WorldWideScience

Sample records for betaine-homocysteine s-methyltransferase bhmt

  1. Downregulation of hepatic betaine:homocysteine methyltransferase (BHMT) expression in taurine-deficient mice is reversed by taurine supplementation in vivo.

    Science.gov (United States)

    Jurkowska, Halina; Niewiadomski, Julie; Hirschberger, Lawrence L; Roman, Heather B; Mazor, Kevin M; Liu, Xiaojing; Locasale, Jason W; Park, Eunkyue; Stipanuk, Martha H

    2016-03-01

    The cysteine dioxygenase (Cdo1)-null and the cysteine sulfinic acid decarboxylase (Csad)-null mouse are not able to synthesize hypotaurine/taurine by the cysteine/cysteine sulfinate pathway and have very low tissue taurine levels. These mice provide excellent models for studying the effects of taurine on biological processes. Using these mouse models, we identified betaine:homocysteine methyltransferase (BHMT) as a protein whose in vivo expression is robustly regulated by taurine. BHMT levels are low in liver of both Cdo1-null and Csad-null mice, but are restored to wild-type levels by dietary taurine supplementation. A lack of BHMT activity was indicated by an increase in the hepatic betaine level. In contrast to observations in liver of Cdo1-null and Csad-null mice, BHMT was not affected by taurine supplementation of primary hepatocytes from these mice. Likewise, CSAD abundance was not affected by taurine supplementation of primary hepatocytes, although it was robustly upregulated in liver of Cdo1-null and Csad-null mice and lowered to wild-type levels by dietary taurine supplementation. The mechanism by which taurine status affects hepatic CSAD and BHMT expression appears to be complex and to require factors outside of hepatocytes. Within the liver, mRNA abundance for both CSAD and BHMT was upregulated in parallel with protein levels, indicating regulation of BHMT and CSAD mRNA synthesis or degradation.

  2. Dissecting the Catalytic Mechanism of Betaine-Homocysteine S-Methyltransferase Using Intrinsic Tryptophan Fluorescence and Site-Directed Mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.; Gratson, A.A.; Evans, J.C.; Jiracek, J.; Collinsova, M.; Ludwig, M.L.; Garrow, T.A. (ASCR); (UIUC); (Michigan)

    2010-03-05

    Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent enzyme that catalyzes the transfer of a methyl group from glycine betaine (Bet) to homocysteine (Hcy) to form dimethylglycine (DMG) and methionine (Met). Previous studies in other laboratories have indicated that catalysis proceeds through the formation of a ternary complex, with a transition state mimicked by the inhibitor S-({delta}-carboxybutyl)-l-homocysteine (CBHcy). Using changes in intrinsic tryptophan fluorescence to determine the affinity of human BHMT for substrates, products, or CBHcy, we now demonstrate that the enzyme-substrate complex reaches its transition state through an ordered bi-bi mechanism in which Hcy is the first substrate to bind and Met is the last product released. Hcy, Met, and CBHcy bind to the enzyme to form binary complexes with K{sub d} values of 7.9, 6.9, and 0.28 {micro}M, respectively. Binary complexes with Bet and DMG cannot be detected with fluorescence as a probe, but Bet and DMG bind tightly to BHMT-Hcy to form ternary complexes with K{sub d} values of 1.1 and 0.73 {micro}M, respectively. Mutation of each of the seven tryptophan residues in human BHMT provides evidence that the enzyme undergoes two distinct conformational changes that are reflected in the fluorescence of the enzyme. The first is induced when Hcy binds, and the second, when Bet binds. As predicted by the crystal structure of BHMT, the amino acids Trp44 and Tyr160 are involved in binding Bet, and Glu159 in binding Hcy. Replacing these residues by site-directed mutagenesis significantly reduces the catalytic efficiency (V{sub max}/K{sub m}) of the enzyme. Replacing Tyr77 with Phe abolishes enzyme activity.

  3. Structure-activity study of new inhibitors of human betaine-homocysteine S-methyltransferase

    Czech Academy of Sciences Publication Activity Database

    Vaněk, Václav; Buděšínský, Miloš; Kabeleová, Petra; Šanda, Miloslav; Kožíšek, Milan; Hančlová, Ivona; Mládková, Jana; Brynda, Jiří; Rosenberg, Ivan; Koutmos, M.; Garrow, T. A.; Jiráček, Jiří

    2009-01-01

    Roč. 52, č. 12 (2009), s. 3652-3665 ISSN 0022-2623 R&D Projects: GA MŠk 1M0508 Grant - others:GA MŠk(CZ) LC06077; NIH(US) R01TW0052501 Program:LC Institutional research plan: CEZ:AV0Z40550506 Keywords : BHMT * betain * homocysteine * methionine * inhibitor Subject RIV: CE - Biochemistry Impact factor: 4.802, year: 2009

  4. Double-Headed Sulfur-Linked Amino Acids As First Inhibitors for Betaine-Homocysteine S-Methyltransferase 2

    Czech Academy of Sciences Publication Activity Database

    Mládková, Jana; Vaněk, Václav; Buděšínský, Miloš; Elbert, Tomáš; Demianova, Zuzana; Garrow, T. A.; Jiráček, Jiří

    2012-01-01

    Roč. 55, č. 15 (2012), s. 6822-6831 ISSN 0022-2623 R&D Projects: GA ČR GA203/09/1919; GA ČR(CZ) GAP207/10/1277 Institutional support: RVO:61388963 Keywords : betaine * homocysteine * methionine * BHMT * inhibitor Subject RIV: CE - Biochemistry Impact factor: 5.614, year: 2012

  5. S-alkylated homocysteine derivatives: New inhibitors of human betaine-homocysteine S-methyltransferase

    Czech Academy of Sciences Publication Activity Database

    Jiráček, Jiří; Collinsová, Michaela; Rosenberg, Ivan; Buděšínský, Miloš; Protivínská, Eva; Netušilová, Hana; Garrow, T. A.

    2006-01-01

    Roč. 49, č. 13 (2006), s. 3982-3989 ISSN 0022-2623 R&D Projects: GA AV ČR(CZ) IAA4055302 Grant - others:NIH(US) DK52501; NIH(US) R01TW0052501; IARS(US) 50-352 Institutional research plan: CEZ:AV0Z40550506 Keywords : BHMT * S-alkylated homocystein e * inhibitor Subject RIV: CE - Biochemistry Impact factor: 5.115, year: 2006

  6. Specific potassium ion interactions facilitate homocysteine binding to betaine-homocysteine S-methyltransferase

    Czech Academy of Sciences Publication Activity Database

    Mládková, Jana; Hladílková, Jana; Diamond, C. E.; Tryon, K.; Yamada, K.; Garrow, T. A.; Jungwirth, Pavel; Koutmos, M.; Jiráček, Jiří

    2014-01-01

    Roč. 82, č. 10 (2014), s. 2552-2564 ISSN 0887-3585 R&D Projects: GA ČR(CZ) GAP207/10/1277; GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : BHMT * homocysteine * potassium * crystal structure * molecular dynamics * simulations * enzyme kinetics Subject RIV: CE - Biochemistry Impact factor: 2.627, year: 2014

  7. The development of a new class of inhibitors for betaine-homocysteine S-methyltransferase

    Czech Academy of Sciences Publication Activity Database

    Pícha, Jan; Vaněk, Václav; Buděšínský, Miloš; Mládková, Jana; Garrow, T. A.; Jiráček, Jiří

    2013-01-01

    Roč. 65, July (2013), s. 256-275 ISSN 0223-5234 R&D Projects: GA ČR(CZ) GAP207/10/1277 Institutional support: RVO:61388963 Keywords : BHMT * inhibitor * homocysteine * phosphonate * phosphinate * amino acid derivative * bioisostere * S-alkylated homocysteine Subject RIV: CE - Biochemistry Impact factor: 3.432, year: 2013

  8. Effects of betaine supplementation and choline deficiency on folate deficiency-induced hyperhomocysteinemia in rats.

    Science.gov (United States)

    Liu, Ying; Liu, Yi-qun; Morita, Tatsuya; Sugiyama, Kimio

    2012-01-01

    The effect of betaine status on folate deficiency-induced hyperhomocysteinemia was investigated to determine whether folate deficiency impairs homocysteine removal not only by the methionine synthase (MS) pathway but also by the betaine-homocysteine S-methyltransferase (BHMT) pathway. For this purpose, we investigated the effect of dietary supplementation with betaine at a high level (1%) in rats fed a folate-deprived 10% casein diet (10C) and 20% casein diet (20C). We also investigated the effect of choline deprivation on folate deficiency-induced hyperhomocysteinemia in rats fed 20C. Supplementation of folate-deprived 10C and 20C with 1% betaine significantly suppressed folate deprivation-induced hyperhomocysteinemia, but the extent of suppression was partial or limited, especially in rats fed 10C, the suppression of plasma homocysteine increment being 48.5% in rats fed 10C and 69.7% in rats fed 20C. Although betaine supplementation greatly increased hepatic betaine concentration and BHMT activity, these increases did not fully explain why the effect of betaine supplementation was partial or limited. Folate deprivation markedly increased the hepatic concentration of N,N-dimethylglycine (DMG), a known inhibitor of BHMT, and there was a significant positive correlation between hepatic DMG concentration and plasma homocysteine concentration, suggesting that folate deficiency increases hepatic DMG concentration and thereby depresses BHMT reaction, leading to interference with the effect of betaine supplementation. Choline deprivation did not increase plasma homocysteine concentration in rats fed 20C, but it markedly enhanced plasma homocysteine concentration when rats were fed folate-deprived 20C. This indicates that choline deprivation reinforced folate deprivation-induced hyperhomocysteinemia. Increased hepatic DMG concentration was also associated with such an effect. These results support the concept that folate deficiency impairs homocysteine metabolism not only

  9. Betaine reduces hepatic lipidosis induced by carbon tetrachloride in Sprague-Dawley rats.

    Science.gov (United States)

    Junnila, M; Barak, A J; Beckenhauer, H C; Rahko, T

    1998-10-01

    Carbon tetrachloride-injected rats were given liquid diets with and without betaine for 7 d. Hepatic lipidosis was induced by 4 daily injections of carbon tetrachloride (CCl4). Animals were killed and their livers and blood taken for analysis of betaine, S-adenosylmethionine (SAM), betaine homocysteine methyltransferase (BHMT), triglyceride, alanine aminotransferase and aspartate aminotransferase. Liver samples were also processed and stained for histological examination. Supplemental betaine reduced triglyceride in the liver and centrilobular hepatic lipidosis induced by the CCl4 injections. In both the control and experimental groups receiving betaine, liver betaine, BHMT and SAM were significantly higher than in their respective groups not receiving betaine. This study provides evidence that betaine protects the liver against CCl4-induced lipidosis and may be a useful therapeutic and prophylactic agent in ameliorating the harmful effects of CCl4.

  10. Suppression Effects of Betaine-Enriched Spinach on Hyperhomocysteinemia Induced by Guanidinoacetic Acid and Choline Deficiency in Rats

    Directory of Open Access Journals (Sweden)

    Yi-Qun Liu

    2014-01-01

    Full Text Available Betaine is an important natural component of rich food sources, especially spinach. Rats were fed diets with betaine or spinach powder at the same level of betaine for 10 days to investigate the dose-dependent effects of spinach powder supplementation on hyperhomocysteinemia induced by guanidinoacetic acid (GAA addition and choline deprivation. The GAA-induced hyperhomocysteinemia in rats fed 25% casein diet (25C was significantly suppressed by supplementation with betaine or spinach, and it was completely suppressed by taking 11.0% spinach supplementation. The choline deprivation-induced enhancement of plasma homocysteine concentration in rats fed 25% soybean protein diet (25S was markedly suppressed by 3.82% spinach. Supplementation with betaine or spinach partially prevented the effects of GAA on hepatic concentrations of methionine metabolites. The decrease in activity of betaine-homocysteine S-methyltransferase (BHMT and cystathionine β-synthase (CBS in GAA-induced hyperhomocysteinemia was recovered by supplementation with betaine or spinach. Supplementation with betaine or spinach did not affect BHMT activity, whereas it partially restored CBS activity in choline-deprived 25S. The results indicated that betaine or spinach could completely suppress the hyperhomocysteinemia induced by choline deficiency resulting from stimulating the homocysteine removal by both remethylation and cystathionine formation.

  11. Quantification of homocysteine-related metabolites and the role of betaine-homocysteine S-methyltransferase in HepG2 cells

    Czech Academy of Sciences Publication Activity Database

    Kořínek, M.; Šístek, V.; Mládková, Jana; Mikeš, P.; Jiráček, Jiří; Selicharová, Irena

    2013-01-01

    Roč. 27, č. 1 (2013), s. 111-121 ISSN 0269-3879 R&D Projects: GA ČR(CZ) GAP207/10/1277 Institutional support: RVO:61388963 Keywords : homocysteine * BHMT * LC-MS/MS * HepG2 * metabolites Subject RIV: CE - Biochemistry Impact factor: 1.662, year: 2013

  12. Inhibition of betaine-homocysteine S-methyltransferase causes hyperhomocysteinemia in mice

    Czech Academy of Sciences Publication Activity Database

    Collinsová, Michaela; Straková, J.; Jiráček, Jiří; Garrow, T. A.

    2006-01-01

    Roč. 136, č. 6 (2006), s. 1493-1497 ISSN 0022-3166 R&D Projects: GA AV ČR(CZ) IAA4055302 Grant - others:NIH(US) DK52501 Institutional research plan: CEZ:AV0Z40550506 Keywords : betaine * homocystein e * dimethylsulfoniopropionate Subject RIV: CE - Biochemistry Impact factor: 4.009, year: 2006

  13. Maternal Folate Status and the BHMT c.716G>A Polymorphism Affect the Betaine Dimethylglycine Pathway during Pregnancy

    Directory of Open Access Journals (Sweden)

    Jose M. Colomina

    2016-10-01

    Full Text Available The effect of the betaine: homocysteine methyltransferase BHMT c.716G>A (G: guanosine; A: adenosine single nucleotide polymorphism (SNP on the BHMT pathway is unknown during pregnancy. We hypothesised that it impairs betaine to dimethylglycine conversion and that folate status modifies its effect. We studied 612 women from the Reus Tarragona Birth Cohort from ≤12 gestational weeks (GW throughout pregnancy. The frequency of the variant BHMT c.716A allele was 30.8% (95% confidence interval (CI: 28.3, 33.5. In participants with normal-high plasma folate status (>13.4 nmol/L, least square geometric mean [95% CI] plasma dimethylglycine (pDMG, µmol/L was lower in the GA (2.35 [2.23, 2.47] versus GG (2.58 [2.46, 2.70] genotype at ≤12 GW (p < 0.05 and in the GA (2.08 [1.97, 2.19] and AA (1.94 [1.75, 2.16] versus GG (2.29 [2.18, 2.40] genotypes at 15 GW (p < 0.05. No differences in pDMG between genotypes were observed in participants with possible folate deficiency (≤13.4 nmol/L (p for interactions at ≤12 GW: 0.023 and 15 GW: 0.038. PDMG was lower in participants with the AA versus GG genotype at 34 GW (2.01 [1.79, 2.25] versus 2.44 [2.16, 2.76] and at labour, 2.51 [2.39, 2.64] versus 3.00 [2.84, 3.18], (p < 0.01. Possible deficiency compared to normal-high folate status was associated with higher pDMG in multiple linear regression analysis (β coefficients [SEM] ranging from 0.07 [0.04], p < 0.05 to 0.20 [0.04], p < 0.001 in models from early and mid-late pregnancy and the AA compared to GG genotype was associated with lower pDMG (β coefficients [SEM] ranging from −0.11 [0.06], p = 0.055 to −0.23 [0.06], p < 0.001. Conclusion: During pregnancy, the BHMT pathway is affected by folate status and by the variant BHMT c.716A allele.

  14. Analogy tranzitního stavu jako inhibitory lidského enzymu betain:homocystein S-methyltransferasy

    Czech Academy of Sciences Publication Activity Database

    Netušilová, Hana; Buděšínský, Miloš; Rosenberg, Ivan; Jiráček, Jiří

    2004-01-01

    Roč. 98, č. 5 (2004), s. 295 ISSN 0009-2770. [Mezioborové setkání mladých biologů, biochemiků a chemiků /4./. 09.06.2004-12.06.2004, Žďárské vrchy] R&D Projects: GA ČR GA203/01/1166; GA AV ČR IAA4055302 Keywords : betain: homocystein e S-methyltransferase Subject RIV: CC - Organic Chemistry

  15. Dietary intake of S-(alpha-carboxybutyl)-DL-homocysteine induces hyperhomocysteinemia in rats

    Czech Academy of Sciences Publication Activity Database

    Straková, J.; Williams, K. T.; Gupta, S.; Schalinske, K. L.; Kruger, W. D.; Rozen, R.; Jiráček, Jiří; Li, L.; Garrow, T. A.

    2010-01-01

    Roč. 30, č. 7 (2010), s. 492-500 ISSN 0271-5317 R&D Projects: GA ČR(CZ) GAP207/10/1277 Grant - others:NIH(US) DK52501 Institutional research plan: CEZ:AV0Z40550506 Keywords : BHMT * homocysteine * rat * betaine Subject RIV: CC - Organic Chemistry Impact factor: 2.092, year: 2010

  16. The Metabolic Burden of Methyl Donor Deficiency with Focus on the Betaine Homocysteine Methyltransferase Pathway

    Directory of Open Access Journals (Sweden)

    Rima Obeid

    2013-09-01

    Full Text Available Methyl groups are important for numerous cellular functions such as DNA methylation, phosphatidylcholine synthesis, and protein synthesis. The methyl group can directly be delivered by dietary methyl donors, including methionine, folate, betaine, and choline. The liver and the muscles appear to be the major organs for methyl group metabolism. Choline can be synthesized from phosphatidylcholine via the cytidine-diphosphate (CDP pathway. Low dietary choline loweres methionine formation and causes a marked increase in S-adenosylmethionine utilization in the liver. The link between choline, betaine, and energy metabolism in humans indicates novel functions for these nutrients. This function appears to goes beyond the role of the nutrients in gene methylation and epigenetic control. Studies that simulated methyl-deficient diets reported disturbances in energy metabolism and protein synthesis in the liver, fatty liver, or muscle disorders. Changes in plasma concentrations of total homocysteine (tHcy reflect one aspect of the metabolic consequences of methyl group deficiency or nutrient supplementations. Folic acid supplementation spares betaine as a methyl donor. Betaine is a significant determinant of plasma tHcy, particularly in case of folate deficiency, methionine load, or alcohol consumption. Betaine supplementation has a lowering effect on post-methionine load tHcy. Hypomethylation and tHcy elevation can be attenuated when choline or betaine is available.

  17. Dimethylglycine accumulates in uremia and predicts elevated plasma homocysteine concentrations.

    Science.gov (United States)

    McGregor, D O; Dellow, W J; Lever, M; George, P M; Robson, R A; Chambers, S T

    2001-06-01

    Hyperhomocysteinemia is a risk factor for atherosclerosis that is common in chronic renal failure (CRF), but its cause is unknown. Homocysteine metabolism is linked to betaine-homocysteine methyl transferase (BHMT), a zinc metalloenzyme that converts glycine betaine (GB) to N,N dimethylglycine (DMG). DMG is a known feedback inhibitor of BHMT. We postulated that DMG might accumulate in CRF and contribute to hyperhomocysteinemia by inhibiting BHMT activity. Plasma and urine concentrations of GB and DMG were measured in 33 dialysis patients (15 continuous ambulatory peritoneal dialysis and 18 hemodialysis), 33 patients with CRF, and 33 age-matched controls. Concentrations of fasting plasma total homocysteine (tHcy), red cell and serum folate, vitamins B(6) and B(12), serum zinc, and routine biochemistry were also measured. Groups were compared, and determinants of plasma tHcy were identified by correlations and stepwise linear regression. Plasma DMG increased as renal function declined and was twofold to threefold elevated in dialysis patients. Plasma GB did not differ between groups. The fractional excretion of GB (FE(GB)) was increased tenfold, and FED(MG) was doubled in CRF patients compared with controls. Plasma tHcy correlated positively with plasma DMG, the plasma DMG:GB ratio, plasma creatinine, and FE(GB) and negatively with serum folate, zinc, and plasma GB. In the multiple regression model, only plasma creatinine, plasma DMG, or the DMG:GB ratio was independent predictors of tHcy. DMG accumulates in CRF and independently predicts plasma tHcy concentrations. These findings suggest that reduced BHMT activity is important in the pathogenesis of hyperhomocysteinemia in CRF.

  18. Association between BHMT gene rs3733890 polymorphism and cancer risk: evidence from a meta-analysis

    Directory of Open Access Journals (Sweden)

    Xu Y

    2016-08-01

    Full Text Available Yue Xu,1,* Cunye Yan,2,* Zongyao Hao,1 Jun Zhou,1 Song Fan,1 Sheng Tai,1 Cheng Yang,1 Li Zhang,1 Chaozhao Liang1 1Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, 2First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, People’s Republic of China *These authors contributed equally to this work Background and objective: The gene betaine-homocysteine methyltransferase (BHMT has drawn much attention during the past decades. An increasing number of clinical and genetic investigations have supposed that BHMT rs3733890 polymorphism might be associated with risk of breast cancer and ovarian cancer. As no consistent conclusion has been achieved, we conducted an up-to-date summary of BHMT rs3733890 polymorphism and cancer risk through a meta-analysis. Materials and methods: The articles were collected from PubMed, Google Scholar, and CNKI (Chinese databases up to December 2015. Then, the correlations were determined by reading the titles and abstracts and by further reading the full text to filter the unqualified articles. Odds ratio (OR and the corresponding 95% confidence intervals (CI were used to assess the results. Results: Among 187 articles collected in the analysis, seven studies with a total of 2,832 cases and 3,958 controls were included for evaluation of the association between BHMT rs3733890 polymorphism and susceptibility of cancer risk. The heterogeneity test showed no significant differences. Furthermore, we found that BHMT –742G>A polymorphism in case and control groups showed no statistically significant association with susceptibility in various cancer types except for uterine cervical cancer (A vs G: OR =0.641, 95% CI =0.445–0.923, P=0.017; AA+AG vs GG: OR =0.579, 95% CI =0.362–0.924, P=0.022. In addition, no statistically significant association was uncovered when stratification analyses were conducted by ethnicity and genotyping methods. Conclusion

  19. Betaine supplementation lowers plasma homocysteine in healthy men and women

    NARCIS (Netherlands)

    Steenge, G.R.; Verhoef, P.; Katan, M.B.

    2003-01-01

    Elevated levels of plasma total homocysteine are associated with a higher risk of cardiovascular disease. Betaine and 5-methyltetrahydrofolate can remethylate homocysteine into methionine via independent reactions. We determined the effect of daily betaine supplementation, compared with both folic

  20. Combining combinatorial chemistry and affinity chromatography: highly selective inhibitors of human betaine:homocysteine S-methyltransferase

    Czech Academy of Sciences Publication Activity Database

    Collinsová, Michaela; Castro, C.; Garrow, T. A.; Yiotakis, A.; Dive, V.; Jiráček, Jiří

    2003-01-01

    Roč. 10, - (2003), s. 113-122 ISSN 1074-5521 R&D Projects: GA AV ČR IAB4055003 Institutional research plan: CEZ:AV0Z4055905 Keywords : BHMT * inhibitor * phosphinic Subject RIV: CE - Biochemistry Impact factor: 6.129, year: 2003

  1. Betaine supplementation lowers plasma homocysteine levels in healthy men and women

    NARCIS (Netherlands)

    Steenge, G.R.S.; Verhoef, P.; Katan, M.B.

    2003-01-01

    Elevated levels of plasma total homocysteine are associated with a higher risk of cardiovascular disease. Betaine and 5-methyltetrahydrofolate can remethylate homocysteine into methionine via independent reactions. We determined the effect of daily betaine supplementation, compared with both folic

  2. Are dietary choline and betaine intakes determinants of total homocysteine concentration?

    Science.gov (United States)

    Elevated homocysteine concentrations are associated with an increased risk of cardiovascular disease and a decline in cognitive function. Intakes of choline and betaine, as methyl donors, may affect homocysteine concentrations. The objective was to examine whether choline and betaine intakes, assess...

  3. Metabolism of S-adenosylmethionine in rat hepatocytes: transfer of methyl group from S-adenosylmethionine by methyltransferase reactions

    International Nuclear Information System (INIS)

    Tsukada, K.; Abe, T.; Kuwahata, T.; Mitsui, K.

    1985-01-01

    Treatment of rats with a methionine diet leads not only to a marked increase of S-adenosylmethionine synthetase in liver, but also to the increase of glycine, guanidoacetate and betaine-homocysteine methyltransferases. The activity of tRNA methyltransferase decreased with the increased amounts of methionine in the diets. However, the activities of phospholipids and S-adenosylmethionine-homocysteine methyltransferases did not show any significant change. When hepatocarcinogenesis induced by 2-fluorenylacetamide progresses, the activities of glycine and guanidoacetate methyltransferases in rat liver decreased, and could not be detected in tumorous areas 8 months after treatment. The levels of S-adenosylmethionine in the liver also decreased to levels of one-fifth of control animals at 8 months. The uptake and metabolism of [methyl- 3 H]-methionine and -S-adenosylmethionine have been investigated by in vivo and isolated hepatocytes. The uptake of methionine and transfer of methyl group to phospholipid in the cells by methionine were remarkably higher than those by S-adenosylmethionine. These results indicate that phospholipids in hepatocytes accept methyl group from S-adenosylmethionine immediately, when it is synthesized from methionine, before mixing its pool in the cells. 39 references, 1 figure, 2 tables

  4. Effects of betaine intake on plasma homocysteine concentrations and consequences for health

    NARCIS (Netherlands)

    Olthof, Margreet R.; Verhoef, P.

    High plasma concentrations of homocysteine may increase risk of cardiovascular disease. Folic acid lowers plasma homocysteine by 25% maximally, because 5-methyltetrahydrofolate is a methyl donor in the remethylation of homocysteine to methionine. Betaine (trimethylglycine) is also a methyl donor in

  5. Effects of Betaine Intake on Plasma Homocysteine Concentrations and Consequences for Health

    NARCIS (Netherlands)

    Olthof, M.R.; Verhoef, P.

    2005-01-01

    High plasma concentrations of homocysteine may increase risk of cardiovascular disease. Folic acid lowers plasma homocysteine by 25% maximally, because 5-methyltetrahydrofolate is a methyl donor in the remethylation of homocysteine to methionine. Betaine (trimethylglycine) is also a methyl donor in

  6. Betaine-homocysteine methyltransferase: zinc in a distorted barrel

    Czech Academy of Sciences Publication Activity Database

    Evans, J. C.; Huddler, D. P.; Jiráček, Jiří; Castro, C.; Millian, N. S.; Garrow, T. A.; Ludwig, M. L.

    2002-01-01

    Roč. 10, - (2002), s. 1159-1171 ISSN 0969-2126 R&D Projects: GA AV ČR IAB4055003 Grant - others:NIH(US) GM16429; NIH(US) DK52501 Institutional research plan: CEZ:AV0Z4055905 Keywords : homocysteine Subject RIV: CE - Biochemistry Impact factor: 6.030, year: 2002

  7. Dissecting the Catalytic Mechanism of Betaine - Homocysteine S-Methyltransferase by Use of Intrinsic Tryptophan Fluorescence and Site-Directed Mutagenesis

    Czech Academy of Sciences Publication Activity Database

    Castro, C.; Gratson, A. A.; Evans, J. C.; Jiráček, Jiří; Collinsová, Michaela; Ludwig, M. L.; Garrow, T. A.

    2004-01-01

    Roč. 43, č. 18 (2004), s. 5341-5351 ISSN 0006-2960 R&D Projects: GA AV ČR IAA4055302 Grant - others:NIH(US) GM16429; NIH(US) DK52501; Illinois Agricultural Experimental Station(US) ILLU-698-352 Institutional research plan: CEZ:AV0Z4055905 Keywords : BHMT * CBHcy * fluorescence Subject RIV: CE - Biochemistry Impact factor: 4.008, year: 2004

  8. Regulation of homocysteine metabolism and methylation in human and mouse tissues

    Science.gov (United States)

    Chen, Natalie C.; Yang, Fan; Capecci, Louis M.; Gu, Ziyu; Schafer, Andrew I.; Durante, William; Yang, Xiao-Feng; Wang, Hong

    2010-01-01

    Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. Homocysteine (Hcy) metabolism involves multiple enzymes; however, tissue Hcy metabolism and its relevance to methylation remain unknown. Here, we established gene expression profiles of 8 Hcy metabolic and 12 methylation enzymes in 20 human and 19 mouse tissues through bioinformatic analysis using expression sequence tag clone counts in tissue cDNA libraries. We analyzed correlations between gene expression, Hcy, S-adenosylhomocysteine (SAH), and S-adenosylmethionine (SAM) levels, and SAM/SAH ratios in mouse tissues. Hcy metabolic and methylation enzymes were classified into two types. The expression of Type 1 enzymes positively correlated with tissue Hcy and SAH levels. These include cystathionine β-synthase, cystathionine-γ-lyase, paraxonase 1, 5,10-methylenetetrahydrofolate reductase, betaine:homocysteine methyltransferase, methionine adenosyltransferase, phosphatidylethanolamine N-methyltransferases and glycine N-methyltransferase. Type 2 enzyme expressions correlate with neither tissue Hcy nor SAH levels. These include SAH hydrolase, methionyl-tRNA synthase, 5-methyltetrahydrofolate:Hcy methyltransferase, S-adenosylmethionine decarboxylase, DNA methyltransferase 1/3a, isoprenylcysteine carboxyl methyltransferases, and histone-lysine N-methyltransferase. SAH is the only Hcy metabolite significantly correlated with Hcy levels and methylation enzyme expression. We established equations expressing combined effects of methylation enzymes on tissue SAH, SAM, and SAM/SAH ratios. Our study is the first to provide panoramic tissue gene expression profiles and mathematical models of tissue methylation regulation.—Chen, N. C., Yang, F., Capecci, L. M., Gu, Z., Schafer, A. I., Durante, W., Yang, X.-F., Wang, H. Regulation of homocysteine metabolism and methylation in human and mouse tissues. PMID:20305127

  9. A Protein Extract from Chicken Reduces Plasma Homocysteine in Rats

    Directory of Open Access Journals (Sweden)

    Vegard Lysne

    2015-06-01

    Full Text Available The present study aimed to evaluate effects of a water-soluble protein fraction of chicken (CP, with a low methionine/glycine ratio, on plasma homocysteine and metabolites related to homocysteine metabolism. Male Wistar rats were fed either a control diet with 20% w/w casein as the protein source, or an experimental diet where 6, 14 or 20% w/w of the casein was replaced with the same amount of CP for four weeks. Rats fed CP had reduced plasma total homocysteine level and markedly increased levels of the choline pathway metabolites betaine, dimethylglycine, sarcosine, glycine and serine, as well as the transsulfuration pathway metabolites cystathionine and cysteine. Hepatic mRNA level of enzymes involved in homocysteine remethylation, methionine synthase and betaine-homocysteine S-methyltransferase, were unchanged, whereas cystathionine gamma-lyase of the transsulfuration pathway was increased in the CP treated rats. Plasma concentrations of vitamin B2, folate, cobalamin, and the B-6 catabolite pyridoxic acid were increased in the 20% CP-treated rats. In conclusion, the CP diet was associated with lower plasma homocysteine concentration and higher levels of serine, choline oxidation and transsulfuration metabolites compared to a casein diet. The status of related B-vitamins was also affected by CP.

  10. Effect of Folic Acid, Betaine, Vitamin B₆, and Vitamin B12 on Homocysteine and Dimethylglycine Levels in Middle-Aged Men Drinking White Wine.

    Science.gov (United States)

    Rajdl, Daniel; Racek, Jaroslav; Trefil, Ladislav; Stehlik, Pavel; Dobra, Jana; Babuska, Vaclav

    2016-01-12

    Moderate regular consumption of alcoholic beverages is believed to protect against atherosclerosis but can also increase homocysteine or dimethylglycine, which are putative risk factors for atherosclerosis. We aimed (1) to investigate the effect of alcohol consumption on vitamins and several metabolites involved in one-carbon metabolism; and (2) to find the most effective way of decreasing homocysteine during moderate alcohol consumption. Male volunteers (n = 117) were randomly divided into five groups: the wine-only group (control, 375 mL of white wine daily for one month) and four groups combining wine consumption with one of the supplemented substances (folic acid, betaine, and vitamins B12 or B₆). Significant lowering of homocysteine concentration after the drinking period was found in subjects with concurrent folate and betaine supplementation. Vitamin B12 and vitamin B₆ supplementation did not lead to a statistically significant change in homocysteine. According to a multiple linear regression model, the homocysteine change in the wine-only group was mainly determined by the interaction between the higher baseline homocysteine concentration and the change in dimethylglycine levels. Folate and betaine can attenuate possible adverse effects of moderate alcohol consumption. Dimethylglycine should be interpreted together with data on alcohol consumption and homocysteine concentration.

  11. The Roles of Two miRNAs in Regulating the Immune Response of Sea Cucumber.

    Science.gov (United States)

    Zhang, Pengjuan; Li, Chenghua; Zhang, Ran; Zhang, Weiwei; Jin, Chunhua; Wang, Lingling; Song, Linsheng

    2015-12-01

    MicroRNAs (miRNAs) have emerged as key regulators in many pathological processes by suppressing the transcriptional and post-transcriptional expression of target genes. MiR-2008 was previously found to be significantly up-regulated in diseased sea cucumber Apostichopus japonicus by high-through sequencing, whereas the reads of miR-137, a well-documented tumor repressor, displayed no significant change. In the present study, we found that miR-137 expression was slightly attenuated and miR-2008 was significantly enhanced after Vibrio splendidus infection or Lipopolysaccharides application. Further target screening and dual-luciferase reporter assay revealed that the two important miRNAs shared a common target gene of betaine-homocysteine S-methyltransferase (AjBHMT), which exhibited noncorrelated messenger RNA and protein expression patterns after bacterial challenge. In order to fully understand their regulatory mechanisms, we conducted the functional experiments in vitro and in vivo. The overexpression of miR-137 in sea cucumber or primary coelomocytes significantly decreased, whereas the inhibition of miR-137 increased the mRNA and protein expression levels of AjBHMT. In contrast, miR-2008 overexpression and inhibition showed no effect on AjBHMT mRNA levels, but the concentration of AjBHMT protein displayed significant changes both in vitro and in vivo. Consistently, the homocysteine (Hcy) contents were also accordingly altered in the aberrant expression analysis of both miRNAs, consistent with the results of the AjBHMT silencing assay in vitro and in vivo. More importantly, small interfering RNA mediated AjBHMT knockdown and Hcy exposure analyses both significantly increased reactive oxygen species (ROS) production and decreased the number of surviving invasive pathogen in sea cucumber coelomocytes. Taken together, these findings confirmed the differential roles of sea cucumber miR-137 and miR-2008 in regulating the common target AjBHMT to promote ROS production

  12. Crystal structure of the homocysteine methyltransferase MmuM from Escherichia coli.

    Science.gov (United States)

    Li, Kunhua; Li, Gengnan; Bradbury, Louis M T; Hanson, Andrew D; Bruner, Steven D

    2016-02-01

    Homocysteine S-methyltransferases (HMTs, EC 2.1.1.0) catalyse the conversion of homocysteine to methionine using S-methylmethionine or S-adenosylmethionine as the methyl donor. HMTs play an important role in methionine biosynthesis and are widely distributed among micro-organisms, plants and animals. Additionally, HMTs play a role in metabolite repair of S-adenosylmethionine by removing an inactive diastereomer from the pool. The mmuM gene product from Escherichia coli is an archetypal HMT family protein and contains a predicted zinc-binding motif in the enzyme active site. In the present study, we demonstrate X-ray structures for MmuM in oxidized, apo and metallated forms, representing the first such structures for any member of the HMT family. The structures reveal a metal/substrate-binding pocket distinct from those in related enzymes. The presented structure analysis and modelling of co-substrate interactions provide valuable insight into the function of MmuM in both methionine biosynthesis and cofactor repair. © 2016 Authors; published by Portland Press Limited.

  13. Combining combinatorial chemistry and affinity chromatography protocols for systematically probing protein-ligand interactions: application to the development of highly selective phosphinic inhibitors of human bataine: homocysteine S-methyltransferase

    Czech Academy of Sciences Publication Activity Database

    Collinsová, Michaela; Garrow, T. A.; Castro, C.; Dive, V.; Yiotakis, A.; Jiráček, Jiří

    2002-01-01

    Roč. 8, - (2002), s. S221 ISSN 1075-2617. [European Peptide Symposium /27./. 31.08.2002-06.09.2002, Sorrento] Institutional research plan: CEZ:AV0Z4055905 Keywords : homocysteine S-methyltransferase Subject RIV: CE - Biochemistry

  14. Impaired Homocysteine Transmethylation and Protein-Methyltransferase Activity Reduce Expression of Selenoprotein P: Implications for Obesity and Metabolic Syndrome

    Science.gov (United States)

    Obesity causes Metabolic Syndrome and Type-II Diabetes, disrupting hepatic function, methionine (Met)/homocysteine (Hcy) transmethylation and methyltransferase (PRMT) activities. Selenoprotein P (SEPP1), exported from the liver, is the predominate form of plasma selenium (Se) and the physiological S...

  15. Choline and methionine differentially alter methyl carbon metabolism in bovine neonatal hepatocytes.

    Science.gov (United States)

    Chandler, Tawny L; White, Heather M

    2017-01-01

    Intersections in hepatic methyl group metabolism pathways highlights potential competition or compensation of methyl donors. The objective of this experiment was to examine the expression of genes related to methyl group transfer and lipid metabolism in response to increasing concentrations of choline chloride (CC) and DL-methionine (DLM) in primary neonatal hepatocytes that were or were not exposed to fatty acids (FA). Primary hepatocytes isolated from 4 neonatal Holstein calves were maintained as monolayer cultures for 24 h before treatment with CC (61, 128, 2028, and 4528 μmol/L) and DLM (16, 30, 100, 300 μmol/L), with or without a 1 mmol/L FA cocktail in a factorial arrangement. After 24 h of treatment, media was collected for quantification of reactive oxygen species (ROS) and very low-density lipoprotein (VLDL), and cell lysates were collected for quantification of gene expression. No interactions were detected between CC, DLM, or FA. Both CC and DLM decreased the expression of methionine adenosyltransferase 1A (MAT1A). Increasing CC did not alter betaine-homocysteine S-methyltranferase (BHMT) but did increase 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) and methylenetetrahydrofolate reductase (MTHFR) expression. Increasing DLM decreased expression of BHMT and MTR, but did not affect MTHFR. Expression of both phosphatidylethanolamine N-methyltransferase (PEMT) and microsomal triglyceride transfer protein (MTTP) were decreased by increasing CC and DLM, while carnitine palmitoyltransferase 1A (CPT1A) was unaffected by either. Treatment with FA decreased the expression of MAT1A, MTR, MTHFR and tended to decrease PEMT but did not affect BHMT and MTTP. Treatment with FA increased CPT1A expression. Increasing CC increased secretion of VLDL and decreased the accumulation of ROS in media. Within neonatal bovine hepatocytes, choline and methionine differentially regulate methyl carbon pathways and suggest that choline may play a critical role in

  16. Studies on N5-methyltetrahydrofolate-homocystein methyltransferase in normal and leukemia leukocytes.

    Science.gov (United States)

    Peytremann, R; Thorndike, J; Beck, W S

    1975-11-01

    A cobalamin-dependent N5-methyltetra-hydrofolate-homocysteine methyltransferase (methyl-transferase) was demonstrated in unfractioned extracts of human normal and leukemia leukocytes. Activity was substantially reduced in the absence of an added cobalamin derivative. Presumably, this residual activity reflects the endogeneous level of holoenzyme. Enzyme activity was notably higher in lymphoid cells than in myeloid cells. Thus, mean specific activities (+/-SD) were: chronic lymphocytic leukemia lymphocytes, 2.15+/-1.16; normal lymphocytes, 0.91+/-0.59; normal mature granulocytes, 0.15+/-0.10; chronic myelocytic leukemia granulocytes, barely detectable activity. Properties of leukocytes enzymes resembled those of methyltransferases previously studied in bacteria and other animal cells. Granulocytes and chronic myelocytic leukemia cells contain a factor or factors that inhibits Escherichia coli enzyme. The data suggest that the prominence of this cobalamin-dependent enzyme in lymphocytes and other mononuclear cell types may be related to their potential for cell division.

  17. S-Inosyl-L-Homocysteine Hydrolase, a Novel Enzyme Involved in S-Adenosyl-L-Methionine Recycling.

    Science.gov (United States)

    Miller, Danielle; Xu, Huimin; White, Robert H

    2015-07-01

    S-Adenosyl-L-homocysteine, the product of S-adenosyl-L-methionine (SAM) methyltransferases, is known to be a strong feedback inhibitor of these enzymes. A hydrolase specific for S-adenosyl-L-homocysteine produces L-homocysteine, which is remethylated to methionine and can be used to regenerate SAM. Here, we show that the annotated S-adenosyl-L-homocysteine hydrolase in Methanocaldococcus jannaschii is specific for the hydrolysis and synthesis of S-inosyl-L-homocysteine, not S-adenosyl-L-homocysteine. This is the first report of an enzyme specific for S-inosyl-L-homocysteine. As with S-adenosyl-L-homocysteine hydrolase, which shares greater than 45% sequence identity with the M. jannaschii homologue, the M. jannaschii enzyme was found to copurify with bound NAD(+) and has Km values of 0.64 ± 0.4 mM, 0.0054 ± 0.006 mM, and 0.22 ± 0.11 mM for inosine, L-homocysteine, and S-inosyl-L-homocysteine, respectively. No enzymatic activity was detected with S-adenosyl-L-homocysteine as the substrate in either the synthesis or hydrolysis direction. These results prompted us to redesignate the M. jannaschii enzyme an S-inosyl-L-homocysteine hydrolase (SIHH). Identification of SIHH demonstrates a modified pathway in this methanogen for the regeneration of SAM from S-adenosyl-L-homocysteine that uses the deamination of S-adenosyl-L-homocysteine to form S-inosyl-L-homocysteine. In strictly anaerobic methanogenic archaea, such as Methanocaldococcus jannaschii, canonical metabolic pathways are often not present, and instead, unique pathways that are deeply rooted on the phylogenetic tree are utilized by the organisms. Here, we discuss the recycling pathway for S-adenosyl-L-homocysteine, produced from S-adenosyl-L-methionine (SAM)-dependent methylation reactions, which uses a hydrolase specific for S-inosyl-L-homocysteine, an uncommon metabolite. Identification of the pathways and the enzymes involved in the unique pathways in the methanogens will provide insight into the

  18. Structures of a putative RNA 5-methyluridine methyltransferase, Thermus thermophilus TTHA1280, and its complex with S-adenosyl-l-homocysteine

    International Nuclear Information System (INIS)

    Pioszak, Augen A.; Murayama, Kazutaka; Nakagawa, Noriko; Ebihara, Akio; Kuramitsu, Seiki; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2005-01-01

    Three structures of a putative RNA 5-methyluridine methyltransferase from T. thermophilus, including its complex with S-adenosyl-l-homocysteine, are presented. The structures reveal the mode of cofactor binding, architecture of the putative active site, and the presence of a deep cleft adjacent to the active site that may bind RNA. The Thermus thermophilus hypothetical protein TTHA1280 belongs to a family of predicted S-adenosyl-l-methionine (AdoMet) dependent RNA methyltransferases (MTases) present in many bacterial and archaeal species. Inspection of amino-acid sequence motifs common to class I Rossmann-fold-like MTases suggested a specific role as an RNA 5-methyluridine MTase. Selenomethionine (SeMet) labelled and native versions of the protein were expressed, purified and crystallized. Two crystal forms of the SeMet-labelled apoprotein were obtained: SeMet-ApoI and SeMet-ApoII. Cocrystallization of the native protein with S-adenosyl-l-homocysteine (AdoHcy) yielded a third crystal form, Native-AdoHcy. The SeMet-ApoI structure was solved by the multiple anomalous dispersion method and refined at 2.55 Å resolution. The SeMet-ApoII and Native-AdoHcy structures were solved by molecular replacement and refined at 1.80 and 2.60 Å, respectively. TTHA1280 formed a homodimer in the crystals and in solution. Each subunit folds into a three-domain structure composed of a small N-terminal PUA domain, a central α/β-domain and a C-terminal Rossmann-fold-like MTase domain. The three domains form an overall clamp-like shape, with the putative active site facing a deep cleft. The architecture of the active site is consistent with specific recognition of uridine and catalysis of methyl transfer to the 5-carbon position. The cleft is suitable in size and charge distribution for binding single-stranded RNA.

  19. Development of first inhibitors for betaine-homocysteine S-methyltransferase 2

    Czech Academy of Sciences Publication Activity Database

    Mládková, J.; Vaněk, Václav; Elbert, Tomáš; Buděšínský, Miloš; Jiráček, Jiří

    2012-01-01

    Roč. 106, - (2012), s894-s894 ISSN 0009-2770. [EuCheMS Chemistry Congress /4./. 26.08.2012-30.08.2012, Prague] Institutional research plan: CEZ:AV0Z40550506 Keywords : enzyme catalysis * inhibitors * alkylation Subject RIV: CC - Organic Chemistry

  20. Elevated dimethylglycine in blood of children with congenital heart defects and their mothers.

    Science.gov (United States)

    Alsayed, Ranwa; Al Quobaili, Faizeh; Srour, Samir; Geisel, Jürgen; Obeid, Rima

    2013-08-01

    Congenital Heart Defects (CHD) may be related to nutritional deficiencies affecting the methylation cycle. We aimed to study the metabolic markers of the betaine homocysteine methyl transferase (BHMT) pathway in children with CHD and their mothers compared to children without CHD and their mothers. Children with CHD (n=105, age DMG). Children with CHD had higher plasma SAM (131 vs. 100 nmol/L) and DMG (8.7 vs. 6.0 μmol/L) and lower betaine/DMG ratio (7.5 vs. 10.2) compared to the controls. Mothers of CHD children showed also higher DMG (6.1 vs. 4.1 µmol/L) and lower betaine/DMG ratio compared with the mothers of the controls. Higher SAM levels were related to higher cystathionine, MMA, betaine, choline, and DMG. MMA elevation in the patients was related to higher HCY, SAM, betaine and DMG. Elevated DMG in CHD children and their mothers compared to the controls can indicate upregulation of the BHMT pathway in this disease group. Nutritional factors are related to metabolic imbalance during pregnancy that may be related to worse birth outcome. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A Possible Mechanism: Vildagliptin Prevents Aortic Dysfunction through Paraoxonase and Angiopoietin-Like 3

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2018-01-01

    Full Text Available The collected data have revealed the beneficial effects of dipeptidyl peptidase-4 (DPP-4 inhibitors on the vascular endothelium, including vildagliptin. However, the involved mechanisms are not yet clear. In this study, Sprague-Dawley rats were randomly divided into the following four groups: control, diabetic, diabetic + low-dose vildagliptin (10 mg/kg/d, and diabetic + high-dose vildagliptin (20 mg/kg/d. The diabetic model was created by feeding a high-fat diet for four weeks and injection of streptozotocin. Then, vildagliptin groups were given oral vildagliptin for twelve weeks, and the control and diabetic groups were given the same volume of saline. The metabolic parameters, endothelial function, and whole genome expression in the aorta were examined. After 12 weeks of treatment, vildagliptin groups showed significantly reduced blood glucose, blood total cholesterol, and attenuated endothelial dysfunction. Notably, vildagliptin may inhibit angiopoietin-like 3 (Angptl3 and betaine-homocysteine S-methyltransferase (Bhmt expression and activated paraoxonase-1 (Pon1 in the aorta of diabetic rats. These findings may demonstrate the vasoprotective pathway of vildagliptin in vivo.

  2. Metazoan Remaining Genes for Essential Amino Acid Biosynthesis: Sequence Conservation and Evolutionary Analyses

    Directory of Open Access Journals (Sweden)

    Igor R. Costa

    2014-12-01

    Full Text Available Essential amino acids (EAA consist of a group of nine amino acids that animals are unable to synthesize via de novo pathways. Recently, it has been found that most metazoans lack the same set of enzymes responsible for the de novo EAA biosynthesis. Here we investigate the sequence conservation and evolution of all the metazoan remaining genes for EAA pathways. Initially, the set of all 49 enzymes responsible for the EAA de novo biosynthesis in yeast was retrieved. These enzymes were used as BLAST queries to search for similar sequences in a database containing 10 complete metazoan genomes. Eight enzymes typically attributed to EAA pathways were found to be ubiquitous in metazoan genomes, suggesting a conserved functional role. In this study, we address the question of how these genes evolved after losing their pathway partners. To do this, we compared metazoan genes with their fungal and plant orthologs. Using phylogenetic analysis with maximum likelihood, we found that acetolactate synthase (ALS and betaine-homocysteine S-methyltransferase (BHMT diverged from the expected Tree of Life (ToL relationships. High sequence conservation in the paraphyletic group Plant-Fungi was identified for these two genes using a newly developed Python algorithm. Selective pressure analysis of ALS and BHMT protein sequences showed higher non-synonymous mutation ratios in comparisons between metazoans/fungi and metazoans/plants, supporting the hypothesis that these two genes have undergone non-ToL evolution in animals.

  3. Variability of plasma and urine betaine in diabetes mellitus and its relationship to methionine load test responses: an observational study

    Directory of Open Access Journals (Sweden)

    Lever Michael

    2012-07-01

    Full Text Available Abstract Background Since betaine is an osmolyte and methyl donor, and abnormal betaine loss is common in diabetes mellitus (>20% patients, we investigated the relationship between betaine and the post-methionine load rise in homocysteine, in diabetes and control subjects. The post-methionine load test is reported to be both an independent vascular risk factor and a measure of betaine sufficiency. Methods Patients with type 2 diabetes (n = 34 and control subjects (n = 17 were recruited. We measured baseline fasting plasma and 4-hour post-methionine load (L-methionine, 0.1 mg/kg body weight concentrations of homocysteine, betaine, and the betaine metabolite N,N-dimethylglycine. Baseline urine excretions of betaine, dimethylglycine and glucose were measured on morning urine samples as the ratio to urine creatinine. Statistical determinants of the post-methionine load increase in homocysteine were identified in multiple linear regression models. Results Plasma betaine concentrations and urinary betaine excretions were significantly (p p = 0.00014 and plasma dimethylglycine concentrations (p = 0.039 were also more variable. In diabetes, plasma betaine was a significant negative determinant (p  Conclusions Both high and low plasma betaine concentrations, and high and low urinary betaine excretions, are more prevalent in diabetes. The availability of betaine affects the response in the methionine load test. The benefits of increasing betaine intake should be investigated.

  4. Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase*

    OpenAIRE

    Lim, Siew Pheng; Sonntag, Louis Sebastian; Noble, Christian; Nilar, Shahul H.; Ng, Ru Hui; Zou, Gang; Monaghan, Paul; Chung, Ka Yan; Dong, Hongping; Liu, Boping; Bodenreider, Christophe; Lee, Gladys; Ding, Mei; Chan, Wai Ling; Wang, Gang

    2010-01-01

    Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crysta...

  5. Modification of S-Adenosyl-l-Homocysteine as Inhibitor of Nonstructural Protein 5 Methyltransferase Dengue Virus Through Molecular Docking and Molecular Dynamics Simulation.

    Science.gov (United States)

    Tambunan, Usman Sumo Friend; Nasution, Mochammad Arfin Fardiansyah; Azhima, Fauziah; Parikesit, Arli Aditya; Toepak, Erwin Prasetya; Idrus, Syarifuddin; Kerami, Djati

    2017-01-01

    Dengue fever is still a major threat worldwide, approximately threatening two-fifths of the world's population in tropical and subtropical countries. Nonstructural protein 5 (NS5) methyltransferase enzyme plays a vital role in the process of messenger RNA capping of dengue by transferring methyl groups from S -adenosyl-l-methionine to N7 atom of the guanine bases of RNA and the RNA ribose group of 2'OH, resulting in S -adenosyl-l-homocysteine (SAH). The modification of SAH compound was screened using molecular docking and molecular dynamics simulation, along with computational ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) test. The 2 simulations were performed using Molecular Operating Environment (MOE) 2008.10 software, whereas the ADME-Tox test was performed using various software. The modification of SAH compound was done using several functional groups that possess different polarities and properties, resulting in 3460 ligands to be docked. After conducting docking simulation, we earned 3 best ligands (SAH-M331, SAH-M2696, and SAH-M1356) based on ΔG binding and molecular interactions, which show better results than the standard ligands. Moreover, the results of molecular dynamics simulation show that the best ligands are still able to maintain the active site residue interaction with the binding site until the end of the simulation. After a series of molecular docking and molecular dynamics simulation were performed, we concluded that SAH-M1356 ligand is the most potential SAH-based compound to inhibit NS5 methyltransferase enzyme for treating dengue fever.

  6. Blood lead levels, iron metabolism gene polymorphisms and homocysteine: a gene-environment interaction study.

    Science.gov (United States)

    Kim, Kyoung-Nam; Lee, Mee-Ri; Lim, Youn-Hee; Hong, Yun-Chul

    2017-12-01

    Homocysteine has been causally associated with various adverse health outcomes. Evidence supporting the relationship between lead and homocysteine levels has been accumulating, but most prior studies have not focused on the interaction with genetic polymorphisms. From a community-based prospective cohort, we analysed 386 participants (aged 41-71 years) with information regarding blood lead and plasma homocysteine levels. Blood lead levels were measured between 2001 and 2003, and plasma homocysteine levels were measured in 2007. Interactions of lead levels with 42 genotyped single-nucleotide polymorphisms (SNPs) in five genes ( TF , HFE , CBS , BHMT and MTR ) were assessed via a 2-degree of freedom (df) joint test and a 1-df interaction test. In secondary analyses using imputation, we further assessed 58 imputed SNPs in the TF and MTHFR genes. Blood lead concentrations were positively associated with plasma homocysteine levels (p=0.0276). Six SNPs in the TF and MTR genes were screened using the 2-df joint test, and among them, three SNPs in the TF gene showed interactions with lead with respect to homocysteine levels through the 1-df interaction test (plead levels. Blood lead levels were positively associated with plasma homocysteine levels measured 4-6 years later, and three SNPs in the TF gene modified the association. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Effect of homocysteine-lowering nutrients on blood lipids: results from four randomised, placebo-controlled studies in healthy humans.

    Directory of Open Access Journals (Sweden)

    Margreet R Olthof

    2005-05-01

    Full Text Available BACKGROUND: Betaine (trimethylglycine lowers plasma homocysteine, a possible risk factor for cardiovascular disease. However, studies in renal patients and in obese individuals who are on a weight-loss diet suggest that betaine supplementation raises blood cholesterol; data in healthy individuals are lacking. Such an effect on cholesterol would counteract any favourable effect on homocysteine. We therefore investigated the effect of betaine, of its precursor choline in the form of phosphatidylcholine, and of the classical homocysteine-lowering vitamin folic acid on blood lipid concentrations in healthy humans. METHODS AND FINDINGS: We measured blood lipids in four placebo-controlled, randomised intervention studies that examined the effect of betaine (three studies, n = 151, folic acid (two studies, n = 75, and phosphatidylcholine (one study, n = 26 on plasma homocysteine concentrations. We combined blood lipid data from the individual studies and calculated a weighted mean change in blood lipid concentrations relative to placebo. Betaine supplementation (6 g/d for 6 wk increased blood LDL cholesterol concentrations by 0.36 mmol/l (95% confidence interval: 0.25-0.46, and triacylglycerol concentrations by 0.14 mmol/l (0.04-0.23 relative to placebo. The ratio of total to HDL cholesterol increased by 0.23 (0.14-0.32. Concentrations of HDL cholesterol were not affected. Doses of betaine lower than 6 g/d also raised LDL cholesterol, but these changes were not statistically significant. Further, the effect of betaine on LDL cholesterol was already evident after 2 wk of intervention. Phosphatidylcholine supplementation (providing approximately 2.6 g/d of choline for 2 wk increased triacylglycerol concentrations by 0.14 mmol/l (0.06-0.21, but did not affect cholesterol concentrations. Folic acid supplementation (0.8 mg/d had no effect on lipid concentrations. CONCLUSIONS: Betaine supplementation increased blood LDL cholesterol and triacylglycerol

  8. S-Adenosyl-S-carboxymethyl-l-homocysteine: a novel cofactor found in the putative tRNA-modifying enzyme CmoA

    International Nuclear Information System (INIS)

    Byrne, Robert T.; Whelan, Fiona; Aller, Pierre; Bird, Louise E.; Dowle, Adam; Lobley, Carina M. C.; Reddivari, Yamini; Nettleship, Joanne E.; Owens, Raymond J.; Antson, Alfred A.; Waterman, David G.

    2013-01-01

    The putative methyltransferase CmoA is involved in the nucleoside modification of transfer RNA. X-ray crystallography and mass spectrometry are used to show that it contains a novel SAM derivative, S-adenosyl-S-carboxymethyl-l-homocysteine, in which the donor methyl group is replaced by a carboxymethyl group. Uridine at position 34 of bacterial transfer RNAs is commonly modified to uridine-5-oxyacetic acid (cmo 5 U) to increase the decoding capacity. The protein CmoA is involved in the formation of cmo 5 U and was annotated as an S-adenosyl-l-methionine-dependent (SAM-dependent) methyltransferase on the basis of its sequence homology to other SAM-containing enzymes. However, both the crystal structure of Escherichia coli CmoA at 1.73 Å resolution and mass spectrometry demonstrate that it contains a novel cofactor, S-adenosyl-S-carboxymethyl-l-homocysteine (SCM-SAH), in which the donor methyl group is substituted by a carboxymethyl group. The carboxyl moiety forms a salt-bridge interaction with Arg199 that is conserved in a large group of CmoA-related proteins but is not conserved in other SAM-containing enzymes. This raises the possibility that a number of enzymes that have previously been annotated as SAM-dependent are in fact SCM-SAH-dependent. Indeed, inspection of electron density for one such enzyme with known X-ray structure, PDB entry http://scripts.iucr.org/cgi-bin/cr.cgi?rm, suggests that the active site contains SCM-SAH and not SAM

  9. Dietary strategies to treat hyperhomocysteinaemia based on the ...

    African Journals Online (AJOL)

    2014-01-13

    Jan 13, 2014 ... of a methyl group and the purine base, adenine (from adenosine triphosphate or ..... rat liver betaine‑homocysteine methyltransferase gene expression and organization of the .... Betaine rescue of an animal model with.

  10. Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase*

    Science.gov (United States)

    Lim, Siew Pheng; Sonntag, Louis Sebastian; Noble, Christian; Nilar, Shahul H.; Ng, Ru Hui; Zou, Gang; Monaghan, Paul; Chung, Ka Yan; Dong, Hongping; Liu, Boping; Bodenreider, Christophe; Lee, Gladys; Ding, Mei; Chan, Wai Ling; Wang, Gang; Jian, Yap Li; Chao, Alexander Theodore; Lescar, Julien; Yin, Zheng; Vedananda, T. R.; Keller, Thomas H.; Shi, Pei-Yong

    2011-01-01

    Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crystal structure of dengue virus MTase with a bound SAH derivative revealed that its N6-substituent bound in this cavity and induced conformation changes in residues lining the pocket. These findings demonstrate that one of the major hurdles for the development of methyltransferase-based therapeutics, namely selectivity for disease-related methyltransferases, can be overcome. PMID:21147775

  11. S-Adenosyl-S-carboxymethyl-l-homocysteine: a novel cofactor found in the putative tRNA-modifying enzyme CmoA

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Robert T.; Whelan, Fiona [University of York, Heslington YO10 5DD (United Kingdom); Aller, Pierre [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Bird, Louise E. [OPPF-UK, Research Complex at Harwell, R92 Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Oxford University, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Dowle, Adam [University of York, Heslington YO10 5DD (United Kingdom); Lobley, Carina M. C. [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Reddivari, Yamini; Nettleship, Joanne E.; Owens, Raymond J. [OPPF-UK, Research Complex at Harwell, R92 Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Oxford University, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Antson, Alfred A. [University of York, Heslington YO10 5DD (United Kingdom); Waterman, David G., E-mail: david.waterman@stfc.ac.uk [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); University of York, Heslington YO10 5DD (United Kingdom)

    2013-06-01

    The putative methyltransferase CmoA is involved in the nucleoside modification of transfer RNA. X-ray crystallography and mass spectrometry are used to show that it contains a novel SAM derivative, S-adenosyl-S-carboxymethyl-l-homocysteine, in which the donor methyl group is replaced by a carboxymethyl group. Uridine at position 34 of bacterial transfer RNAs is commonly modified to uridine-5-oxyacetic acid (cmo{sup 5}U) to increase the decoding capacity. The protein CmoA is involved in the formation of cmo{sup 5}U and was annotated as an S-adenosyl-l-methionine-dependent (SAM-dependent) methyltransferase on the basis of its sequence homology to other SAM-containing enzymes. However, both the crystal structure of Escherichia coli CmoA at 1.73 Å resolution and mass spectrometry demonstrate that it contains a novel cofactor, S-adenosyl-S-carboxymethyl-l-homocysteine (SCM-SAH), in which the donor methyl group is substituted by a carboxymethyl group. The carboxyl moiety forms a salt-bridge interaction with Arg199 that is conserved in a large group of CmoA-related proteins but is not conserved in other SAM-containing enzymes. This raises the possibility that a number of enzymes that have previously been annotated as SAM-dependent are in fact SCM-SAH-dependent. Indeed, inspection of electron density for one such enzyme with known X-ray structure, PDB entry http://scripts.iucr.org/cgi-bin/cr.cgi?rm, suggests that the active site contains SCM-SAH and not SAM.

  12. Betaine is as effective as folate at re-synthesizing methionine for protein synthesis during moderate methionine deficiency in piglets.

    Science.gov (United States)

    McBreairty, Laura E; Robinson, Jason L; Harding, Scott V; Randell, Edward W; Brunton, Janet A; Bertolo, Robert F

    2016-12-01

    Both folate and betaine (synthesized from choline) are nutrients used to methylate homocysteine to reform the amino acid methionine following donation of its methyl group; however, it is unclear whether both remethylation pathways are of equal importance during the neonatal period when remethylation rates are high. Methionine is an indispensable amino acid that is in high demand in neonates not only for protein synthesis, but is also particularly important for transmethylation reactions, such as creatine and phosphatidylcholine synthesis. The objective of this study was to determine whether supplementation with folate, betaine, or a combination of both can equally re-synthesize methionine for protein synthesis when dietary methionine is limiting. Piglets were fed a low methionine diet devoid of folate, choline, and betaine, and on day 6, piglets were supplemented with either folate, betaine, or folate + betaine (n = 6 per treatment) until day 10. [1- 13 C]-phenylalanine oxidation was measured as an indicator of methionine availability for protein synthesis both before and after 2 days of supplementation. Prior to supplementation, piglets had lower concentrations of plasma folate, betaine, and choline compared to baseline with no change in homocysteine. Post-supplementation, phenylalanine oxidation levels were 20-46 % lower with any methyl donor supplementation (P = 0.006) with no difference among different supplementation groups. Furthermore, both methyl donors led to similarly lower concentrations of homocysteine following supplementation (P folate to remethylate methionine for protein synthesis, as indicated by lower phenylalanine oxidation.

  13. [Effects of dietary wheat gluten level on decreasing plasma homocysteine concentration in rats].

    Science.gov (United States)

    Liu, Yiqun; Han, Feng; Sun, Licui; Lu, Jiaxi; Sugiyama, Kimio; Huang, Zhenwu

    2015-05-01

    To investigate the effects of different level of casein and wheat gluten on decreasing plasma homocysteine concentration in rats. 48 rats of the Wistar were fed with different level of casein (12.5%, 25% and 50%) and wheat gluten (14.5%, 29% and 58%) diets for 14 days, and they were killed by decapitation to obtain blood and livers was subject to analysis the concentration of homocysteine, cysteine and other amino acids, as well as BHMT and CBS activities. Body weight gain in rats fed wheat gluten dietary was significantly less than casein dietary, but food intake was significantly decreased in wheat gluten group with increasing of the protein content. The plasma homocysteine concentration in rats fed wheat gluten was marketly less than casein, however plasma cysteine concentration in wheat gluten was higher than casein group. The effects of wheat gluten on plasma homocysteine concentration are mainly depends on the low contents of methionine and high cysteine content, but the low contents of lyscine and threonine are not ignored. The mainly mechanism is that the increased cysteine concentration promot enzyme activities of homocystein metabolism, and increase the consumption of homocysteine.

  14. Homocyst(e)ine and stroke.

    Science.gov (United States)

    Furie, Karen L; Kelly, Peter J

    2006-02-01

    Homocyst(e)ine elevation is associated with a two- to threefold fold increased risk of ischemic stroke. Although most commonly associated with large-artery atherosclerosis and venous thrombosis, hyperhomocysteinemia may contribute to stroke by other mechanisms as well. Levels of homocysteine are determined by genetic regulation of the enzymes involved in homocyst(e)ine metabolism and by levels of the vitamin cofactors (folate, B (6), and B (12)) associated with those reactions. Emerging evidence suggests that genetic variation within this pathway, such as the methyleneterahydrofolate reductase and cystathionine beta-synthase and nicotinamide N-methyltransferase genes, increases the risk of ischemic stroke. The introduction of grain folate fortification in 1998 has reduced homocyst(e)ine concentrations in the U.S. population. However, it is important to screen for vitamin B (12) deficiency and be cognizant that vitamin B (6) levels may be low in the elderly and in individuals with inflammatory disorders. The Vitamin Intervention in Stroke Prevention study failed to prove that high-dose supplementation with folate, B (6), and B (12) reduced the risk of recurrent stroke or myocardial infarction at 2 years; however, there is an ongoing clinical trial evaluating the potential benefit of vitamin supplementation.

  15. Variability of plasma and urine betaine in diabetes mellitus and its relationship to methionine load test responses: an observational study

    OpenAIRE

    Lever, Michael; Slow, Sandy; McGregor, David O; Dellow, Warwick J; George, Peter M; Chambers, Stephen T

    2012-01-01

    Abstract Background Since betaine is an osmolyte and methyl donor, and abnormal betaine loss is common in diabetes mellitus (>20% patients), we investigated the relationship between betaine and the post-methionine load rise in homocysteine, in diabetes and control subjects. The post-methionine load test is reported to be both an independent vascular risk factor and a measure of betaine sufficiency. Methods Patients with type 2 diabetes (n = 34) and control subjects (n = 17) were recruited. We...

  16. S-adenosyl-L-(l-14C)-homocysteine

    International Nuclear Information System (INIS)

    Thomas, H.J.; Montgomery, J.A.

    1987-01-01

    S-Adenosyl-L-(1- 14 C)-homocysteine was prepared from commercially available L-(1- 14 C)-methionine by conversion first to S-benzyl-L-(1- 14 C)-homocysteine which upon treatment with sodium in liquid ammonia gave the disodium salt of L-(1- 14 C)-homocysteine. Reaction of this sodium salt with 5'-O-tosyladenosine gave the title compound. (author)

  17. Modification of -Adenosyl--Homocysteine as Inhibitor of Nonstructural Protein 5 Methyltransferase Dengue Virus Through Molecular Docking and Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Usman Sumo Friend Tambunan

    2017-04-01

    Full Text Available Dengue fever is still a major threat worldwide, approximately threatening two-fifths of the world’s population in tropical and subtropical countries. Nonstructural protein 5 (NS5 methyltransferase enzyme plays a vital role in the process of messenger RNA capping of dengue by transferring methyl groups from S -adenosyl- l -methionine to N7 atom of the guanine bases of RNA and the RNA ribose group of 2′OH, resulting in S -adenosyl- l -homocysteine (SAH. The modification of SAH compound was screened using molecular docking and molecular dynamics simulation, along with computational ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity test. The 2 simulations were performed using Molecular Operating Environment (MOE 2008.10 software, whereas the ADME-Tox test was performed using various software. The modification of SAH compound was done using several functional groups that possess different polarities and properties, resulting in 3460 ligands to be docked. After conducting docking simulation, we earned 3 best ligands (SAH-M331, SAH-M2696, and SAH-M1356 based on ΔG binding and molecular interactions, which show better results than the standard ligands. Moreover, the results of molecular dynamics simulation show that the best ligands are still able to maintain the active site residue interaction with the binding site until the end of the simulation. After a series of molecular docking and molecular dynamics simulation were performed, we concluded that SAH-M1356 ligand is the most potential SAH-based compound to inhibit NS5 methyltransferase enzyme for treating dengue fever.

  18. Effects of hyperhomocysteinemia and betaine-homocysteine S-methyltransferase inhibition on hepatocyte metabolites and the proteome

    Czech Academy of Sciences Publication Activity Database

    Selicharová, Irena; Kořínek, M.; Demianova, Zuzana; Chrudinová, Martina; Mládková, Jana; Jiráček, Jiří

    2013-01-01

    Roč. 1834, č. 8 (2013), s. 1596-1606 ISSN 1570-9639 R&D Projects: GA ČR(CZ) GAP207/10/1277 Institutional support: RVO:61388963 Keywords : apolipoprotein * fibrinogen * one-carbon metabolism * S-Adenosylmethionine * two-dimensional electrophoresis Subject RIV: CE - Biochemistry Impact factor: 3.191, year: 2013

  19. Structural Basis of Substrate Recognition in Thiopurine S-Methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yi; Feng, Qiping; Wilk, Dennis; Adjei, Araba A.; Salavaggione, Oreste E.; Weinshilboum, Richard M.; Yee, Vivien C. (Case Western); (MCCM)

    2008-09-23

    Thiopurine S-methyltransferase (TPMT) modulates the cytotoxic effects of thiopurine prodrugs such as 6-mercaptopurine by methylating them in a reaction using S-adenosyl-l-methionine as the donor. Patients with TPMT variant allozymes exhibit diminished levels of protein and/or enzyme activity and are at risk for thiopurine drug-induced toxicity. We have determined two crystal structures of murine TPMT, as a binary complex with the product S-adenosyl-l-homocysteine and as a ternary complex with S-adenosyl-l-homocysteine and the substrate 6-mercaptopurine, to 1.8 and 2.0 {angstrom} resolution, respectively. Comparison of the structures reveals that an active site loop becomes ordered upon 6-mercaptopurine binding. The positions of the two ligands are consistent with the expected S{sub N}2 reaction mechanism. Arg147 and Arg221, the only polar amino acids near 6-mercaptopurine, are highlighted as possible participants in substrate deprotonation. To probe whether these residues are important for catalysis, point mutants were prepared in the human enzyme. Substitution of Arg152 (Arg147 in murine TPMT) with glutamic acid decreases V{sub max} and increases K{sub m} for 6-mercaptopurine but not K{sub m} for S-adenosyl-l-methionine. Substitution at this position with alanine or histidine and similar substitutions of Arg226 (Arg221 in murine TPMT) result in no effect on enzyme activity. The double mutant Arg152Ala/Arg226Ala exhibits a decreased V{sub max} and increased K{sub m} for 6-mercaptopurine. These observations suggest that either Arg152 or Arg226 may participate in some fashion in the TPMT reaction, with one residue compensating when the other is altered, and that Arg152 may interact with substrate more directly than Arg226, consistent with observations in the murine TPMT crystal structure.

  20. Anodic Aluminum Oxide Membrane-Assisted Fabrication of beta-In(2)S(3) Nanowires.

    Science.gov (United States)

    Shi, Jen-Bin; Chen, Chih-Jung; Lin, Ya-Ting; Hsu, Wen-Chia; Chen, Yu-Cheng; Wu, Po-Feng

    2009-06-06

    In this study, beta-In(2)S(3) nanowires were first synthesized by sulfurizing the pure Indium (In) nanowires in an AAO membrane. As FE-SEM results, beta-In(2)S(3) nanowires are highly ordered, arranged tightly corresponding to the high porosity of the AAO membrane used. The diameter of the beta-In(2)S(3) nanowires is about 60 nm with the length of about 6-8 mum. Moreover, the aspect ratio of beta-In(2)S(3) nanowires is up to 117. An EDS analysis revealed the beta-In(2)S(3) nanowires with an atomic ratio of nearly S/In = 1.5. X-ray diffraction and corresponding selected area electron diffraction patterns demonstrated that the beta-In(2)S(3) nanowire is tetragonal polycrystalline. The direct band gap energy (E(g)) is 2.40 eV from the optical measurement, and it is reasonable with literature.

  1. Crystal Structure of the Thermus thermophilus 16 S rRNA Methyltransferase RsmC in Complex with Cofactor and Substrate Guanosine

    Energy Technology Data Exchange (ETDEWEB)

    Demirci, H.; Gregory, S; Dahlberg, A; Jogl, G

    2008-01-01

    Post-transcriptional modification is a ubiquitous feature of ribosomal RNA in all kingdoms of life. Modified nucleotides are generally clustered in functionally important regions of the ribosome, but the functional contribution to protein synthesis is not well understood. Here we describe high resolution crystal structures for the N{sup 2}-guanine methyltransferase RsmC that modifies residue G1207 in 16 S rRNA near the decoding site of the 30 S ribosomal subunit. RsmC is a class I S-adenosyl-l-methionine-dependent methyltransferase composed of two methyltransferase domains. However, only one S-adenosyl-l-methionine molecule and one substrate molecule, guanosine, bind in the ternary complex. The N-terminal domain does not bind any cofactor. Two structures with bound S-adenosyl-l-methionine and S-adenosyl-l-homocysteine confirm that the cofactor binding mode is highly similar to other class I methyltransferases. Secondary structure elements of the N-terminal domain contribute to cofactor-binding interactions and restrict access to the cofactor-binding site. The orientation of guanosine in the active site reveals that G1207 has to disengage from its Watson-Crick base pairing interaction with C1051 in the 16 S rRNA and flip out into the active site prior to its modification. Inspection of the 30 S crystal structure indicates that access to G1207 by RsmC is incompatible with the native subunit structure, consistent with previous suggestions that this enzyme recognizes a subunit assembly intermediate.

