WorldWideScience

Sample records for betaine-homocysteine methyltransferase expression

  1. Homocysteine homeostasis and betaine-homocysteine S-methyltransferase expression in the brain of hibernating bats.

    Directory of Open Access Journals (Sweden)

    Yijian Zhang

    Full Text Available Elevated homocysteine is an important risk factor that increases cerebrovascular and neurodegenerative disease morbidity. In mammals, B vitamin supplementation can reduce homocysteine levels. Whether, and how, hibernating mammals, that essentially stop ingesting B vitamins, maintain homocysteine metabolism and avoid cerebrovascular impacts and neurodegeneration remain unclear. Here, we compare homocysteine levels in the brains of torpid bats, active bats and rats to identify the molecules involved in homocysteine homeostasis. We found that homocysteine does not elevate in torpid brains, despite declining vitamin B levels. At low levels of vitamin B6 and B12, we found no change in total expression level of the two main enzymes involved in homocysteine metabolism (methionine synthase and cystathionine β-synthase, but a 1.85-fold increase in the expression of the coenzyme-independent betaine-homocysteine S-methyltransferase (BHMT. BHMT expression was observed in the amygdala of basal ganglia and the cerebral cortex where BHMT levels were clearly elevated during torpor. This is the first report of BHMT protein expression in the brain and suggests that BHMT modulates homocysteine in the brains of hibernating bats. BHMT may have a neuroprotective role in the brains of hibernating mammals and further research on this system could expand our biomedical understanding of certain cerebrovascular and neurodegenerative disease processes.

  2. Corticoadrenal activity in rat regulates betaine-homocysteine S-methyltransferase expression with opposite effects in liver and kidney

    Indian Academy of Sciences (India)

    Osvaldo Fridman; Analía V Morales; Laura E Bortoni; Paula C Turk-Noceto; Elio A Prieto

    2012-03-01

    Betaine-homocysteine -methyltransferase (BHMT) is an enzyme that converts homocysteine (Hcy) to methionine using betaine as a methyl donor. Betaine also acts as osmolyte in kidney medulla, protecting cells from high extracellular osmolarity. Hepatic BHMT expression is regulated by salt intake. Hormones, particularly corticosteroids, also regulate BHMT expression in rat liver. We investigated to know whether the corticoadrenal activity plays a role in kidney BHMT expression. BHMT activity in rat kidneys is several orders of magnitude lower than in rat livers and only restricted to the renal cortex. This study confirms that corticosteroids stimulate BHMT activity in the liver and, for the first time in an animal model, also up-regulate the BHMT gene expression. Besides, unlike the liver, corticosteroids in rat kidney down-regulate BHMT expression and activity. Given that the classical effect of adrenocortical activity on the kidney is associated with sodium and water re-absorption by the distal tubule leading to volume expansion, by promoting lesser use of betaine as a methyl donor, corticosteroids would preserve betaine for its other role as osmoprotectant against changes in the extracellular osmotic conditions. We conclude that corticosteroids are, at least in part, responsible for the inhibition of BHMT expression and activity in rat kidneys.

  3. Betaine-homocysteine methyltransferase (BHMT) : genomic sequencing and relevance to hyperhomocysteinemia and vascular disease in humans

    NARCIS (Netherlands)

    Heil, S.G.; Lievers, K.J.A.; Boers, G.H.; Verhoef, P.; Heijer, den M.; Trijbels, F.J.M.; Blom, H.J.

    2000-01-01

    Elevated homocysteine levels have been associated with arteriosclerosis and thrombosis. Hyperhomocysteinemia is caused by altered functioning of enzymes of its metabolism due to either inherited or acquired factors. Betaine-homocysteine methyltransferase (BHMT) serves, next to methionine synthase, a

  4. Both the folate cycle and betaine-homocysteine methyltransferase contribute methyl groups for DNA methylation in mouse blastocysts.

    Science.gov (United States)

    Zhang, Baohua; Denomme, Michelle M; White, Carlee R; Leung, Kit-Yi; Lee, Martin B; Greene, Nicholas D E; Mann, Mellissa R W; Trasler, Jacquetta M; Baltz, Jay M

    2015-03-01

    The embryonic pattern of global DNA methylation is first established in the inner cell mass (ICM) of the mouse blastocyst. The methyl donor S-adenosylmethionine (SAM) is produced in most cells through the folate cycle, but only a few cell types generate SAM from betaine (N,N,N-trimethylglycine) via betaine-homocysteine methyltransferase (BHMT), which is expressed in the mouse ICM. Here, mean ICM cell numbers decreased from 18-19 in controls to 11-13 when the folate cycle was inhibited by the antifolate methotrexate and to 12-14 when BHMT expression was knocked down by antisense morpholinos. Inhibiting both pathways, however, much more severely affected ICM development (7-8 cells). Total SAM levels in mouse blastocysts decreased significantly only when both pathways were inhibited (from 3.1 to 1.6 pmol/100 blastocysts). DNA methylation, detected as 5-methylcytosine (5-MeC) immunofluorescence in isolated ICMs, was minimally affected by inhibition of either pathway alone but decreased by at least 45-55% when both BHMT and the folate cycle were inhibited simultaneously. Effects on cell numbers and 5-MeC levels in the ICM were completely rescued by methionine (immediate SAM precursor) or SAM. Both the folate cycle and betaine/BHMT appear to contribute to a methyl pool required for normal ICM development and establishing initial embryonic DNA methylation. PMID:25466894

  5. Betaine:homocysteine methyltransferase--a new assay for the liver enzyme and its absence from human skin fibroblasts and peripheral blood lymphocytes.

    Science.gov (United States)

    Wang, J A; Dudman, N P; Lynch, J; Wilcken, D E

    1991-12-31

    Chronic elevation of plasma homocysteine is associated with increased atherogenesis and thrombosis, and can be lowered by betaine (N,N,N-trimethylglycine) treatment which is thought to stimulate activity of the enzyme betaine:homocysteine methyltransferase. We have developed a new assay for this enzyme, in which the products of the enzyme-catalysed reaction between betaine and homocysteine are oxidised by performic acid before being separated and quantified by amino acid analysis. This assay confirmed that human liver contains abundant betaine:homocysteine methyltransferase (33.4 nmol/h/mg protein at 37 degrees C, pH 7.4). Chicken and lamb livers also contain the enzyme, with respective activities of 50.4 and 6.2 nmol/h/mg protein. However, phytohaemagglutinin-stimulated human peripheral blood lymphocytes and cultured human skin fibroblasts contained no detectable betaine:homocysteine methyltransferase (less than 1.4 nmol/h/mg protein), even after cells were pre-cultured in media designed to stimulate production of the enzyme. The results emphasize the importance of the liver in mediating the lowering of elevated circulating homocysteine by betaine. PMID:1819467

  6. Dissecting the Catalytic Mechanism of Betaine-Homocysteine S-Methyltransferase Using Intrinsic Tryptophan Fluorescence and Site-Directed Mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.; Gratson, A.A.; Evans, J.C.; Jiracek, J.; Collinsova, M.; Ludwig, M.L.; Garrow, T.A. (ASCR); (UIUC); (Michigan)

    2010-03-05

    Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent enzyme that catalyzes the transfer of a methyl group from glycine betaine (Bet) to homocysteine (Hcy) to form dimethylglycine (DMG) and methionine (Met). Previous studies in other laboratories have indicated that catalysis proceeds through the formation of a ternary complex, with a transition state mimicked by the inhibitor S-({delta}-carboxybutyl)-l-homocysteine (CBHcy). Using changes in intrinsic tryptophan fluorescence to determine the affinity of human BHMT for substrates, products, or CBHcy, we now demonstrate that the enzyme-substrate complex reaches its transition state through an ordered bi-bi mechanism in which Hcy is the first substrate to bind and Met is the last product released. Hcy, Met, and CBHcy bind to the enzyme to form binary complexes with K{sub d} values of 7.9, 6.9, and 0.28 {micro}M, respectively. Binary complexes with Bet and DMG cannot be detected with fluorescence as a probe, but Bet and DMG bind tightly to BHMT-Hcy to form ternary complexes with K{sub d} values of 1.1 and 0.73 {micro}M, respectively. Mutation of each of the seven tryptophan residues in human BHMT provides evidence that the enzyme undergoes two distinct conformational changes that are reflected in the fluorescence of the enzyme. The first is induced when Hcy binds, and the second, when Bet binds. As predicted by the crystal structure of BHMT, the amino acids Trp44 and Tyr160 are involved in binding Bet, and Glu159 in binding Hcy. Replacing these residues by site-directed mutagenesis significantly reduces the catalytic efficiency (V{sub max}/K{sub m}) of the enzyme. Replacing Tyr77 with Phe abolishes enzyme activity.

  7. Alleviation of hepatic fat accumulation by betaine involves reduction of homocysteine via up-regulation of betaine-homocysteine methyltransferase (BHMT).

