stipulated in Item 1, Article 3-2 of the Law is 100 m curie per factory or place of business. Those who are going to change the approved items of the use, sale or disposal of radioactive isotopes should file applications. The amount of radioactive isotopes specified by the cabinet order stipulated in Item 5, Article 10 of the Law is 10 curies. Controlled areas, facilities for using, refilling, and storing isotopes, refilling and disposing wastes should meet the stipulated standards. (Rikitake, Y.)

  19. The order for enforcing the law concerning prevention from radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law on the prevention of radiation injuries by radioisotopes, and the former ordinance No. 14, 1958, is hereby totally amended. Radioisotopes under the law are the isotopes which emit radiation, and of which the concentration exceeds the levels defined by the Director General of the Science and Technology Agency, their compounds or the substances containing these compounds, excluding those defined in the atomic energy act and other particular laws. The apparatuses fitted with radioisotopes under the law are electron capture detectors for gas chromatography. The radiation emitting installations under the law are cyclotron, synchrotron, synchro-cyclotron, linear accelerator, betatron, Van de Graaff accelerator, Cockcroft-Walton's accelerator, etc. The permission of usage under the law shall be obtained for each works or enterprise. Persons who intend to get the permission shall file the application for them attaching the documents describing expected period of usage and other papers specified by the Director General. The total quantity of radioisotopes sealed tightly for each works or enterprise under the law shall be 100 milli-curie. The design of apparatus for the prevention of radiation injuries, the capacities of storage facilities regularly inspected, the period of regular inspection, the confirmation of transport and disposal and fees to be paid, etc. are defined, respectively. (Okada, K.)

  20. ORIC Beam Energy Increase

    CERN Document Server

    Mallory, Merrit L; Dowling, Darryl; Hudson, Ed; Lord, Dick; Tatum, Alan

    2005-01-01

    The detection of and solution to a beam interference problem in the Oak Ridge Isochronous Cyclotron (ORIC) extraction system has yielded a 20% increase in the proton beam energy. The beam from ORIC was designed to be extracted before the nu r equal one resonance. Most cyclotrons extract after the nu r equal one resonance, thus getting more usage of the magnetic field for energy acceleration. We have now determined that the electrostatic deflector septum interferes with the last accelerated orbit in ORIC, with the highest extraction efficiency obtained near the maximum nu r value. This nu r provides a rotation in the betatron oscillation amplitude that is about the same length as the electrostatic septum thus allowing the beam to jump over the interference problem with the septum. With a thinned septum we were able to tune the beam through the nu r equal one resonance and achieve a 20% increase in beam energy. This nu r greater than one extraction method may be desirable for very high field cyclotrons since it...