  2. Crystallization of mouse S-adenosyl-l-homocysteine hydrolase

    International Nuclear Information System (INIS)

    Ishihara, Masaaki; Kusakabe, Yoshio; Ohsumichi, Tsuyoshi; Tanaka, Nobutada; Nakanishi, Masayuki; Kitade, Yukio; Nakamura, Kazuo T.

    2010-01-01

    Mouse S-adenosyl-l-homocysteine hydrolase has been crystallized in the presence of the reaction product adenosine. Diffraction data to 1.55 Å resolution were collected using synchrotron radiation. S-Adenosyl-l-homocysteine hydrolase (SAHH; EC 3.3.1.1) catalyzes the reversible hydrolysis of S-adenosyl-l-homocysteine to adenosine and l-homocysteine. For crystallographic investigations, mouse SAHH (MmSAHH) was overexpressed in bacterial cells and crystallized using the hanging-drop vapour-diffusion method in the presence of the reaction product adenosine. X-ray diffraction data to 1.55 Å resolution were collected from an orthorhombic crystal form belonging to space group I222 with unit-cell parameters a = 100.64, b = 104.44, c = 177.31 Å. Structural analysis by molecular replacement is in progress

  3. Development of novel highly selective phosphinic pseudopeptide inhibitors of Zn-metalloenzyme betaine: homocysteine S-methyltransferase

    Czech Academy of Sciences Publication Activity Database

    Collinsová, Michaela

    2002-01-01

    Roč. 96, č. 4 (2002), s. 210-211 ISSN 0009-2770. [Sigma-Aldrich konference mladých chemiků, biochemiků a molekulárních biologů. 22.05.2002-25.05.2002, Velké Meziříčí] Institutional research plan: CEZ:AV0Z4055905 Keywords : phosphinic pseudopeptides Subject RIV: CE - Biochemistry

  4. Comparative transcriptome analysis on the alteration of gene expression in ayu (Plecoglossus altivelis larvae associated with salinity change

    Directory of Open Access Journals (Sweden)

    Xin-Jiang LU

    2016-05-01

    Full Text Available Ayu (Plecoglossus altivelis fish, which are an amphidromous species distributed in East Asia, live in brackish water (BW during their larval stage and in fresh water (FW during their adult stage. In this study, we found that FW-acclimated ayu larvae exhibited a slower growth ratio compared with that of BW-acclimated larvae. However, the mechanism underlying FW acclimation on growth suppression is poorly known. We employed transcriptome analysis to investigate the differential gene expression of FW acclimation by RNA sequencing. We identified 158 upregulated and 139 downregulated transcripts in FW-acclimated ayu larvae compared with that in BW-acclimated larvae. As determined by Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway mapping, functional annotation of the genes covered diverse biological functions and processes, and included neuroendocrinology, osmotic regulation, energy metabolism, and the cytoskeleton. Transcriptional expression of several differentially expressed genes in response to FW acclimation was further confirmed by real-time quantitative PCR. In accordance with transcriptome analysis, iodothyronine deiodinase (ID, pro-opiomelanocortin (POMC, betaine-homocysteine S-methyltransferase 1(BHMT, fructose-bisphosphate aldolase B (aldolase B, tyrosine aminotransferase (TAT, and Na+-K+ ATPase (NKA were upregulated after FW acclimation. Furthermore, the mRNA expressions of b-type natriuretic peptide (BNP and transgelin were downregulated after FW acclimation. Our data indicate that FW acclimation reduced the growth rate of ayu larvae, which might result from the expression alteration of genes related to endocrine hormones, energy metabolism, and direct osmoregulation.

  5. Comparative transcriptome analysis on the alteration of gene expression in ayu (Plecoglossus altivelis) larvae associated with salinity change.

    Science.gov (United States)

    Lu, Xin-Jiang; Zhang, Hao; Yang, Guan-Jun; Li, Ming-Yun; Chen, Jiong

    2016-05-18

    Ayu (Plecoglossus altivelis) fish, which are an amphidromous species distributed in East Asia, live in brackish water (BW) during their larval stage and in fresh water (FW) during their adult stage. In this study, we found that FW-acclimated ayu larvae exhibited a slower growth ratio compared with that of BW-acclimated larvae. However, the mechanism underlying FW acclimation on growth suppression is poorly known. We employed transcriptome analysis to investigate the differential gene expression of FW acclimation by RNA sequencing. We identified 158 upregulated and 139 downregulated transcripts in FW-acclimated ayu larvae compared with that in BW-acclimated larvae. As determined by Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway mapping, functional annotation of the genes covered diverse biological functions and processes, and included neuroendocrinology, osmotic regulation, energy metabolism, and the cytoskeleton. Transcriptional expression of several differentially expressed genes in response to FW acclimation was further confirmed by real-time quantitative PCR. In accordance with transcriptome analysis, iodothyronine deiodinase (ID), pro-opiomelanocortin (POMC), betaine-homocysteine S-methyltransferase 1(BHMT), fructose-bisphosphate aldolase B (aldolase B), tyrosine aminotransferase (TAT), and Na(+)-K(+) ATPase (NKA) were upregulated after FW acclimation. Furthermore, the mRNA expressions of b-type natriuretic peptide (BNP) and transgelin were downregulated after FW acclimation. Our data indicate that FW acclimation reduced the growth rate of ayu larvae, which might result from the expression alteration of genes related to endocrine hormones, energy metabolism, and direct osmoregulation.

  6. Preliminary X-ray analysis of twinned crystals of sarcosine dimethylglycine methyltransferase from Halorhodospira halochoris

    International Nuclear Information System (INIS)

    Kallio, Juha Pekka; Jänis, Janne; Nyyssölä, Antti; Hakulinen, Nina; Rouvinen, Juha

    2009-01-01

    The crystallization and preliminary X-ray diffraction analysis of sarcosine dimethylglycine methyltransferase from H. halochoris is reported. Sarcosine dimethylglycine methyltransferase (EC 2.1.1.157) is an enzyme from the extremely halophilic anaerobic bacterium Halorhodospira halochoris. This enzyme catalyzes the twofold methylation of sarcosine to betaine, with S-adenosylmethionine (AdoMet) as the methyl-group donor. This study presents the crystallization and preliminary X-ray analysis of recombinant sarcosine dimethylglycine methyltransferase produced in Escherichia coli. Mass spectroscopy was used to determine the purity and homogeneity of the enzyme material. Two different crystal forms, which initially appeared to be hexagonal and tetragonal, were obtained. However, on analyzing the diffraction data it was discovered that both crystal forms were pseudo-merohedrally twinned. The true crystal systems were monoclinic and orthorhombic. The monoclinic crystal diffracted to a maximum of 2.15 Å resolution and the orthorhombic crystal diffracted to 1.8 Å resolution

  7. Hepatoprotective Effects of Betaine Against Oxidative Stress Induced by Levodopa and Benserazide in Rats

    Directory of Open Access Journals (Sweden)

    M Alirezaei

    2015-02-01

    Results: The study results indicated that the treatment of rats with levodopa and benserazide significantly increased total homocysteine (tHcy in plasma of the LD/Ben. group in comparison with the other groups (p <0.05. tHcy concentration was also significantly higher in LD group in comparison with control, betaine and LD/Bet. groups. Lipid peroxidation (TBARS amount of liver increased significantly in LD/Ben. group when compared to the control group which this index decreased by betaine treatment. In contrast, glutathione peroxidase and superoxide dismutase activities in liver were significantly higher in the LD-treated rats as compared to the LD/Ben. group. Serumic dopamine concentration decreased significantly in LD/Ben.-treated rats in comparison with LD and LD/Bet. groups. Conclusion: Taken together, it seems that betaine acts as an antioxidant agent regarding decrease of LD/Ben.-induced oxidative stress and is able to decrease their oxidative effects in liver of rats.

  8. A coupled photometric assay for characterization of S-adenosyl-l-homocysteine hydrolases in the physiological hydrolytic direction.

    Science.gov (United States)

    Kailing, Lyn L; Bertinetti, Daniela; Herberg, Friedrich W; Pavlidis, Ioannis V

    2017-10-25

    S-Adenosyl-l-homocysteine hydrolases (SAHases) are important metabolic enzymes and their dysregulation is associated with some severe diseases. In vivo they catalyze the hydrolysis of S-adenosyl-l-homocysteine (SAH), the by-product of methylation reactions in various organisms. SAH is a potent inhibitor of methyltransferases, thus its removal from the equilibrium is an important requirement for methylation reactions. SAH hydrolysis is also the first step in the cellular regeneration process of the methyl donor S-adenosyl-l-methionine (SAM). However, in vitro the equilibrium lies towards the synthetic direction. To enable characterization of SAHases in the physiologically relevant direction, we have developed a coupled photometric assay that shifts the equilibrium towards hydrolysis by removing the product adenosine, using a high affinity adenosine kinase (AK). This converts adenosine to AMP and thereby forms equimolar amounts of ADP, which is phosphorylated by a pyruvate kinase (PK), in turn releasing pyruvate. The readout of the assay is the consumption of NADH during the lactate dehydrogenase (LDH) catalyzed reduction of pyruvate to lactic acid. The applicability of the assay is showcased for the determination of the kinetic constants of an SAHase from Bradyrhizobium elkanii (K M,SAH 41±5μM, v max,SAH 25±1μM/min with 0.13mg/mL enzyme). This assay is a valuable tool for in vitro characterization of SAHases with biotechnological potential, and for monitoring SAHase activity in diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of natural betaine on estimates of semen quality in mature AI boars during summer heat stress.

    Science.gov (United States)

    Cabezón, F A; Stewart, K R; Schinckel, A P; Barnes, W; Boyd, R D; Wilcock, P; Woodliff, J

    2016-07-01

    This study evaluated the effect of supplemental dietary betaine at three concentrations (0.0%, 0.63% and 1.26%) on semen characteristics, quality and quality after storage on boars. The trial was conducted between 22 July and 1 October 2014 in a boar stud located in Oklahoma. Boars were blocked by age within genetic line and randomly allotted to receive 0% (CON, n (line T)=22, n (line L)=10), 0.63% (BET-0.63%, n (line T)=21, n (line L)=6) or 1.26% (BET-1.26%, n (line T)=23, n (line L)=7). The diets containing betaine were fed over 10 weeks, to ensure supplemental betaine product (96% betaine) daily intakes of 16.34 and 32.68g, for the BET-0.63% and BET-1.26% diets, respectively. Serum homocysteine concentrations were less for animals with betaine treatments (P=0.016). Rectal temperatures of the boars were unaffected by betaine diets. Betaine tended to increase total sperm in the ejaculates when collectively compared with data of the control animals (P=0.093). Sperm morphology analysis indicated there was a greater percent of sperm with distal midpiece reflex (P=0.009) and tail (P=0.035) abnormalities in boars fed the BET-1.26% than boars fed the BET-0.63% diet. Betaine concentration in the seminal plasma was greater in boars with betaine treatments, with animals being fed the 0.63% and 1.26% diets having 59.2% and 54.5% greater betaine concentrations in seminal plasma as compared with boars of the control group (P=0.046). In conclusion, betaine supplementation at 0.63% and 1.26% tended to increase sperm concentration in the ejaculates by 6% and 13%, respectively, with no negative impacts on semen quality when 0.63% of betaine was included in the diet. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Survival and psychomotor development with early betaine treatment in patients with severe methylenetetrahydrofolate reductase deficiency.

    Science.gov (United States)

    Diekman, Eugene F; de Koning, Tom J; Verhoeven-Duif, Nanda M; Rovers, Maroeska M; van Hasselt, Peter M

    2014-02-01

    The impact of betaine treatment on outcome in patients with severe methylenetetrahydrofolate reductase (MTHFR) deficiency is presently unclear. To investigate the effect of betaine treatment on development and survival in patients with severe MTHFR deficiency. MEDLINE, EMBASE, and Cochrane databases between January 1960 and December 2012. Studies that described patients with severe MTHFR deficiency who received betaine treatment. We identified 15 case reports and case series, totaling 36 patients. Data included the following: (1) families with 2 or more patients with severe MTHFR deficiency, of whom at least 1 received betaine, or (2) single patients with severe MTHFR deficiency treated with betaine. To define severe MTHFR deficiency, methionine, homocysteine, MTHFR enzyme activity in fibroblasts, or mutations (in the MTHFR gene) had to be described as well as the effect of treatment (survival and/or psychomotor development). We compared the outcome in treated vs untreated patients and early- vs late-treated patients. Sensitivity analysis was performed to address definition of early treatment. To further assess the impact of treatment on mortality, we performed a subanalysis in families with at least 1 untreated deceased patient. Survival and psychomotor development. Eleven of 36 patients (31%) died. All deaths occurred in patients who did not receive treatment or in patients in whom treatment was delayed. In contrast, all 5 early-treated patients survived. Subgroup analysis of patients with deceased siblings-their genotypically identical controls-revealed that betaine treatment prevented mortality (P = .002). In addition, psychomotor development in surviving patients treated with betaine was normal in all 5 early-treated patients but in none of the 19 surviving patients with delayed treatment (P psychomotor development in patients with severe MTHFR deficiency, highlighting the importance of timely recognition through newborn screening.

  11. Structural insights into mechanisms of the small RNA methyltransferase HEN1

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Ji, Lijuan; Huang, Qichen; Vassylyev, Dmitry G.; Chen, Xuemei; Ma, Jin-Biao; (UAB); (UCR)

    2010-02-22

    RNA silencing is a conserved regulatory mechanism in fungi, plants and animals that regulates gene expression and defence against viruses and transgenes. Small silencing RNAs of {approx}20-30 nucleotides and their associated effector proteins, the Argonaute family proteins, are the central components in RNA silencing. A subset of small RNAs, such as microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs in animals and siRNAs in Drosophila, requires an additional crucial step for their maturation; that is, 2'-O-methylation on the 3' terminal nucleotide. A conserved S-adenosyl-L-methionine-dependent RNA methyltransferase, HUA ENHANCER 1 (HEN1), and its homologues are responsible for this specific modification. Here we report the 3.1 {angstrom} crystal structure of full-length HEN1 from Arabidopsis in complex with a 22-nucleotide small RNA duplex and cofactor product S-adenosyl-L-homocysteine. Highly cooperative recognition of the small RNA substrate by multiple RNA binding domains and the methyltransferase domain in HEN1 measures the length of the RNA duplex and determines the substrate specificity. Metal ion coordination by both 2' and 3' hydroxyls on the 3'-terminal nucleotide and four invariant residues in the active site of the methyltransferase domain suggests a novel Mg{sup 2+}-dependent 2'-O-methylation mechanism.

  12. Synthesis of L-[35S] homocysteine thiolactone hydrochloride

    International Nuclear Information System (INIS)

    Hamacher, K.

    1989-01-01

    L-[ 35 S]Homocysteine thiolactone has been synthesized by demethylation of L-[ 35 S]Methionine with sodium in liquid ammonia and subsequent lactonisation in acid solution. The radiochemical yield of the carrier added synthesis was in the range of 45 to 50% with a radiochemical purity higher than 96%. (author)

  13. Serum homocysteine levels are correlated with behavioral and psychological symptoms of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Kim H

    2014-10-01

    Full Text Available Hyun Kim, Kang Joon Lee Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea Purpose: Homocysteine has been associated with cognitive impairment and various psychiatric symptoms. This study was designed to clarify whether a relationship exists between the serum levels of homocysteine and the behavioral and psychological symptoms of dementia.Methods: Patients with Alzheimer’s disease (n=77 and control subjects (n=37 were included in this study. History taking, physical examination, and cognitive assessment were carried out as part of the investigation for the diagnosis of Alzheimer’s disease based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. The Mini-Mental State Examination, Global Deterioration Scale, Clinical Dementia Rating, and the Korean version of the Neuro­psychiatric Inventory were applied to all patients. The patients’ serum homocysteine, folate, and vitamin B12 levels were measured.Results: Patients with Alzheimer’s disease had statistically significantly lower Mini-Mental State Examination scores and higher serum homocysteine levels compared to the control subjects. Mean serum folate and vitamin B12 concentration were significantly lower in patients with Alzheimer’s disease compared to control subjects. A statistically significant positive correlation was found between the serum homocysteine levels and the Neuropsychiatric Inventory subdomains, including delusion, agitation/aggression, depression/dysphoria, elation/euphoria, apathy/indifference, and disinhibition. No statistically significant correlation was found between the serum homocysteine concentration and the Mini-Mental State Examination, Global Deterioration Scale, or Clinical Dementia Rating.Conclusion: Associations between the serum homocysteine levels and behavioral and psychological symptoms of dementia were observed, raising the possibility of an etiological role. However, the

  14. Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency.

    Science.gov (United States)

    Reish, O; Townsend, D; Berry, S A; Tsai, M Y; King, R A

    1995-01-01

    Deficiency of cystathionine beta-synthase (CBS) is a genetic disorder of transsulfuration resulting in elevated plasma homocyst(e)ine and methionine and decreased cysteine. Affected patients have multisystem involvement, which may include light skin and hair. Reversible hypopigmentation in treated homocystinuric patients has been infrequently reported, and the mechanism is undefined. Two CBS-deficient homocystinuric patients manifested darkening of their hypopigmented hair following treatment that decreased plasma homocyst(e)ine. We hypothesized that homocyst(e)ine inhibits tyrosinase, the major pigment enzyme. The activity of tyrosinase extracted from pigmented human melanoma cells (MNT-1) that were grown in the presence of homocysteine was reduced in comparison to that extracted from cells grown without homocysteine. Copper sulfate restored homocyst(e)ine-inhibited tyrosinase activity when added to the culture cell media at a proportion of 1.25 mol of copper sulfate per 1 mol of DL-homocysteine. Holo-tyrosinase activity was inhibited by adding DL-homocysteine to the assay reaction mixture, and the addition of copper sulfate to the reaction mixture prevented this inhibition. Other tested compounds, L-cystine and betaine did not affect tyrosinase activity. Our data suggest that reversible hypopigmentation in homocystinuria is the result of tyrosinase inhibition by homocyst(e)ine and that the probable mechanism of this inhibition is the interaction of homocyst(e)ine with copper at the active site of tyrosinase. Images Figure 1 PMID:7611281

  15. Methionine kinetics in adult men: effects of dietary betaine on L-[2H3-methyl-1-13C]methionine

    International Nuclear Information System (INIS)

    Storch, K.J.; Wagner, D.A.; Young, V.R.

    1991-01-01

    The effects of a daily 3-g supplement of betaine on kinetic aspects of L-[2H3-methyl-1-13C]methionine (MET) metabolism in healthy young adult men were explored. Four groups of four subjects each were given a control diet, based on an L-amino acid mixture supplying 29.5 and 21.9 mg.kg-1.d-1 of L-methionine and L-cystine for 4 d before the tracer study, conducted on day 5 during the fed state. Two groups received the control diet and two groups received the betaine supplement. Tracer was given intravenously (iv) or orally. The transmethylation rate of MET (TM), homocysteine remethylation (RM), and oxidation of methionine were estimated from plasma methionine labeling and 13C enrichment of expired air. RM tended to increase (P = 0.14) but the TM and methionine oxidation were significantly (P less than 0.05) higher after betaine supplementation when estimated with the oral tracer. No differences were detected with the intravenous tracer. Methionine concentration in plasma obtained from blood taken from subjects in the fed state was higher (P less than 0.01) with betaine supplementation. These results suggest that excess methyl-group intake may increase the dietary requirement for methionine

  16. Cloning, expression, purification, crystallization and preliminary X-ray analysis of NodS N-methyltransferase from Bradyrhizobium japonicum WM9

    International Nuclear Information System (INIS)

    Cakici, Ozgur; Sikorski, Michal; Stepkowski, Tomasz; Bujacz, Grzegorz; Jaskolski, Mariusz

    2008-01-01

    The NodS N-methyltransferase, an enzyme participating in the biosynthesis of the bacterial nodulation (Nod) factor necessary to establish symbiotic nitrogen fixation with a legume plant host, has been crystallized in the apo form as well as in complex with SAH. SAH is a byproduct of SAM degradation during the SAM-dependent methylation reaction. The Nod factor (NF) is a rhizobial signal molecule that is involved in recognition of a legume host and the formation of root and stem nodules. Some unique enzymes are involved in the biosynthesis of NF, which is a variously but specifically substituted lipochitooligosaccharide. One of these enzymes is NodS, an N-methyltransferase that methylates end-deacetylated chitooligosaccharide substrates. In the methylation reaction, NodS uses S-adenosyl-l-methionine (SAM) as a methyl donor. To date, no structural information is available about NodS from any rhizobium. X-ray crystallographic studies of the NodS protein from Bradyrhizobium japonicum WM9, which infects the legumes lupin and serradella, have been undertaken. The nodS gene was cloned and the recombinant protein was expressed in Escherichia coli cells using natural amino acids and as an SeMet derivative. NodS without ligands was crystallized in the presence of PEG 3350 and MgCl 2 . The protein was also crystallized in complex with S-adenosyl-l-homocysteine (SAH) in the presence of PEG 8000 and MgCl 2 . SAH is produced from SAM as a byproduct of the methylation reaction. The crystals of apo NodS are tetragonal and diffracted X-rays to 2.42 Å resolution. The NodS–SAH complex crystallizes in an orthorhombic space group and the crystals diffracted X-rays to 1.85 Å resolution

  17. Gender and single nucleotide polymorphisms in MTHFR, BHMT, SPTLC1, CRBP2R, and SCARB1 are significant predictors of plasma homocysteine normalized by RBC folate in healthy adults.

    Science.gov (United States)

    Using linear regression models, we studied the main and two-way interaction effects of the predictor variables gender, age, BMI, and 64 folate/vitamin B-12/homocysteine/lipid/cholesterol-related single nucleotide polymorphisms (SNP) on log-transformed plasma homocysteine normalized by red blood cell...

  18. Relationship Between Plasma Homocystein Levels and Polyneuropaty in Patients Using Levodopa For Idiopathic Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Mithat Bedir

    2012-06-01

    Full Text Available Objective: Recent studies showed high plasma homocysteine levels in patients treated with Levodopa for Parkinson’s disease (PD. Homocysteine, due to its exotoxic effect, might be the cause of polyneuropathy seen in PD. In this study, our aim was to show the correlation between high concentration of plasma homocysteine levels and polyneuropathy associated with PD.. Material and Methods: Forty-one patients with PD receiving levodopa treatment (patient group and 30 healthy subjects (control group were included in this study. We compared the two groups in terms of electrophysiological findings. Twelve patients had high plasma homocysteine levels and 29 of them had low plasma homocysteine levels. Results: Six of the 41 patients had sensorial polyneuropathy and decreased compound muscle action potantiel amplitude compared to controls. Two patients had high plasma homocysteine levels, two patients had nearly high plasma homocysteine levels, two patients had low plasma homocysteine levels who had sensorial polyneuropathy. Conclusion: Although in our study, we did not show any correlation between polyneuropathy and high plasma homocysteine levels, further studies including homogeneous groups of younger patients with PD are needed. (The Me di cal Bul - le tin of Ha se ki 2012; 50: 53-8

  19. Serum Homocysteine Level in Parkinson’s Disease and Its Association with Duration, Cardinal Manifestation, and Severity of Disease

    Directory of Open Access Journals (Sweden)

    Payam Saadat

    2018-01-01

    Full Text Available Background and Purpose. Due to the high prevalence of Parkinson’s disease (PD in the elderly, a large financial burden is imposed on the families and health systems of countries in addition to the problems related to the mobility impairment caused by the disease for the patients. Studies on controversial issues in this disease are taken into consideration, and one of these cases is the role of serum homocysteine level in Parkinson’s patients. In this study, the serum level of homocysteine and its association with various variables in relation to this disease was compared with healthy individuals. Materials and Methods. In this study, 100 patients with PD and 100 healthy individuals as control group were investigated. Serum homocysteine level and demographic and clinical data were included in the checklist. Data were analyzed by SPSS version 23. In all tests, the significance level was below 0.05. Results. The mean level of serum homocysteine in case and control groups was 14.93 ± 8.30 and 11.52 ± 2.86 µmol/L, respectively (95% CI: 1.68; 5.14, P<0.001. In total patients, 85 had normal serum homocysteine level, while 15 had high serum homocysteine level. In controls, the homocysteine level was 98 and 2, respectively (P=0.002. In multivariate logistic regression analysis, serum homocysteine level higher than 20 µmol/L was accompanied by 8.64-fold in Parkinson’s disease involvement (95% CI: 1.92; 38.90, P=0.005. Conclusion. Increasing serum homocysteine level elevates the rate to having PD. Serum homocysteine levels did not have any relationship with the duration of the disease, type of cardinal manifestation, and the severity of Parkinson’s disease.

  20. Structure and Mechanism of the Rebeccamycin Sugar 4'-O-Methyltransferase RebM

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shanteri; McCoy, Jason G.; Zhang, Changsheng; Bingman, Craig A.; Phillips, Jr., George N.; Thorson, Jon S. (UW)

    2008-12-12

    The 2.65-{angstrom} crystal structure of the rebeccamycin 4'-O-methyltransferase RebM in complex with S-adenosyl-l-homocysteine revealed RebM to adopt a typical S-adenosylmethionine-binding fold of small molecule O-methyltransferases (O-MTases) and display a weak dimerization domain unique to MTases. Using this structure as a basis, the RebM substrate binding model implicated a predominance of nonspecific hydrophobic interactions consistent with the reported ability of RebM to methylate a wide range of indolocarbazole surrogates. This model also illuminated the three putative RebM catalytic residues (His{sup 140/141} and Asp{sup 166}) subsequently found to be highly conserved among sequence-related natural product O-MTases from GC-rich bacteria. Interrogation of these residues via site-directed mutagenesis in RebM demonstrated His{sup 140} and Asp{sup 166} to be most important for catalysis. This study reveals RebM to be a member of the general acid/base-dependent O-MTases and, as the first crystal structure for a sugar O-MTase, may also present a template toward the future engineering of natural product MTases for combinatorial applications.

  1. Biochemical diversity of betaines in earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Liebeke, Manuel [Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ (United Kingdom); Bundy, Jacob G., E-mail: j.bundy@imperial.ac.uk [Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ (United Kingdom)

    2013-01-25

    Highlights: ► We develop a method for rapid untargetted analysis of betaines. ► We profile betaines in a comparative study of ten earthworm species. ► Earthworms contain a surprisingly high number of different betaine metabolites. ► Earthworms contain betaines normally seen only in plants or marine animals. -- Abstract: The ability to accumulate osmoprotectant compounds, such as betaines, is an important evolutionary feature in many organisms. This is particularly the case for organisms that live in variable environments, which may have fluctuations in moisture and salinity levels. There is, surprisingly, very little known about betaines in soil invertebrates in general, and there is almost no information about earthworms – a group that are important ‘ecosystem engineers’ and key indicators of soil health. Here, we describe a fast and reliable {sup 1}H–{sup 13}C heteronuclear single quantum coherence (HSQC) 2D NMR approach for the metabolic profiling of a series of betaines and related metabolites in tissue extracts, and list {sup 1}H and {sup 13}C chemical shifts for the trimethylammonium signal for 23 such compounds. The analysis of ten different species from three different families (Lumbricidae, Megascolecidae and Glossoscolecidae) showed an unexpected diversity of betaines present in earthworms. In total ten betaines were identified, including hydroxyproline-betaine, proline-betaine, taurine-betaine, GABA-betaine and histidine-betaine, and a further eleven as-yet unassigned putative betaine metabolites detected. The findings clearly indicate a hitherto-unappreciated important role for betaine metabolism in earthworms.

  2. Determination of Betaine in Jujube by Capillary Electrophoresis

    Science.gov (United States)

    Han, Likun; Liu, Haixing; Peng, Xuewei

    2017-12-01

    This paper presents the determination of betaine content in jujube by high performance capillary electrophoresis (HPCE) method. The borax solution was chosen as buffer solution, and its concentration was 40 mmol at a constant voltage of 20kV and injecting pressure time of 10s at 14°C. Linearity was kept in the concent ration range of 0.0113∼1.45mg of betaine with correlation coefficient of 0.9. The content of betaine in jujube was 85.91 mg/g (RSD = 16.6%) (n = 6). The recovery of betaine in jujube sample was in the range of 86.2% - 116.6% (n=3). This method is specific, simple and rapid and accurate, which is suitable for the detection of the content of betaine in jujube.

  3. Competitive accumulation of betaines by Escherichia coli K-12 and derivative strains lacking betaine porters.

    Science.gov (United States)

    Randall, K; Lever, M; Peddie, B A; Chambers, S T

    1995-08-17

    Escherichia coli was grown in hyperosmotic media containing both glycine betaine and one other betaine. E. coli K-12 derivative WG439 (putP- proP- proU-) did not accumulate any of 15 betaines. Strains WG445 (putP- proP- proU+), WG443 (putP- proP+ proU-) and the control strains all accumulated less betaine, (CH3)3N(+)-(CH2)n-COO-, when n was greater than 1. Accumulation was not detectable when n = 5. Both L- and D-isomers of alpha-substituted betaines were accumulated by both strains WG443 and WG445, the D-isomers more slowly. Hydroxylated alpha-substituted betaines were accumulated relatively more through the osmoregulated transport protein ProU than through ProP. In actively growing cultures glycine betaine appeared to be the preferred substrate for accumulation, but the proportion of the second accumulated betaine increased as cultures approached stationary phase.

  4. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis.

    Science.gov (United States)

    Ganz, Ariel B; Shields, Kelsey; Fomin, Vlad G; Lopez, Yusnier S; Mohan, Sanjay; Lovesky, Jessica; Chuang, Jasmine C; Ganti, Anita; Carrier, Bradley; Yan, Jian; Taeswuan, Siraphat; Cohen, Vanessa V; Swersky, Camille C; Stover, Julie A; Vitiello, Gerardo A; Malysheva, Olga V; Mudrak, Erika; Caudill, Marie A

    2016-10-01

    Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d 9 , with d 9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.-Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J

  5. Practical synthesis of 14C S-ribosyl-L-homocysteine uniformly labelled on the sugar moiety. An enzymatic route from (U-14C) adenosine

    International Nuclear Information System (INIS)

    Guillerm, G.; Allart, B.

    1992-01-01

    [(U- 14 C) S-Ribosyl]-L-homocysteine has been prepared enzymatically from (U- 14 C) adenosine in two steps using S-adenosyl homocysteine hydrolase and bacterial S-adenosyl homocysteine nucleosidase as catalysts. (Author)

  6. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin.

    Science.gov (United States)

    McGann, Patrick; Chahine, Sarah; Okafor, Darius; Ong, Ana C; Maybank, Rosslyn; Kwak, Yoon I; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2016-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    Energy Technology Data Exchange (ETDEWEB)

    Brzezinski, Krzysztof [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan (Poland); Bujacz, Grzegorz [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Faculty of Food Chemistry and Biotechnology, Technical University of Lodz (Poland); Jaskolski, Mariusz, E-mail: mariuszj@amu.edu.pl [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan (Poland)

    2008-07-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4{sub 3}2{sub 1}2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified. Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation.

  8. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    International Nuclear Information System (INIS)

    Brzezinski, Krzysztof; Bujacz, Grzegorz; Jaskolski, Mariusz

    2008-01-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4 3 2 1 2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified. Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4 3 2 1 2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation

  9. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Debler, Erik W.; Jain, Kanishk; Warmack, Rebeccah A.; Feng, You; Clarke, Steven G.; Blobel, Günter; Stavropoulos, Pete

    2016-02-08

    Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-L-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs.

  10. S-Adenosylmethionine and S-adenosylhomocystein metabolism in isolated rat liver. Effects of L-methionine, L-homocystein, and adenosine.

    Science.gov (United States)

    Hoffman, D R; Marion, D W; Cornatzer, W E; Duerre, J A

    1980-11-25

    The effects of varying concentrations of L-methionine, L-homocysteine, and adenosine on the tissue levels of S-adenosylmethionine (AdoMet) and S-adenosyl-homocystein (AdoHcy) were investigated in perfused liver. In the normal liver, the intracellular concentration of AdoMet was dependent upon the availability of methionine. In the presence of high concentrations of methionine the maximum level of AdoMet attainable was 300 nmol/g of liver. The exogenous concentration of methionine did not alter the hepatic concentration of AdoHcy (8 to 20 nmol/g) while adenosine or homocysteine blocked hydrolysis of AdoHcy resulting in elevated levels of AdoHcy (400 to 600 nmol/g) and AdoMet (300 to 600 nmol/g). The addition of both adenosine (4mM) and homocysteine (3.4 mM) to the perfusate further increased the levels of AdoHcy (4 mumol/g) and AdoMet (1.2 mumol/g). As the concentration of AdoHcy increased, significant amounts of this compound were released into the perfusate, while AdoMet was not detected. Under all conditions where AdoHcy accumulated in the cell, a concomitant increase in the AdoMet level occurred. Apparently AdoHcy acts as a positive effector of the S-adenosylmethionine synthase. The hepatocytes did not take up significant amounts of [methyl-14C]AdoMet from the perfusate nor were any [14C]methyl groups from this compound incorporated into histones, DNA, or phospholipids. In contrast, [14C]methyl groups were readily incorporated into these macromolecules from exogenous [methyl-14C]methionine. The addition of adenosine (4 mM) and homocystein (3.4 mM) shifted the AdoMet:AdoHcy ratio from 8.2 to 0.3. Under these conditions, transmethylation was inhibited markedly.

  11. SULPHUR-CONTAINING AMINO ACIDS METABOLISM IN EXPERIMENTAL HYPER- AND HYPOTHYROIDISM IN RATS.

    Science.gov (United States)

    Nechiporuk, V; Zaichko, N; Korda, М; Melnyk, A; Koloshko, O

    2017-10-01

    Hyper- and hypothyroidism are some of the most common endocrinopathies that cause many metabolic disorders including amino acids metabolism. However, a specific molecular mechanism of thyroid hormones influence on sulphur-containing amino acids metabolism has not been established. The aim of our research was to investigate experimentally the influence of thyroid gland functional state on the main enzymatic systems of sulphur-containing amino acids metabolism in liver and kidneys, the content of homocysteine, cysteine and H2S in blood. The rats were administered with L-thyroxine and mercazolil to simulate the states of hyper- and hypothyroidism, which were confirmed by the content of fT3, fT4 and TSH in the blood. In liver and kidneys of the animals with hypothyroidism we observed the decrease in the activity of enzymes of remethylation cycle of S-adenosylmethioninsyntase, S-adenosylhomocysteinhyhdrolase, betaine-homocysteine methyltransferase. Suppression of transsulfuration transformation of homocysteine to cysteine in hypothyroidism was mainly due to the inhibition of cystathionine synthase activity of cystathionine-β-synthase, wherein cystathionase activity of cystathionine-γ-lyase was not changed. In animals with hypothyroidism we also noticed the inhibition of cysteine desulfunation reactions: the activity of enzymes of cystathionine-β-synthase, cystathionine-γ-lyase and cysteine aminotransferase significantly decreased in liver and kidneys. Experimental hyperthyroidism was accompanied by increase in activity of remethylation cycle enzymes, increase in cystationine synthase activity of cystathionine-β-synthase in liver and activity of these enzymes in kidneys. The simulation of hyperthyroidism led to the decrease of homocysteine concentration, and of hypothyroidism - to the increase of homocysteine and cysteine concentrations and reduced H2S content in blood of the animals. Thus, the significant risk factors for the development of atherosclerosis

  12. Betaine is a positive regulator of mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Icksoo, E-mail: icksoolee@dankook.ac.kr

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro. Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.

  13. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Chongyuan Wang

    Full Text Available Arginine methylation plays vital roles in the cellular functions of the protozoan Trypanosoma brucei. The T. brucei arginine methyltransferase 6 (TbPRMT6 is a type I arginine methyltransferase homologous to human PRMT6. In this study, we report the crystal structures of apo-TbPRMT6 and its complex with the reaction product S-adenosyl-homocysteine (SAH. The structure of apo-TbPRMT6 displays several features that are different from those of type I PRMTs that were structurally characterized previously, including four stretches of insertion, the absence of strand β15, and a distinct dimerization arm. The comparison of the apo-TbPRMT6 and SAH-TbPRMT6 structures revealed the fine rearrangements in the active site upon SAH binding. The isothermal titration calorimetry results demonstrated that SAH binding greatly increases the affinity of TbPRMT6 to a substrate peptide derived from bovine histone H4. The western blotting and mass spectrometry results revealed that TbPRMT6 methylates bovine histone H4 tail at arginine 3 but cannot methylate several T. brucei histone tails. In summary, our results highlight the structural differences between TbPRMT6 and other type I PRMTs and reveal that the active site rearrangement upon SAH binding is important for the substrate binding of TbPRMT6.

  14. Postprandial plasma betaine and other methyl donor-related responses after consumption of minimally processed wheat bran or wheat aleurone, or wheat aleurone incorporated into bread.

    Science.gov (United States)

    Keaveney, Edel M; Price, Ruth K; Hamill, Lesley L; Wallace, Julie M W; McNulty, Helene; Ward, Mary; Strain, J J; Ueland, Per M; Molloy, Anne M; Piironen, Vieno; von Reding, Walter; Shewry, Peter R; Ward, Jane L; Welch, Robert W

    2015-02-14

    The bran and particularly the aleurone fraction of wheat are high in betaine and other physiological methyl donors, which may exert beneficial physiological effects. We conducted two randomised, controlled, cross-over postprandial studies to assess and compare plasma betaine and other methyl donor-related responses following the consumption of minimally processed bran and aleurone fractions (study A) and aleurone bread (study B). For both studies, standard pharmacokinetic parameters were derived for betaine, choline, folate, dimethylglycine (DMG), total homocysteine and methionine from plasma samples taken at 0, 0·5, 1, 2 and 3 h. In study A (n 14), plasma betaine concentrations were significantly and substantially elevated from 0·5 to 3 h following the consumption of both bran and aleurone compared with the control; however, aleurone gave significantly higher responses than bran. Small, but significant, increases were also observed in DMG measures; however, no significant responses were observed in other analytes. In study B (n 13), plasma betaine concentrations were significantly and substantially higher following consumption of the aleurone bread compared with the control bread; small, but significant, increases were also observed in DMG and folate measures in response to consumption of the aleurone bread; however, no significant responses were observed in other analytes. Peak plasma betaine concentrations, which were 1·7-1·8 times the baseline levels, were attained earlier following the consumption of minimally processed aleurone compared with the aleurone bread (time taken to reach peak concentration 1·2 v. 2·1 h). These results showed that the consumption of minimally processed wheat bran, and particularly the aleurone fraction, yielded substantial postprandial increases in plasma betaine concentrations. Furthermore, these effects appear to be maintained when aleurone was incorporated into bread.

  15. Modulation of homocysteine toxicity by S-nitrosothiol formation: a mechanistic approach.

    Science.gov (United States)

    Morakinyo, Moshood K; Strongin, Robert M; Simoyi, Reuben H

    2010-08-05

    The metabolic conversion of homocysteine (HCYSH) to homocysteine thiolactone (HTL) has been reported as the major cause of HCYSH pathogenesis. It was hypothesized that inhibition of the thiol group of HCYSH by S-nitrosation will prevent its metabolic conversion to HTL. The kinetics, reaction dynamics, and mechanism of reaction of HCYSH and nitrous acid to produce S-nitrosohomocysteine (HCYSNO) was studied in mildly to highly acidic pHs. Transnitrosation of this non-protein-forming amino acid by S-nitrosoglutathione (GSNO) was also studied at physiological pH 7.4 in phosphate buffer. In both cases, HCYSNO formed quantitatively. Copper ions were found to play dual roles, catalyzing the rate of formation of HCYSNO as well as its rate of decomposition. In the presence of a transition-metal ions chelator, HCYSNO was very stable with a half-life of 198 h at pH 7.4. Nitrosation by nitrous acid occurred via the formation of more powerful nitrosating agents, nitrosonium cation (NO(+)) and dinitrogen trioxide (N(2)O(3)). In highly acidic environments, NO(+) was found to be the most effective nitrosating agent with a first-order dependence on nitrous acid. N(2)O(3) was the most relevant nitrosating agent in a mildly acidic environment with a second-order dependence on nitrous acid. The bimolecular rate constants for the direct reactions of HCYSH and nitrous acid, N(2)O(3), and NO(+) were 9.0 x 10(-2), 9.50 x 10(3), and 6.57 x 10(10) M(-1) s(-1), respectively. These rate constant values agreed with the electrophilic order of these nitrosating agents: HNO(2) formation kinetics of HCYSNO. This study has shown that it is possible to modulate homocysteine toxicity by preventing its conversion to a more toxic HTL by S-nitrosation.

  16. Determination of Betaine in Lycii Cortex by Capillary Electrophoresis

    Science.gov (United States)

    Peng, Xuewei; Liu, Haixing

    2017-12-01

    This paper presents the determination of betaine content in Lycii Cortex by high performance capillary electrophoresis (HPCE) method. The borax solution was chosen as buffer solution, and its concentration was 40 mmol at a constant voltage of 20kV and injecting pressure time of 10s at 14°C. Linearity was kept in the concent ration range of 0.0113∼1.45mg of betaine with correlation coefficient of 0.9. The content of betaine in Lycii Cortex was 61.9 mg/g (RSD = 13.4%) (n = 7). The recovery was in the range of 86.6% - 118.1% (n=4). This method is specific, simple and rapid and accurate, which is suitable for the detection of the content of betaine in Lycii Cortex.

  17. Association between TPMT*3C and decreased thiopurine S-methyltransferase activity in patients with neuromyelitis optica spectrum disorders in China.

    Science.gov (United States)

    Gong, Xiaoqing; Mei, Shenghui; Li, Xindi; Li, Xingang; Zhou, Heng; Liu, Yonghong; Zhou, Anna; Yang, Li; Zhao, Zhigang; Zhang, Xinghu

    2018-06-01

    Thiopurines are effective drugs in treating neuromyelitis optica spectrum disorders and other diseases. Thiopurines' toxicity is mainly imputed to thiopurine S-methyltransferase activity. In Chinese population, the most common and important variation of thiopurine S-methyltransferase is TPMT*3C (rs1142345). This study aims to reveal the association between thiopurine S-methyltransferase activity and genetic polymorphisms of thiopurine S-methyltransferase in patients with neuromyelitis optica spectrum disorders in China. A liquid chromatography tandem mass/mass method was used to evaluate the thiopurine S-methyltransferase activity by using 6-mercapthioprine as the substrate in human erythrocyte haemolysate via 1 h incubation at 37 °C to form its methylated product 6-methylmercaptopurine. The amount of 6-methylmercaptopurine was adjusted by haematocrit and normalized to 8 × 10 8 erythrocytes. The selected polymorphisms of thiopurine S-methyltransferase were identified using MassARRAY system (Sequenom) and multiple SNaPshot technique. In 69 patients with neuromyelitis optica spectrum disorders, thiopurine S-methyltransferase activity was 80.29-154.53 (127.51 ± 16.83) pmol/h/8 × 10 8 erythrocytes. TPMT*3C (rs1142345) was associated with lower thiopurine S-methyltransferase activity (BETA = -25.37, P = 0.011). Other selected variants were not associated with thiopurine S-methyltransferase activity. TPMT*3C affects TPMT activity in Chinese patients with neuromyelitis optica spectrum disorders. Further studies are warranted to confirm the results. TPRs = thiopurines; NMOSD = neuromyelitis optica spectrum disorders; TPMT = thiopurine S-methyltransferase; LC-MS/MS = liquid chromatography tandem mass/mass; 6-MMP = 6-methylmercaptopurine; IS = internal standard; SNP = single nucleotide polymorphism; MAF = minor allele frequency; HWE = Hardy-Weinberg equilibrium; BETA = regression coefficients; UTR-3 = untranslated region 3.

  18. Lean Body Mass Harbors Sensing Mechanisms that Allow Safeguarding of Methionine Homeostasis.

    Science.gov (United States)

    Ingenbleek, Yves

    2017-09-20

    Protein-depleted states generate allosteric inhibition of liver cystathionine β-synthase (CBS), which governs the first enzymatic step of the transsulfuration cascade, resulting in upstream accretion of homocysteine (Hcy) in body fluids. A similar Hcy increase may arise from normal hepatocytes undergoing experimentally-induced impairment of betaine-homocysteine methyltransferase (BHTM) activity or from components of lean body mass (LBM) submitted to any inflammatory disorder. LBM comprises a composite agglomeration of extrarenal tissues characterized by naturally occurring BHTM inactivity. As a result of cellular injury, LBM releases high concentrations of Hcy into the extracellular space, contrasting with the disruption of normal remethylation pathways. Hyperhomocysteinemia acts as a biomarker, reflecting the severity of insult and operating as an alarm signal. Elevated Hcy levels constitute a precursor pool recognized by a CBS coding region that reacts to meet increased methionine requirements in LBM tissues, using its enhanced production in hepatocytes. Preservation of methionine homeostasis benefits from its high metabolic priority and survival value.

  19. Lean Body Mass Harbors Sensing Mechanisms that Allow Safeguarding of Methionine Homeostasis

    Directory of Open Access Journals (Sweden)

    Yves Ingenbleek

    2017-09-01

    Full Text Available Protein-depleted states generate allosteric inhibition of liver cystathionine β-synthase (CBS, which governs the first enzymatic step of the transsulfuration cascade, resulting in upstream accretion of homocysteine (Hcy in body fluids. A similar Hcy increase may arise from normal hepatocytes undergoing experimentally-induced impairment of betaine-homocysteine methyltransferase (BHTM activity or from components of lean body mass (LBM submitted to any inflammatory disorder. LBM comprises a composite agglomeration of extrarenal tissues characterized by naturally occurring BHTM inactivity. As a result of cellular injury, LBM releases high concentrations of Hcy into the extracellular space, contrasting with the disruption of normal remethylation pathways. Hyperhomocysteinemia acts as a biomarker, reflecting the severity of insult and operating as an alarm signal. Elevated Hcy levels constitute a precursor pool recognized by a CBS coding region that reacts to meet increased methionine requirements in LBM tissues, using its enhanced production in hepatocytes. Preservation of methionine homeostasis benefits from its high metabolic priority and survival value.

  20. Homocysteine, S-adenosylmethionine and S-adenosylhomocysteine are associated with retinal microvascular abnormalities : the Hoorn Study

    NARCIS (Netherlands)

    van Hecke, Manon V.; Dekker, Jacqueline M.; Nijpels, Giel; Teeerlink, Tom; Jakobs, Cornelis; Stolk, Ronald P.; Heine, Rob J.; Bouter, Lex M.; Polak, Bettine C. P.; Stehouwer, Coen D. A.

    The aim of the present study was to investigate the relationship between homocysteine and homocysteine metabolism components and retinal microvascular disorders in subjects with and without Type 2 diabetes. In this population-based study of 256 participants, aged 60-85 years, we determined total

  1. Methyltransferase That Modifies Guanine 966 of the 16 S rRNA: FUNCTIONAL IDENTIFICATION AND TERTIARY STRUCTURE*

    Science.gov (United States)

    Lesnyak, Dmitry V.; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V.; Bogdanov, Alexey A.; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A.

    2010-01-01

    N2-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m2G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m2G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m2G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05 Å. The structure closely resembles RsmC rRNA methyltransferase, specific for m2G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m2G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed. PMID:17189261

  2. Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure.

    Science.gov (United States)

    Lesnyak, Dmitry V; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V; Bogdanov, Alexey A; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A

    2007-02-23

    N(2)-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m(2)G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m(2)G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m(2)G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05A(.) The structure closely resembles RsmC rRNA methyltransferase, specific for m(2)G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m(2)G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed.

  3. A one-step selective fluorescence turn-on detection of cysteine and homocysteine based on a facile CdTe/CdS quantum dots–phenanthroline system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sheng; Tian, Jianniao, E-mail: tianjn58@yahoo.com.cn; Jiang, Yixuan; Zhao, Yanchun; Zhang, Juanni; Zhao, Shulin

    2013-07-17

    Graphical abstract: A simple, selective, sensitive and low-cost turn-on photoluminescent sensor for cysteine and homocysteine based on the fluorescence recovery of the CdTe/CdS quantum dots (QDs)–phenanthroline (Phen) system was developed. -- Highlights: •A new label-free approach for determination of cysteine and homocysteine was developed. •The fluorescence turn-on method has sensitivity, high selectivity, low-cost and easy operation. •The method could be applied in rapid semiquantitative determination by digital visualization. -- Abstract: In this paper, we report a simple, selective, sensitive and low-cost turn-on photoluminescent sensor for cysteine and homocysteine based on the fluorescence recovery of the CdTe/CdS quantum dots (QDs)–phenanthroline (Phen) system. In the presence of Phen, the fluorescence of QDs could be quenched effectively due to the formation of the non-fluorescent complexes between water-soluble thioglycolic acid (TGA)-capped QDs and Phen. Subsequently, upon addition of cysteine and homocysteine, the strong affinity of cysteine and homocysteine to QDs enables Phen to be dissociated from the surface of QDs and to form stable and luminescent complexes with cysteine and homocysteine in solution. Thus, the fluorescence of CdTe/CdS QDs was recovered gradually. A good linear relationship was obtained from 1.0 to 70.0 μM for cysteine and from 1.0 to 90.0 μM for homocysteine, respectively. The detection limits of cysteine and homocysteine were 0.78 and 0.67 μM, respectively. In addition, the method exhibited a high selectivity for cysteine and homocysteine over the other substances, such as amino acids, thiols, proteins, carbohydrates, etc. More importantly, the sensing system can not only achieve quantitative detection of cysteine and homocysteine but also could be applied in semiquantitative cysteine and homocysteine determination by digital visualization. Therefore, as a proof-of-concept, the proposed method has potential

  4. A one-step selective fluorescence turn-on detection of cysteine and homocysteine based on a facile CdTe/CdS quantum dots–phenanthroline system

    International Nuclear Information System (INIS)

    Chen, Sheng; Tian, Jianniao; Jiang, Yixuan; Zhao, Yanchun; Zhang, Juanni; Zhao, Shulin

    2013-01-01

    Graphical abstract: A simple, selective, sensitive and low-cost turn-on photoluminescent sensor for cysteine and homocysteine based on the fluorescence recovery of the CdTe/CdS quantum dots (QDs)–phenanthroline (Phen) system was developed. -- Highlights: •A new label-free approach for determination of cysteine and homocysteine was developed. •The fluorescence turn-on method has sensitivity, high selectivity, low-cost and easy operation. •The method could be applied in rapid semiquantitative determination by digital visualization. -- Abstract: In this paper, we report a simple, selective, sensitive and low-cost turn-on photoluminescent sensor for cysteine and homocysteine based on the fluorescence recovery of the CdTe/CdS quantum dots (QDs)–phenanthroline (Phen) system. In the presence of Phen, the fluorescence of QDs could be quenched effectively due to the formation of the non-fluorescent complexes between water-soluble thioglycolic acid (TGA)-capped QDs and Phen. Subsequently, upon addition of cysteine and homocysteine, the strong affinity of cysteine and homocysteine to QDs enables Phen to be dissociated from the surface of QDs and to form stable and luminescent complexes with cysteine and homocysteine in solution. Thus, the fluorescence of CdTe/CdS QDs was recovered gradually. A good linear relationship was obtained from 1.0 to 70.0 μM for cysteine and from 1.0 to 90.0 μM for homocysteine, respectively. The detection limits of cysteine and homocysteine were 0.78 and 0.67 μM, respectively. In addition, the method exhibited a high selectivity for cysteine and homocysteine over the other substances, such as amino acids, thiols, proteins, carbohydrates, etc. More importantly, the sensing system can not only achieve quantitative detection of cysteine and homocysteine but also could be applied in semiquantitative cysteine and homocysteine determination by digital visualization. Therefore, as a proof-of-concept, the proposed method has potential

  5. Dynamic regulation of hepatic lipid droplet properties by diet.

    Science.gov (United States)

    Crunk, Amanda E; Monks, Jenifer; Murakami, Aya; Jackman, Matthew; Maclean, Paul S; Ladinsky, Mark; Bales, Elise S; Cain, Shannon; Orlicky, David J; McManaman, James L

    2013-01-01

    Cytoplasmic lipid droplets (CLD) are organelle-like structures that function in neutral lipid storage, transport and metabolism through the actions of specific surface-associated proteins. Although diet and metabolism influence hepatic CLD levels, how they affect CLD protein composition is largely unknown. We used non-biased, shotgun, proteomics in combination with metabolic analysis, quantitative immunoblotting, electron microscopy and confocal imaging to define the effects of low- and high-fat diets on CLD properties in fasted-refed mice. We found that the hepatic CLD proteome is distinct from that of CLD from other mammalian tissues, containing enzymes from multiple metabolic pathways. The hepatic CLD proteome is also differentially affected by dietary fat content and hepatic metabolic status. High fat feeding markedly increased the CLD surface density of perilipin-2, a critical regulator of hepatic neutral lipid storage, whereas it reduced CLD levels of betaine-homocysteine S-methyltransferase, an enzyme regulator of homocysteine levels linked to fatty liver disease and hepatocellular carcinoma. Collectively our data demonstrate that the hepatic CLD proteome is enriched in metabolic enzymes, and that it is qualitatively and quantitatively regulated by diet and metabolism. These findings implicate CLD in the regulation of hepatic metabolic processes, and suggest that their properties undergo reorganization in response to hepatic metabolic demands.

  6. Determination of Betaine in Forsythia Suspensa by High Performance Capillary Electrophoresis

    Science.gov (United States)

    Liu, Haixing; Dong, Guoliang; Wang, Lintong

    2017-12-01

    This paper presents the determination of betaine content of Forsythia suspensa by high performance capillary electrophoresis (HPCE) method. The borax solution was chosen as buffer solution, and its concentration was 40 mmol with capillary column (75μm×52/60cm) at a constant voltage of 20kV and injecting pressure time of 10s at 20°C. Linearity was kept in the concent ration range of 0.0113-1.45mg·ml-1 of betaine with correlation coefficient of 0.999. The recovery was in the range of 97%-117% (n=5), The content of betaine was 281.5 mg·g-1and RSD value of 9.6% (n=6) in Forsythia suspensa. This method has the advantage of rapid, accurate and good repeatability in separation and determination of betaine in Forsythia suspensa.

  7. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook; Kang, Keon Wook; Oh, Soo Jin; Lee, Ki Ho; Kim, Hwan Mook; Ma, Jin Yeul; Kim, Sang Kyum

    2011-01-01

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to ∼ 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase, and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research highlights: → MCF-7/Adr cells showed decreases in cellular GSH

  8. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells.

    Science.gov (United States)

    Suriguga; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. © 2013.

  9. Determination of Betaine in Lycium Barbarum L. by High Performance Capillary Electrophoresis

    Science.gov (United States)

    Liu, Haixing; Wang, Chunyan; Peng, Xuewei

    2017-12-01

    This paper presents the determination of betaine content in Lycium barbarum L. by high performance capillary electrophoresis (HPCE) method. The borax solution was chosen as buffer solution, and its concentration was 40 mmol at a constant voltage of 20kV and injecting pressure time of 10s at 20°C. Linearity was kept in the concent ration range of 0.0113∼1.45mg of betaine with correlation coefficient of 0.9. The recovery was in the range of 97.95%∼126% (n=4). The sample content of betaine was 29.3mg/g and RSD 6.4% (n=6). This method is specific, simple and rapid and accurate, which is suitable for the detection of the content of betaine in Lycium barbarum L.

  10. Multiple-Site Trimethylation of Ribosomal Protein L11 by the PrmA Methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Demirci,H.; Gregory, S.; Dahlberg, A.; Jogl, G.

    2008-01-01

    Ribosomal protein L11 is a universally conserved component of the large subunit, and plays a significant role during initiation, elongation, and termination of protein synthesis. In Escherichia coli, the lysine methyltransferase PrmA trimethylates the N-terminal a-amino group and the -amino groups of Lys3 and Lys39. Here, we report four PrmA-L11 complex structures in different orientations with respect to the PrmA active site. Two structures capture the L11 N-terminal a-amino group in the active site in a trimethylated postcatalytic state and in a dimethylated state with bound S-adenosyl-L-homocysteine. Two other structures show L11 in a catalytic orientation to modify Lys39 and in a noncatalytic orientation. The comparison of complex structures in different orientations with a minimal substrate recognition complex shows that the binding mode remains conserved in all L11 orientations, and that substrate orientation is brought about by the unusual interdomain flexibility of PrmA.

  11. INFLUENCE OF BETAINE ON GOAT MILK YIELD AND BLOOD METABOLITES

    Directory of Open Access Journals (Sweden)

    Carlos Javier Fernandez

    2009-02-01

    Full Text Available Betaine is a natural occurring compound with methyl donor properties which is increasingly being used in animal feeding. Betaine, an oxidative product of choline is able to replace methionine in some physiologically important body processes. The subject of this work was to study the effect of betaine added to the diet on milk production and blood metabolites on Murciano-Granadina dairy goats.  Sixty lactating goats were selected from a commercial Murciano-Granadina goat herd (EXCAMUR S.L. located in Murcia Region (Spain. Goats were selected from a 250 goats herd, taken  into account the age, stage of lactation (2.5 as average, live weight (36 kg as average and type of birth (2 kids. Two homogenous groups of 30 goats were made and fed with 1.5 kg of compound feed and 1 kg of alfalfa hay per day and goat. Goats were fed twice a day and water was provided ad libitum. Both groups received the same diet but for the second group the diet was supplemented with 4 g∙kg-1 betaine (betaine anhydrous, Danisco Animal Nutrition. The feeds, presented in pellets, were formulated in based on recommendations of INRA (2007. The experimental period was 6 months and the experimental diets were provided 15 days before parturition. The herd was machine milked once at day. Chemical composition, milk production and blood metabolites of each goat were recorded and analyzed at the end of the trial. Variance analysis and means comparison were carried out using the general lineal model procedure and Tukey test for mean comparison. Goats fed with betaine diet had higher milk fat than goats fed control diet (4.8 vs. 5.2 % for control and betaine respectively; P

  12. Evaluations of the trans-sulfuration pathway in multiple liver toxicity studies

    International Nuclear Information System (INIS)

    Schnackenberg, Laura K.; Chen Minjun; Sun, Jinchun; Holland, Ricky D.; Dragan, Yvonne; Tong Weida; Welsh, William; Beger, Richard D.

    2009-01-01

    Drug-induced liver injury has been associated with the generation of reactive metabolites, which are primarily detoxified via glutathione conjugation. In this study, it was hypothesized that molecules involved in the synthesis of glutathione would be diminished to replenish the glutathione depleted through conjugation reactions. Since S-adenosylmethionine (SAMe) is the primary source of the sulfur atom in glutathione, UPLC/MS and NMR were used to evaluate metabolites involved with the transulfuration pathway in urine samples collected during studies of eight liver toxic compounds in Sprague-Dawley rats. Urinary levels of creatine were increased on day 1 or day 2 in 8 high dose liver toxicity studies. Taurine concentration in urine was increased in only 3 of 8 liver toxicity studies while SAMe was found to be reduced in 4 of 5 liver toxicity studies. To further validate the results from the metabonomic studies, microarray data from rat liver samples following treatment with acetaminophen was obtained from the Gene Expression Omnibus (GEO) database. Some genes involved in the trans-sulfuration pathway, including guanidinoacetate N-methyltransferase, glycine N-methyltransferase, betaine-homocysteine methyltransferase and cysteine dioxygenase were found to be significantly decreased while methionine adenosyl transferase II, alpha increased at 24 h post-dosing, which is consistent with the SAMe and creatine findings. The metabolic and transcriptomic results show that the trans-sulfuration pathway from SAMe to glutathione was disturbed due to the administration of heptatotoxicants

  13. The effect of betaine on the foam stability: Molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fengfeng [Chemistry Engineering Department, Zibo Vocational Institute, Zibo 255314 (China); Key laboratory of Colloid and Interface Chemistry, Shandong University, Jinan 250100 (China); Liu, Guokui [Key laboratory of Colloid and Interface Chemistry, Shandong University, Jinan 250100 (China); Yuan, Shiling, E-mail: shilingyuan@sdu.edu.cn [Key laboratory of Colloid and Interface Chemistry, Shandong University, Jinan 250100 (China)

    2017-06-15

    Highlights: • The reasons of betaine to enhance the stability of foam films are investigated by molecular simulation. • An electrostatic structure is formed at the air/water interface due to the electrostatic interaction. • The electrostatic structure becomes denser with the increasing concentration of betaine. - Abstract: Zwitterionic betaines are widely used as foam boosters due to these can enhance the stability of foam films. In this paper, mechanistic insights of betaine to improve the stability of alkyl-polyoxyethylene carboxylate (AEC) foam are provided by molecular simulation. In the simulation, we observe the electropositive nitrogen atoms in betaine interact with the electronegative sulfur atoms, an electrostatic structure is formed at the air/water interface. Interaction energies of the mixed surfactants are calculated by the quantum chemistry methods. The calculations show betaine-AEC and betaine–betaine possess attractive interaction, and that AEC–AEC has repulsion to each other. In the other words, the repulsion between the headgroups of anionic surfactants is relaxed by betaine. Additionally, the influence of concentration of betaine on the stability of foam films is also simulated. The RDF and coordination numbers show that the electrostatic structures become denser with the increasing concentration of betaine. Therefore, entry barrier is enhanced accordingly. The SMD simulation also demonstrates the same variation tendency of entry barrier. The simulation details provide vital supplements to experiments.

  14. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase

    DEFF Research Database (Denmark)

    Vester, B; Douthwaite, S

    1994-01-01

    investigated what structural elements in 23S rRNA are required for specific recognition by the ErmE methyltransferase. The ermE gene was cloned into R1 plasmid derivatives, providing a means of inducible expression in Escherichia coli. Expression of the methyltransferase in vivo confers resistance......, and the enzyme efficiently modifies 23S rRNA in vitro. Removal of most of the 23S rRNA structure, so that only domain V (nucleotides 2000 to 2624) remains, does not affect the efficiency of modification by the methyltransferase. In addition, modification still occurs after the rRNA tertiary structure has been...

  15. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yanqi; Zhang, Xing; Horton, John R.; Upadhyay, Anup K.; Spannhoff, Astrid; Liu, Jin; Synder, James P.; Bedford, Mark T.; Cheng, Xiaodong; (Emory-MED); (Emory); (Texas)

    2009-03-26

    Histone lysine methylation is an important epigenetic mark that regulates gene expression and chromatin organization. G9a and G9a-like protein (GLP) are euchromatin-associated methyltransferases that repress transcription by methylating histone H3 Lys9. BIX-01294 was originally identified as a G9a inhibitor during a chemical library screen of small molecules and has previously been used in the generation of induced pluripotent stem cells. Here we present the crystal structure of the catalytic SET domain of GLP in complex with BIX-01294 and S-adenosyl-L-homocysteine. The inhibitor is bound in the substrate peptide groove at the location where the histone H3 residues N-terminal to the target lysine lie in the previously solved structure of the complex with histone peptide. The inhibitor resembles the bound conformation of histone H3 Lys4 to Arg8, and is positioned in place by residues specific for G9a and GLP through specific interactions.

  16. A NOVEL S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE FROM RAT LIVER CYTOSOL

    Science.gov (United States)

    A Novel S-Adenosyl-L-methionine: Arsenic(III) Methyltransferase from Rat Liver CytosolShan Lin, Qing Shi, F. Brent Nix, Miroslav Styblo, Melinda A. Beck, Karen M. Herbin-Davis, Larry L. Hall, Josef B. Simeonsson, and David J. Thomas S-adenosyl-L-methionine (AdoMet): ar...

  17. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L. (Michigan)

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  18. The relationship between cholesterol and cognitive function is homocysteine-dependent

    Directory of Open Access Journals (Sweden)

    Cheng YB

    2014-10-01

    Full Text Available Yibin Cheng,1 Yinlong Jin,1 Frederick W Unverzagt,2 Liqin Su,1 Lili Yang,3 Feng Ma,1 Ann M Hake,4,5 Carla Kettler,3 Chen Chen,1 Jingyi Liu,1 Jianchao Bian,6 Ping Li,7 Jill R Murrell,8 Hugh C Hendrie,2,9,10 Sujuan Gao3 1Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China; 2Department of Psychiatry, 3Department of Biostatistics, 4Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA; 5Eli Lilly and Company, Indianapolis, Indiana, USA; 6Shandong Institute for Prevention and Treatment of Endemic Disease in China, Jinan, People’s Republic of China; 7Sichuan Provincial Center for Disease Control and Prevention in China, Chengdu, People’s Republic of China; 8Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 9Indiana University Center for Aging Research, 10Regenstrief Institute, Inc., Indianapolis, Indiana, USA Introduction: Previous studies have identified hyperlipidemia as a potential risk factor for dementia and Alzheimer’s disease. However, studies on cholesterol measured in late-life and cognitive function have been inconsistent. Few studies have explored nonlinear relationships or considered interactions with other biomarker measures.Methods: A cross-sectional sample of 1,889 participants from four rural counties in the People’s Republic of China was included in this analysis. Serum total cholesterol, high-density lipoprotein, triglycerides, and homocysteine levels were measured in fasting blood samples. A composite cognitive score was derived based on nine standardized cognitive test scores. Analysis of covariance models were used to investigate the association between biomarker measures and the composite cognitive scores.Results: There was a significant interaction between the homocysteine quartile group and the cholesterol quartile group on cognitive scores (P=0

  19. Plasma homocysteine levels in multiple sclerosis

    NARCIS (Netherlands)

    Ramsaransing, G S M; Fokkema, M R; Teelken, A; Arutjunyan, A V; Koch, M; De Keyser, J

    Background: There is evidence that homocysteine contributes to various neurodegenerative disorders, and elevated plasma homocysteine levels have been observed in patients with multiple sclerosis (MS). Objective: To investigate if and why plasma homocysteine levels are increased in MS, and whether

  20. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2

    Directory of Open Access Journals (Sweden)

    Miwa Masaya

    2011-11-01

    Full Text Available Abstract Background Betaine (glycine betaine or trimethylglycine plays important roles as an osmolyte and a methyl donor in animals. While betaine is reported to suppress expression of proinflammatory molecules and reduce oxidative stress in aged rat kidney, the effects of betaine on the central nervous system are not well known. In this study, we investigated the effects of betaine on lipopolysaccharide (LPS-induced memory impairment and on mRNA expression levels of proinflammatory molecules, glial markers, and GABA transporter 2 (GAT2, a betaine/GABA transporter. Methods Mice were continuously treated with betaine for 13 days starting 1 day before they were injected with LPS, or received subacute or acute administration of betaine shortly before or after LPS injection. Then, their memory function was evaluated using Y-maze and novel object recognition tests 7 and 10-12 days after LPS injection (30 μg/mouse, i.c.v., respectively. In addition, mRNA expression levels in hippocampus were measured by real-time RT-PCR at different time points. Results Repeated administration of betaine (0.163 mmol/kg, s.c. prevented LPS-induced memory impairment. GAT2 mRNA levels were significantly increased in hippocampus 24 hr after LPS injection, and administration of betaine blocked this increase. However, betaine did not affect LPS-induced increases in levels of mRNA related to inflammatory responses. Both subacute administration (1 hr before, and 1 and 24 hr after LPS injection and acute administration (1 hr after LPS injection of betaine also prevented LPS-induced memory impairment in the Y-maze test. Conclusions These data suggest that betaine has protective effects against LPS-induced memory impairment and that prevention of LPS-induced changes in GAT2 mRNA expression is crucial to this ameliorating effect.

  1. Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1)

    Science.gov (United States)

    Takeshita, Kohei; Suetake, Isao; Yamashita, Eiki; Suga, Michihiro; Narita, Hirotaka; Nakagawa, Atsushi; Tajima, Shoji

    2011-01-01

    Methylation of cytosine in DNA plays a crucial role in development through inheritable gene silencing. The DNA methyltransferase Dnmt1 is responsible for the propagation of methylation patterns to the next generation via its preferential methylation of hemimethylated CpG sites in the genome; however, how Dnmt1 maintains methylation patterns is not fully understood. Here we report the crystal structure of the large fragment (291–1620) of mouse Dnmt1 and its complexes with cofactor S-adenosyl-L-methionine and its product S-adenosyl-L-homocystein. Notably, in the absence of DNA, the N-terminal domain responsible for targeting Dnmt1 to replication foci is inserted into the DNA-binding pocket, indicating that this domain must be removed for methylation to occur. Upon binding of S-adenosyl-L-methionine, the catalytic cysteine residue undergoes a conformation transition to a catalytically competent position. For the recognition of hemimethylated DNA, Dnmt1 is expected to utilize a target recognition domain that overhangs the putative DNA-binding pocket. Taking into considerations the recent report of a shorter fragment structure of Dnmt1 that the CXXC motif positions itself in the catalytic pocket and prevents aberrant de novo methylation, we propose that maintenance methylation is a multistep process accompanied by structural changes. PMID:21518897

  2. Homocysteine and Cognitive Performance in Elders with Self-Neglect

    Science.gov (United States)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Elevated plasma homocysteine has been associated with altered cognitive performance in older adults. Elders referred to Adult Protective Services (APS) for self-neglect have been reported to have elevated plasma homocysteine levels and to suffer from cognitive impairment. This study assesses the association, if any, between plasma homocysteine and cognitive performance among elders with self-neglect. Methods: Sixty-five community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 matched controls (matched for age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS), the Wolf-Klein Clock Drawing Tests (CDT) and a comprehensive nutritional biochemistry panel, which included plasma homocysteine. Student s t tests and Pearson correlations were conducted to assess for bivariate associations. Results: Elders with self-neglect had significantly higher plasma homocysteine levels (M=12.68umol/L, sd=4.4) compared to the controls (M=10.40umol/L, sd=3.61;t=3.21, df=127, p=.002). There were no statistically significant associations between cognitive performance and plasma homocysteine in the self-neglect group, however there was a significant correlation between plasma homocysteine and the CDT among the controls (r=-.296, p=.022). Conclusion: Mean plasma homocysteine levels were significantly higher in elders with self-neglect, however, they do not appear to be related to cognitive performance, indicating that cognitive impairment in elder self-neglect involve mechanisms other than hyperhomocysteinemia. These findings warrant further investigation

  3. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    International Nuclear Information System (INIS)

    Song, Yuan; Wu, Keqiang; Dhaubhadel, Sangeeta; An, Lizhe; Tian, Lining

    2010-01-01

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.

  4. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yuan [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); Wu, Keqiang [Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (China); Dhaubhadel, Sangeeta [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); An, Lizhe, E-mail: lizhean@lzu.edu.cn [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Tian, Lining, E-mail: tianl@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada)

    2010-05-28

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.

  5. Antioxidant effects of betaine against Indomethacin-induced gastric damage in rats

    Directory of Open Access Journals (Sweden)

    M Alirezaei

    2016-10-01

    Full Text Available Introduction: Betaine (trimethyl glycine is known as methyl group donor and antioxidant in previous reports. The aim of this study was to assess the antioxidant effects of betaine in Indomethacin-induced gastric damages. Methods: Thirty-two adult male Sprague–Dawley rats in an experimental study were divided into four equal groups as follow: Control, Indomethacin, Betaine-indomethacin and Ascorbic acid-indomethacin. Control and indomethacin groups received normal saline and betaine and ascorbic acid-pretreated rats were administrated betaine (1.5% of the total diet and ascorbic acid (50 mg/kg body weight for 15 consecutive days, respectively. After 24 h fasting, all of the groups received indomethacin (48 mg/kg body weight and control group received distilled water. Results: Indomethacin administration increased gastric ulcer occurrence (% in comparison with control group and betaine pretreatment significantly decreased ulcer occurrence (% when compared to the other groups (P=0.0017. Gastric wall glutathione peroxidase (GPx activity was significantly lower in indomethacin group in comparison with the other groups (P=0.0012 while, betaine and ascorbic acid pretreatment increased GPx activity in comparison with indomethacin group (P=0.0012. Catalase activity was significantly higher in betaine-pretreated rats in comparison with indomethacin and ascorbic acid-indomethacin groups (P=0.0015. Lipid peroxidation significantly decreased in betaine and ascorbic acid pretreated groups (P=0.0013. Conclusion: These results showed beneficial antioxidant effects of betaine against gastric damages induced by indomethacin in rats.

  6. Neuro-fuzzy model of homocysteine metabolism

    Indian Academy of Sciences (India)

    To conclude, polymorphisms in genes regulating remethylation of homocysteine strongly influence homocysteine levels. The restoration of one-carbon homeostasis by SHMT1 C1420T or increased flux of folate towards remethylation due to TYMS 5'-UTR 28 bp tandem repeat or nonvegetariandiet can lower homocysteine ...

  7. Homocysteine increases the risk associated with hyperlipidaemia.

    LENUS (Irish Health Repository)

    Daly, Caroline

    2009-04-01

    The European Concerted Action Project \\'Homocysteine and Vascular Disease\\' showed that an elevated homocysteine is associated with a substantially increased risk of cardiovascular disease, and particularly when combined with other factors such as smoking, hypertension and hypercholesterolaemia. The purpose of this study was to examine the potential interactions between homocysteine and individual lipid subfractions. In addition, it was hypothesized that HDL cholesterol may protect against hyperhomocysteinaemia because HDL cholesterol is associated with the enzyme paroxonase, which reduces oxidization of homocysteine to the harmful metabolite, homocysteine thiolactonase.

  8. Glycine Betaine Recognition through Cation−π Interactions in Crystal Structures of Glycine Betaine Complexes with C-Ethyl-pyrogallol[4]arene and C-Ethyl-resorcin[4]arene as Receptors

    Directory of Open Access Journals (Sweden)

    Ikuhide Fujisawa

    2013-04-01

    Full Text Available The glycine betaine (betaine, interacts with several types of proteins with diverse structures in vivo, and in the contact regions, the aromatic rings of protein residues are frequently found beside the trimethylammonium group of betaine, implying the importance of the cation−π interactions in recognition of this molecule. The crystal structures determined by X-ray crystallography of the complexes of betaine and C-ethyl-pyrogallol[4]arene (pyrogallol cyclic tetramer: PCT and betaine and C-ethyl-resorcin[4]arene (resorcinol cyclic tetramer: RCT mimic the conformations of betaine and protein complexes and show that the clathrate conformations are retained by the cation−π interactions. The difference of the conformation feature of betaine in the Protein Data Bank and in the Cambridge Structural Database was found by chance during the research and analyzed with the torsion angles.

  9. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis.