    Science.gov (United States)

    Ahn, Chul Won; Jun, Doo Sung; Na, Jong Deok; Choi, Yeo Jin; Kim, Young Chul

    2016-08-26

    We investigated the anti-lipogenic effect of betaine in rats fed methionine and choline-deficient diet (MCD). Intake of MCD for 3 wk resulted in a significant accumulation of hepatic lipids, which was prevented by betaine supplementation in drinking water (1%). Phosphorylation of AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), sterol regulatory element-binding protein-1c (SREBP-1c), and liver kinase B1 (LKB1) was inhibited by MCD intake, and these changes were all inhibited by betaine feeding. Meanwhile, betaine supplementation reversed the reduction of methionine and S-adenosylmethionine (SAM), and the elevation of homocysteine levels in the liver, which could be attributable to the induction of betaine-homocysteine methyltransferase (BHMT) and methionine adenosyltransferase (MAT). Different cell lines were used to clarify the role of homocysteine on activation of the AMPK pathway. Homocysteine treatment decreased pAMPK, pACC, pSREBP-1c and pLKB1 in HepG2 cells. Metformin-induced activation of AMPK was also inhibited by homocysteine. Treatment with hydroxylamine, a cystathionine β-synthase inhibitor, resulted in a reduction of pAMPK, pACC and pSREBP-1c, accompanied by an elevation of intracellular homocysteine. Betaine treatment prevented the homocysteine-induced reduction of pAMPK, pACC, pSREBP-1c and pLKB1 in H4IIE cells, but not in HepG2 cells. Also the elevation of cellular homocysteine and inhibition of protein expression of BHMT were prevented by betaine only in H4IIE cells which express BHMT. The results suggest that the beneficial effect of betaine against hepatic lipid accumulation may be attributed, at least in part, to the depletion of homocysteine via up-regulation of BHMT in hepatocytes. PMID:27320863

  8. The Metabolic Burden of Methyl Donor Deficiency with Focus on the Betaine Homocysteine Methyltransferase Pathway

    Directory of Open Access Journals (Sweden)

    Rima Obeid

    2013-09-01

    Full Text Available Methyl groups are important for numerous cellular functions such as DNA methylation, phosphatidylcholine synthesis, and protein synthesis. The methyl group can directly be delivered by dietary methyl donors, including methionine, folate, betaine, and choline. The liver and the muscles appear to be the major organs for methyl group metabolism. Choline can be synthesized from phosphatidylcholine via the cytidine-diphosphate (CDP pathway. Low dietary choline loweres methionine formation and causes a marked increase in S-adenosylmethionine utilization in the liver. The link between choline, betaine, and energy metabolism in humans indicates novel functions for these nutrients. This function appears to goes beyond the role of the nutrients in gene methylation and epigenetic control. Studies that simulated methyl-deficient diets reported disturbances in energy metabolism and protein synthesis in the liver, fatty liver, or muscle disorders. Changes in plasma concentrations of total homocysteine (tHcy reflect one aspect of the metabolic consequences of methyl group deficiency or nutrient supplementations. Folic acid supplementation spares betaine as a methyl donor. Betaine is a significant determinant of plasma tHcy, particularly in case of folate deficiency, methionine load, or alcohol consumption. Betaine supplementation has a lowering effect on post-methionine load tHcy. Hypomethylation and tHcy elevation can be attenuated when choline or betaine is available.

  9. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway.

    Science.gov (United States)

    Obeid, Rima

    2013-09-09

    Methyl groups are important for numerous cellular functions such as DNA methylation, phosphatidylcholine synthesis, and protein synthesis. The methyl group can directly be delivered by dietary methyl donors, including methionine, folate, betaine, and choline. The liver and the muscles appear to be the major organs for methyl group metabolism. Choline can be synthesized from phosphatidylcholine via the cytidine-diphosphate (CDP) pathway. Low dietary choline loweres methionine formation and causes a marked increase in S-adenosylmethionine utilization in the liver. The link between choline, betaine, and energy metabolism in humans indicates novel functions for these nutrients. This function appears to goes beyond the role of the nutrients in gene methylation and epigenetic control. Studies that simulated methyl-deficient diets reported disturbances in energy metabolism and protein synthesis in the liver, fatty liver, or muscle disorders. Changes in plasma concentrations of total homocysteine (tHcy) reflect one aspect of the metabolic consequences of methyl group deficiency or nutrient supplementations. Folic acid supplementation spares betaine as a methyl donor. Betaine is a significant determinant of plasma tHcy, particularly in case of folate deficiency, methionine load, or alcohol consumption. Betaine supplementation has a lowering effect on post-methionine load tHcy. Hypomethylation and tHcy elevation can be attenuated when choline or betaine is available.

  10. Coordinate regulation of DNA methyltransferase expression during oogenesis

    Directory of Open Access Journals (Sweden)

    Bestor Timothy H

    2007-04-01

    Full Text Available Abstract Background Normal mammalian development requires the action of DNA methyltransferases (DNMTs for the establishment and maintenance of DNA methylation within repeat elements and imprinted genes. Here we report the expression dynamics of Dnmt3a and Dnmt3b, as well as a regulator of DNA methylation, Dnmt3L, in isolated female germ cells. Results Our results indicate that these enzymes are coordinately regulated and that their expression peaks during the stage of postnatal oocyte development when maternal methylation imprints are established. We find that Dnmt3a, Dnmt3b, Dnmt3L and Dnmt1o transcript accumulation is related to oocyte diameter. Furthermore, DNMT3L deficient 15 dpp oocytes have aberrantly methylated Snrpn, Peg3 and Igf2r DMRs, but normal IAP and LINE-1 methylation levels, thereby highlighting a male germ cell specific role for DNMT3L in the establishment of DNA methylation at repeat elements. Finally, real-time RT-PCR analysis indicates that the depletion of either DNMT3L or DNMT1o in growing oocytes results in the increased expression of the de novo methyltransferase Dnmt3b, suggesting a potential compensation mechanism by this enzyme for the loss of one of the other DNA methyltransferases. Conclusion Together these results provide a better understanding of the developmental regulation of Dnmt3a, Dnmt3b and Dnmt3L at the time of de novo methylation during oogenesis and demonstrate that the involvement of DNMT3L in retrotransposon silencing is restricted to the male germ line. This in turn suggests the existence of other factors in the oocyte that direct DNA methylation to transposons.

  11. High level expression and purification of HhaI methyltransferase.

    OpenAIRE

    Wu, J. C.; Santi, D V

    1988-01-01

    A cloning system for the DNA-(cytosine-5)-methyltransferase MHhaI and high level expression of the enzyme are described. A parent plasmid was constructed from fragments of the MHhaI gene and synthetic oligonucleotides. The construct permits introduction of various restriction sites for cloning at precise positions near the initiation codon, and beyond the termination codon. The entire MHhaI coding sequence was introduced as a 1042 b.p. NdeI-XbaI fragment into the vector pAR3040 which contains...

  12. Effects of methionine supplementation on the expression of oxidative stress-related genes in acute heat stress-exposed broilers.

    Science.gov (United States)

    Del Vesco, Ana Paula; Gasparino, Eliane; Grieser, Daiane de Oliveira; Zancanela, Vittor; Soares, Maria Amélia Menck; Neto, Adhemar Rodrigues de Oliveira

    2015-02-28

    The aim of the present study was to evaluate the effects of heat stress (HS) and methionine supplementation on the markers of stress and on the gene expression levels of uncoupling proteins (UCP), betaine-homocysteine methyltransferase (BHMT), cystathionine β-synthase (CBS), glutathione synthetase (GSS) and glutathione peroxidase 7 (GPx7). Broilers from 1 to 21 d and from 22 to 42 d of age were divided into three treatment groups related to methionine supplementation: without methionine supplementation (MD); recommended level of methionine supplementation (DL1); excess methionine supplementation (DL2). The broilers were either kept at a comfortable thermal temperature or exposed to HS (38°C for 24 h). During the starter period, we observed the effects of the interaction between diet and environment on the gene expression levels of UCP, BHMT and GSS. Higher gene expression levels of UCP and BHMT were observed in broilers that were maintained at thermal comfort conditions and received the MD diet. HS broilers fed the DL1 and DL2 diets had the highest expression level of GSS. The expression levels of the CBS and GPx7 genes were influenced by both the environment and methionine supplementation. During the grower period, the gene expression levels of BHMT, CBS, GSS and GPx7 were affected by the diet × environment interaction. A higher expression level of BHMT was observed in broilers maintained at thermal comfort conditions and on the MD diet. HS induced higher expression levels of CBS, GSS and GPx7 in broilers that received the DL1 and DL2 diets. The present results suggest that under HS conditions, methionine supplementation could mitigate the effects of stress, since methionine contributed to the increased expression levels of genes related to antioxidant activity.

  13. CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE (CYT19)

    Science.gov (United States)

    CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE (cyt19)Stephen B. Waters1 , Felicia Walton1 , Miroslav Styblo1 , Karen Herbin-Davis2, and David J. Thomas2 1 School of Medicine, University of North Carolina at Chape...

  14. Gene expression in rats with Barrett's esophagus and esophageal adenocarcinoma induced by gastroduodenoesophageal reflux

    Institute of Scientific and Technical Information of China (English)

    Peng Cheng; Jun Gong; Tao Wang; Jie Chen; Gui-Sheng Liu; Ru Zhang

    2005-01-01

    AIM: To study the different gene expression profiles in rats with Barrett's esophagus (BE) and esophageal adenocarcinoma (EA) induced by gastro-duodenoesophageal reflux.METHODS: Esophagoduodenostomy was performed in 8-wk old Sprague-Dawley rats to induce gastro-duodenoesophageal reflux, and a group of rats that received sham operation served as control. Esophageal epithelial pathological tissues were dissected and frozen in liquid nitrogen immediately. The expression profiles of 4 096genes in EA and BE tissues were compared to normal esophagus epithelium in normal control (NC) by cDNA microarray.RESULTS: Four hundred and forty-eight genes in BE were more than three times different from those in NC, including 312 upregulated and 136 downregulated genes. Three hundred and seventy-seven genes in EA were more than three times different from those in NC, including 255upregulated and 142 downregulated genes. Compared to BE, there were 122 upregulated and 156 downregulated genes in EA. In the present study, the interested genes were those involved in carcinogenesis. Among them, the upregulated genes included cathepsin C, aminopeptidase M, arachidonic acid epoxygenase, tryptophan-2,3-dioxygenase, ubiquitin-conjugating enzyme, cyclic GMP-stimulated phosphodiesterase, tissue inhibitor of metalloproteinase-1, betaine-homocysteine methyltransferase, lysozyme, complement 4b binding protein,complement 9 protein, insulin-like growth factor binding protein, UDP-glucuronosyltransferase, tissue inhibitor of metalloproteinase-3, aldolase B, retinoid X receptor gamma, carboxylesterase and testicular cell adhesion molecule 1. The downregulated genes included glutathione synthetase, lecithin-cholesterol acyltransferase, p55CDC,heart fatty acid binding protein, cell adhesion regulator and endothelial cell selectin ligand.CONCLUSION: Esophageal epithelium exposed excessively to harmful ingredients of duodenal and gastric reflux may develop into BE and even EA gradually. The gene

  15. Expression of O6-methylguanine DNA methyltransferase (MGMT) and its clinical significance in gastroenteropancreatic neuroendocrine neoplasm

    OpenAIRE

    Yang, Qiu-chen; Wang, Yu-Hong; Lin, Yuan; Xue, Ling; Chen, Yuan-Jia; Chen, Min-hu; Chen, Jie

    2014-01-01

    O6-methylguanine-DNA methyltransferase (MGMT) is a widespread DNA repair enzyme defending against mutation caused by guanine O6-alkylating agents. Until now, we know only little about the expression of MGMT in gastroenteropancreatic neuroendocrine neoplasm (GEP-NEN). To study the expression of MGMT and its clinical significance in GEP-NEN, 174 specimens of GEP-NEN were examined, of which 152 specimens came from The First Affiliated Hospital, Sun Yat-sen University during October 1995 to Novem...