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C; Rife, Jason P; Ban, Nenad

    2012-03-23

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.

  10. Structural Insights into Methyltransferase KsgA Function in 30S Ribosomal Subunit Biogenesis*

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C.; Rife, Jason P.; Ban, Nenad

    2012-01-01

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3′-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation. PMID:22308031

  11. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Suriguga,; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun, E-mail: yizc@buaa.edu.cn

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation.

  12. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    International Nuclear Information System (INIS)

    Suriguga,; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-01-01

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation

  13. Homocysteine inhibits hepatocyte proliferation via endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Xue Yu

    Full Text Available Homocysteine is an independent risk factor for coronary, cerebral, and peripheral vascular diseases. Recent studies have shown that levels of homocysteine are elevated in patients with impaired hepatic function, but the precise role of homocysteine in the development of hepatic dysfunction is unclear. In this study, we examined the effect of homocysteine on hepatocyte proliferation in vitro. Our results demonstrated that homocysteine inhibited hepatocyte proliferation by up-regulating protein levels of p53 as well as mRNA and protein levels of p21(Cip1 in primary cultured hepatocytes. Homocysteine induced cell growth arrest in p53-positive hepatocarcinoma cell line HepG2, but not in p53-null hepatocarcinoma cell line Hep3B. A p53 inhibitor pifithrin-α inhibited the expression of p21(Cip1 and attenuated homocysteine-induced cell growth arrest. Homocysteine induced TRB3 expression via endoplasmic reticulum stress pathway, resulting in Akt dephosphorylation. Knock-down of endogenous TRB3 significantly suppressed the inhibitory effect of homocysteine on cell proliferation and the phosphorylation of Akt. LiCl reversed homocysteine-mediated cell growth arrest by inhibiting TRB3-mediated Akt dephosphorylation. These results demonstrate that both TRB3 and p21(Cip1 are critical molecules in the homocysteine signaling cascade and provide a mechanistic explanation for impairment of liver regeneration in hyperhomocysteinemia.

  14. Cloning and Functional Analysis of Phosphoethanolamine Methyltransferase Promoter from Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Gai-Li Niu

    2018-01-01

    Full Text Available Betaine, a non-toxic osmoprotectant, is believed to accumulate considerably in plants under stress conditions to maintain the osmotic pressure and promote a variety of processes involved in growth and development. Phosphoethanolamine N-methyltransferase (PEAMT, a key enzyme for betaine synthesis, is reported to be regulated by its upstream promoter. In the present investigation, by using the transgenic approach, a 1048 bp long promoter region of ZmPEAMT gene from Zea mays was cloned and functionally characterized in tobacco. Computational analysis affirmed the existence of abiotic stress responsive cis-elements like ABRE, MYC, HST, LST etc., as well as pathogen, wound and phytohormone responsive motifs. For transformation in tobacco, four 5′-deletion constructs of 826 bp (P2, 642 bp (P3, 428 bp (P4 and 245 bp (P5 were constructed from the 1048 bp (P1 promoter fragment. The transgenic plants generated through a single event exhibited a promising expression of GUS reporter protein in the leaf tissues of treated with salt, drought, oxidative and cold stress as well as control plants. The GUS expression level progressively reduced from P1 to P5 in the leaf tissues, whereas a maximal expression was observed with the P3 construct in the leaves of control plants. The expression of GUS was noted to be higher in the leaves of osmotically- or salt-treated transgenic plants than that in the untreated (control plants. An effective expression of GUS in the transgenic plants manifests that this promoter can be employed for both stress-inducible and constitutive expression of gene(s. Due to this characteristic, this potential promoter can be effectively used for genetic engineering of several crops.

  15. YehZYXW of Escherichia coli Is a Low-Affinity, Non-Osmoregulatory Betaine-Specific ABC Transporter.

    Science.gov (United States)

    Lang, Shenhui; Cressatti, Marisa; Mendoza, Kris E; Coumoundouros, Chelsea N; Plater, Samantha M; Culham, Doreen E; Kimber, Matthew S; Wood, Janet M

    2015-09-22

    Transporter-mediated osmolyte accumulation stimulates the growth of Escherichia coli in high-osmolality environments. YehZYXW was predicted to be an osmoregulatory transporter because (1) osmotic and stationary phase induction of yehZYXW is mediated by RpoS, (2) the Yeh proteins are homologous to the components of known osmoregulatory ABC transporters (e.g., ProU of E. coli), and (3) YehZ models based on the structures of periplasmic betaine-binding proteins suggested that YehZ retains key betaine-binding residues. The betaines choline-O-sulfate, glycine betaine, and dimethylsulfoniopropionate bound YehZ and ProX with millimolar and micromolar affinities, respectively, as determined by equilibrium dialysis and isothermal titration calorimetry. The crystal structure of the YehZ apoprotein, determined at 1.5 Å resolution (PDB ID: 4WEP ), confirmed its similarity to other betaine-binding proteins. Small and nonpolar residues in the hinge region of YehZ (e.g., Gly223) pack more closely than the corresponding residues in ProX, stabilizing the apoprotein. Betaines bound YehZ-Gly223Ser an order of magnitude more tightly than YehZ, suggesting that weak substrate binding in YehZ is at least partially due to apo state stabilization. Neither ProX nor YehZ bound proline. Assays based on osmoprotection or proline auxotrophy failed to detect YehZYXW-mediated uptake of proline, betaines, or other osmolytes. However, transport assays revealed low-affinity glycine betaine uptake, mediated by YehZYXW, that was inhibited at high salinity. Thus, YehZYXW is a betaine transporter that shares substrate specificity, but not an osmoregulatory function, with homologues like E. coli ProU. Other work suggests that yehZYXW may be an antivirulence locus whose expression promotes persistent, asymptomatic bacterial infection.

  16. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    Full Text Available Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  17. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    Science.gov (United States)

    Xu, Ke; Xu, Ping

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  18. Homocysteine, Cortisol, Diabetes Mellitus, and Psychopathology

    Directory of Open Access Journals (Sweden)

    K. Kontoangelos

    2015-01-01

    Full Text Available Objective. This study investigates the association of homocysteine and cortisol with psychological factors in type 2 diabetic patients. Method. Homocysteine, cortisol, and psychological variables were analyzed from 131 diabetic patients. Psychological factors were assessed with the Eysenck Personality Questionnaire (EPQ, Hostility and Direction of Hostility Questionnaire (HDHQ, the Symptom Checklist 90-R (SCL 90-R, the Zung Self-Rating Depression Scale (ZDRS, and the Maudsley O-C Inventory Questionnaire (MOCI. Blood samples were taken by measuring homocysteine and cortisol in both subgroups during the initial phase of the study (T0. One year later (T1, the uncontrolled diabetic patients were reevaluated with the use of the same psychometric instruments and with an identical blood analysis. Results. The relation of psychoticism and homocysteine is positive among controlled diabetic patients (P value = 0.006<0.05 and negative among uncontrolled ones (P value = 0.137. Higher values of cortisol correspond to lower scores on extraversion subscale (rp=-0.223, P value = 0.010. Controlled diabetic patients showed a statistically significant negative relationship between homocysteine and the act-out hostility subscale (rsp=-0.247, P=0.023. There is a statistically significant relationship between homocysteine and somatization (rsp=-0.220, P=0.043. Conclusions. These findings support the notion that homocysteine and cortisol are related to trait and state psychological factors in patients with diabetes mellitus type 2.

  19. The phenotypic and molecular assessment of the non-conserved Arabidopsis MICRORNA163/S-ADENOSYL-METHYLTRANSFERASE regulatory module during biotic stress.

    Science.gov (United States)

    Litholdo, Celso Gaspar; Eamens, Andrew Leigh; Waterhouse, Peter Michael

    2018-04-01

    In plants, microRNAs (miRNAs) have evolved in parallel to the protein-coding genes that they target for expression regulation, and miRNA-directed gene expression regulation is central to almost every cellular process. MicroRNA, miR163, is unique to the Arabidopsis genus and is processed into a 24-nucleotide (nt) mature small regulatory RNA (sRNA) from a single precursor transcript transcribed from a single locus, the MIR163 gene. The MIR163 locus is a result of a recent inverted duplication event of one of the five closely related S-ADENOSYL-METHYLTRANSFERASE genes that the mature miR163 sRNA targets for expression regulation. Currently, however, little is known about the role of the miR163/S-ADENOSYL-METHYLTRANSFERASE regulatory module in response to biotic stress. Here, we document the expression domains of MIR163 and the S-ADENOSYL-METHYLTRANSFERASE target genes following fusion of their putative promoter sequences to the β-glucuronidase (GUS) reporter gene and subsequent in planta expression. Further, we report on our phenotypic and molecular assessment of Arabidopsis thaliana plants with altered miR163 accumulation, namely the mir163-1 and mir163-2 insertion knockout mutants and the miR163 overexpression line, the MIR163-OE plant. Finally, we reveal miR163 accumulation and S-ADENOSYL-METHYLTRANSFERASE target gene expression post treatment with the defence elicitors, salicylic acid and jasmonic acid, and following Fusarium oxysporum infection, wounding, and herbivory attack. Together, the work presented here provides a comprehensive new biological insight into the role played by the Arabidopsis genus-specific miR163/S-ADENOSYL-METHYLTRANSFERASE regulatory module in normal A. thaliana development and during the exposure of A. thaliana plants to biotic stress.

  20. Quantitation of total homocysteine in human plasma by derivatization to its N(O,S)-propoxycarbonyl propyl ester and gas chromatography-mass spectrometry analysis.

    Science.gov (United States)

    Sass, J O; Endres, W

    1997-08-01

    Much evidence supports the hypothesis that mild or moderate hyperhomocysteinaemia represents an important and independent risk factor for occlusive vascular diseases. Therefore, the accurate and reliable determination of total plasma homocysteine has gained major importance for risk assessment. Furthermore, it can help in the detection of folate and vitamin B12 deficiency. This has prompted us to develop a sensitive gas chromatography-mass spectrometry (GC-MS) method in order to quantify total homocysteine in human plasma. Prior to chromatography, reduced homocysteine was released from disulfide bonds by incubation with excess dithiothreitol and converted into its N(O,S)-propoxycarbonyl propyl ester by derivatization with n-propyl chloroformate. Aminoethylcysteine served as internal standard. The method proved to be highly linear over the entire concentration range examined (corresponding to 0-266 microM homocysteine) and showed intra-assay and inter-assay variation (relative standard deviations) of approximately 5 and 5-10%, respectively. External quality control by comparison with duplicate analysis performed on a HPLC-based system revealed satisfactory correlation. The newly developed GC-MS based method provides simple, reliable and fast quantification of total homocysteine and requires only inexpensive chemicals, which are easy to obtain.

  1. Egg quality of quails fed low methionine diet supplemented with betaine

    Science.gov (United States)

    Ratriyanto, A.; Indreswari, R.; Dewanti, R.; Wahyuningsih, S.

    2018-03-01

    This experiment investigated the effect of betaine supplementation to low methionine diet on egg quality of quails. A total of 340 laying quails (Coturnix coturnix japonica) was divided into 4 dietary treatments with 5 replicates of 17 quails each. The experiment was assigned in a completely randomized design. The four dietary treatments were the low methionine diet (0.3% methionine) without betaine supplementation and the low methionine diet supplemented with 0.07, 0.14, and 0.21% betaine. The experimental diets were applied for 8 weeks and the egg quality traits were measured at the age of 16 and 20 weeks. The data were subjected to analysis of variance, and when the treatment indicated significant effect, it was continued to orthogonal polynomial test to determine the optimum level of betaine. Increasing dietary levels of betaine increased the fat content of the egg with the linear regression of y = 11.0949 + 4.1914x (R2 = 0.18). However, supplementation of betaine did not affect protein content, yolk, albumen, and eggshell percentage. It can be concluded that betaine supplementation up to 0.21% to low methionine diet only had little effect in improving the quality traits of quail eggs.

  2. Association of betaine with blood pressure in dialysis patients.

    Science.gov (United States)

    Wang, Lulu; Zhao, Mingming; Liu, Wenjin; Li, Xiurong; Chu, Hong; Bai, Youwei; Sun, Zhuxing; Gao, Chaoqing; Zheng, Lemin; Yang, Junwei

    2018-02-01

    Mechanisms underlying elevated blood pressure in dialysis patients are complex as a variety of non-traditional factors are involved. We sought to explore the association of circulating betaine, a compound widely distributed in food, with blood pressure in dialysis patients. We used baseline data of an ongoing cohort study involving patients on hemodialysis. Plasma betaine was measured by high performance liquid chromatography in 327 subjects. Blood pressure level was determined by intradialytic ambulatory blood pressure monitoring. The mean age of the patients was 52.6 ± 11.9 years, and 58.4% were male. Average interdialytic ambulatory systolic and diastolic blood pressure were 138.4 ± 22.7 mm Hg and 84.4 ± 12.5 mm Hg, respectively. Mean plasma betaine level was 37.6 μmol/L. Multiple linear regression analysis revealed significant associations of betaine with both systolic blood pressure (β = -3.66, P = .003) and diastolic blood pressure (β = -2.00, P = .004). The associations persisted even after extensive adjustment for cardiovascular covariates. Subgroup analysis revealed that the association between betaine and blood pressure was mainly limited to female patients. Our data suggest that alteration of circulating betaine possibly contributes to blood pressure regulation in these patients. ©2018 Wiley Periodicals, Inc.

  3. Homocysteine and cerebrovascular accidents.

    Science.gov (United States)

    Datta, Saikat; Pal, Salil K; Mazumdar, Hirak; Bhandari, Biswanath; Bhattacherjee, Sharmistha; Pandit, Sudipta

    2009-06-01

    Hyperhomocysteinaemia is rapidly emerging as an important risk factor for coronary artery disease, possibly because of its propensity to accelerate atherosclerosis. Whether it is also a risk factor for cerebrovascular accidents (CVA) is a matter of debate till now, as there are conflicting results of the various prospective studies. The present study was performed to correlate the levels of plasma homocysteine levels with that of ischaemic and haemorrhagic CVA. Forty-two cases of CVA were randomly selected over a period of one year, and their risk factors were assessed. It was observed that serum homocysteine levels were significantly raised in those with intracerebral infarcts when compared to those with intracerebral haemorrhage, although homocysteine levels didn't prove to be prognostically significant.

  4. Therapeutical approach to plasma homocysteine and cardiovascular risk reduction

    Directory of Open Access Journals (Sweden)

    Marcello Ciaccio

    2008-03-01

    Full Text Available Marcello Ciaccio, Giulia Bivona, Chiara BelliaDepartment of Medical Biotechnologies and Forensic Medicine, Faculty of Medicine, University of Palermo, ItalyAbstract: Homocysteine is a sulfur-containing aminoacid produced during metabolism of methionine. Since 1969 the relationship between altered homocysteine metabolism and both coronary and peripheral atherotrombosis is known; in recent years experimental evidences have shown that elevated plasma levels of homocysteine are associated with an increased risk of atherosclerosis and cardiovascular ischemic events. Several mechanisms by which elevated homocysteine impairs vascular function have been proposed, including impairment of endothelial function, production of reactive oxygen species (ROS and consequent oxidation of low-density lipids. Endothelial function is altered in subjects with hyperhomocysteinemia, and endothelial dysfunction is correlated with plasma levels of homocysteine. Folic acid and B vitamins, required for remethylation of homocysteine to methionine, are the most important dietary determinants of homocysteine and daily supplementation typically lowers plasma homocysteine levels; it is still unclear whether the decreased plasma levels of homocysteine through diet or drugs may be paralleled by a reduction in cardiovascular risk.Keywords: homocysteine, MTHFR, cardiovascular disease, folate, B vitamin

  5. Homocyst(e)ine impairs endocardial endothelial function.

    Science.gov (United States)

    Tyagi, S C; Smiley, L M; Mujumdar, V S

    1999-12-01

    Homocyst(e)ine injured vascular endothelium and modulated endothelial-dependent vascular function. Endothelium plays an analogous role in both the vessel and the endocardium. Therefore, we hypothesized that homocyst(e)ine modulated endocardial endothelium (EE) dependent cardiac function. The ex vivo cardiac rings from normal male Wistar-Kyoto rats were prepared. The contractile responses of left and right ventricular rings were measured in an isometric myobath, using different concentrations of CaCl2. The response was higher in the left ventricle than right ventricle and was elevated in endocardium without endothelium. The half effective concentration (EC50) and maximum tension generated by homocyst(e)ine were 10(6) and 5-fold lower than endothelin (ET) and angiotensin II (AII), respectively. However, in endothelial-denuded endocardium, homocyst(e)ine response was significantly increased (pine, and endothelial nitric oxide in EE function, cardiac rings were pretreated with AII (10(-10) M) or ET (10(-13) M) and then treated with homocyst(e)ine (10(-8) M). Results suggested that at these concentrations AII, ET, or homocyst(e)ine alone had no effect on cardiac contraction. However, in the presence of 10(-10) M AII or 10(-13) M ET, the cardiac contraction to homocyst(e)ine (10(-8) M) was significantly enhanced (pine. These results suggested that homocyst(e)ine impaired EE-dependent cardiac function and acted synergistically with AII and ET in enhancing the cardiac contraction.

  6. Expression, purification, crystallization and preliminary crystallographic study of isolated modules of the mouse coactivator-associated arginine methyltransferase 1

    Energy Technology Data Exchange (ETDEWEB)

    Troffer-Charlier, Nathalie; Cura, Vincent; Hassenboehler, Pierre; Moras, Dino; Cavarelli, Jean, E-mail: cava@igbmc.u-strasbg.fr [IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Biologie et Génomique Structurales, 1 Rue Laurent Fries, Illkirch, F-67404 (France); INSERM, U596, Illkirch, F-67400 (France); CNRS, UMR7104, Illkirch, F-67400 (France); Université Louis Pasteur, Faculté des Sciences de la Vie, Strasbourg, F-67000 (France)

    2007-04-01

    Isolated modules of mouse coactivator-associated arginine methyltransferase 1 encompassing the protein arginine N-methyltransferase catalytic domain have been overexpressed, purified and crystallized. X-ray diffraction data have been collected and have enabled determination of the structures by multiple isomorphous replacement using anomalous scattering. Coactivator-associated arginine methyltransferase 1 (CARM1) plays a crucial role in gene expression as a coactivator of several nuclear hormone receptors and also of non-nuclear receptor systems. Its recruitment by the transcriptional machinery induces protein methylation, leading to chromatin remodelling and gene activation. CARM1{sub 28–507} and two structural states of CARM1{sub 140–480} were expressed, purified and crystallized. Crystals of CARM1{sub 28–507} belong to space group P6{sub 2}22, with unit-cell parameters a = b = 136.0, c = 125.3 Å; they diffract to beyond 2.5 Å resolution using synchrotron radiation and contain one monomer in the asymmetric unit. The structure of CARM1{sub 28–507} was solved by multiple isomorphous replacement and anomalous scattering methods. Crystals of apo CARM1{sub 140–480} belong to space group I222, with unit-cell parameters a = 74.6, b = 99.0, c = 207.4 Å; they diffract to beyond 2.7 Å resolution and contain two monomers in the asymmetric unit. Crystals of CARM1{sub 140–480} in complex with S-adenosyl-l-homocysteine belong to space P2{sub 1}2{sub 1}2, with unit-cell parameters a = 74.6, b = 98.65, c = 206.08 Å; they diffract to beyond 2.6 Å resolution and contain four monomers in the asymmetric unit. The structures of apo and holo CARM1{sub 140–480} were solved by molecular-replacement techniques from the structure of CARM1{sub 28–507}.

  7. Crystal complexes of a predicted S-adenosylmethionine-dependent methyltransferase reveal a typical AdoMet binding domain and a substrate recognition domain

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.J.; Ouellette, N.; Evodokimova, E.; Savchenko, A.; Edwards, A.; Anderson, W.F. (Toronto); (NWU)

    2010-03-08

    S-adenosyl-L-methionine-dependent methyltransferases (MTs) are abundant, and highly conserved across phylogeny. These enzymes use the cofactor AdoMet to methylate a wide variety of molecular targets, thereby modulating important cellular and metabolic activities. Thermotoga maritima protein 0872 (TM0872) belongs to a large sequence family of predicted MTs, ranging phylogenetically from relatively simple bacteria to humans. The genes for many of the bacterial homologs are located within operons involved in cell wall synthesis and cell division. Despite preliminary biochemical studies in E. coli and B. subtilis, the substrate specificity of this group of more than 150 proteins is unknown. As part of the Midwest Center for Structural Genomics initiative (www.mcsg.anl.gov), we have determined the structure of TM0872 in complexes with AdoMet and with S-adenosyl-L-homocysteine (AdoHcy). As predicted, TM0872 has a typical MT domain, and binds endogenous AdoMet, or co-crystallized AdoHcy, in a manner consistent with other known MT structures. In addition, TM0872 has a second domain that is novel among MTs in both its location in the sequence and its structure. The second domain likely acts in substrate recognition and binding, and there is a potential substrate-binding cleft spanning the two domains. This long and narrow cleft is lined with positively charged residues which are located opposite the S{sup +}-CH{sub 3} bond, suggesting that a negatively charged molecule might be targeted for catalysis. However, AdoMet and AdoHcy are both buried, and access to the methyl group would presumably require structural rearrangement. These TM0872 crystal structures offer the first structural glimpses at this phylogenetically conserved sequence family.

  8. The relationship between maternal and neonatal umbilical cord plasma homocyst(e)ine suggests a potential role for maternal homocyst(e)ine in fetal metabolism.

    Science.gov (United States)

    Malinow, M R; Rajkovic, A; Duell, P B; Hess, D L; Upson, B M

    1998-02-01

    Data on fetal blood homocyst(e)ine concentrations are not available. We tested the hypothesis that homocyst(e)ine crosses the maternal/placental/fetal interphases and is sequestered by the fetus. The concentration of homocyst(e)ine was determined at parturition in peripheral venous plasma from 35 nulliparous healthy pregnant women and umbilical arterial and venous plasma from their conceptus. Findings demonstrated a descending concentration gradient of plasma homocyst(e)ine from maternal vein to umbilical vein and to umbilical artery; the decrease at each interphase approximated 1 micromol/L. The neonate weight and gestational age were inversely related to maternal homocyst(e)ine concentrations. The umbilical vein to umbilical artery homocyst(e)ine decrement suggests that uptake of homocyst(e)ine occurs in the fetus. The likely incorporation of homocyst(e)ine into the fetal metabolic cycle may implicate maternal homocyst(e)ine as having a potential nutritional role in the fetus. Further studies are required to explain the role of homocyst(e)ine in fetal metabolism and development.

  9. Status of Homocysteine in Polycystic Ovary Syndrome (PCOS).

    Science.gov (United States)

    Maleedhu, Priyanka; M, Vijayabhaskar; S S B, Sharma; Kodumuri, Praveen K; Devi D, Vasundhara

    2014-02-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disease in women of reproductive age and is estimated to affect 5-10 % of the population. Women with PCOS have a clustering of cardiovascular risk factors, such as obesity, dyslipidemia, impaired glucose tolerance and hypertension. Homocysteine has been recognized recently as a risk factor for cardiovascular diseases. Preliminary investigations suggest that high sensitivity C-reactive protein, homocysteine and adiponectin are abnormal in women with PCOS. The possible determinants of elevated homocysteine concentration are still debated among authors who found significant correlations between homocysteine and insulin resistance or hyperandrogenism. The purpose of this study is to evaluate homocysteine levels in the PCOS population compared with controls. Study group comprised of 142 women with PCOS and 65 healthy non-PCOS controls. Body mass index (BMI), Waist circumference and serum homocysteine were measured in PCOS subjects and age matched controls. Statastical Analysis: All values are expressed as mean α SD. The results obtained are analysed statistically using the unpaired student t-test to evaluate the significance of differences between the mean values. The mean BMI, Waist circumference and serum homocysteine values are significantly increased in PCOS subjects when compared with non PCOS controls. The present study has demonstrated increase in mean serum homocysteine concentrations in women with PCOS.

  10. Distinction between the Cfr Methyltransferase Conferring Antibiotic Resistance and the Housekeeping RlmN Methyltransferase

    DEFF Research Database (Denmark)

    Atkinson, Gemma C; Hansen, Lykke H; Tenson, Tanel

    2013-01-01

    The cfr gene encodes the Cfr methyltransferase that primarily methylates C-8 in A2503 of 23S rRNA in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to six classes of antibiotics of clinical and veterinary importance. The rlmN gene encodes the Rlm......N methyltransferase that methylates C-2 in A2503 in 23S rRNA and A37 in tRNA, but RlmN does not significantly influence antibiotic resistance. The enzymes are homologous and use the same mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate involving a methylated cysteine....... The differentiation between the two classes is supported by previous and new experimental evidence from antibiotic resistance, primer extensions, and mass spectrometry. Finally, evolutionary aspects of the distribution of Cfr- and RlmN-like enzymes are discussed....

  11. Correlation between Behavioural and Psychological Symptoms of Alzheimer Type Dementia and Plasma Homocysteine Concentration

    Directory of Open Access Journals (Sweden)

    Zhanjie Zheng

    2014-01-01

    Full Text Available The relationship between plasma homocysteine and behavioral and psychological symptoms of dementia (BPSD has not been specifically investigated in previous research. In this study, we compared plasma homocysteine (Hcy among 40 Alzheimer’s disease (AD patients with BPSD, 37 AD patients without BPSD, and 39 healthy controls. Our results evidenced that the plasma homocysteine levels in AD patients with BPSD and without BPSD were higher than healthy controls and that the plasma homocysteine concentration in AD patients with BPSD was the highest among the three groups. Significant correlation between plasma homocysteine concentration and cognitive decline and duration of dementia was observed, but there was no correlation between BPSD and cognitive dysfunction or duration of dementia. In conclusion, this study showed for the first time that BPSD were associated with plasma homocysteine concentration in Alzheimer's dementia, and the results supported that hyperhomocysteine may take part in the pathogenesis of BPSD.

  12. DACH-LIGA homocystein (german, austrian and swiss homocysteine society): consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases: guidelines and recommendations.

    Science.gov (United States)

    Stanger, Olaf; Herrmann, Wolfgang; Pietrzik, Klaus; Fowler, Brian; Geisel, Jürgen; Dierkes, Jutta; Weger, Martin

    2003-11-01

    About half of all deaths are due to cardiovascular disease and its complications. The economic burden on society and the healthcare system from cardiovascular disability, complications, and treatments is huge and getting larger in the rapidly aging populations of developed countries. As conventional risk factors fail to account for part of the cases, homocysteine, a "new" risk factor, is being viewed with mounting interest. Homocysteine is a sulfur-containing intermediate product in the normal metabolism of methionine, an essential amino acid. Folic acid, vitamin B12, and vitamin B6 deficiencies and reduced enzyme activities inhibit the breakdown of homocysteine, thus increasing the intracellular homocysteine concentration. Numerous retrospective and prospective studies have consistently found an independent relationship between mild hyperhomocysteinemia and cardiovascular disease or all-cause mortality. Starting at a plasma homocysteine concentration of approximately 10 micromol/l, the risk increase follows a linear dose-response relationship with no specific threshold level. Hyperhomocysteinemia as an independent risk factor for cardiovascular disease is thought to be responsible for about 10% of total risk. Elevated plasma homocysteine levels (>12 micromol/l; moderate hyperhomocysteinemia) are considered cytotoxic and are found in 5 to 10% of the general population and in up to 40% of patients with vascular disease. Additional risk factors (smoking, arterial hypertension, diabetes, and hyperlipidemia) may additively or, by interacting with homocysteine, synergistically (and hence over-proportionally) increase overall risk. Hyperhomocysteinemia is associated with alterations in vascular morphology, loss of endothelial anti-thrombotic function, and induction of a procoagulant environment. Most known forms of damage or injury are due to homocysteine-mediated oxidative stress. Especially when acting as direct or indirect antagonists of cofactors and enzyme

  13. A New Structural Form in the SAM/Metal-Dependent O;#8209;Methyltransferase Family: MycE from the Mycinamicin Biosynthetic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Akey, David L.; Li, Shengying; Konwerski, Jamie R.; Confer, Laura A.; Bernard, Steffen M.; Anzai, Yojiro; Kato, Fumio; Sherman, David H.; Smith, Janet L. (Michigan); (Toho)

    2012-08-01

    O-linked methylation of sugar substituents is a common modification in the biosynthesis of many natural products and is catalyzed by multiple families of S-adenosyl-l-methionine (SAM or AdoMet)-dependent methyltransferases (MTs). Mycinamicins, potent antibiotics from Micromonospora griseorubida, can be methylated at two positions on a 6-deoxyallose substituent. The first methylation is catalyzed by MycE, a SAM- and metal-dependent MT. Crystal structures were determined for MycE bound to the product S-adenosyl-l-homocysteine (AdoHcy) and magnesium, both with and without the natural substrate mycinamicin VI. This represents the first structure of a natural product sugar MT in complex with its natural substrate. MycE is a tetramer of a two-domain polypeptide, comprising a C-terminal catalytic MT domain and an N-terminal auxiliary domain, which is important for quaternary assembly and for substrate binding. The symmetric MycE tetramer has a novel MT organization in which each of the four active sites is formed at the junction of three monomers within the tetramer. The active-site structure supports a mechanism in which a conserved histidine acts as a general base, and the metal ion helps to position the methyl acceptor and to stabilize a hydroxylate intermediate. A conserved tyrosine is suggested to support activity through interactions with the transferred methyl group from the SAM methyl donor. The structure of the free enzyme reveals a dramatic order-disorder transition in the active site relative to the S-adenosyl-L-homocysteine complexes, suggesting a mechanism for product/substrate exchange through concerted movement of five loops and the polypeptide C-terminus.

  14. Specialized (iso)eugenol-4-O-methyltransferases (s-IEMTs) and methods of making and using the same

    Science.gov (United States)

    Liu, Chang-Jun; Cai, Yuanheng

    2017-01-31

    Specialized (iso)eugenol 4-O-methyltransferase (s-IEMT) enzymes having increased capacity for methylation of monolignols are disclosed. The s-IEMTs have unique activity favoring methylation of coniferyl alcohol versus sinapyl alcohol. Various s-IEMTs methylate ferulic acid. Means for producing the various s-IEMTs are provided. The s-IEMTs are useful for modification of lignin content and production of aromatic compounds.

  15. YebU is a m5C methyltransferase specific for 16 S rRNA nucleotide 1407

    DEFF Research Database (Denmark)

    Andersen, Niels Møller; Douthwaite, Stephen

    2006-01-01

    generally require specific enzymes, and only one m5C rRNA methyltransferase, RsmB (formerly Fmu) that methylates nucleotide C967, has previously been identified. BLAST searches of the E.coli genome revealed a single gene, yebU, with sufficient similarity to rsmB to encode a putative m5C RNA...... methyltransferase. This suggested that the yebU gene product modifies C1407 and/or C1962. Here, we analysed the E.coli rRNAs by matrix assisted laser desorption/ionization mass spectrometry and show that inactivation of the yebU gene leads to loss of methylation at C1407 in 16 S rRNA, but does not interfere...

  16. Structural Basis of Substrate Recognition in Human Nicotinamide N-Methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yi; Sartini, Davide; Pozzi, Valentina; Wilk, Dennis; Emanuelli, Monica; Yee, Vivien C. (Case Western); (Politecnica Valencia)

    2012-05-02

    Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation of nicotinamide, pyridines, and other analogues using S-adenosyl-L-methionine as donor. NNMT plays a significant role in the regulation of metabolic pathways and is expressed at markedly high levels in several kinds of cancers, presenting it as a potential molecular target for cancer therapy. We have determined the crystal structure of human NNMT as a ternary complex bound to both the demethylated donor S-adenosyl-L-homocysteine and the acceptor substrate nicotinamide, to 2.7 {angstrom} resolution. These studies reveal the structural basis for nicotinamide binding and highlight several residues in the active site which may play roles in nicotinamide recognition and NNMT catalysis. The functional importance of these residues was probed by mutagenesis. Of three residues near the nicotinamide's amide group, substitution of S201 and S213 had no effect on enzyme activity while replacement of D197 dramatically decreased activity. Substitutions of Y20, whose side chain hydroxyl interacts with both the nicotinamide aromatic ring and AdoHcy carboxylate, also compromised activity. Enzyme kinetics analysis revealed k{sub cat}/K{sub m} decreases of 2-3 orders of magnitude for the D197A and Y20A mutants, confirming the functional importance of these active site residues. The mutants exhibited substantially increased K{sub m} for both NCA and AdoMet and modestly decreased k{sub cat}. MD simulations revealed long-range conformational effects which provide an explanation for the large increase in K{sub m}(AdoMet) for the D197A mutant, which interacts directly only with nicotinamide in the ternary complex crystal structure.

  17. Proofreading in vivo: Editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli

    International Nuclear Information System (INIS)

    Jakubowski, H.

    1990-01-01

    Previous in vitro studies have established a pre-transfer proofreading mechanism for editing of homocysteine by bacterial methionyl-, isoleucyl-, and valyl-tRNA synthetases. The unusual feature of the editing is the formation of a distinct compound, homocysteine thiolactone. Now, two-dimensional TLC analysis of 35S-labeled amino acids extracted from cultures of the bacterium Escherichia coli reveals that the thiolactone is also synthesized in vivo. In E. coli, the thiolactone is made from homocysteine in a reaction catalyzed by methionyl-tRNA synthetase. One molecule of homocysteine is edited as thiolactone per 109 molecules of methionine incorporated into protein in vivo. These results not only directly demonstrate that the adenylate proofreading pathway for rejection of misactivated homocysteine operates in vivo in E. coli but, in general, establish the importance of error-editing mechanisms in living cells

  18. CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE (CYT19)

    Science.gov (United States)

    CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE (cyt19)Stephen B. Waters1 , Felicia Walton1 , Miroslav Styblo1 , Karen Herbin-Davis2, and David J. Thomas2 1 School of Medicine, University of North Carolina at Chape...

  19. MOLECULAR MODELING INDICATES THAT HOMOCYSTEINE INDUCES CONFORMATIONAL CHANGES IN THE STRUCTURE OF PUTATIVE TARGET PROTEINS

    Directory of Open Access Journals (Sweden)

    Yumnam Silla

    2015-09-01

    Full Text Available An elevated level of homocysteine, a reactive thiol containing amino acid is associated with a multitude of complex diseases. A majority (>80% of homocysteine in circulation is bound to protein cysteine residues. Although, till date only 21 proteins have been experimentally shown to bind with homocysteine, using an insilico approach we had earlier identified several potential target proteins that could bind with homocysteine. Shomocysteinylation of proteins could potentially alter the structure and/or function of the protein. Earlier studies have shown that binding of homocysteine to protein alters its function. However, the effect of homocysteine on the target protein structure has not yet been documented. In the present work, we assess conformational or structural changes if any due to protein homocysteinylation using two proteins, granzyme B (GRAB and junctional adhesion molecule 1 (JAM1, which could potentially bind to homocysteine. We, for the first time, constructed computational models of homocysteine bound to target proteins and monitored their structural changes using explicit solvent molecular dynamic (MD simulation. Analysis of homocysteine bound trajectories revealed higher flexibility of the active site residues and local structural perturbations compared to the unbound native structure’s simulation, which could affect the stability of the protein. In addition, secondary structure analysis of homocysteine bound trajectories also revealed disappearance of â-helix within the G-helix and linker region that connects between the domain regions (as defined in the crystal structure. Our study thus captures the conformational transitions induced by homocysteine and we suggest these structural alterations might have implications for hyperhomocysteinemia induced pathologies.

  20. Homocysteine metabolism and risk of schizophrenia

    NARCIS (Netherlands)

    Muntjewerff, J.W.

    2006-01-01

    The one-carbon cycle hypothesis initiated research of schizophrenia risk in relation to sensitive markers of aberrant homocysteine metabolism, such as B-vitamin concentrations, plasma total homocysteine (tHcy) concentrations, and genetic determinants. We observed decreased plasma and elevated RBC

  1. Homocysteine Test

    Science.gov (United States)

    ... needed to ensure the quality of the sample? Fasting for 10 to 12 hours may be required ... factors, such as smoking, high blood pressure , or obesity. However, the exact role that homocysteine plays in ...

  2. Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria

    DEFF Research Database (Denmark)

    Karminska, K. H.; Purta, E.; Hansen, L .H.

    2010-01-01

    The Cfr methyltransferase confers combined resistance to five classes of antibiotics that bind to the peptidyl tranferase center of bacterial ribosomes by catalyzing methylation of the C-8 position of 23S rRNA nucleotide A2503. The same nucleotide is targeted by the housekeeping methyltransferase...

  3. Homocysteine and C-reactive protein as useful surrogate markers for evaluating CKD risk in adults.

    Science.gov (United States)

    Chuang, Chung-Hsun; Lee, Yi-Yen; Sheu, Bor-Fuh; Hsiao, Cheng-Ting; Loke, Song-Seng; Chen, Jih-Chang; Li, Wen-Cheng

    2013-01-01

    This study aimed to evaluate the effectiveness of homocysteine and C-reactive protein (CRP) as potential markers for chronic kidney disease (CKD) in adults in Taiwan, and to identify associations between these factors and CKD, stratifying by gender. This cross-sectional study analyzed multi-center data retrospectively. Data were collected from 22,043 adult Taiwanese at Chang-Gung Memorial Hospital from 2005 to 2011. Smoking/drinking history, personal medical/medication history, pregnancy, fasting times as well as laboratory parameters, including homocysteine and CRP were measured and analyzed. Significant differences were observed between four homocysteine and CRP quartiles in eGFR and CKD. For males, only one model showed significant associations between plasma homocysteine and CKD, while in females, all three models showed significant associations with CKD. On the contrary, the gender difference in the case of CRP was opposite. Combined homocysteine and CRP were associated with CKD in males but not in females. Among Taiwanese adults, plasma homocysteine is associated with CKD in females and plasma hsCRP is associated with CKD in males. High hsCRP/high homocysteine is associated with elevated CKD risk in male. Our results suggest that homocysteine and hsCRP may be useful surrogate markers for evaluating CKD risk in adults. © 2013 S. Karger AG, Basel.

  4. YgdE is the 2'-O-ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA

    DEFF Research Database (Denmark)

    Purta, Elzbieta; O'Connor, Michelle; Bujnicki, Janusz M

    2009-01-01

    The rRNAs of Escherichia coli contain four 2'-O-methylated nucleotides. Similar to other bacterial species and in contrast with Archaea and Eukaryota, the E. coli rRNA modifications are catalysed by specific methyltransferases that find their nucleotide targets without being guided by small...... complementary RNAs. We show here that the ygdE gene encodes the methyltransferase that catalyses 2'-O-methylation at nucleotide C2498 in the peptidyl transferase loop of E. coli 23S rRNA. Analyses of rRNAs using MALDI mass spectrometry showed that inactivation of the ygdE gene leads to loss of methylation...... at nucleotide C2498. The loss of ygdE function causes a slight reduction in bacterial fitness. Methylation at C2498 was restored by complementing the knock-out strain with a recombinant copy of ygdE. The recombinant YgdE methyltransferase modifies C2498 in naked 23S rRNA, but not in assembled 50S subunits...

  5. Riboflavin-responsive trimethylaminuria in a patient with homocystinuria on betaine therapy.

    Science.gov (United States)

    Manning, Nigel J; Allen, Elizabeth K; Kirk, Richard J; Sharrard, Mark J; Smith, Edwin J

    2012-01-01

    A 17-year-old female patient with pyridoxine non-responsive homocystinuria, treated with 20 g of betaine per day, developed a strong body odour, which was described as fish-like. Urinary trimethylamine (TMA) was measured and found to be markedly increased. DNA mutation analysis revealed homozygosity for a common allelic variant in the gene coding for the TMA oxidising enzyme FMO3. Without changing diet or betaine therapy, riboflavin was given at a dose of 200 mg per day. An immediate improvement in her odour was noticed by her friends and family and urinary TMA was noted to be greatly reduced, although still above the normal range.Gradual further reductions in TMA (and odour) have followed whilst receiving riboflavin. Throughout this period, betaine compliance has been demonstrated by the measurement of dimethylglycine (DMG) excretion, which has been consistently increased. Marked excretions of DMG when the odour had subsided also demonstrate that DMG was not the source of the odour.This patient study raises the possibility that betaine may be converted to TMA by intestinal flora to some degree, resulting in a significant fish odour when oxidation of TMA is compromised by FMO3 variants. The possibility exists that the body odour occasionally associated with betaine therapy for homocystinuria may not be related to increased circulating betaine or DMG, but due to a common FMO3 mutation resulting in TMAU. Benefits of riboflavin therapy for TMAU for such patients would allow the maintenance of betaine therapy without problematic body odour.

  6. Comparative case-control study of homocysteine, vitamin B12, and folic acid levels in patients with epilepsy.

    Science.gov (United States)

    Pulido Fontes, L; Pulido Fontes, M; Quesada Jiménez, P; Muruzabal Pérez, J; Mendioroz Iriarte, M

    2017-09-01

    Increased blood homocysteine levels are a known cardiovascular risk factor. Epileptic patients on long-term treatment with antiepileptic drugs may present higher homocysteine levels and, consequently, a potential increase in cardiovascular risk. We conducted an observational case-control study to compare plasma levels of homocysteine, folic acid, and vitamin B 12 . Our study included a total of 88 subjects: 52 patients with epilepsy and 36 controls. Epileptic patients showed higher homocysteine levels (P=.084) and lower levels of folic acid (P<.05). Homocysteine levels should be monitored in epileptic patients on long-term treatment with antiepileptic drugs. We suggest starting specific treatment in patients with high homocysteine levels. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Niacin treatment increases plasma homocyst(e)ine levels.

    Science.gov (United States)

    Garg, R; Malinow, M; Pettinger, M; Upson, B; Hunninghake, D

    1999-12-01

    Studies have reported high levels of plasma homocyst(e)ine as an independent risk factor for arterial occlusive disease. The Cholesterol Lowering Atherosclerosis Study reported an increase in plasma homocyst(e)ine levels in patients receiving both colestipol and niacin compared with placebo. Thus the objective of this study was to examine the effect of niacin treatment on plasma homocyst(e)ine levels. The Arterial Disease Multiple Intervention Trial, a multicenter randomized, placebo-controlled trial, examined the effect of niacin compared with placebo on homocyst(e)ine in a subset of 52 participants with peripheral arterial disease. During the screening phase, titration of niacin dose from 100 mg to 1000 mg daily resulted in a 17% increase in mean plasma homocyst(e)ine level from 13.1 +/- 4.4 micromol/L to 15.3 +/- 5.6 micromol/L (P ine levels in the niacin group and a 7% decrease in the placebo group (P =.0001). This difference remained statistically significant at the end of follow-up at 48 weeks. Niacin substantially increased plasma homocyst(e)ine levels, which could potentially reduce the expected benefits of niacin associated with lipoprotein modification. However, plasma homocyst(e)ine levels can be decreased by folic acid supplementation. Thus further studies are needed to determine whether B vitamin supplementation to patients undergoing long-term niacin treatment would be beneficial.

  8. S phase entry causes homocysteine-induced death while ataxia telangiectasia and Rad3 related protein functions anti-apoptotically to protect neurons.

    Science.gov (United States)

    Ye, Weizhen; Blain, Stacy W

    2010-08-01

    A major phenotype seen in neurodegenerative disorders is the selective loss of neurons due to apoptotic death and evidence suggests that inappropriate re-activation of cell cycle proteins in post-mitotic neurons may be responsible. To investigate whether reactivation of the G1 cell cycle proteins and S phase entry was linked with apoptosis, we examined homocysteine-induced neuronal cell death in a rat cortical neuron tissue culture system. Hyperhomocysteinaemia is a physiological risk factor for a variety of neurodegenerative diseases, including Alzheimer's disease. We found that in response to homocysteine treatment, cyclin D1, and cyclin-dependent kinases 4 and 2 translocated to the nucleus, and p27 levels decreased. Both cyclin-dependent kinases 4 and 2 regained catalytic activity, the G1 gatekeeper retinoblastoma protein was phosphorylated and DNA synthesis was detected, suggesting transit into S phase. Double-labelling immunofluorescence showed a 95% co-localization of anti-bromodeoxyuridine labelling with apoptotic markers, demonstrating that those cells that entered S phase eventually died. Neurons could be protected from homocysteine-induced death by methods that inhibited G1 phase progression, including down-regulation of cyclin D1 expression, inhibition of cyclin-dependent kinases 4 or 2 activity by small molecule inhibitors, or use of the c-Abl kinase inhibitor, Gleevec, which blocked cyclin D and cyclin-dependent kinase 4 nuclear translocation. However, blocking cell cycle progression post G1, using DNA replication inhibitors, did not prevent apoptosis, suggesting that death was not preventable post the G1-S phase checkpoint. While homocysteine treatment caused DNA damage and activated the DNA damage response, its mechanism of action was distinct from that of more traditional DNA damaging agents, such as camptothecin, as it was p53-independent. Likewise, inhibition of the DNA damage sensors, ataxia-telangiectasia mutant and ataxia telangiectasia and Rad

  9. Mining literature for a comprehensive pathway analysis: A case study for retrieval of homocysteine related genes for genetic and epigenetic studies

    Directory of Open Access Journals (Sweden)

    Mahajan Anubha

    2006-01-01

    Full Text Available Abstract Homocysteine is an independent risk factor for cardiovascular diseases. It is also known to be associated with a variety of complex disorders. While there are a large number of independent studies implicating homocysteine in isolated pathways, the mechanism of homocysteine induced adverse effects are not clear. Homocysteine-induced modulation of gene expression through alteration of methylation status or by hitherto unknown mechanisms is predicted to lead to several pathological conditions either directly or indirectly. In the present manuscript, using literature mining approach, we have identified the genes that are modulated directly or indirectly by an elevated level of homocysteine. These genes were then placed in appropriate pathways in an attempt to understand the molecular basis of homocysteine induced complex disorders and to provide a resource for selection of genes for polymorphism screening and analysis of mutations as well as epigenetic modifications in relation to hyperhomocysteinemia. We have identified 135 genes in 1137 abstracts that either modulate the levels of homocysteine or are modulated by elevated levels of homocysteine. Mapping the genes to their respective pathways revealed that an elevated level of homocysteine leads to the atherosclerosis either by directly affecting lipid metabolism and transport or via oxidative stress and/or Endoplasmic Reticulum (ER stress. Elevated levels of homocysteine also decreases the bioavailability of nitric oxide and modulates the levels of other metabolites including S-adenosyl methionine and S-adenosyl homocysteine which may result in cardiovascular or neurological disorders. The ER stress emerges as the common pathway that relates to apoptosis, atherosclerosis and neurological disorders and is modulated by levels of homocysteine. The comprehensive network collated has lead to the identification of genes that are modulated by homocysteine indicating that homocysteine exerts its

  10. Assessment of urinary betaine as a marker of diabetes mellitus in cardiovascular patients.

    Science.gov (United States)

    Schartum-Hansen, Hall; Ueland, Per M; Pedersen, Eva R; Meyer, Klaus; Ebbing, Marta; Bleie, Øyvind; Svingen, Gard F T; Seifert, Reinhard; Vikse, Bjørn E; Nygård, Ottar

    2013-01-01

    Abnormal urinary excretion of betaine has been demonstrated in patients with diabetes or metabolic syndrome. We aimed to identify the main predictors of excretion in cardiovascular patients and to make initial assessment of its feasibility as a risk marker of future diabetes development. We used data from 2396 patients participating in the Western Norway B-vitamin Intervention Trial, who delivered urine and blood samples at baseline, and in the majority at two visits during follow-up of median 39 months. Betaine in urine and plasma were measured by liquid-chromatography-tandem mass spectrometry. The strongest determinants of urinary betaine excretion by multiple regression were diabetes mellitus, age and estimated glomerular filtration rate; all pdiabetes mellitus (n = 264) had a median excretion more than three times higher than those without. We found a distinct non-linear association between urinary betaine excretion and glycated hemoglobin, with a break-point at 6.5%, and glycated hemoglobin was the strongest determinant of betaine excretion in patients with diabetes mellitus. The discriminatory power for diabetes mellitus corresponded to an area under the curve by receiver-operating characteristics of 0.82, and betaine excretion had a coefficient of reliability of 0.73. We also found a significant, independent log-linear relation between baseline betaine excretion and the risk of developing new diabetes during follow-up. The good discriminatory power for diabetes, high test-retest stability and independent association with future risk of new diabetes should motivate further investigation on the role of betaine excretion in risk assessment and long-term follow-up of diabetes mellitus.

  11. Molecular interactions in the betaine monohydrate-polyol deep eutectic solvents: Experimental and computational studies

    Science.gov (United States)

    Zahrina, Ida; Mulia, Kamarza; Yanuar, Arry; Nasikin, Mohammad

    2018-04-01

    DES (deep eutectic solvents) are a new class of ionic liquids that have excellent properties. The strength of interaction between molecules in the DES affects their properties and applications. In this work, the strength of molecular interactions between components in the betaine monohydrate salt and polyol (glycerol or/and propylene glycol) eutectic mixtures was studied by experimental and computational studies. The melting point and fusion enthalpy of the mixtures were measured using STA (Simultaneous Thermal Analyzer). The nature and strength of intermolecular interactions were observed by FT-IR and NMR spectroscopy. The molecular dynamics simulation was used to determine the number of H-bonds, percent occupancy, and radial distribution functions in the eutectic mixtures. The interaction between betaine monohydrate and polyol is following order: betaine monohydrate-glycerol-propylene glycol > betaine monohydrate-glycerol > betaine monohydrate-propylene glycol, where the latter is the eutectic mixture with the lowest stability, strength and extent of the hydrogen bonding interactions between component molecules. The presence of intra-molecular hydrogen bonding interactions, the inter-molecular hydrogen bonding interactions between betaine molecule and polyol, and also interactions between polyol and H2O of betaine monohydrate in the eutectic mixtures.

  12. Retinal Ganglion Cell Loss in Diabetes Associated with Elevated Homocysteine

    Directory of Open Access Journals (Sweden)

    Kenneth S. Shindler

    2009-11-01

    Full Text Available A number of studies have suggested that homocysteine may be a contributing factor to development of retinopathy in diabetic patients based on observed correlations between elevated homocysteine levels and the presence of retinopathy. The significance of such a correlation remains to be determined, and potential mechanisms by which homocysteine might induce retinopathy have not been well characterized. Ganapathy and colleagues1 used mutant mice that have endogenously elevated homocysteine levels due to heterozygous deletion of the cystathionine-β-synthase gene to examine changes in retinal pathology following induction of diabetes. Their finding that elevated homocysteine levels hastens loss of cells in the retinal ganglion cell layer suggests that toxicity to ganglion cells may warrant further investigation as a potential mechanism of homocysteine enhanced susceptibility to diabetic retinopathy.

  13. Decreased serum homocysteine levels after micronutrient supplementation in older people

    Directory of Open Access Journals (Sweden)

    Pusparini Pusparini

    2016-02-01

    Full Text Available Aging is associated with a gradual impairment in cognitive function. The elderly also show a high prevalence of undernutrition, whereas nutrition plays an important role in the metabolism of neuronal cells and enzymes. Homocysteine is an amino acid resulting from methionine metabolism and is dependent on intake of vitamin B12, vitamin B6 and folic acid. Homocysteine is said to play a role in cognitive function. The objective of this study was to evaluate the effect of micronutrient supplementation for 6 months on serum homocysteine levels and cognitive function in older people. This study was an experimental study of pre-post test design, carried out in Mampang subdistrict, South Jakarta. A total of 94 elderly people was recruited for this study, consisting of 44 females and 50 males. Serum homocysteine level was assessed by fluorescent polarization immunoassay and cognitive function by means of the mini mental state examination (MMSE before and after micronutrient supplementation. Mean serum homocysteine concentration after supplementation decreased significantly to 14.8 ± 5.8 mmol/L, compared with mean serum homocysteine level of 15.9 ± 5.9 mmol/L before supplementation (p=0.000. Multiple regression analysis indicated that the factors influencing post-supplementation MMSE scores were gender (â=-0.350; p=0.000, education (â=0.510; p=0.000 and post-supplementation homocysteine levels (â=-0.201; p=0.000, while age, pre-supplementation homocysteine levels and BMI did not affect MMSE scores. Homocysteine concentration decreased significantly after 6 months of supplementation. The factors affecting post-supplementation MMSE scores were gender, level of education, and post-supplementation homocysteine level.

  14. Decreased serum homocysteine levels after micronutrient supplementation in older people

    Directory of Open Access Journals (Sweden)

    Pusparini

    2010-12-01

    Full Text Available Aging is associated with a gradual impairment in cognitive function. The elderly also show a high prevalence of undernutrition, whereas nutrition plays an important role in the metabolism of neuronal cells and enzymes. Homocysteine is an amino acid resulting from methionine metabolism and is dependent on intake of vitamin B12, vitamin B6 and folic acid. Homocysteine is said to play a role in cognitive function. The objective of this study was to evaluate the effect of micronutrient supplementation for 6 months on serum homocysteine levels and cognitive function in older people. This study was an experimental study of pre-post test design, carried out in Mampang subdistrict, South Jakarta. A total of 94 elderly people was recruited for this study, consisting of 44 females and 50 males. Serum homocysteine level was assessed by fluorescent polarization immunoassay and cognitive function by means of the mini mental state examination (MMSE before and after micronutrient supplementation. Mean serum homocysteine concentration after supplementation decreased significantly to 14.8 ± 5.8 mmol/L, compared with mean serum homocysteine level of 15.9 ± 5.9 mmol/L before supplementation (p=0.000. Multiple regression analysis indicated that the factors influencing post-supplementation MMSE scores were gender (â=-0.350; p=0.000, education (â=0.510; p=0.000 and post-supplementation homocysteine levels (â=-0.201; p=0.000, while age, pre-supplementation homocysteine levels and BMI did not affect MMSE scores. Homocysteine concentration decreased significantly after 6 months of supplementation. The factors affecting post-supplementation MMSE scores were gender, level of education, and post-supplementation homocysteine level.

  15. Gbu Glycine Betaine Porter and Carnitine Uptake in Osmotically Stressed Listeria monocytogenes Cells

    Science.gov (United States)

    Mendum, Mary Lou; Smith, Linda Tombras

    2002-01-01

    The food-borne pathogen Listeria monocytogenes grows actively under high-salt conditions by accumulating compatible solutes such as glycine betaine and carnitine from the medium. We report here that the dominant transport system for glycine betaine uptake, the Gbu porter, may act as a secondary uptake system for carnitine, with a Km of 4 mM for carnitine uptake and measurable uptake at carnitine concentrations as low as 10 μM. This porter has a Km for glycine betaine uptake of about 6 μM. The dedicated carnitine porter, OpuC, has a Km for carnitine uptake of 1 to 3 μM and a Vmax of approximately 15 nmol/min/mg of protein. Mutants lacking either opuC or gbu were used to study the effects of four carnitine analogs on growth and uptake of osmolytes. In strain DP-L1044, which had OpuC and the two glycine betaine porters Gbu and BetL, triethylglycine was most effective in inhibiting growth in the presence of glycine betaine, but trigonelline was best at inhibiting growth in the presence of carnitine. Carnitine uptake through OpuC was inhibited by γ-butyrobetaine. Dimethylglycine inhibited both glycine betaine and carnitine uptake through the Gbu porter. Carnitine uptake through the Gbu porter was inhibited by triethylglycine. Glycine betaine uptake through the BetL porter was strongly inhibited by trigonelline and triethylglycine. These results suggest that it is possible to reduce the growth of L. monocytogenes under osmotically stressful conditions by inhibiting glycine betaine and carnitine uptake but that to do so, multiple uptake systems must be affected. PMID:12406761

  16. Homocisteína Homocysteine

    Directory of Open Access Journals (Sweden)

    Lindalva Batista Neves

    2004-10-01

    Full Text Available A homocisteína, formada a partir da metionina hepática, é metabolizada nas vias de desmetilação e de transulfuração, sendo que seus valores plasmáticos e urinários refletem a síntese celular. Sua determinação, realizada em jejum e após sobrecarga de metionina, caracteriza as diferenças dessas vias metabólicas, principalmente quando de natureza genética. A hiper-homocisteinemia tem sido associada a maior risco de eventos aterotrombóticos, e a literatura sugere associação causal, independente de outros fatores de risco para doença arterial. Diminuição da homocisteína plasmática para valores normais é seguida de redução significante na incidência de doença aterotrombótica. A relação entre homocisteína e o fígado vem adquirindo importância nos dias atuais, uma vez que alterações das lipoproteínas e da depuração de metionina são comuns em pacientes com doença hepática crônica (hepatocelular e canalicular. O tratamento da hiper-homocisteinemia fundamenta-se na suplementação alimentar e medicamentosa de ácido fólico e vitaminas B6 e B12.Homocysteine, formed from hepatic methionine, is metabolized through the pathways of demethylation and transsulfuration. Its plasmatic and urinary values reflect the cell synthesis. Its determination after fasting and increased infusion of methionine shows the differences of these two metabolic pathways, mainly when it is related to genetic diseases. Hyperhomocysteinemia has been associated with a higher risk of vascular thrombotic events. Several authors suggest a causal relationship between these events independently of other risk factors for vascular diseases. Decrease in plasmatic homocysteine to normal levels is followed by a significant reduction on the incidence of vascular thrombotic events. The correlation between the liver and homocysteine is becoming more important because of the recent findings that alterations of lipoproteins and methionine clearance are

  17. Structural characterization of the mitomycin 7-O-methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shanteri; Chang, Aram; Goff, Randal D.; Bingman, Craig A.; Grüschow, Sabine; Sherman, David H.; Phillips, Jr., George N.; Thorson, Jon S. (Michigan); (UW)

    2014-10-02

    Mitomycins are quinone-containing antibiotics, widely used as antitumor drugs in chemotherapy. Mitomycin-7-O-methyltransferase (MmcR), a key tailoring enzyme involved in the biosynthesis of mitomycin in Streptomyces lavendulae, catalyzes the 7-O-methylation of both C9{beta}- and C9{alpha}-configured 7-hydroxymitomycins. We have determined the crystal structures of the MmcR-S-adenosylhomocysteine (SAH) binary complex and MmcR-SAH-mitomycin A (MMA) ternary complex at resolutions of 1.9 and 2.3 {angstrom}, respectively. The study revealed MmcR to adopt a common S-adenosyl-L-methionine-dependent O-methyltransferase fold and the presence of a structurally conserved active site general acid-base pair is consistent with a proton-assisted methyltransfer common to most methyltransferases. Given the importance of C7 alkylation to modulate mitomycin redox potential, this study may also present a template toward the future engineering of catalysts to generate uniquely bioactive mitomycins.

  18. Blood homocysteine, folic acid, vitamin B12 and vitamin B6 levels in psoriasis patients

    Directory of Open Access Journals (Sweden)

    Meltem Uslu

    2017-09-01

    Full Text Available Background and Design: Homocysteine, a sulfur-containing amino acid, is known to be related with autoimmunity-inflammation, cardiovascular disease and DNA methylation. In this case-control study, we aimed to determine plasma homocysteine, folic acid, vitamin B12 and vitamin B6 levels in patients with psoriasis. Materials and Methods: Smoking, alcohol and coffee consumption habits were recorded in adult patients with plaque-type psoriasis and age- and sex-matched controls. Height and weight measurements were performed and Psoriasis Area and Severity Index (PASI scores were calculated. Fasting venous blood samples were collected to determine homocysteine, folic acid, vitamin B12, vitamin B6, glucose, total cholesterol, triglyceride, high density lipoprotein (HDL, erythrocyte sedimentation rate (ESR, and C-reactive protein (CRP levels. Results: There was no significant difference between psoriasis patients (n=43 and controls (n=47 in body mass index and alcohol and coffee consumption. Smoking rate was significantly high in psoriasis patients. The median PASI score was 10.0 (8.3-12.8. Plasma homocysteine, folic acid, vitamin B12, vitamin B6, total cholesterol, triglyseride, ESR and CRP values were not significantly different between patients and the controls. HDL level was low in psoriasis patients (p=0.001. Plasma homocysteine level was higher in males than in females. There was no relationship of homocysteine levels with patient’s age, PASI scores, ESR, CRP values and lipids. Homocysteine levels were inversely related with folic acid and vitamin B12 (p=0.000, r=-0.436, p=0.047, r=-0.204, respectively. We did not find any relationship between homocysteine and vitamin B6 levels. Conclusion: There was no increase in plasma homocysteine levels in psoriasis patients we followed up. Homocysteine level increases in inflammatory disorders and this increase is accepted as a cardiovascular disease marker. Homocysteine homeostasis may be balanced in our

  19. Serum homocysteine levels in cerebrovascular accidents.

    Science.gov (United States)

    Zongte, Zolianthanga; Shaini, L; Debbarma, Asis; Singh, Th Bhimo; Devi, S Bilasini; Singh, W Gyaneshwar

    2008-04-01

    Hyperhomocysteinemia has been considered an independent risk factor in the development of stroke. The present study was undertaken to evaluate serum homocysteine levels in patients with cerebrovascular accidents among the Manipuri population and to compare with the normal cases. Ninety-three cerebrovascular accident cases admitted in the hospital were enrolled for the study and twenty-seven age and sex matched individuals free from cerebrovascular diseases were taken as control group. Serum homocysteine levels were estimated by ELISA method using Axis homocysteine EIA kit manufactured by Ranbaxy Diagnostic Ltd. India. The finding suggests that hyperhomocysteinemia is associated with cerebrovascular accident with male preponderance, which increases with advancing age. However, whether hyperhomocysteinemia is the cause or the result of cerebrovascular accidents needs further investigations.

  20. Nível plasmático de homocisteína: marcador de gravidade em pacientes sépticos? Homocysteine plasma levels as a marker of clinical severity in septic patients

    Directory of Open Access Journals (Sweden)

    Antonio Coelho Neto

    2010-12-01

    Full Text Available OBJETIVO: Homocisteína e a sepse estão ambos associados à inflamação e ativação endotelial. O objetivo desse estudo foi verificar se o nível plasmático de homocisteína está relacionado à gravidade do quadro séptico. MÉTODOS: Estudo clínico, prospectivo e observacional, incluindo pacientes com sepse grave ou choque séptico com menos de 48 horas de instalação da disfunção orgânica. Os níveis de homocisteína foram determinados no dia da inclusão no estudo e nos dias 3, 7, 14. A associação entre homocisteína com o escore Sequential Organ Failure Assessment (SOFA foi avaliada pelo teste de Sperman e com mortalidade pelo teste de Mann-Whitney. Os resultados foram considerados significativos se pOBJECTIVE: Homocysteine and sepsis are both associated with inflammation and endothelial activation. Therefore this study was aimed to evaluate if the plasma homocystein level is related with the septic patient clinical severity. METHODS: Severe sepsis or septic shock patients, with less than 48 hours from organ dysfunction start, were admitted to this prospective observational study. Homocysteine levels were determined by the time of study admission and then on the Days 3, 7 and 14. The homocysteine association with the Sequential Organ Failure Assessment (SOFA score was evaluated using the Sperman test, and its association with mortality using the Mann-Whitney test. A p<0.05 value was considered statistically significant. RESULTS: Twenty one patients were enrolled, and 60 blood samples were collected to measure total homocysteine [median 6.92 (5.27 - 9.74 μmol/L]. The Sperman correlation test showed no association between homocysteine and SOFA ( r=0.15 and p=0.26. Also no correlation was found for the homocysteine level by the study admission time and the difference between the Day 3 SOFA score versus by study admission (deltaSOFA (r=0.04 and p=0.87. Homocysteine variation between the Day 3 and the study admission (deltaHmc and

  1. Isolation of glycine betaine and proline betaine from human urine. Assessment of their role as osmoprotective agents for bacteria and the kidney.

    OpenAIRE

    Chambers, S T; Kunin, C M

    1987-01-01

    Human urine is osmoprotective for enteric bacteria, permitting E. coli to grow with high concentrations of NaCl and other salts and even higher concentrations of sucrose and mannitol but not urea. The active material in urine is soluble in methanol and is precipitated by ammonium reineckate at acid pH. Using gel filtration and high-pressure liquid chromatography, we have identified two major osmoprotective compounds in urine. One is glycine betaine; the other is proline betaine as demonstrate...

  2. 1 RESEARCH ARTICLE Neuro-Fuzzy Model of Homocysteine ...

    Indian Academy of Sciences (India)

    2017-03-10

    Mar 10, 2017 ... diseases and higher incidence of vitamin deficiencies in Indians, we ... circulation as peroxynitrite (Antoniades C, et al., 2006); iii) homocysteine was shown to induce damage to endothelium (Pushpakumar S, et al., 2014); iv) elevated ..... 2014 Impact of hyperhomocysteinemia on breast cancer initiation and.

  3. The relative contribution of genes operating in the S-methylmethionine cycle to methionine metabolism in Arabidopsis seeds.

    Science.gov (United States)

    Cohen, Hagai; Salmon, Asaf; Tietel, Zipora; Hacham, Yael; Amir, Rachel

    2017-05-01

    Enzymes operating in the S -methylmethionine cycle make a differential contribution to methionine synthesis in seeds. In addition, mutual effects exist between the S -methylmethionine cycle and the aspartate family pathway in seeds. Methionine, a sulfur-containing amino acid, is a key metabolite in plant cells. The previous lines of evidence proposed that the S-methylmethionine (SMM) cycle contributes to methionine synthesis in seeds where methionine that is produced in non-seed tissues is converted to SMM and then transported via the phloem into the seeds. However, the relative regulatory roles of the S-methyltransferases operating within this cycle in seeds are yet to be fully understood. In the current study, we generated transgenic Arabidopsis seeds with altered expression of three HOMOCYSTEINE S-METHYLTRANSFERASEs (HMTs) and METHIONINE S-METHYLTRANSFERASE (MMT), and profiled them for transcript and metabolic changes. The results revealed that AtHMT1 and AtHMT3, but not AtHMT2 and AtMMT, are the predominant enzymes operating in seeds as altered expression of these two genes affected the levels of methionine and SMM in transgenic seeds. Their manipulations resulted in adapted expression level of genes participating in methionine synthesis through the SMM and aspartate family pathways. Taken together, our findings provide new insights into the regulatory roles of the SMM cycle and the mutual effects existing between the two methionine biosynthesis pathways, highlighting the complexity of the metabolism of methionine and SMM in seeds.

  4. Homocysteine and coronary heart disease

    DEFF Research Database (Denmark)

    Clarke, Robert; Bennett, Derrick A; Parish, Sarah

    2012-01-01

    Moderately elevated blood levels of homocysteine are weakly correlated with coronary heart disease (CHD) risk, but causality remains uncertain. When folate levels are low, the TT genotype of the common C677T polymorphism (rs1801133) of the methylene tetrahydrofolate reductase gene (MTHFR) appreci......Moderately elevated blood levels of homocysteine are weakly correlated with coronary heart disease (CHD) risk, but causality remains uncertain. When folate levels are low, the TT genotype of the common C677T polymorphism (rs1801133) of the methylene tetrahydrofolate reductase gene (MTHFR...

  5. Levels of Key Enzymes of Methionine-Homocysteine Metabolism in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Alejandra Pérez-Sepúlveda

    2013-01-01

    Full Text Available Objective. To evaluate the role of key enzymes in the methionine-homocysteine metabolism (MHM in the physiopathology of preeclampsia (PE. Methods. Plasma and placenta from pregnant women (32 controls and 16 PE patients were analyzed after informed consent. Protein was quantified by western blot. RNA was obtained with RNA purification kit and was quantified by reverse transcritase followed by real-time PCR (RT-qPCR. Identification of the C677T and A1298C methylenetetrahydrofolate reductase (MTHFR single-nucleotide polymorphisms (SNPs and A2756G methionine synthase (MTR SNP was performed using PCR followed by a high-resolution melting (HRM analysis. S-adenosyl methionine (SAM and S-adenosyl homocysteine (SAH were measured in plasma using high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS. The SNP association analysis was carried out using Fisher’s exact test. Statistical analysis was performed using a Mann-Whitney test. Results. RNA expression of MTHFR and MTR was significantly higher in patients with PE as compared with controls. Protein, SAM, and SAH levels showed no significant difference between preeclamptic patients and controls. No statistical differences between controls and PE patients were observed with the different SNPs studied. Conclusion. The RNA expression of MTHFR and MTR is elevated in placentas of PE patients, highlighting a potential compensation mechanism of the methionine-homocysteine metabolism in the physiopathology of this disease.

  6. Crystallization of the novel S-adenosyl-l-methionine-dependent C-methyltransferase CouO from Streptomyces rishiriensis and preliminary diffraction data analysis

    International Nuclear Information System (INIS)

    Lyskowski, Andrzej; Tengg, Martin; Steinkellner, Georg; Schwab, Helmut; Gruber-Khadjawi, Mandana; Gruber, Karl

    2012-01-01

    Recombinant Q9F8T9 protein from Streptomyces rishiriensis (CouO), an S-adenosyl-l-methionine-dependent C-methyltransferase, has been successfully cloned, expressed and purified. Recombinant Q9F8T9 protein from Streptomyces rishiriensis (CouO), an S-adenosyl-l-methionine-dependent C-methyltransferase, has been successfully cloned, expressed and purified. CouO was crystallized from a single condition in the Morpheus crystallization screen. A vitrified crystal diffracted to 2.05 Å resolution and belonged to space group P2 1 , with unit-cell parameters a = 33.02, b = 82.87, c = 76.77 Å, β = 96.93°

  7. Paradoxical elevated thiopurine S-methyltransferase activity after pancytopenia during azathioprine therapy: potential influence of red blood cell age

    NARCIS (Netherlands)

    de Boer, Nanne K. H.; van Bodegraven, Adriaan A.; de Graaf, Peer; van der Hulst, Rene W. M.; Zoetekouw, Lida; van Kuilenburg, André B. P.

    2008-01-01

    There is an increased risk of developing bone marrow depression and infections during azathioprine therapy for inflammatory bowel disease. Patients with low or absent thiopurine S-methyltransferase (TPMT) activity have an increased risk of developing myelotoxicity. We describe a patient who

  8. Effect of lipid-lowering and anti-hypertensive drugs on plasma homocysteine levels

    Directory of Open Access Journals (Sweden)

    Jutta Dierkes

    2007-03-01

    Full Text Available Jutta Dierkes, Claus Luley, Sabine WestphalInstitute of Clinical Chemistry and Biochemistry, University Hospital Magdeburg, Germany Abstract: Elevated plasma concentrations of homocysteine, a sulfur-containing amino acid, are a risk factor for coronary, cerebral and peripheral artery disease. Next to other factors, drugs used for the prevention or treatment of cardiovascular disease may modulate plasma homocysteine levels. Thus, a drug induced homocysteine increase may counteract the desired cardioprotective effect. The aim is to summarize the current knowledge on the effect of two important classes of drugs, lipid-lowering drugs and anti-hypertensive drugs, on homocysteine metabolism. Among the lipid-lowering drugs, especially the fibric acid derivatives, which are used for treatment of hypertriglyceridemia and low HDL-cholesterol, are associated with an increase of homocysteine by 20%–50%. This increase can be reduced, but not totally avoided by the addition of folic acid, vitamin B12 and B6 to fibrates. HMG-CoA reductase inhibitors (statins do not influence homocysteine concentrations substantially. The effects of nicotinic acid and n3-fatty acids on the homocysteine concentrations are less clear, more studies are necessary to clarify their influence on homocysteine. Antihypertensive drugs have also been studied with respect to homocysteine metabolism. A homocysteine increase has been shown after treatment with hydrochlorothiazide, a lowering was observed after treatment with ß-blockers, but no effect with ACE-inhibitors. The clinical significance of the homocysteine elevation by fibrates and thiazides is not clear. However, individual patients use these drugs for long time, indicating that even moderate increases may be important.Keywords: homocysteine, fibrates, diuretics, cardiovascular disease

  9. Homocysteine interference in neurulation: a chick embryo model.

    NARCIS (Netherlands)

    Afman, L.A.; Blom, H.J.; Put, N.M.J. van der; Straaten, H.W.M. van

    2003-01-01

    BACKGROUND: Periconceptional folic acid supplementation reduces the occurrence and recurrence risk of neural tube defects (NTD). Mothers of children with NTD have elevated plasma homocysteine levels. Administering homocysteine to chick embryos is reported to cause 27% NTD. Therefore, elevated plasma

  10. Crystal structure of di-( N-methylmorpholine betaine)- L(+)-tartrate

    Science.gov (United States)

    Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.; Szafran, M.

    2002-11-01

    The crystal structure of di-( N-methylmorpholine betaine)- L(+)-tartrate has been determined by X-ray diffraction method. Crystals are orthorhombic, space group P2 12 12 1, a=9.580(1), b=12.208(1), c=18.677(1) Å, Z=4, R=0.037. The molecule of L(+)-tartaric acid appears in the extended form with the hydroxyl groups as well as carboxyl groups in anti positions. The molecule is involved in a number of the intra- and intermolecular hydrogen bonds. The COOH groups of the tartaric acid link two non-equivalent N-methylmorpholine betaine molecules by a short, intermolecular O-H⋯O bonds of the lengths 2.456(1) and 2.510(1) Å. The OH groups form two different bifurcated hydrogen bonds, the intramolecular with the CO oxygen atoms (2.641(2) and 2.638(2) Å) and the intermolecular (2.919(2) and 3.084(2) Å) with neighbouring tartaric acid molecules, and link complexes in the zigzag ribbon parallel to the x-axis. The morpholine rings of both betaine molecules are in chair conformation with methyl groups in an axial position and CH 2COO - substituents in an equatorial one. In the crystals and the PM3-optimized structures there is no symmetry, both in the tartrate and N-methylmorpholine betaine moieties. FTIR spectrum confirms the complex structure of the investigated molecule.

  11. Serum homocyst(e)ine levels in women with preeclampsia.

    Science.gov (United States)

    Mayerhofer, K; Hefler, L; Zeisler, H; Tempfer, C; Bodner, K; Stöckler-Ipsiroglu, S; Mühl, A; Kaider, A; Schatten, C; Leodolter, S; Husslein, P; Kainz, C

    2000-03-24

    Endothelial dysfunction has been described as the final common pathophysiological pathway in the development of preeclampsia. Since it has been suggested that homocyst(e)ine damages endothelial cells, we measured serum homocyst(e)ine levels in women with preeclampsia and in healthy pregnant women in order to find a new prognostic parameter for women with preeclampsia. Forty-five women with preeclampsia and 45 healthy women with uncomplicated pregnancies, matched for age and parity, were entered into the study. Serum homocyst(e)ine levels were measured by gas chromatography-mass spectrometry analysis and correlated to clinical data. Logistic regression models were used to analyse the influence of serum homocyst(e)ine levels on the presence of preeclampsia versus healthy pregnant women and on the risk of premature termination of pregnancy due to preeclampsia. Median serum homocyst(e)ine levels in women with preeclampsia and healthy pregnant women were 14.2 (range 5.7-38.1) mumol/L and 15.1 (range 5.2-23.1) mumol/L, respectively (Mann-Whitney U-test, p = 0.8). In univariate logistic regression models, serum homocyst(e)ine levels had no significant influence on the odds of presenting with preeclampsia versus healthy pregnant women (univariate logistic regression model, p = 0.8) and on the odds of premature termination of pregnancy due to preeclampsia (univariate logistic regression model, p = 0.3). Serum homocyst(e)ine levels are not elevated in women with preeclampsia and are not associated with clinical outcome in women with preeclampsia.

  12. Homocystein: A new biochemical marker in livestock sector

    Directory of Open Access Journals (Sweden)

    Suleyman Kozat

    2017-12-01

    Full Text Available The livestock sector is making great contributions to the world economy. Many different diseases, such as cardiovascular diseases, kidney and mineral substance insufficiency, cause huge losses in yield and production in the livestock sector. Early diagnosis is essential to combat these diseases. Today, homocysteine levels are used as biochemical markers in the diagnosis of the functions and diseases of many different organs in human medicine. Homocysteine is an amino acid that occurs in the process of methionine metabolism and does not enter the primary structure of proteins. Homocysteine is a biochemical marker used in the assessment of cardiovascular and renal diseases as well as other organ functions. In this review, homocysteine determination methods and detailed information about which organ and system diseases can be used in livestock sector will be given. [J Adv Vet Anim Res 2017; 4(4.000: 319-332

  13. Low diagnostic value of fasting and post-methionine load homocysteine tests. A study in Dutch subjects with homocysteine test indications

    NARCIS (Netherlands)

    Fokkema, M R; Dijck-Brouwer, D A J; van Doormaal, J J; Reijngoud, D J; Muskiet, F A J

    BACKGROUND: Homocysteine is a cardiovascular disease risk factor. We investigated, both in subjects with past plasma total homocysteine (tHcy) test indications and healthy adults, the diagnostic value of a fasting (tHcy) (f-tHcy) and the added value of a post-methionine-load tHcy (postload-tHcy).

  14. Effects of dietary supplementation with betaine on a nonalcoholic steatohepatitis (NASH) mouse model.

    Science.gov (United States)

    Kawakami, Sakura; Han, Kyu-Ho; Nakamura, Yumi; Shimada, Ken-ichiro; Kitano, Tomoko; Aritsuka, Tsutomu; Nagura, Taizo; Ohba, Kiyoshi; Nakamura, Kimihide; Fukushima, Michihiro

    2012-01-01

    The effects of betaine supplementation on non-alcoholic steatohepatitis (NASH) model mice were examined by measuring the accumulation of fat in the livers of NASH model mice compared to a control. Betaine from sugar beets was provided to the model mice as a dietary supplement. After 3 wk of dietary supplementation, there were no significant differences in body weight or liver weight between the groups. However, the liver to body weight ratio in the high-fat diet with betaine (HFB) group was significantly (pNASH model mice.

  15. Synthesis of mesomeric betaine compounds with imidazolium-enolate structure

    Directory of Open Access Journals (Sweden)

    Nina Gonsior

    2012-03-01

    Full Text Available The synthesis of a heterocyclic mesomeric betaine by quaternization reaction of 1-butylimidazole and tetrabromo-1,4-benzoquinone is presented. The structure was verified by means of X-ray single-crystal analysis, NMR and IR spectroscopy. Inclusion complexes of the heterocyclic mesomeric betaine with randomly methylated (1.8 β-cyclodextrin were investigated by UV–vis spectroscopy. Furthermore, the reaction conditions were applied to poly(vinylimidazole and 1,4-bis(1H-imidazol-1-ylbutane to obtain functionalized polymer networks and condensate polymers, respectively.

  16. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM

    DEFF Research Database (Denmark)

    Galimand, Marc; Schmitt, Emmanuelle; Panvert, Michel

    2011-01-01

    methyltransferase, as well as by the previously characterized aac(6')-Ii that encodes a 6'-N-aminoglycoside acetyltransferase. Inactivation of efmM in E. faecium increases susceptibility to the aminoglycosides kanamycin and tobramycin, and, conversely, expression of a recombinant version of efmM in Escherichia coli...... confers resistance to these drugs. The EfmM protein shows significant sequence similarity to E. coli RsmF (previously called YebU), which is a 5-methylcytidine (m(5)C) methyltransferase modifying 16S rRNA nucleotide C1407. The target for EfmM is shown by mass spectrometry to be a neighboring 16S r...

  17. Protein-bound homocyst(e)ine. A possible risk factor for coronary artery disease.

    Science.gov (United States)

    Kang, S S; Wong, P W; Cook, H Y; Norusis, M; Messer, J V

    1986-01-01

    The development of atherosclerotic changes and thromboembolism are common features in homocystinurics. Hence, we postulate a positive correlation between the level of homocyst(e)ine in the blood and the occurrence of coronary artery disease. Homocysteine is found either as free homocystine, cysteine-homocysteine mixed disulfide, or protein-bound homocyst(e)ine. In nonhomocystinuric subjects, most homocysteine molecules are detectable in the protein-bound form. Thus, protein-bound homocyst(e)ine in stored plasma which reflected total plasma homocyst(e)ine was determined in 241 patients with coronary artery disease (173 males and 68 females). The mean +/- SD total plasma homocyst(e)ine was 5.41 +/- 1.62 nmol/ml in male patients, 4.37 +/- 1.09 nmol/ml in male controls, 5.66 +/- 1.93 nmol/ml in female patients, and 4.16 +/- 1.62 nmol/ml in female controls. The differences between the patients with coronary artery disease and the controls were statistically significant (P less than 0.0005). PMID:3700650

  18. Combined assessment of DYRK1A, BDNF and homocysteine levels as diagnostic marker for Alzheimer’s disease

    Science.gov (United States)

    Janel, N; Alexopoulos, P; Badel, A; Lamari, F; Camproux, A C; Lagarde, J; Simon, S; Feraudet-Tarisse, C; Lamourette, P; Arbones, M; Paul, J L; Dubois, B; Potier, M C; Sarazin, M; Delabar, J M

    2017-01-01

    Early identification of Alzheimer’s disease (AD) risk factors would aid development of interventions to delay the onset of dementia, but current biomarkers are invasive and/or costly to assess. Validated plasma biomarkers would circumvent these challenges. We previously identified the kinase DYRK1A in plasma. To validate DYRK1A as a biomarker for AD diagnosis, we assessed the levels of DYRK1A and the related markers brain-derived neurotrophic factor (BDNF) and homocysteine in two unrelated AD patient cohorts with age-matched controls. Receiver-operating characteristic curves and logistic regression analyses showed that combined assessment of DYRK1A, BDNF and homocysteine has a sensitivity of 0.952, a specificity of 0.889 and an accuracy of 0.933 in testing for AD. The blood levels of these markers provide a diagnosis assessment profile. Combined assessment of these three markers outperforms most of the previous markers and could become a useful substitute to the current panel of AD biomarkers. These results associate a decreased level of DYRK1A with AD and challenge the use of DYRK1A inhibitors in peripheral tissues as treatment. These measures will be useful for diagnosis purposes. PMID:28632203

  19. Association between homocyst(e)ine levels and risk of vascular events.

    Science.gov (United States)

    Kaplan, Eugene D

    2003-03-01

    Homocyst(e)ine is a novel risk factor in vascular disease. First observations of vascular lesions in children with high blood homocyst(e)ine levels due to severe inborn enzyme deficiencies led to the hypothesis that elevated blood homocyst(e)ine levels might be a risk factor for vascular disease. A substantial body of evidence on the role of the homocyst(e)ine in the development of coronary and carotid artery disease, myocardial infarction, stroke, deep vein thrombosis and other disorders has been accumulated over the last 30 years. Cross-sectional and case-control studies provide initial and the strongest support for the hypothesis, followed by results from the prospective cohorts. Infrequent cases of homozygous mutations of the key enzymes in the homocyst(e)ine metabolism chain are able to produce extreme homocyst(e)inemia and early vascular lesions. More frequently, heterozygous enzyme mutations and deficiencies of folate and vitamins B6 and B12 cause mild to moderate homocyst(e)inemia, which is still strongly associated with the increased risk of vascular events. Elevated homocyst(e)ine levels may be effectively managed with adequate folate, B12 and B6 intake in doses comparable to or above FDA recommendations. Whether correction of elevated homocyst(e)ine levels with vitamins is helpful in prevention and treatment of vascular events remains unknown and is under investigation in ongoing clinical trials (VISP, VITATOPS). No consensus on homocyst(e)ine management is available at the present time.

  20. The role of Homocysteine as a predictor for coronary heart disease

    Directory of Open Access Journals (Sweden)

    Schramm, Susanne

    2007-11-01

    Full Text Available Background and objective: There is an ongoing debate on the role of the cytotoxic aminoacid homocysteine as a causal risk factor for the development of coronary heart disease. Results from multiple case control-studies demonstrate, that there is a strong association between high plasma levels of homoysteine and prevalent coronary heart disease, independent of other classic risk factors. Furthermore, results from interventional studies point out that elevated plasma levels of homocysteine may effectively be lowered by the intake of folic acid and B vitamins. In order to use this information for the construction of a new preventive strategy against coronary heart disease, more information is needed: first, whether homocysteine actually is a causal risk factor with relevant predictive properties and, second, whether by lowering elevated homocysteine plasma concentrations cardiac morbidity can be reduced. Currently in Germany the determination of homocysteine plasma levels is reimbursed for by statutory health insurance in patients with manifest coronary heart disease and in patients at high risk for coronary heart disease but not for screening purposes in asymptomatic low risk populations.Against this background the following assessment sets out to answer four questions: 1. Is an elevated homocysteine plasma concentration a strong, consistent and independent (of other classic risk factors predictor for coronary heart disease? 2. Does a therapeutic lowering of elevated homoysteine plasma levels reduce the risk of developing coronary events? 3. What is the cost-effectiveness relationship of homocysteine testing for preventive purposes? 4. Are there morally, socially or legally relevant aspects that should be considered when implementing a preventive strategy as outlined above? Methods: In order to answer the first question, a systematic overview of prospective studies and metaanalyses of prospective studies is undertaken. Studies are included that

  1. Main: 1U1H [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available bidopsis Thaliana Molecule: 5-Methyltetrahydropteroyltriglutamate-- Homocysteine Methyltransferase; Chain: A...QKDEALFSANAAALASRRSSPRVTNEGVQKAAAALKGSDHRRATNVSARLDAQQKKLNLPILPTTTIGSFPQTVELRRVRREYKAKKVSEEDYVKAI...GPVTILNWSFVRNDQPRHETCYQIALAIKDEVEDLEKGGIGVIQIDEAALREGLPLRKSEHAFYLDWAVHSFRITNCGVQDSTQIHTHMCYSHFNDIIHSIIDMDADV

  2. [Homocystein--an independent risk factor for cardiovascular and thrombotic diseases].

    Science.gov (United States)

    Fowler, B

    2005-09-01

    Over the last 20 years homocysteine has taken on increasing importance as an independent, potentially modifiable risk factor for various forms of vascular disease including peripheral and cerebral vascular disease, coronary heart disease and thrombosis. This association has been ascertained in many retrospective and prospective studies but the strength of risk is not yet firmly established although it is clearly dependent on several modifying factors such as other risk factors, nutrition and genetic polymorphisms. Generally it is estimated that hyperhomocysteinaemia is responsible for about 10% of all risks. Homocysteine is formed from the dietary amino acid methionine and plays a pivotal role in folate metabolism and methyl group transfer. Its concentrations in tissues and plasma are influenced by many genetic and environmental factors, especially vitamins such as folate, B12 and B6 as well as certain medications and even life style factors. Nowadays the measurement of plasma homocysteine is freely available although care has to be taken in sample handling and interpretation of results. Final proof that homocysteine is a causal agent and not just a marker for cardiovascular disease and that reduction of plasma homocysteine by vitamin treatment reduces risk of cardiovascular disease is still awaited. Therefore at the present time neither wide-scale screening for homocysteine levels nor general prophylaxis with high dose vitamins is justified. However most experts recommend homocysteine determination in individuals with existing or high risk for arterial or venous blood vessel disease and their relatives. Elevated homocysteine can be lowered in such cases with a combination of folic acid, vitamin B12 vitamin B6. The results of ongoing trials on the impact of such treatment on risk of vascular disease are awaited with great interest.

  3. Homocysteine as a potential biochemical marker for depression in elderly stroke survivors

    Directory of Open Access Journals (Sweden)

    Michaela C. Pascoe

    2012-04-01

    Full Text Available Background: Elderly stroke survivors have been reported to be at risk of malnutrition and depression. Vitamin B-related metabolites such as methylmalonic acid and homocysteine have been implicated in depression. Objective: We conducted a study exploring the relationship between homocysteine and post-stroke depression. Design: Three methodologies were used: Observational cohort study of elderly Swedish patients (n=149 1.5 years post-stroke, assessed using Diagnostic and Statistical Manual of Mental Disorders, Montgomery Åsberg Depression Rating Scale and serum blood levels of methylmalonic acid and homocysteine. Results: Homocysteine significantly correlated with depressive symptomatology in stroke survivors (β = 0.18*. Individuals with abnormal levels of methylmalonic acid and homocysteine were almost twice more likely to show depressive symptomatology than those with normal levels (depressive symptoms 22%; no depressive symptoms 12%. Comparison of methylmalonic acid and homocysteine levels with literature data showed fewer stroke survivors had vitamin deficiency than did reference individuals (normal range 66%; elevated 34%. Conclusions: Homocysteine is significantly associated with depressive symptomatology in elderly Swedish stroke survivors.

  4. Unfiltered coffee increases plasma homocysteine concentrations in healthy volunteers: a randomized trial

    NARCIS (Netherlands)

    Grubben, M. J.; Boers, G. H.; Blom, H. J.; Broekhuizen, R.; de Jong, R.; van Rijt, L.; de Ruijter, E.; Swinkels, D. W.; Nagengast, F. M.; Katan, M. B.

    2000-01-01

    An elevated plasma homocysteine concentration is a putative risk factor for cardiovascular disease. Observational studies have reported an association between coffee consumption and plasma homocysteine concentrations. We studied the effect of coffee consumption on plasma homocysteine in a crossover

  5. Vitamin D, Homocysteine, and Folate in Subcortical Vascular Dementia and Alzheimer Dementia.

    Science.gov (United States)

    Moretti, Rita; Caruso, Paola; Dal Ben, Matteo; Conti, Corrado; Gazzin, Silvia; Tiribelli, Claudio

    2017-01-01

    Dementia is a worldwide health problem which affects millions of patients; Alzheimer's disease (AD) and subcortical vascular dementia (sVAD) are the two most frequent forms of its presentation. As no definite therapeutic options have been discovered, different risk factors for cognitive impairment have been searched for potential therapies. This report focuses on the possible evidence that vitamin D deficiency and hyper-homocysteinemia can be considered as two important factors for the development or the progression of neurodegenerative or vascular pathologies. To this end, we assessed: the difference in vascular risk factors and vitamin D-OH25 levels among groups of sVAD, AD, and healthy age-matched controls; the association of folate, B12, homocysteine, and vitamin D with sVAD/AD and whether a deficiency of vitamin D and an increment in homocysteine levels may be related to neurodegenerative or vessel damages. The commonly-considered vascular risk factors were collected in 543 patients and compared with those obtained from a healthy old volunteer population. ANOVA group comparison showed that vitamin D deficiency was present in demented cases, as well as low levels of folate and high levels of homocysteine, more pronounced in sVAD cases. The statistical models we employed, with regression models built, and adjustments for biochemical, demographic and neuropsychiatric scores, confirmed the association between the three measures (folate decrease, hyperhomocysteinemia and vitamin D decrease) and dementia, more pronounced in sVAD than in AD.

  6. Higher Dietary Choline and Betaine Intakes Are Associated with Better Body Composition in the Adult Population of Newfoundland, Canada.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Choline is an essential nutrient and betaine is an osmolyte and methyl donor. Both are important to maintain health including adequate lipid metabolism. Supplementation of dietary choline and betaine increase muscle mass and reduce body fat in animals. However, little data is available regarding the role of dietary choline and betaine on body composition in humans.To investigate the association between dietary choline and betaine intakes with body composition in a large population based cross-sectional study.A total of 3214 subjects from the CODING (Complex Disease in Newfoundland population: Environment and Genetics study were assessed. Dietary choline and betaine intakes were computed from the Willett Food Frequency questionnaire. Body composition was measured using dual-energy X-ray absorptiometry following a 12-hour fast. Major confounding factors including age, sex, total calorie intake and physical activity level were controlled in all analyses.Significantly inverse correlations were found between dietary choline and betaine intakes, with all obesity measurements: total percent body fat (%BF, percent trunk fat (%TF, percent android fat (%AF, percent gynoid fat (%GF and anthropometrics: weight, body mass index, waist circumference, waist-to-hip ratio in both women and men (r range from -0.13 to -0.47 for choline and -0.09 to -0.26 for betaine, p<0.001 for all. Dietary choline intake had stronger association than betaine. Moreover, obese subjects had the lowest dietary choline and betaine intakes, with overweight subjects in the middle, and normal weight subjects consumed the highest dietary choline and betaine (p<0.001. Vice versa, when subjects were ranked according to dietary choline and betaine intakes, subjects with the highest intake of both had the lowest %TF, %AF, %GF, %BF and highest %LM among the groups in both sexes.Our findings indicate that high dietary choline and betaine intakes are significantly associated with favorable body

  7. Cocamidopropyl betaine.

    Science.gov (United States)

    Jacob, Sharon E; Amini, Sadegh

    2008-01-01

    Cocamidopropyl betaine (CAPB) is an amphoteric synthetic detergent that has been increasingly used in cosmetics and personal hygiene products (eg, shampoos, contact lens solutions, toothpaste detergents, makeup removers, bath gels, skin care products, cleansers, liquid soaps, antiseptics, and gynecologic and anal hygiene products) because it induces relatively mild skin irritation. Delayed T-cell-mediated type IV hypersensitivity reactions to CAPB have been reported, and contact sensitization prevalence is estimated at between 3.0 and 7.2%. The increasing rates of sensitization led to CAPB's being named Allergen of the Year in 2004. Related impurities rendered during the manufacturing process (such as amidoamine and dimethylaminopropylamine) are thought to play a role in sensitization.

  8. Effect of consumption of red wine, spirits and beer on serum homocysteine

    NARCIS (Netherlands)

    Gaag, M.S. van der; Ubbink, J.B.; Sillanaukee, P.; Nikkari, S.; Hendriks, H.F.J.

    2000-01-01

    Serum homocysteine increases after moderate consumption of red wine and spirits, but not after moderate consumption of beer. Vitamin B6 in beer seems to prevent the alcohol-induced rise in serum homocysteine. Chemicals/CAS: Homocysteine, 454-28-4; Pyridoxine, 65-23-6

  9. Serum Homocysteine level in patients with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    F Ashtari

    2005-09-01

    Full Text Available Background: The etiology of multiple sclerosis (MS, a chronic demyelinative disease-is unknown. The damage of blood–brain barrier (BBB vasculature is a characteristic of MS and Homocystein (Hcy can damage BBB, then increase in total Hcy may be important in MS pathogenesis. The aim of this study was to compare the serum level of total Hcy in MS patients with control group. Methods: In a case control study, serum level of total Hcy measured in 35 MS patient and compared with 30 healthy matched controls. All patients had definitive MS according to Poser criteria, without history of myocardial infarction, stroke, neuropathy, transient ischemic attack, homocystinuria or renal failure. Results: The serum concentration of total homocystein was significantly higher in multiple sclerosis patients than healthy controls. The mean total Hcy level was 17.92± 6.9 mmol/lit in cases and 14.6±2.92 mmol/lit in controls (P=0.013. Conclusion: Serum total Homocystein may have a role in MS pathogenesis and reduction of it should be studied moreover. Key words: Multiple Sclerosis, Homocystein, Serum level

  10. Flavivirus methyltransferase as target for virus treatment

    Czech Academy of Sciences Publication Activity Database

    Krafčíková, Petra; Chalupská, Dominika; Hercík, Kamil; Nencka, Radim; Bouřa, Evžen

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 216-217 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] Institutional support: RVO:61388963 Keywords : flavivirus methyltransferase * antivirals Subject RIV: CE - Biochemistry

  11. Variation of Polyphenols and Betaines in Aerial Parts of Young, Field-Grown Amaranthus Genotypes

    DEFF Research Database (Denmark)

    Steffensen, Stine Krogh; Pedersen, H. A.; Labouriau, R.

    2011-01-01

    -trans-feruloyltyramine, N-trans-feruloyl-4-O-methyldopamine), and betaines (glycinebetaine, trigonelline) were determined. The variation in phytochemical content due to species and cultivation site was analyzed utilizing the multivariate statistical methods of principal component analysis (PCA) and graphical model (GM...... primarily by a higher content of trigonelline and the two hydroxycinnamyl amides in A. mantegazzianus. The GM showed that the quantities of the different analytes within each compound group were intercorrelated except in the case of the betaines. The betaines carried no information on each other...

  12. Glycine Betaine and Proline Production in Eucalyptus Plant under NaCl Harassing Environment

    International Nuclear Information System (INIS)

    Qureshi, T. M.; Bano, A.; Ashraf, M. Y.

    2015-01-01

    An investigation has been carried out to study the production of Proline and Betaine by applying Abscisic acid (ABA) treatment under NaCl and water stressed conditions. The seeds of four provenances of Eucalyptus camaldulesnis were obtained from the University of Agriculture, Faisalabad (Provenance I), Punjab Forest Research Institute, Faisalabad (Provenance II), Bio-saline Research Station-I, Lahore (Provenance III) and Bio-saline Research Station-II of Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad (Provenance 1V). It was observed that Proline and Betaine accumulation increased significantly in all the provenances with increase in drought or salt stress, ABA alone and in combination with drought. Provenance II and III species remained successful in maintaining higher Proline and Betaine accumulation as compared to Provenances I and IV. From the results it can be concluded that ABA treatment remains successful in enhancing Proline and Betaine production and maintaining the physiological parameters necessary to enhance plant growth both under salt and in combination with drought condition. (author)

  13. Homocystein as a risk factor for developing complications in chronic renal failure.

    Science.gov (United States)

    Jakovljevic, Biljana; Gasic, Branislav; Kovacevic, Pedja; Rajkovaca, Zvezdana; Kovacevic, Tijana

    2015-04-01

    Cardiovascular diseases are leading cause of death in patients with chronic renal failure. The aim of our study was to establish connection between levels of homocysteine and traditional and nontraditional risk factors for developing cardiovascular diseases in dialysis and pre dialysis patients. We included 33 pre dialysis (23 in stage three and 10 in stage four of chronic kidney disease) and 43 patients receiving hemodialysis longer than six months. Besides standard laboratory parameters, levels of homocysteine and blood pressure were measured in all patients. Glomerular filtration rate was measured in pre dialysis patients and dialysis quality parameters in dialysis patients. Homocysteine levels were elevated in all patients (19±5.42mmol/l). The connection between homocysteine levels and other cardiovascular diseases risk factors was not established in pre dialysis patients. In patients treated with hemodialysis we found negative correlation between homocysteine levels and patients' age (phomocysteine levels and length of dialysis (phomocysteine and anemia parameters (erythrocytes, hemoglobin), (pHomocysteine and LDL (and total cholesterol) were in negative correlation (pHomocysteine, as one of nontraditional cardiovascular diseases risk factors, is elevated in all patients with chronic renal failure and it's positive correlation with some other risk factors was found.

  14. Apoptosis of bone marrow mesenchymal stem cells caused by homocysteine via activating JNK signal.

    Directory of Open Access Journals (Sweden)

    Benzhi Cai

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs are capable of homing to and repair damaged myocardial tissues. Apoptosis of BMSCs in response to various pathological stimuli leads to the attenuation of healing ability of BMSCs. Plenty of evidence has shown that elevated homocysteine level is a novel independent risk factor of cardiovascular diseases. The present study was aimed to investigate whether homocysteine may induce apoptosis of BMSCs and its underlying mechanisms. Here we uncovered that homocysteine significantly inhibited the cellular viability of BMSCs. Furthermore, TUNEL, AO/EB, Hoechst 333342 and Live/Death staining demonstrated the apoptotic morphological appearance of BMSCs after homocysteine treatment. A distinct increase of ROS level was also observed in homocysteine-treated BMSCs. The blockage of ROS by DMTU and NAC prevented the apoptosis of BMSCs induced by homocysteine, indicating ROS was involved in the apoptosis of BMSCs. Moreover, homocysteine also caused the depolarization of mitochondrial membrane potential of BMSCs. Furthermore, apoptotic appearance and mitochondrial membrane potential depolarization in homocysteine-treated BMSCs was significantly reversed by JNK inhibitor but not p38 MAPK and ERK inhibitors. Western blot also confirmed that p-JNK was significantly activated after exposing BMSCs to homocysteine. Homocysteine treatment caused a significant reduction of BMSCs-secreted VEGF and IGF-1 in the culture medium. Collectively, elevated homocysteine induced the apoptosis of BMSCs via ROS-induced the activation of JNK signal, which provides more insight into the molecular mechanisms of hyperhomocysteinemia-related cardiovascular diseases.

  15. Crystallization and preliminary X-ray crystallographic analysis of the ArsM arsenic(III) S-adenosylmethionine methyltransferase

    International Nuclear Information System (INIS)

    Marapakala, Kavitha; Ajees, A. Abdul; Qin, Jie; Sankaran, Banumathi; Rosen, Barry P.

    2010-01-01

    A common biotransformation of arsenic is methylation to monomethylated, dimethylated and trimethylated species, which is catalyzed by the ArsM (or AS3MT) arsenic(III) S-adenosylmethionine methyltransferase. ArsM from the acidothermophilic alga Cyanidioschyzon sp. 5508 was expressed, purified and crystallized by the hanging-drop vapor-diffusion method and diffraction data were collected to 1.76 Å resolution. Arsenic is the most ubiquitous environmental toxin and carcinogen and consequently ranks first on the Environmental Protection Agency’s Superfund Priority List of Hazardous Substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. A common biotransformation is methylation to monomethylated, dimethylated and trimethylated species. Methylation is catalyzed by the ArsM (or AS3MT) arsenic(III) S-adenosylmethionine methyltransferase, an enzyme (EC 2.1.1.137) that is found in members of every kingdom from bacteria to humans. ArsM from the thermophilic alga Cyanidioschyzon sp. 5508 was expressed, purified and crystallized. Crystals were obtained by the hanging-drop vapor-diffusion method. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 84.85, b = 46.89, c = 100.35 Å, β = 114.25° and one molecule in the asymmetric unit. Diffraction data were collected at the Advanced Light Source and were processed to a resolution of 1.76 Å

  16. Elevated second-trimester serum homocyst(e)ine levels and subsequent risk of preeclampsia.

    Science.gov (United States)

    Sorensen, T K; Malinow, M R; Williams, M A; King, I B; Luthy, D A

    1999-01-01

    Elevated plasma homocyst(e)ine is a risk factor for endothelial dysfunction and vascular disease. In late gestation, levels of homocyst(e)ine are higher in preeclamptics, as compared with normotensive pregnant women. Our objective was to determine whether homocyst(e)ine elevations precede the development of preeclampsia. We used a prospective nested case-control study design to compare second trimester maternal serum homocyst(e)ine concentrations in 52 patients who developed preeclampsia (pregnancy-induced hypertension with proteinuria) compared with 56 women who remained normotensive throughout pregnancy. Study subjects were selected from a base population of 3, 042 women who provided blood samples at an average gestational age of 16 weeks and later delivered at our center. Serum homocyst(e)ine was measured by high-performance liquid chromatography and electrochemical detection. Approximately 29% of preeclamptics, as compared to 13% of controls had homocyst(e)ine levels >/=5.5 micromol/l (upper decile of distribution of control values). Adjusted for maternal age, parity, and body mass-index, a second trimester elevation of homocyst(e)ine was associated with a 3. 2-fold increased risk of preeclampsia (adjusted OR = 3.2; 95% CI 1. 1-9.2; p = 0.030). There was evidence of a interaction between maternal adiposity (as indicated by her prepregnancy body mass index) and parity with second trimester elevations in serum homocyst(e)ine. Nulliparous women with elevated homocyst(e)ine levels experienced a 9.7-fold increased risk of preeclampsia as compared with multiparous women without homocyst(e)ine elevations (95% CI 2.1-14.1; p = 0.003). Women with a higher prepregnancy body mass index (>/=21.4 kg/m(2), or upper 50th percentile) and who also had elevated homocyst(e)ine levels, as compared with leaner women without homocyst(e)ine elevations were 6.9 times more likely to later develop preeclampsia (95% CI 1.4-32.1; p = 0.016). Our findings are consistent with other

  17. Folic Acid Supplementation Delays Atherosclerotic Lesion Development by Modulating MCP1 and VEGF DNA Methylation Levels In Vivo and In Vitro

    Science.gov (United States)

    Cui, Shanshan; Li, Wen; Lv, Xin; Wang, Pengyan; Gao, Yuxia; Huang, Guowei

    2017-01-01

    The pathogenesis of atherosclerosis has been partly acknowledged to result from aberrant epigenetic mechanisms. Accordingly, low folate levels are considered to be a contributing factor to promoting vascular disease because of deregulation of DNA methylation. We hypothesized that increasing the levels of folic acid may act via an epigenetic gene silencing mechanism to ameliorate atherosclerosis. Here, we investigated the atheroprotective effects of folic acid and the resultant methylation status in high-fat diet-fed ApoE knockout mice and in oxidized low-density lipoprotein-treated human umbilical vein endothelial cells. We analyzed atherosclerotic lesion histology, folate concentration, homocysteine concentration, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), and DNA methyltransferase activity, as well as monocyte chemotactic protein-1 (MCP1) and vascular endothelial growth factor (VEGF) expression and promoter methylation. Folic acid reduced atherosclerotic lesion size in ApoE knockout mice. The underlying folic acid protective mechanism appears to operate through regulating the normal homocysteine state, upregulating the SAM: SAH ratio, elevating DNA methyltransferase activity and expression, altering MCP1 and VEGF promoter methylation, and inhibiting MCP1 and VEGF expression. We conclude that folic acid supplementation effectively prevented atherosclerosis by modifying DNA methylation through the methionine cycle, improving DNA methyltransferase activity and expression, and thus changing the expression of atherosclerosis-related genes. PMID:28475147

  18. ACS6, a Hydrogen sulfide-donating derivative of sildenafil, inhibits homocysteine-induced apoptosis by preservation of mitochondrial function

    Directory of Open Access Journals (Sweden)

    Tang Xiao-Qing

    2011-08-01

    Full Text Available Abstract Background The hydrogen sulfide-releasing sildenafil, ACS6, has been demonstrated to inhibit superoxide formation through donating hydrogen sulfide (H2S. We have found that H2S antagonizes homocysteine-induced oxidative stress and neurotoxicity. The aim of the present study is to explore the protection of ACS6 against homocysteine-triggered cytotoxicity and apoptosis and the molecular mechanisms underlying in PC12 cells. Methods Cell viability was determined by Cell Counting Kit-8 assay. Cell apoptosis was observed using the chromatin dye Hoechst 33258 and analyzed by Flow Cytometry after propidium iodide staining. Mitochondrial membrane potential was monitored using the fluorescent dye Rh123. Intracellular reactive oxygen species were determined by oxidative conversion of cell permeable 2',7'-dichlorfluorescein-diacetate to fluorescent 2',7'-dichlorfluorescein. The expression of cleaved caspase-3 and bcl-2 and the accumulation of cytosolic cytochrome c were analyzed by Western blot. Results We show that ACS6 protects PC12 cells against cytotoxicity and apoptosis induced by homocysteine and blocks homocysteine-triggered cytochrome c release and caspase-3 activation. ACS6 treatment results in not only prevention of homocysteine-caused mitochondrial membrane potential (Δψ loss and reactive oxygen species (ROS overproduction but also reversal of Bcl-2 down-expression. Conclusions These results indicate that ACS6 protects PC12 cells against homocysteine-induced cytotoxicity and apoptosis by preservation of mitochondrial function though inhibiting both loss of Δψ and accumulation of ROS as well as modulating the expression of Bcl-2. Our study provides evidence both for a neuroprotective effect of ACS6 and for further evaluation of ACS6 as novel neuroprotectants for Alzheimer's disease associated with homocysteine.

  19. The histone methyltransferase SET8 is required for S-phase progression

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Elvers, Ingegerd; Trelle, Morten Beck

    2008-01-01

    Chromatin structure and function is influenced by histone posttranslational modifications. SET8 (also known as PR-Set7 and SETD8) is a histone methyltransferase that monomethylates histonfe H4-K20. However, a function for SET8 in mammalian cell proliferation has not been determined. We show...

  20. Patients with atherosclerotic vascular disease: how low should plasma homocyst(e)ine levels go?

    Science.gov (United States)

    Spence, J D

    2001-01-01

    Plasma homocyst(e)ine level is a strong independent risk factor for vascular disease. The spelling of homocyst(e)ine reflects that what is measured, and what constitutes the risk factor; it includes homocysteine, homocystine (the dimer of homocysteine) and mixed cysteine-homocysteine disulfide. Homocyst(e)ine levels above 10.2 micro mol/L are associated with a doubling of coronary risk, and levels above 20 micro mol/L are associated with a 9.9-fold increase in risk compared with levels below 9 micro mol/L. The mechanisms by which homocyst(e)ine promotes vascular disease include increased thrombosis, consumption of nitric oxide, endothelial injury, and reduced thrombolysis. Homocyst(e)ine is an independent predictor of carotid atherosclerosis. Vitamin therapy with folate, pyridoxine (vitamin B(6)), and cyanocobalamin (vitamin B(12)) reduces blood levels of homocyst(e)ine, improves endothelial function, reduces levels of fibrinogen and lipoprotein(a), improves thrombolysis, and in uncontrolled clinical observation, leads to regression of carotid plaque. These lines of evidence support a causal relationship between homocyst(e)ine and atherosclerosis, and suggest that in patients with vascular disease, an appropriate target level for therapy may be below 9 or 10 micro mol/L. Randomized controlled studies are under way to determine whether vitamin therapy is effective in secondary prevention of myocardial infarction and stroke.

  1. Betaine Phosphate (CH3)3N+CH2COO-.H3PO4 Modification Using D2O

    International Nuclear Information System (INIS)

    Saryati; Ridwan; Deswita; Sugiantoro, Sugik

    2002-01-01

    Betaine fosfate (CH 3 ) 3 N + CH 2 COO - .H 3 PO 4 modification by using D 2 O has been studied. This modification was carried out by slowly evaporation the saturated Betaine phosphat in the D 2 O solution in the dry box at 40 o C, until the dry crystal were formed. Based on the NMR data, can be concluded that the exchange process with D has been runed well and Betaine phosphate-D (CH 3 ) 3 N + CH 2 COO - .H 3 PO 4 has been resulted. From the X-ray diffraction pattern data can be concluded that there are a deference in the crystal structure between Betaine phosphate and Betaine phosphate modification result. From the Differential Scanning Colorimeter (DSC) diagram at the range temperature from 30 o C to 250 o C, can be shown that the Betaine phosphate-H has two endothermic transition phase, at 99 o C with a very little adsorbed calor and at 221.50 o C with -26.75 cal/g. Modified Betaine phosphate has also two endothermic transition phase, at 99.86 o C with -1.94 cal/g and at 171.01 o C with -3.48 cal/g. It can be conclosed that the D atom substitution on the H atoms in Betaine phosphate, to change the crystal and the endothermic fase temperature and energy

  2. Proximate Composition, and -Carnitine and Betaine Contents in Meat from Korean Indigenous Chicken

    Directory of Open Access Journals (Sweden)

    Samooel Jung

    2015-12-01

    Full Text Available This study investigated the proximate composition and l-carnitine and betaine content of meats from 5 lines of Korean indigenous chicken (KIC for developing highly nutritious meat breeds with health benefits from the bioactive compounds such as l-carnitine and betaine in meat. In addition, the relevance of gender (male and female and meat type (breast and thigh meat was examined. A total of 595 F1 progeny (black [B], grey-brown [G], red-brown [R], white [W], and yellow-brown [Y] from 70 full-sib families were used. The moisture, protein, fat, and ash contents of the meats were significantly affected by line, gender, and meat type (p<0.05. The males in line G and females in line B showed the highest protein and the lowest fat content of the meats. l-carnitine and betaine content showed effects of meat type, line, and gender (p<0.05. The highest l-carnitine content was found in breast and thigh meats from line Y in both genders. The breast meat from line G and the thigh meat from line R had the highest betaine content in males. The female breast and thigh meats showed the highest betaine content in line R. These data could be valuable for establishing selection strategies for developing highly nutritious chicken meat breeds in Korea.

  3. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Dietary Intake and Plasma Levels of Choline and Betaine in Children with Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Joanna C. Hamlin

    2013-01-01

    Full Text Available Abnormalities in folate-dependent one-carbon metabolism have been reported in many children with autism. Because inadequate choline and betaine can negatively affect folate metabolism and in turn downstream methylation and antioxidant capacity, we sought to determine whether dietary intake of choline and betaine in children with autism was adequate to meet nutritional needs based on national recommendations. Three-day food records were analyzed for 288 children with autism (ASDs who participated in the national Autism Intervention Research Network for Physical Health (AIR-P Study on Diet and Nutrition in children with autism. Plasma concentrations of choline and betaine were measured in a subgroup of 35 children with ASDs and 32 age-matched control children. The results indicated that 60–93% of children with ASDs were consuming less than the recommended Adequate Intake (AI for choline. Strong positive correlations were found between dietary intake and plasma concentrations of choline and betaine in autistic children as well as lower plasma concentrations compared to the control group. We conclude that choline and betaine intake is inadequate in a significant subgroup of children with ASDs and is reflected in lower plasma levels. Inadequate intake of choline and betaine may contribute to the metabolic abnormalities observed in many children with autism and warrants attention in nutritional counseling.

  5. A Fluorescent Assay for Plant Caffeic Acid O-methyltransferases

    Science.gov (United States)

    We have developed a facile, sensitive and continuous assay to measure the activities of plant COMTs using s-adenosyl homocysteine hydrolase as a coupling enzyme and and adeonsine a thiol-specific fluor, Thioglo1, as the detecting reagent. This assay was validated using recombinant sorghum COMT (BMR-...

  6. Vitamin intake: a possible determinant of plasma homocyst(e)ine among middle-aged adults.

    Science.gov (United States)

    Shimakawa, T; Nieto, F J; Malinow, M R; Chambless, L E; Schreiner, P J; Szklo, M

    1997-05-01

    Many epidemiologic studies have identified elevated plasma homocyst(e)ine as a risk factor for atherosclerosis and thromboembolic disease. To examined the relationship between vitamin intakes and plasma homocyst(e)ine, we analyzed dietary intake data from a case-control study of 322 middle-aged individuals with atherosclerosis in the carotid artery and 318 control subjects without evidence of this disease. All of these individuals were selected from a probability sample of 15,800 men and women who participated in the Atherosclerosis Risk in Communities (ARIC) Study. Plasma homocyst(e)ine was inversely associated with intakes of folate, vitamin B6, and vitamin B12 (controls only for this vitamin)--the three key vitamins in homocyst(e)ine metabolism. Among nonusers of vitamin supplement products, on average each tertile increase in intake of these vitamins was associated with 0.4 to 0.7 mumol/L decrease in plasma homocyst(e)ine. An inverse association of plasma homocyst(e)ine was also found with thiamin, riboflavin, calcium, phosphorus, and iron. Methionine and protein intake did not show any significant association with plasma homocyst(e)ine. In almost all analyses, cases and controls showed similar associations between dietary variables and plasma homocyst(e)ine. Plasma homocyst(e)ine among users of vitamin supplement products was 1.5 mumol/L lower than that among nonusers. Further studies to examine possible causal relationships among vitamin intake, plasma homocyst(e)ine, and cardiovascular disease are needed.

  7. Plasma homocyst(e)ine concentrations in eclamptic and preeclamptic African women postpartum.

    Science.gov (United States)

    Rajkovic, A; Mahomed, K; Malinow, M R; Sorenson, T K; Woelk, G B; Williams, M A

    1999-09-01

    To examine the relationship between plasma homocyst(e)ine and risk of eclampsia and preeclampsia among sub-Saharan African women who delivered at Harare Maternity Hospital in Zimbabwe. We ran a hospital-based, case-control study at Harare Maternity Hospital, University of Zimbabwe, Harare, Zimbabwe comprising 33 pregnant women with eclampsia and 138 with preeclampsia. Controls were 185 normotensive pregnant women. Plasma was collected postpartum and homocyst(e)ine levels were measured by high-performance liquid chromatography and electrochemical detection. Women with eclampsia or preeclampsia had significantly higher mean homocyst(e)ine levels than normotensive controls (12.54 or 12.77 micromol/L versus 9.93 micromol/L, respectively, Pine distribution (median 13.9 micromol/L) compared with women in the lowest quartile (median 6.2 micromol/L). The corresponding OR for preeclampsia was 4.57. Nulliparas with elevated homocyst(e)ine had a 12.90 times higher risk of preeclampsia compared with multiparas without elevated homocyst(e)ine. Postpartum plasma homocyst(e)ine concentrations are higher among Zimbabwean women with eclampsia and preeclampsia compared with normotensive women.

  8. Vitamin B6 and homocysteine levels in carbamazepine treated ...

    African Journals Online (AJOL)

    Objectives: The study focused on the plasma levels of vitamin B6 and homocysteine in ... ed with carbamazepine were selected at out-patient De- .... Patients' demographic data and types of seizures are ex- .... morphisms that may alter the individual response to a .... genotype, homocysteine, and stroke risk: a meta-analy-.

  9. Homocyst(e)ine and atherosclerosis in patients on chronic hemodialysis.

    Science.gov (United States)

    Lee, Y K; Kwon, Y J; Yoon, J W; Oh, K S; Cha, D R; Cho, W Y; Huh, K; Pyo, H J; Kim, H K

    1999-04-01

    Hyperhomocyst(e)inemia is an established risk factor for atherosclerosis. We performed this study to identify the correlating variables and risk factors for atherosclerosis, as measured by the atherosclerotic score (AS), and to determine the relative risk for cardiovascular disease in relation to plasma homocyst(e)ine levels in patients on chronic hemodialysis. We evaluated and measured 61 patients on chronic hemodialysis for clinical and biochemical parameters including atherosclerotic score (AS) and plasma homocyst(e)ine. We divided patients into high and low groups, first, by the mean AS, and second, by the median value of plasma total homocyst(e)ine levels. Then we compared the variables between the two groups. Out of the 61 patients, the median plasma total homocyst(e)ine level was 24.4 micromol/L (mean+/-SD, 27.7+/-17.4; range, 9.8-127.4 micromol/L), and the median AS was 5 (mean+/-SD, 6.2+/-2.8; range, 3-13) out of a possible 20 points. AS was significantly correlated with plasma total homocyst(e)ine levels (r=0.37) and age (r=0.67). Through multivariate analysis, plasma total homocyst(e)ine level and age were determined as significant risk factors for the high-AS group (pine level did not correlate with age (p>0.05). Eighteen of the 61 patients, presented with cardiovascular disease until the present study, had an AS>6. Cardiovascular disease was found more often in the high-homocyst(e)ine group (>24.4 micromol/L) than in the low-homocyst(e)ine group (odds ratio, 9.3; 95% confidence interval, 2.3-37.4). Regardless of age, hyperhomocyst(e)inemia (especially homocyst(e)ine levels >24.4 micromol/L) is a risk factor that can be modified for the development of cardiovascular disease in patients on chronic hemodialysis.

  10. Effect of dimethylaminoethanol, an inhibitor of betaine production, on the disposition of choline in the rat kidney

    International Nuclear Information System (INIS)

    Lohr, J.; Acara, M.

    1990-01-01

    The choline metabolite betaine has been shown to be an important organic osmoregulatory solute in the kidney. The isolated perfused rat kidney and kidney slice incubations were used to investigate the effect of 2-dimethylaminoethanol (DMAE), a choline oxidase inhibitor, on the renal excretion and metabolism of choline. In the isolated perfused kidney, [ 14 C]choline, at an initial perfusate concentration of 300 microM, was effectively removed from the perfusate over 25 min, with nearly all the 14 C in the perfusate accounted for by betaine during the remainder of the 90-min perfusion. DMAE at concentrations of 3.0 or 5.0 mM significantly decreased the rate of removal of [ 14 C]choline from the perfusate and the rate of addition of [ 14 C]betaine to the perfusate, yet [14C]betaine remained the only metabolite of choline in perfusate and urine. In kidney tissue slice experiments, conversion of [ 14 C]choline to [ 14 C]betaine was found in cortical, outer medullary and inner medullary regions of rat kidney. DMAE at 5.0 mM significantly inhibited [ 14 C]betaine production in each of the three regions studied. These data show that DMAE is an effective inhibitor of betaine production by the kidney and, as such, may be an important agent for the study of osmoregulation by the kidney

  11. Selective electrochemical determination of homocysteine in the presence of cysteine and glutathione

    International Nuclear Information System (INIS)

    Salehzadeh, Hamid; Mokhtari, Banafsheh; Nematollahi, Davood

    2014-01-01

    Graphical abstract: 3,5-Di-tert-buthylcatechol was used for the selective electrochemical determination of homocysteine in the presence of cysteine and glutathione at the glassy carbon and carbon nanotube modified glassy carbon electrode. - Highlights: • Selective electrochemical determination of homocysteine. • Catalytic electron transfer of 3,5-di-tert-buthylcatechol in the presence of homocysteine. • Michael type addition reaction of electrochemically generated 3,5-di-tert-buthyl-o-benzoquinone with glutathione. - Abstract: The electrochemical oxidation of 3,5-di-tert-buthylcatechol in the presence of homocysteine was used for the selective electrochemical determination of homocysteine in the presence of cysteine and glutathione at a glassy carbon and a glassy carbon electrode modified with carbon nanotube. The results revealed that the electrochemically generated 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione exhibits high catalytic activity toward homocysteine oxidation at reduced over-potential and low catalytic activity for oxidation of cysteine. The catalytic activity 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione toward cysteine was suppressed in the presence of 4-N,N-dimethylaminocinnamaldehyde. Contrary to homocysteine and cysteine, the reaction of glutathione with 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione is a substituation reaction. This method exhibits three dynamic linear ranges of 2.5 to 10 μmol L −1 , 10 to 100 μmol L −1 and 100 to 1000 μmol L −1 , and a lower detection limit (3σ) of 0.89 ± 3.53% μmol L −1 for homocysteine

  12. Genetics of homocysteine metabolism and associated disorders

    Directory of Open Access Journals (Sweden)

    S. Brustolin

    2010-01-01

    Full Text Available Homocysteine is a sulfur-containing amino acid derived from the metabolism of methionine, an essential amino acid, and is metabolized by one of two pathways: remethylation or transsulfuration. Abnormalities of these pathways lead to hyperhomocysteinemia. Hyperhomocysteinemia is observed in approximately 5% of the general population and is associated with an increased risk for many disorders, including vascular and neurodegenerative diseases, autoimmune disorders, birth defects, diabetes, renal disease, osteoporosis, neuropsychiatric disorders, and cancer. We review here the correlation between homocysteine metabolism and the disorders described above with genetic variants on genes coding for enzymes of homocysteine metabolism relevant to clinical practice, especially common variants of the MTHFR gene, 677C>T and 1298A>C. We also discuss the management of hyperhomocysteinemia with folic acid supplementation and fortification of folic acid and the impact of a decrease in the prevalence of congenital anomalies and a decline in the incidence of stroke mortality.

  13. Safety of betaine as a novel food pursuant to Regulation (EC) No 258/97

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2017-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on betaine as a novel food (NF) pursuant to Regulation (EC) No 258/97. The information provided on the composition, the specifications, the batch......-to-batch variability, stability and production process of the NF is sufficient and does not raise concerns about the safety of the NF. The NF is proposed to be used in foods intended to meet additional requirements for intense muscular effort with a maximum intake of 2.5 g/day of betaine for sports people above 10...... as not sufficient. However, the total exposure to betaine from the diet (about 830 mg/day) is not known to be associated with adverse effects. Moreover, no adverse effects on platelet counts were noted in human intervention studies with exposure levels of 4 g/day of betaine for up to 6 months. A significant...

  14. Plasma Homocysteine is Not Related to the Severity of Microangiopathy in Secondary Raynaud Phenomenon

    Science.gov (United States)

    Jacomella, Vincenzo; Wasila, Monika; Husmann, Marc; Gitzelmann, Gabriela; Meier, Thomas; Amann-Vesti, Beatrice

    2011-01-01

    Introduction: The role of elevated homocysteine in primary and secondary Raynaud phenomenon (RP) and in patients with atherosclerosis has been reported controversially. In secondary RP due to connective tissue disease specific alterations of nailfold capillaries might be present. An association between these microvascular changes and homocysteine has been suggested. Aim: The aim of this study was to determine whether homocysteine level differs between patients with primary and secondary RP and to test the hypothesis that homocysteine or other cardiovascular risk factors are associated with specific features of microangiopathy in secondary RP. Patients and Methods Eighty-one consecutive patients with RP referred for vascular assessment were studied by nailfold capillaroscopy. Homocysteine, C-reactive protein and cholesterol were measured and other cardiovascular risk factors and comorbidities assessed. Results: Homocysteine, C-reactive-protein and cholesterol levels did not differ between patients with primary (n=60) and secondary RP (n=21). Likewise, no differences in the prevalence of cardiovascular risk factors and comorbidities were found. In secondary RP no correlation was found between microvascular involvement and homocysteine or C-reactive protein. Conclusion: Plasma homocysteine is not different in patients with either primary or secondary RP and is therefore not a marker for the distinction of these diseases. The extent of microvascular involvement in secondary RP does not correlate with plasma homocysteine. PMID:22216066

  15. Plasma homocysteine level in cardiac syndrome X and its relation with duke treadmill score

    International Nuclear Information System (INIS)

    Timurkaynak, T.; Balcioglu, S.; Arslan, U.; Kocaman, Sinan A.; Cengel, A.

    2008-01-01

    Objective was to investigate the plasma homocysteine level and relationship between plasma homocysteine level and duke treadmill score (DTS) in cardiac syndrome X (CSX) patients. Seventy-nine patients (36 male, 43 female, mean age: 50+-8.8 years) admitted to Gazi University Hospital, Ankara, Turkey with typical effort angina, positive stress test and angiographically normal coronary arteries between January and September 2006 were included in this prospective and controlled study. Thirty asymptomatic patients (11 male, 19 female, mean age: 47.6+-8.3 years) with two cardiovascular risk factors were chosen as a control group. Plasma homocysteine level was measured in both groups and DTS was calculated in the CSX group. Plasma homocysteine was measured with AxSYM homocysteine immunoassay method in both groups. Plasma homocysteine level was higher in the CSx group compared to the control group 16.5+-4.9 umol/L, n=79, versus 12.4+-4.1 umol/L, n=30, p<0.001). The DTS was -2.7+-5.3 in the CSX group. There was a negative correlation between the DTS and homocysteine levels in the CSX group. (r=-0.506, p<0.001). Plasma homocysteine level, which is known to cause endothelial dysfunction and microvascular ischemia were higher in CSX patients. Also, this increase in homocysteine level correlated with the DTS, which represents the magnitude of ischemia. (author)

  16. Status of Homocysteine in Polycystic Ovary Syndrome (PCOS)

    OpenAIRE

    Maleedhu, Priyanka; M., Vijayabhaskar; S.S.B., Sharma; Kodumuri, Praveen K; Devi D., Vasundhara

    2014-01-01

    Background: Polycystic ovary syndrome (PCOS) is the most common endocrine disease in women of reproductive age and is estimated to affect 5-10 % of the population. Women with PCOS have a clustering of cardiovascular risk factors, such as obesity, dyslipidemia, impaired glucose tolerance and hypertension. Homocysteine has been recognized recently as a risk factor for cardiovascular diseases. Preliminary investigations suggest that high sensitivity C-reactive protein, homocysteine and adiponect...

  17. Homocysteine and brain atrophy on MRI of non-demented elderly

    NARCIS (Netherlands)

    den Heijer, T; Vermeer, SE; Clarke, R; Oudkerk, M; Koudstaal, PJ; Hofman, A; Breteler, MMB

    Patients with Alzheimer's disease have higher plasma homocysteine levels than controls, but it is uncertain whether higher plasma homocysteine levels are involved in the early pathogenesis of the disease. Hippocampal, amygdalar and global brain atrophy on brain MRI have been proposed as early

  18. Survival and Psychomotor Development With Early Betaine Treatment in Patients With Severe Methylenetetrahydrofolate Reductase Deficiency

    NARCIS (Netherlands)

    Diekman, Eugene F.; de Koning, Tom J.; Verhoeven-Duif, Nanda M.; Rovers, Maroeska M.; van Hasselt, Peter M.

    IMPORTANCE The impact of betaine treatment on outcome in patients with severe methylenetetrahydrofolate reductase (MTHFR) deficiency is presently unclear. OBJECTIVE To investigate the effect of betaine treatment on development and survival in patients with severe MTHFR deficiency. DATA SOURCES

  19. Survival and psychomotor development with early betaine treatment in patients with severe methylenetetrahydrofolate reductase deficiency

    NARCIS (Netherlands)

    Diekman, E.F.; Koning, T.J. de; Verhoeven-Duif, N.M.; Rovers, M.M.; Hasselt, P.M. van

    2014-01-01

    IMPORTANCE The impact of betaine treatment on outcome in patients with severe methylenetetrahydrofolate reductase (MTHFR) deficiency is presently unclear. OBJECTIVE To investigate the effect of betaine treatment on development and survival in patients with severe MTHFR deficiency. DATA SOURCES

  20. Short-term folic acid supplementation induces variable and paradoxical changes in plasma homocyst(e)ine concentrations.

    Science.gov (United States)

    Malinow, M R; Duell, P B; Williams, M A; Kruger, W D; Evans, A A; Anderson, P H; Block, P C; Hess, D L; Upson, B M; Graf, E E; Irvin-Jones, A; Wang, L

    2001-01-01

    Folic acid is presently the mainstay of treatment for most subjects with elevated plasma homocyst(e)ine concentrations [Plasma or serum homocyst(e)ine, or total homocysteine, refers to the sum of the sulfhydryl amino acid homocysteine and the homocysteinyl moieties of the disulfides homocystine and homocystein-cysteine, whether free or bound to plasma proteins.] Changes in homocyst(e)ine in response to folic acid supplementation are characterized by considerable interindividual variation. The purpose of this study was to identify factors that contribute to heterogeneity in short-term responses to folic acid supplementation. The effects of folic acid supplementation (1 or 2 mg per day) for 3 wk on plasma homocyst(e)ine concentrations were assessed in 304 men and women. Overall, folic acid supplementation increased mean plasma folate 31.5 +/- 98.0 nmol/L and decreased mean plasma homocyst(e)ine concentrations 1.2 +/- 2.4 micromol/L. There was evidence of substantial interindividual variation in the homocyst(e)ine response from -18.5 to +7.1 micromol/L, including an increase in homocyst(e)ine in 20% of subjects (mean increase 1.5 +/- 1.4 micromol/L). Basal homocyst(e)ine, age, male gender, cigarette smoking, use of multivitamins, methylene tetrahydrofolate reductase, and cystathionine beta-synthase polymorphisms accounted for 47.6% of the interindividual variability in the change in homocyst(e)ine after folic acid supplementation, but about 50% of variability in response to folic acid was not explained by the variables we studied.

  1. Simultaneous, noninvasive, and transdermal extraction of urea and homocysteine by reverse iontophoresis

    Directory of Open Access Journals (Sweden)

    et al

    2011-02-01

    Full Text Available Congo Tak-Shing Ching1,2,3, Tzong-Ru Chou1, Tai-Ping Sun1,2, Shiow-Yuan Huang3, Hsiu-Li Shieh21Graduate Institute of Biomedicine and Biomedical Technology; 2Department of Electrical Engineering, National Chi Nan University, Nantou, Taiwan; 3Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan, Republic of ChinaBackground: Cardiovascular and kidney diseases are a global public health problem and impose a huge economic burden on health care services. Homocysteine, an amino acid, is associated with coronary heart disease, while urea is a harmful metabolic substance which can be used to reflect kidney function. Monitoring of these two substances is therefore very important. This in vitro study aimed to determine whether homocysteine is extractable transdermally and noninvasively, and whether homocysteine and urea can be extracted simultaneously by reverse iontophoresis.Methods: A diffusion cell incorporated with porcine skin was used for all experiments with the application of a direct current (dc and four different symmetrical biphasic direct currents (SBdc for 12 minutes via Ag/AgCl electrodes. The dc and the SBdc had a current density of 0.3 mA/cm2.Results: The SBdc has four different phase durations of 15 sec, 30 sec, 60 sec, and 180 sec. It was found that homocysteine can be transdermally extracted by reverse iontophoresis. Simultaneous extraction of homocysteine and urea by reverse iontophoresis is also possible.Conclusion: These results suggest that extraction of homocysteine and urea by SBdc are phase duration-dependent, and the optimum mode for simultaneous homocysteine and urea extraction is the SBdc with the phase duration of 60 sec.Keywords: reverse iontophoresis, homocysteine, urea, monitoring, noninvasive, transdermal

  2. Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis

    International Nuclear Information System (INIS)

    Wu, M.-M.; Chiou, H.-Y.; Hsueh, Y.-M.; Hong, C.-T.; Su, C.-L.; Chang, S.-F.; Huang, W.-L.; Wang, H.-T.; Wang, Y.-H.; Hsieh, Y.-C.; Chen, C.-J.

    2006-01-01

    Arsenic-contaminated well water has been shown to increase the risk of atherosclerosis. Because of involving S-adenosylmethionine, homocysteine may modify the risk by interfering with the biomethylation of ingested arsenic. In this study, we assessed the effect of plasma homocysteine level and urinary monomethylarsonic acid (MMA V ) on the risk of atherosclerosis associated with arsenic. In total, 163 patients with carotid atherosclerosis and 163 controls were studied. Lifetime cumulative arsenic exposure from well water for study subjects was measured as index of arsenic exposure. Homocysteine level was determined by high-performance liquid chromatography (HPLC). Proportion of MMA V (MMA%) was calculated by dividing with total arsenic species in urine, including arsenite, arsenate, MMA V , and dimethylarsinic acid (DMA V ). Results of multiple linear regression analysis show a positive correlation of plasma homocysteine levels to the cumulative arsenic exposure after controlling for atherosclerosis status and nutritional factors (P < 0.05). This correlation, however, did not change substantially the effect of arsenic exposure on the risk of atherosclerosis as analyzed in a subsequent logistic regression model. Logistic regression analyses also show that elevated plasma homocysteine levels did not confer an independent risk for developing atherosclerosis in the study population. However, the risk of having atherosclerosis was increased to 5.4-fold (95% CI, 2.0-15.0) for the study subjects with high MMA% (≥16.5%) and high homocysteine levels (≥12.7 μmol/l) as compared to those with low MMA% (<9.9%) and low homocysteine levels (<12.7 μmol/l). Elevated homocysteinemia may exacerbate the formation of atherosclerosis related to arsenic exposure in individuals with high levels of MMA% in urine

  3. Tetra primer ARMS-PCR relates folate/homocysteine pathway genes and ACE gene polymorphism with coronary artery disease.

    Science.gov (United States)

    Masud, Rizwan; Qureshi, Irfan Zia

    2011-09-01

    Cardiovascular disorders and coronary artery disease (CAD) are significant contributors to morbidity and mortality in heart patients. As genes of the folate/homocysteine pathway have been linked with the vascular disease, we investigated association of these gene polymorphisms with CAD/myocardial infarction (MI) using the novel approach of tetraprimer ARMS-PCR. A total of 230 participants (129 MI cases, 101 normal subjects) were recruited. We genotyped rs1801133 and rs1801131 SNPs in 5'10' methylenetetrahydrofolate reductase (MTHFR), rs1805087 SNP in 5' methyltetrahydrofolate homocysteine methyltransferase (MTR), rs662 SNP in paroxanse1 (PON1), and rs5742905 polymorphism in cystathionine beta synthase (CBS). Angiotensin converting enzyme (ACE) insertion/deletion polymorphism was detected through conventional PCR. Covariates included blood pressure, fasting blood sugar, serum cholesterol, and creatinine concentrations. Our results showed allele frequencies at rs1801133, rs1801131, rs1805087 and the ACE insertion/deletion (I/D) polymorphism varied between cases and controls. Logistic regression, after adjusting for covariates, demonstrated significant associations of rs1801133 and rs1805087 with CAD in the additive, dominant, and genotype model. In contrast, ACE I/D polymorphism was significantly related with CAD where recessive model was applied. Gene-gene interaction against the disease status revealed two polymorphism groups: rs1801133, rs662, and rs1805087; and rs1801131, rs662, and ACE I/D. Only the latter interaction maintained significance after adjusted for covariates. Our study concludes that folate pathway variants exert contributory influence on susceptibility to CAD. We further suggest that tetraprimer ARMS-PCR successfully resolves the genotypes in selected samples and might prove to be a superior technique compared to the conventional approach.

  4. Effect of natural betaine and ractopamine HCl on whole-body and carcass growth in pigs housed under high ambient temperatures.

    Science.gov (United States)

    Mendoza, S M; Boyd, R D; Zier-Rush, C E; Ferket, P R; Haydon, K D; van Heugten, E

    2017-07-01

    Betaine is an osmolyte that helps to maintain water homeostasis and cell integrity, which is essential during heat stress. We hypothesized that supplemental betaine can improve growth during heat stress and may further improve the response to ractopamine. Two studies were conducted to determine: 1) the effects of betaine in combination with ractopamine; and 2) the optimum betaine level for late finishing pigs during heat stress. Heat stress was imposed by gradually increasing temperatures over 10 d to the target high temperature of 32°C. In Exp. 1, pigs ( = 1477, BW = 91.6 ± 3 kg) were assigned within BW blocks and sex to 1 of 4 diets arranged in a 2 × 2 factorial RCB design (68 pens; 20 to 23 pigs/pen). Treatments consisted of diets without or with ractopamine (5 mg/kg for 21 d followed by 8.8 mg/kg to market) and each were supplemented with either 0 or 0.2% of betaine. Betaine reduced ( ≤ 0.05) BW (123.1 vs. 124.3 kg), ADG (0.780 vs. 0.833 kg/d), and ADFI (2.800 vs. 2.918 kg/d), but did not impact carcass characteristics. Ractopamine increased ( treatments in a RCB design (100 pens; 20 to 24 pigs/pen). Treatments consisted of diets with 0, 0.0625, 0.125, 0.1875% of betaine, and a positive control diet with ractopamine, but not betaine. Betaine tended to decrease carcass yield quadratically ( = 0.076; 74.1, 73.5, 73.8, and 73.9 for 0, 0.0625, 0.125, 0.1875% of betaine, respectively), but did not impact other responses. Ractopamine improved ( stress makes it an important production technology.

  5. Variation of betaine, N,N-dimethylglycine, choline, glycerophosphorylcholine, taurine and trimethylamine-N-oxide in the plasma and urine of overweight people with type 2 diabetes over a two-year period.

    Science.gov (United States)

    McEntyre, Christopher J; Lever, Michael; Chambers, Stephen T; George, Peter M; Slow, Sandy; Elmslie, Jane L; Florkowski, Christopher M; Lunt, Helen; Krebs, Jeremy D

    2015-05-01

    Plasma betaine concentrations and urinary betaine excretions have high test-retest reliability. Abnormal betaine excretion is common in diabetes. We aimed to confirm the individuality of plasma betaine and urinary betaine excretion in an overweight population with type 2 diabetes and compare this with the individuality of other osmolytes, one-carbon metabolites and trimethylamine-N-oxide (TMAO), thus assessing their potential usefulness as disease markers. Urine and plasma were collected from overweight subjects with type 2 diabetes at four time points over a two-year period. We measured the concentrations of the osmolytes: betaine, glycerophosphorylcholine (GPC) and taurine, as well as TMAO, and the one-carbon metabolites, N,N-dimethylglycine (DMG) and free choline. Samples were measured using tandem mass spectrometry (LC-MS/MS). Betaine showed a high degree of individuality (or test-retest reliability) in the plasma (index of individuality = 0.52) and urine (index of individuality = 0.45). Betaine in the plasma had positive and negative log-normal reference change values (RCVs) of 54% and -35%, respectively. The other osmolytes, taurine and GPC were more variable in the plasma of individuals compared to the urine. DMG and choline showed high individuality in the plasma and urine. TMAO was highly variable in the plasma and urine (log-normal RCVs ranging from 403% to -80% in plasma). Betaine is highly individual in overweight people with diabetes. Betaine, its metabolite DMG, and precursor choline showed more reliability than the osmolytes, GPC and taurine. The low reliability of TMAO suggests that a single TMAO measurement has low diagnostic value. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Sin Bond Leung

    2013-01-01

    Full Text Available Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction.

  7. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    Science.gov (United States)

    Leung, Sin Bond; Zhang, Huina; Lau, Chi Wai; Huang, Yu; Lin, Zhixiu

    2013-01-01

    Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS) level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO) bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction. PMID:23589720

  8. Functional characterization of KanP, a methyltransferase from the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus.

    Science.gov (United States)

    Nepal, Keshav Kumar; Yoo, Jin Cheol; Sohng, Jae Kyung

    2010-09-20

    KanP, a putative methyltransferase, is located in the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus ATCC12853. Amino acid sequence analysis of KanP revealed the presence of S-adenosyl-L-methionine binding motifs, which are present in other O-methyltransferases. The kanP gene was expressed in Escherichia coli BL21 (DE3) to generate the E. coli KANP recombinant strain. The conversion of external quercetin to methylated quercetin in the culture extract of E. coli KANP proved the function of kanP as S-adenosyl-L-methionine-dependent methyltransferase. This is the first report concerning the identification of an O-methyltransferase gene from the kanamycin gene cluster. The resistant activity assay and RT-PCR analysis demonstrated the leeway for obtaining methylated kanamycin derivatives from the wild-type strain of kanamycin producer. 2009 Elsevier GmbH. All rights reserved.

  9. [Homocystein serum levels and lipid parameters in children with atherosclerosis risk factors].

    Science.gov (United States)

    Sierakowska-Fijałek, Anna; Kaczmarek, Piotr; Pokoca, Lech; Smorag, Ireneusz; Wosik-Erenbek, Marzenna; Baj, Zbigniew

    2007-02-01

    Atherosclerosis is a disease of adult patients, however, it begins in childhood and progresses from fatty streaks to raised lesions in arteries in adolescence and young adults. Clinical manifestation of atherosclerosis in adulthood depends on the risk factors such as: lipid disorders, obesity, hypertension, smoking habits and family history of CHD. High serum homocysteine concentration is increasingly recognised as a new risk factor for atherosclerosis and other vascular diseases. Atherogenic effect of homocystein is related to cytotoxin action on the endothelial cells and their function. The aim of this study was to estimate relations between the homocysteine serum concentration and the lipid levels in children with atherosclerosis risk factors. The study was carried out on 48 children with atherosclerosis risk factors. The control group consisted of 25 healthy childrens. Total cholesterol (TC), Triglycerides (TG), HDL-C, LDL-C were determined by enzymatic method. Concentration of homocysteine was estimated by immunoenzymatic method (ELISA). Obesity, lipid disorders, and hypertension were the most frequent risk factors in the investigated children. Statistically significant higher concentration of TC, LDL-C, TG and lower HDL-C were observed in children with atherosclerosis risk factors. No significant differences in homocystein concentration were observed in the investigated groups, but homocystein concentration was significantly higher in group of children with atherosclerosis risk factors. We observed that increased number of the risk factors is followed by high homocystein concentration in the serum.

  10. Plasma folic acid cutoff value, derived from its relationship with homocyst(e)ine

    NARCIS (Netherlands)

    Brouwer, D A; Welten, H T; Reijngoud, D J; van Doormaal, J J; Muskiet, F A

    We established the cutoff value for plasma folic acid, using plasma homocyst(e)ine as the functional marker. To do this, we investigated the relationship of the plasma folic acid of 103 apparently healthy adults with their fasting plasma homocyst(e)ine and with their plasma homocyst(e)ine 6 h after

  11. Insulin stimulation of phospholipid methylation in isolated rat adipocyte plasma membranes.

    OpenAIRE

    Kelly, K L; Kiechle, F L; Jarett, L

    1984-01-01

    Partially purified plasma membranes prepared from rat adipocytes contain N-methyltransferase(s) that utilize(s) S-adenosyl-L-methionine to synthesize phosphatidylcholine from phosphatidylethanolamine. The incorporation of [3H]methyl from S-adenosyl-L-[methyl-3H]methionine into plasma membrane phospholipids was linear with incubation time and plasma membrane protein concentration and was inhibited in a dose-dependent manner by both S-adenosyl-L-homocysteine and 3-deazadenosine. The addition of...

  12. Increased CSF Homocysteine in Pathological Gamblers Compared with Healthy Controls

    Science.gov (United States)

    Nordin, Conny; Sjodin, Ingemar

    2009-01-01

    Neurocognitive disturbances suggesting a frontal lobe dysfunction have been observed in pathological gamblers and alcohol dependents. Given that a high homocysteine level has been suggested to be a mediating factor in alcohol-related cognitive decline, we have determined homocysteine and cobalamine in cerebrospinal fluid (CSF) obtained from 11…

  13. Association between serum homocysteine concentration with coronary artery disease in Iranian patients

    Directory of Open Access Journals (Sweden)

    Ahmad Mirdamadi

    2011-07-01

    Full Text Available BACKGROUND: The role of novel biomarkers like homocystein as a risk factor of coronary artery disease (CAD is being increasingly recognized. There is a marked geographical variation in plasma homocystein concentration. In spite of importance of hyperhomocysteinemia in CAD risk, there is a paucity of studies in Iran that evaluate it. Consequently, we evaluated the association between plasma total homocystein (tHcy concentration and CAD risk in an Iranian population.METHODS: In a case-control study, we compared the level of tHcy of forty five patients with angiographically proved CAD with forty five age and gender matched subjects without CAD as control group. The patients with diabetes, hypertension, thyroid dysfunction, chronic renal failure, hyperlipidemia and obesity and other conventional CAD risk factors were excluded from the study. Plasma tHcy was measured using immunoturbidimetry. RESULTS: Homocystein level was higher in men than women (16.7 ± 5.2 versus 14.3 ± 3.9 micromol/lit, P = 0.019. CAD patients had higher mean plasma tHcy than control group (17.1 ± 5.3 versus 14.2 ± 3.8 micromol/lit, P = 0.004. CONCLUSION: This study denoted that high plasma homocystein concentration is associated with CAD risk in Iranian people. Keywords: Coronary Artery Disease, Homocystein, Iran.

  14. Variability of fasting and post-menthionine plasma homocysteine levels in normo- and hyperhomocysteinaemic individuals

    NARCIS (Netherlands)

    van den Berg, M.; de Jong, S.C.; Devilli, W.; Rauwerda, J.A.; Jakobs, C.A.J.M.; Pals, G.; Boers, G.H.J.; Stehouwer, C.D.A.

    1999-01-01

    To assess the variability of plasma homocysteine levels, fasting and post-methionine homocysteine levels were measured twice, at baseline and after follow-up of 1-4 months, in 16 individuals with normal and 26 with elevated homocysteine levels after methionine loading. The intra-individual

  15. Correlation of serum homocysteine levels with nerve injury and atherosclerosis in patients with stroke

    Directory of Open Access Journals (Sweden)

    Gai-Zhuang Liu

    2017-07-01

    Full Text Available Objective: To study the correlation of serum homocysteine levels with nerve injury and atherosclerosis in patients with stroke. Methods: Patients who were diagnosed with ischemic stroke in our hospital between January 2014 and December 2016 were selected and then divided into moderate-severe stenosis group (C group, mild stenosis group (B group and no stenosis group (A group according to carotid artery ultrasonography; healthy volunteers who received physical examination during the same period were chosen as control group. The serum levels of homocysteine, nerve injury indexes and atherosclerosis indexes were detected. Results: Serum Hcy, S100B, NSE, UCH-L1, GFAP, FGF23, CD36, ox-LDL, MMP8 and MMP9 levels of C group, B group and A group were significantly higher than those of control group, and the severer the carotid stenosis, the higher the serum S100B, NSE, UCHL1, GFAP, FGF23, CD36, ox-LDL, MMP8 and MMP9 levels; serum S100B, NSE, UCHL1, GFAP, FGF23, CD36, ox-LDL, MMP8 and MMP9 levels in stoke patients with high Hcy were significantly higher than those of patients with normal Hcy. Conclusions: Serum homocysteine levels increase in patients with stroke and are closely related to the nerve injury and atherosclerosis.

  16. Betaine attenuates memory impairment after water-immersion restraint stress and is regulated by the GABAergic neuronal system in the hippocampus.