  16. Transcriptome profiling of Set5 and Set1 methyltransferases: Tools for visualization of gene expression

    Directory of Open Access Journals (Sweden)

    Glòria Mas Martín

    2014-12-01

    Full Text Available Cells regulate transcription by coordinating the activities of multiple histone modifying complexes. We recently identified the yeast histone H4 methyltransferase Set5 and discovered functional overlap with the histone H3 methyltransferase Set1 in gene expression. Specifically, using next-generation RNA sequencing (RNA-Seq, we found that Set5 and Set1 function synergistically to regulate specific transcriptional programs at subtelomeres and transposable elements. Here we provide a comprehensive description of the methodology and analysis tools corresponding to the data deposited in NCBI's Gene Expression Omnibus (GEO under the accession number GSE52086. This data complements the experimental methods described in Mas Martín G et al. (2014 and provides the means to explore the cooperative functions of histone H3 and H4 methyltransferases in the regulation of transcription. Furthermore, a fully annotated R code is included to enable researchers to use the following computational tools: comparison of significant differential expression (SDE profiles; gene ontology enrichment of SDE; and enrichment of SDE relative to chromosomal features, such as centromeres, telomeres, and transposable elements. Overall, we present a bioinformatics platform that can be generally implemented for similar analyses with different datasets and in different organisms.

  17. MOLECULAR AND FUNCTIONAL CHARACTERIZATION OF A JUVENILE HORMONE ACID METHYLTRANSFERASE EXPRESSED IN THE CORPORA ALLATA OF MOSQUITOES

    OpenAIRE

    Mayoral, Jaime G.; Nouzova, Marcela; Yoshiyama, Michiyo; Shinoda, Tetsuro; Hernandez-Martinez, Salvador; Dolghih, Elena; Turjanski, Adrian G; Roitberg, Adrian E.; Priestap, Horacio; Perez, Mario; Mackenzie, Lucy; Li, Yiping; Noriega, Fernando G.

    2008-01-01

    A juvenile hormone acid methyltransferase (JHAMT) was isolated as an abundant EST in a library of the corpora allata of the adult female mosquito Aedes aegypti. Its full-length cDNA encodes a 278-aa protein that has 43 % amino acid identity with BmJHAMT, a juvenile hormone acid methyltransferase previously cloned from Bombyx mori. Heterologous expression produced a recombinant protein that metabolizes farnesoic acid (FA) into methyl farnesoate, as well as juvenile hormone acid into juvenile h...

  18. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  19. Identification and expression profiling of DNA methyltransferases during development and stress conditions in Solanaceae.

    Science.gov (United States)

    Kumar, Rahul; Chauhan, Pankaj Kumar; Khurana, Ashima

    2016-09-01

    DNA methyltransferase (DMTase) enzymes contribute to plant development and stress responses by de novo establishment and subsequent maintenance of DNA methylation during replication. However, the molecular mechanism underlying this activity remains obscure, especially in crop species. Using DMTase homolog complement in six Solanaceae species, we demonstrated here that their number remained conserved in Solanum lineage, whereas it was expanded in both pepper and Nicotiana benthamiana. Non-synonymous vs synonymous (Ka/Ks) substitution ratio revealed that most of the Solanaceous DMTase homologs undergo purifying selection. The genomic sequences of tomato DMT homologs in its wild relative, Solanum pennellii, remained highly conserved in their exons and methyltransferase domains. Structure analysis further revealed highly similar folding of DMTase homologs and conservation in the residues participating in protein-protein interaction in Solanum lineage, whereas a considerable diversification was observed of pepper homologs. Transcript profiling of DMTases highlighted both similar and distinct expression patterns of tomato homologs in other species during fruit development and stress responses. Overall, our analysis provides a strong basis for in-depth exploration of both conserved as well as distinct functions of tomato DMTase homologs in other economically important Solanaceae species. PMID:27380018

  20. Expression of O6-methylguanine DNA methyltransferase (MGMT) and its clinical significance in gastroenteropancreatic neuroendocrine neoplasm

    Science.gov (United States)

    Yang, Qiu-Chen; Wang, Yu-Hong; Lin, Yuan; Xue, Ling; Chen, Yuan-Jia; Chen, Min-Hu; Chen, Jie

    2014-01-01

    O6-methylguanine-DNA methyltransferase (MGMT) is a widespread DNA repair enzyme defending against mutation caused by guanine O6-alkylating agents. Until now, we know only little about the expression of MGMT in gastroenteropancreatic neuroendocrine neoplasm (GEP-NEN). To study the expression of MGMT and its clinical significance in GEP-NEN, 174 specimens of GEP-NEN were examined, of which 152 specimens came from The First Affiliated Hospital, Sun Yat-sen University during October 1995 to November 2013, 22 specimens came from Peking Union Medical College Hospital during September 2004 to April 2010. MGMT protein was detected with EnVision immunohistochemical staining method. Clinicopathological factors were also collected and analyzed. We observed that the overall expression rate of MGMT was 83.9%. Over expression of MGMT protein was not associated with sex, age, functional status, primary tumor location, grading, classification, TNM stage and metastasis (P > 0.05). Kaplan-Meier analysis revealed that there was no significant difference in survival between MGMT-positive and MGMT-negative tumors of GEP-NEN patients (χ2 = 0.887, P = 0.346). In multivariate analyses carried out by Cox proportional hazards regression model, MGMT expression was also not an independent predictors of survival. These results demonstrated that MGMT protein was highly expressed in GEP-NEN. MGMT deficiency rate was similar in pancreatic NEN and in gastrointestinal NEN. MGMT expression was not correlated with prognosis of GEP-NEN. PMID:25120800

  1. O6-Methylguanine DNA methyltransferase protein expression in tumor cells predicts outcome of temozolomide therapy in glioblastoma patients

    OpenAIRE

    Spiegl-Kreinecker, Sabine; Pirker, Christine; Filipits, Martin; Lötsch, Daniela; Buchroithner, Johanna; Pichler, Josef; Silye, Rene; Weis,Serge; Micksche, Michael; Fischer, Johannes; Berger, Walter

    2009-01-01

    O6-Methylguanine DNA methyltransferase (MGMT) is implicated as a major predictive factor for treatment response to alkylating agents including temozolomide (TMZ) of glioblastoma multiforme (GBM) patients. However, whether the MGMT status in GBM patients should be detected at the level of promoter methylation or protein expression is still a matter of debate. Here, we compared promoter methylation (by methylation-specific polymerase chain reaction) and protein expression (by Western blot) in t...

  2. Cloning and expression of two sterol C-24 methyltransferase genes from upland cotton (Gossypium hirsuturm L.)

    Institute of Scientific and Technical Information of China (English)

    Ming Luo; Kunling Tan; Zhongyi Xiao; Mingyu Hu; Peng Liao; Kuijun Chen

    2008-01-01

    Brassinosteroids (BRs) are an important class of plant steroidal hormones that are essential in a wide variety of physiological processes. Two kinds of intermediates, sitosterol and campesterol, play a crucial role in cell elongation, cellulose biosynthesis, and accumulation. To illuminate the effects of sitosterol and campesterol on the development of cotton (Gossypium hirsuturm L.) fibers through screening cotton fiber EST database and contigging the candidate ESTs, two key genes GhSMT2-1 and GhSMT2-2 controlling the sitosterol biosynthesis were cloned from developing fibers of upland cotton cv. Xuzhou 142. The full length of GhSMT2-1 was 1, 151bp, including an 8bp 5'-untranslated region (UTR), a 1, 086bp open reading frame (ORF), and a 57bp 3'-UTR. GhSMT2-1 gene encoded a polypeptide of 361 amino acid residues with a predicted molecular mass of 40kDa. The full length of GhSMT2-2 was 1, 166bp, including an 18bp 5'-UTR, a 1, 086bp ORF, and a 62bp 3'-UTR. GhSMT2-2 gene encoded a polypeptide of 361 amino acid residues with a predicted molecular mass of 40kDa. The two deduced amino acid sequences had high homology with the SMT2 from Arabidopsis thaliana and Nicotiana tabacum. Furthermore, the typical conserved structures characterized by the sterol C-24 methyltransferase, such as region I (LDVGCGVGGPIVIRAI), region Ⅱ (IEATCHAP), and region Ⅲ (YEWGWGQSFHF), were present in both deduced proteins. Southern blotting analysis indicated that GhSMT2-1 or GhSMT2-2 was a single copy in upland cotton genome. Quantitative real-time RT-PCR analysis revealed that the highest expression levels of both genes were detected in 10 DPA (day post anthesis) fibers, while the lowest levels were observed in cotyledon and leaves. The expression level of GhSMT2-1 was 10 times higher than that of GhSMT2-2 in all the organs and tissues detected. These results indicate that the homologue of sterol C-24 methyltransferase gene was cloned from upland cotton and both GhSMT2 genes play a crucial

  3. O6-Methylguanine-DNA Methyltransferase (MGMT) mRNA Expression Predicts Outcome in Malignant Glioma Independent of MGMT Promoter Methylation

    OpenAIRE

    Simone Kreth; Niklas Thon; Sabina Eigenbrod; Juergen Lutz; Carola Ledderose; Rupert Egensperger; Tonn, Joerg C.; Kretzschmar, Hans A.; Ludwig C Hinske; Kreth, Friedrich W.