    Science.gov (United States)

    Kunisawa, Kazuo; Kido, Kiwamu; Nakashima, Natsuki; Matsukura, Takuya; Nabeshima, Toshitaka; Hiramatsu, Masayuki

    2017-02-05

    GABA mediated neuronal system regulates hippocampus-dependent memory and stress responses by controlling plasticity and neuronal excitability. Here, we demonstrate that betaine ameliorates water-immersion restraint stress (WIRS)-induced memory impairments. This improvement was inhibited by a betaine/GABA transporter-1 (GABA transporter-2: GAT2) inhibitor, NNC 05-2090. In this study, we investigated whether memory amelioration by betaine was mediated by the GABAergic neuronal system. Adult male mice were co-administered betaine and GABA receptor antagonists after WIRS. We also examined whether memory impairment after WIRS was attenuated by GABA receptor agonists. The memory functions were evaluated using a novel object recognition test 3-6 days after WIRS and/or the step-down type passive avoidance test at 7-8 days. The co-administration of the GABA A receptor antagonist bicuculline (1mg/kg) or the GABA B receptor antagonist phaclofen (10mg/kg) 1h after WIRS suppressed the memory-improving effects induced by betaine. Additionally, the administration of the GABA A receptor agonist muscimol (1mg/kg) or the GABA B receptor agonist baclofen (10mg/kg) 1h after WIRS attenuated memory impairments. These results were similar to the data observed with betaine. The treatment with betaine after WIRS significantly decreased the expression of GABA transaminase, and this effect was partially blocked by NNC 05-2090 in the hippocampus. WIRS caused a transient increase in hippocampal GABA levels and the changes after WIRS were not affected by betaine treatment in an in vivo microdialysis study. These results suggest that the beneficial effects of betaine may be mediated in part by changing the GABAergic neuronal system. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Total plasma homocysteine is associated with hypertension in Type I diabetic patients

    DEFF Research Database (Denmark)

    Neugebauer, S; Tarnow, L; Stehouwer, C D

    2002-01-01

    between plasma homocysteine concentrations, methylenetetrahydrofolate reductase gene polymorphism, hypertension, diabetic microvascular and macrovascular complications associated with kidney function. METHODS: Vascular complications, hypertension, methylenetetrahydrofolate reductase genotype (RFLP...... was an independent determinant of plasma homocysteine, the methylenetetrahydrofolate reductase gene polymorphism was neither associated with diabetic vascular complications nor with hypertension. CONCLUSION/INTERPRETATION: Increased plasma homocysteine concentrations but not the T allele per se, enhance the risk...... of hypertension and of CHD in Danish Type I diabetic patients with normal renal function....

  18. Homocysteine levels -before and after methionine loading- in 51 Dutch families

    NARCIS (Netherlands)

    Heijer, den M.; Graafsma, S.; Lee, S.Y.; Verhoef, P.

    2005-01-01

    Elevated levels of homocysteine are a risk factor for vascular disease, thrombosis, neural tube defects and dementia. The 677C>T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene appears to be the most important single determinant of plasma homocysteine concentration. In the

  19. Homocysteine and C-Reactive Protein as Useful Surrogate Markers for Evaluating CKD Risk in Adults

    Directory of Open Access Journals (Sweden)

    Chung-Hsun Chuang

    2013-10-01

    Full Text Available Background/Aims: This study aimed to evaluate the effectiveness of homocysteine and C-reactive protein (CRP as potential markers for chronic kidney disease (CKD in adults in Taiwan, and to identify associations between these factors and CKD, stratifying by gender. Methods: This cross-sectional study analyzed multi-center data retrospectively. Data were collected from 22,043 adult Taiwanese at Chang-Gung Memorial Hospital from 2005 to 2011. Smoking/drinking history, personal medical/medication history, pregnancy, fasting times as well as laboratory parameters, including homocysteine and CRP were measured and analyzed. Results: Significant differences were observed between four homocysteine and CRP quartiles in eGFR and CKD. For males, only one model showed significant associations between plasma homocysteine and CKD, while in females, all three models showed significant associations with CKD. On the contrary, the gender difference in the case of CRP was opposite. Combined homocysteine and CRP were associated with CKD in males but not in females. Conclusion: Among Taiwanese adults, plasma homocysteine is associated with CKD in females and plasma hsCRP is associated with CKD in males. High hsCRP/high homocysteine is associated with elevated CKD risk in male. Our results suggest that homocysteine and hsCRP may be useful surrogate markers for evaluating CKD risk in adults.

  20. Effect of consumption of red wine, spirits, and beer on serum homocysteine.

    Science.gov (United States)

    van der Gaag, M S; Ubbink, J B; Sillanaukee, P; Nikkari, S; Hendriks, H F

    2000-04-29

    Serum homocysteine increases after moderate consumption of red wine and spirits, not after moderate consumption of beer. Vitamin B6 in beer seems to prevent the alcohol-induced rise in serum homocysteine.

  1. Synthesis, vibrational and quantum chemical investigations of hydrogen bonded complex betaine dihydrogen selenite

    Science.gov (United States)

    Arjunan, V.; Marchewka, Mariusz K.; Kalaivani, M.

    2012-10-01

    The molecular complex of betaine with selenious acid namely, betaine dihydrogen selenite (C5H13NO5Se, BDHSe) was synthesised by the reaction of betaine and SeO2 in a 1:1:1 solution of isopropanol, methanol and water. Crystals were grown from this solution by cooling to 253 K for few days. The complex was formed without accompanying proton transfer from selenious acid molecule to betaine. The complete vibrational assignments and analysis of BDHSe have been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP) method using 6-311++G∗∗, 6-31G∗∗, cc-pVDZ and 3-21G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of BDHSe were determined by the DFT method. The 1H and 13C isotropic chemical shifts (δ ppm) of BDHSe with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. SHG experiment was carried out using Kurtz-Perry powder technique. The efficiency of second harmonic generation for BDHSe was estimated relatively to KDP: deff = 0.97 deff (KDP).

  2. Roles of DNA methyltransferases in Arabidopsis development ...

    African Journals Online (AJOL)

    Mutations that cause severe loss of DNA methylation often leads to abnormal development. In the present review, we summarized recent findings of the three major DNA methyltransferases mutants playing vital role in development of Arabidopsis thaliana. Keywords: DNA methylation, epigenetics, methyltransferase, mutant ...

  3. Structure-Function Analyses of a Caffeic Acid O-Methyltransferase from Perennial Ryegrass Reveal the Molecular Basis for Substrate Preference[W][OA

    Science.gov (United States)

    Louie, Gordon V.; Bowman, Marianne E.; Tu, Yi; Mouradov, Aidyn; Spangenberg, German; Noel, Joseph P.

    2010-01-01

    Lignin forms from the polymerization of phenylpropanoid-derived building blocks (the monolignols), whose modification through hydroxylation and O-methylation modulates the chemical and physical properties of the lignin polymer. The enzyme caffeic acid O-methyltransferase (COMT) is central to lignin biosynthesis. It is often targeted in attempts to engineer the lignin composition of transgenic plants for improved forage digestibility, pulping efficiency, or utility in biofuel production. Despite intensive investigation, the structural determinants of the regiospecificity and substrate selectivity of COMT remain poorly defined. Reported here are x-ray crystallographic structures of perennial ryegrass (Lolium perenne) COMT (Lp OMT1) in open conformational state, apo- and holoenzyme forms and, most significantly, in a closed conformational state complexed with the products S-adenosyl-l-homocysteine and sinapaldehyde. The product-bound complex reveals the post-methyl-transfer organization of COMT’s catalytic groups with reactant molecules and the fully formed phenolic-ligand binding site. The core scaffold of the phenolic ligand forges a hydrogen-bonding network involving the 4-hydroxy group that anchors the aromatic ring and thereby permits only metahydroxyl groups to be positioned for transmethylation. While distal from the site of transmethylation, the propanoid tail substituent governs the kinetic preference of ryegrass COMT for aldehydes over alcohols and acids due to a single hydrogen bond donor for the C9 oxygenated moiety dictating the preference for an aldehyde. PMID:21177481

  4. A Rapid and Efficient Assay for the Characterization of Substrates and Inhibitors of Nicotinamide N-Methyltransferase

    NARCIS (Netherlands)

    van Haren, Matthijs J; Sastre Torano, Javier; Sartini, Davide; Emanuelli, Monica; Parsons, Richard B; Martin, Nathaniel I

    2016-01-01

    Nicotinamide N-methyltransferase (NNMT) is one of the most abundant small molecule methyltransferases in the human body and is primarily responsible for the N-methylation of the nicotinamide (vitamin B3). Employing the cofactor S-adenosyl-l-methionine, NNMT transfers a methyl group to the pyridine

  5. Plasma homocysteine and B vitamins levels in Nigerian children with nephrotic syndrome.

    Science.gov (United States)

    Orimadegun, Bose Etaniamhe; Orimadegun, Adebola Emmanuel; Ademola, Adebowale Dele; Agbedana, Emmanuel Oluyemi

    2014-01-01

    Available data on plasma homocysteine level in patients with nephrotic syndrome (NS) are controversial with increased, decreased and unchanged values reported. Therefore, plasma homocysteine and serum B vitamins in Nigerian children with NS were assessed in this study. Fasting blood samples were analysed for plasma homocysteine, serum folate and B vitamins in 42 children with NS and 42 age and sex-matched healthy controls in this case control study. Data were compared between NS and control using t test and Chi square. Relationships were tested with regression analysis with p set at 0.05. Prevalence of hyperhomocysteinaemia, low folate and cyanocobalamin in NS was 57.1%, 14.3% and 9.5% respectively. The mean homocysteine level was significantly higher in NS than control (11.3±2.6 µmol/L versus 5.5±2.3 µmol/L). Also, NS had lower folate and cyanocobalamin than control: 9.1±3.9 ng/mL versus 11.2±3.1 ng/dL and 268.5±95.7 pg/mL versus 316±117.2 pg/mL respectively. Weak but significant correlation between homocysteine and serum albumin (r = 0.347), folate (r = -0.607) and vitamin B12 (r = -0.185) were found in the NS group. Significant relationship was also found between homocysteine and vitamin B12 (ß = -0.64, 95% CI = -1.20, -0.08) after controlling for folate and vitamin B6 levels. Clinically important hyperhomocysteinaemia and low B vitamins occur in Nigerian children with nephrotic syndrome. This data suggest that potential usefulness of folate and vitamin B supplementation for reducing high homocysteine levels in nephrotic syndrome need to be further investigated.

  6. Serum homocysteine levels in relation to clinical progression in multiple sclerosis

    NARCIS (Netherlands)

    Teunissen, C.E.; Killestein, J.; Kragt, J.J.; Polman, C.H.; Dijkstra, C.D.; Blom, H.J.

    2008-01-01

    Background: Elevated homocysteine levels are associated with various neurodegenerative diseases and have even been identified as a risk factor for some of these. Homocysteine levels may be elevated in patients with multiple sclerosis (MS) but large studies are lacking and the relation with disease

  7. Choline Intake, Plasma Riboflavin, and the Phosphatidylethanolamine N-Methyltransferase G5465A Genotype Predict Plasma Homocysteine in Folate-Deplete Mexican-American Men with the Methylenetetrahydrofolate Reductase 677TT Genotype

    NARCIS (Netherlands)

    Caudill, M.A.; Dellschaft, N.; Solis, C.; Hinkis, S.; Ivanov, A.A.; Nash-Barboza, S.; Randall, K.E.; Jackson, B.; Solomita, G.N.; Vermeylen, F.

    2009-01-01

    We previously showed that provision of the folate recommended dietary allowance and either 300, 550, 1100, or 2200 mg/d choline for 12 wk resulted in diminished folate status and a tripling of plasma total homocysteine (tHcy) in men with the methylenetetrahydrofolate reductase (MTHFR) 677TT

  8. Multimodal switching of conformation and solubility in homocysteine derived polypeptides

    OpenAIRE

    Kramer, JR; Deming, TJ

    2014-01-01

    We report the design and synthesis of poly(S-alkyl-l-homocysteine)s, which were found to be a new class of readily prepared, multiresponsive polymers that possess the unprecedented ability to respond in different ways to different stimuli, either through a change in chain conformation or in water solubility. The responsive properties of these materials are also effected under mild conditions and are completely reversible for all pathways. The key components of these polymers are the incorpora...

  9. B-vitamin status and concentrations of homocysteine in Austrian omnivores, vegetarians and vegans.

    Science.gov (United States)

    Majchrzak, D; Singer, I; Männer, M; Rust, P; Genser, D; Wagner, K-H; Elmadfa, I

    2006-01-01

    -planned vegan diet. Vitamins B(12) and B(2) may need attention in the strict vegan diet, especially regarding elevated homocysteine levels in plasma. Pyridoxine status appeared to be independent of the diet. Copyright 2006 S. Karger AG, Basel.

  10. Extracellular concentration of homocysteine in human cell lines is influenced by specific inhibitors of cyst(e)ine transport.

    Science.gov (United States)

    Hultberg, Björn

    2004-04-01

    Despite the growing evidence that plasma homocysteine is a cardiovascular risk factor, the mechanism behind the vascular injuries is still unknown. Studies of the cellular uptake systems for homocysteine are scarce, but membrane transporters of cyst(e)ine seem to be involved. In the present study the cellular uptake of extracellular homocysteine in HeLa and hepatoma cell lines is investigated by using several different transport inhibitors for cellular uptake of cyst(e)ine. It is shown that systems A and Xc- are the main transport systems for homocysteine uptake in HeLa cells. It is also confirmed that the magnitude of homocysteine uptake in hepatoma cells is lower than in HeLa cells. However, in the presence of high amounts of extracellular homocysteine both cell types exhibited a high elimination of homocysteine, which was inhibited by the presence of inhibitors of systems A or Xc-. It is possible that there is normally a high turnover of homocysteine in cell cultures, which is not detected by occasional determinations of homocysteine concentrations. The complex pattern of homocysteine production, release, uptake and distribution between different cells in the body is important to examine further in order to possibly be able to modulate the elimination of homocysteine from circulation and thereby lower the risk of cardiovascular disease.

  11. Association of plasma homocysteine and white matter hypodensities in a sample of stroke patients

    International Nuclear Information System (INIS)

    Naveed, G.

    2015-01-01

    Studies of homocysteine in vascular disorders have yielded conflicting data. There are also differences based on various ethnicities and cultures. In this study, we have examined the homocysteine patterns in local stroke patients, so as to ascertain the homocysteine status in a sample of local population. Homocysteine-white matter hypodensities relationship in stroke is emerging, as an important aspect in stroke pathophysiology and is thought to have prognostic and therapeutic values. Methods: We included 150 stroke patients who were diagnosed as having clinical stroke on the basis of history; physical examination and CT (Computerized Tomography) scan of brain. These patients were recruited from neurology and emergency wards of two public sector hospitals of Lahore. The presence or absence of white matter hypodensities were diagnosed after consultation with a radiologist. Blood samples were collected from the same stroke patients. Results: We found a strong association between white matter hypodensities and total homocysteine in plasma of stroke patients p<0.001. Conclusion: Homocysteine is a risk factor for white matter hypodensities in stroke patients in our study. (author)

  12. Homocysteine status and cardiovascular risk factors in patients with psoriasis: a case-control study.

    LENUS (Irish Health Repository)

    Tobin, A-M

    2012-02-01

    BACKGROUND: Psoriasis is a hyperproliferative, cutaneous disorder with the potential to lower levels of folate. This may result in raised levels of homocysteine, an independent risk factor for the development of cardiovascular disease. OBJECTIVE: A study was conducted to compare levels of red-cell folate (RCF) and homocysteine in patients with psoriasis and in healthy controls. Levels of homocysteine were also examined in the context of other major cardiovascular risk factors. METHODS: In total, 20 patients with psoriasis and 20 controls had their RCF, homo-cysteine and other conventional cardiovascular risk factors assessed. RESULTS: Patients with psoriasis had a trend towards lower levels of RCF. Significantly raised levels of homocysteine were found in patients with psoriasis compared with controls (P = 0.007). There was no correlation between homocysteine levels, RCF levels or disease activity as measured by the Psoriasis Area and Severity Index. Patients with psoriasis had higher body mass index (P < 0.004) and higher systolic blood pressure (P < 0.001) than controls. This may contribute to the excess cardiovascular mortality observed in patients with psoriasis.

  13. [Prognosis significance of blood homocysteine after myocardial infarction].

    Science.gov (United States)

    Reis, R P; Azinheira, J; Reis, H P; Bordalo e Sá, A; Tavares, J; Adão, M; Santos, A L; Pina, J E; Correia, J M; Luís, A S

    2000-05-01

    Homocysteinemia is an independent risk factor of coronary artery disease and of myocardial infarction. In the present study we intend to relate fasting homocystein levels to prognosis after a myocardial infarction. From 1990 to 1992, we studied fasting homocysteinemia levels on a group of 112 patients aged under 56 years that had suffered a myocardial infarction between 3 and 12 months before. We obtained, the patients names, addresses, phone numbers and physicians' name. Seven years later (on average) we collected data regarding the patients evolution, consulting medical records, their physicians or by personal contact. We evaluated complications, namely mortality, vascular morbidity, such as unstable angina, re-infarction, stroke, and the need for invasive procedures (catheterism, PTCA, CABG). According to previous studies of the group, we used a cut-point of 10.10 mumol/L to define patients with normal or pathological levels of homocysteinemia. We excluded all patients that took vitamin B supplements, co-factors of HC metabolism, during this follow-up. We were able to obtain data on 110 patients. Patients with normal HC levels (n = 62) presented less global complications (26 versus 72%, p homocystein levels (n = 48), those with higher homocystein levels presented a higher degree of complications. In this population with myocardial infarction under 56 years of age, a high homocysteinemia level is an important prognostic factor. This study suggests that we can improve the prognosis and decrease the complications after myocardial infarction by lowering elevated homocystein levels.

  14. Ameliorative effects of betaine and ascorbic acid administration to ...

    African Journals Online (AJOL)

    SAM

    2014-06-04

    Jun 4, 2014 ... The production of broiler chickens under heat stress conditions results ... other poultry, including pigeons, ducks, guinea fowls and turkeys (Abdullahi ...... betaine on energy utilization in growing pigs - a review. Ann. Anim. Sci.

  15. Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence.

    Science.gov (United States)

    Eikelboom, J W; Lonn, E; Genest, J; Hankey, G; Yusuf, S

    1999-09-07

    To review epidemiologic studies on the association between homocyst(e)ine level and risk for cardiovascular disease and the potential benefits of homocysteine-decreasing therapies. Computerized and manual searches of the literature on total homocysteine levels and cardiovascular disease. Prospective studies and major retrospective epidemiologic studies evaluating the association between homocyst(e)ine levels and cardiovascular disease and the association between blood levels or dietary intake of folate, vitamin B6, and vitamin B12 and cardiovascular disease. Relevant data on patient population, plasma homocyst(e)ine levels, duration of follow-up, and main results were extracted from studies that met the inclusion criteria. The designs and results of studies included in this review are summarized. A formal meta-analysis was not performed because the studies were heterogeneous in method and design. Results of epidemiologic studies suggest that moderately elevated plasma or serum homocyst(e)ine levels are prevalent in the general population and are associated with an increased risk for cardiovascular disease, independent of classic cardiovascular risk factors. Simple, inexpensive, nontoxic therapy with folic acid, vitamin B6, and vitamin B12 reduces plasma homocyst(e)ine levels. Although the association between homocyst(e)ine levels and cardiovascular disease is generally strong and biologically plausible, the data from the prospective studies are less consistent. In addition, epidemiologic observations of an association between hyperhomocyst(e)inemia and cardiovascular risk do not prove the existence of a causal relation. Therefore, the effectiveness of folate, vitamin B6, and vitamin B12 in reducing cardiovascular morbidity and mortality requires rigorous testing in randomized clinical trials. Several such trials are under way; their results may greatly affect cardiovascular morbidity and mortality, given the simplicity and low cost of vitamin therapy.

  16. Trimethylamine N-oxide stabilizes proteins via a distinct mechanism compared with betaine and glycine

    Science.gov (United States)

    Liao, Yi-Ting; Manson, Anthony C.; DeLyser, Michael R.; Noid, William G.; Cremer, Paul S.

    2017-01-01

    We report experimental and computational studies investigating the effects of three osmolytes, trimethylamine N-oxide (TMAO), betaine, and glycine, on the hydrophobic collapse of an elastin-like polypeptide (ELP). All three osmolytes stabilize collapsed conformations of the ELP and reduce the lower critical solution temperature (LSCT) linearly with osmolyte concentration. As expected from conventional preferential solvation arguments, betaine and glycine both increase the surface tension at the air–water interface. TMAO, however, reduces the surface tension. Atomically detailed molecular dynamics (MD) simulations suggest that TMAO also slightly accumulates at the polymer–water interface, whereas glycine and betaine are strongly depleted. To investigate alternative mechanisms for osmolyte effects, we performed FTIR experiments that characterized the impact of each cosolvent on the bulk water structure. These experiments showed that TMAO red-shifts the OH stretch of the IR spectrum via a mechanism that was very sensitive to the protonation state of the NO moiety. Glycine also caused a red shift in the OH stretch region, whereas betaine minimally impacted this region. Thus, the effects of osmolytes on the OH spectrum appear uncorrelated with their effects upon hydrophobic collapse. Similarly, MD simulations suggested that TMAO disrupts the water structure to the least extent, whereas glycine exerts the greatest influence on the water structure. These results suggest that TMAO stabilizes collapsed conformations via a mechanism that is distinct from glycine and betaine. In particular, we propose that TMAO stabilizes proteins by acting as a surfactant for the heterogeneous surfaces of folded proteins. PMID:28228526

  17. Elevated homocysteine by levodopa is detrimental to neurogenesis in parkinsonian model.

    Directory of Open Access Journals (Sweden)

    Jin Young Shin

    Full Text Available BACKGROUND: Modulation of neurogenesis that acts as an endogenous repair mechanism would have a significant impact on future therapeutic strategies for Parkinson's disease (PD. Several studies demonstrated dopaminergic modulation of neurogenesis in the subventricular zone (SVZ of the adult brain. Levodopa, the gold standard therapy for PD, causes an increase in homocysteine levels that induces neuronal death via N-methyl-D-aspartate (NMDA receptor. The present study investigated whether elevated homocysteine by levodopa treatment in a parkinsonian model would modulate neurogenesis via NMDA receptor signal cascade and compared the effect of levodopa and pramipexol (PPX on neurogenic activity. METHODOLOGY/PRINCIPAL FINDINGS: Neurogenesis was assessed in vitro using neural progenitor cells (NPCs isolated from the SVZ and in vivo with the BrdU-injected animal model of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Modulation of homocysteine levels was evaluated using co-cultures of NPCs and astrocytes and PD animals. Immunochemical and Western blot analyses were used to measure neurogenesis and determine the cell death signaling. Levodopa treatment increased release of homocysteine on astrocytes culture media as well as in plasma and brain of PD animals. Increased homocysteine by levodopa led to increased apoptosis of NPCs through the NMDA receptor-dependent the extracellular signal-regulated kinase (ERK signaling pathways. The administration of a NMDA antagonist significantly attenuated apoptotic cell death in levodopa-treated NPCs and markedly increased the number of BrdU-positive cells in the SVZ of levodopa-treated PD animals. Comparative analysis revealed that PPX treatment significantly increased the number of NPCs and BrdU-positive cells in the SVZ of PD animals compared to levodopa treatment. Our present study demonstrated that increased homocysteine by levodopa has a detrimental effect on neurogenesis through NMDA receptor

  18. Genetic Variants of Homocysteine Metabolizing Enzymes and the Risk of Coronary Artery Disease

    Czech Academy of Sciences Publication Activity Database

    Janošíková, B.; Pavlíková, Markéta; Kocmanová, Dora; Vítová, D.; Veselá, K.; Krupková, L.; Kahleová, R.; Krijt, J.; Kraml, P.; Hyánek, J.; Zvárová, Jana; Anděl, M.; Kožich, V.

    2003-01-01

    Roč. 79, - (2003), s. 167-175 ISSN 1096-7192 R&D Projects: GA MZd NM26; GA MZd NM6548 Keywords : coronary disease * risk factors * genes * homocysteine * metabolism Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.038, year: 2003

  19. Unfiltered coffee increases plasma homocysteine concentrations in healthy volunteers: a randomized trial

    NARCIS (Netherlands)

    Grubben, M.J.; Boers, G.H.; Blom, H.J.; Broekhuizen, R.; Jong, de R.; Rijt, van L.; Katan, M.B.

    2000-01-01

    Background: An elevated plasma homocysteine concentration is a putative risk factor for cardiovascular disease. Observational studies have reported an association between coffee consumption and plasma homocysteine concentrations. Objective: We studied the effect of coffee consumption on plasma

  20. Distinct Difference in Absorption Pattern in Pigs of Betaine Provided as a Supplement or Present Naturally in Cereal Dietary Fiber

    DEFF Research Database (Denmark)

    Hedemann, Mette Skou; Theil, Peter Kappel; Lærke, Helle Nygaard

    2015-01-01

    high-fiber breads differing in amount and source of dietary fiber (two experiments, n = 6 pigs each). Plasma betaine peaked after 30 min when betaine was fed as a supplement, whereas it peaked after 120–180 min when high-fiber breads were fed. Plasma betaine showed no diet × time interaction after...... feeding with high-fiber breads, indicating that the absorption kinetic did not differ between fiber sources. The net absorption of choline was not affected by the experimental diets. In conclusion, betaine in cereal sources has to be liberated from the matrix prior to absorption, causing delayed...

  1. Plasma homocyst(e)ine concentrations in pregnant and nonpregnant women with controlled folate intake.

    Science.gov (United States)

    Bonnette, R E; Caudill, M A; Boddie, A M; Hutson, A D; Kauwell, G P; Bailey, L B

    1998-08-01

    To assess the effects of folate intake and pregnancy on plasma total homocyst(e)ine concentrations in women during the second trimester of pregnancy compared with young, healthy nonpregnant women. The diet provided either 450 or 850 microg of folate per day. These levels are approximately the current (400 microg/day) and previous (800 microg/day) Recommended Dietary Allowances for folate in pregnant women. Folate was provided as both food folate (120 microg/day) and supplemental folic acid (either 330 or 730 microg/day) for a period of 12 weeks. Plasma homocyst(e)ine (sum of free and protein-bound homocysteine), serum folate, and erythrocyte folate concentrations were determined weekly. Homocyst(e)ine concentrations were lower in pregnant women during the second trimester of normal pregnancy than in nonpregnant controls, independent of dietary folate intake. The overall mean (+/- standard deviation) homocyst(e)ine concentration of the pregnant subjects (5.4 +/- 1.4 micromol/L) was significantly lower than that observed in the nonpregnant control group (8.7 +/- 1.7 micromol/L) (P ine concentrations remained constant throughout the 12 weeks of the investigation. The folate intakes in this investigation were adequate to maintain constant homocyst(e)ine concentrations in pregnant and nonpregnant women. The lower homocyst(e)ine concentrations observed in pregnant subjects compared with nonpregnant controls may be a physiologic response to pregnancy.

  2. Homocysteine as a Diagnostic and Etiopathogenic Factor in Children with Autism Spectrum Disorder.

    Science.gov (United States)

    Józefczuk, Jan; Kasprzycka, Wiktoria; Czarnecki, Rafał; Graczyk, Alfreda; Józefczuk, Paweł; Magda, Krzysztof; Lampart, Urszula

    2017-08-01

    Substantial characteristics of autism are cognitive and psychophysical disorders. Etiopathogenetic factors are thought to be responsible for development of autism in children with genetic predisposition as well as have their effect on the severity of the disorders. The main problem of early identification of patients affected by autism spectrum disorder is that there are no clear diagnostic criteria. The aim of our study was assessment of hair magnesium and serum homocysteine concentrations in children with autism. The presented work is a continuation of previous study in which we investigated the influence of disturbances in magnesium and homocysteine levels in children with autism, performed on a new, larger group of patients. One hundred and forty children had hair magnesium levels analyzed, as well as blood serum levels of homocysteine and magnesium. Hair magnesium analysis was performed using a flame atomic absorption spectrometer, blood serum homocysteine determination was performed using a radioimmunological method, and blood serum magnesium level was determined using a biochemical method. Our research showed normal magnesium blood levels and significantly high homocysteine levels and very low hair magnesium levels. Low concentration of hair magnesium progresses with age. Our hypothesis is that magnesium deficiency, as a relevant epigenetic factor, might be decreasing methylation of homocysteine, therefore decreasing genome transcription and lowering the synaptic plasticity. We suggest that analysis of hair magnesium and serum homocysteine levels might be useful in identification of children with autism spectrum disorder, as well as control of its treatment. Obtained results and performed analysis might therefore justify supplementation of magnesium among children with autism.

  3. Microstructural White Matter Tissue Characteristics Are Modulated by Homocysteine: A Diffusion Tensor Imaging Study

    OpenAIRE

    Hsu, Jung-Lung; Chen, Wei-Hung; Bai, Chyi-Huey; Leu, Jyu-Gang; Hsu, Chien-Yeh; Viergever, Max A.; Leemans, Alexander

    2015-01-01

    Homocysteine level can lead to adverse effects on the brain white matter through endothelial dysfunction, microstructural inflammation, and neurotoxin effects. Despite previously observed associations between elevated homocysteine and macroscopic structural brain changes, it is still unknown whether microstructural associations of homocysteine on brain tissue properties can be observed in healthy subjects with routine MRI. To this end, we investigated potential relationships between homocyste...

  4. Transplacental exposure to inorganic arsenic at a hepatocarcinogenic dose induces fetal gene expression changes in mice indicative of aberrant estrogen signaling and disrupted steroid metabolism

    International Nuclear Information System (INIS)

    Liu Jie; Xie Yaxiong; Cooper, Ryan; Ducharme, Danica M.K.; Tennant, Raymond; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2007-01-01

    Exposure to inorganic arsenic in utero in C3H mice produces hepatocellular carcinoma in male offspring when they reach adulthood. To help define the molecular events associated with the fetal onset of arsenic hepatocarcinogenesis, pregnant C3H mice were given drinking water containing 0 (control) or 85 ppm arsenic from day 8 to 18 of gestation. At the end of the arsenic exposure period, male fetal livers were removed and RNA isolated for microarray analysis using 22K oligo chips. Arsenic exposure in utero produced significant (p < 0.001) alterations in expression of 187 genes, with approximately 25% of aberrantly expressed genes related to either estrogen signaling or steroid metabolism. Real-time RT-PCR on selected genes confirmed these changes. Various genes controlled by estrogen, including X-inactive-specific transcript, anterior gradient-2, trefoil factor-1, CRP-ductin, ghrelin, and small proline-rich protein-2A, were dramatically over-expressed. Estrogen-regulated genes including cytokeratin 1-19 and Cyp2a4 were over-expressed, although Cyp3a25 was suppressed. Several genes involved with steroid metabolism also showed remarkable expression changes, including increased expression of 17β-hydroxysteroid dehydrogenase-7 (HSD17β7; involved in estradiol production) and decreased expression of HSD17β5 (involved in testosterone production). The expression of key genes important in methionine metabolism, such as methionine adenosyltransferase-1a, betaine-homocysteine methyltransferase and thioether S-methyltransferase, were suppressed. Thus, exposure of mouse fetus to inorganic arsenic during a critical period in development significantly alters the expression of various genes encoding estrogen signaling and steroid or methionine metabolism. These alterations could disrupt genetic programming at the very early life stage, which could impact tumor formation much later in adulthood

  5. Homocysteine and coronary heart disease : the role of polymorphic genes and hemostasis

    NARCIS (Netherlands)

    Klerk, M.

    2002-01-01

    Background Homocysteine is a sulfur-containing amino acid formed during catabolism of the essential amino acid methionine. Defects in genes encoding enzymes or sub-optimal intake of B-vitamins (e.g. folate) involved in homocysteine

  6. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis.

    NARCIS (Netherlands)

    Homocysteine Studies Collab, .

    2002-01-01

    CONTEXT: It has been suggested that total blood homocysteine concentrations are associated with the risk of ischemic heart disease (IHD) and stroke. OBJECTIVE: To assess the relationship of homocysteine concentrations with vascular disease risk. DATA SOURCES: MEDLINE was searched for articles

  7. Homocysteine threshold value based on cystathionine beta synthase and paraoxonase 1 activities in mice.

    Science.gov (United States)

    Hamelet, J; Aït-Yahya-Graison, E; Matulewicz, E; Noll, C; Badel-Chagnon, A; Camproux, A-C; Demuth, K; Paul, J-L; Delabar, J M; Janel, N

    2007-12-01

    Hyperhomocysteinaemia is a metabolic disorder associated with the development of premature atherosclerosis. Among the determinants which predispose to premature thromboembolic and atherothrombotic events, serum activity of paraoxonase 1, mainly synthesized in the liver, has been shown to be a predictor of cardiovascular disease and to be negatively correlated with serum homocysteine levels in human. Even though treatments of hyperhomocysteinaemic patients ongoing cardiovascular complications are commonly used, it still remains unclear above which homocysteine level a preventive therapy should be started. In order to establish a threshold of plasma homocysteine concentration we have analyzed the hepatic cystathionine beta synthase and paraoxonase 1 activities in a moderate to intermediate murine model of hyperhomocysteinaemia. Using wild type and heterozygous cystathionine beta synthase deficient mice fed a methionine enriched diet or a control diet, we first studied the link between cystathionine beta synthase and paraoxonase 1 activities and plasma homocysteine concentration. Among the animals used in this study, we observed a negative correlation between plasma homocysteine level and cystathionine beta synthase activity (rho=-0.52, P=0.0008) or paraoxonase 1 activity (rho=-0.49, P=0.002). Starting from these results, a homocysteine cut-off value of 15 microm has been found for both cystathionine beta synthase (P=0.0003) and paraoxonase 1 (P=0.0007) activities. Our results suggest that both cystathionine beta synthase and paraoxonase 1 activities are significantly decreased in mice with a plasma homocysteine value greater than 15 microm. In an attempt to set up preventive treatment for cardiovascular disease our results indicate that treatments should be started from 15 microm of plasma homocysteine.

  8. Chemoselective synthesis of functional homocysteine residues in polypeptides and peptides

    OpenAIRE

    Gharakhanian, EG; Deming, TJ

    2016-01-01

    A methodology was developed for efficient, chemoselective transformation of methionine residues into stable, functional homocysteine derivatives. Methionine residues can undergo highly chemoselective alkylation reactions at low pH to yield stable sulfonium ions, which could then be selectively demethylated to give stable alkyl homocysteine residues. This mild, two-step process is chemoselective, efficient, tolerates many functional groups, and provides a means for creation of new functional b...

  9. Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease

    NARCIS (Netherlands)

    Meurs, J.B.J. van; Pare, G.; Schwartz, S.M.; Hazra, A.; Tanaka, T.; Vermeulen, S.; Cotlarciuc, I.; Yuan, X.; Malarstig, A.; Bandinelli, S.; Bis, J.C.; Blom, H.; Brown, M.J.; Chen, C.; Chen, Y.D.; Clarke, R.J.; Dehghan, A.; Erdmann, J.; Ferrucci, L.; Hamsten, A.; Hofman, A.; Hunter, D.J.; Goel, A.; Johnson, A.D.; Kathiresan, S.; Kampman, E.; Kiel, D.P.; Kiemeney, L.A.L.M.; Chambers, J.C.; Kraft, P.; Lindemans, J.; McKnight, B.; Nelson, C.P.; O'Donnell, C.J.; Psaty, B.M.; Ridker, P.M.; Rivadeneira, F.; Rose, L.M.; Seedorf, U.; Siscovick, D.S.; Schunkert, H.; Selhub, J.; Ueland, P.M.; Vollenweider, P.; Waeber, G.; Waterworth, D.M.; Watkins, H.; Witteman, J.C.; Heijer, M. den; Jacques, P.; Uitterlinden, A.G.; Kooner, J.S.; Rader, D.J.; Reilly, M.P.; Mooser, V.; Chasman, D.I.; Samani, N.J.; Ahmadi, K.R.

    2013-01-01

    BACKGROUND: The strong observational association between total homocysteine (tHcy) concentrations and risk of coronary artery disease (CAD) and the null associations in the homocysteine-lowering trials have prompted the need to identify genetic variants associated with homocysteine concentrations

  10. Homocisteína e transtornos psiquiátricos Homocysteine and neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Perminder Sachdev

    2004-03-01

    Full Text Available O autor apresenta uma visão geral da literatura atual sobre homocisteína como um fator de risco para os transtornos neuropsiquiátricos. Foram pesquisados os bancos de dados MEDLINE, Current Contents e EMBASE (entre 1966 e 2002 para publicações em língua inglesa utilizando as palavras-chave ''Homocisteína'' e ''AVC''; ''Doença de Alzheimer''; ''Déficit Cognitivo'', ''Epilepsia'', ''Depressão'' ou ''Doença de Parkinson''. Artigos individuais foram pesquisados para referências cruzadas relevantes. É biologicamente plausível que altos níveis de homocisteína possam causar lesão cerebral e transtornos neuropsiquiátricos. A homocisteína é pró-aterogênica e pró-trombótica. Dessa forma, aumenta o risco de acidente vascular cerebral, podendo ter um efeito neurotóxico direto. Evidências de que a homocisteína seja um fator de risco para doença microvascular cerebral são conflitantes, mas justificam maiores estudos. Estudos transversais e alguns longitudinais suportam a crescente prevalência de acidente vascular cerebral e demência vascular em indivíduos com hiper-homocisteinemia. As evidências de crescente neurodegeneração estão se acumulando. A relação com a depressão ainda é experimental, da mesma forma como com a epilepsia. Atualmente, estudos sobre tratamentos são necessários para colocar as evidências sobre bases mais sólidas. Os pacientes de alto risco também devem ser pesquisados para hiper-homocisteínemia, cujo tratamento deve ser feito com ácido fólico. Mais evidências são necessárias antes que pesquisas populacionais possam ser recomendadas.The author presents an overview of the current literature on homocysteine as a risk factor for neuropsychiatric disorders. The databases MEDLINE, Current Contents and EMBASE were searched (between 1966 and 2002 for English language publications with the key words 'Homocysteine' and 'Stroke'; 'Alzheimer Disease'; 'Cognitive Impairment'; 'Epilepsy'; 'Depression

  11. Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease.

    NARCIS (Netherlands)

    Bree, A. de; Verschuren, W.M.M.; Kromhout, D.; Kluijtmans, L.A.J.; Blom, H.J.

    2002-01-01

    Cardiovascular diseases (CVD), especially coronary heart disease (CHD), are the most important causes of death in industrialized countries. Increased concentrations of total plasma homocysteine (tHcy) have been associated with an increased risk of CHD. Assuming that this relation is causal, a lower

  12. Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease

    Science.gov (United States)

    The strong observational association between total homocysteine (tHcy) concentrations and risk of coronary artery disease (CAD) and the null associations in the homocysteine-lowering trials have prompted the need to identify genetic variants associated with homocysteine concentrations and risk of CA...

  13. Homocysteine is the confounding factor of metabolic syndrome-confirmed by siMS score.

    Science.gov (United States)

    Srećković, Branko; Soldatovic, Ivan; Colak, Emina; Mrdovic, Igor; Sumarac-Dumanovic, Mirjana; Janeski, Hristina; Janeski, Nenad; Gacic, Jasna; Dimitrijevic-Sreckovic, Vesna

    2018-04-06

    Abdominal adiposity has a central role in developing insulin resistance (IR) by releasing pro-inflammatory cytokines. Patients with metabolic syndrome (MS) have higher values of homocysteine. Hyperhomocysteinemia correlates with IR, increasing the oxidative stress. Oxidative stress causes endothelial dysfunction, hypertension and atherosclerosis. The objective of the study was to examine the correlation of homocysteine with siMS score and siMS risk score and with other MS co-founding factors. The study included 69 obese individuals (age over 30, body mass index [BMI] >25 kg/m2), classified into two groups: I-with MS (33 patients); II-without MS (36 patients). Measurements included: anthropometric parameters, lipids, glucose regulation parameters and inflammation parameters. IR was determined by homeostatic model assessment for insulin resistance (HOMA-IR). ATP III classification was applied for diagnosing MS. SiMS score was used as continuous measure of metabolic syndrome. A significant difference between groups was found for C-reactive protein (CRP) (psiMS risk score showed a positive correlation with homocysteine (p=0.023), while siMS score correlated positively with fibrinogen (p=0.013), CRP and acidum uricum (p=0.000) and homocysteine (p=0.08). Homocysteine correlated positively with ApoB (p=0.036), HbA1c (p=0.047), HOMA-IR (p=0.008) and negatively with ApoE (p=0.042). Correlation of siMS score with homocysteine, fibrinogen, CRP and acidum uricum indicates that they are co-founding factors of MS. siMS risk score correlation with homocysteine indicates that hyperhomocysteinemia increases with age. Hyperhomocysteinemia is linked with genetic factors and family nutritional scheme, increasing the risk for atherosclerosis.

  14. Serum homocysteine level in vegetarians in District Tharparker, Sindh

    Science.gov (United States)

    Kapoor, Aneel; Zuberi, Nudrat Anwar; Rathore, M. Imran; Baig, Mukhtiar

    2015-01-01

    Objectives: The aim of present study was to investigate serum homocysteine levels in apparently healthy vegetarians and ominvores in Mithi, district Tharparker, Sindh, Pakistan. Methods: This study was conducted in the Department of Biochemistry, Basic Medical Sciences Institute (BMSI), Jinnah Postgraduate Medical Center (JPMC), Karachi and blood samples were collected from Mithi, district Tharparker, Sindh, Pakistan, in 2012. One hundred vegetarian and one hundred omnivores (age ranging from 20-40 years) were enrolled for this study. Serum homocysteine levels were measured by the chemiluminescence enzyme immunoassay method. Results: Serum homocysteine (Hcy) level was considerably higher (p15µmol/L compared to omnivores 6%, (p15µmol/L serum Hcy level in vegetarian group and 6.9% male and 3.5% females had >15µmol/L serum Hcy level in omnivores group, but the difference was not significant in any group. Conclusion: Vegetarians are more prone to develop hyperhomocysteinemia, so they are at high risk to develop cardiovascular disease. PMID:25878628

  15. Association between plasma homocysteine concentrations and extracranial carotid stenosis

    International Nuclear Information System (INIS)

    Mousavi, Seyed Ali; Ghasemi, M.; Hoseini, T.

    2006-01-01

    Increasing epidemiologic data support a relationship between elevated plasma total homocysteine levels and an increased risk for vascular disease. Higher plasma total homocysteine (tHcy) levels have been associated with extracranial carotid atherosclerosis and cerebral infarction in whites. However, data regarding such associations are limited for Asians. This study examined the association between tHcy level and carotid stenosis in Iranian subjects. In this retrospective study, the subjects were 158 patients with ischemic stroke, including 105 with a normal tHcy level and 53 with a high tHcy level. We investigated the extracranial carotid arteries by ultrasonography and measured serum tHcy by ELISA method in these two groups. We found no meaningful association between a high tHcy level and carotid stenosis. The lack of any meaningful difference in carotid stenosis between patients with normal and elevated tHcy levels is probably due to the low frequency of extracranial diseases in the Asian population and to the nature of homocysteine atherosclerosis. (author)

  16. Influence of foliar application of glycine betaine on gas exchange characteristics of cotton (gossypium Hirsutum L.)

    International Nuclear Information System (INIS)

    Makhdum, M.I.; Din, S.U.

    2007-01-01

    Water is the most limiting factor in cotton production and numerous efforts are being made to improve crop drought tolerance. A field study was conducted with the objectives to determine the effects of different application rates of glycine betaine in field grown cotton at Central Cotton Research Institute, Multan. Four levels of glycine betaine (0.0, 1.0, 3.0 and 6.0 kg ha-1) were applied at three physiological growth stages i.e. at squaring, first flower and peak flowering. Cotton cultivar CIM-448 was used as test crop. Results showed that crop sprayed with glycine betaine at the rate of 6.0 kg ha-1 maintained 120.0, 62.1, 69.7 and 35.5 percent higher net CO/sub 2/ assimilation rate (PN), transpiration rate (E), stomatal resistance (gs) and water use efficiency (PN/E), respectively over that of untreated crop. Crop spayed with glycine betaine at peak flowering stage maintained higher PN, E, gs and PN/E compared to at other stages of growth. (author)

  17. Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference.

    Science.gov (United States)

    Louie, Gordon V; Bowman, Marianne E; Tu, Yi; Mouradov, Aidyn; Spangenberg, German; Noel, Joseph P

    2010-12-01

    Lignin forms from the polymerization of phenylpropanoid-derived building blocks (the monolignols), whose modification through hydroxylation and O-methylation modulates the chemical and physical properties of the lignin polymer. The enzyme caffeic acid O-methyltransferase (COMT) is central to lignin biosynthesis. It is often targeted in attempts to engineer the lignin composition of transgenic plants for improved forage digestibility, pulping efficiency, or utility in biofuel production. Despite intensive investigation, the structural determinants of the regiospecificity and substrate selectivity of COMT remain poorly defined. Reported here are x-ray crystallographic structures of perennial ryegrass (Lolium perenne) COMT (Lp OMT1) in open conformational state, apo- and holoenzyme forms and, most significantly, in a closed conformational state complexed with the products S-adenosyl-L-homocysteine and sinapaldehyde. The product-bound complex reveals the post-methyl-transfer organization of COMT's catalytic groups with reactant molecules and the fully formed phenolic-ligand binding site. The core scaffold of the phenolic ligand forges a hydrogen-bonding network involving the 4-hydroxy group that anchors the aromatic ring and thereby permits only metahydroxyl groups to be positioned for transmethylation. While distal from the site of transmethylation, the propanoid tail substituent governs the kinetic preference of ryegrass COMT for aldehydes over alcohols and acids due to a single hydrogen bond donor for the C9 oxygenated moiety dictating the preference for an aldehyde.

  18. Potent homocysteine-induced ERK phosphorylation in cultured neurons depends on self-sensitization via system Xc-

    International Nuclear Information System (INIS)

    Gu Li; Hu Xiaoling; Xue Zhanxia; Yang Jun; Wan Lishu; Ren Yan; Hertz, Leif; Peng Liang

    2010-01-01

    Homocysteine is increased during pathological conditions, endangering vascular and cognitive functions, and elevated homocysteine during pregnancy may be correlated with an increased incidence of schizophrenia in the offspring. This study showed that millimolar homocysteine concentrations in saline medium cause phosphorylation of extracellular-signal regulated kinases 1 and 2 (ERK 1/2 ) in cerebellar granule neurons, inhibitable by metabotropic but not ionotropic glutamate receptor antagonists. These findings are analogous to observations by , that similar concentrations cause neuronal death. However, these concentrations are much higher than those occurring clinically during hyperhomocysteinemia. It is therefore important that a ∼ 10-fold increase in potency occurred in the presence of the glutamate precursor glutamine, when ERK 1/2 phosphorylation became inhibitable by NMDA or non-NMDA antagonists and dependent upon epidermal growth factor (EGF) receptor transactivation. However, glutamate release to the medium was reduced, suggesting that reversal of the cystine/glutamate antiporter, system X c - could be involved in potentiation of the response by causing a localized release of initially accumulated homocysteine. In agreement with this hypothesis further enhancement of ERK 1/2 phosphorylation occurred in the additional presence of cystine. Pharmacological inhibition of system X c - prevented the effect of micromolar homocysteine concentrations, and U0126-mediated inhibition of ERK 1/2 phosphorylation enhanced homocysteine-induced death. In conclusion, homocysteine interacts with system X c - like quisqualate (Venkatraman et al. 1994), by 'self-sensitization' with initial accumulation and subsequent release in exchange with cystine and/or glutamate, establishing high local homocysteine concentrations, which activate adjacent ionotropic glutamate receptors and cause neurotoxicity.

  19. Dietary determinants of plasma homocysteine concentrations

    NARCIS (Netherlands)

    Verhoef, P.; Groot, de C.P.G.M.

    2005-01-01

    Severe hyperhomocysteinemia is typically caused by rare enzymatic defects or by renal failure. In contrast, mild to moderate hyperhomocysteinemia chiefly results from suboptimal status of nutritional factors involved in homocysteine metabolism. Low dietary intake of folate is the most important

  20. Neuro-fuzzy model of homocysteine metabolism

    Indian Academy of Sciences (India)

    SHAIK Mohammad Naushad

    2017-12-08

    Dec 8, 2017 ... Homocysteine is a nondietary amino acid, which is the byproduct of ... wide spectrum of diseases such as recurrent pregnancy loss (Govindaiah et al. ... A2756G, MTRR A66G were reported in the folate metabolic pathway ...

  1. [The endothelium injuries caused by homocysteine and treatmental effects of Tongxinluo powder].

    Science.gov (United States)

    Liang, Jun-Qing; Wu, Yi-Ling; Xu, Hai-Bo; Zhao, Shao-Hua; Jia, Zhen-Hua; Zhang, Qiu-Yan; Wei, Cong; Dong, Xiao-Wei

    2008-02-01

    To observe the effect of homocysteine (HCY) on the function of endothelium cell, and to discuss the possible mechanisms that Tongxinluo super powder affected. Healthy male Wistar rats were divided into randomly the control group, the model group, the Tongxinluo group. The effect of Ach on isolated rat thoracic aorta in vitro was examined, the microcirculation was observed by microcirculation meter, the activity of SOD and GSH-PX and content of NO, MDA, ET, Ang II, TXA2, PGI2 was detected. Compared with control group, the effect of Ach on isolated rat thoracic aorta in vitro weakened markablely (P homocystein might cause the contracted and dilated function decreased, it might get involved in endothelium disfunction as a result of the massive free radicals production and diastolic-contract factors balance disorder induced by high homocystein. (2) Tongxinluo powder could improve the function of endothelium-dependment dilation induced by high homocystein, that associated with inhibitting the excessive production of free radicals, and improved function of endothelium.

  2. Essential Hypertension in Adolescents: Association with Insulin Resistance and with Metabolism of Homocysteine and Vitamins

    Czech Academy of Sciences Publication Activity Database

    Kahleová, R.; Palyzová, D.; Zvára, Karel; Zvárová, Jana; Hrach, Karel; Nováková, I.; Hyánek, J.; Bendlová, B.; Kožich, V.

    2002-01-01

    Roč. 15, - (2002), s. 857-864 ISSN 0895-7061 R&D Projects: GA MŠk LN00B107 Keywords : hypertension * homocysteine * gene * adolescent Subject RIV: BD - Theory of Information Impact factor: 2.613, year: 2002

  3. Effect of betaine and arginine in lysine-deficient diets on growth, carcass traits, and pork quality.

    Science.gov (United States)

    Madeira, M S; Alfaia, C M; Costa, P; Lopes, P A; Martins, S V; Lemos, J P C; Moreira, O; Santos-Silva, J; Bessa, R J B; Prates, J A M

    2015-10-01

    Forty entire male pigs from a commercial crossbreed (Duroc × Large White × Landrace) were used to investigate the individual or combined effects of betaine and Arg supplementation in Lys-deficient diets on growth performance, carcass traits, and pork quality. Pigs with 59.9 ± 1.65 kg BW were randomly assigned to 1 of 5 dietary treatments ( = 8). The 5 dietary treatments were normal Lys and CP diet (0.51% Lys and 16% CP; control), reduced Lys and CP diet (0.35% Lys and 13% CP), reduced Lys and CP diet with betaine supplementation (0.33%), reduced Lys and CP diet with Arg supplementation (1.5%), and reduced Lys and CP diet with betaine and Arg supplementation (0.33% betaine and 1.5% Arg). Pigs were slaughtered at 92.7 ± 2.54 kg BW. The Lys-deficient diets (-35% Lys) increased intramuscular fat (IMF) content by 25% ( = 0.041) and meat juiciness by 12% ( = 0.041) but had a negative effect on growth performance ( pork acceptability. Arginine supplementation also increased ( = 0.003) meat tenderness. Differences in fatty acid composition of pork were not detected among dietary treatment groups. However, oleic acid was positively correlated ( meat. Data confirm that dietary CP reduction enhances pork eating quality but negatively affects pigs' growth performance. Moreover, it is suggested that betaine and Arg supplementation of Lys-deficient diets does not further increase IMF content but improves some pork sensory traits, including overall acceptability.

  4. Folic acid treatment increases homocysteine remethylation and methionine transmethylation in healthy subjects

    NARCIS (Netherlands)

    Stam, F.; Smulders, Y.M.; van Guldener, C.; Jakobs, C.A.J.M.; Stehouwer, C.D.A.; van der Meer, K.

    2005-01-01

    Folic acid treatment decreases plasma total homocysteine concentrations in healthy subjects, but the effects on homocysteine metabolism are unknown. In the present study, we investigated the effect of 3 weeks of oral treatment with 5 mg of folic acid on one-carbon flux rates in 12 healthy subjects,

  5. Relationship between homocysteine and non-dipper pattern in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Korkmaz, Serdal; Yilmaz, Abdulkerim; Yildiz, Gürsel; Kiliçli, Fatih; Içağasioğlu, Serhat

    2012-07-01

    The rate of reduction of nocturnal blood pressure (NBP) is lesser than normal in patients with type 2 diabetes mellitus (type 2 DM). Hyperhomocysteinemia (HHC) disrupts vascular structure and function, no matter the underlying causes. The risk of development of vascular disease is greater in diabetic patients with hyperhomocysteinemia than in patients with normal homocystein levels. The aim of the study was to investigate whether there are differences of homocystein levels in dipper and non-dippers patients with type 2 DM. We compared 50 patien-ts (33 females, 17 males) with type 2 DM and 35 healthy individuals (18 females, 17 males ) in a control group. Ambulatory blood pressure monitoring (ABPM) was performed and homocysteine levels were measured in all patients. We found that the percentage of non-dipper pattern was 72% in patients with type 2 DM and 57% in control group. In diabetic and control individuals, homocystein levels were higher in non-dipper (respectively 13.4 ± 8.1 µmol/L and 11.8 ± 5 µmol/L) than in dipper subjects (respectively, 11.8 ± 5.8 µmol/L and 10.1 ± 4.2 µmol/L), but there was no significant difference between the two groups (respectively, p = 0.545, p = 0.294). In both groups, homocystein levels were higher in non-dipper than in dipper participants, but there was no significant difference between the groups. High homocystein levels and the non-dipper pattern increases cardiovascular risk. Therefore, the relationship between nocturnal blood pressure changes and homocystein levels should be investigated in a larger study.

  6. Contribution of caffeine to the homocysteine-raising effect of coffee: a randomized controlled trial in humans.

    Science.gov (United States)

    Verhoef, Petra; Pasman, Wilrike J; Van Vliet, Trinette; Urgert, Rob; Katan, Martijn B

    2002-12-01

    A high plasma total homocysteine concentration is associated with increased risk of cardiovascular disease. Consumption of unfiltered or filtered coffee raises total homocysteine concentrations in healthy volunteers. The responsible compound, however, is unknown. The objective was to determine whether caffeine explains the homocysteine-raising effect of coffee. Forty-eight subjects aged 19-65 y completed this randomized crossover study with 3 treatments, each lasting 2 wk. Subjects consumed 6 capsules providing 870 mg caffeine/d (test treatment), 0.9 L paper-filtered coffee providing approximately 870 mg caffeine/d, or 6 placebo capsules. Blood samples were drawn fasting and 4 h after consumption of 0.45 L coffee or 3 capsules. The mean fasting plasma homocysteine concentration after the placebo treatment was 9.6 +/- 3.1 micro mol/L. The caffeine and coffee treatments increased fasting homocysteine by 0.4 micro mol/L (95% CI: 0.1, 0.7; P = 0.04), or 5%, and by 0.9 micro mol/L (95% CI: 0.6, 1.2; P = 0.0001), or 11%, respectively, compared with placebo. The increase in homocysteine concentrations 4 h after consumption of 0.45 L coffee relative to consumption of 3 placebo capsules was 19% (P = 0.0001). Caffeine treatment had a much weaker acute effect on homocysteine (4%; P = 0.09). Effects of caffeine were stronger in women than in men, but the effects of coffee did not differ significantly between men and women. Caffeine is partly responsible for the homocysteine-raising effect of coffee. Coffee, but not caffeine, affects homocysteine metabolism within hours after intake, although the effect is still substantial after an overnight fast.

  7. Abnormal maternal biomarkers of homocysteine and methionine ...

    African Journals Online (AJOL)

    Rabah M. Shawky

    2017-09-15

    Sep 15, 2017 ... homocysteine and methionine metabolism are altered among non pregnant women who ..... groups as regards history of smoking, exposure to environmental ..... anomalies from 1950 to 1994: an international perspective.

  8. Genetic Variation in Choline-Metabolizing Enzymes Alters Choline Metabolism in Young Women Consuming Choline Intakes Meeting Current Recommendations

    Directory of Open Access Journals (Sweden)

    Ariel B. Ganz

    2017-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs in choline metabolizing genes are associated with disease risk and greater susceptibility to organ dysfunction under conditions of dietary choline restriction. However, the underlying metabolic signatures of these variants are not well characterized and it is unknown whether genotypic differences persist at recommended choline intakes. Thus, we sought to determine if common genetic risk factors alter choline dynamics in pregnant, lactating, and non-pregnant women consuming choline intakes meeting and exceeding current recommendations. Women (n = 75 consumed 480 or 930 mg choline/day (22% as a metabolic tracer, choline-d9 for 10–12 weeks in a controlled feeding study. Genotyping was performed for eight variant SNPs and genetic differences in metabolic flux and partitioning of plasma choline metabolites were evaluated using stable isotope methodology. CHKA rs10791957, CHDH rs9001, CHDH rs12676, PEMT rs4646343, PEMT rs7946, FMO3 rs2266782, SLC44A1 rs7873937, and SLC44A1 rs3199966 altered the use of choline as a methyl donor; CHDH rs9001 and BHMT rs3733890 altered the partitioning of dietary choline between betaine and phosphatidylcholine synthesis via the cytidine diphosphate (CDP-choline pathway; and CHKA rs10791957, CHDH rs12676, PEMT rs4646343, PEMT rs7946 and SLC44A1 rs7873937 altered the distribution of dietary choline between the CDP-choline and phosphatidylethanolamine N-methyltransferase (PEMT denovo pathway. Such metabolic differences may contribute to disease pathogenesis and prognosis over the long-term.

  9. Crystal structure of MboIIA methyltransferase

    OpenAIRE

    Osipiuk, Jerzy; Walsh, Martin A.; Joachimiak, Andrzej

    2003-01-01

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-l-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 Å resolution the crystal structure of a β-class DNA MTase MboIIA (M·MboIIA) from the bacterium Moraxella bovis,...

  10. Population PK/PD model of homocysteine concentrations after high-dose methotrexate treatment in patients with acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Hauke Rühs

    Full Text Available Elevated homocysteine concentrations have been associated with methotrexate-induced neurotoxicity. Based on methotrexate and homocysteine plasma concentrations of 494 children with acute lymphoblastic leukemia treated with high-dose methotrexate in the TOTAL XV study, a pharmacokinetic/pharmacodynamic (PK/PD model was built with NONMEM. Several compartment and indirect response models were investigated. The pharmacokinetic disposition of methotrexate was best described by a two-compartment model. Homocysteine concentrations were included by an indirect response model where methotrexate inhibition of the homocysteine elimination rate was described by an E(max model. The homocysteine baseline level was found to be age-dependent. Simulations revealed that folinate rescue therapy does not affect peak concentrations of homocysteine but leads to a modestly reduced homocysteine exposure. In conclusion, our PK/PD model describes the increase of methotrexate-induced HCY concentrations with satisfactory precision and can be applied to assess the effect of folinate regimens on the HCY concentration-time course.

  11. Potential clinical and economic effects of homocyst(e)ine lowering.

    Science.gov (United States)

    Nallamothu, B K; Fendrick, A M; Rubenfire, M; Saint, S; Bandekar, R R; Omenn, G S

    Elevated total homocyst(e)ine levels (>/=11 micromol/L) have been identified as a potential risk factor for coronary heart disease. However, the benefits expected from lowering homocyst(e)ine levels with folic acid and vitamin B(12) supplementation have yet to be demonstrated in clinical trials. We constructed a decision analytic model to estimate the clinical benefits and economic costs of 2 homocyst(e)ine-lowering strategies: (1) "treat all"-no screening, daily supplementation with folic acid (400 microg) and vitamin B(12) (cyanocobalamin; 500 microg) for all; (2) "screen and treat"-screening, followed by daily supplementation with folic acid and vitamin B(12) for individuals with elevated homocyst(e)ine levels. Simulated cohorts of 40-year-old men and 50-year-old women in the general population were evaluated. In the base-case analysis, we assumed that lowering elevated levels would reduce excess coronary heart disease risk by 40%; however, this assumption and others were evaluated across a broad range of potential values using sensitivity analysis. Primary outcomes were discounted costs per life-year saved. Although the treat-all strategy was slightly more effective overall, the screen and treat strategy resulted in a much lower cost per life-year saved ($13,600 in men and $27,500 in women) when compared with no intervention. Incremental cost-effectiveness ratios for the treat-all strategy compared with the screen and treat strategy were more than $500,000 per life-year saved in both cohorts. Sensitivity analysis showed that cost-effectiveness ratios for the screen and treat strategy remained less than $50,000 per life-year saved under several unfavorable scenarios, such as when effective homocyst(e)ine lowering was assumed to reduce the relative risk of coronary heart disease-related death by only 11% in men or 23% in women. Homocyst(e)ine lowering with folic acid and vitamin B(12) supplementation could result in substantial clinical benefits at reasonable

  12. Anti-inflammatory compound resveratrol suppresses homocysteine formation in stimulated human peripheral blood mononuclear cells in vitro.

    Science.gov (United States)

    Schroecksnadel, Katharina; Winkler, Christiana; Wirleitner, Barbara; Schennach, Harald; Weiss, Günter; Fuchs, Dietmar

    2005-01-01

    Inflammation, immune activation and oxidative stress play a major role in the pathogenesis of cardiovascular disorders. In addition to markers of inflammation, moderate hyperhomocysteinemia is an independent risk factor for cardiovascular disease, and there is a link between the activation of immunocompetent cells and the enhanced formation of homocysteine in vitro. Likewise, anti-inflammatory drugs and nutrients rich in antioxidant vitamins are able to reduce cardiovascular risk and to slow down the atherogenic process. Resveratrol, a phenolic antioxidant synthesized in grapes and vegetables and present in wine, has also been supposed to be beneficial for the prevention of cardiovascular events. Apart from its strong antioxidant properties, resveratrol has also been demonstrated to act as an anti-inflammatory agent. In this study the influence of resveratrol on the production of homocysteine by stimulated human peripheral blood mononuclear cells (PBMCs) was investigated. Results were compared to earlier described effects of the anti-inflammatory compounds aspirin and salicylic acid and of the lipid-lowering drug atorvastatin. Stimulation of PBMCs with the mitogens concanavalin A and phytohemagglutinin induced significantly higher homocysteine accumulation in supernatants compared with unstimulated cells. Treatment with 10-100 muM resveratrol suppressed homocysteine formation in a dose-dependent manner. Resveratrol did not influence the release of homocysteine from resting PBMCs. The data suggest that resveratrol may prevent homocysteine accumulation in the blood by suppressing immune activation cascades and the proliferation of mitogen-driven T-cells. The effect of resveratrol to down-regulate the release of homo-cysteine was comparable to the decline of neopterin concentrations in the same experiments. The suppressive effect of resveratrol was very similar to results obtained earlier with aspirin, salicylic acid and atorvastatin; however, it appeared that doses

  13. Methylated nucleosides in tRNA and tRNA methyltransferases

    Directory of Open Access Journals (Sweden)

    Hiroyuki eHori

    2014-05-01

    Full Text Available To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s. Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon–anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.

  14. The J-shape association of ethanol intake with total homocysteine concentrations: the ATTICA study

    Directory of Open Access Journals (Sweden)

    Pitsavos Christos

    2004-10-01

    Full Text Available Abstract Background Epidemiological studies suggest a non-monotonic effect of alcohol consumption on cardiovascular risk, while there is strong evidence concerning the involvement of homocysteine levels on thrombosis. The aim of this work was to evaluate the association between usual ethanol consumption and homocysteine levels, in cardiovascular disease free adults. Methods From May 2001 to December 2002 we randomly enrolled 1514 adult men and 1528 women, without any evidence of cardiovascular disease, stratified by age – gender (census 2001, from the greater area of Athens, Greece. Among the variables ascertained we measured the daily ethanol consumption and plasma homocysteine concentrations. Results Data analysis revealed a J-shape association between ethanol intake (none, 48 gr per day and total homocysteine levels (mean ± standard deviation among males (13 ± 3 vs. 11 ± 3 vs. 14 ± 4 vs. 18 ± 5 vs. 19 ± 3 μmol/L, respectively, p Conclusion We observed a J-shape relationship between homocysteine concentrations and the amount of ethanol usually consumed.

  15. Elevated plasma homocysteine in association with decreased ...

    African Journals Online (AJOL)

    African Journal of Psychiatry • January 2012. 25 ... impact on mental health and that the outcomes of certain mental .... Accuracy and precision of biochemical tests were ..... Reynolds EH Homocysteine, folate, methylation, and monoamine.

  16. Neuro-fuzzy model of homocysteine metabolism

    Indian Academy of Sciences (India)

    In view of well-documented association of hyperhomocysteinaemia with a wide spectrum of diseases and higher incidence of vitamin deficiencies in Indians, we proposed a mathematical model to forecast the role of demographic and geneticvariables in influencing homocysteine metabolism and investigated the influence ...

  17. Comparison of Serum Homocystein and Folic Acid Levels in Gestational Diabetes with Normal Pregnancy

    Directory of Open Access Journals (Sweden)

    F. Movahed

    2015-07-01

    Full Text Available Introduction & Objective: High levels of homocystein are a risk factor for insulin resistance, diabetes mellitus and cardio-vascular complications. This study was done to assess serum homocystein and folic acid levels and their relationship in women with gestational diabetes and compare them with normal pregnant women. Materials & Methods: This analytic epidemiologic case-control study was performed in Qazvin Kosar hospital in 2013-2015. 120 singleton pregnant women with 24-28 weeks of gestation according to 2-hour 75g oral glucose tolerance test were assigned to two groups; gestational diabetes (n=60, and normal pregnancy (n=60. Serum homocystein and folic acid levels were measured in two groups. Data were analyzed with statistical t-test and correlation method. Results: In gestational diabetes serum homocystein level was significantly higher (P<0.001 and folic acid was significantly lower (P<0.001 than normal pregnancy group .No relation-ship was observed between serum homocystein and serum folate. In both groups, serum folic acid was significantly related to fasting blood sugar. This relationship was inverse in gesta-tional diabetes group (P<0.001, r = - 0.512 and direct in normal pregnancy group (P=0.001 r =0.417. Conclusion: It seems folic acid has a role in regulation of serum homocystein level and blood sugar.(Sci J Hamadan Univ Med Sci 2015; 22 (2: 93-98

  18. Association between malnutrition and hyperhomocysteine in Alzheimer's disease patients and diet intervention of betaine.

    Science.gov (United States)

    Sun, Jianying; Wen, Shiling; Zhou, Jing; Ding, Shuling

    2017-09-01

    Alzheimer's disease (AD) is a neurodegenerative disease, which is associated with malnutrition and hyperhomocysteine. The current study aimed to analyze the relationship between malnutrition and hyperhomocysteine in AD patients, and effects of diet intervention with betaine on the disease. The nutritional statuses of the AD patients were assessed by short form mini nutritional assessment (MNA-SF). The levels of Hcy, tau hyperphosphorylation, synaptic proteins, blood inflammatory factors were measured by enzymatic cycling assay, Western blot and ELISA. The cognitive function was measured by AD assessment scale (ADAS-cog). There was a significant difference in mental status between normal people and AD patients (Pmalnutrition was reported in a larger proportion of AD patients and high level of Hcy was closely associated with malnutrition. Betaine decreased the levels of phosphorylated tau, elevated PP2Ac activity and inhibited Aβ accumulation (Pmalnutrition and higher levels of Hcy. Betaine could restore Hcy expression to normal level in AD patient, which might ameliorate memory deficits. © 2016 Wiley Periodicals, Inc.

  19. Identification of a highly conserved domain in the EcoRII methyltransferase which can be photolabeled with S-adenosyl-L-[methyl-3H]methionine. Evidence for UV-induced transmethylation of cysteine 186

    International Nuclear Information System (INIS)

    Som, S.; Friedman, S.

    1991-01-01

    DNA methyltransferases can be photolabeled with S-adenosyl-L-methionine (AdoMet). Specific incorporation of radioactivity has been demonstrated after photolabeling with either [methyl-3H]AdoMet or [35S]AdoMet. The labeling is believed to occur at the AdoMet binding site. With the purpose of localizing the site responsible for [methyl-3H]AdoMet photolabeling, we cleaved the labeled EcoRII methyltransferase by chemical and enzymatic reactions and isolated the radiolabeled peptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high pressure liquid chromatography. The labeled peptides were identified by amino-terminal sequencing. A common region was localized which accounted for 65-70% of the total label. This region includes a highly conserved core sequence present in all DNA (cytosine 5)-methyltransferases. One such fragment was digested further with chymotrypsin, and amino acid analysis of the resulting 3H-labeled peptide was consistent with the sequence Ala-Gly-Phe-Pro-(Cys)-Gln-Pro-Phe-Ser-Leu. However, the cysteine residue was not recovered as carboxymethylcysteine. The Pro-Cys bond was found to be protected from cleavage at cysteine residues after cyanylation. These results suggest that the cysteine residue is modified by the labeling reaction. The chymotryptic fragment was hydrolyzed enzymatically to single amino acids, and the labeled amino acid was identified as S-methylcysteine by thin layer chromatography. These results indicate that the cysteine residue is located at or close to the AdoMet binding site of EcoRII methyltransferase

  20. Effect of long-term Hormone Replacement Therapy on Plasma Homocysteine in Postmenopausal Women

    DEFF Research Database (Denmark)

    Madsen, Jonna S; Kristensen, Søren R; Klitgaard, Niels A

    2002-01-01

    hormone replacement therapy had significantly lower total homocysteine concentrations than women in the control group; median total homocysteine values were 8.6 micromol/L and 9.7 micromol/L, respectively, in a per-protocol analysis (P =.02). The effect was comparable in all methylenetetrahydrofolate...

  1. DNA methylation potential: dietary intake and blood concentrations of one-carbon metabolites and cofactors in rural African women123

    Science.gov (United States)

    Dominguez-Salas, Paula; Moore, Sophie E; Cole, Darren; da Costa, Kerry-Ann; Cox, Sharon E; Dyer, Roger A; Fulford, Anthony JC; Innis, Sheila M; Waterland, Robert A; Zeisel, Steven H; Prentice, Andrew M; Hennig, Branwen J

    2013-01-01

    Background: Animal models show that periconceptional supplementation with folic acid, vitamin B-12, choline, and betaine can induce differences in offspring phenotype mediated by epigenetic changes in DNA. In humans, altered DNA methylation patterns have been observed in offspring whose mothers were exposed to famine or who conceived in the Gambian rainy season. Objective: The objective was to understand the seasonality of DNA methylation patterns in rural Gambian women. We studied natural variations in dietary intake of nutrients involved in methyl-donor pathways and their effect on the respective metabolic biomarkers. Design: In 30 women of reproductive age (18–45 y), we monitored diets monthly for 1 y by using 48-h weighed records to measure intakes of choline, betaine, folate, methionine, riboflavin, and vitamins B-6 and B-12. Blood biomarkers of these nutrients, S-adenosylhomocysteine (SAH), S-adenosylmethionine (SAM), homocysteine, cysteine, and dimethylglycine were also assessed monthly. Results: Dietary intakes of riboflavin, folate, choline, and betaine varied significantly by season; the most dramatic variation was seen for betaine. All metabolic biomarkers showed significant seasonality, and vitamin B-6 and folate had the highest fluctuations. Correlations between dietary intakes and blood biomarkers were found for riboflavin, vitamin B-6, active vitamin B-12 (holotranscobalamin), and betaine. We observed a seasonal switch between the betaine and folate pathways and a probable limiting role of riboflavin in these processes and a higher SAM/SAH ratio during the rainy season. Conclusions: Naturally occurring seasonal variations in food-consumption patterns have a profound effect on methyl-donor biomarker status. The direction of these changes was consistent with previously reported differences in methylation of metastable epialleles. This trial was registered at www.clinicaltrials.gov as NCT01811641. PMID:23576045

  2. Public health significance of elevated homocysteine

    Science.gov (United States)

    Homocysteine is a sulfur amino acid whose metabolism stands at the intersection of two pathways: remethylation, which requires folic acid and vitamin B12 coenzymes; and transsulfuration, which requires pyridoxal-5'-phosphate, the vitamin B6 coenzyme. Data from a number of laboratories suggest that m...