    2011-01-01

    Background: We analyzed prospectively whether MGMT (O(6)-methylguanine-DNA methyltransferase) mRNA expression gains prognostic/predictive impact independent of MGMT promoter methylation in malignant glioma patients undergoing radiotherapy with concomitant and adjuvant temozolomide or temozolomide alone. As DNA-methyltransferases (DNMTs) are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells, we analyzed further, whether MGMT promoter methylatio...

  4. Interplay among coactivator-associated arginine methyltransferase 1, CBP, and CIITA in IFN-γ-inducible MHC-II gene expression

    OpenAIRE

    Zika, Eleni; Fauquier, Lucas; Vandel, Laurence; Ting, Jenny P.-Y.

    2005-01-01

    Class II major histocompatibility (MHC-II) genes are prototype targets of IFN-γ. IFN-γ activates the expression of the non-DNA-binding master regulator of MHC-II, class II transactivator (CIITA), which is crucial for enhanceosome formation and gene activation. This report shows the importance of the histone methyltransferase, coactivator-associated arginine methyltransferase (CARM1/PRMT4), during IFN-γ-induced MHC-II gene activation. It also demonstrates the coordinated regulation of CIITA, C...

  5. Functional characterization of a rice de novo DNA methyltransferase, OsDRM2, expressed in Escherichia coli and yeast

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Jinsong, E-mail: pangjs542@nenu.edu.cn [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China); Dong, Mingyue; Li, Ning; Zhao, Yanli [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China); Liu, Bao, E-mail: baoliu@nenu.edu.cn [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China)

    2013-03-01

    Highlights: ► A rice de novo DNA methyltransferase OsDRM2 was cloned. ► In vitro methylation activity of OsDRM2 was characterized with Escherichia coli. ► Assays of OsDRM2 in vivo methylation were done with Saccharomyces cerevisiae. ► OsDRM2 methylation activity is not preferential to any type of cytosine context. ► The activity of OsDRM2 is independent of RdDM pathway. - Abstract: DNA methylation of cytosine nucleotides is an important epigenetic modification that occurs in most eukaryotic organisms and is established and maintained by various DNA methyltransferases together with their co-factors. There are two major categories of DNA methyltransferases: de novo and maintenance. Here, we report the isolation and functional characterization of a de novo methyltransferase, named OsDRM2, from rice (Oryza sativa L.). The full-length coding region of OsDRM2 was cloned and transformed into Escherichia coli and Saccharomyces cerevisiae. Both of these organisms expressed the OsDRM2 protein, which exhibited stochastic de novo methylation activity in vitro at CG, CHG, and CHH di- and tri-nucleotide patterns. Two lines of evidence demonstrated the de novo activity of OsDRM2: (1) a 5′-CCGG-3′ containing DNA fragment that had been pre-treated with OsDRM2 protein expressed in E. coli was protected from digestion by the CG-methylation-sensitive isoschizomer HpaII; (2) methylation-sensitive amplified polymorphism (MSAP) analysis of S. cerevisiae genomic DNA from transformants that had been introduced with OsDRM2 revealed CG and CHG methylation levels of 3.92–9.12%, and 2.88–6.93%, respectively, whereas the mock control S. cerevisiae DNA did not exhibit cytosine methylation. These results were further supported by bisulfite sequencing of the 18S rRNA and EAF5 genes of the transformed S. cerevisiae, which exhibited different DNA methylation patterns, which were observed in the genomic DNA. Our findings establish that OsDRM2 is an active de novo DNA

  6. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  7. Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase.

    Science.gov (United States)

    Byeon, Yeong; Back, Kyoungwhan

    2016-08-01

    Melatonin is a well-known bioactive molecule produced in animals and plants and a well-studied natural compound. Two enzymatic steps are required for the biosynthesis of melatonin from serotonin. First, serotonin N-acetyltransferase (SNAT) catalyzes serotonin to N-acetylserotonin (NAS) followed by the action of N-acetylserotonin O-methyltransferase (ASMT), resulting in the synthesis of O-methylated NAS, also known as melatonin. Attempts to document melatonin production in Escherichia coli have been unsuccessful to date due to either low enzyme activity or inactive ASMT expression. Here, we employed caffeic acid O-methyltransferase (COMT) instead of ASMT, as COMT is a multifunctional enzyme that has ASMT activity as well. Among several combinations of dual expression cassettes, recombinant E. coli that expressed sheep SNAT with rice COMT produced a high quantity of melatonin, which was measured in a culture medium (1.46 mg/L in response to 1 mM serotonin). This level was several orders of magnitude higher than that produced in transgenic rice and tomato overexpressing sheep SNAT and ASMT, respectively. This heterologous expression system can be widely employed to screen various putative SNAT or ASMT genes from animals and plants as well as to overproduce melatonin in various useful microorganisms. PMID:27005412

  8. Expression, purification, crystallization and preliminary crystallographic study of isolated modules of the mouse coactivator-associated arginine methyltransferase 1

    International Nuclear Information System (INIS)

    Isolated modules of mouse coactivator-associated arginine methyltransferase 1 encompassing the protein arginine N-methyltransferase catalytic domain have been overexpressed, purified and crystallized. X-ray diffraction data have been collected and have enabled determination of the structures by multiple isomorphous replacement using anomalous scattering. Coactivator-associated arginine methyltransferase 1 (CARM1) plays a crucial role in gene expression as a coactivator of several nuclear hormone receptors and also of non-nuclear receptor systems. Its recruitment by the transcriptional machinery induces protein methylation, leading to chromatin remodelling and gene activation. CARM128–507 and two structural states of CARM1140–480 were expressed, purified and crystallized. Crystals of CARM128–507 belong to space group P6222, with unit-cell parameters a = b = 136.0, c = 125.3 Å; they diffract to beyond 2.5 Å resolution using synchrotron radiation and contain one monomer in the asymmetric unit. The structure of CARM128–507 was solved by multiple isomorphous replacement and anomalous scattering methods. Crystals of apo CARM1140–480 belong to space group I222, with unit-cell parameters a = 74.6, b = 99.0, c = 207.4 Å; they diffract to beyond 2.7 Å resolution and contain two monomers in the asymmetric unit. Crystals of CARM1140–480 in complex with S-adenosyl-l-homocysteine belong to space P21212, with unit-cell parameters a = 74.6, b = 98.65, c = 206.08 Å; they diffract to beyond 2.6 Å resolution and contain four monomers in the asymmetric unit. The structures of apo and holo CARM1140–480 were solved by molecular-replacement techniques from the structure of CARM128–507

  9. Expression of the O6-methylguanine-DNA methyltransferase gene MGMT in MER+ and MER- human tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Fornace, A.J. Jr.; Papathanasiou, M.A.; Hollander, M.C.; Yarosh, D.B. (National Cancer Institute, Bethesda, MD (USA))

    1990-12-15

    DNA probes prepared from human O6-methylguanine-DNA methyltransferase complementary DNA were hybridized to mRNA isolated from human liver and fifteen human tumor cell lines proficient (Mer+) or deficient (Mer-) in transferase activity. Liver and Mer+ cells contained levels of transferase-specific mRNA that correlated with their transferase activity levels, whereas Mer- cells contained undetectable amounts of transferase mRNA. The mRNA levels were not induced in human cells by treatments that induce other DNA damage-inducible genes. These results demonstrate that in human cells the transferase gene is constitutively expressed, that its expression is related to activity levels, and that in Mer- tumor cells the expression of the transferase gene is probably blocked at the level of mRNA production.

  10. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence.

    Science.gov (United States)

    Maleszewska, Monika; Vanchin, Byambasuren; Harmsen, Martin C; Krenning, Guido

    2016-01-01

    High uniform fluid shear stress (FSS) is atheroprotective and preserves the endothelial phenotype and function through activation of downstream mediators such as MAPK7 (Erk5). Endothelial cells respond to FSS thanks to mechanotransduction. However, how the resulting signaling is integrated and resolved at the epigenetic level remains elusive. We hypothesized that Polycomb methyltransferase EZH2 is involved in the effects of FSS in human endothelial cells. We showed that FSS decreases the expression of the Polycomb methyltransferase EZH2. Despite simultaneous activation of MAPK7, MAPK7 pathway does not directly influence the transcription of EZH2. Interestingly though, the knockdown of EZH2 activates the protective MAPK7 signaling in endothelial cells, even in the absence of FSS. To understand the influence of the FSS-decreased expression of EZH2 on endothelial transcriptome, we performed RNA-seq and differential gene expression analysis. We identified candidate groups of genes dependent on both EZH2 and FSS. Among those, Gene Ontology overrepresentation analysis revealed highly significant enrichment of the cell cycle-related genes, suggesting changes in proliferation. Indeed, the depletion of EZH2 strongly inhibited endothelial proliferation, indicating cell cycle arrest. The concomitant decrease in CCNA expression suggests the transition of endothelial cells into a quiescent phenotype. Further bioinformatical analysis suggested TXNIP as a possible mediator between EZH2 and cell cycle-related gene network. Our data show that EZH2 is a FSS-responsive gene. Decreased EZH2 levels enhance the activation of the atheroprotective MAPK7 signaling. Decrease in EZH2 under FSS mediates the decrease in the expression of the network of cell cycle-related genes, which allows the cells to enter quiescence. EZH2 is therefore important for the protective effects of FSS in endothelium. PMID:26416763

  11. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence.