  3. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    Energy Technology Data Exchange (ETDEWEB)

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  4. Betaine-based heat transfer fluids as a natural solution for environmental, toxic and corrosion problems in heating and cooling systems; Betaine gebaseerde koudedragers als natuurlijke oplossing voor milieu-, toxiciteit- en corrosieproblemen in verwarming- en koelsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, J. [Fortum Oil and Gas Oy, Porvoo (Finland); Willems, B.P.M. [Marketing and Technology Consult, Rijen (Netherlands)

    2005-02-01

    The reason for the study on the title subject was the environmental risk and toxicity of many conventional heat transfer fluids like glycols. Fluid toxicity and environmental risk in building systems and industrial use is becoming less acceptable. Alternative fluids have been sought from among salt solutions and vegetable oils. Still, those alternative materials are not very attractive. Main technical problems have been high viscosity and corrosion. A new possible alternative, a betaine-water solution was tested and developed for heat transfer purposes. Betaine (trimethyl glycine) is a by-product of the sugar industry. Therefore, betaine is completely non-toxic and also not harmful to the environment. Betaine is a renowned substance in the pharmaceutical, cosmetic, food and medical industry. Adequate freezing protection is achieved with betaine concentration of 20-55% by weight. This solution was found to have other good qualities also; it has good heat transfer abilities, is not harmful to materials used in systems and has natural corrosion protection properties. The development work consisted of carefully measuring freeze protection and pipe burst protection with different betaine concentrations, measuring physical properties in the same circumstances and developing the additive package for enhanced corrosion protection. Field-testing was carried out for four years. Testing showed that a betaine-water solution has good thermodynamic properties to be used as a heat transfer fluid in the HVAC industry, with additional environmental-, non-toxic and corrosion properties. The concrete result was a trademark and patent protected new product for the industry. [Dutch] Warmteoverdracht wordt heden ten dage veelvuldig toegepast in zowel de industrie als in kantoren en gebouwen. Hoewel de warmteoverdrachttechnologie enorm is vooruitgegaan worden het potentieel en de voordelen van een zorgvuldig gekozen koudedrager vaak over het hoofd gezien. De selectie van de juiste

  5. Recruitment of DNA methyltransferase I to DNA repair sites

    Science.gov (United States)

    Mortusewicz, Oliver; Schermelleh, Lothar; Walter, Joachim; Cardoso, M. Cristina; Leonhardt, Heinrich

    2005-01-01

    In mammalian cells, the replication of genetic and epigenetic information is directly coupled; however, little is known about the maintenance of epigenetic information in DNA repair. Using a laser microirradiation system to introduce DNA lesions at defined subnuclear sites, we tested whether the major DNA methyltransferase (Dnmt1) or one of the two de novo methyltransferases (Dnmt3a, Dnmt3b) are recruited to sites of DNA repair in vivo. Time lapse microscopy of microirradiated mammalian cells expressing GFP-tagged Dnmt1, Dnmt3a, or Dnmt3b1 together with red fluorescent protein-tagged proliferating cell nuclear antigen (PCNA) revealed that Dnmt1 and PCNA accumulate at DNA damage sites as early as 1 min after irradiation in S and non-S phase cells, whereas recruitment of Dnmt3a and Dnmt3b was not observed. Deletion analysis showed that Dnmt1 recruitment was mediated by the PCNA-binding domain. These data point to a direct role of Dnmt1 in the restoration of epigenetic information during DNA repair. PMID:15956212

  6. Identification of an S-adenosylmethionine (SAM) dependent arsenic methyltransferase in Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Hamdi, Mohamad [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States); Yoshinaga, Masafumi; Packianathan, Charles; Qin, Jie [Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, FL33199 (United States); Hallauer, Janell; McDermott, Joseph R. [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States); Yang, Hung-Chi [Department of Medical Biotechnology and Laboratory Sciences, Chang-Gung University, Tao-Yuan, Kwei-San 333, Taiwan (China); Tsai, Kan-Jen [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Liu, Zijuan, E-mail: liu2345@oakland.edu [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States)

    2012-07-15

    Arsenic methylation is an important cellular metabolic process that modulates arsenic toxicity and carcinogenicity. Biomethylation of arsenic produces a series of mono-, di- and tri-methylated arsenic metabolites that can be detected in tissues and excretions. Here we report that zebrafish exposed to arsenite (As{sup III}) produces organic arsenicals, including MMA{sup III}, MMA{sup V} and DMA{sup V} with characteristic tissue ratios, demonstrating that an arsenic methylation pathway exists in zebrafish. In mammals, cellular inorganic arsenic is methylated by a SAM-dependent arsenic methyltransferase, AS3MT. A zebrafish arsenic methyltransferase homolog, As3mt, was identified by sequence alignment. Western blotting analysis showed that As3mt was universally expressed in zebrafish tissues. Prominent expression in liver and intestine correlated with methylated arsenic metabolites detected in those tissues. As3mt was expressed in and purified from Escherichia coli for in vitro functional studies. Our results demonstrated that As3mt methylated As{sup III} to DMA{sup V} as an end product and produced MMA{sup III} and MMA{sup V} as intermediates. The activity of As3mt was inhibited by elevated concentrations of the substrate As{sup III} as well as the metalloid selenite, which is a well-known antagonistic micronutrient of arsenic toxicity. The activity As3mt was abolished by substitution of either Cys160 or Cys210, which corresponds to conserved cysteine residues in AS3MT homologs, suggesting that they are involved in catalysis. Expression in zebrafish of an enzyme that has a similar function to human and rodent orthologs in catalyzing intracellular arsenic biomethylation validates the applicability of zebrafish as a valuable vertebrate model for understanding arsenic-associated diseases in humans. -- Highlights: ► Zebrafish methylated As{sup III} to MMA{sup III}, MMA{sup V} and DMA{sup V}. ► A zebrafish arsenic methyltransferase (As3mt) was purified in E. coli.

  7. Serum Homocysteine Level in Parkinson's Disease and Its Association with Duration, Cardinal Manifestation, and Severity of Disease.

    Science.gov (United States)

    Saadat, Payam; Ahmadi Ahangar, Alijan; Samaei, Seyed Ehsan; Firozjaie, Alireza; Abbaspour, Fatemeh; Khafri, Sorrayya; Khoddami, Azam

    2018-01-01

    Due to the high prevalence of Parkinson's disease (PD) in the elderly, a large financial burden is imposed on the families and health systems of countries in addition to the problems related to the mobility impairment caused by the disease for the patients. Studies on controversial issues in this disease are taken into consideration, and one of these cases is the role of serum homocysteine level in Parkinson's patients. In this study, the serum level of homocysteine and its association with various variables in relation to this disease was compared with healthy individuals. In this study, 100 patients with PD and 100 healthy individuals as control group were investigated. Serum homocysteine level and demographic and clinical data were included in the checklist. Data were analyzed by SPSS version 23. In all tests, the significance level was below 0.05. The mean level of serum homocysteine in case and control groups was 14.93 ± 8.30 and 11.52 ± 2.86  µ mol/L, respectively (95% CI: 1.68; 5.14, P level, while 15 had high serum homocysteine level. In controls, the homocysteine level was 98 and 2, respectively ( P =0.002). In multivariate logistic regression analysis, serum homocysteine level higher than 20  µ mol/L was accompanied by 8.64-fold in Parkinson's disease involvement (95% CI: 1.92; 38.90, P =0.005). Increasing serum homocysteine level elevates the rate to having PD. Serum homocysteine levels did not have any relationship with the duration of the disease, type of cardinal manifestation, and the severity of Parkinson's disease.

  8. Plasma folic acid cutoff value, derived from its relationship with homocyst(e)ine.

    Science.gov (United States)

    Brouwer, D A; Welten, H T; Reijngoud, D J; van Doormaal, J J; Muskiet, F A

    1998-07-01

    We established the cutoff value for plasma folic acid, using plasma homocyst(e)ine as the functional marker. To do this, we investigated the relationship of the plasma folic acid of 103 apparently healthy adults with their fasting plasma homocyst(e)ine and with their plasma homocyst(e)ine 6 h after oral methionine challenge (100 mg/kg). We also studied the relationship of their plasma folic acid with the decline of fasting plasma homocyst(e)ine after 7 days of folic acid supplementation (5 mg/day). The three approaches suggested a cutoff value of 10 nmol/L. The chances of individuals to significantly (P ine after folic acid supplementation proved significantly higher at plasma folic acid concentrations < or = 10 nmol/L, as compared with folic acid concentrations above this value (odds ratio, 5.02; 95% confidence interval, 1.87-13.73). We suggest adopting a 10 nmo/L plasma folic acid cutoff value on functional grounds.

  9. Ameliorative effects of betaine and ascorbic acid administration to ...

    African Journals Online (AJOL)

    This review highlights the huge challenges heat stress pose to profitable production of broiler chickens during the hot-dry season. It also enumerates the negative effects of heat stress due to excess production of reactive oxygen species (ROS) in broiler chickens. It emphasizes that administration of betaine and/or ascorbic ...

  10. Why devote an entire issue to the topic of how nutrients in one-carbon metabolism play roles in modern medicine?

    Science.gov (United States)

    The vitamins that serve as essential co-factors in one-carbon metabolism-B2, B6, B9 (folate), and B12-have had a long and storied history in the field of medicine over the past two centuries, as have related intermediary metabolites such as methionine, homocysteine, betaine and choline. The megalobl...

  11. Plasma total homocysteine increases from day 20 to 40 in breastfed but not formula-fed low-birthweight infants

    NARCIS (Netherlands)

    Fokkema, M R; Woltil, H A; van Beusekom, C M; Schaafsma, A; Dijck-Brouwer, D A J; Muskiet, F A J

    2002-01-01

    Homocysteine is an intermediate in the folate cycle and methionine metabolism. This study investigated whether formula-fed infants have different plasma total homocysteine to their breastfed counterparts, and during what period any difference developed. Plasma total homocysteine was determined in 53

  12. [Estimation of relation between homocysteine concentration and selected lipid parameters and adhesion molecules concentration in children with atherosclerosis risk factors].

    Science.gov (United States)

    Sierakowska-Fijałek, Anna; Baj, Zbigniew; Kaczmarek, Piotr; Stepień, Mariusz; Rysz, Jacek

    2008-10-01

    Atherosclerosis begins in childhood. At present among numerous risk factors of atherosclerosis the role of hiperhomocysteinemia in development of cardiovascular heart disease is taken under consideration. Atherogenic effect of homocystein is related to its cytotoxin action, conducting to endothelial dysfunction and damage. It is correlated with increase of the lipid levels in the blood serum and change of expression of the soluble forms of adhesion molecules. The aim of this study was to estimate relations between the homocystein serum concentration, expression of the selected adhesion molecules and the lipid levels in the blood serum in children with atherosclerosis risk factors. The group consisted of 670 children, 76 of them had atherosclerosis risk factors. In further examination 48 children have taken a part, whose parents were agreed for theirs participation in the program. The comparative group composed of 25 children without the risk factors. We determined total cholesterol (TC), triglycerides (TG), LDL cholesterol fraction (LDL-C), HDL cholesterol fraction (HDL-C), serum homocysteine concentration (Hcy), the expression of the soluble forms of adhesion molecules (sCAM): sP-selectin and sVCAM-1 (vascular cell adhesion molecule-1). Obesity, hypertension and lipid disorders in the shape of higher concentration of TC, LDL-C, TG and lower HDL-C were the most frequent risk factors in the investigated children. No significant differences in serum homocysteine concentration were observed between the investigated groups. However, its concentration was significantly higher in children with two atherosclerosis risk factors. No significant differences in expression of s-VCAM-1 were observed in the investigated groups, concentration of sP-selectin was significantly higher in children with atherosclerosis risk factors (phomocysteine and chosen adhesion molecules in children with atherosclerosis risk factors might potentially constitute the marker of early

  13. Measurement of concentrations of whole blood levels of choline, betaine, and dimethylglycine and their relations to plasma levels.

    Science.gov (United States)

    Awwad, Hussain Mohamad; Kirsch, Susanne H; Geisel, Juergen; Obeid, Rima

    2014-04-15

    We aimed at developing a method for the measurement of choline and its metabolites in whole blood (WB). After an extraction step, quantification of choline, betaine, and dimethylglycine (DMG) was performed using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Plasma and WB metabolites were evaluated in a group of 61 elderly people. The calibration curves were linear (r(2)>0.997) for all compounds. The inter- and intra-assay coefficients of variation for all analytes were 90% and the relative matrix effect were ≤4.0%. The median concentrations of choline, betaine, and DMG were 11.3, 27.8, and 5.9μmol/L in plasma and 66.6, 165, and 13.7μmol/L in WB, respectively. There were positive correlations between WB and plasma markers; for choline (r=0.42), betaine (r=0.61), and DMG (r=0.56) (all p≤0.001). The concentrations of betaine in WB and plasma were significantly higher in men than in women. The concentrations of WB choline and DMG did not differ significantly according to sex. In conclusion, we have established a reliable method for measuring choline metabolites in WB. The concentrations of WB choline, betaine, and DMG seem to reflect intracellular concentrations of these metabolites. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Determinants of plasma homocyst(e)ine in patients with nephrotic syndrome.

    Science.gov (United States)

    Joven, J; Arcelús, R; Camps, J; Ordóñez-Llanos, J; Vilella, E; González-Sastre, F; Blanco-Vaca, F

    2000-01-01

    Hyperhomocyst(e)inemia is an independent risk factor for atherothrombosis in several clinical settings in which renal function is impaired, but its prevalence in the nephrotic syndrome has not been investigated in detail, even though this syndrome provides an excellent model in which to study a possible link between albuminuria, proteinuria, and hyperhomocyst(e)inemia. We obtained plasma and urine from 27 patients with biopsy-confirmed membranous glomerulonephritis presenting nephrotic syndrome and 27 matched controls and determined the concentrations of homocyst(e)ine and proteins considered putative markers of glomerular and tubular function. Hyperhomocyst(e)inemia, defined as the mean +SD of the plasma homocyst(e)ine concentration of the controls [plasma homocyst(e)ine concentration >10.8 micromol/l] was present in 26% of the patients with nephrotic syndrome but in only 7.4% of the controls. Furthermore, the degree of hyperhomocyst(e)inemia was more severe in the nephrotic patients than in the controls. The existence of renal failure, tubular damage, and, interestingly, relatively well conserved glomerular function barrier were the main predictors of increased levels of plasma homocyst(e)ine. In conclusion, hyperhomocyst(e)inemia is a frequent cardiovascular risk factor present in patients with nephrotic syndrome and renal failure, but it is not directly associated with proteinuria.

  15. Effect of dietary betaine supplementation on mRNA level of ...

    African Journals Online (AJOL)

    Yomi

    2012-03-22

    Mar 22, 2012 ... of China. Accepted 3 January, 2012. Our aims are to determine the ... percentage of abdominal fat, ratio of liver to body weight, mRNA ... four diet groups with supplemented betaine of 0, 0.04, 0.06 and 0.08%, respectively.

  16. Molecular Basis for the Regulation of the H3K4 Methyltransferase Activity of PRDM9

    Directory of Open Access Journals (Sweden)

    Hong Wu

    2013-10-01

    Full Text Available PRDM9, a histone lysine methyltransferase, is a key determinant of the localization of meiotic recombination hot spots in humans and mice and the only vertebrate protein known to be involved in hybrid sterility. Here, we report the crystal structure of the PRDM9 methyltransferase domain in complex with a histone H3 peptide dimethylated on lysine 4 (H3K4me2 and S-adenosylhomocysteine (AdoHcy, which provides insights into the methyltransferase activity of PRDM proteins. We show that the genuine substrate of PRDM9 is histone H3 lysine 4 (H3K4 and that the enzyme possesses mono-, di-, and trimethylation activities. We also determined the crystal structure of PRDM9 in its autoinhibited state, which revealed a rearrangement of the substrate and cofactor binding sites by a concerted action of the pre-SET and post-SET domains, providing important insights into the regulatory mechanisms of histone lysine methyltransferase activity.

  17. INFLUENCE OF HOMOCYSTEINE AND VERTEBRAL FRACTURES ON PREVALENT ABDOMINAL AORTIC CALCIFICATION IN POSTMENOPAUSAL WOMEN - A MULTICENTRIC CROSS-SECTIONAL STUDY

    Directory of Open Access Journals (Sweden)

    Imad GHOZLANI

    2017-08-01

    Full Text Available The main of this study was to examine the relationship between plasma homocysteine (Hcy, asymptomatic osteoporotic vertebral fractures (VFs using vertebral fracture assessment (VFA and prevalent abdominal aortic calcification (AAC in Moroccan postmenopausal women. The study cohort consisted of 188 consecutive postmenopausal women with no prior known diagnosis of osteoporosis or taking medication interfering with bone metabolism. Mean age, weight, height, body mass index and plasma homocysteine were determined. Lateral VFA images and scans of the lumbar spine and proximal femur were obtained using a Lunar Prodigy Vision densitometer (GE Healthcare Inc., Waukesha, WI. VFs were defined using a combination of Genant’s semiquantitative approach and morphometry. VFA images were also scored for prevalent AAC using a validated 24 point scale. Fifty-eight (30.9% patients had densitometric osteoporosis. VFs were identified using VFA in 76 (40.4% patients: 61 women had grade 1 VFs and 15 had grade 2 or 3 VFs. One hundred twenty nine women (68.6% did not have any detectable AAC, whereas the prevalence of significant atherosclerotic burden defined as AAC score of 5 or higher, was 13.8%. A significant positive correlation between AAC score and homocysteine was observed. Women with extended AAC, were older, had a lower weight, BMI and BMD, higher homocysteine levels and more prevalent VFs than women without extended AAC. Multiple regression analysis showed that the presence of extended AAC was significantly associated with Age and grade 2/3 VFs and not independently associated with homocysteine levels.This study did not confirm that homocysteine is important determinant of extended AAC in postmenopausal women. However, this significant atherosclerotic marker is independently associated with VFs regardless of age. 

  18. The Analysis of Asymetric Dimethylarginine and Homocysteine in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Tetty Hendrawati

    2009-08-01

    Full Text Available BACKGROUND: Asymmetric dimethylarginine (ADMA is a competitive inhibitor of nitric oxide synthase (NOS. ADMA reduces NO synthesis when its concentration elevates. ADMA is a novel risk factor for cardiovascular disease. Plasma ADMA accumulates in patients with endstage renal disease, due to reduced renal clearance. Hyperhomocysteinemia is often found in patients with chronic kidney disease (CKD. Homocysteine may cause ADMA to accumulate; however, the mechanism by which ADMA level elevates in hyperhomocysteinemia is still unclear. Objective of this study was to analyze the concentrations of homocysteine and ADMA and to assess the correlation between homocysteine and ADMA concentrations with the severity of chronic kidney disease. METHODS: This was a cross-sectional study on 75 patients with CKD, comprising men and women aged 40-70 years. Assessments were done on the concentrations of creatinine, homocysteine, ADMA, fasting blood glucose, cholesterol HDL and triglyceride. RESULTS: In later stage of CKD there was significantly higher tHcy concentration as compared with the earlier stage of CKD (p=0.0000. In CKD stage 2 to 4 there was a tendency for ADMA concentration to increase to a significant average (p=0.210, but ADMA concentration was lower at stage 5. There was increased ADMA along with increased tHcy concentration of around 20μ mol/L, and this then decreased. The inverse correlation between tHcy and ADMA concentrations started to appear in CKD stage 4, but this correlation was statistically insignificant (r2=0.19; p=0.499. CONCLUSIONS: This study showed there was a correlation between homocysteine and ADMA concentrations in patients with CKD stage 2 to 5, although statistically not significant. KEYWORDS: asymmetric dimethylarginine, homocysteine, chronic kidney disease.

  19. Levels of serum homocysteine in depressive patients Self-correlation factor analysis and comparison with healthy subjects

    Institute of Scientific and Technical Information of China (English)

    Shanxin Wang; Bin Wang; Aihua Yin; Yang Wang

    2008-01-01

    BACKGROUND: Data indicate that the levels of serum homocysteine in depressive patients are higher than those in normal subjects. OBJECTIVE: To investigate the levels of serum homocysteine in patients with major depressive disorder, to determine whether serum homocysteine levels differ with sex, family history, or drug treatment, and to compare depressive patients with normal subjects. DESIGN: Non-randomized concurrent control trial.SETTING: Mental Heath Center of Shandong Province.PARTICIPANTS: Forty in-patients (23 males and 17 females, 18-63 years old) with major depressive disorder were selected from the Mental Health Center of Shandong Province from January to October 2006. All selected patients met the depressive diagnostic standard of Chinese Classification of Mental Disorder (3rd Edition, CCMD-3), and total scores evaluated by the 17-item Hamilton Rating Scale for Depression (HRSD) were ≥ 20. Meanwhile, 36 healthy subjects (20 males and 16 females, 18-60 years old) were enrolled as controls; their total 17-item HRSD scores were ≤ 7. All selected subjects provided consent, and the study was approved by the local ethics committee. METHODS: Fasting venous blood (3 mL) was drawn in both groups at 8:00 in the morning. The levels of serum homocysteine were determined by a fluorescence polarization immunoassay (FPIA). The 17-item HRSD was also compiled from the patients when entering groups. The higher the scores were, the more severe the depression was. Enumeration data for both groups were compared by Chi-square test, measurement data were compared by t-test, and correlations were detected using Pearson and Spearman correlation analysis.MAIN OUTCOME MEASURES: ① Levels of serum homocysteine; ② incidence of hyperhomocysteinemia (Hhcy); ③ correlation between HRSD17 scores and levels of serum homocysteine in depressive patients.RESULTS: Forty depressive patients and 36 control subjects were included in the final analysis without any loss of participants.

  20. Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death

    International Nuclear Information System (INIS)

    Hemendinger, Richelle A.; Armstrong, Edward J.; Brooks, Benjamin Rix

    2011-01-01

    Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC 50 (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolate (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC 50 (concentration at which 50% of maximal cell death is inhibited) of 0.6 μM and 0.4 μM, respectively. In contrast, MTHF (up to 10 μM) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS.

  1. A mouse speciation gene encodes a meiotic histone H3 methyltransferase

    Czech Academy of Sciences Publication Activity Database

    Mihola, Ondřej; Trachtulec, Zdeněk; Vlček, Čestmír; Schimenti, J.C.; Forejt, Jiří

    2009-01-01

    Roč. 323, č. 5912 (2009), s. 373-375 ISSN 0036-8075 Institutional research plan: CEZ:AV0Z50520514 Keywords : hybrid sterility * histone H3K4 methyltransferase * Prdm9 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 29.747, year: 2009

  2. Inhibition of hydrogen sulfide on the proliferation of vascular smooth muscle cells involved in the modulation of calcium sensing receptor in high homocysteine

    International Nuclear Information System (INIS)

    Wang, Yuwen; Wang, Xiyao; Liang, Xiaohui; Wu, Jichao; Dong, Shiyun; Li, Hongzhu; Jin, Meili; Sun, Dianjun; Zhang, Weihua; Zhong, Xin

    2016-01-01

    Hyperhomocysteinemia induces the proliferation of vascular smooth muscle cells (VSMCs). Hydrogen sulfide (H 2 S) inhibits the phenotype switch of VSMCs and calcium-sensing receptor (CaSR) regulated the production of endogenous H 2 S. However, whether CaSR inhibits the proliferation of VSMCs by regulating the endogenous cystathionine-gamma-lyase (CSE, a major enzyme that produces H 2 S) pathway in high homocysteine (HHcy) has not been previously investigated. The intracellular calcium concentration, the concentration of H 2 S, the cell viability, the proliferation and the expression of proteins of cultured VSMCs from rat thoracic aortas were measured, respectively. The results showed that the [Ca 2+ ] i and the expression of p-CaMK and CSE increased upon treatment with CaSR agonist. In HHcy, the H 2 S concentration decrease, the proliferation and migration rate increased, the expression of Cyclin D1, PCNA, Osteopontin and p-Erk1/2 increased while the α-SM actin, P21 Cip/WAK−1 and Calponin decreased. The CaSR agonist or exogenous H 2 S significantly reversed the changes of VSMCs caused by HHcy. In conclusion, our results demonstrated that CaSR regulate the endogenous CSE/H 2 S is related to the PLC-IP 3 receptor and CaM signal pathways which inhibit the proliferation of VSMCs, and the latter is involved in the Erk1/2 dependent signal pathway in high homocysteine. - Highlights: • CaSR activation increased the production of endogenous H 2 S in high homocysteine VSMCs. • CaSR modulated the CSE/H 2 S are related to the PLC-IP 3 R and Ca 2+ -CaM signal pathways. • Inhibition of H 2 S on the proliferation of VSMCs is involved in the Erk1/2 pathway. • Explore the potential roles of CaSR in regulating VSMCs proliferation in high homocysteine.

  3. Structural Chemistry of Human RNA Methyltransferases.

    Science.gov (United States)

    Schapira, Matthieu

    2016-03-18

    RNA methyltransferases (RNMTs) play important roles in RNA stability, splicing, and epigenetic mechanisms. They constitute a promising target class that is underexplored by the medicinal chemistry community. Information of relevance to drug design can be extracted from the rich structural coverage of human RNMTs. In this work, the structural chemistry of this protein family is analyzed in depth. Unlike most methyltransferases, RNMTs generally feature a substrate-binding site that is largely open on the cofactor-binding pocket, favoring the design of bisubstrate inhibitors. Substrate purine or pyrimidines are often sandwiched between hydrophobic walls that can accommodate planar ring systems. When the substrate base is laying on a shallow surface, a 5' flanking base is sometimes anchored in a druggable cavity. The cofactor-binding site is structurally more diverse than in protein methyltransferases and more druggable in SPOUT than in Rossman-fold enzymes. Finally, conformational plasticity observed both at the substrate and cofactor binding sites may be a challenge for structure-based drug design. The landscape drawn here may inform ongoing efforts toward the discovery of the first human RNMT inhibitors.

  4. Analysis of Plasma Homocysteine Levels in Patients with Unstable Angina

    Directory of Open Access Journals (Sweden)

    José Roberto Tavares

    2002-08-01

    Full Text Available OBJECTIVE - To determine the prevalence of hyperhomocystinemia in patients with acute ischemic syndrome of the unstable angina type. METHODS - We prospectively studied 46 patients (24 females with unstable angina and 46 control patients (19 males, paired by sex and age, blinded to the laboratory data. Details of diets, smoking habits, medication used, body mass index, and the presence of hypertension and diabetes were recorded, as were plasma lipid and glucose levels, C-reactive protein, and lipoperoxidation in all participants. Patients with renal disease were excluded. Plasma homocysteine was estimated using high-pressure liquid chromatography. RESULTS - Plasma homocysteine levels were significantly higher in the group of patients with unstable angina (12.7±6.7 µmol/L than in the control group (8.7±4.4 µmol/L (p<0.05. Among males, homocystinemia was higher in the group with unstable angina than in the control group, but this difference was not statistically significant (14.1±5.9 µmol/L versus 11.9±4.2 µmol/L. Among females, however, a statistically significant difference was observed between the 2 groups: 11.0±7.4 µmol/L versus 6.4±2.9 µmol/L (p<0.05 in the unstable angina and control groups, respectively. Approximately 24% of the patients had unstable angina at homocysteine levels above 15 µmol/L. CONCLUSION - High homocysteine levels seem to be a relevant prevalent factor in the population with unstable angina, particularly among females.

  5. Overexpression of ALDH10A8 and ALDH10A9 Genes Provides Insight into Their Role in Glycine Betaine Synthesis and Affects Primary Metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Missihoun, Tagnon D; Willée, Eva; Guegan, Jean-Paul; Berardocco, Solenne; Shafiq, Muhammad R; Bouchereau, Alain; Bartels, Dorothea

    2015-09-01

    Betaine aldehyde dehydrogenases oxidize betaine aldehyde to glycine betaine in species that accumulate glycine betaine as a compatible solute under stress conditions. In contrast, the physiological function of betaine aldehyde dehydrogenase genes is at present unclear in species that do not accumulate glycine betaine, such as Arabidopsis thaliana. To address this question, we overexpressed the Arabidopsis ALDH10A8 and ALDH10A9 genes, which were identified to code for betaine aldehyde dehydrogenases, in wild-type A. thaliana. We analysed changes in metabolite contents of transgenic plants in comparison with the wild type. Using exogenous or endogenous choline, our results indicated that ALDH10A8 and ALDH10A9 are involved in the synthesis of glycine betaine in Arabidopsis. Choline availability seems to be a factor limiting glycine betaine synthesis. Moreover, the contents of diverse metabolites including sugars (glucose and fructose) and amino acids were altered in fully developed transgenic plants compared with the wild type. The plant metabolic response to salt and the salt stress tolerance were impaired only in young transgenic plants, which exhibited a delayed growth of the seedlings early after germination. Our results suggest that a balanced expression of the betaine aldehyde dehydrogenase genes is important for early growth of A. thaliana seedlings and for salt stress mitigation in young seedlings. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Effects of dietary betaine supplementation subjected to heat stress on milk performances and physiology indices in dairy cow.

    Science.gov (United States)

    Zhang, L; Ying, S J; An, W J; Lian, H; Zhou, G B; Han, Z Y

    2014-09-12

    This study aimed to determine whether feeding betaine to cows elevates their production performance during summer heat stress. Thirty-two lactating Holstein cows were randomly divided into 4 groups: the control group, which received a total mixed ration (TMR), and 3 experimental groups that received TMR blended with 10 g/day (group I), 15 g/day (group II), and 20 g/day (group III) betaine for 8 weeks. Milk and blood were sampled throughout the experimental period. The average maximum and minimum air temperatures were 28.3 and 24.1°C, respectively. The average temperature-humidity index was 78.6 units. The results showed that feeding betaine to cows increased feed intake, milk yield, milk lactose, milk protein, plasma cortisol, glutathione peroxidase, superoxide dismutase, and malondialdehyde levels (Pcows increases their milk performance and improves their antioxidant capacity; these processes help relieve the cow from heat stress. In conclusion, supplementing dairy cows with 15 g/day betaine generated the most positive influence on performance and productivity, and hence caused the greatest reduction in heat stress.

  7. Association between serum homocysteine concentration with coronary artery disease in Iranian patients.

    Science.gov (United States)

    Mirdamadi, Ahmad; Farzamnia, Hamid; Varzandeh, Pooyan; Almasi, Naser; Arasteh, Mahfar

    2011-01-01

    The role of novel biomarkers like homocystein as a risk factor of coronary artery disease (CAD) is being increasingly recognized. Since there is a marked geographical variation in plasma homocystein concentration and because of importance of hyperhomocysteinemia as a CAD risk factor and due to the paucity of studies in Iran evaluating this risk factor in our population, we evaluated the association between plasma total homocysteine (tHcy) concentration and CAD risk in Iranian population. In a case-control study, we compared the level of tHcy of forty five patients of angiographically proven CAD with forty five subjects without CAD as control group matched for age and gender. The patients with diabetes, hypertension, thyroid dysfunction, chronic renal failure, hyperlipidemia and obesity and other conventional CAD risk factors were excluded from the study. Plasma tHcy was measured using immunoturbidimetry. The results were compared between groups using student t test. CAD patients had significantly higher mean plasma tHcy than control group (17.1±5.3 versus 14.2±3.8, P= 0.004). This study denoted that high plasma homocysteine concentration was associated to CAD risk in Iranian people.

  8. Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats.

    Science.gov (United States)

    Zhao, H; Ji, Z-H; Liu, C; Yu, X-Y

    2015-04-02

    Studies demonstrated that chronic high-dose homocysteine administration induced learning and memory impairment in animals. Atractylenolide III (Aen-III), a neuroprotective constituent of Atractylodis macrocephalae Koidz, was isolated in our previous study. In this study, we investigated potential benefits of Aen-III in preventing learning and memory impairment following chronic high-dose homocysteine administration in rats. Results showed that administration of Aen-III significantly ameliorated learning and memory impairment induced by chronic high-dose homocysteine administration in rats, decreased homocysteine-induced reactive oxygen species (ROS) formation and restored homocysteine-induced decrease of phosphorylated protein kinase C expression level. Moreover, Aen-III protected primary cultured neurons from apoptotic death induced by homocysteine treatment. This study provides the first evidence for the neuroprotective effect of Aen-III in preventing learning and impairment induced by chronic administration of homocysteine. Aen-III may have therapeutic potential in treating homocysteine-mediated cognitive impairment and neuronal injury. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. [Neurological syndromes associated with homocystein dismetabolism].

    Science.gov (United States)

    Shirokov, E A; Leonova, S F

    2006-01-01

    The article summarizes the results of clinical, neurological, and laboratory examination of patients with hyperhomocysteinemia. The data obtained suggest the existence of common pathobiochemical mechanisms of homocystein, cholesterol, and myelin dysmetabolism. The authors demonstrate that neurological manifestations of hyperhomocysteinemia are associated with the processes of demyelinization in the central and peripheral nervous systems.

  10. Contribution of caffeine to the homocysteine-raising effect of coffee : a randomized controlled trial in humans

    OpenAIRE

    Verhoef, P.; Pasman, W.J.; Vliet, van, T.; Urgert, R.; Katan, M.B.

    2002-01-01

    Background: A high plasma total homocysteine concentration is associated with increased risk of cardiovascular disease. Consumption of unfiltered or filtered coffee raises total homocysteine concentrations in healthy volunteers. The responsible compound, however, is unknown. Objective: The objective was to determine whether caffeine explains the homocysteine-raising effect of coffee. Design: Forty-eight subjects aged 19–65 y completed this randomized crossover study with 3 treatments, each la...

  11. Identification of Aquifex aeolicus tRNA (m2(2G26) methyltransferase gene.

    Science.gov (United States)

    Takeda, Hiroshi; Hori, Hiroyuki; Endo, Yaeta

    2002-01-01

    The modifications of N2,N2-dimethylguanine (m2(2)G) are found in tRNAs and rRNAs from eukarya and archaea. In tRNAs, modification at position G26 is generated by tRNA (m2(2)G26) methyltransferase, which is encoded by the corresponding gene, trm1. This enzyme catalyzes the methyl-transfer from S-adenosyl-L-methionine to the semi-conserved residue, G26, via the intermediate modified base, m2G26. Recent genome sequencing project has been reported that the putative trm1 is encoded in the genome of Aquifex aeolicus, a hyper-thermophilic eubacterium as only one exception among eubacteria. In order to confirm whether this bacterial trm1 gene product is a real tRNA (m2(2)G26) methyltransferase or not, we expressed this protein by wheat germ in vitro cell-free translation system. Our biochemical analysis clearly showed that this gene product possessed tRNA (m2(2)G26) methyltransferase activity.

  12. Serum betaine is inversely associated with low lean mass mainly in men in a Chinese middle-aged and elderly community-dwelling population.

    Science.gov (United States)

    Huang, Bi-Xia; Zhu, Ying-Ying; Tan, Xu-Ying; Lan, Qiu-Ye; Li, Chun-Lei; Chen, Yu-Ming; Zhu, Hui-Lian

    2016-06-01

    Previous studies have demonstrated that betaine supplements increase lean body mass in livestock and improve muscle performance in human beings, but evidence for its effect on human lean mass is limited. Our study assessed the association of circulating betaine with lean mass and its composition in Chinese adults. A community-based study was conducted on 1996 Guangzhou residents (weight/mass: 1381/615) aged 50-75 years between 2008 and 2010. An interviewer-administered questionnaire was used to collect general baseline information. Fasting serum betaine was assessed using HPLC-MS. A total of 1590 participants completed the body composition analysis performed using dual-energy X-ray absorptiometry during a mean of 3·2 years of follow-up. After adjustment for age, regression analyses demonstrated a positive association of serum betaine with percentage of lean mass (LM%) of the entire body, trunk and limbs in men (all Pwomen (P=0·016). Each sd increase in serum betaine was associated with increases in LM% of 0·609 (whole body), 0·811 (trunk), 0·422 (limbs), 0·632 (arms) and 0·346 (legs) in men and 0·350 (trunk) in women. Multiple logistic regression analysis revealed that the prevalence of lower LM% decreased by 17 % (whole body) and 14 % (trunk) in women and 23 % (whole body), 28 % (trunk), 22 % (arms) and 26 % (percentage skeletal muscle index) in men with each sd increment in serum betaine. Elevated circulating betaine was associated with a higher LM% and lower prevalence of lower LM% in middle-aged and elderly Chinese adults, particularly men.

  13. Chemical Probes of Histone Lysine Methyltransferases

    Science.gov (United States)

    2015-01-01

    Growing evidence suggests that histone methyltransferases (HMTs, also known as protein methyltransferases (PMTs)) play an important role in diverse biological processes and human diseases by regulating gene expression and the chromatin state. Therefore, HMTs have been increasingly recognized by the biomedical community as a class of potential therapeutic targets. High quality chemical probes of HMTs, as tools for deciphering their physiological functions and roles in human diseases and testing therapeutic hypotheses, are critical for advancing this promising field. In this review, we focus on the discovery, characterization, and biological applications of chemical probes for HMTs. PMID:25423077

  14. Relation of plasma homocyst(e)ine to cerebral infarction and cerebral atherosclerosis.

    Science.gov (United States)

    Yoo, J H; Chung, C S; Kang, S S

    1998-12-01

    A number of investigations support the theory that the elevated plasma homocyst(e)ine is associated with occlusive vascular disease. The aim of this study is to examine whether moderate hyperhomocyst(e)inemia is an independent risk factor for cerebral infarction. In addition, we examined the association between plasma homocyst(e)ine and the severity of cerebral atherosclerosis. We conducted a hospital-based case-control study with 140 male controls and 78 male patients with nonfatal cerebral infarction, aged between 39 and 82 years. Plasma homocyst(e)ine levels were analyzed in 218 subjects. Fifty-five patients were evaluated for cerebral vascular stenosis by MR angiography. The mean plasma level of homocyst(e)ine was higher in cases than in controls (11.8+/-5.6 versus 9.6+/-4.1 micromol/L; P=0.002). The proportion of subjects with moderate hyperhomocyst(e)inemia was significantly higher in cases than in controls (16.7% versus 5.0%; P=0.004). Based on the logistic regression model, the odds ratio of the highest 5% of homocyst(e)ine levels in control group was 4.17 (95% confidence interval, 3.71 to 4. 71)(P=0.0001). After additional adjustment for total cholesterol, hypertension, smoking, diabetes, and age, the odds ratio was 1.70 (95% confidence interval, 1.48 to 1.95) (P=0.0001). The plasma homocyst(e)ine levels of patients having vessels with 3 or 2 stenosed sites were significantly higher than those of patients having vessels with 1 stenosed site or normal vessels (14.6+/-1.4, 11.0+/-1.4 versus 7.8+/-1.5, 8.9+/-1.4 micromol/L respectively; P<0. 02). Multiple logistic regression analysis revealed that moderate hyperhomocyst(e)ienemia was significantly associated with the number of stenosed vessels (P=0.001). These findings suggest that moderate hyperhomocyst(e)inemia is an independent risk factor for cerebral infarction and may predict the severity of cerebral atherosclerosis in patients with cerebral infarction.

  15. Homocysteine and carotid intima-media thickness in ischemic stroke patients are not correlated

    Directory of Open Access Journals (Sweden)

    George Ntaios

    2008-04-01

    Full Text Available George Ntaios1, Christos Savopoulos1, Apostolos Hatzitolios1, Ippoliti Ekonomou2, Evangelos Destanis2, Ioannis Chryssogonidis2, Anastasia Chatzinikolaou3, Ifigenia Pidonia3, Dimitrios Karamitsos11First Propedeutic Department of Internal Medicine; 2Department of Radiology; 3Department of Biochemistry, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, GreeceIntroduction: Hyperhomocysteinemia has been linked to cardiovascular morbidity and mortality by numerous authors. Whether this association is causal or not remains uncertain. The aim of the study was to investigate the association of hyperhomocysteinemia with the degree of carotid atherosclerosis in stroke patients.Methods: We studied 97 Greek patients in our stroke unit who were hospitalized as a result of ischemic stroke between March 2006 and May 2007. The patients were divided into two groups: the first (52 patients included stroke patients with serum levels of homocysteine below 15 µmol/L, but in the second group (45 patients serum homocysteine exceeded this value. We measured carotid intima-media thickness (cIMT in all patients and correlated it with serum homocysteine.Results: The mean homocysteine concentration was 11.5 µmol/L in the first group and 21.5 µmol/L in the second group. Carotid IMT was 1.012 mm in the first group, and 1.015 mm in the second group, an insignificant difference. On the contrary, serum folate concentration was 21.3 nmol/L in the first group compared with 16.7 nmol/L in the second group (p < 0.001. VitB12 was 401 pmol/L in the first group and 340 pmol/L in the second group, a statistically significant difference (p < 0.001.Conclusions: Serum levels of homocysteine were not correlated with cIMT in ischemic stroke patients. Both folate and vitB12 were decreased in hyperhomocysteinemic ischemic stroke patients.Keywords: homocysteine, carotid intima-media thickness, ischemic stroke

  16. Study of the Effects of Betaine and/or C-Phycocyanin on the Growth of Lung Cancer A549 Cells In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Rea Bingula

    2016-01-01

    Full Text Available We investigated the effects of betaine, C-phycocyanin (C-PC, and their combined use on the growth of A549 lung cancer both in vitro and in vivo. When cells were coincubated with betaine and C-PC, an up to 60% decrease in viability was observed which is significant compared to betaine (50% or C-PC treatment alone (no decrease. Combined treatment reduced the stimulation of NF-κB expression by TNF-α and increased the amount of the proapoptotic p38 MAPK. Interestingly, combined treatment induced a cell cycle arrest in G2/M phase for ~60% of cells. In vivo studies were performed in pathogen-free male nude rats injected with A549 cells in their right flank. Their daily food was supplemented with either betaine, C-PC, both, or neither. Compared to the control group, tumour weights and volumes were significantly reduced in either betaine- or C-PC-treated groups and no additional decrease was obtained with the combined treatment. This data indicates that C-PC and betaine alone may efficiently inhibit tumour growth in rats. The synergistic activity of betaine and C-PC on A549 cells growth observed in vitro remains to be further confirmed in vivo. The reason behind the nature of their interaction is yet to be sought.

  17. SAH derived potent and selective EZH2 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Pei-Pei; Huang, Buwen; Zehnder, Luke; Tatlock, John; Bingham, Patrick; Krivacic, Cody; Gajiwala, Ketan; Diehl, Wade; Yu, Xiu; Maegley, Karen A.

    2015-04-01

    A series of novel enhancer of zeste homolog 2 (EZH2) inhibitors was designed based on the chemical structure of the histone methyltransferase (HMT) inhibitor SAH (S-adenosyl-l-homocysteine). These nucleoside-based EZH2 inhibitors blocked the methylation of nucleosomes at H3K27 in biochemical assays employing both WT PRC2 complex as well as a Y641N mutant PRC2 complex. The most potent compound, 27, displayed IC50’s against both complexes of 270 nM and 70 nM, respectively. To our knowledge, compound 27 is the most potent SAH-derived inhibitor of the EZH2 PRC2 complex yet identified. This compound also displayed improved potency, lipophilic efficiency (LipE), and selectivity profile against other lysine methyltransferases compared with SAH.

  18. Relationship between subclinical hypothyroidism and serum homocysteine concentration in premenopausal women

    Directory of Open Access Journals (Sweden)

    Ayfer Aydoğdu Çolak

    2013-09-01

    Full Text Available Objective: In our study we aimed to examine serum homocysteinelevels of patients without thyroid dysfunctionswho have high serum anti thyroid peroxidase (anti-TPOlevels and patients with subclinical hypothyroidism whohave high serum thyroid stimulating hormone (TSH andanti-TPO levels.Methods: One hundred and seven premenopause femaleoutpatients who referred to endocrine clinic of our hospitalwere included in our study. We generated 3 groups. Firstgroup (Control consists of 53 (50% patients between theages of 30-40 years. Second group (Euthyroid consistsof 31 (29% patients between the ages of 26-49. Thirdgroup (Subclinical Hypothyroidism consists of 23 (21%patients between the ages of 33-53 years. Serum totalcholesterol, triglycerides, high density lipoprotein (HDLlevels were measured by Olympus 2700 autoanalyzer.Serum TSH, free T4, anti-TPO and homocysteine levelswere measured by Siemens Immulite 2000 autoanalyzer.Results: In our study, total cholesterol, triglycerides, lowdensity lipoprotein (LDL and very low density lipoprotein(VLDL levels were not statistically significantly differentamong the groups. Although serum homocysteine levelsof the third group were higher than the other groups it wasnot statistically significantly different among the groups.Conclusion: Serum homocysteine and lipid levels of patientswith euthyroidism and subclinical hypothyroidismwho have positive anti-TPO levels may be inadequate inassessing the risk of cardiovascular diseases. J Clin ExpInvest 2013; 4 (3: 293-297Key words: Hypothyroidsm, homocysteine, premenopause

  19. Effect of folic acid on methionine and homocysteine metabolism in end-stage renal disease

    NARCIS (Netherlands)

    Stam, F.; van Guldener, C.; ter Wee, P.M.; Jakobs, C.A.J.M.; van der Meer, K.; Stehouwer, C.D.A.

    2005-01-01

    Background. The pathogenesis of hyperhomocysteinemia in end-stage renal disease (ESRD) is unclear. Folic acid lowers, but does not normalize, the plasma homocysteine level in patients with ESRD, but its effect on whole body metabolism of homocysteine is unknown. Methods We studied the effect of 3

  20. Elevated circulating homocyst(e)ine levels in placental vascular disease and associated pre-eclampsia.

    Science.gov (United States)

    Wang, J; Trudinger, B J; Duarte, N; Wilcken, D E; Wang, X L

    2000-07-01

    We examined the hypothesis that hyperhomocyst(e)inaemia in the maternal or fetal circulation is associated with placental vascular disease with either the maternal syndrome of pre-eclampsia and/or fetal syndrome of growth restriction. Maternal plasma homocyst(e)ine levels were significantly higher in pregnancies complicated by pre-eclampsia, pregnancies with evidence of umbilical placental vascular disease, and pregnancies with both complications compared with the normal pregnancy group. In the fetal circulation mean plasma homocyst(e)ine concentration was significantly higher in the pre-eclampsia group compared with the normal group. The results suggest that hyperhomocyst(e)inaemia may be a risk marker for placental vascular disease and maternal pre-eclampsia. The elevated fetal plasma homocyst(e)ine concentrations, found only in the group of pregnancies with pre-eclampsia in the absence of umbilical placental vascular disease, may be due to an effect of placental vascular disease on homocyst(e)ine transfer from the maternal to fetal circulation.

  1. Investigation on the correlationship between plasma homocysteine and blood glucose, insulin levels in patients with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Ma Zhongwei

    2005-01-01

    Objective: To explore the correlationship between plasma homocysteine and blood glucose, insulin levels in patients with type 2 diabetes mellitus. Methods: Plasma homocysteine (with ELISA), blood glucose (with hexokinase method) and insulin (with RIA) levels were measured in 66 patients with type 2 diabetes mellitus as well as in 35 controls. Results: Plasma homocysteine levels in the diabetic patients (n=66) were significantly higher than those in controls (P<0.01), especially in those patients complicated with nephropathy (n=32). The homocysteine levels were positively correlated with those of blood glucose and insulin (r=0.3515, r=0.3486, both P<0.01). Conclusion: Plasma homocysteine is an independent risk factor for vascular diseases. The levels of plasma cysteine are significantly increased in patients with type 2 diabetes mellitus, especially in those complicated with nephropathy. Therefore, monitoring of plasma homocysteine level changes is clinically useful. (authors)

  2. Effect of Physical Activity on Serum Homocysteine Levels in Obese and Overweight Women

    Directory of Open Access Journals (Sweden)

    R. Soori

    2016-09-01

    Full Text Available Aims: Recently, homocysteine has been noticed as the major pathogenesis factor of the cardiovascular diseases. The aim of the study was to investigate the effects of physical activities on the serum homocysteine levels, as well as other cardiovascular risk factors in either obese or overweight women. Materials & Methods: In the controlled pretest-posttest semi-experimental study, 18 women referred to the Alzahra sport complexes in districts 3 and 4 of Tehran were studied in 2015. The subjects were selected via random sampling method and randomly divided into two groups; physical activity and control groups. And the intervention program was conducted in the former, while the latter received no intervention. The exercise protocol consisted of 10-week (5 sessions a week stretching exercises and aerobic activities (60 to 75% of the maximum heart beat. The serum homocystein level and lipids were measured both at the start and 48 hours after the exercises. Data was analyzed by SPSS 16 software using paired T and independent T tests. Findings: After the exercises, the mean serum homocysteine level in physical activity group significantly decreased than control group (p=0.001. Nevertheless, the difference between the lipid levels of physical activity and control groups was not significant (p>0.05. Conclusion: Reducing the serum homocysteine concentration, 10-week physical activity might also reduce the risk factors of cardiovascular diseases in either obese or overweight women.

  3. A SAM-dependent methyltransferase cotranscribed with arsenate reductase alters resistance to peptidyl transferase center-binding antibiotics in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Singh, Sudhir; Singh, Chhaya; Tripathi, Anil Kumar

    2014-05-01

    The genome of Azospirillum brasilense harbors a gene encoding S-adenosylmethionine-dependent methyltransferase, which is located downstream of an arsenate reductase gene. Both genes are cotranscribed and translationally coupled. When they were cloned and expressed individually in an arsenate-sensitive strain of Escherichia coli, arsenate reductase conferred tolerance to arsenate; however, methyltransferase failed to do so. Sequence analysis revealed that methyltransferase was more closely related to a PrmB-type N5-glutamine methyltransferase than to the arsenate detoxifying methyltransferase ArsM. Insertional inactivation of prmB gene in A. brasilense resulted in an increased sensitivity to chloramphenicol and resistance to tiamulin and clindamycin, which are known to bind at the peptidyl transferase center (PTC) in the ribosome. These observations suggested that the inability of prmB:km mutant to methylate L3 protein might alter hydrophobicity in the antibiotic-binding pocket of the PTC, which might affect the binding of chloramphenicol, clindamycin, and tiamulin differentially. This is the first report showing the role of PrmB-type N5-glutamine methyltransferases in conferring resistance to tiamulin and clindamycin in any bacterium.

  4. Correlation between plasma homocysteine levels and craving in alcohol dependent stabilized patients.

    Science.gov (United States)

    Coppola, Maurizio; Mondola, Raffaella

    2018-06-01

    Homocysteine is a sulfur amino acid strictly related with alcohol consumption. In alcoholics, hyperhomocysteinemia can increase the risk of various alcohol-related disorders such as: brain atrophy, epileptic seizures during withdrawal, and mood disorders. To evaluate the correlation among serum homocysteine concentrations, craving, hazardous and harmful patterns of alcohol consumption in patients stabilized for withdrawal symptoms. Participants were adult outpatients accessed at the Addiction Treatment Unit. Alcoholism was assessed using the following tools: Mini-International Neuropsychiatric Interview Plus (MINI Plus), Alcohol Use Disorder Identification test (AUDIT), Visual Analogic Scale for craving (VAS). Furthermore, during the first visit a blood sample was taken from all patients to measure the plasma concentration of both homocysteine and Carboxy Deficient Transferrin (CDT). Differences between groups in socio-demographic and clinical characteristics were analyzed using the t-test and the Mann-Whitney's U test for normally and non-normally distributed data, respectively. Correlation between clinical scale scores and plasma concentration of homocysteine and CDT was evaluated using the Pearson's correlation coefficient and the Kendall's Tau-b bivariate correlation coefficient for normally and non-normally distributed data, respectively. Our study included 92 patients. No difference was found in socio-demographic characteristics between groups. The group with high homocysteine had higher prevalence of mood disorders (p correlation with both VAS score (p correlated with alcoholism in a bidirectional manner because its level appears to be related with alcohol degree, but simultaneously, hyperhomocysteinemia could enhance the alcohol consumption increasing the severity of craving in a circular self reinforcing mechanism. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. L-Cysteine/D,L-homocysteine-regulated ileum motility via system L and B°(,+) transporter: Modification by inhibitors of hydrogen sulfide synthesis and dietary treatments.

    Science.gov (United States)

    Yamane, Satoshi; Nomura, Ryouya; Yanagihara, Madoka; Nakamura, Hiroyuki; Fujino, Hiromichi; Matsumoto, Kenjiro; Horie, Syunji; Murayama, Toshihiko

    2015-10-05

    Previous studies including ours demonstrated that L-cysteine treatments decreased motility in gastrointestinal tissues including the ileum via hydrogen sulfide (H2S), which is formed from sulfur-containing amino acids such as L-cysteine and L-homocysteine. However, the amino acid transport systems involved in L-cysteine/L-homocysteine-induced responses have not yet been elucidated in detail; therefore, we investigated these systems pharmacologically by measuring electrical stimulation (ES)-induced contractions with amino acids in mouse ileum preparations. The treatments with L-cysteine and D,L-homocysteine inhibited ES-induced contractions in ileum preparations from fasted mice, and these responses were decreased by the treatment with 2-aminobicyclo[2.2.1]heptane-2-carboxylate (BCH), an inhibitor of systems L and B°(,+). The results obtained using ileum preparations and a model cell line (PC12 cells) with various amino acids and BCH showed that not only L-cysteine, but also aminooxyacetic acid and D,L-propargylglycine, which act as H2S synthesis inhibitors, appeared to be taken up by these preparations/cells in L and B°(,+) system-dependent manners. The L-cysteine and D,L-homocysteine responses were delayed and abolished, respectively, in ileum preparations from fed mice. Our results suggested that the regulation of ileum motility by L-cysteine and D,L-homocysteine was dependent on BCH-sensitive systems, and varied depending on feeding in mice. Therefore, the effects of aminooxyacetic acid and D,L-propargylglycine on transport systems need to be considered in pharmacological analyses. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Homocysteine enhances the predictive value of the GRACE risk score in patients with ST-elevation myocardial infarction.

    Science.gov (United States)

    Fan, Yan; Wang, Jianjun; Zhang, Sumei; Wan, Zhaofei; Zhou, Dong; Ding, Yanhong; He, Qinli; Xie, Ping

    2017-09-01

    The present study aims to investigate whether the addition of homocysteine level to the Global Registry of Acute Coronary Events (GRACE) risk score enhances its predictive value for clinical outcomes in ST-elevation myocardial infarction (STEMI). A total of 1143 consecutive patients with STEMI were included in this prospective cohort study. Homocysteine was detected, and the GRACE score was calculated. The predictive power of the GRACE score alone or combined with homocysteine was assessed by the receiver operating characteristic (ROC) analysis, methods of net reclassification improvement (NRI) and integrated discrimination improvement (IDI). During a median follow-up period of 36.7 months, 271 (23.7%) patients reached the clinical endpoints. It showed that the GRACE score and homocysteine could independently predict all-cause death [GRACE: HR=1.031 (1.024-1.039), p<0.001; homocysteine: HR=1.023 (1.018-1.028), p<0.001] and MACE [GRACE: HR=1.008 (1.005-1.011), p<0.001; homocysteine: HR=1.022 (1.018-1.025), p<0.001]. When they were used in combination to assess the clinical outcomes, the area under the ROC curve significantly increased from 0.786 to 0.884 (95% CI=0.067-0.128, Z=6.307, p<0.001) for all-cause death and from 0.678 to 0.759 (95% CI=0.055-0.108, Z=5.943, p<0.001) for MACE. The addition of homocysteine to the GRACE model improved NRI (all-cause death: 0.575, p<0.001; MACE: 0.621, p=0.008) and IDI (all-cause death: 0.083, p<0.001; MACE: 0.130, p=0.016), indicating effective discrimination and reclassification. Both the GRACE score and homocysteine are significant and independent predictors for clinical outcomes in patients with STEMI. A combination of them can develop a more predominant prediction for clinical outcomes in these patients.

  7. Homocyst(e)ine and risk of cerebral infarction in a biracial population : the stroke prevention in young women study.

    Science.gov (United States)

    Kittner, S J; Giles, W H; Macko, R F; Hebel, J R; Wozniak, M A; Wityk, R J; Stolley, P D; Stern, B J; Sloan, M A; Sherwin, R; Price, T R; McCarter, R J; Johnson, C J; Earley, C J; Buchholz, D W; Malinow, M R

    1999-08-01

    Genetic enzyme variation and vitamin intake are important determinants of blood homocyst(e)ine levels. The prevalence of common genetic polymorphisms influencing homocyst(e)ine levels varies by race, and vitamin intake varies by socioeconomic status. Therefore, we examined the effect of vitamin intake, race, and socioeconomic status on the association of homocyst(e)ine with stroke risk. All 59 hospitals in the greater Baltimore-Washington area participated in a population-based case-control study of stroke in young women. One hundred sixty-seven cases of first ischemic stroke among women aged 15 to 44 years were compared with 328 controls identified by random-digit dialing from the same region. Risk factor data were collected by standardized interview and nonfasting phlebotomy. Plasma homocyst(e)ine was measured by high-performance liquid chromatography and electrochemical detection. Blacks and whites did not differ in median homocyst(e)ine levels, nor did race modify the association between homocyst(e)ine and stroke. After adjustment for cigarettes per day, poverty status, and regular vitamin use, a plasma homocyst(e)ine level of >/=7.3 micromol/L was associated with an odds ratio for stroke of 1.6 (95% CI, 1.1 to 2.5). The association between elevated homocyst(e)ine and stroke was independent not only of traditional vascular risk factors but also of vitamin use and poverty status. The degree of homocyst(e)ine elevation associated with an increased stroke risk in young women is lower than that previously reported for middle-aged men and the elderly and was highly prevalent, being present in one third of the control group.

  8. Rat duodenal motility in vitro: Prokinetic effects of DL-homocysteine thiolactone and modulation of nitric oxide mediated inhibition

    Directory of Open Access Journals (Sweden)

    Stojanović Marija

    2013-01-01

    Full Text Available Homocysteine is a significant but modifiable risk factor for vascular diseases. As gastrointestinal smooth musculature is similar to blood vessel muscles, we investigated how elevated homocysteine levels affect nitric oxide-mediated neurotransmission in the gut. There is accumulated evidence that a dysfunction of NO neurons in the myenteric plexus may cause various diseases in the gastrointestinal tract such as achalasia, diabetic gastroparesis and infantile hypertrophic pyloric stenosis. In the present study, we aimed to assess the effects of homocysteine on NO-mediated responses in vitro, and to examine the effects of DL-homocysteine thiolactone on the spontaneous motility of rat duodenum and nitrergic neurotransmission. DL-homocysteine thiolactone concentration of 10 μmol/L leads to the immediate increase in tone, amplitude and frequency of spontaneous movements in isolated rat duodenum. L-NAME (30 μmol/L leads to an increase in basal tone, amplitude and frequency of spontaneous contractions. The relaxations induced by EFS were significantly reduced in duodenal segments incubated in DL-homocysteine thiolactone compared with the control group. EFS-induced relaxations were inhibited by L-NAME in both experimental and control groups. These results suggest that a high level of homocysteine causes an important impairment of non-adrenergic non-cholinergic innervation of the rat duodenum. [Projekat Ministarstva nauke Republike Srbije, br. 175043

  9. Correlation between homocysteine and dyslipidemia in ischaemic stroke patients with and without hypertension

    Science.gov (United States)

    Aria Arina, Cut; Amir, Darwin; Siregar, Yahwardiah; Sembiring, Rosita J.

    2018-03-01

    Almost 80% of strokes are ischaemic and stroke is the third most common cause of death in developed countries, . The treatment of stroke still limited, the best approach to reduce mortality and morbidity is primary prevention through modification of acquired risk factors. Hypertension and dyslipidemia are one of the major risk factor for stroke while homocysteine is a less well-documented risk factor. The purpose of this study was to know the correlation between homocysteine and dyslipidemia in ischaemic stroke patients with and without hypertension. This study is a cross sectional study; the sample were taken consecutively. All sample matched with inclusion and exclusion criteria, demography data and blood sample were taken. Demography data was analyzed using descriptive statistic, to analyze the relation, we used Chi-Square test. p value dyslipidemia was found in 60 patients. There is a significant relation between homocysteine and dyslipidemia in ischaemic stroke patients with hypertension, p value = 0,009. A significant correlation between homocysteine and dyslipidemia might be because both of them have an important role in the acceleration of the atherosclerotic formation by activation platelet and thrombus, but we still need further study to get more explanation about the relation.

  10. Distribution of /sup 14/C-labelled acrylamide and betaine in foetuses of rats, rabbits, beagle dogs and miniature pigs

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, G.J.; Miller, E.; Sapienza, P.P.; Michel, T.C.; King, M.T.; Turner, V.A.; Blumenthal, H.; Jackson, W.E.; Levin, S.

    1983-02-01

    (/sup 14/C)Acrylamide and (/sup 14/C)betaine hydrochloride were administered in a single iv dose to pregnant rats, rabbits, beagle dogs and miniature pigs late in gestation (1-2 days before expected parturition). Dosages used were 10 mg/kg for rats and 5 mg/kg for the other species. The compounds were allowed to equilibrate in the animal (for 1 hr in rats and for 2 hr in the other species); the dam was then killed and the foetuses were removed by caesarean section. Each foetus was weighed and analysed for radioactivity, either by homogenization of the whole foetus (rat and rabbit) or by determining separately the radioactivity in individual organs and tissues (dog and pig). Foetal uptake of the polar compound betaine hydrochloride was much lower than that of the more lipophilic acrylamide. The sex of the foetus did not appear to affect uptake of either compound. There were no significant differences in total uptake of isotope attributable to the position of the foetus within the uterus in any of the four species given either acrylamide or betaine. Similarly, uterine position did not affect the uptake of acrylamide or betaine by individual tissues of foetal dogs or pigs. Since the distributions of /sup 14/C-labelled acrylamide and betaine hydrochloride were essentially uniform throughout a litter, it would not be necessary to sample all of the members of a litter to obtain a representative picture of foetal distribution.

  11. Betaine supplementation reduces congenital defects after prenatal alcohol exposure (Conference Presentation)

    Science.gov (United States)

    Karunamuni, Ganga; Gu, Shi; Doughman, Yong Qiu; Sheehan, Megan M.; Ma, Pei; Peterson, Lindsy M.; Linask, Kersti K.; Jenkins, Michael W.; Rollins, Andrew M.; Watanabe, Michiko

    2016-03-01

    Over 500,000 women per year in the United States drink during pregnancy, and 1 in 5 of this population also binge drink. As high as 20-50% of live-born children with prenatal alcohol exposure (PAE) present with congenital heart defects including outflow and valvuloseptal anomalies that can be life-threatening. Previously we established a model of PAE (modeling a single binge drinking episode) in the avian embryo and used optical coherence tomography (OCT) imaging to assay early-stage cardiac function/structure and late-stage cardiac defects. At early stages, alcohol/ethanol-exposed embryos had smaller cardiac cushions and increased retrograde flow. At late stages, they presented with gross morphological defects in the head and chest wall, and also exhibited smaller or abnormal atrio-ventricular (AV) valves, thinner interventricular septae (IVS), and smaller vessel diameters for the aortic trunk branches. In other animal models, the methyl donor betaine (found naturally in many foods such as wheat bran, quinoa, beets and spinach) ameliorates neurobehavioral deficits associated with PAE but the effects on heart structure are unknown. In our model of PAE, betaine supplementation led to a reduction in gross structural defects and appeared to protect against certain types of cardiac defects such as ventricular septal defects and abnormal AV valvular morphology. Furthermore, vessel diameters, IVS thicknesses and mural AV leaflet volumes were normalized while the septal AV leaflet volume was increased. These findings highlight the importance of betaine and potentially methylation levels in the prevention of PAE-related birth defects which could have significant implications for public health.

  12. Role of homocysteine for thromboembolic complication in patients with non-valvular atrial fibrilation.

    Science.gov (United States)

    Cingozbay, B Y; Yiginer, O; Cebeci, B S; Kardesoglu, E; Demiralp, E; Dincturk, M

    2002-10-01

    Thromboembolism is the most important complication in patients with atrial fibrilation (AF). Homocysteine is a toxic amino acid that has been recently accepted as a risk factor for atherosclerosis and stroke. The aim of the present study is to show whether there is a relation between hyperhomocysteinemia and thromboembolic complications in patients with non-valvular AF. We admitted 38 patients with non-valvular AF. The patients were divided into two groups: group A (n = 20; mean age, 75.7 +/- 10.4 years; three males/17 females), and group B (n = 18; mean age, 68.0 +/- 10.6 years; 11 males/seven females). While group A consisted of the patients with AF and stroke, group B was composed of the patients with AF but without stroke. The patients having sinus rhythm (15 subjects) were used as the reference group to obtain the cut-off value. Homocysteine was measured by the immunoassay method. The means of the homocysteine levels were 12.4 +/- 3.3 micromol/l in group A, 8.3 +/- 2.3 micromol/l in group B and 9.3 +/- 1.8 micromol/l in the reference group. The cut-off value was 10.6 micromol/l. Group A had a statistically higher homocysteine level than not only group B, but also the reference group (P < 0.05). While 60% of group A (n = 12) had the elevated homocysteine level, the rate was only 22% for group B (n = 4). In conclusion, hyperhomocysteinemia may be one of the explanations for the increased rate of thromboembolic complications in older patients with AF.

  13. Acoustic and volumetric properties of betaine hydrochloride drug in aqueous D(+)-glucose and sucrose solutions

    International Nuclear Information System (INIS)

    Ryshetti, Suresh; Gupta, Akash; Tangeda, Savitha Jyostna; Gardas, Ramesh L.

    2014-01-01

    Highlights: • Density and speed of sound are measured for B.HCl drug in aq. D(+)-glucose and sucrose. • Solvation behavior of B.HCl drug studied in aqueous D(+)-glucose and sucrose. • Cosphere overlap model is used to understand the transfer partial molar volume. • Hepler’s constant indicated structure making ability of B.HCl drug in studied systems. - Abstract: The densities (ρ) and speeds of sound (u) of betaine hydrochloride (B.HCl) drug (0.01 to 0.06) mol · kg −1 in (0.10, 0.20 and 0.30) mol · kg −1 aqueous D(+)-glucose and sucrose solutions are reported as a function of temperature at T = (293.15 to 313.15) K and atmospheric pressure. The values of density (ρ) and speed of sound (u) are obtained with high precision. These values have been used to estimate the apparent molar volume (V 2,ϕ ), partial molar volume (V 2 ∞ ), transfer partial molar volume (Δ t V 2 ∞ ), apparent molar isentropic compressibility (K s,2,ϕ ), partial molar isentropic compressibility (K s,2 ∞ ), transfer partial molar compressibility (Δ t K s,2 ∞ ), hydration number (N H ), partial molar expansion (E 2 ∞ ) and Hepler’s constant (∂ 2 V 2 ∞ /∂T 2 ) P . Furthermore, pair (V AB and K AB ) and triplet (V ABB and K ABB ) interaction coefficients have been computed from the values of Δ t V 2 ∞ and Δ t K s,2 ∞ . The co-sphere overlap model is used to understand the values of Δ t V 2 ∞ and Δ t K s,2 ∞ . The positive values of (∂ 2 V 2 ∞ /∂T 2 ) P indicate structure making ability of betaine hydrochloride in aqueous D(+)-glucose and sucrose solutions at the temperatures and compositions investigated

  14. What is the influence of hormone therapy on homocysteine and crp levels in postmenopausal women?

    Directory of Open Access Journals (Sweden)

    Eli Marcelo Lakryc

    Full Text Available OBJECTIVE: To evaluate the influence of estrogen therapy and estrogen-progestin therapy on homocysteine and C-reactive protein levels in postmenopausal women. METHODS: In total, 99 postmenopausal women were included in this double-blind, randomized clinical trial and divided into three groups: Group A used estrogen therapy alone (2.0 mg of 17β-estradiol, Group B received estrogen-progestin therapy (2.0 mg of 17 β-estradiol +1.0 mg of norethisterone acetate and Group C received a placebo (control. The length of treatment was six months. Serum measurements of homocysteine and C-reactive protein were carried out prior to the onset of treatment and following six months of therapy. RESULTS: After six months of treatment, there was a 20.7% reduction in homocysteine levels and a 100.5% increase in C-reactive protein levels in the group of women who used estrogen therapy. With respect to the estrogen-progestin group, there was a 12.2% decrease in homocysteine levels and a 93.5% increase in C-reactive protein levels. CONCLUSION: Our data suggested that hormone therapy (unopposed estrogen or estrogen associated with progestin may have a positive influence on decreasing cardiovascular risk due to a significant reduction in homocysteine levels.

  15. Destructive, granulating lesion in the temporal bone after elevated plasma homocysteine

    DEFF Research Database (Denmark)

    Bonding, Per; Skriver, Elisabeth; Helin, Pekka

    2004-01-01

    lesion in the left temporal bone was discovered; repeated histologic examination only showed simple granulation tissue. After 6 months, a part of the bony cochlea was extruded. With approximately 8 months' delay and after the patient had had postoperative lung embolism, plasma homocysteine was found...... to be significantly elevated, a condition known as an independent risk factor for thromboembolic lesions. In the acquired form, it is most often caused by nutritional deficiency of vitamin B cofactors. Accordingly, the patient was treated with folic acid, which rapidly normalized plasma homocysteine. Subsequently...

  16. Choline and betaine intake and colorectal cancer risk in Chinese population: a case-control study.

    Directory of Open Access Journals (Sweden)

    Min-Shan Lu

    Full Text Available Few studies have examined the association of choline and betaine intake with colorectal cancer risk, although they might play an important role in colorectal cancer development because of their role as methyl donors. The aim of this study was to examine the relationship between consumption of choline and betaine and colorectal cancer risk in a Chinese population.A case-control study was conducted between July 2010 and December 2013 in Guangzhou, China. Eight hundred and ninety consecutively recruited colorectal cancer cases were frequency matched to 890 controls by age (5-year interval and sex. Dietary information was assessed with a validated food frequency questionnaire by face-to-face interviews. The logistic regression model was used to estimate multivariate odds ratios (ORs and 95% confidence intervals (CIs. Total choline intake was inversely associated with colorectal cancer risk after adjustment for various lifestyle and dietary factors. The multivariate-adjusted OR was 0.54 (95%CI = 0.37-0.80, Ptrend <0.01 comparing the highest with the lowest quartile. No significant associations were observed for betaine or total choline+betaine intakes. For choline-containing compounds, lower colorectal cancer risk was associated with higher intakes of choline from phosphatidylcholine, glycerophosphocholine and sphingomyelin but not for free choline and phosphocholine. The inverse association of total choline intake with colorectal cancer risk was observed in both men and women, colon and rectal cancer. These inverse associations were not modified by folate intake.These results indicate that high intake of total choline is associated with a lower risk of colorectal cancer.

  17. Inhibition of hydrogen sulfide on the proliferation of vascular smooth muscle cells involved in the modulation of calcium sensing receptor in high homocysteine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuwen; Wang, Xiyao [Department of Clinical Laboratory, The second Affiliated Hospital of Harbin Medical University, Harbin 150081 (China); Liang, Xiaohui [Department of Radiology, Central Hospital of the Red Cross, Harbin 150080 (China); Wu, Jichao; Dong, Shiyun; Li, Hongzhu [Department of Pathophysiology, Harbin Medical University, Harbin 150081 (China); Jin, Meili [Department of Clinical Laboratory, The second Affiliated Hospital of Harbin Medical University, Harbin 150081 (China); Sun, Dianjun [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150086 (China); Zhang, Weihua [Department of Pathophysiology, Harbin Medical University, Harbin 150081 (China); Zhong, Xin, E-mail: xzhong1111@163.com [Department of Pathophysiology, Harbin Medical University, Harbin 150081 (China)

    2016-09-10

    Hyperhomocysteinemia induces the proliferation of vascular smooth muscle cells (VSMCs). Hydrogen sulfide (H{sub 2}S) inhibits the phenotype switch of VSMCs and calcium-sensing receptor (CaSR) regulated the production of endogenous H{sub 2}S. However, whether CaSR inhibits the proliferation of VSMCs by regulating the endogenous cystathionine-gamma-lyase (CSE, a major enzyme that produces H{sub 2}S) pathway in high homocysteine (HHcy) has not been previously investigated. The intracellular calcium concentration, the concentration of H{sub 2}S, the cell viability, the proliferation and the expression of proteins of cultured VSMCs from rat thoracic aortas were measured, respectively. The results showed that the [Ca{sup 2+}]{sub i} and the expression of p-CaMK and CSE increased upon treatment with CaSR agonist. In HHcy, the H{sub 2}S concentration decrease, the proliferation and migration rate increased, the expression of Cyclin D1, PCNA, Osteopontin and p-Erk1/2 increased while the α-SM actin, P21{sup Cip/WAK−1} and Calponin decreased. The CaSR agonist or exogenous H{sub 2}S significantly reversed the changes of VSMCs caused by HHcy. In conclusion, our results demonstrated that CaSR regulate the endogenous CSE/H{sub 2}S is related to the PLC-IP{sub 3} receptor and CaM signal pathways which inhibit the proliferation of VSMCs, and the latter is involved in the Erk1/2 dependent signal pathway in high homocysteine. - Highlights: • CaSR activation increased the production of endogenous H{sub 2}S in high homocysteine VSMCs. • CaSR modulated the CSE/H{sub 2}S are related to the PLC-IP{sub 3}R and Ca{sup 2+}-CaM signal pathways. • Inhibition of H{sub 2}S on the proliferation of VSMCs is involved in the Erk1/2 pathway. • Explore the potential roles of CaSR in regulating VSMCs proliferation in high homocysteine.

  18. Kinetics of homocysteine metabolism after moderate alcohol consumption

    NARCIS (Netherlands)

    Beulens, J.W.J.; Sierksma, A.; Schaafsma, G.; Kok, F.J.; Struys, E.A.; Jakobs, C.; Hendriks, H.F.J.

    2005-01-01

    Background: Moderate alcohol consumption is associated with a decreased risk of cardiovascular disease. Because plasma homocysteine (tHcy) is considered an independent risk factor for cardiovascular disease and associated with alcohol consumption, the authors investigated the effect of moderate

  19. Kinetics of homocysteine metabolism after moderate alcohol consumption

    NARCIS (Netherlands)

    Beulens, J.W.J.; Sierksma, A.; Schaafsma, G.; Kok, F.J.; Struys, E.A.; Jakobs, C.; Hendriks, H.F.J.

    2005-01-01

    Moderate alcohol consumption is associated with a decreased risk of cardiovascular disease. Because plasma homocysteine (tHcy) is considered an independent risk factor for cardiovascular disease and associated with alcohol consumption, the authors investigated the effect of moderate alcohol

  20. Association of Homocysteine, Vitamin and Blood Factors with Preeclampsia in Pregnant Women

    Directory of Open Access Journals (Sweden)

    M Nadafi

    2010-07-01

    Full Text Available Introduction & Objective: Preeclampsia is a disease with worldwide importance to mothers and infants, where it accounts for 20–80% of the strikingly increased maternal mortality. The lack of enzymes added to the homocysteine metabolism or the cofactors necessary for its metabolism (folate, B6 vitamin, B12 vitamin cause hyperhomocysteinemia. Abnormal serum lipid profiles such as cholesterol, LDL, HDL and triglyceride are associated with endothelial dysfunction. Recently high levels of B-HCG have been identified as a potential marker for developing preeclampsia. The purpose of this study was to identify the possible association of homocysteine, vitamin and some serum factors levels with preeclampsia in pregnant women. Materials and Methods: A case control study was performed prospectively on normotensive healthy pregnant women (80 and pregnant women diagnosed with preeclampsia (80 referring to Imam Sadjad hospital in Yasuj, between September 2004 to August 2005. In addition to the obstetric evaluation and laboratory examination in the 3rd trimester of gestation, blood samples were taken from all cases for homocysteine and vitamin B12, folic acid, triglyceride, cholesterol, LDL, HDL, B-HCG analysis. The samples were evaluated by Immunoassay (ELISA. Univariant and logistic regression analyses were used to identify predictors of outcomes. Results: The mean plasma level of total homocysteine was significantly higher in preeclamptic women compared with normal pregnancy(p0.05. Triglyceride and cholesterol levels were significantly higher in preeclamptic women compared with normal pregnant women(p<0/05. LDL and HDL levels were not correlated with preeclampsia. There was no significant association between preeclampsia and B-HCG levels. Conclusion: Homocysteine, triglyceride and cholesterol concentrations increase in preeclampsia but decrease of vitamin B12 and folic acid levels was not observed in preeclampsia. LDL, HDL and B-HCG levels were not

  1. Contribution of caffeine to the homocysteine-raising effect of coffee : a randomized controlled trial in humans

    NARCIS (Netherlands)

    Verhoef, P.; Pasman, W.J.; Vliet, van T.; Urgert, R.; Katan, M.B.