    Science.gov (United States)

    Maleszewska, Monika; Vanchin, Byambasuren; Harmsen, Martin C; Krenning, Guido

    2016-01-01

    High uniform fluid shear stress (FSS) is atheroprotective and preserves the endothelial phenotype and function through activation of downstream mediators such as MAPK7 (Erk5). Endothelial cells respond to FSS thanks to mechanotransduction. However, how the resulting signaling is integrated and resolved at the epigenetic level remains elusive. We hypothesized that Polycomb methyltransferase EZH2 is involved in the effects of FSS in human endothelial cells. We showed that FSS decreases the expression of the Polycomb methyltransferase EZH2. Despite simultaneous activation of MAPK7, MAPK7 pathway does not directly influence the transcription of EZH2. Interestingly though, the knockdown of EZH2 activates the protective MAPK7 signaling in endothelial cells, even in the absence of FSS. To understand the influence of the FSS-decreased expression of EZH2 on endothelial transcriptome, we performed RNA-seq and differential gene expression analysis. We identified candidate groups of genes dependent on both EZH2 and FSS. Among those, Gene Ontology overrepresentation analysis revealed highly significant enrichment of the cell cycle-related genes, suggesting changes in proliferation. Indeed, the depletion of EZH2 strongly inhibited endothelial proliferation, indicating cell cycle arrest. The concomitant decrease in CCNA expression suggests the transition of endothelial cells into a quiescent phenotype. Further bioinformatical analysis suggested TXNIP as a possible mediator between EZH2 and cell cycle-related gene network. Our data show that EZH2 is a FSS-responsive gene. Decreased EZH2 levels enhance the activation of the atheroprotective MAPK7 signaling. Decrease in EZH2 under FSS mediates the decrease in the expression of the network of cell cycle-related genes, which allows the cells to enter quiescence. EZH2 is therefore important for the protective effects of FSS in endothelium.

  12. Immunohistochemical Assessment of O6-Methylguanine-DNA Methyltransferase (MGMT) and Its Relationship with p53 Expression in Endometrial Cancers

    Science.gov (United States)

    Lee, Kyung Eun

    2013-01-01

    O6-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein, the loss of MGMT expression was commonly known due to hypermethylation of CpG islands in its promoter region. Overexpression of p53 protein may be associated with downregulated MGMT expression in brain tumors. The aims of this study were to investigate the role of MGMT expression loss and its correlation with p53 overexpression in endometrial cancers. MGMT and p53 expression was examined in formalin-fixed, paraffin-embedded tissues from 36 endometrial cancer cases using immnunohistochemical staining. The loss of MGMT expression was detected in 11 (30.6%) out of the 36 endometrial cancers and p53 immunoreactivity was detected in 23 (63.9%) out of the 36 endometrial cancers. Ten (90.9%) of the 11 cases with negative MGMT immunoreactivity showed positive p53 expression, so the loss of MGMT expression was significantly associated with the p53 overexpression (P=0.03). These findings suggest that the loss of MGMT expression may be one of factors capable of p53 overexpression in endometrial cancer. Further studies are needed to define the relation between MGMT and p53 for examining the mechanisms of tissue-specific MGMT expression. PMID:25337565

  13. O-methylguanine-DNA methyltransferase (MGMT mRNA expression predicts outcome in malignant glioma independent of MGMT promoter methylation.

    Directory of Open Access Journals (Sweden)

    Simone Kreth

    Full Text Available BACKGROUND: We analyzed prospectively whether MGMT (O(6-methylguanine-DNA methyltransferase mRNA expression gains prognostic/predictive impact independent of MGMT promoter methylation in malignant glioma patients undergoing radiotherapy with concomitant and adjuvant temozolomide or temozolomide alone. As DNA-methyltransferases (DNMTs are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells, we analyzed further, whether MGMT promoter methylation is associated with upregulation of DNMT expression. METHODOLOGY/PRINCIPAL FINDINGS: ADULT PATIENTS WITH A HISTOLOGICALLY PROVEN MALIGNANT ASTROCYTOMA (GLIOBLASTOMA: N = 53, anaplastic astrocytoma: N = 10 were included. MGMT promoter methylation was determined by methylation-specific PCR (MSP and sequencing analysis. Expression of MGMT and DNMTs mRNA were analysed by real-time qPCR. Prognostic factors were obtained from proportional hazards models. Correlation between MGMT mRNA expression and MGMT methylation status was validated using data from the Cancer Genome Atlas (TCGA database (N = 229 glioblastomas. Low MGMT mRNA expression was strongly predictive for prolonged time to progression, treatment response, and length of survival in univariate and multivariate models (p<0.0001; the degree of MGMT mRNA expression was highly correlated with the MGMT promoter methylation status (p<0.0001; however, discordant findings were seen in 12 glioblastoma patients: Patients with methylated tumors with high MGMT mRNA expression (N = 6 did significantly worse than those with low transcriptional activity (p<0.01. Conversely, unmethylated tumors with low MGMT mRNA expression (N = 6 did better than their counterparts. A nearly identical frequency of concordant and discordant findings was obtained by analyzing the TCGA database (p<0.0001. Expression of DNMT1 and DNMT3b was strongly upregulated in tumor tissue, but not correlated with MGMT promoter methylation and MGMT m

  14. Verminderte Expression von O6-Methylguanin-DNA-Methyltransferase bei Gliomen durch Promotormethylierung

    OpenAIRE

    Nickolay, Carla

    2009-01-01

    Pro Jahr erkranken 10 von 100 000 Menschen an einem malignen Hirntumor. Die Prognose ist schlecht. Die Therapie schließt Chirurgie, Bestrahlung und Chemotherapie ein. Das DNA-Reparaturenzym O6-Methylguanin-DNA-Methyltransferase, MGMT, erkennt DNA-Schäden, die durch alkylierende Substanzen wie Temozolomid entstanden sind. Übermäßige Methylierung der Promotorregion von MGMT führt zum Funktionsverlust des Enzyms. Dieser kann zu einer erhöhten Sensibilität für Alkylanzien führen. In der Therapie ...

  15. Enzymatic, expression and structural divergences among carboxyl O-methyltransferases after gene duplication and speciation in Nicotiana.

    Science.gov (United States)

    Hippauf, Frank; Michalsky, Elke; Huang, Ruiqi; Preissner, Robert; Barkman, Todd J; Piechulla, Birgit

    2010-02-01

    Methyl salicylate and methyl benzoate have important roles in a variety of processes including pollinator attraction and plant defence. These compounds are synthesized by salicylic acid, benzoic acid and benzoic acid/salicylic acid carboxyl methyltransferases (SAMT, BAMT and BSMT) which are members of the SABATH gene family. Both SAMT and BSMT were isolated from Nicotiana suaveolens, Nicotiana alata, and Nicotiana sylvestris allowing us to discern levels of enzyme divergence resulting from gene duplication in addition to species divergence. Phylogenetic analyses showed that Nicotiana SAMTs and BSMTs evolved in separate clades and the latter can be differentiated into the BSMT1 and the newly established BSMT2 branch. Although SAMT and BSMT orthologs showed minimal change coincident with species divergences, substantial evolutionary change of enzyme activity and expression patterns occurred following gene duplication. After duplication, the BSMT enzymes evolved higher preference for benzoic acid (BA) than salicylic acid (SA) whereas SAMTs maintained ancestral enzymatic preference for SA over BA. Expression patterns are largely complementary in that BSMT transcripts primarily accumulate in flowers, leaves and stems whereas SAMT is expressed mostly in roots. A novel enzyme, nicotinic acid carboxyl methyltransferase (NAMT), which displays a high degree of activity with nicotinic acid was discovered to have evolved in N. gossei from an ancestral BSMT. Furthermore a SAM-dependent synthesis of methyl anthranilate via BSMT2 is reported and contrasts with alternative biosynthetic routes previously proposed. While BSMT in flowers is clearly involved in methyl benzoate synthesis to attract pollinators, its function in other organs and tissues remains obscure.

  16. DNA Methyltransferase Expression and Proliferation Status of Metastatic Breast Cancer Cell Line After Prolonged and Repeated Rapamycin and Melatonin Application

    Directory of Open Access Journals (Sweden)

    Esra Gökmen

    2015-08-01

    Full Text Available Objective: The aim of this study was to investigate the effects of Rapamycin and Melatonin and their combination on deoxyribonucleic acid (DNA methylation and cell proliferation in a estrogen receptor (ER-negative breast cancer cell line (4T1 cell line. Materials and Methods: Four groups were designed with 4T1 cell line depending on drug combination (control, Rapamycin, Melatonin, Rapamycin + Melatonin and their administration on different time periods (24, 48 and 72 hours. The drugs were administrated for 1, 2 and 3 times, respectively for these time periods. All samples were counted; immunostained (Ki67, DNA methyltransferase-1 (DNMT-1, DNA methyltransferase-3a (DNMT-3a and p53 and real-time polymerase chain reaction (PCR (DNMT-1 and DNMT-3a was performed. Results: The live/dead cell ratios were decreased in the Rapamycin and Rapamycin + Melatonin applied groups. Ki67 immunostaining showed that there was a decreased proliferation in the drug applied groups at 48th hours compared to the 24th hours. Also DNMT-1 expressions were decreased at 72th hour compared to that at 24th hour in all groups, especially in the Rapamycin administrated group. Adversely, DNMT-3a expression was increased at 72th hour compared to that at 24th hour in the groups, especially in the Rapamycin administrated group. Furthermore, an increased expression of p53 was seen in the drug given groups (highest in the Rapamycin applied group when the time prolonged. Real-time RT-PCR analysis of DNMT-1 gene expression showed a decreased expression level in the Melatonin given group compared to the control group and an increased expression level was seen in the Rapamycin and Rapamycin + Melatonin administrated groups compared to the control group. Conclusion: As a result, it was found that Rapamycin is more effective in metastatic breast cancer cells than Melatonin, both in the manner of cell viability and expressional changes of Ki67, DNMT-1, DNMT-3a and p53.

  17. Association of the patterns of globalDNA methylation and expression analysis ofDNA methyltransferases in impaired spermatogenic patients

    Institute of Scientific and Technical Information of China (English)

    DeepikaJaiswal; SameerTrivedi; NeerajK Agrawal; KiranSingh

    2015-01-01

    Objective:To analyse global DNA methylation along with DNA methyltransferases (DNMTs) expression at transcript level in patients with impaired spermatogenesis to dissect its role in pathophysiology of human male infertility.Methods:The content of global methylated cytosine (mC) was determined using ELISA system (Imprint Methylated DNA Quantification Kit, Sigma-Aldrich) in 31 testicular biopsies showing impaired spermatogenesis and 8 with normal spermatogenesis. Real-time reverse transcription-polymerase chain reaction was done to analyze DNMTs (DNMT1, DNMT3A, DNMT3B and DNMT3l) mRNA levels in biopsies with different testicular phenotypes.Results:There was significant increase in levels of global methylation in different impaired testicular phenotypes as compared to normal. Expression analysis revealed significantly increased expression of DNMT1 and its positive correlation with global DNA methylation.Conclusion:In conclusion, increased levels of global methylation in impaired cases might be the one of the contributing factors for aberrant gene expression in infertile patients.

  18. Clinical significance of epigenetic silencing and re-expression of O6-methylguanine-DNA methyltransferase using epigenetic agents in laryngeal carcinoma

    OpenAIRE

    Yang, Jing; ZHU, XIN-BING; He, Li-xia; GU, ZHAO-WEI; JIN, MING-ZHU; JI, WEN-YUE

    2014-01-01

    The aim of the present study was to investigate the association between O6-methylguanine-DNA methyltransferase (MGMT) gene expression levels, and DNA methylation status and histone modifications in laryngeal squamous cell carcinoma (LSCC). Chromatin immunoprecipitation, methylation-specific polymerase chain reaction (PCR), and reverse transcription-quantitative PCR were performed to analyze histone modifications, DNA methylation status and mRNA expression levels in the promoter region of the ...

  19. Expression level and immunolocalization of de novo methyltransferase 3 protein (TuDNMT3) in adult females and males of the two-spotted spider mite, Tetranychus urticae.

    Science.gov (United States)

    Yang, Si-Xia; Guo, Chao; Zhang, Yan-Kai; Sun, Jing-Tao; Hong, Xiao-Yue

    2015-11-01

    DNA methylation is an epigenetic mechanism for regulating developmental and other important processes in eukaryotes. Several essential components of the DNA methylation machinery have been identified, such as DNA methyltransferases. In the two-spotted spider mite, Tetranychus urticae Koch, we have identified one DNA methyltransferase 3 gene (Tudnmt3) and tentatively investigated its potential role in adult females and males. Here, to better elucidate the functional role of Tudnmt3, its protein structure, expression and localization were subjected to more detailed analyses. Bioinformatic analyses clearly showed that the structure of TuDNMT3 was highly conserved, with several vital amino acid residues for the activation and stabilization of its confirmation. Western blot analyses revealed that this protein was expressed in both genders, with higher expression in adult females, which was inconsistent with the gene expression, suggesting translational regulation of Tudnmt3. Subsequent immunodetection provided supportive evidence for higher expression of the TuDNMT3 protein in adult females and indicated that this protein was generally localized in the cytoplasm and that its expression was predominantly confined to the genital region of spider mites, strengthening the hypothesis that de novo methylation mediated by Tudnmt3 in gonad development or gametogenesis has a different mechanism from maintenance methyltransferase.

  20. A histone methyltransferase inhibits seed germination by increasing PIF1 mRNA expression in imbibed seeds.

    Science.gov (United States)

    Lee, Nayoung; Kang, Hyojin; Lee, Daeyoup; Choi, Giltsu

    2014-04-01

    Phytochrome-interacting factor 1 (PIF1) inhibits light-dependent seed germination. The specific function of PIF1 in seed germination is partly due to its high level of expression in imbibed seeds, but the associated regulatory factors have not been identified. Here we show that mutation of the early flowering in short days (EFS) gene, encoding an H3K4 and H3K36 methyltransferase, decreases the level of H3K36me2 and H3K36me3 but not H3K4me3 at the PIF1 locus, reduces the targeting of RNA polymerase II to the PIF1 locus, and reduces mRNA expression of PIF1 in imbibed seeds. Consistently, the efs mutant geminated even under the phyBoff condition, and had an expression profile of PIF1 target genes similar to that of the pif1 mutant. Introduction of an EFS transgene into the efs mutant restored the level of H3K36me2 and H3K36me3 at the PIF1 locus, the high-level expression of PIF1 mRNA, the expression pattern of PIF1 target genes, and the light-dependent germination of these seeds. Introduction of a PIF1 transgene into the efs mutant also restored the expression pattern of PIF1 target genes and light-dependent germination in imbibed seeds, but did not restore the flowering phenotype. Taken together, our results indicate that EFS is necessary for high-level expression of PIF1 mRNA in imbibed seeds.

  1. Expression of O6-Methylguanine-DNA Methyltransferase Examined by Alkyl-Transfer Assays, Methylation-Specific PCR and Western Blots in Tumors and Matched Normal Tissue

    OpenAIRE

    Ishiguro, Kimiko; Shyam, Krishnamurthy; Penketh, Philip G.; Baumann, Raymond P.; Sartorelli, Alan C.; Rutherford, Thomas J.; Ratner, Elena S.

    2013-01-01

    The tumor selectivity of alkylating agents that produce guanine O6-chloroethyl (laromustine and carmustine) and O6-methyl (temozolomide) lesions, depends upon O6-methylguanine-DNA methyltransferase (MGMT) activity being lower in tumor than in host tissue. Despite the established role of MGMT as a tumor resistance factor, consensus on how to assess MGMT expression in clinical samples is unsettled. The aim of this study is to examine the relationship between the values derived from distinctive ...

  2. The expression of spinal methyl-CpG-binding protein 2, DNA methyltransferases and histone deacetylases is modulated in persistent pain states

    Directory of Open Access Journals (Sweden)

    Tochiki Keri K

    2012-02-01

    Full Text Available Abstract Background DNA CpG methylation is carried out by DNA methyltransferases and induces chromatin remodeling and gene silencing through a transcription repressor complex comprising the methyl-CpG-binding protein 2 (MeCP2 and a subset of histone deacetylases. Recently, we have found that MeCP2 activity had a crucial role in the pattern of gene expression seen in the superficial dorsal horn rapidly after injection of Complete Freund's Adjuvant (CFA in the rat ankle joint. The aim of the present study was to analyse the changes in expression of MeCP2, DNA methyltransferases and a subset of histone deacetylases in the superficial dorsal horn during the maintenance phase of persistent pain states. In this process, the cell specific expression of MeCP2 was also investigated. Results Using immunohistochemistry, we found that neurones, oligodendrocytes and astrocytes expressed MeCP2. Microglia, oligodendrocyte precursor cells and Schwann cells never showed any positive stain for MeCP2. Quantitative analyses showed that MeCP2 expression was increased in the superficial dorsal horn 7 days following CFA injection in the ankle joint but decreased 7 days following spared nerve injury. Overall, the expression of DNA methyltransferases and a subset of histone deacetylases followed the same pattern of expression. However, there were no significant changes in the expression of the MeCP2 targets that we had previously shown are regulated in the early time points following CFA injection in the ankle joint. Finally, the expression of MeCP2 was also down regulated in damaged dorsal root ganglion neurones following spared nerve injury. Conclusion Our results strongly suggest that changes in chromatin compaction, regulated by the binding of MeCP2 complexes to methylated DNA, are involved in the modulation of gene expression in the superficial dorsal horn and dorsal root ganglia during the maintenance of persistent pain states.

  3. In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression

    Energy Technology Data Exchange (ETDEWEB)

    Rimando A. M.; Liu C.; Pan, Z.; Polashock, J. J.; Dayan, F. E., Mizuno, C. S.; Snook, M. E.; Baerson, S. R.

    2012-04-01

    Resveratrol and related stilbenes are thought to play important roles in defence responses in several plant species and have also generated considerable interest as nutraceuticals owing to their diverse health-promoting properties. Pterostilbene, a 3,5-dimethylether derivative of resveratrol, possesses properties similar to its parent compound and, additionally, exhibits significantly higher fungicidal activity in vitro and superior pharmacokinetic properties in vivo. Recombinant enzyme studies carried out using a previously characterized O-methyltransferase sequence from Sorghum bicolor (SbOMT3) demonstrated its ability to catalyse the A ring-specific 3,5-bis-O-methylation of resveratrol, yielding pterostilbene. A binary vector was constructed for the constitutive co-expression of SbOMT3 with a stilbene synthase sequence from peanut (AhSTS3) and used for the generation of stably transformed tobacco and Arabidopsis plants, resulting in the accumulation of pterostilbene in both species. A reduced floral pigmentation phenotype observed in multiple tobacco transformants was further investigated by reversed-phase HPLC analysis, revealing substantial decreases in both dihydroquercetin-derived flavonoids and phenylpropanoid-conjugated polyamines in pterostilbene-producing SbOMT3/AhSTS3 events. These results demonstrate the potential utility of this strategy for the generation of pterostilbene-producing crops and also underscore the need for the development of additional approaches for minimizing concomitant reductions in key phenylpropanoid-derived metabolites.