    2002-01-01

    Background: A high plasma total homocysteine concentration is associated with increased risk of cardiovascular disease. Consumption of unfiltered or filtered coffee raises total homocysteine concentrations in healthy volunteers. The responsible compound, however, is unknown. Objective: The objective

  2. [Homocystein and cardiovascular risk: is dosage useful?].

    Science.gov (United States)

    Mathez, Ch; Trueb, L; Darioli, R; Waeber, G

    2004-12-08

    Hyperhomocysteinemia represents an independent risk factor for atherothrombotic disease. Physiopathological mechanisms of accelerated progression of atherosclerosis in presence of hyperhomocysteinemia are complex. Herein we report a clinical case which emphasis the importance of screening elevated homocystein in the absence of conventional risk factors in patients who suffer from premature atherosclerosis.

  3. The effect of uric acid on homocysteine-induced endothelial dysfunction in bovine aortic endothelial cells

    Czech Academy of Sciences Publication Activity Database

    Papežíková, Ivana; Pekarová, Michaela; Lojek, Antonín; Kubala, Lukáš

    2009-01-01

    Roč. 30, č. 1 (2009), s. 112-115 ISSN 0172-780X R&D Projects: GA ČR(CZ) GP204/07/P539 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : uric acid * homocysteine * endothelial dysfunction Subject RIV: BO - Biophysics Impact factor: 1.047, year: 2009

  4. Microsatellite instability and the association with plasma homocysteine and thymidylate synthase in colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Lindebjerg, Jan; Crüger, Dorthe G.

    2008-01-01

    , carcinoembryonic antigen, vitamin B12, and folate. Microsatellite instability of tumors was associated with higher levels of plasma homocysteine (p = 0.008) and higher protein expression of thymidylate synthase (p ... factors. CEA was not associated with neither homocysteine nor microsatellite instability. The data suggests that there is a more pronounced methyl unit deficiency in microsatellite instable tumors....

  5. [Does diet affect our mood? The significance of folic acid and homocysteine].

    Science.gov (United States)

    Karakuła, Hanna; Opolska, Aneta; Kowal, Anna; Domański, Maciej; Płotka, Aniela; Perzyński, Janusz

    2009-02-01

    In recent years, there has been growing interest in the association between national diet and the possibility of developing various mental disorders, as well as between deficiency of such vitamins as, e.g. folic acid, vitamin B12, B6, and others (e.g., omega-3 fatty acids), elevated serum homocysteine level and the functioning of human brain as well as the occurrence of such disorders as dementia, central nervous system vascular disorders and depression. was to present the current state of knowledge about the role of folic acid and homocysteine in the human organism as well as the significance of vitamin deficiency, mainly folic acid and hyperhomocysteinemy for the occurrence of mood disorders. The authors conducted the search of the Internet database Medline (www.pubmed.com) using as key words: depression, mood, homocysteine, vitamin deficiencies: folic acid, B6 and 812 and time descriptors: 1990-2007. In depression, folate, vitamins B12 and B6, as well as unsaturated omega-3 fatty acids deficiency affects the biochemical processes in the CNS, as folic acid and vitamin B12, participate in the metabolism of S-adenosylmethionine (SAM), a donator of methyl groups, which play a decisive role in the functioning of the nervous system; they are, among others, active in the formation of neurotransmitters (e.g. serotonin), phospholipids that are a component of neuronal myelin sheaths, and cell receptors. The deficiency of the vitamins in question results in hyperhomocysteinemia (the research shows that approximately 45-55% of patients with depression develop significantly elevated serum homocysteine), which causes a decrease in SAM, followed by impaired methylation and, consequently, impaired metabolism of neurotransmitters, phospholipids, myelin, and receptors. Hyperhomocysteinemia also leads to activation of NMDA receptors, lesions in vascular endothelium, and oxidative stress. All this effects neurotoxicity and promotes the development of various disorders, including

  6. MAT1A variants modulate the effect of dietary fatty acids on plasma homocysteine concentrations and DNA damage

    Science.gov (United States)

    Dietary n-3 polyunsaturated fatty acids (PUFA) are associated with decreased plasma homocysteine (Hcy), an important biomarker for cardiovascular disease. Methionine adenosyltransferase (MAT1A) is an enzyme involved in formation of form S-adenosylmethionine during methionine metabolism. The objectiv...

  7. C-reactive protein and homocysteine predict long-term mortality in young ischemic stroke patients.

    Science.gov (United States)

    Naess, Halvor; Nyland, Harald; Idicula, Titto; Waje-Andreassen, Ulrike

    2013-11-01

    We investigated the relationship between C-reactive protein (CRP) and homocysteine on follow-up and subsequent mortality in young ischemic stroke patients in a population-based study. Young ischemic stroke patients were followed-up on average 6 years after the index stroke. CRP and homocysteine levels were measured and risk factors were recorded, including myocardial infarction, diabetes mellitus, hypertension, smoking, alcoholism, and cancer. Stroke outcome was measured using the modified Rankin Scale score. Subsequent survival was obtained by examining the official population registry. Cox regression analyses were performed. In total, 198 patients were included in this study (82 [41%] women and 116 [59%] men). The mean age on follow-up was 47.8 years. In total, 36 (18.2%) patients died during the subsequent mean follow-up of 12.4 years. Cox regression analysis revealed that mortality was associated with CRP (hazard ratio [HR] 1.05; P=.001) and homocysteine levels (HR 1.04; P=.02) in patients without dissection. Kaplan-Meier curves grouped by dichotomized CRP (CRP≤1 v >1 mg/L) showed increasing separation between the survival curves, and likewise for dichotomized homocysteine (≤9 v >9 μg/L). There is an independent association between CRP and homocysteine levels obtained several years after ischemic stroke in young adults and subsequent mortality, even when adjusting for traditional risk factors. This association seems to continue for at least 12 years after the measurements. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  8. Homocysteine regulates fatty acid and lipid metabolism in yeast.

    Science.gov (United States)

    Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O; Wolinski, Heimo; Rechberger, Gerald N; Tehlivets, Oksana

    2018-04-13

    S -Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S -adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Homocysteine levels after nitrous oxide anesthesia for living-related donor renal transplantation: a randomized, controlled, double-blind study.

    Science.gov (United States)

    Coskunfirat, N; Hadimioglu, N; Ertug, Z; Akbas, H; Davran, F; Ozdemir, B; Aktas Samur, A; Arici, G

    2015-03-01

    Nitrous oxide anesthesia increases postoperative homocysteine concentrations. Renal transplantation candidates present with higher homocysteine levels than patients with no renal disease. We designed this study to investigate if homocysteine levels are higher in subjects receiving nitrous oxide for renal transplantation compared with subjects undergoing nitrous oxide free anesthesia. Data from 59 patients scheduled for living-related donor renal transplantation surgery were analyzed in this randomized, controlled, blinded, parallel-group, longitudinal trial. Patients were assigned to receive general anesthesia with (flowmeter was set at 2 L/min nitrous oxide and 1 L/min oxygen) or without nitrous oxide (2 L/min air and 1 L/min oxygen). We evaluated levels of total homocysteine and known determinants, including creatinine, folate, vitamin B12, albumin, and lipids. We evaluated factor V and von Willebrand factor (vWF) to determine endothelial dysfunction and creatinine kinase myocardial band (CKMB)-mass, troponin T to show myocardial ischemia preoperatively in the holding area (T1), after discontinuation of anesthetic gases (T2), and 24 hours after induction (T3). Compared with baseline, homocysteine concentrations significantly decreased both in the nitrous oxide (22.3 ± 16.3 vs 11.8 ± 9.9; P nitrous oxide-free groups (21.5 ± 15.3 vs 8.0 ± 5.7; P nitrous oxide group had significantly higher mean plasma homocysteine concentrations than the nitrous oxide-free group (P = .021). The actual homocysteine difference between groups was 3.8 μmol/L. This study shows that homocysteine levels markedly decrease within 24 hours after living-related donor kidney transplantation. Patients receiving nitrous oxide have a lesser reduction, but this finding is unlikely to have a clinical relevance. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Homocysteine measurement in dried blood spot for neonatal detection of homocystinurias.

    Science.gov (United States)

    Alodaib, Ahmad N; Carpenter, Kevin; Wiley, Veronica; Wotton, Tiffany; Christodoulou, John; Wilcken, Bridget

    2012-01-01

    Expanded newborn screening (NBS) leads to an increased number of false positive results, causing parental anxiety, greater follow-up costs, and the need for further metabolic investigations. We developed and validated a second-tier approach for NBS of homocystinurias by measuring the total homocysteine (tHcy) on the initial dried blood spot (DBS) samples to reduce the need for further investigation, and investigated newborn DBS homocysteine values in patients with homocystinuria. Total DBS homocysteine was measured in normal newborns, and retrospectively in newborns with established disorders, using liquid chromatography tandem mass spectrometry (LC-MS/MS) with stable isotope-labelled internal standards for homocysteine. Analytes were separated using reverse phase chromatography with a total run time of 3 min. The method was linear over the range of 10-100 μmol/L of tHcy and showed excellent precision; intra-batch CV was 4% and inter-batch precision 6.5%. Comparison of 59 plasma values with DBS for tHcy taken at the same time showed excellent correlation, (r (2)>0.97). The reference range for current neonatal samples was 5.4-10.7 μmol/L (n=99), and for the stored neonatal samples (stored dry, sealed in plastic at room temperature for 10 years) was 1.7-5.5 μmol/L, (n=50), both being normally distributed. The clinical utility of this method was checked by retrospective analysis of stored NBS samples from patients with different forms of homocystinuria, including four different remethylating disorders. All had clear elevations of tHcy.

  11. Simple plasma work-up for a fast chromatographic analysis of homocysteine, cysteine, methionine and aromatic amino acids

    Czech Academy of Sciences Publication Activity Database

    Hušek, Petr; Matucha, P.; Vránková, A.; Šimek, Petr

    2003-01-01

    Roč. 789, - (2003), s. 311-322 ISSN 1570-0232 R&D Projects: GA AV ČR IPP1050128; GA MZd NB6708 Institutional research plan: CEZ:AV0Z5007907 Keywords : Homocysteine * cysteine * methionine Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.085, year: 2003

  12. Serum homocysteine, folate, vitamin B12 and total antioxidant status in vegetarian children.

    Science.gov (United States)

    Ambroszkiewicz, J; Klemarczyk, W; Chełchowska, M; Gajewska, J; Laskowska-Klita, T

    2006-01-01

    The results of several studies point to the positive role of vegetarian diets in reducing the risk of diabetes, some cancers and cardiovascular diseases. However, exclusion of animal products in vegetarian diets may affect the cobalamin status and cause an elevation of the plasma homocysteine level. The aim of this study was to assess the effect of vegetarian diets on serum concentrations of homocysteine, folate, vitamin B12 and total antioxidant status (TAS) in children. The study included 32 vegetarians (including 5 vegans), age 2-10 years. Dietary constituents were analyzed using a local nutritional programme. Serum homocysteine, folate and vitamin B12 were determined with fluorescence and chemiluminescence immunoassays. The concentration of TAS was measured by a colorimetric method. Average daily energy intake and the percentage of energy from protein, fat and carbohydrates in the diets of the studied children were just above or similar to the recommended amounts. It could be shown that vegetarian diets contain high concentrations of folate. In vegan diets it even exceeds the recommended dietary allowance. Mean daily intake of vitamin B12 in the studied diets was adequate but in vegans was below the recommended range. The serum concentrations of homocysteine, folate, vitamin B12 and TAS in vegetarian children remained within the physiological range. The presented data indicate that vegetarian children, contrary to adults, have enough vitamin B12 in their diet (excluding vegans) and normal serum concentrations of homocysteine, folate and vitamin B12. Therefore, in order to prevent deficiencies in the future, close monitoring of vegetarian children (especially on a vegan diet) is important to make sure that they receive adequate quantities of nutrients needed for healthy growth.

  13. Th1, Th17, CXCL16 and homocysteine elevated after intracranial and cervical stent implantation.

    Science.gov (United States)

    Tang, Yanyan; Wei, Yunfei; Ye, Ziming; Qin, Chao

    2017-08-01

    The presence of Th1 and Th17 cells has been observed as major inducers in inflammation and immune responses associated stenting. However, there is rare data on the impact of Th1, Th17, CXCL16 and homocysteine after cerebral stent implantation. Here, we performed the statistical analysis to first evaluate the variation of the Th17and Th1 cells and their related cytokines, CXCL16 and homocysteine in the peripheral blood of patients with cerebral stenting. The flow cytometry was used to detect the proportion of Th1 and Th17 cells in peripheral blood mononuclear cells (PBMCs). The enzyme-linked immunosorbent assay was used to measure the serum concentrations of IFN-γ, IL-17 and CXCL16. Plasma homocysteine was examined by immunoturbidimetry. The level of Th1, CXCL16 and homocysteine showed an increase at 3 d, followed by the continuous decrease at 7 d and 3 months. The frequency of Th17 cells increased to a peak at three days, and subsequently decreased with a higher level than baseline. Our data revealed that the variation in Th1, Th17, CXCL16 and homocysteine in peripheral blood of patients with stenting may be implicated in inflammation after intracranial and cervical stent implantation. A better understanding of these factors will provide help for further drug design and clinical therapy.

  14. Homocyst(e)ine and risk of cardiovascular disease in the multiple risk factor intervention trial.

    Science.gov (United States)

    Evans, R W; Shaten, B J; Hempel, J D; Cutler, J A; Kuller, L H

    2000-01-01

    A nested case-control study was undertaken involving men participating in the Multiple Risk Factor Intervention Trial (MRFIT). Serum samples from 712 men, stored for upto 20 years, were analysed for homocyst(e)ine. Cases involved non-fatal myocardial infractions, identified through the active phase of the study, which ended on February 28, 1982, and deaths due to coronary heart disease, monitored through 1990. The non-fatal myocardial infarction occurred within 7 years of sample collection, whereas the majority of coronary heart disease deaths occurred more than 11 years after sample collection. Mean homocyst(e)ine concentrations were in the expected range and did not differ significantly between case patients and control subjects: myocardial infarction cases, 12.6 micromol/L; myocardial infarction controls, 13.1 micromol/L; coronary heart disease death cases, 12.8 micromol/L; and coronary heart disease controls, 12.7 micromol/L. Odds ratios versus quartile 1 for coronary heart disease deaths and myocardial infarctions combined were as follows: quartile 2, 1.03; quartile 3, 0.84; and quartile 4, 0.92. Thus, in this prospective study, no association of homocyst(e)ine concentration with heart disease was detected. Homocyst(e)ine levels were weakly associated with the acute-phase (C-reactive) protein. These results are discussed with respect to the suggestion that homocyst(e)ine is an independent risk factor for heart disease.

  15. Biosynthesis of estragole and methyl-eugenol in sweet basil (Ocimum basilicum L). Developmental and chemotypic association of allylphenol O-methyltransferase activities.

    Science.gov (United States)

    Lewinsohn, E; Ziv-Raz, I; Dudai, N; Tadmor, Y; Lastochkin, E; Larkov, O; Chaimovitsh, D; Ravid, U; Putievsky, E; Pichersky, E; Shoham, Y

    2000-12-07

    Sweet basil (Ocimum basilicum L., Lamiaceae) is a common herb, used for culinary and medicinal purposes. The essential oils of different sweet basil chemotypes contain various proportions of the allyl phenol derivatives estragole (methyl chavicol), eugenol, and methyl eugenol, as well as the monoterpene alcohol linalool. To monitor the developmental regulation of estragole biosynthesis in sweet basil, an enzymatic assay for S-adenosyl-L-methionine (SAM):chavicol O-methyltransferase activity was developed. Young leaves display high levels of chavicol O-methyltransferase activity, but the activity was negligible in older leaves, indicating that the O-methylation of chavicol primarily occurs early during leaf development. The O-methyltransferase activities detected in different sweet basil genotypes differed in their substrate specificities towards the methyl acceptor substrate. In the high-estragole-containing chemotype R3, the O-methyltransferase activity was highly specific for chavicol, while eugenol was virtually not O-methylated. In contrast, chemotype 147/97, that contains equal levels of estragole and methyl eugenol, displayed O-methyltransferase activities that accepted both chavicol and eugenol as substrates, generating estragole and methyl eugenol, respectively. Chemotype SW that contains high levels of eugenol, but lacks both estragole and methyl eugenol, had apparently no allylphenol dependent O-methyltransferase activities. These results indicate the presence of at least two types of allylphenol-specific O-methyltransferase activities in sweet basil chemotypes, one highly specific for chavicol; and a different one that can accept eugenol as a substrate. The relative availability and substrate specificities of these O-methyltransferase activities biochemically rationalizes the variation in the composition of the essential oils of these chemotypes.

  16. Crystal structures of the methyltransferase and helicase from the ZIKA 1947 MR766 Uganda strain

    Energy Technology Data Exchange (ETDEWEB)

    Bukrejewska, Malgorzata; Derewenda, Urszula; Radwanska, Malwina; Engel, Daniel A.; Derewenda, Zygmunt S.

    2017-08-15

    Two nonstructural proteins encoded byZika virusstrain MR766 RNA, a methyltransferase and a helicase, were crystallized and their structures were solved and refined at 2.10 and 2.01 Å resolution, respectively. The NS5 methyltransferase contains a boundS-adenosyl-L-methionine (SAM) co-substrate. The NS3 helicase is in the apo form. Comparison with published crystal structures of the helicase in the apo, nucleotide-bound and single-stranded RNA (ssRNA)-bound states suggests that binding of ssRNA to the helicase may occur through conformational selection rather than induced fit.

  17. Serum homocysteine level in gestational diabetes: a prospective study

    Directory of Open Access Journals (Sweden)

    Davari Tanha F

    2009-08-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Increased total plasma homocysteine (Hcy is an accepted risk factor of cardiovascular disease (CVD, stroke, preclampsia, recurrent abortion and diabetes type I and II. The aim of the current study was to assess serum homocysteine and its relation with serum folat, vitamine B12 and lipid profile in gestational diabetes mellitus and to compare these with those of pregnant women."n"n Methods: In a prospective controlled survey 80 pregnant women (24-28 weeks with uncomplicated pregnancies were evaluated. They were assigned to one of two groups according to the results of 100g-OGTT. In the case group there were pregnant women with gestational diabetes mellitus according to the OGTT and in the control group women who had normal OGTT results were put. Levels of fasting glucose, homocysteine, vit B12, and folic acid, uric acid, total cholesterol, triglyceride, Low Density Lipoprotein cholesterol (LDL and High Density Lipoprotein cholesterol (HDL were measured in both groups."n"nResults: The mean level of homocysteine in GDM group was significantly higher than control group (p=0.000. The mean level of folic acid and vit B12 was significantly lower than the level in control group (p=0.001, p=0.004 respectively. Body

  18. Homocyst(e)ine metabolism in hemodialysis patients treated with vitamins B6, B12 and folate.

    Science.gov (United States)

    Henning, B F; Zidek, W; Riezler, R; Graefe, U; Tepel, M

    2001-03-01

    Hyperhomocyst(e)inemia is commonly accepted as an independent atherosclerotic risk factor. In most hemodialysis patients, serum homocyst(e)ine is markedly elevated and may contribute to premature atherosclerosis in these patients. Whereas the beneficial effect of folate supplementation on serum homocyst(e)ine has been extensively studied, there are less detailed studies on the effects of cobalamin and pyridoxal phosphate alone, or in combination with folate. We examined the effect of a four-week course of intravenous treatment with folate (1.1 mg), cobalamin (1.0 mg), and pyridoxal phosphate (5.0 mg), administered once (group 1), twice (group 2) or thrice (group 3) weekly in 33 hemodialysis patients divided in three groups of 11 patients. All patients were followed for a further four weeks after treatment was stopped. Serum homocyst(e)ine, cobalamin, folate and pyridoxal phosphate, as well as the metabolites of homocyst(e)ine, methylmalonate, 2-methylcitrate and cystathionine, were determined before, during and after treatment. Baseline serum homocyst(e)ine correlated significantly with serum folate (P=0.0149), cobalamin (P=0.0047) and pyridoxal phosphate (P=0.0408). Correlations independent from the other metabolites or vitamins were found for methylmalonate (P=0.003) and folate (P=0.029). All regimens increased serum cobalamin significantly (in group 1 from 444 +/- 215 to 17,303 +/- 11,989 pg/ml, Pine was lowered significantly by 39.8% +/- 31.9% (Pine levels. Increasing cobalamin levels and additional treatment with folate and pyridoxal phosphate 156 may decrease serum homocyst(e)ine in the same way as high doses of folate alone.

  19. Comparison of parameters of bone profile and homocysteine in physically active and non-active postmenopausal females.

    Science.gov (United States)

    Tariq, Sundus; Lone, Khalid Parvez; Tariq, Saba

    2016-01-01

    Optimal physical activity is important in attaining a peak bone mass. Physically active women have better bone mineral density and reduce fracture risk as compared to females living a sedentary life. The objective of this study was to compare parameters of bone profile and serum homocysteine levels in physically active and non-active postmenopausal females. In this cross sectional study postmenopausal females between 50-70 years of age were recruited and divided into two groups: Physically inactive (n=133) performing light physical activity and Physically active (n=34) performing moderate physical activity. Physical activity (in metabolic equivalents), bone mineral density and serum homocysteine levels were assessed. Spearman's rho correlation was applied to observe correlations. Two independent sample t test and Mann Whitney U test were applied to compare groups. P-value ≤ 0.05 was taken statistically significant. Parameters of bone profile were significantly higher and serum homocysteine levels were significantly lower in postmenopausal females performing moderate physical activity as compared to females performing light physical activity. Homocysteine was not significantly related to T-score and Z-score in both groups. Improving physical activity could be beneficial for improving the quality of bone, decreasing fracture risk and decreasing serum homocysteine levels.

  20. Membrane topology of Golgi-localized probable S-adenosylmethionine-dependent methyltransferase in tobacco (Nicotiana tabacum) BY-2 cells.

    Science.gov (United States)

    Liu, Jianping; Hayashi, Kyoko; Matsuoka, Ken

    2015-01-01

    S-adenosylmethionine (SAM)-dependent methyltransferases (MTases) transfer methyl groups to substrates. In this study, a novel putative tobacco SAM-MTase termed Golgi-localized methyl transferase 1 (GLMT1) has been characterized. GLMT1 is comprised of 611 amino acids with short N-terminal region, putative transmembrane region, and C-terminal SAM-MTase domain. Expression of monomeric red fluorescence protein (mRFP)-tagged protein in tobacco BY-2 cell indicated that GLMT1 is a Golgi-localized protein. Analysis of the membrane topology by protease digestion suggested that both C-terminal catalytic region and N-terminal region seem to be located to the cytosolic side of the Golgi apparatus. Therefore, GLMT1 might have a different function than the previously studied SAM-MTases in plants.

  1. Levodopa/carbidopa and entacapone in the treatment of Parkinson’s disease: efficacy, safety and patient preference

    Directory of Open Access Journals (Sweden)

    Thomas Müller

    2009-01-01

    Full Text Available Thomas Müller1,21Department of Neurology, St. Joseph Hospital Berlin-Weißensee, Berlin, Germany; 2IGSN, Ruhr University of Bochum, Bochum, GermanyAbstract: Levodopa (LD is the oldest, most efficacious and best-tolerated drug for dopaminergic substitution of patients with Parkinson’s disease (PD. Its main drawback is its short half-life, which supports onset of motor complications in the long term. Therefore well-informed PD patients mostly accept LD therapy as late as possible. Recent LD trials indicate that a combination of LD with carbidopa (CD and the catechol-O-methyltransferase (COMT inhibitor entacapone (EN may reduce the onset of these motor complications to a certain extent. This observation is further supported by pharmacokinetic trials and experimental research, but there is still a need to confirm this in a clinical trial, which is under way. Additionally, combined LD/CD/EN was superior to LD/CD administration regarding cognition, muscle behavior and gastrointestinal function in small clinical trials. Moreover there is accumulating evidence that combined COMT inhibition with LD administration reduces homocysteine synthesis. In the long term, homocysteine elevation supports onset of arteriosclerosis-related disorders, which are more frequent in PD patients according to epidemiological studies than in the normal healthy population. The introduction of LD/CD/EN in one tablet supported patients’ preference of COMT inhibition as an essential component of LD/DDI therapy, as this combination reduced number and size of tablets.Keywords: levodopa, entacapone, Parkinson’s disease, preference, compliance, acceptance

  2. Betaines of Alfalfa 1

    Science.gov (United States)

    Wood, Karl V.; Stringham, Kelly J.; Smith, David L.; Volenec, Jeffrey J.; Hendershot, Kerry L.; Jackson, Kimberly A.; Rich, Patrick J.; Yang, Wen-Ju; Rhodes, David

    1991-01-01

    Leaf tissue of alfalfa (Medicago sativa L.) was found to contain prolinebetaine, pipecolatebetaine, hydroxyprolinebetaine, and glycinebetaine. As n-butyl esters, these chemical species exhibit molecular cations at mass/charge ratio (m/z) 200, 214, 216, and 174, respectively, when analyzed by fast atom bombardment mass spectrometry. The underivatized betaines exhibit protonated molecular ions at m/z 144, 158, 160, and 118, respectively, when analyzed by desorption chemical ionization mass spectrometry. Extensive (>45-fold) genotypic variation for hydroxyprolinebetaine level was identified in alfalfa. Because a significant inverse correlation between prolinebetaine and hydroxyprolinebetaine levels was observed among 15 alfalfa genotypes evaluated, it is possible that these compounds may be derived from a common intermediate. Birdsfoot trefoil (Lotus corniculatus L.) contained prolinebetaine, but only traces of glycinebetaine, pipecolatebetaine, and hydroxyprolinebetaine. Red clover (Trifolium pratense L.) lacked prolinebetaine, pipecolatebetaine, and hydroxyprolinebetaine, but contained appreciable levels of both glycinebetaine and trigonelline. Trigonelline was not detectable in the leaf tissue of any alfalfa genotype or cultivar evaluated. PMID:16668271

  3. Inverse association between plasma homocysteine concentrations and type 2 diabetes mellitus among a middle-aged and elderly Chinese population.

    Science.gov (United States)

    Yu, C; Wang, J; Wang, F; Han, X; Hu, H; Yuan, J; Miao, X; Yao, P; Wei, S; Wang, Y; Liang, Y; Chen, W; Zhang, X; Guo, H; Yang, H; Tang, Y; Zheng, D; Wu, T; He, M

    2018-03-01

    Plasma homocysteine concentrations have been reported to be associated with type 2 diabetes mellitus (T2DM) with controversial findings. The aim of the present study was to investigate the association between plasma homocysteine concentrations and T2DM. A cross-sectional study including 19,085 eligible participants derived from the Dongfeng-Tongji cohort was conducted. Plasma homocysteine concentrations were measured by Abbott Architect i2000 Automatic analyzer and T2DM was defined according to American Diabetes Association criteria. Logistic regression model was used to explore the association between plasma homocysteine concentrations and T2DM. The prevalence of T2DM was 19.0% in the whole population (mean age 62.9 years), 21.8% in males, and 17.1% in females. In the multivariable logistic regression analyses, compared with those in the lowest quintile, the OR (95% CI) of T2DM was 1.05 (0.92-1.21), 0.99 (0.86-1.14), 0.90 (0.78-1.05), and 0.77 (0.66-0.90) for quintile 2 to quintile 5 of homocysteine concentrations after adjustment for potential confounders (P for trend associated with decreased T2DM prevalence risk (OR = 0.88 per SD increase of homocysteine concentration; 95% CI: 0.84-0.93). A significant interaction between homocysteine concentrations and drinking status on T2DM prevalence risk was observed (P for interaction = 0.03). The inverse association of plasma homocysteine concentrations with T2DM prevalence risk was observed in non-drinkers but not in current drinkers. Plasma homocysteine concentrations were inversely correlated with T2DM among a middle-aged and elderly Chinese population. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  4. Capillary electrophoresis tandem mass spectrometry determination of glutamic acid and homocysteine's metabolites: Potential biomarkers of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Cieslarova, Zuzana; Lopes, Fernando Silva; do Lago, Claudimir Lucio; França, Marcondes Cavalcante; Colnaghi Simionato, Ana Valéria

    2017-08-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects both lower and upper motor neurons, leading to muscle atrophy, paralysis, and death caused by respiratory failure or infectious complications. Altered levels of homocysteine, cysteine, methionine, and glutamic acid have been observed in plasma of ALS patients. In this context, a method for determination of these potential biomarkers in plasma by capillary electrophoresis tandem mass spectrometry (CE-MS/MS) is proposed herein. Sample preparation was carefully investigated, since sulfur-containing amino acids may interact with plasma proteins. Owing to the non-thiol sulfur atom in methionine, it was necessary to split sample preparation into two methods: i) determination of homocysteine and cysteine as S-acetyl amino acids; ii) determination of glutamic acid and methionine. All amino acids were separated within 25min by CE-MS/MS using 5molL -1 acetic acid as background electrolyte and 5mmolL -1 acetic acid in 50% methanol/H 2 O (v/v) as sheath liquid. The proposed CE-MS/MS method was validated, presenting RSD values below 6% and 11% for intra- and inter-day precision, respectively, for the middle concentration level within the linear range. The limits of detection ranged from 35 (homocysteine) to 268nmolL -1 (glutamic acid). The validated method was applied to the analysis of plasma samples from a group of healthy individuals and patients with ALS, showing the potential of glutamic acid and homocysteine metabolites as biomarkers of ALS. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Magnetic immunoassay using CdSe/ZnS quantum dots as fluorescent probes to detect the level of DNA methyltransferase 1 in human serum sample

    Directory of Open Access Journals (Sweden)

    Yu F

    2018-01-01

    Full Text Available Fei Yu,1,* Ya-min Xiong,1,* Song-cheng Yu,1 Lei-liang He,1 Shan-shan Niu,1 Yu-ming Wu,1 Jie Liu,1 Ling-bo Qu,2 Li-e Liu,1 Yong-jun Wu1 1College of Public Health, 2College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China *These authors contributed equally to this work Background: DNA methyltransferase 1 (DNMT1, a dominant enzyme responsible for the transfer of a methyl group from the universal methyl donor to the 5-position of cytosine residues in DNA, is essential for mammalian development and closely related to cancer and a variety of age-related chronic diseases. DNMT1 has become a useful biomarker in early disease diagnosis and a potential therapeutic target in cancer therapy and drug development. However, till now, most of the studies on DNA methyltransferase (MTase detection have focused on the prokaryote MTase and its activity.Methods: A magnetic fluorescence-linked immunosorbent assay (FLISA using CdSe/ZnS quantum dots as fluorescent probes was proposed for the rapid and sensitive detection of the DNMT1 level in this study. Key factors that affect the precision and accuracy of the determination of DNMT1 were optimized.Results: Under the optimal conditions, the limit of detection was 0.1 ng/mL, the linear range was 0.1–1,500 ng/mL, the recovery was 91.67%–106.50%, and the relative standard deviations of intra- and inter-assays were respectively 5.45%–11.29% and 7.03%–11.25%. The cross-reactivity rates with DNA methyltransferases 3a and 3b were only 4.0% and 9.4%, respectively. Furthermore, FLISA was successfully used to detect the levels of DNMT1 in human serum samples, and compared with commercial enzyme-linked immunosorbent assay (ELISA kits. The results revealed that there was a good correlation between FLISA and commercial ELISA kits (correlation coefficient r=0.866, p=0.001. The linear scope of FLISA was broader than ELISA, and the measurement time was much shorter

  6. Quantification of acetylcholine, choline, betaine, and dimethylglycine in human plasma and urine using stable-isotope dilution ultra performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Kirsch, Susanne H; Herrmann, Wolfgang; Rabagny, Yannick; Obeid, Rima

    2010-12-15

    Disorders in choline metabolism are related to disease conditions. We developed a stable-isotope dilution ultra performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification of acetylcholine (ACh), betaine, choline, and dimethylglycine (DMG). We used this method to measure concentrations of the analytes in plasma and urine in addition to other biological fluids after a protein precipitation by acetonitrile. The detection limits were between 0.35 nmol/L (for ACh in urine) and 0.34 μmol/L (for betaine in urine). ACh concentrations were not detectable in plasma. Intraassay and interassay coefficient of variation (CVs) were all DMG in cerebrospinal fluid (CV=12.44%). Mean recoveries in urine pool samples were between 99.2% and 103.9%. The urinary excretion of betaine, choline, and DMG was low, with approximately 50.0% higher excretion of choline in females compared to males. Median urinary excretion of ACh were 3.44 and 3.92 μmol/mol creatinine in males and females, respectively (p=0.689). Plasma betaine concentrations correlated significantly with urinary excretions of betaine (r=0.495, p=0.027) and choline (r=0.502, p=0.024) in females. Plasma choline concentrations correlated significantly with urinary excretion of ACh in males (r=0.419, p=0.041) and females (r=0.621, p=0.003). The new method for the simultaneous determination of ACh, betaine, choline, and DMG is sensitive, precise, and fast enough to be used in clinical investigations related to the methylation pathway. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Noncompetitive inhibition of indolethylamine-N-methyltransferase by N,N-dimethyltryptamine and N,N-dimethylaminopropyltryptamine.

    Science.gov (United States)

    Chu, Uyen B; Vorperian, Sevahn K; Satyshur, Kenneth; Eickstaedt, Kelsey; Cozzi, Nicholas V; Mavlyutov, Timur; Hajipour, Abdol R; Ruoho, Arnold E

    2014-05-13

    Indolethylamine-N-methyltransferase (INMT) is a Class 1 transmethylation enzyme known for its production of N,N-dimethyltryptamine (DMT), a hallucinogen with affinity for various serotonergic, adrenergic, histaminergic, dopaminergic, and sigma-1 receptors. DMT is produced via the action of INMT on the endogenous substrates tryptamine and S-adenosyl-l-methionine (SAM). The biological, biochemical, and selective small molecule regulation of INMT enzyme activity remain largely unknown. Kinetic mechanisms for inhibition of rabbit lung INMT (rabINMT) by the product, DMT, and by a new novel tryptamine derivative were determined. After Michaelis-Menten and Lineweaver-Burk analyses had been applied to study inhibition, DMT was found to be a mixed competitive and noncompetitive inhibitor when measured against tryptamine. The novel tryptamine derivative, N-[2-(1H-indol-3-yl)ethyl]-N',N'-dimethylpropane-1,3-diamine (propyl dimethyl amino tryptamine or PDAT), was shown to inhibit rabINMT by a pure noncompetitive mechanism when measured against tryptamine with a Ki of 84 μM. No inhibition by PDAT was observed at 2 mM when it was tested against structurally similar Class 1 methyltransferases, such as human phenylethanolamine-N-methyltransferase (hPNMT) and human nicotinamide-N-methyltransferase (hNNMT), indicating selectivity for INMT. The demonstration of noncompetitive mechanisms for INMT inhibition implies the presence of an inhibitory allosteric site. In silico analyses using the computer modeling software Autodock and the rabINMT sequence threaded onto the human INMT (hINMT) structure (Protein Data Bank entry 2A14 ) identified an N-terminal helix-loop-helix non-active site binding region of the enzyme. The energies for binding of DMT and PDAT to this region of rabINMT, as determined by Autodock, were -6.34 and -7.58 kcal/mol, respectively. Assessment of the allosteric control of INMT may illuminate new biochemical pathway(s) underlying the biology of INMT.

  8. The Serum High-Sensitive C Reactive Protein and Homocysteine Levels to Evaluate the Prognosis of Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Tahir Yoldas

    2007-01-01

    Full Text Available Ischemic stroke is one of the most common causes of death worldwide and is most often caused by thrombotic processes. We investigated the changes in hsCRP and homocysteine levels, two of these risk factors, during the acute period of ischemic stroke and evaluated the relationship between these levels and the short-term prognosis. HsCRP and homocysteine levels were measured at the 2nd, 5th, and 10th days in forty patients admitted within second of an ischemic stroke. The clinical status of the patients was simultaneously evaluated with the Scandinavian stroke scale. The results were compared with 40 healthy control subjects whose age and sex were matched with the patients. The mean hsCRP levels of the patients were 9.4±7.0 mg/L on the 2nd day, 11.0±7.4 mg/L on the 5th day, and 9.2±7.0 mg/L on the 10th day. The mean hsCRP level of the control subjects was 1.7±2.9 mg/L. The mean hsCRP levels of the patients on the 2nd, 5th, and 10th days were significantly higher than the control subjects (P<.001. The patients' mean homocysteine levels were 40.6±9.6μmol/L on the 2nd day, 21.7±11.1μmol/L on the 5th day, and 20.7±9.2μmol/L on the 10th day. The mean homocysteine level of the control subjects was 11.2±1.1μmol/L. The homocysteine levels of the patients were higher than the control subjects at all times (P<.01. In conclusion, patients with stroke have a higher circulating serum hsCRP and homocysteine levels. Short-term unfavorable prognosis seems to be associated with elevated serum hsCRP levels in patients with stroke. Although serum homocysteine was found to be higher, homocysteine seems not related to prog nosis.

  9. Serum homocysteine levels in cerebrovascular accidents

    OpenAIRE

    Zongte, Zolianthanga; Shaini, L.; Debbarma, Asis; Singh, Th Bhimo; Devi, S. Bilasini; Singh, W. Gyaneshwar

    2008-01-01

    Hyperhomocysteinemia has been considered an independent risk factor in the development of stroke. The present study was undertaken to evaluate serum homocysteine levels in patients with cerebrovascular accidents among the Manipuri population and to compare with the normal cases. Ninety-three cerebrovascular accident cases admitted in the hospital were enrolled for the study and twenty-seven age and sex matched individuals free from cerebrovascular diseases were taken as control group. Serum h...

  10. The selective electrochemical detection of homocysteine in the presence of glutathione, cysteine, and ascorbic acid using carbon electrodes.

    Science.gov (United States)

    Lee, P T; Lowinsohn, D; Compton, R G

    2014-08-07

    The detection of homocysteine, HCys, was achieved with the use of catechol via 1,4-Michael addition reaction using carbon electrodes: a glassy carbon electrode and a carbon nanotube modified glassy carbon electrode. The selective detection of homocysteine was investigated and achieved in the absence and presence of glutathione, cysteine and ascorbic acid using cyclic voltammetry and square wave voltammetry. A calibration curve of homocysteine detection was determined and the sensitivity is (0.20 ± 0.02) μA μM(-1) and the limit of detection is 660 nM within the linear range. Lastly, commercially available multi walled carbon nanotube screen printed electrodes were applied to the system for selective homocysteine detection. This work presents a potential practical application towards medical applications as it can be highly beneficial towards quality healthcare management.

  11. The effect of hormone replacement therapy on serum homocysteine levels in perimenopausal women : a randomized controlled trial

    NARCIS (Netherlands)

    Hak, AE; Bak, AAA; Lindemans, J; Planellas, J; Bennink, HJTC; Hofman, A; Grobbee, DE; Witteman, JCM

    2001-01-01

    Serum homocysteine levels may be lowered by hormone replacement therapy, but randomized controlled trial data are scarce. We performed a single center randomized placebo-controlled trial to assess the 6 months effect of hormone replacement therapy compared with placebo on fasting serum homocysteine

  12. Homocysteine, progression of ventricular enlargement, and cognitive decline: the Second Manifestations of ARTerial disease-Magnetic Resonance study

    NARCIS (Netherlands)

    Jochemsen, Hadassa M.; Kloppenborg, Raoul P.; de Groot, Lisette C. P. G. M.; Kampman, Ellen; Mali, Willem P. T. M.; van der Graaf, Yolanda; Geerlings, Mirjam I.; Doevendans, P. A.; van der Graaf, Y.; Grobbee, D. E.; Rutten, G. E. H. M.; Kappelle, L. J.; Mali, W. P. Th M.; Moll, F. L.; Visseren, F. L. J.

    2013-01-01

    Homocysteine may be a modifiable risk factor for cognitive decline and brain atrophy, particularly in older persons. We examined whether homocysteine increased the risk for cognitive decline and brain atrophy, and evaluated the modifying effect of age. Within the Second Manifestations of ARTerial

  13. Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel that Evolved by Gene Duplication

    Energy Technology Data Exchange (ETDEWEB)

    Pejcha, Robert; Ludwig, Martha L. (Michigan)

    2010-03-08

    Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two ({beta}{alpha}){sub 8} barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys){sub 3}Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E {center_dot} Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  14. Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel that Evolved by Gene Duplication

    International Nuclear Information System (INIS)

    Pejcha, Robert; Ludwig, Martha L.

    2005-01-01

    Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (βα) 8 barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys) 3 Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E · Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  15. Cobalamin-independent methionine synthase (MetE: a face-to-face double barrel that evolved by gene duplication.

    Directory of Open Access Journals (Sweden)

    Robert Pejchal

    2005-02-01

    Full Text Available Cobalamin-independent methionine synthase (MetE catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH, both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (betaalpha(8 barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys(3Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E.Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  16. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    International Nuclear Information System (INIS)

    Mizuno, Kouichi; Matsuzaki, Masahiro; Kanazawa, Shiho; Tokiwano, Tetsuo; Yoshizawa, Yuko; Kato, Misako

    2014-01-01

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl- 14 C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or with

  17. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Kouichi, E-mail: koumno@akita-pu.ac.jp [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Matsuzaki, Masahiro [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Kanazawa, Shiho [Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Tokiwano, Tetsuo; Yoshizawa, Yuko [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Kato, Misako [Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan)

    2014-10-03

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-{sup 14}C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or

  18. Effects of Metformin Treatment on Homocysteine Levels and Metabolic Parameters of Women With Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Soheila Riahinejad

    2016-04-01

    Full Text Available Objective: Polycystic ovary syndrome (PCOS is one of the most common endocrine disorders in women. Metformin is a biguanide commonly used to improve PCOS symptoms. Effect of metformin on the levels of serum homocysteine (Hcy in PCOS women is unclear. The aim of this study is evaluating the effect of metformin administration on serum Hcy levels and metabolic parameters of PCOS patients.Materials and methods: Thirty three patients with PCOS were enrolled in this study who were selected randomly. All patients received metformin from the fifth day of menstrual cycle at a dose of 850 mg (one tablet daily for 3 months. Body mass index, Triglycerides, total cholesterol, high-density lipoprotein cholesterol (HDL-C, low-density lipoprotein cholesterol (LDL-C, fasting blood sugar and homocysteine levels were recorded at entry into the study and after 3 months treatment.Results: BMI, plasma Homocysteine concentrations and fasting blood sugar levels were significantly (p < 0.05 decreased after the treatment period. No significant changes were observed in the lipid profiles of patients. There was a weak negative correlation between homocysteine and LDL cholesterol serum levels (p = 0.04, r = -0.27.Conclusion: Treatment with metformin in PCOS women may lead to beneficial effects in terms of BMI, plasma homocysteine concentrations and fasting blood sugar with no remarkable effect on lipid profile. 

  19. Synthesis and characterization of hydrophobically modified polymeric betaines

    Directory of Open Access Journals (Sweden)

    Alexey Shakhvorostov

    2015-09-01

    Full Text Available Polymeric betaines containing long alkyl chains C12H25, C14H29, C16H33 and C18H37 were synthesized by Michael addition reaction of alkylaminocrotonates and methacrylic acid (MAA. They were characterized by FTIR, 13C NMR, DSC, DLS, GPC, cryo-TEM, viscometry and zeta-potential measurements. The polymers were fully soluble in DMF, THF and DMSO, partially dissolved in aromatic hydrocarbons (benzene, toluene, o-xylene and formed colloid solutions in aqueous KOH. In aqueous KOH and DMSO solutions, hydrophobically modified polymeric betaines behaved as polyelectrolytes. The average hydrodynamic size and zeta potential of diluted aqueous solutions of hydrophobic polybetainess containing dodecyl-, tetradecyl-, hexadecyl-, and octadecyl groups were studied as a function of pH. Anomalous low values of the isoelectric point (IEP of amphoteric macromolecules were found to be in the range of pH 2.7-3.4. According to DLS data, the average size of macromolecules tends to decrease with dilution. Zeta-potential of amphoteric macromolecules in aqueous solution is much higher than that in DMSO. The cryo-TEM results revealed that in both aqueous KOH and DMSO media, the micron- and nanosized vesicles existed. The structural organization of vesicles in water and DMSO is discussed. The wax inhibition effect of hydrophobic polybetaines at a decrease of the pour point temperatures of high paraffinic oils was better in comparison with commercial available ethylene-vinylacetate copolymers (EVA.

  20. Deacidification of palm oil using betaine monohydrate-based natural deep eutectic solvents.

    Science.gov (United States)

    Zahrina, Ida; Nasikin, Mohammad; Krisanti, Elsa; Mulia, Kamarza

    2018-02-01

    In the palm oil industry, the deacidification process is performed by steam stripping which causes the loss of most of palm oil's natural antioxidants due to high temperature. The liquid-liquid extraction process which is carried out at low temperature is preferable in order to preserve these compounds. The use of hydrated ethanol can reduce the losses of antioxidants, but the ability of this solvent to extract free fatty acids also decreases. Betaine monohydrate-based natural deep eutectic solvents (NADES) have extensive potential for this process. The selectivity of these NADES was determined to select a preferable solvent. The betaine monohydrate-glycerol NADES in a molar ratio of 1:8 was determined to be the preferred solvent with the highest selectivity. This solvent has an efficiency of palmitic acid extraction of 34.14%, and the amount of antioxidants can be preserved in the refined palm oil up to 99%. The compounds are stable during extraction. Copyright © 2017. Published by Elsevier Ltd.

  1. Crystallization and preliminary crystallographic analysis of tRNA (m7G46) methyltransferase from Escherichia coli

    International Nuclear Information System (INIS)

    Liu, Qi; Gao, Yang; Yang, Weili; Zhou, Huihao; Gao, Yongxiang; Zhang, Xiao; Teng, Maikun; Niu, Liwen

    2008-01-01

    tRNA (m 7 G46) methyltransferase from E. coli was overexpressed, purified and crystallized. Diffraction data were collected to 2.04 Å resolution. Transfer RNA (tRNA) (m 7 G46) methyltransferase (TrmB) belongs to the Rossmann-fold methyltransferase (RFM) family and uses S-adenosyl-l-methionine (SAM) as the methyl-group donor to catalyze the formation of N 7 -methylguanosine (m 7 G) at position 46 in the variable loop of tRNAs. After attempts to crystallize full-length Escherichia coli TrmB (EcTrmB) failed, a truncated protein lacking the first 32 residues of the N-terminus but with an additional His 6 tag at the C-terminus was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 (PEG 3350) as precipitant at 283 K. An X-ray diffraction data set was collected using a single flash-cooled crystal that belonged to space group P2 1

  2. Alternative syntheses of [73,75Se]selenoethers exemplified for homocysteine[73,75Se]selenolactone

    International Nuclear Information System (INIS)

    Ermert, J.; Blum, T.; Hamacher, K.; Coenen, H.H.

    2001-01-01

    The present work describes two radiosynthetic pathways to prepare homocysteine[ 75 Se]selenolactone 1 starting from n.c.a. [ 75 Se]selenite 2. It was achieved either by alkylation reaction of n.c.a. methyl[ 75 Se]selenide 4 or by hydrolysis of alkylated 1,3-dicyclohexyl[ 75 Se]selenourea 11. N.c.a. methyl[ 75 Se]selenide 4 is available using sulfur as non-isotopic carrier. However, the radiochemical yield of the substitution of 2-tert.-butoxycarbonylamino-4-bromobutyric acid ethylester 5 with n.c.a. methyl-[ 75 Se]selenide is only in the range of 15%-20%. Birch reduction of protected n.c.a. [ 75 Se]selenomethionine 6 formed leads to a RCY of 5%-10% homocysteine[ 75 Se]selenolactone 1. Alternatively, the synthesis of homocysteine[ 75 Se]selenolactone 1 is possible by hydrolysis of the corresponding [ 75 Se]selenouronium salt 11 available by addition of 2-tert.-butoxycarbonylamino-4-bromobutyric acid ethylester 5 to 1,3-dicyclohexyl[ 75 Se]selenourea 10. A method was developed for the synthesis of 1,3-dicyclohexyl[ 75 Se]selenourea 10 by addition of c.a. [ 75 Se]SeH 2 to 1,3-dicyclohexylcarbodiimide, which leads to 20%-30% RCY of c.a. homocysteine[ 75 Se]selenolactone 1. (orig.)

  3. 1 RESEARCH ARTICLE Neuro-Fuzzy Model of Homocysteine ...

    Indian Academy of Sciences (India)

    2017-03-10

    Mar 10, 2017 ... metabolism and investigated the influence of life style modulations in controlling ... fuzzy model showed higher accuracy in predicting homocysteine with a ... The dietary source of folate is in the form of folyl polyglutamate and is .... protein and the ligands were optimized by Drug Discovery studio version 3.0.

  4. Identification of the RsmG methyltransferase target as 16S rRNA nucleotide G527 and characterization of Bacillus subtilis rsmG mutants

    DEFF Research Database (Denmark)

    Nishimura, Kenji; Johansen, Shanna K; Inaoka, Takashi

    2007-01-01

    The methyltransferase RsmG methylates the N7 position of nucleotide G535 in 16S rRNA of Bacillus subtilis (corresponding to G527 in Escherichia coli). Disruption of rsmG resulted in low-level resistance to streptomycin. A growth competition assay revealed that there are no differences in fitness...... between the rsmG mutant and parent strains under the various culture conditions examined. B. subtilis rsmG mutants emerged spontaneously at a relatively high frequency, 10(-6). Importantly, in the rsmG mutant background, high-level-streptomycin-resistant rpsL (encoding ribosomal protein S12) mutants...

  5. Determination of Betaine in Fructus Lycii Using Hydrophilic Interaction Liquid Chromatography with Evaporative Light Scattering Detection

    International Nuclear Information System (INIS)

    Shin, Hyun Du; Suh, Joon Hyuk; Kim, Jung Hyun; Lee, Hye Yeon; Eom, Han Young; Kim, Un Yong; Yang, Dong Hyug; Han, Sang Beom; Youm, Jeong Rok

    2012-01-01

    A simple new method was developed for the determination of betaine in Fructus Lycii using hydrophilic interaction liquid chromatography with evaporative light scattering detection (HILIC-ELSD). Good chromatographic separation and reasonable betaine retention was achieved on a Kinetex HILIC column (2.1 x 100 mm, 2.6 μm) packed with fused-core particle. The mobile phase consisted of (A) acetonitrile and (B) 10 mM ammonium formate (pH 3.0)/acetonitrile (90/10, v/v). It was used with gradient elution at a flow rate of 0.7 mL/ min. The column temperature was set at 27.5 .deg. C and the injection volume was 10 μL. The ELSD drift tube temperature was 50 .deg. C and the nebulizing gas (nitrogen) pressure was 3.0 bar. Stachydrine, a zwitterionic compound, was used as an internal standard. Calibration curve over 10-250 μg/mL showed good linearity (R 2 > 0.9992) and betaine in the 70% methanol extract of Fructus Lycii was well separated from other peaks. Intra and inter-day precision ranged from 1.1 to 3.0% and from 2.4 to 5.3%, respectively, while intra- and inter-day accuracy ranged from 100.0 to 107.0% and from 94.3 to 103.9%, respectively. The limit of quantification (LOQ) was 10 μg/mL and the recoveries were in the range of 98.2-102.7%. The developed HILIC-ELSD method was successfully applied to quantitatively determine the amount of betaine in fourteen Fructus Lycii samples from different locations, demonstrating that this method is simple, rapid, and suitable for the quality control of Fructus Lycii

  6. Study on relationships among deep vein thrombosis, homocysteine & related B group vitamins.

    Science.gov (United States)

    Ekim, Meral; Ekim, Hasan; Yilmaz, Yunus Keser; Kulah, Bahadir; Polat, M Fevzi; Gocmen, A Yesim

    2015-01-01

    Hyperhomocysteinemia has been considered as a potential risk factor for deep venous thrombosis (DVT) but it is still controversy. We aimed to evaluate the prevalence of hyperhomocysteinemia in patients with DVT. Our second objective was to document the prevalence of folate, Vitamin B6, and Vitamin B12 level in this patient population. Sixty patients with DVT aged from 23 to 84 years, were assessed regarding demographic characteristics, serum levels of homocysteine, folate, vitamin B12, and vitamin B6. The diagnosis of DVT was based upon Wells scoring system and serum D-dimer level and confirmed by deep venous Doppler ultrasonography of the lower limbs. Mean serum homocysteine levels were found significantly higher in patients over the age of 40 years (10.81±4.26 µmol/L vs 9.13±3.23 µmol/L). Of all the patients, 9 patients had homocysteine level above the 15µmol/L, 26 had folic acid level below 3 ng/ml, one had vitamin B12 level below 150 pmol/L, and two had vitamin B6 level below 30 nmol/L. In the hyperhomocysteinemic group, five patients had low folic acid level, one had low vitamin B12 level, and two had low vitamin B6 level. Hyperhomocysteinemia, in women older than 40 years, may be a risk factor for DVT. Folic acid deficiency may also influence serum homocysteine concentrations. Folate therapy may be offered to the patients with DVT. However further studies are required to clarify the underlying molecular mechanisms.

  7. Clinical significance of determination of plasma endothelin (ET) and homocysteine (Hcy) levels in patients with diabetic nephropathy

    International Nuclear Information System (INIS)

    Zhang Aimin; Jin Ying; Zhou Xiu

    2005-01-01

    Objective: To determine the plasma levels of endothelin (ET) and homocysteine (Hcy) in patients with diabetic nephropathy. Methods: Plasma ET (with RIA) and Hcy( with electrochemiluminescence) contents were determined in 32 DM2 patients without nephropathy, 35 DM2 patients with nephropathy and 30 controls. Results: Endothelin and homocysteine levels were significantly higher in patients with diabetic nephropathy than those in patients without nephropathy and controls (P<0.05- 0.01). Conclusion: Endothelin and homocysteine were involved in the pathogenesis of diabetic nephropathy, and determination of which were of diagnostic and prognostic value in clinical practice. (authors)

  8. Application of NMR-based metabonomics suggests a relationship between betaine absorption and elevated creatine plasma concentrations in catheterised sows

    DEFF Research Database (Denmark)

    Yde, Christian Clement; Westerhuis, Johan A.; Bertram, Hanne Christine S.

    2012-01-01

    of these metabolites from the small intestine. The LF diet resulted in a higher betaine concentration in the blood than the two high-fibre diets (P¼0·008). This leads to higher plasma concentrations of methionine (P¼0·0028) and creatine (P¼0·020) of endogenous origin. In conclusion, the use of NMR spectroscopy...... for measuring nutrient uptake in the present study elucidated the relationship between betaine uptake and elevated creatine plasma concentrations....

  9. Homocysteine and vitamin B 12 status and iron deficiency anemia in female university students from Gaza Strip, Palestine

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammed Sirdah

    2014-06-01

    Full Text Available OBJECTIVE: Nutritional deficiencies are very significant to the overall health of humans at all ages and for both genders, yet in infants, children and women of childbearing age these deficiencies can seriously affect growth and development. The present work is aimed to assess homocysteine and vitamin B12 status in females with iron deficiency anemia from the Gaza Strip.METHODS: Venous blood samples were randomly collected from 240 female university students (18-22 years old and parameters of the complete blood count, serum ferritin, homocysteine and vitamin B12 were measured. Statistical analysis included the t-test and analysis of variance (ANOVA using the IBM SPSS software (version 18. Statistical significance was set for p-values <0.05.RESULTS: The results revealed that 20.4% of the students have iron deficiency anemia. The mean serum vitamin B12 level in females with iron deficiency anemia (212.9 ± 62.8 pg/mL was significantly lower than in normal controls (286.9 ± 57.1 pg/mL and subjects with microcytic anemia and normal ferritin (256.7 ± 71.1 pg/mL. Significantly higher serum homocysteine levels were reported in the iron deficiency anemia group (27.0 ± 4.6 µmol/L compared to normal controls (15.5 ± 2.9 µmol/L and in subjects with microcytic anemia and normal ferritin (18.1 ± 2.7 µmol/L. Statistically significant negative correlations were reported for serum homocysteine with serum ferritin, vitamin B12, hemoglobin, and hematocrit levels.CONCLUSION: Important associations were found between serum homocysteine and markers of iron deficiency. Monitoring homocysteine levels might be essential to understand the development of different clinical conditions including anemia. It seems necessary to conduct prospective trials to determine whether treating anemia ameliorates homocysteine levels.

  10. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance.

    Science.gov (United States)

    Kumar, Shashi; Dhingra, Amit; Daniell, Henry

    2004-09-01

    Salinity is one of the major factors that limits geographical distribution of plants and adversely affects crop productivity and quality. We report here high-level expression of betaine aldehyde dehydrogenase (BADH) in cultured cells, roots, and leaves of carrot (Daucus carota) via plastid genetic engineering. Homoplasmic transgenic plants exhibiting high levels of salt tolerance were regenerated from bombarded cell cultures via somatic embryogenesis. Transformation efficiency of carrot somatic embryos was very high, with one transgenic event per approximately seven bombarded plates under optimal conditions. In vitro transgenic carrot cells transformed with the badh transgene were visually green in color when compared to untransformed carrot cells, and this offered a visual selection for transgenic lines. BADH enzyme activity was enhanced 8-fold in transgenic carrot cell cultures, grew 7-fold more, and accumulated 50- to 54-fold more betaine (93-101 micromol g(-1) dry weight of beta-Ala betaine and Gly betaine) than untransformed cells grown in liquid medium containing 100 mm NaCl. Transgenic carrot plants expressing BADH grew in the presence of high concentrations of NaCl (up to 400 mm), the highest level of salt tolerance reported so far among genetically modified crop plants. BADH expression was 74.8% in non-green edible parts (carrots) containing chromoplasts, and 53% in proplastids of cultured cells when compared to chloroplasts (100%) in leaves. Demonstration of plastid transformation via somatic embryogenesis utilizing non-green tissues as recipients of foreign DNA for the first time overcomes two of the major obstacles in extending this technology to important crop plants.

  11. Structure and possible mechanism of the CcbJ methyltransferase from Streptomyces caelestis

    Czech Academy of Sciences Publication Activity Database

    Bauer, J.; Ondrovičová, G.; Najmanová, Lucie; Pevala, V.; Kameník, Zdeněk; Koštan, J.; Janata, Jiří; Kutejová, Eva

    2014-01-01

    Roč. 70, APR 2014 (2014), s. 943-957 ISSN 0907-4449 R&D Projects: GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : CATECHOL-O-METHYLTRANSFERASE * SN2-LIKE TRANSITION-STATE * CRYSTAL-STRUCTURES Subject RIV: CE - Biochemistry Impact factor: 7.232, year: 2013

  12. Evaluation of Homocysteine, Lipoprotein(a) and Endothelin as ...

    African Journals Online (AJOL)

    Indians have been reported to have high prevalence rates of coronary artery disease (CAD) even in the absence of traditional risk factors. The objective of this study was to assess the role of endothelin, lipoprotein(a), homocysteine and lipid profile as markers of CAD in Indian population. It was a hospital based ...

  13. Drosophila arginine methyltransferase 1 (DART1) is an ecdysone receptor co-repressor

    International Nuclear Information System (INIS)

    Kimura, Shuhei; Sawatsubashi, Shun; Ito, Saya; Kouzmenko, Alexander; Suzuki, Eriko; Zhao, Yue; Yamagata, Kaoru; Tanabe, Masahiko; Ueda, Takashi; Fujiyama, Sari; Murata, Takuya; Matsukawa, Hiroyuki; Takeyama, Ken-ichi; Yaegashi, Nobuo

    2008-01-01

    Histone arginine methylation is an epigenetic marker that regulates gene expression by defining the chromatin state. Arginine methyltransferases, therefore, serve as transcriptional co-regulators. However, unlike other transcriptional co-regulators, the physiological roles of arginine methyltransferases are poorly understood. Drosophila arginine methyltransferase 1 (DART1), the mammalian PRMT1 homologue, methylates the arginine residue of histone H4 (H4R3me2). Disruption of DART1 in Drosophila by imprecise P-element excision resulted in low viability during metamorphosis in the pupal stages. In the pupal stage, an ecdysone hormone signal is critical for developmental progression. DART1 interacted with the nuclear ecdysone receptor (EcR) in a ligand-dependent manner, and co-repressed EcR in intact flies. These findings suggest that DART1, a histone arginine methyltransferase, is a co-repressor of EcR that is indispensable for normal pupal development in the intact fly

  14. Isozyme-specific enzyme inhibitors. 14. 5'(R)-C-[(L-homocystein-S-yl)methyl]adenosine 5'-(beta,gamma-imidotriphosphate), a potent inhibitor of rat methionine adenosyltransferases.

    Science.gov (United States)

    Kappler, F; Vrudhula, V M; Hampton, A

    1987-09-01

    The title compound is a covalent adduct of L-methionine (Met) and beta,gamma-imido-ATP. In its synthesis the N-Boc derivative of 5'(R)-C-(aminomethyl)-N6-benzoyl-5'-O-tosyl-2',3'-O- isopropylidenadenosine was converted by the successive actions of CF3CO2H and HNO2 into the corresponding 5'(R)-C-hydroxymethyl derivative. Treatment of this with disodium L-homocysteinate led to attack of sulfur at C6', apparently via a 5',6'-epoxide, and to total stereoselective inversion at C5' to furnish, after debenzoylation, 5'(R)-C-(L-homocystein-S-ylmethyl)-2',3'-O-isopropylidene ade nosine. The 5' configuration was established by conversion of this into the known 5'(S)-C-methyl-2',3'-O-isopropylidene adenosine with Raney nickel. The alpha-amino acid residue was protected as an N-Boc methyl ester, after which the 5'-hydroxyl was phosphorylated with benzyl phosphate and dicyclohexylcarbodiimide. The phosphoanhydride bond with inorganic imidodiphosphate was then created by established methods. Finally, blocking groups were removed under conditions that gave the desired adduct with no racemization of its L-methionine residue. It was a potent inhibitor [KM(ATP)/Ki = 1080; KM(Met)/Ki = 7.7] of the M-2 (normal tissue) form of rat methionine adenosyltransferase and of the M-T (hepatoma tissue) form [KM(ATP)/Ki = 670; KM(Met)/Ki = 22]. Inhibitions were competitive with respect to ATP or to L-methionine, indicating a dual substrate site mode of binding to the enzyme forms.

  15. GNMT Expression Increases Hepatic Folate Contents and Folate-Dependent Methionine Synthase-Mediated Homocysteine Remethylation

    OpenAIRE

    Wang, Yi-Cheng; Chen, Yi-Ming; Lin, Yan-Jun; Liu, Shih-Ping; Chiang, En-Pei Isabel

    2011-01-01

    Glycine N-methyltransferase (GNMT) is a major hepatic enzyme that converts S-adenosylmethionine to S-adenosylhomocysteine while generating sarcosine from glycine, hence it can regulate mediating methyl group availability in mammalian cells. GNMT is also a major hepatic folate binding protein that binds to, and, subsequently, may be inhibited by 5-methyltetrafolate. GNMT is commonly diminished in human hepatoma; yet its role in cellular folate metabolism, in tumorigenesis and antifolate therap...

  16. Status of B-vitamins and homocysteine in diabetic retinopathy: association with vitamin-B12 deficiency and hyperhomocysteinemia.

    Science.gov (United States)

    Satyanarayana, Alleboena; Balakrishna, Nagalla; Pitla, Sujatha; Reddy, Paduru Yadagiri; Mudili, Sivaprasad; Lopamudra, Pratti; Suryanarayana, Palla; Viswanath, Kalluru; Ayyagari, Radha; Reddy, Geereddy Bhanuprakash

    2011-01-01

    Diabetic retinopathy (DR) is a common cause of blindness. Although many studies have indicated an association between homocysteine and DR, the results so far have been equivocal. Amongst the many determinants of homocysteine, B-vitamin status was shown to be a major confounding factor, yet very little is known about its relationship to DR. In the present study, we, therefore, investigated the status of B-vitamins and homocysteine in DR. A cross-sectional case-control study was conducted with 100 normal control (CN) subjects and 300 subjects with type-2 diabetes (T2D). Of the 300 subjects with T2D, 200 had retinopathy (DR) and 100 did not (DNR). After a complete ophthalmic examination including fundus fluorescein angiography, the clinical profile and the blood levels of all B-vitamins and homocysteine were analyzed. While mean plasma homocysteine levels were found to be higher in T2D patients compared with CN subjects, homocysteine levels were particularly high in the DR group. There were no group differences in the blood levels of vitamins B1 and B2. Although the plasma vitamin-B6 and folic acid levels were significantly lower in the DNR and DR groups compared with the CN group, there were no significant differences between the diabetes groups. Interestingly, plasma vitamin-B12 levels were found to be significantly lower in the diabetes groups compared with the CN group; further, the levels were significantly lower in the DR group compared with the DNR group. Higher homocysteine levels were significantly associated with lower vitamin-B12 and folic acid but not with other B-vitamins. Additionally, hyperhomocysteinemia and vitamin-B12 deficiency did not seem to be related to subjects' age, body mass index, or duration of diabetes. These results thus suggest a possible association between vitamin-B12 deficiency and hyperhomocysteinemia in DR. Further, the data indicate that vitamin-B12 deficiency could be an independent risk factor for DR.

  17. An O-Methyltransferase Is Required for Infection of Tick Cells by Anaplasma phagocytophilum.

    Science.gov (United States)

    Oliva Chávez, Adela S; Fairman, James W; Felsheim, Roderick F; Nelson, Curtis M; Herron, Michael J; Higgins, LeeAnn; Burkhardt, Nicole Y; Oliver, Jonathan D; Markowski, Todd W; Kurtti, Timothy J; Edwards, Thomas E; Munderloh, Ulrike G

    2015-01-01

    Anaplasma phagocytophilum, the causative agent of Human Granulocytic Anaplasmosis (HGA), is an obligately intracellular α-proteobacterium that is transmitted by Ixodes spp ticks. However, the pathogen is not transovarially transmitted between tick generations and therefore needs to survive in both a mammalian host and the arthropod vector to complete its life cycle. To adapt to different environments, pathogens rely on differential gene expression as well as the modification of proteins and other molecules. Random transposon mutagenesis of A. phagocytophilum resulted in an insertion within the coding region of an o-methyltransferase (omt) family 3 gene. In wild-type bacteria, expression of omt was up-regulated during binding to tick cells (ISE6) at 2 hr post-inoculation, but nearly absent by 4 hr p.i. Gene disruption reduced bacterial binding to ISE6 cells, and the mutant bacteria that were able to enter the cells were arrested in their replication and development. Analyses of the proteomes of wild-type versus mutant bacteria during binding to ISE6 cells identified Major Surface Protein 4 (Msp4), but also hypothetical protein APH_0406, as the most differentially methylated. Importantly, two glutamic acid residues (the targets of the OMT) were methyl-modified in wild-type Msp4, whereas a single asparagine (not a target of the OMT) was methylated in APH_0406. In vitro methylation assays demonstrated that recombinant OMT specifically methylated Msp4. Towards a greater understanding of the overall structure and catalytic activity of the OMT, we solved the apo (PDB_ID:4OA8), the S-adenosine homocystein-bound (PDB_ID:4OA5), the SAH-Mn2+ bound (PDB_ID:4PCA), and SAM- Mn2+ bound (PDB_ID:4PCL) X-ray crystal structures of the enzyme. Here, we characterized a mutation in A. phagocytophilum that affected the ability of the bacteria to productively infect cells from its natural vector. Nevertheless, due to the lack of complementation, we cannot rule out secondary mutations.

  18. An O-Methyltransferase Is Required for Infection of Tick Cells by Anaplasma phagocytophilum.

    Directory of Open Access Journals (Sweden)

    Adela S Oliva Chávez

    Full Text Available Anaplasma phagocytophilum, the causative agent of Human Granulocytic Anaplasmosis (HGA, is an obligately intracellular α-proteobacterium that is transmitted by Ixodes spp ticks. However, the pathogen is not transovarially transmitted between tick generations and therefore needs to survive in both a mammalian host and the arthropod vector to complete its life cycle. To adapt to different environments, pathogens rely on differential gene expression as well as the modification of proteins and other molecules. Random transposon mutagenesis of A. phagocytophilum resulted in an insertion within the coding region of an o-methyltransferase (omt family 3 gene. In wild-type bacteria, expression of omt was up-regulated during binding to tick cells (ISE6 at 2 hr post-inoculation, but nearly absent by 4 hr p.i. Gene disruption reduced bacterial binding to ISE6 cells, and the mutant bacteria that were able to enter the cells were arrested in their replication and development. Analyses of the proteomes of wild-type versus mutant bacteria during binding to ISE6 cells identified Major Surface Protein 4 (Msp4, but also hypothetical protein APH_0406, as the most differentially methylated. Importantly, two glutamic acid residues (the targets of the OMT were methyl-modified in wild-type Msp4, whereas a single asparagine (not a target of the OMT was methylated in APH_0406. In vitro methylation assays demonstrated that recombinant OMT specifically methylated Msp4. Towards a greater understanding of the overall structure and catalytic activity of the OMT, we solved the apo (PDB_ID:4OA8, the S-adenosine homocystein-bound (PDB_ID:4OA5, the SAH-Mn2+ bound (PDB_ID:4PCA, and SAM- Mn2+ bound (PDB_ID:4PCL X-ray crystal structures of the enzyme. Here, we characterized a mutation in A. phagocytophilum that affected the ability of the bacteria to productively infect cells from its natural vector. Nevertheless, due to the lack of complementation, we cannot rule out secondary

  19. Functional characterization of a rice de novo DNA methyltransferase, OsDRM2, expressed in Escherichia coli and yeast

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Jinsong, E-mail: pangjs542@nenu.edu.cn [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China); Dong, Mingyue; Li, Ning; Zhao, Yanli [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China); Liu, Bao, E-mail: baoliu@nenu.edu.cn [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China)

    2013-03-01

    Highlights: ► A rice de novo DNA methyltransferase OsDRM2 was cloned. ► In vitro methylation activity of OsDRM2 was characterized with Escherichia coli. ► Assays of OsDRM2 in vivo methylation were done with Saccharomyces cerevisiae. ► OsDRM2 methylation activity is not preferential to any type of cytosine context. ► The activity of OsDRM2 is independent of RdDM pathway. - Abstract: DNA methylation of cytosine nucleotides is an important epigenetic modification that occurs in most eukaryotic organisms and is established and maintained by various DNA methyltransferases together with their co-factors. There are two major categories of DNA methyltransferases: de novo and maintenance. Here, we report the isolation and functional characterization of a de novo methyltransferase, named OsDRM2, from rice (Oryza sativa L.). The full-length coding region of OsDRM2 was cloned and transformed into Escherichia coli and Saccharomyces cerevisiae. Both of these organisms expressed the OsDRM2 protein, which exhibited stochastic de novo methylation activity in vitro at CG, CHG, and CHH di- and tri-nucleotide patterns. Two lines of evidence demonstrated the de novo activity of OsDRM2: (1) a 5′-CCGG-3′ containing DNA fragment that had been pre-treated with OsDRM2 protein expressed in E. coli was protected from digestion by the CG-methylation-sensitive isoschizomer HpaII; (2) methylation-sensitive amplified polymorphism (MSAP) analysis of S. cerevisiae genomic DNA from transformants that had been introduced with OsDRM2 revealed CG and CHG methylation levels of 3.92–9.12%, and 2.88–6.93%, respectively, whereas the mock control S. cerevisiae DNA did not exhibit cytosine methylation. These results were further supported by bisulfite sequencing of the 18S rRNA and EAF5 genes of the transformed S. cerevisiae, which exhibited different DNA methylation patterns, which were observed in the genomic DNA. Our findings establish that OsDRM2 is an active de novo DNA

  20. Functional characterization of a rice de novo DNA methyltransferase, OsDRM2, expressed in Escherichia coli and yeast

    International Nuclear Information System (INIS)

    Pang, Jinsong; Dong, Mingyue; Li, Ning; Zhao, Yanli; Liu, Bao

    2013-01-01

    Highlights: ► A rice de novo DNA methyltransferase OsDRM2 was cloned. ► In vitro methylation activity of OsDRM2 was characterized with Escherichia coli. ► Assays of OsDRM2 in vivo methylation were done with Saccharomyces cerevisiae. ► OsDRM2 methylation activity is not preferential to any type of cytosine context. ► The activity of OsDRM2 is independent of RdDM pathway. - Abstract: DNA methylation of cytosine nucleotides is an important epigenetic modification that occurs in most eukaryotic organisms and is established and maintained by various DNA methyltransferases together with their co-factors. There are two major categories of DNA methyltransferases: de novo and maintenance. Here, we report the isolation and functional characterization of a de novo methyltransferase, named OsDRM2, from rice (Oryza sativa L.). The full-length coding region of OsDRM2 was cloned and transformed into Escherichia coli and Saccharomyces cerevisiae. Both of these organisms expressed the OsDRM2 protein, which exhibited stochastic de novo methylation activity in vitro at CG, CHG, and CHH di- and tri-nucleotide patterns. Two lines of evidence demonstrated the de novo activity of OsDRM2: (1) a 5′-CCGG-3′ containing DNA fragment that had been pre-treated with OsDRM2 protein expressed in E. coli was protected from digestion by the CG-methylation-sensitive isoschizomer HpaII; (2) methylation-sensitive amplified polymorphism (MSAP) analysis of S. cerevisiae genomic DNA from transformants that had been introduced with OsDRM2 revealed CG and CHG methylation levels of 3.92–9.12%, and 2.88–6.93%, respectively, whereas the mock control S. cerevisiae DNA did not exhibit cytosine methylation. These results were further supported by bisulfite sequencing of the 18S rRNA and EAF5 genes of the transformed S. cerevisiae, which exhibited different DNA methylation patterns, which were observed in the genomic DNA. Our findings establish that OsDRM2 is an active de novo DNA

  1. Umbilical choline and related methylamines betaine and dimethylglycine in relation to birth weight

    NARCIS (Netherlands)

    Hogeveen, M.; Heijer, M. den; Semmekrot, B.A.; Sporken, J.M.J.; Ueland, P.M.; Blom, H.J.

    2013-01-01

    Background:Low birth weight (LBW) is associated with increased morbidity and mortality for the newborn and risk of chronic disease in adulthood. Choline plays an essential role in the integrity of cell membranes, methylation reactions, and memory development. We examined whether choline, betaine,

  2. Insights into the interactions among Surfactin, betaines, and PAM: surface tension, small-angle neutron scattering, and small-angle X-ray scattering study.

    Science.gov (United States)

    Xiao, Jingwen; Liu, Fang; Garamus, Vasil M; Almásy, László; Handge, Ulrich A; Willumeit, Regine; Mu, Bozhong; Zou, Aihua

    2014-04-01

    The interactions among neutral polymer polyacrylamide (PAM) and the biosurfactant Surfactin and four betaines, N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SDDAB), N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (STDAB), N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SHDAB), and N-dodecyl-N,N-dimethyl-2-ammonio-acetate (C12BE), in phosphate buffer solution (PBS) have been studied by surface tension measurements, small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and rheological experiments. It has been confirmed that the length of alkyl chain is a key parameter of interaction between betaines and PAM. Differences in scattering contrast between X-ray and neutrons for surfactants and PAM molecules provide the opportunity to separately follow the changes of structure of PAM and surfactant aggregates. At concentrations of betaines higher than CMC (critical micelle concentration) and C2 (CMC of surfactant with the presence of polymer), spherical micelles are formed in betaines and betaines/PAM solutions. Transition from spherical to rod-like aggregates (micelles) has been observed in solutions of Surfactin and Surfactin/SDDAB (αSurfactin = 0.67 (molar fraction)) with addition of 0.8 wt % of PAM. The conformation change of PAM molecules only can be observed for Surfactin/SDDAB/PAM system. Viscosity values follow the structural changes suggested from scattering measurements i.e., gradually increases for mixtures PAM → Surfactin/PAM → Surfactin/SDDAB/PAM in PBS.

  3. S-Adenosyl-L-Homocysteine Hydrolase Inhibition by a Synthetic Nicotinamide Cofactor Biomimetic

    Directory of Open Access Journals (Sweden)

    Lyn L. Kailing

    2018-03-01

    Full Text Available S-adenosyl-L-homocysteine (SAH hydrolases (SAHases are involved in the regulation of methylation reactions in many organisms and are thus crucial for numerous cellular functions. Consequently, their dysregulation is associated with severe health problems. The SAHase-catalyzed reaction is reversible and both directions depend on the redox activity of nicotinamide adenine dinucleotide (NAD+ as a cofactor. Therefore, nicotinamide cofactor biomimetics (NCB are a promising tool to modulate SAHase activity. In the present in vitro study, we investigated 10 synthetic truncated NAD+ analogs against a SAHase from the root-nodulating bacterium Bradyrhizobium elkanii. Among this set of analogs, one was identified to inhibit the SAHase in both directions. Isothermal titration calorimetry (ITC and crystallography experiments suggest that the inhibitory effect is not mediated by a direct interaction with the protein. Neither the apo-enzyme (i.e., deprived of the natural cofactor, nor the holo-enzyme (i.e., in the NAD+-bound state were found to bind the inhibitor. Yet, enzyme kinetics point to a non-competitive inhibition mechanism, where the inhibitor acts on both, the enzyme and enzyme-SAH complex. Based on our experimental results, we hypothesize that the NCB inhibits the enzyme via oxidation of the enzyme-bound NADH, which may be accessible through an open molecular gate, leaving the enzyme stalled in a configuration with oxidized cofactor, where the reaction intermediate can be neither converted nor released. Since the reaction mechanism of SAHase is quite uncommon, this kind of inhibition could be a viable pharmacological route, with a low risk of off-target effects. The NCB presented in this work could be used as a template for the development of more potent SAHase inhibitors.

  4. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses

    International Nuclear Information System (INIS)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario; Lamballeire, Xavier de; Brisbare, Nadege; Dalle, Karen; Lantez, Violaine; Egloff, Marie-Pierre; Coutard, Bruno; Canard, Bruno; Gould, Ernest; Forrester, Naomi; Bolognesi, Martino

    2006-01-01

    Two methyltransferases from flaviviruses (Meaban and Yokose viruses) have been overexpressed and crystallized. Diffraction data and characterization of the two crystal forms are presented, together with a preliminary molecular-replacement solution for both enzymes. Viral methyltranferases (MTase) are involved in the third step of the mRNA-capping process, transferring a methyl group from S-adenosyl-l-methionine (SAM) to the capped mRNA. MTases are classified into two groups: (guanine-N7)-methyltransferases (N7MTases), which add a methyl group onto the N7 atom of guanine, and (nucleoside-2′-O-)-methyltransferases (2′OMTases), which add a methyl group to a ribose hydroxyl. The MTases of two flaviviruses, Meaban and Yokose viruses, have been overexpressed, purified and crystallized in complex with SAM. Characterization of the crystals together with details of preliminary X-ray diffraction data collection (at 2.8 and 2.7 Å resolution, respectively) are reported here. The sequence homology relative to Dengue virus 2′OMTase and the structural conservation of specific residues in the putative active sites suggest that both enzymes belong to the 2′OMTase subgroup

  5. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses

    Energy Technology Data Exchange (ETDEWEB)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario [Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Via Celoria 26, 20133 Milano (Italy); Lamballeire, Xavier de; Brisbare, Nadege [Unité des Virus Emergents, Faculté de Médecine, 27 Boulevard Jean Moulin, 13005 Marseille (France); Dalle, Karen; Lantez, Violaine; Egloff, Marie-Pierre; Coutard, Bruno; Canard, Bruno [Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS ESIL, Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 9 (France); Gould, Ernest; Forrester, Naomi [CEH Oxford, Mansfield Road, Oxford OX1 3SR (United Kingdom); Bolognesi, Martino, E-mail: martino.bolognesi@unimi.it [Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Via Celoria 26, 20133 Milano (Italy)

    2006-08-01

    Two methyltransferases from flaviviruses (Meaban and Yokose viruses) have been overexpressed and crystallized. Diffraction data and characterization of the two crystal forms are presented, together with a preliminary molecular-replacement solution for both enzymes. Viral methyltranferases (MTase) are involved in the third step of the mRNA-capping process, transferring a methyl group from S-adenosyl-l-methionine (SAM) to the capped mRNA. MTases are classified into two groups: (guanine-N7)-methyltransferases (N7MTases), which add a methyl group onto the N7 atom of guanine, and (nucleoside-2′-O-)-methyltransferases (2′OMTases), which add a methyl group to a ribose hydroxyl. The MTases of two flaviviruses, Meaban and Yokose viruses, have been overexpressed, purified and crystallized in complex with SAM. Characterization of the crystals together with details of preliminary X-ray diffraction data collection (at 2.8 and 2.7 Å resolution, respectively) are reported here. The sequence homology relative to Dengue virus 2′OMTase and the structural conservation of specific residues in the putative active sites suggest that both enzymes belong to the 2′OMTase subgroup.

  6. DNA damage and plasma homocysteine levels are associated with ...

    African Journals Online (AJOL)

    This study describes the association between levels of DNA damage and homocysteine (Hcy) in persistent diarrheic (PD) patients and correlates them with serum biochemical metabolites and mineral components. PD patients (n = 36) age 4 - 6 years from Faisalabad hospitals were examined for anthropometric factors, ...

  7. Histone methyltransferase Setdb1 is indispensable for Meckel's cartilage development

    International Nuclear Information System (INIS)

    Yahiro, Kohei; Higashihori, Norihisa; Moriyama, Keiji

    2017-01-01

    The histone methyltransferase Setdb1 represses gene expression by catalyzing lysine 9 of histone H3 trimethylation. Given that the conventional knockout of Setdb1 is embryo-lethal at the implantation stage, its role in craniofacial development is poorly understood. Here, we investigated the role of Setdb1, using conditional knockout mice—in which Setdb1 was deleted in the Meckel's cartilage (Setdb1 CKO)—and the mouse chondrogenic cell line ATDC5—in which Setdb1 was inhibited by siRNA. Deletion of Setdb1 in Meckel's cartilage, the supportive tissue in the embryonic mandible, led to its enlargement, instead of the degeneration that normally occurs. Chondrocytes from the Meckel's cartilage of Setdb1 CKO mice showed increased size. Furthermore, at embryonic days 16.5 and 18.5, part of the perichondrium was disrupted and mineralization was observed in the Meckel's cartilage. Proliferation analysis showed that inhibition of Setdb1 caused increased proliferation in chondrocytes in the Meckel's cartilage as well as in ATDC5 cells. Quantitative RT-PCR showed decreased expression of chondrogenic genes, such as Sox9, Mmp13, Collagen II, and Aggrecan, as a result of Setdb1 inhibition in ATDC5 cells. Along with these phenomenons, SMAD-dependent BMP signaling was significantly increased by the loss of Setdb1 in both the Meckel's cartilage of Setdb1 CKO mice and ATDC5 cells. Therefore, the abnormal development of Meckel's cartilage in Setdb1 CKO mice is partly due to the enhanced SMAD-dependent BMP signaling. Overall, to our knowledge, the present study is the first to show that epigenetic regulation by Setdb1 is indispensable for the embryonic development of Meckel's cartilage. - Highlights: • Deletion of Setdb1 led to enlarged Meckel's cartilage. • Chondrocytes from the Meckel's cartilage of Setdb1 mutant showed increased in size. • Part of the perichondrium was disrupted and mineralization was observed in the Meckel's

  8. MTHFR C677T polymorphism, homocysteine and B-vitamins status in a sample of Chinese and Malay subjects in Universiti Putra Malaysia.

    Science.gov (United States)

    Choo, S C; Loh, S P; Khor, G L; Sabariah, M N; Rozita, R

    2011-08-01

    Methylenetetrahydrofolate reductase (MTHFR) C677T is involved in folate and homocysteine metabolism. Disruption in the activity of this enzyme will alter their levels in the body. This study assessed MTHFR C677T polymorphism and its relationship with serum homocysteine and B-vitamins levels in a sample of Chinese and Malays subjects in UPM, Serdang. One hundred subjects were randomly selected from among the university population. Folate, vitamin B12, B6, and homocysteine levels were determined using MBA, ECLIA, and HPLC, respectively. PCR coupled with HinfI digestion was used for detection of MTHFR C677T polymorphism. The frequency of T allele was higher in the Chinese subjects (0.40) compared to the Malay (0.14). Folate, vitamin B12 and B6 levels were highest in the wild genotype in both ethnic groups. Subjects with heterozygous and homozygous genotype showed the highest homocysteine levels. The serum folate and homocysteine were mainly affected by homozygous genotype. MTHFR C677T polymorphism plays an important role in influencing the folate and homocysteine metabolism.

  9. Methylenetetrahydrofolate reductase deficiency alters levels of glutamate and γ-aminobutyric acid in brain tissue

    Directory of Open Access Journals (Sweden)

    N.M. Jadavji

    2015-06-01

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR is an enzyme key regulator in folate metabolism. Deficiencies in MTHFR result in increased levels of homocysteine, which leads to reduced levels of S-adenosylmethionine (SAM. In the brain, SAM donates methyl groups to catechol-O-methyltransferase (COMT, which is involved in neurotransmitter analysis. Using the MTHFR-deficient mouse model the purpose of this study was to investigate levels of monoamine neurotransmitters and amino acid levels in brain tissue. MTHFR deficiency affected levels of both glutamate and γ-aminobutyric acid in within the cerebellum and hippocampus. Mthfr−/− mice had reduced levels of glutamate in the amygdala and γ-aminobutyric acid in the thalamus. The excitatory mechanisms of homocysteine through activation of the N-methyl-d-aspartate receptor in brain tissue might alter levels of glutamate and γ-aminobutyric acid.

  10. Simvastatin and asymmetric dimethylarginine-homocysteine metabolic pathways in patients with newly detected severe hypercholesterolemia.

    Science.gov (United States)

    Vladimirova-Kitova, Ludmila G; Deneva, Tania I

    2010-01-01

    The idea that statin therapy decreases asymmetric dimethylarginine through lowering low-density lipoprotein cholesterol levels seems logic. However, controversy exists in the literature concerning this issue. This study compares the effect of moderate (40 mg) to high (80 mg) simvastatin doses on asymmetric dimethylarginine levels in patients with newly detected severe hypercholesterolemia (after targeted LDL levels of or = 7.5 mmol/L and low-density lipoprotein cholesterol > or = 4.9 mmol/L). Asymmetric dimethylarginine levels were determined by enzyme-linked immunosorbent assay, total homocystein by the high performance liquid chromatography method. A statistically significant decrease exists in total cholesterol, triglycerides, low-density lipoprotein cholesterol and apolipoprotein-B levels as well as apolipoprotein-B/apolipoprotein-A1 index following one month of 40 mg simvastatin therapy (P homocystein levels were also decreased but the difference was not significant (p = 0.571; p = 0.569). A dose-dependent effect was established comparing the influence of moderate (40 mg) to high (80 mg) simvastatin doses on the tested atherogenic biomarkers (lipid profile, apolipoprotein-A1, apolipoprotein-B). Asymmetric dimethylarginine and total homocystein levels showed a statistically significant decrease with 80 mg simvastatin (p homocysteine in contrast to high dose (80 mg) after targeted LDL of < or = 2.6 mmol/L levels are reached in patients with newly detected severe hypercholesterolemia.

  11. Uremic restless legs syndrome (RLS) and sleep quality in patients with end-stage renal disease on hemodialysis: potential role of homocysteine and parathyroid hormone.

    Science.gov (United States)

    Gade, Katrin; Blaschke, Sabine; Rodenbeck, Andrea; Becker, Andreas; Anderson-Schmidt, Heike; Cohrs, Stefan

    2013-01-01

    The aetiology of uremic restless legs syndrome (RLS) remains unclear. Our research investigated whether an elevated plasma concentration of the excitatory amino acid homocysteine might be associated with RLS occurrence in patients with chronic renal insufficiency on hemodialysis. Total plasma homocysteine as well as creatinine, urea, folate, parathyroid hormone, hemoglobin, iron, ferritin, phosphate, calcium, magnesium, and albumin levels were compared between 26 RLS-affected (RLSpos) and 26 non-affected (RLSneg) patients on chronic hemodialysis. We further compared subjective sleep quality between RLSpos and RLSneg patients using the Pittsburgh-Sleep-Quality-Index and investigated possible relationships between laboratory parameters and sleep quality. Taking individual albumin concentrations into account, a significant positive correlation between total plasma homocysteine and RLS occurrence was observed (r= 0.246; p=0.045). Sleep quality was significantly more reduced in RLSpos compared to RLSneg patients and RLS severity correlated positively with impairment of sleep quality. Bad sleep quality in all patients was associated with higher concentrations of parathyroid hormone. Our results suggest a possible aetiological role of homocysteine in uremic RLS. They confirm that uremic RLS is an important factor causing sleep impairment in patients on hemodialysis. Higher parathyroid hormone levels might also be associated with bad sleep quality in these patients. © 2013 S. Karger AG, Basel.

  12. A Picrinine N-Methyltransferase Belongs to a New Family of γ-Tocopherol-Like Methyltransferases Found in Medicinal Plants That Make Biologically Active Monoterpenoid Indole Alkaloids1[OPEN

    Science.gov (United States)

    Levac, Dylan; Cázares, Paulo; Yu, Fang

    2016-01-01

    Members of the Apocynaceae plant family produce a large number of monoterpenoid indole alkaloids (MIAs) with different substitution patterns that are responsible for their various biological activities. A novel N-methyltransferase involved in the vindoline pathway in Catharanthus roseus showing distinct similarity to γ-tocopherol C-methyltransferases was used in a bioinformatic screen of transcriptomes from Vinca minor, Rauvolfia serpentina, and C. roseus to identify 10 γ-tocopherol-like N-methyltransferases from a large annotated transcriptome database of different MIA-producing plant species (www.phytometasyn.ca). The biochemical function of two members of this group cloned from V. minor (VmPiNMT) and R. serpentina (RsPiNMT) have been characterized by screening their biochemical activities against potential MIA substrates harvested from the leaf surfaces of MIA-accumulating plants. The approach was validated by identifying the MIA picrinine from leaf surfaces of Amsonia hubrichtii as a substrate of VmPiNMT and RsPiNMT. Recombinant proteins were shown to have high substrate specificity and affinity for picrinine, converting it to N-methylpicrinine (ervincine). Developmental studies with V. minor and R. serpentina showed that RsPiNMT and VmPiNMT gene expression and biochemical activities were highest in younger leaf tissues. The assembly of at least 150 known N-methylated MIAs within members of the Apocynaceae family may have occurred as a result of the evolution of the γ-tocopherol-like N-methyltransferase family from γ-tocopherol methyltransferases. PMID:26848097

  13. Crystallization and preliminary crystallographic analysis of tRNA (m{sup 7}G46) methyltransferase from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Gao, Yang; Yang, Weili; Zhou, Huihao; Gao, Yongxiang; Zhang, Xiao; Teng, Maikun, E-mail: mkteng@ustc.edu.cn; Niu, Liwen, E-mail: mkteng@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027 (China); Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230027 (China)

    2008-08-01

    tRNA (m{sup 7}G46) methyltransferase from E. coli was overexpressed, purified and crystallized. Diffraction data were collected to 2.04 Å resolution. Transfer RNA (tRNA) (m{sup 7}G46) methyltransferase (TrmB) belongs to the Rossmann-fold methyltransferase (RFM) family and uses S-adenosyl-l-methionine (SAM) as the methyl-group donor to catalyze the formation of N{sup 7}-methylguanosine (m{sup 7}G) at position 46 in the variable loop of tRNAs. After attempts to crystallize full-length Escherichia coli TrmB (EcTrmB) failed, a truncated protein lacking the first 32 residues of the N-terminus but with an additional His{sub 6} tag at the C-terminus was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 (PEG 3350) as precipitant at 283 K. An X-ray diffraction data set was collected using a single flash-cooled crystal that belonged to space group P2{sub 1}.

  14. Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria.

    Science.gov (United States)

    Yoshida, Akihiro; Yoshimura, Mamiko; Ohara, Naoya; Yoshimura, Shigeru; Nagashima, Shiori; Takehara, Tadamichi; Nakayama, Koji

    2009-11-01

    Hydrogen sulfide is one of the predominant volatile sulfur compounds (VSCs) produced by oral bacteria. This study developed and evaluated a system for detecting hydrogen sulfide production by oral bacteria. L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (METase) and beta carbon-sulfur (beta C-S) lyase were used to degrade homocysteine and cysteine, respectively, to produce hydrogen sulfide. Enzymatic reactions resulting in hydrogen sulfide production were assayed by reaction with bismuth trichloride, which forms a black precipitate when mixed with hydrogen sulfide. The enzymatic activities of various oral bacteria that result in hydrogen sulfide production and the capacity of bacteria from periodontal sites to form hydrogen sulfide in reaction mixtures containing L-cysteine or DL-homocysteine were assayed. With L-cysteine as the substrate, Streptococcus anginosus FW73 produced the most hydrogen sulfide, whereas Porphyromonas gingivalis American Type Culture Collection (ATCC) 33277 and W83 and Fusobacterium nucleatum ATCC 10953 produced approximately 35% of the amount produced by the P. gingivalis strains. Finally, the hydrogen sulfide found in subgingival plaque was analyzed. Using bismuth trichloride, the hydrogen sulfide produced by oral bacteria was visually detectable as a black precipitate. Hydrogen sulfide production by oral bacteria was easily analyzed using bismuth trichloride. However, further innovation is required for practical use.

  15. Monolignol 4-O-methyltransferases and uses thereof

    Science.gov (United States)

    Liu, Chang-Jun; Bhuiya, Mohammad-Wadud; Zhang, Kewei

    2014-11-18

    Modified (iso)eugenol 4-O-methyltransferase enzymes having novel capacity for methylation of monolignols and reduction of lignin polymerization in plant cell wall are disclosed. Sequences encoding the modified enzymes are disclosed.

  16. Effects of growth hormone (GH) administration on homocyst(e)ine levels in men with GH deficiency: a randomized controlled trial.

    Science.gov (United States)

    Sesmilo, G; Biller, B M; Llevadot, J; Hayden, D; Hanson, G; Rifai, N; Klibanski, A

    2001-04-01

    GH deficiency is associated with increased cardiovascular mortality and early manifestations of atherosclerosis. Elevated serum homocyst(e)ine levels have been found to be associated with increased cardiovascular risk. The effect of GH replacement on homocyst(e)ine has not been investigated to date. We evaluated the effect of GH replacement on fasting homocyst(e)inemia in a group of men with adult-onset GH deficiency in a randomized, single blind, placebo-controlled trial. Forty men with adult-onset GH deficiency were randomized to GH or placebo for 18 months, with dose adjustments made according to serum insulin-like growth factor I (IGF-I) levels. Fasting serum homocyst(e)ine, folate, vitamin B12, and total T(3) levels were determined at baseline and 6 and 18 months. Anthropometry, IGF-I levels, insulin, and glucose were measured at 1, 3, 6, 12, and 18 months. Nutritional assessment, body composition, total T(4), thyroid hormone binding index, and free T(4) index were assessed every 6 months. Homocyst(e)ine decreased in the GH-treated group compared with that in the placebo group (net difference, -1.2 +/- 0.6 micromol/L; confidence interval, -2.4, -0.02 micromol/L; P = 0.047). Homocyst(e)ine at baseline was negatively correlated with plasma levels of folate (r = -0.41; P = 0.0087). Total T(3) increased in the GH-treated group vs. that in the placebo group (net difference, 0.17 +/- 0.046 ng/dL; confidence interval, 0.071, 0.26 nmol/L; P = 0.0012). Folate and vitamin B12 levels did not significantly change between groups. Changes in homocyst(e)ine were negatively correlated with changes in IGF-I. For each 1 nmol/L increase in IGF-I, homocyst(e)ine decreased by 0.04 +/- 0.02 micromol/L (P = 0.029). In contrast, changes in homocyst(e)ine did not correlate with changes in folate, vitamin B12, total T(3), C-reactive protein, interleukin-6, or insulin levels. This study shows that GH replacement decreases fasting homocyst(e)ine levels compared with placebo. This may be

  17. Involvement of methyltransferases enzymes during the energy

    African Journals Online (AJOL)

    Mgina

    INVOLVEMENT OF METHYLTRANSFERASES ENZYMES DURING THE. ENERGY METABOLISM OF ..... cell extract still exhibited relatively high methanogenesis with methanol (Fig ... product CH3-CoM into methane (see Fig. 1). The HS-CoM ...

  18. Methyltransferase Erm(37) Slips on rRNA to Confer Atypical Resistance in Mycobacterium tuberculosis

    Czech Academy of Sciences Publication Activity Database

    Madsen, Ch. T.; Jakobsen, L.; Buriánková, Karolína; Doucet-Populaire, F.; Perdonet, J. L.; Douthwaite, S.

    2005-01-01

    Roč. 280, č. 47 (2005), s. 38942-38947 ISSN 0021-9258 R&D Projects: GA ČR GA310/03/0292 Institutional research plan: CEZ:AV0Z50200510 Keywords : methyltransferase erm * mycobacterium tuberculosis * rRNA Subject RIV: EE - Microbiology, Virology Impact factor: 5.854, year: 2005

  19. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  20. Osmotic Control of opuA Expression in Bacillus subtilis and Its Modulation in Response to Intracellular Glycine Betaine and Proline Pools

    Science.gov (United States)

    Hoffmann, Tamara; Wensing, Annette; Brosius, Margot; Steil, Leif; Völker, Uwe

    2013-01-01

    Glycine betaine is an effective osmoprotectant for Bacillus subtilis. Its import into osmotically stressed cells led to the buildup of large pools, whose size was sensitively determined by the degree of the osmotic stress imposed. The amassing of glycine betaine caused repression of the formation of an osmostress-adaptive pool of proline, the only osmoprotectant that B. subtilis can synthesize de novo. The ABC transporter OpuA is the main glycine betaine uptake system of B. subtilis. Expression of opuA was upregulated in response to both sudden and sustained increases in the external osmolarity. Nonionic osmolytes exerted a stronger inducing effect on transcription than ionic osmolytes, and this was reflected in the development of corresponding OpuA-mediated glycine betaine pools. Primer extension analysis and site-directed mutagenesis pinpointed the osmotically controlled opuA promoter. Deviations from the consensus sequence of SigA-type promoters serve to keep the transcriptional activity of the opuA promoter low in the absence of osmotic stress. opuA expression was downregulated in a finely tuned manner in response to increases in the intracellular glycine betaine pool, regardless of whether this osmoprotectant was imported or was newly synthesized from choline. Such an effect was also exerted by carnitine, an effective osmoprotectant for B. subtilis that is not a substrate for the OpuA transporter. opuA expression was upregulated in a B. subtilis mutant that was unable to synthesize proline in response to osmotic stress. Collectively, our data suggest that the intracellular solute pool is a key determinant for the osmotic control of opuA expression. PMID:23175650

  1. Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces

    International Nuclear Information System (INIS)

    Zhang Jingdong; Demetriou, Anna; Welinder, Anne Christina; Albrecht, Tim; Nichols, Richard J.; Ulstrup, Jens

    2005-01-01

    Monolayers of homocysteine on Au(111)-surfaces have been investigated by voltammetry, in situ scanning tunnelling microscopy (STM) and subtractively normalised interfacial Fourier transform spectroscopy (SNIFTIRS). A pair of sharp voltammetric peaks build up in the potential range 0 to -0.1V (vs. SCE) in phosphate buffer pH 7.7. The peak half-widths are about 25mV at a scan rate of 10mVs -1 . This is much smaller than for a one-electron Faradaic process (90.6mV) under similar conditions. The coverage of homocysteine is 6.1 (+/-0.2)x10 -10 molcm -2 , or 5.9x10 -5 Ccm -2 , from Au-S reductive desorption at -0.8V (SCE) in 0.1M NaOH, while the charge is only about 8x10 -6 Ccm -2 (pH 7.7) for the 0 to -0.1V peak. This suggests a capacitive origin. The peak potential and shape depend on pH. At pH 7.7 both cathodic and anodic peak currents reach a maximum, but drop at both higher and lower pH. The midpoint potential shows biphasic behaviour, decreasing linearly with increasing pH until pH 10.4 towards a constant value at higher pH. The cathodic and anodic peak charges decay at pH both higher and lower than 7.7. The homocysteine monolayer was investigated by in situ STM at different potentials at pH 7.7. The molecules pack into highly ordered domains around the peak potential. High-resolution in situ STM reveals a (√3x5) R30 deg. lattice with three homocysteine molecules in each unit cell. The adlayer changes into disordered structures on either side of the peak potential. This process is reversible. We propose that the voltammetric peaks are capacitive. The ordered domains are formed only around the potential of zero charge (pzc) and dissipate at potentials on either side of the peak, inducing mirror charge flow in the metallic electrode as the charged -COO - and -NH 3 + groups approach the surface. No bands for carboxylate coordinated to the surface were observed in SNIFTIRS implying more subtle orientation changes of the charged groups on transcending the voltammetric

  2. pH-Specific structural speciation of the ternary V(V)-peroxido-betaine system: a chemical reactivity-structure correlation.

    Science.gov (United States)

    Gabriel, C; Kioseoglou, E; Venetis, J; Psycharis, V; Raptopoulou, C P; Terzis, A; Voyiatzis, G; Bertmer, M; Mateescu, C; Salifoglou, A

    2012-06-04

    Vanadium involvement in cellular processes requires deep understanding of the nature and properties of its soluble and bioavailable forms arising in aqueous speciations of binary and ternary systems. In an effort to understand the ternary vanadium-H(2)O(2)-ligand interactions relevant to that metal ion's biological role, synthetic efforts were launched involving the physiological ligands betaine (Me(3)N(+)CH(2)CO(2)(-)) and H(2)O(2). In a pH-specific fashion, V(2)O(5), betaine, and H(2)O(2) reacted and afforded three new, unusual, and unique compounds, consistent with the molecular formulation K(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·H(2)O (1), (NH(4))(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·0.75H(2)O (2), and {Na(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}(2)]}(n)·4nH(2)O (3). All complexes 1-3 were characterized by elemental analysis; UV/visible, FT-IR, Raman, and NMR spectroscopy in solution and the solid state; cyclic voltammetry; TGA-DTG; and X-ray crystallography. The structures of 1 and 2 reveal the presence of unusual ternary dinuclear vanadium-tetraperoxido-betaine complexes containing [(V(V)═O)(O(2))(2)] units interacting through long V-O bonds. The two V(V) ions are bridged through the oxygen terminal of one of the peroxide groups bound to the vanadium centers. The betaine ligand binds only one of the two V(V) ions. In the case of the third complex 3, the two vanadium centers are not immediate neighbors, with Na(+) ions (a) acting as efficient oxygen anchors and through Na-O bonds holding the two vanadium ions in place and (b) providing for oxygen-containing ligand binding leading to a polymeric lattice. In 1 and 3, interesting 2D (honeycomb) and 1D (zigzag chains) topologies of potassium nine-coordinate polyhedra (1) and sodium octahedra (3), respectively, form. The collective physicochemical properties of the three ternary species 1-3 project the chemical role of the low molecular mass biosubstrate betaine in binding V

  3. Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Demetriou, Anna; Welinder, Anne Christina

    2005-01-01

    Monolayers of homocysteine on Au(111)-surfaces have been investigated by voltammetry, in situ scanning tunnelling microscopy (STM) and subtractively normalised interfacial Fourier transform spectroscopy (SNIFTIRS). A pair of sharp voltammetric peaks build up in the potential range 0 to -0.1 V (vs...... potentials at pH 7.7. The molecules pack into highly ordered domains around the peak potential. High-resolution in situ STM reveals a (root 3 x 5) R30 degrees lattice with three homocysteine molecules in each unit cell. The adlayer changes into disordered structures on either side of the peak potential...

  4. Oral estradiol decreases plasma homocysteine, vitamin B6, and albumin in postmenopausal women but does not change the whole-body homocysteine remethylation and transmethylation flux

    NARCIS (Netherlands)

    Smolders, R. G. V.; de Meer, K.; Kenemans, P.; Jakobs, C.; Kulik, W.; van der Mooren, M. J.

    2005-01-01

    Estrogens, both endogenous and exogenous, lower the fasting levels of the independent risk factor for cardiovascular disease homocysteine. The mechanism behind this observation remains unclear. In a randomized, placebo-controlled, double-blind study, 25 postmenopausal women with a screening

  5. The association between homocysteine in the follicular fluid with embryo quality and pregnancy rate in assisted reproductive techniques.

    Science.gov (United States)

    Ocal, Pelin; Ersoylu, Bilge; Cepni, Ismail; Guralp, Onur; Atakul, Nil; Irez, Tulay; Idil, Mehmet

    2012-04-01

    To investigate the association between follicular fluid homocysteine levels and embryo quality and pregnancy rates in patients undergoing assisted reproduction. Fifty infertile women who were admitted to our clinic were enrolled in the study. Ovulation induction was performed by using GnRH agonist and gonadotropins. For each patient, homocysteine level in the follicular fluid was measured by using nephelometric method after the oocyte pick-up. The association between the homocysteine concentration in the follicular fluid and the oocyte-embryo quality, pregnancy rates and hormone levels were investigated. Mean ± SD Hcy was 9.6 ± 2.02 μmol/L and 14.9 ± 2.93 μmol/L in pregnant and non-pregnant women, respectively (p Homocystein did not have any correlation with M2, late M2, and total number of oocytes, number of fertilized oocytes and transferred embryos, and embryo quality grade. Area under curve (AUC) of hcy for prediction of pregnancy failure was 0.922 (p = 0.0001, 95% Confidence interval 0.85-0.99). A threshold of 11.9 μmol/L of hcy had a sensitivity of 82%, specificity of 100%, positive predictive value of 100% and negative predictive value of 91.6% for prediction of pregnancy failure. The subgroup analysis in male factor infertility group (n = 28), showed that mean homocystein was 9.9 ± 2.44 μmol/L and 14.1 ± 2.72 μmol/L in pregnant and non-pregnant women, respectively (p = 0.002). Low follicular fluid homocysteine level is associated with a better chance of clinical pregnancy.

  6. Homocysteine and venous thrombosis : studies into risk and therapy

    NARCIS (Netherlands)

    Willems, Huub Pieter Jan

    2006-01-01

    Homocysteine is a risk factor for venous thrombosis. Elevated concentrations can be treated with folic acid, vitamin B6 and vitamin B12. The main study (chapter 9) in this thesis is a randomized placebo-controlled trial in which patients with a first event of deep-vein thrombosis or pulmonary

  7. Plasma Total Homocysteine (tHcy) Levels in Healthy Nigerian ...

    African Journals Online (AJOL)

    Establishment and stratification of reference values for a laboratory area of practice enhances the test result interpretation and sensitivity. Plasma total homocysteine (tHcy) is a metabolite of methionine which is dependent on vitamin B6, B12 and folate as co-factors. Plasma level (Hyperhomocysteinemia) is influenced by ...

  8. Cardiac outflow tract malformations in chick embryos exposed to homocysteine

    NARCIS (Netherlands)

    M.J. Boot (Marit); R.P.M. Steegers-Theunissen (Régine); R.E. Poelmann (Robert); L. van Iperen (Liesbeth); A.C. Gittenberger-De Groot (Adriana)

    2004-01-01

    textabstractIncreased homocysteine concentrations have been associated with cardiac outflow tract defects. It has been hypothesized that cardiac neural crest cells were the target cells in these malformations. Cardiac neural crest cells migrate from the neural tube and contribute to the condensed

  9. Determinants of changes in plasma homocysteine in hyperthyroidism and hypothyroidism

    NARCIS (Netherlands)

    Diekman, M. J.; van der Put, N. M.; Blom, H. J.; Tijssen, J. G.; Wiersinga, W. M.

    2001-01-01

    OBJECTIVE: Hyperhomocysteinaemia is a risk factor for premature atherosclerotic vascular disease and venous thrombosis. The aim of the present study was to assess plasma total homocysteine (tHCys) concentrations in hypo- as well as hyperthyroid patients before and after treatment, and to evaluate

  10. Efficacy of vitamin B12 combined with metformin in treating type 2 diabetes and its effect on homocysteine

    Directory of Open Access Journals (Sweden)

    Na Geng

    2016-03-01

    Full Text Available Objective: To observe and analyze Vitamin B12 combined with metformin treat for the type 2 diabetes, which affect the homocysteine. Methods: 92 cases of type 2 diabetes were selected in our hospital for treatment and study from October 2014 to April 2014. All patients were randomly divided into control group (46 cases and observation group (46 cases. Treatment of patients in the control group: patients were treated by metformin; observation group patients: Take vitamin B12 to patients treated with metformin. Finally, patient outcomes, as well as vitamin B12 and homocysteine in patients before and after treatment were analyzed. Results: Before treatment, all patients vitamin B12 content difference comparisons were no significant differences (P>0.05. Patients were treated in January, June and 1 year after the vitamin B12 content of the observation group were significantly higher in patients with vitamin B12 levels of data compared to each other there was a significant difference (P0.05. Patients were treated in January, June and 1 year after the homocysteine content of the observation group were not significantly reduced, the control group of patients with homocysteine increased significantly (P<0.000 1. Conclusions: Vitamin B12 combined with metformin in type 2 diabetes treatment, can significantly increase a patient's body to control homocysteine, while the treatment effect is obvious, clinical recommendations widely implemented.

  11. Intramolecular transformation of thiyl radicals to α-aminoalkyl radicals: 'ab initio' calculations on homocystein

    International Nuclear Information System (INIS)

    Chhun, S.; Berges, J.; Bleton, V.; Abedinzadeh, Z.

    2000-01-01

    One-electron oxidation of thiols by oxidizing radicals leads to the formation of thiyl radical and carbon-centered radicals. It has been shown experimentally that in the absence of oxygen, the thiyl radicals derived from certain thiols of biological interest such as glutathion, cysteine and homocysteine decay rapidly by intramolecular rearrangement reactions into the carbon-centered radical. In the present work we have investigated theoretically the structure and the stability of thiyl and carbon-centered radicals of homocysteine in order to check the possibility of this rearrangement. (author)

  12. Tyrosine 87 is vital for the activity of human protein arginine methyltransferase 3 (PRMT3)

    Czech Academy of Sciences Publication Activity Database

    Handrková, H.; Petrák, J.; Halada, Petr; Pospíšilová, D.; Čmejla, R.

    2011-01-01

    Roč. 1814, č. 2 (2011), s. 277-282 ISSN 1570-9639 R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50200510 Keywords : DIAMOND-BLACKFAN ANEMIA * SUBSTRATE -SPECIFICITY * N-METHYLTRANSFERASE Subject RIV: CE - Biochemistry Impact factor: 3.635, year: 2011

  13. Dielectric properties in the vicinity of the ferroelectric phase transition in a mixed crystal of deuterated betaine phosphate{sub 0.03} betaine phosphite{sub 0.97}

    Energy Technology Data Exchange (ETDEWEB)

    Banys, J.; Macutkevic, J.; Kajokas, A.; Brilingas, A.; Grigas, J. [Faculty of Physics, Vilnius University, Sauletekio 9, Vilnius 2040 (Lithuania); Klimm, C.; Voelkel, G. [Fakultaet fuer Physik und Geowissenschaften, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany)

    2004-02-01

    The dielectric behaviour of ferroelectric hydrogen bonded deuterated betaine phosphate{sub 0.03} betaine phosphite{sub 0.97} (DBP{sub 0.03}DBPI{sub 0.97})is investigated in the region of the ferroelectric phase transition. Dielectric dispersion is investigated in the frequency range up to 12 GHz. The dielectric dynamics shows a critical slowing down. The frequency of the relaxational soft mode in the paraelectric phase varies according to the quasi-one-dimensional Ising model and decreases up to 0.31 GHz at the phase transition temperature (T{sub C}=272 K). The obtained activation energy for the deuteron flipping motion {delta}U=2.3kT{sub C}=0.054 eV shows the order-disorder character of the ferroelectric phase transition. The spontaneous polarisation, obtained from pyroelectric measurements, is also well explained using the quasi-one-dimensional Ising model. At low temperatures, the freezing phenomena in DBP{sub 0.03}DBPI{sub 0.97} revealed the complex dielectric permittivity behaviour characteristic for the transition into the dipolar glass state. The activation energy of this low temperature process was found to be E{sub b}=1297 K (0.041 eV) and the glass temperature was estimated to 73 K. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Reconsidering the relation between serum homocysteine and red blood cell distribution width: a cross-sectional study of a large cohort.

    Science.gov (United States)

    Margalit, Ili; Cohen, Eytan; Goldberg, Elad; Krause, Ilan

    2018-07-01

    In a recent small sample study, red blood cell distribution width (RDW) was suggested as a predictor of homocysteine levels. The current study was aimed to reexamine this association in a large scale sample. A retrospective cross-sectional study of healthy adults, conducted at Rabin Medical Center, during 2000-2014. Data were retrieved from the medical charts and a logistic regression controlling for interfering factors was carried out. Sensitivity analysis was implemented by exclusion of individuals with anaemia. Five thousand, five hundred fifty-four healthy individuals were included. Mean serum homocysteine level was 10.10 (SD 2.72) μmol/L. 34.4% of the study population had a homocysteine level higher than the upper limit of normal (10.8 μmol/L). Homocysteine showed no association with RDW (OR 1.00; 95% CI 0.97-1.03), but increased with age (OR 1.05; 95% CI 1.04-1.06) and decreased with a rise in haemoglobin (OR 0.77; 95% CI 0.71-0.83), and in the mean corpuscular volume (OR 0.86; 95% CI 0.85-0.88). Exclusion of individuals with anaemia did not reveal an association between homocysteine and RDW but found a somewhat smaller association between haemoglobin and RDW [OR 0.82; 95% CI 0.73-0.91]. In our large scale sample we did not find an association between RDW and serum homocysteine.

  15. The Use of Screen-Printed Electrodes in a Proof of Concept Electrochemical Estimation of Homocysteine and Glutathione in the Presence of Cysteine Using Catechol

    Directory of Open Access Journals (Sweden)

    Patricia T. Lee

    2014-06-01

    Full Text Available Screen printed electrodes were employed in a proof of concept determination of homocysteine and glutathione using electrochemically oxidized catechol via a 1,4-Michael addition reaction in the absence and presence of cysteine, and each other. Using cyclic voltammetry, the Michael reaction introduces a new adduct peak which is analytically useful in detecting thiols. The proposed procedure relies on the different rates of reaction of glutathione and homocysteine with oxidized catechol so that at fast voltage scan rates only homocysteine is detected in cyclic voltammetry. At slower scan rates, both glutathione and homocysteine are detected. The combination of the two sets of data provides quantification for homocysteine and glutathione. The presence of cysteine is shown not to interfere provided sufficient high concentrations of catechol are used. Calibration curves were determined for each homocysteine and glutathione detection; where the sensitivities are 0.019 µA·µM−1 and 0.0019 µA·µM−1 and limit of detections are ca. 1.2 µM and 0.11 µM for homocysteine and glutathione, respectively, within the linear range. This work presents results with potential and beneficial use in re-useable and/or disposable point-of-use sensors for biological and medical applications.

  16. The O-methyltransferase PMT2 mediates methylation of pinosylvin in Scots pine.

    Science.gov (United States)

    Paasela, Tanja; Lim, Kean-Jin; Pietiäinen, Milla; Teeri, Teemu H

    2017-06-01

    Heartwood extractives are important determinants of the natural durability of pine heartwood. The most important phenolic compounds affecting durability are the stilbenes pinosylvin and its monomethylether, which in addition have important functions as phytoalexins in active defense. A substantial portion of the synthesized pinosylvin is 3-methoxylated but the O-methyltransferase responsible for this modification has not been correctly identified. We studied the expression of the stilbene pathway during heartwood development as well as in response to wounding of xylem and UV-C treatment of needles. We isolated and enzymatically characterized a novel O-methyltransferase, PMT2. The methylated product was verified as pinosylvin monomethylether using ultra performance liquid chromatography-tandem mass spectrometry and high performance liquid chromatography analyses. The PMT2 enzyme was highly specific for stilbenes as substrate, in contrast to caffeoyl-CoA O-methyltransferase (CCoAOMT) and PMT1 that were multifunctional. Expression profile and multifunctional activity of CCoAOMT suggest that it might have additional roles outside lignin biosynthesis. PMT1 is not involved in the stilbene pathway and its biological function remains an open question. We isolated a new specific O-methyltransferase responsible for 3-methoxylation of pinosylvin. Expression of PMT2 closely follows stilbene biosynthesis during developmental and stress induction. We propose that PMT2 is responsible for pinosylvin methylation in Scots pine (Pinus sylvestris), instead of the previously characterized methyltransferase, PMT1. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Gene-gene interaction between the cystathionine beta-synthase 31 base pair variable number of tandem repeats and the methylenetetrahydrofolate reductase 677C > T polymorphism on homocysteine levels and risk for neural tube defects.

    NARCIS (Netherlands)

    Afman, L.A.; Lievers, K.J.; Kluijtmans, L.A.J.; Trijbels, J.M.F.; Blom, H.J.

    2003-01-01

    INTRODUCTION: Most studies showed that mothers of children with NTD have elevated homocysteine levels pointing to a disturbed homocysteine metabolism as a risk factor for NTD. Folate lowers homocysteine levels by remethylation of homocysteine to methionine. Homocysteine can be irreversibly converted

  18. The Effect of Ethylene Glycol, Glycine Betaine, and Urea on Lysozyme Thermal Stability

    Science.gov (United States)

    Schwinefus, Jeffrey J.; Leslie, Elizabeth J.; Nordstrom, Anna R.

    2010-01-01

    The four-week student project described in this article is an extension of protein thermal denaturation experiments to include effects of added cosolutes ethylene glycol, glycine betaine, and urea on the unfolding of lysozyme. The transition temperatures and van't Hoff enthalpies for unfolding are evaluated for six concentrations of each cosolute,…

  19. High plasma homocyst(e)ine levels in elderly Japanese patients are associated with increased cardiovascular disease risk independently from markers of coagulation activation and endothelial cell damage.

    Science.gov (United States)

    Kario, K; Duell, P B; Matsuo, T; Sakata, T; Kato, H; Shimada, K; Miyata, T

    2001-08-01

    Elevated plasma homocyst(e)ine is a risk factor for cardiovascular disease (CVD) in many populations, but the relationship between homocyst(e)ine and CVD in Japanese subjects has been unclear. It has been hypothesized that the link between homocyst(e)ine and CVD may be mediated in part by activation of coagulation and endothelial cell injury in the elderly Japanese subjects. To further evaluate this hypothesis, the present cross-sectional study was designed to assess the relationships among plasma homocyst(e)ine concentrations, risk of CVD, and markers of coagulation (fibrinogen, FVII, F1+2, FVIIa and FXIIa) and endothelial cell damage (vWF and thrombomodulin) in 146 elderly Japanese subjects (79 healthy controls and 67 patients with CVD). The geometric mean (range) of plasma homocyst(e)ine concentrations was 10.2 (3.2--33) micromol/l in 79 Japanese healthy elderly subjects. As expected, healthy female and male elderly subjects had homocyst(e)ine levels that were 2.5 and 5.3 micromol/; higher, respectively, compared to healthy young control subjects (n=62). Healthy young and elderly men had homocyst(e)ine levels that were 1.7 and 4.5 micromol/l higher, respectively, compared to values in women. This higher plasma homocyst(e)ine levels in the elderly subjects were negatively correlated with levels of folic acid, albumin and total cholesterol, but were not significantly related to markers of coagulation or endothelial cell-damage. The results of multiple logistic regression analyses suggested that high homocyst(e)ine levels were independently related to CVD risk. In addition, levels of FVIIa, and F1+2 were significantly higher in elderly Japanese patients with CVD compared to elderly subjects without CVD, but were unrelated to plasma homocyst(e)ine concentrations. In summary, elevated plasma concentrations of homocyst(e)ine, FVIIa, and F1+2 were associated with increased risk of CVD in elderly male and female Japanese subjects, but the association between homocyst(e)ine

  20. Choline status and neurodevelopmental outcomes at 5 years of age in the Seychelles Child Development Nutrition Study.

    Science.gov (United States)

    Strain, J J; McSorley, Emeir M; van Wijngaarden, Edwin; Kobrosly, Roni W; Bonham, Maxine P; Mulhern, Maria S; McAfee, Alison J; Davidson, Philip W; Shamlaye, Conrad F; Henderson, Juliette; Watson, Gene E; Thurston, Sally W; Wallace, Julie M W; Ueland, Per M; Myers, Gary J

    2013-07-28

    Choline is an essential nutrient that is found in many food sources and plays a critical role in the development of the central nervous system. Animal studies have shown that choline status pre- and postnatally can have long-lasting effects on attention and memory; however, effects in human subjects have not been well studied. The aim of the present study was to examine the association between plasma concentrations of free choline and its related metabolites in children and their neurodevelopment in the Seychelles Child Development Nutrition Study, an ongoing longitudinal study assessing the development of children born to mothers with high fish consumption during pregnancy. Plasma concentrations of free choline, betaine, dimethylglycine (DMG), methionine and homocysteine and specific measures of neurodevelopment were measured in 210 children aged 5 years. The children's plasma free choline concentration (9·17 (sd 2·09) μmol/l) was moderately, but significantly, correlated with betaine (r 0·24; P= 0·0006), DMG (r 0·15; P= 0·03), methionine (r 0·24; P= 0·0005) and homocysteine (r 0·19; P= 0·006) concentrations. Adjusted multiple linear regression revealed that betaine concentrations were positively associated with Preschool Language Scale – total language scores (β = 0·066; P= 0·04), but no other associations were evident. We found no indication that free choline concentration or its metabolites, within the normal physiological range, are associated with neurodevelopmental outcomes in children at 5 years of age. As there is considerable animal evidence suggesting that choline status during development is associated with cognitive outcome, the issue deserves further study in other cohorts.

  1. Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.).

    Science.gov (United States)

    Chiron, H; Drouet, A; Claudot, A C; Eckerskorn, C; Trost, M; Heller, W; Ernst, D; Sandermann, H

    2000-12-01

    Formation of pinosylvin (PS) and pinosylvin 3-O-monomethyl ether (PSM), as well as the activities of stilbene synthase (STS) and S-adenosyl-1-methionine (SAM):pinosylvin O-methyltransferase (PMT), were induced strongly in needles of Scots pine seedlings upon ozone treatment, as well as in cell suspension cultures of Scots pine upon fungal elicitation. A SAM-dependent PMT protein was purified and partially characterised. A cDNA encoding PMT was isolated from an ozone-induced Scots pine cDNA library. Southern blot analysis of the genomic DNA suggested the presence of a gene family. The deduced protein sequence showed the typical highly conserved regions of O-methyltransferases (OMTs), and average identities of 20-56% to known OMTs. PMT expressed in Escherichia coli corresponded to that of purified PMT (40 kDa) from pine cell cultures. The recombinant enzyme catalysed the methylation of PS, caffeic acid, caffeoyl-CoA and quercetin. Several other substances, such as astringenin, resveratrol, 5-OH-ferulic acid, catechol and luteolin, were also methylated. Recombinant PMT thus had a relatively broad substrate specificity. Treatment of 7-year old Scots pine trees with ozone markedly increased the PMT mRNA level. Our results show that PMT represents a new SAM-dependent OMT for the methylation of stress-induced pinosylvin in Scots pine needles.

  2. Homocisteína, folato e vitamina B12 em pacientes colombianos portadores de coronariopatia Homocysteine, folate and vitamin B12 in colombian patients with coronary disease

    Directory of Open Access Journals (Sweden)

    Gilberto Garcia

    2007-08-01

    Full Text Available OBJETIVO: Determinar a existência de associação entre os níveis plasmáticos de homocisteína, folato ou vitamina B12 e síndrome coronariana aguda em pacientes colombianos. MÉTODOS: Estudo caso-controle: foram 50 pacientes portadores de síndrome coronariana aguda e 50 pacientes ambulatoriais sem síndrome coronariana. Foram medidos os níveis de homocisteína, folato e vitamina B12 por meio de imunoensaio por quimioluminescência. Foram também medidos os níveis de colesterol e frações, triglicérides, uréia, creatinina, hemoglobina e hematócrito. RESULTADOS: As concentrações plasmáticas médias de homocisteína foram significativamente diferentes entre os casos (12,4 µmol/l ± 6,0 e os controles (9,7 µmol/l ± 2,4, p=0,01. Os níveis de ácido fólico dos casos foram menores que os dos controles (respectivamente 10,5 ng/ml ± 3,5 x 12,6 ng/ml ± 3,6; p=0,01. Foi observada relação inversa entre os níveis de folato e os de homocisteína. Não houve relação entre os níveis de vitamina B12 e os de homocisteína. Houve diferença significativa nos níveis de triglicérides entre os grupos caso e controle (respectivamente 136,91 ± 67,27 x 174,3 ± 77,6; p=0,01. A razão das chances para hiper-homocisteinemia na síndrome coronariana aguda foi de 4,45 (intervalo de confiança de 95%: 1,5 - 13,3. CONCLUSÃO: O presente estudo demonstrou associação significativa entre os níveis de homocisteína e síndrome coronariana aguda em pacientes colombianos semelhante à encontrada em populações européias e norte-americanas. Houve correlação negativa entre os níveis plasmáticos de homocisteína e os de folato. Não houve associação entre os níveis plasmáticos de homocisteína e os de vitamina B12.OBJECTIVE: To determine the occurrence of association between homocysteine, folate, or vitamin B12 plasma levels and acute coronary syndrome in Colombian patients. METHODS: Case control study: cases were 50 patients with acute

  3. Vitamin B12, folate, and homocysteine in depression: the Rotterdam Study

    NARCIS (Netherlands)

    H.W. Tiemeier (Henning); H.R. van Tuijl (Ruud); J. Meijer (John); A.J. Kiliaan (Amanda); M.M.B. Breteler (Monique); A. Hofman (Albert)

    2002-01-01

    textabstractOBJECTIVE: The associations of vitamin B(12), folate, and homocysteine with depression were examined in a population-based study. METHOD: The authors screened 3,884 elderly people for depressive symptoms. Subjects with positive screening results had psychiatric workups.

  4. Effects of in ovo administration of betaine and choline on hatchability results, growth and carcass characteristics and immune response of broiler chickens

    Directory of Open Access Journals (Sweden)

    Jafar Gholami

    2015-05-01

    Full Text Available The effect of in ovo administration of different levels of betaine and choline on egg hatchability, immune response, growth and carcass traits of broiler chickens was studied. Four thousand hatching eggs from Ross 308 broiler breeder layers, weighed individually, were incubated for 21 days in a commercial hatchery. At 12th day of incubation, 3456 fertilized eggs were randomly divided into 8 experimental groups of 3 replicates each (144 eggs per replicate: negative control (NC – not injected; positive control (PC – injected with 0.5 mL deionized water; Bet 0.25 – injected with 0.5 mL deionized water+0.25 mg soluble betaine; Bet 0.375 – injected with 0.5 mL deionized water+0.375 mg soluble betaine; Bet 0.50 – injected with 0.5 mL deionized water+0.50 mg soluble betaine; Chol 0.25 – injected with 0.5 mL deionized water+0.25 mg soluble choline; Chol 0.375 – injected with 0.5 mL deionized water+0.375 mg soluble choline; Chol 0.50 – injected with 0.5 mL deionized water+0.50 mg soluble choline. Among the hatched chickens, 360 males were randomly chosen (45 for each group and were grown up to 42nd day of age. The embryo mortality, pecked eggs, infected eggs and hatchability percentages were similar among the experimental groups. The betaine and choline treatments improved hatching weight and final weight of chickens, while reduced feed conversion ratio and abdominal fat percentage. No effect on carcass yield, and breast muscle, leg and wings percentages, as well as on immunoglobulin M (IgM, G (IgG, and total antibody (IgT titers was observed. The treatments had little effect on internal organs.

  5. [Hyperhomocysteinemia in coronary artery diseases. Apropos of a study on 102 patients].

    Science.gov (United States)

    Blacher, J; Montalescot, G; Ankri, A; Chadefaux-Vekemans, B; Benzidia, R; Grosgogeat, Y; Kamoun, P; Thomas, D

    1996-10-01

    Homocystein is at the crossroads of the metabolic pathways of sulphuric amino acids. Homocystinuria is a congenital autosomal recessive disease, usually related to cystathionine beta-synthetase deficiency. Children with homozygotic forms of the disease have early vascular complications which represent the main cause of death. Moderately elevated serum homocystein levels are related to two major genetic factors (heterozygotic cystathionine beta-synthetase deficiency and mutation of the 5-10 methylene tetrahydrofolate reductase) and several minor, genetic and non-genetic factors (folic acid, vitamins B6 and B12 and betain deficiencies). Previous studies have suggested that hyperhomocysteinaemia could be a cardiovascular risk factor. This study was based on 222 subjects including 102 consecutive patients with angiographically documented coronary artery disease and 120 control subjects without vascular disease. No relationship was observed between serum homocystein concentrations and the classical cardiovascular risk factors. Coronary patients had higher average homocystein concentrations than control subjects (11.27 +/- 0.52 vs 8.77 +/- 0.31 mumol/l); p 15.67 mumol/l) was higher in the coronary group (15.7%) than in the controls (2.5%). A significant relationship was also observed between homocystein concentrations and the severity of the coronary disease (defined by a coronary score) and the number of diseased vascular territories. These results underline the relationship between homocystein and vascular risk, especially that of coronary artery disease. The treatment of hyperhomocysteinaemia by folic acid supplements is effective in correcting plasma levels, without side effects and at a relatively low cost.

  6. The effect of Ramadan fasting and physical activity on homocysteine and fibrinogen concentrations in overweight women

    Directory of Open Access Journals (Sweden)

    Seyyed Reza Attarzadeh Hosseini

    2014-12-01

    Full Text Available Introduction: Increased levels of certain markers like fibrinogen and Homocysteine are independently associated with an increased risk of cardiovascular diseases. Considering the numerous favorable effects of healthful nutrition and physical activity on reducing the risk of atherosclerosis, in this study we intend to take into account fasting and physical activity during the month of Ramadan and their impacts on Homocysteine and fibrinogen concentrations in overweight women. Materials and Methods: In this experiment, 22 overweight and obese women with a body mass index (BMI of greater than 25 kg/m2 aging from 20 to 45 years were enrolled into two groups by means of targeted-sampling method. One group involved fasting accompanied with regular physical activity (12 subjects and the other group involved only fasting (10 subjects. The protocol for the physical activity group consisted of three 60-minute sessions of aerobic exercise per week with a 50%- 65% heart rate reserved. Towards the end of Ramadan, the anthropometric and blood levels of Homocysteine and fibrinogen were closely measured. Data were analyzed using repeated measures and the significance level of P≤0 /05 was considered. Findings: A month of fasting along with regular physical activity did not prove to have any noticeable effects on the level of fibrinogen while a significant increase in the Homocysteine levels was discovered (P

  7. Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger.

    Science.gov (United States)

    Manzanares-Miralles, Lara; Sarikaya-Bayram, Özlem; Smith, Elizabeth B; Dolan, Stephen K; Bayram, Özgür; Jones, Gary W; Doyle, Sean

    2016-01-10

    Gliotoxin (GT) is a redox-active metabolite, produced by Aspergillus fumigatus, which inhibits the growth of other fungi. Here we demonstrate how Aspergillus niger responds to GT exposure. Quantitative proteomics revealed that GT dysregulated the abundance of 378 proteins including those involved in methionine metabolism and induced de novo abundance of two S-adenosylmethionine (SAM)-dependent methyltransferases. Increased abundance of enzymes S-adenosylhomocysteinase (p=0.0018) required for homocysteine generation from S-adenosylhomocysteine (SAH), and spermidine synthase (p=0.0068), involved in the recycling of Met, was observed. Analysis of Met-related metabolites revealed significant increases in the levels of Met and adenosine, in correlation with proteomic data. Methyltransferase MT-II is responsible for bisthiobis(methylthio)gliotoxin (BmGT) formation, deletion of MT-II abolished BmGT formation and led to increased GT sensitivity in A. niger. Proteomic analysis also revealed that GT exposure also significantly (pniger. Thus, it provides new opportunities to exploit the response of GT-naïve fungi to GT. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Histone methyltransferases in cancer

    DEFF Research Database (Denmark)

    Albert, Mareike; Helin, Kristian

    2009-01-01

    Cancer is perceived as a heterogeneous group of diseases that is characterized by aberrant patterns of gene expression. In the last decade, an increasing amount of data has pointed to a key role for epigenetic alterations in human cancer. In this review, we focus on a subclass of epigenetic...... regulators, namely histone methyltransferases (HMTs). Several HMTs have been linked to different types of cancer; however, in most cases we only have limited knowledge regarding the molecular mechanisms by which the HMTs contribute to disease development. We summarize the current knowledge regarding some...

  9. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim

    2004-01-01

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure.......Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure....

  10. [Gene cloning and bioinformatics analysis of SABATH methyltransferase in Lonicera japonica var. chinensis].

    Science.gov (United States)

    Yu, Xiao-Dan; Jiang, Chao; Huang, Lu-Qi; Qin, Shuang-Shuang; Zeng, Xiang-Mei; Chen, Ping; Yuan, Yuan

    2013-08-01

    To clone SABATH methyltransferase (rLjSABATHMT) gene in Lonicera japonica var. chinensis, and compare the gene expression and intron sequence of SABATH methyltransferase orthologous in L. japonica with L. japonica var. chinensis. It provide a basis for gene regulate the formation of L. japonica floral scents. The cDNA and genome sequences of LjSABATHMT from L. japonica var. chinensis were cloned according to the gene fragments in cDNA library. The LjSABATHMT protein was characterized by bioinformatics analysis. SABATH family phylogenetic tree were built by MEGA 5.0. The transcripted level of SABATHMT orthologous were analyzed in different organs and different flower periods of L. japonica and L. japonica var. chinensis using RT-PCR analysis. Intron sequences of SABATHMT orthologous were also analyzied. The cDNA of LjSABATHMT was 1 251 bp, had a complete coding frame with 365 amino acids. The protein had the conservative SABATHMT domain, and phylogenetic tree showed that it may be a salicylic acid/benzoic acid methyltransferase. Higher expression of SABATH methyltransferase orthologous was found in flower. The intron sequence of L. japonica and L. japonica var. chinensis had rich polymorphism, and two SNP are unique genotype of L. japonica var. chinensis. The motif elements in two orthologous genes were significant differences. The intron difference of SABATH methyltransferase orthologous could be inducing to difference of gene expression between L. japonica and L. japonica var. chinensis. These results will provide important base on regulating active compounds of L. japonica.

  11. Long-term prognostic significance of homocysteine in middle-aged and elderly

    DEFF Research Database (Denmark)

    Petersen, Julie Falkenberg; Larsen, Bjørn Strøjer; Sabbah, Muhammad

    2016-01-01

    OBJECTIVE: We investigated the association among increased levels of plasma homocysteine (Hcy), all-cause mortality, and cardiovascular events. METHODS: Hcy was measured in 670 middle-aged and elderly subjects with no previous manifest cardiovascular disease. The follow-up period was 15 years...

  12. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein.

    Science.gov (United States)

    Li, Na; Wang, Yuzhi; Xu, Kaijia; Huang, Yanhua; Wen, Qian; Ding, Xueqin

    2016-05-15

    Six kinds of new type of green betaine-based deep eutectic solvents (DESs) have been synthesized. Deep eutectic solvent aqueous two-phase systems (DES-ATPS) were established and successfully applied in the extraction of protein. Betaine-urea (Be-U) was selected as the suitable extractant. Single factor experiments were carried out to determine the optimum conditions of the extraction process, such as the salt concentration, the mass of DES, the separation time, the amount of protein, the temperature and the pH value. The extraction efficiency could achieve to 99.82% under the optimum conditions. Mixed sample and practical sample analysis were discussed. The back extraction experiment was implemented and the back extraction efficiency could reach to 32.66%. The precision experiment, repeatability experiment and stability experiment were investigated. UV-vis, FT-IR and circular dichroism (CD) spectra confirmed that the conformation of protein was not changed during the process of extraction. The mechanisms of extraction were researched by dynamic light scattering (DLS), the measurement of the conductivity and transmission electron microscopy (TEM). DES-protein aggregates and embraces phenomenon play considerable roles in the separation process. All of these results indicated that betaine-based DES-ATPS may provide a potential substitute new method for the separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Capillary electrophoresis coupled with chloroform-acetonitrile extraction for rapid and highly selective determination of cysteine and homocysteine levels in human blood plasma and urine.

    Science.gov (United States)

    Ivanov, Alexander Vladimirovich; Bulgakova, Polina Olegovna; Virus, Edward Danielevich; Kruglova, Maria Petrovna; Alexandrin, Valery Vasil'evich; Gadieva, Viktoriya Aleksandrovna; Luzyanin, Boris Petrovich; Kushlinskii, Nikolai Evgen'evich; Fedoseev, Anatolij Nikolaevich; Kubatiev, Aslan Amirkhanovich

    2017-10-01

    A rapid and selective method has been developed for highly sensitive determination of total cysteine and homocysteine levels in human blood plasma and urine by capillary electrophoresis (CE) coupled with liquid-liquid extraction. Analytes were first derivatized with 1,1'-thiocarbonyldiimidazole and then samples were purified by chloroform-ACN extraction. Electrophoretic separation was performed using 0.1 M phosphate with 30 mM triethanolamine, pH 2, containing 25 μM CTAB, 2.5 μM SDS, and 2.5% polyethylene glycol 600. Samples were injected into the capillary (with total length 32 cm and 50 μm id) at 2250 mbar*s and subsequent injection was performed for 30 s with 0.5 M KОН. The total analysis time was less than 9 min, accuracy was 98%, and precision was <2.6%. The LOD was 0.2 μM for homocysteine and 0.5 μM for cysteine. The use of liquid-liquid extraction allowed the precision and sensitivity of the CE method to be significantly increased. The validated method was applied to determine total cysteine and homocysteine content in human blood plasma and urine samples obtained from healthy volunteers and patients with kidney disorders. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. miR-125b targets DNMT3b and mediates p53 DNA methylation involving in the vascular smooth muscle cells proliferation induced by homocysteine

    Energy Technology Data Exchange (ETDEWEB)

    Cao, ChengJian [Key Laboratory of Basic Research in Cardio-Cerebral Vascular Diseases, Ningxia Medical University, Yinchuan (China); Zhang, HuiPing [Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan (China); Zhao, Li [Department of Medical Laboratory, Ningxia Medical University, Yinchuan (China); Zhou, Longxia [Department of Basic Medicine, Ningxia Medical University, Yinchuan (China); Zhang, Minghao; Xu, Hua [Key Laboratory of Basic Research in Cardio-Cerebral Vascular Diseases, Ningxia Medical University, Yinchuan (China); Department of Basic Medicine, Ningxia Medical University, Yinchuan (China); Han, Xuebo [Department of Medical Laboratory, Ningxia Medical University, Yinchuan (China); Li, Guizhong; Yang, Xiaoling [Key Laboratory of Basic Research in Cardio-Cerebral Vascular Diseases, Ningxia Medical University, Yinchuan (China); Department of Basic Medicine, Ningxia Medical University, Yinchuan (China); Jiang, YiDeng, E-mail: jyjcyxy@yeah.net [Key Laboratory of Basic Research in Cardio-Cerebral Vascular Diseases, Ningxia Medical University, Yinchuan (China); Department of Basic Medicine, Ningxia Medical University, Yinchuan (China)

    2016-09-10

    MicroRNAs (miRNAs) are short non-coding RNA and play crucial roles in a wide array of biological processes, including cell proliferation, differentiation and apoptosis. Our previous studies found that homocysteine(Hcy) can stimulate the proliferation of vascular smooth muscle cells (VSMCs), however, the underlying mechanisms were not fully elucidated. Here, we found proliferation of VSMCs induced by Hcy was of correspondence to the miR-125b expression reduced both in vitro and in the ApoE knockout mice, the hypermethylation of p53, its decreased expression, and DNA (cytosine-5)-methyltransferase 3b (DNMT3b) up-regulated. And, we found DNMT3b is a target of miR-125b, which was verified by the Dual-Luciferase reporter assay and western blotting. Besides, the siRNA interference for DNMT3b significantly decreased the methylation level of p53, which unveiled the causative role of DNMT3b in p53 hypermethylation. miR-125b transfection further confirmed its regulative roles on p53 gene methylation status and the VSMCs proliferation. Our data suggested that a miR-125b-DNMT3b-p53 signal pathway may exist in the VSMCs proliferation induced by Hcy.

  15. miR-125b targets DNMT3b and mediates p53 DNA methylation involving in the vascular smooth muscle cells proliferation induced by homocysteine

    International Nuclear Information System (INIS)

    Cao, ChengJian; Zhang, HuiPing; Zhao, Li; Zhou, Longxia; Zhang, Minghao; Xu, Hua; Han, Xuebo; Li, Guizhong; Yang, Xiaoling; Jiang, YiDeng

    2016-01-01

    MicroRNAs (miRNAs) are short non-coding RNA and play crucial roles in a wide array of biological processes, including cell proliferation, differentiation and apoptosis. Our previous studies found that homocysteine(Hcy) can stimulate the proliferation of vascular smooth muscle cells (VSMCs), however, the underlying mechanisms were not fully elucidated. Here, we found proliferation of VSMCs induced by Hcy was of correspondence to the miR-125b expression reduced both in vitro and in the ApoE knockout mice, the hypermethylation of p53, its decreased expression, and DNA (cytosine-5)-methyltransferase 3b (DNMT3b) up-regulated. And, we found DNMT3b is a target of miR-125b, which was verified by the Dual-Luciferase reporter assay and western blotting. Besides, the siRNA interference for DNMT3b significantly decreased the methylation level of p53, which unveiled the causative role of DNMT3b in p53 hypermethylation. miR-125b transfection further confirmed its regulative roles on p53 gene methylation status and the VSMCs proliferation. Our data suggested that a miR-125b-DNMT3b-p53 signal pathway may exist in the VSMCs proliferation induced by Hcy.

  16. Relationship between homocysteine and coronary artery disease. Results from a large prospective cohort study.

    Science.gov (United States)

    Schaffer, Alon; Verdoia, Monica; Cassetti, Ettore; Marino, Paolo; Suryapranata, Harry; De Luca, Giuseppe

    2014-08-01

    Coronary artery disease (CAD) still represents the major cause of mortality in developed countries. Large research programs have been focused on the identification of new risk factors to prevent CAD, with special attention to homocysteine (Hcy), due to the known associated increased thrombogenicity, oxidative stress status and endothelial dysfunction. However, controversy still exists on the association between Hcy and CAD. Therefore, aim of the current study was to investigate the association of Hcy with the prevalence and extent of CAD in a large consecutive cohort of patients undergoing coronary angiography. Our population is represented by a total of 3056 consecutive patients undergoing coronary angiography between at the Azienda Ospedaliera "Maggiore della Carità", Novara, Italy. Fasting samples were collected for homocysteine levels assessment. Coronary disease was defined for at least 1 vessel stenosis>50% as evaluated by QCA. Study population was divided according to Hcy tertiles (18.2nmol/ml). High plasmatic level of homocysteine was related with age (pbenefits from vitamin administration in patients with elevated Hcy to prevent the occurrence and progression of CAD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A pilot study of homocyst(e)ine levels in essential hypertension: relationship to von Willebrand factor, an index of endothelial damage.

    Science.gov (United States)

    Lip, G Y; Edmunds, E; Martin, S C; Jones, A F; Blann, A D; Beevers, D G

    2001-07-01

    An interaction between homocyst(e)ine and the endothelium in hypertensive patients may promote thrombogenesis and atherogenesis, leading to adverse cardiovascular events. We hypothesized that homocyst(e)ine levels are abnormal in patients with essential hypertension, and that this may be related to an adverse effect on the vascular endothelium. Accordingly, we compared plasma levels of homocyst(e)ine and von Willebrand factor (marking endothelial damage) in 83 patients (43 men; mean age 54 +/- standard deviation 15.9 years) with essential hypertension (> 160/90 mm Hg), with levels in 25 healthy normotensive controls (13 men; mean age 56+/-11.8 years). Baseline levels of the markers and other clinical indices were then related to adverse cardiovascular events at follow-up. Plasma homocyst(e)ine (P = .0001) and von Willebrand factor (P = .031) levels were significantly higher in hypertensives compared to controls. After a mean follow-up of 76 patients for 45 months (range, 1 to 66 months), 17 subjects experienced an end point of either cardiovascular death (n = 10) or adverse cardiovascular event (n = 7). Comparing these 17 with the 59 free of an end point, the former were older (P = .0002) and had a longer duration of known hypertension (P = .018). There was a nonsignificant trend toward higher median plasma homocyst(e)ine levels in the patients sustaining a vascular end point (P = .07). In this pilot study, we suggest that essential hypertension may be associated with increased plasma homocyst(e)ine levels, but that this amino acid is unrelated to endothelial damage (von Willebrand factor), clinical indices, or prognosis.

  18. Methylenetetrahydrofolate reductase gene, homocysteine and coronary artery disease: the A1298C polymorphism does matter. Inferences from a case study (Madeira, Portugal).

    Science.gov (United States)

    Freitas, Ana I; Mendonça, Isabel; Guerra, Graça; Brión, Maria; Reis, Roberto P; Carracedo, Angel; Brehm, António

    2008-01-01

    Elevated levels of plasma homocysteine, an independent risk factor and a strong predictor of mortality in patients with coronary artery disease (CAD), can result from nutritional deficiencies or genetic errors, including methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms. The contribution of these polymorphisms in the development of CAD remains controversial. We analysed the impact of MTHFR C677T and A1298C on fasting homocysteine and CAD in 298 CAD patients proved by angiography and 510 control subjects from the Island of Madeira (Portugal). After adjustment for other risk factors, plasma homocysteine remained independently correlated with CAD. Serum homocysteine was significantly higher in individuals with 677TT and 1298AA genotypes. There was no difference in the distribution of MTHFR677 genotypes between cases and controls but a significant increase in 1298AA prevalence was found in CAD patients. In spite of the clear effect of C677T mutation on elevated homocysteine levels we only found an association between 1298AA genotype and CAD in this population. The simultaneous presence of 677CT and 1298AA genotypes provides a significant risk of developing the disease, while the 1298AC genotype, combined with 677CC, shows a significant trend towards a decrease in CAD occurrence. The data shows an independent association between elevated levels of homocysteine and CAD. Both MTHFR polymorphisms are associated with increased fasting homocysteine (677TT and 1298AA genotypes), but only the 1298AA variant shows an increased prevalence in CAD group. Odds ratio seem to indicate that individuals with the MTHFR 1298AA genotype and the 677CT/1298AA compound genotype had a 1.6-fold increased risk for developing CAD suggesting a possible association of MTHFR polymorphisms with the risk of CAD in Madeira population.

  19. A high-protein diet increases postprandial but not fasting plasma total homocysteine concentrations: A dietary controlled, crossover trial in healthy volunteers

    NARCIS (Netherlands)

    Verhoef, P.; Vliet, T. van; Olthof, M.R.; Katan, M.B.

    2005-01-01

    Background: A high plasma concentration of total homocysteine (tHcy) is associated with increased risk of cardiovascular disease. A high protein intake and hence a high intake of methionine-the sole dietary precursor of homocysteine-may raise plasma tHcy concentrations. Objectives: We studied

  20. A high-protein diet increases postprandial but not fasting plasma total homocysteine concentrations : A dietary controlled, crossover trial in healthy volunteers

    NARCIS (Netherlands)

    Verhoef, Petra; Van Vliet, Trinette; Olthof, Margreet R.; Katan, Martijn B.

    2005-01-01

    Background: A high plasma concentration of total homocysteine (tHcy) is associated with increased risk of cardiovascular disease. A high protein intake and hence a high intake of methionine-the sole dietary precursor of homocysteine-may raise plasma tHcy concentrations. Objectives: We studied