  4. DNA methyltransferase expressions in Japanese rice fish (Oryzias latipes) embryogenesis is developmentally regulated and modulated by ethanol and 5-azacytidine.

    Science.gov (United States)

    Dasmahapatra, Asok K; Khan, Ikhlas A

    2015-01-01

    We aimed to investigate the impact of the epigenome in inducting fetal alcohol spectrum disorder (FASD) phenotypes in Japanese rice fish embryogenesis. One of the significant events in epigenome is DNA methylation which is catalyzed by DNA methyltransferase (DNMT) enzymes. We analyzed DNMT enzyme mRNA expressions in Japanese rice fish development starting from fertilized eggs to hatching and also in embryos exposed for first 48h of development either to ethanol (300mM) or to 5-azacytidine (5-azaC; 2mM), an inhibitor of DNMT enzyme activity. As observed in FASD phenotypes, 5-azaC exposure was able to induce microcephaly and craniofacial cartilage deformities in Japanese rice fish. Moreover, we have observed that expression of DNMTs (dnmt1, dnmt3aa, and dnmt3bb.1) are developmentally regulated; high mRNA copies were found in early stages (1-2day-post-fertilization, dpf), followed by gradual reduction until hatched. In ethanol-treated embryos, compared to controls, dnmt1 mRNA is in reduced level in 2dpf and in enhanced level in 6dpf embryos. While dnmt3aa and 3bb.1 remained unaltered. In contrast, embryos exposed to 5-azaC have an enhanced level of dnmt1 and dnmt3bb.1 mRNAs both in 2 and 6dpf embryos while dnmt3aa is enhanced only in 6dpf embryos. Moreover, endocannabinoid receptor 1a (cnr1a) mRNA which was found to be reduced by ethanol remained unaltered and cnr1b and cnr2 mRNAs, which were remained unaltered by ethanol, were increased significantly by 5-azaC in 6dpf embryos. This study indicates that the craniofacial defects observed in FASD phenotypes are the results of dysregulations in DNMT expressions. PMID:26183885

  5. Interplay among coactivator-associated arginine methyltransferase 1, CBP, and CIITA in IFN-gamma-inducible MHC-II gene expression.

    Science.gov (United States)

    Zika, Eleni; Fauquier, Lucas; Vandel, Laurence; Ting, Jenny P-Y

    2005-11-01

    Class II major histocompatibility (MHC-II) genes are prototype targets of IFN-gamma. IFN-gamma activates the expression of the non-DNA-binding master regulator of MHC-II, class II transactivator (CIITA), which is crucial for enhanceosome formation and gene activation. This report shows the importance of the histone methyltransferase, coactivator-associated arginine methyltransferase (CARM1/PRMT4), during IFN-gamma-induced MHC-II gene activation. It also demonstrates the coordinated regulation of CIITA, CARM1, and the acetyltransferase cyclic-AMP response element binding (CREB)-binding protein (CBP) during this process. CARM1 synergizes with CIITA in activating MHC-II transcription and synergy is abrogated when an arginine methyltransferase-defective CARM1 mutant is used. Protein-arginine methyltransferase 1 has much less effect on MHC-II transcription. Specific RNA interference reduced CARM1 expression as well as MHC-II expression. The recruitment of CARM1 to the promoter requires endogenous CIITA and results in methylation of histone H3-R17; hence, CIITA is an upstream regulator of histone methylation. Previous work has shown that CARM1 can methylate CBP at three arginine residues. Using wild-type CBP and a mutant of CBP lacking the CARM1-targeted arginine residues (R3A), we show that arginine methylation of CBP is required for IFN-gamma induction of MHC-II. A kinetic analysis shows that CIITA, CARM1, and H3-R17 methylation all precede CBP loading on the MHC-II promoter during IFN-gamma treatment. These results suggest functional and temporal relationships among CIITA, CARM1, and CBP for IFN-gamma induction of MHC-II.

  6. TGF-β regulates DNA methyltransferase expression in prostate cancer, correlates with aggressive capabilities, and predicts disease recurrence.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    Full Text Available BACKGROUND: DNA methyltransferase (DNMT is one of the major factors mediating the methylation of cancer related genes such as TGF-β receptors (TβRs. This in turn may result in a loss of sensitivity to physiologic levels of TGF-β in aggressive prostate cancer (CaP. The specific mechanisms of DNMT's role in CaP remain undetermined. In this study, we describe the mechanism of TGF-β-mediated DNMT in CaP and its association with clinical outcomes following radical prostatectomy. METHODOLOGY/PRINCIPAL FINDINGS: We used human CaP cell lines with varying degrees of invasive capability to describe how TGF-β mediates the expression of DNMT in CaP, and its effects on methylation status of TGF-β receptors and the invasive capability of CaP in vitro and in vivo. Furthermore, we determined the association between DNMT expression and clinical outcome after radical prostatectomy. We found that more aggressive CaP cells had significantly higher TGF-β levels, increased expression of DNMT, but reduced TβRs when compared to benign prostate cells and less aggressive prostate cancer cells. Blockade of TGF-β signaling or ERK activation (p-ERK was associated with a dramatic decrease in the expression of DNMT, which results in a coincident increase in the expression of TβRs. Blockade of either TGF-β signaling or DNMT dramatically decreased the invasive capabilities of CaP. Inhibition of TGF-β in an TRAMP-C2 CaP model in C57BL/6 mice using 1D11 was associated with downregulation of DNMTs and p-ERK and impairment in tumor growth. Finally, independent of Gleason grade, increased DNMT1 expression was associated with biochemical recurrence following surgical treatment for prostate cancer. CONCLUSIONS AND SIGNIFICANCE: Our findings demonstrate that CaP derived TGF-β may induce the expression of DNMTs in CaP which is associated with methylation of its receptors and the aggressive potential of CaP. In addition, DNMTs is an independent predictor for disease

  7. Sterols of Saccharomyces cerevisiae erg6 Knockout Mutant Expressing the Pneumocystis carinii S-Adenosylmethionine:Sterol C-24 Methyltransferase.

    Science.gov (United States)

    Kaneshiro, Edna S; Johnston, Laura Q; Nkinin, Stephenson W; Romero, Becky I; Giner, José-Luis

    2015-01-01

    The AIDS-associated lung pathogen Pneumocystis is classified as a fungus although Pneumocystis has several distinct features such as the absence of ergosterol, the major sterol of most fungi. The Pneumocystis carinii S-adenosylmethionine:sterol C24-methyltransferase (SAM:SMT) enzyme, coded by the erg6 gene, transfers either one or two methyl groups to the C-24 position of the sterol side chain producing both C28 and C29 24-alkylsterols in approximately the same proportions, whereas most fungal SAM:SMT transfer only one methyl group to the side chain. The sterol compositions of wild-type Sacchromyces cerevisiae, the erg6 knockout mutant (Δerg6), and Δerg6 expressing the P. carinii or the S. cerevisiae erg6 gene were analyzed by a variety of chromatographic and spectroscopic procedures to examine functional complementation in the yeast expression system. Detailed sterol analyses were obtained using high performance liquid chromatography and proton nuclear magnetic resonance spectroscopy ((1)H-NMR). The P. carinii SAM:SMT in the Δerg6 restored its ability to produce the C28 sterol ergosterol as the major sterol, and also resulted in low levels of C29 sterols. This indicates that while the P. carinii SAM:SMT in the yeast Δerg6 cells was able to transfer a second methyl group to the side chain, the action of Δ(24(28)) -sterol reductase (coded by the erg4 gene) in the yeast cells prevented the formation and accumulation of as many C29 sterols as that found in P. carinii.

  8. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases

    Institute of Scientific and Technical Information of China (English)

    Chi-NeuTsai

    2005-01-01

    The latent membrane protein (LMP1) of Epstein-Barr virus (EBV) is expressed in EBV-associated nasopharyngeal carcinoma, which isnotoriously metastatic. Although it Is established that LMP1 represses E-cadherin expression and enhances the invasive ability of carcinoma cells, the mechanism underlying this repression remains to be elucidated. In this study, we demonstrate that LMP1 induces the expression and activity of the DNA methyltransferases 1, 3a, and 3b, using real-time reverse transcription-PCR and enzyme activity assay. This results in hypermethylation of the E-cadherin promoter and down-regulation of E-cadherin gene expression, as revealed by methylation-specific PCR, real-time reverse transcription-PeR and Western blotting data. The DNA methyltransferase inhibitor, 5'-Aza-2'dC, restores E-cadherin promoter activity and protein expression in LMPl-expressing cells, which in turn blocks cell migration ability, as demonstrated by the Transwell cell migration assay. Our findings suggest that LMP1 down-regulates E-cadherin gene expression and induces cell migration activity by using cellular DNA methylation machinery.

  9. CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT S-ADENOSYL-1-METHIONINE: ARSENIC (III) METHYLTRANSFERASE

    Science.gov (United States)

    CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASEStephen B. Waters, Ph.D., Miroslav Styblo, Ph.D., Melinda A. Beck, Ph.D., University of North Carolina at Chapel Hill; David J. Thomas, Ph.D., U.S. Environmental...

  10. Recombinant expression of rat glycine N-methyltransferase and evidence for contribution of N-terminal acetylation to co-operative binding of S-adenosylmethionine.

    Science.gov (United States)

    Ogawa, H; Gomi, T; Takata, Y; Date, T; Fujioka, M

    1997-10-15

    An expression vector was constructed that produced rat glycine N-methyltransferase in Escherichia coli. Recombinant glycine N-methyltransferase was purified to homogeneity by DEAE-cellulose and gel-filtration chromatography, with a yield of more than 80 mg of pure enzyme from a 1 litre culture. HPLC of tryptic peptides and analysis of isolated peptides showed that the recombinant enzyme was structurally identical with the liver enzyme except for the absence of N-terminal blocking. The alpha-amino group of rat glycine N-methyltransferase is blocked by acetylation [Ogawa, Konishi, Takata, Nakashima and Fujioka (1987) Eur. J. Biochem. 168, 141-151]. In contrast with the liver enzyme, which shows sigmoidal kinetics toward S-adenosylmethionine at all pH values tested [Ogawa and Fujioka (1982) J. Biol. Chem. 257, 3447-3452], the recombinant enzyme exhibited hyperbolic kinetics at low pH and sigmoidal rate behaviour at high pH. The Hill coefficient increased with increasing pH and a pKa of 8.11 was obtained in this transition. The values of Vmax and Km for glycine were not different between the two enzymes. These results suggest that elimination of the positive charge at the N-terminal end either by acetylation or deprotonation is required for co-operative behaviour. PMID:9359408

  11. Cloning, expression, purification and initial crystallographic studies of UbiG: a methyltransferase involved in ubiquinone biosynthesis in Escherichia coli

    International Nuclear Information System (INIS)

    Full text: Ubiquinone is a molecule that functions as an electron carrier in the respiratory chain in living organisms. Some clinical phenotypes, including, encephalomyopathy, has been associated with ubiquinone deficiency, raising the interest in the biosynthetic pathway of this molecule. This pathway was proposed mainly from the results of the genetic analysis of mutants of E. coli. UbiG is a methyltransferase involved in ubiquinone biosynthesis in E. coli. In this work we have cloned, expressed, purified and made initial crystallographic assessments of UbiG for later determination of its three-dimensional structure. The gene encoding UbiG was amplified from E. coli genomic DNA by polymerase chain reaction. The 753 bases pairs amplicon was inserted into the expression plasmid pMCSG7 by ligation independent cloning system and transformed into BL21(DE3) E. coli strain. The expression of UbiG, verified by SDS polyacrylamide gel, showed a protein of approximately 29kDa after IPTG induction. The recombinant UbiG, in the soluble fraction of the cellular lysate, was purified by affinity chromatography and the molecular weight of recombinant UbiG of approximately 29 kDa was confirmed by mass spectrometry. After removal of His-tag by TEV protease, another affinity chromatography was performed and UbiG, without His-tag, was observed in flow-through fraction. In Size-Exclusion Chromatography (SEC), the recombinant UbiG showed a unique peak with correct molecular weight of a monomer. Analysis of CD indicated that recombinant UbiG has 31,80% of alpha helix at 20 deg C and DLS showed that 70.9% of the sample is still monomeric in solution even five days after purification. Initial crystallization studies were performed with Crystal Screen 1 and Crystal Screen 2 from Hampton Research. Needle-shaped microcrystals of UbiG were obtained using a precipitant solution consisting of 0,1M lithium sulfate, 0,1M Tris pH 7,5 and 30% w/v polyethylene glycol 4,000. (author)

  12. Cloning, expression, purification and initial crystallographic studies of UbiG: a methyltransferase involved in ubiquinone biosynthesis in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Costa, M.A.F.; Magalhaes, R.D.; Nagem, R.A.P. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Ferreira-Junior, J.R.; Barros, M.H. [Universidade de Sao Paulo (USP), SP (Brazil)

    2012-07-01

    Full text: Ubiquinone is a molecule that functions as an electron carrier in the respiratory chain in living organisms. Some clinical phenotypes, including, encephalomyopathy, has been associated with ubiquinone deficiency, raising the interest in the biosynthetic pathway of this molecule. This pathway was proposed mainly from the results of the genetic analysis of mutants of E. coli. UbiG is a methyltransferase involved in ubiquinone biosynthesis in E. coli. In this work we have cloned, expressed, purified and made initial crystallographic assessments of UbiG for later determination of its three-dimensional structure. The gene encoding UbiG was amplified from E. coli genomic DNA by polymerase chain reaction. The 753 bases pairs amplicon was inserted into the expression plasmid pMCSG7 by ligation independent cloning system and transformed into BL21(DE3) E. coli strain. The expression of UbiG, verified by SDS polyacrylamide gel, showed a protein of approximately 29kDa after IPTG induction. The recombinant UbiG, in the soluble fraction of the cellular lysate, was purified by affinity chromatography and the molecular weight of recombinant UbiG of approximately 29 kDa was confirmed by mass spectrometry. After removal of His-tag by TEV protease, another affinity chromatography was performed and UbiG, without His-tag, was observed in flow-through fraction. In Size-Exclusion Chromatography (SEC), the recombinant UbiG showed a unique peak with correct molecular weight of a monomer. Analysis of CD indicated that recombinant UbiG has 31,80% of alpha helix at 20 deg C and DLS showed that 70.9% of the sample is still monomeric in solution even five days after purification. Initial crystallization studies were performed with Crystal Screen 1 and Crystal Screen 2 from Hampton Research. Needle-shaped microcrystals of UbiG were obtained using a precipitant solution consisting of 0,1M lithium sulfate, 0,1M Tris pH 7,5 and 30% w/v polyethylene glycol 4,000. (author)

  13. EXPRESSION OF THE O6-METHYLGUANINE-DNA METHYLTRANSFERASE GENE IN EIGHT HUMAN TUMOR CELL LINES

    Institute of Scientific and Technical Information of China (English)

    陈建敏; 章扬培; 吴英

    1994-01-01

    O6-methylguanine-DNA methltransferase(MGMT) gene expression in 6 Mer+(HeLa S3,SMMC-7721,SGC-7901,B-239,AGZY83-a,and Cc801)and 2Mer-(SHG-44,AND HeLa MR) haman tumor cell lines was examined.Southern blot analysis revealed no deletion,amplification,or rearrangement of the MGMT gene in these cell lines.However,-1.0kb transcripts were detected in the 6 Mer+ cell lines but not in the 2 Mer- cell lines by Northern blot analysis.Furthermore,a rough correlation between MGMT activity and mRNA level in these cell lines was observed.These results suggest that transcriptional regulation of the MGMT gene is the molecular basis of the absence of MGMT activity in Mer- cell lines.

  14. Impaired Homocysteine Transmethylation and Protein-Methyltransferase Activity Reduce Expression of Selenoprotein P: Implications for Obesity and Metabolic Syndrome

    Science.gov (United States)

    Obesity causes Metabolic Syndrome and Type-II Diabetes, disrupting hepatic function, methionine (Met)/homocysteine (Hcy) transmethylation and methyltransferase (PRMT) activities. Selenoprotein P (SEPP1), exported from the liver, is the predominate form of plasma selenium (Se) and the physiological S...

  15. Histone methyltransferases in cancer

    DEFF Research Database (Denmark)

    Albert, Mareike; Helin, Kristian

    2009-01-01

    Cancer is perceived as a heterogeneous group of diseases that is characterized by aberrant patterns of gene expression. In the last decade, an increasing amount of data has pointed to a key role for epigenetic alterations in human cancer. In this review, we focus on a subclass of epigenetic...... regulators, namely histone methyltransferases (HMTs). Several HMTs have been linked to different types of cancer; however, in most cases we only have limited knowledge regarding the molecular mechanisms by which the HMTs contribute to disease development. We summarize the current knowledge regarding some...

  16. Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes

    OpenAIRE

    Balasubramaniyan, Natarajan; Ananthanarayanan, Meena; Suchy, Frederick J.

    2012-01-01

    The farnesoid X receptor (FXR) is a ligand (bile acid)-dependent nuclear receptor that regulates target genes involved in every aspect of bile acid homeostasis. Upon binding of ligand, FXR recruits an array of coactivators and associated proteins, some of which have intrinsic enzymatic activity that modify histones or even components of the transcriptional complex. In this study, we show chromatin occupancy by the Set7/9 methyltransferase at the FXR response element (FXRE) and direct methylat...

  17. The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny.

    Directory of Open Access Journals (Sweden)

    Andreas Rechtsteiner

    2010-09-01

    Full Text Available Methylation of histone H3K36 in higher eukaryotes is mediated by multiple methyltransferases. Set2-related H3K36 methyltransferases are targeted to genes by association with RNA Polymerase II and are involved in preventing aberrant transcription initiation within the body of genes. The targeting and roles of the NSD family of mammalian H3K36 methyltransferases, known to be involved in human developmental disorders and oncogenesis, are not known. We used genome-wide chromatin immunoprecipitation (ChIP to investigate the targeting and roles of the Caenorhabditis elegans NSD homolog MES-4, which is maternally provided to progeny and is required for the survival of nascent germ cells. ChIP analysis in early C. elegans embryos revealed that, consistent with immunostaining results, MES-4 binding sites are concentrated on the autosomes and the leftmost approximately 2% (300 kb of the X chromosome. MES-4 overlies the coding regions of approximately 5,000 genes, with a modest elevation in the 5' regions of gene bodies. Although MES-4 is generally found over Pol II-bound genes, analysis of gene sets with different temporal-spatial patterns of expression revealed that Pol II association with genes is neither necessary nor sufficient to recruit MES-4. In early embryos, MES-4 associates with genes that were previously expressed in the maternal germ line, an interaction that does not require continued association of Pol II with those loci. Conversely, Pol II association with genes newly expressed in embryos does not lead to recruitment of MES-4 to those genes. These and other findings suggest that MES-4, and perhaps the related mammalian NSD proteins, provide an epigenetic function for H3K36 methylation that is novel and likely to be unrelated to ongoing transcription. We propose that MES-4 transmits the memory of gene expression in the parental germ line to offspring and that this memory role is critical for the PGCs to execute a proper germline program.

  18. Characterization and functional analysis of eugenol O-methyltransferase gene reveal metabolite shifts, chemotype specific differential expression and developmental regulation in Ocimum tenuiflorum L.

    Science.gov (United States)

    Renu, Indu Kumari; Haque, Inamul; Kumar, Manish; Poddar, Raju; Bandopadhyay, Rajib; Rai, Amit; Mukhopadhyay, Kunal

    2014-03-01

    Eugenol-O-methyltransferase (EOMT) catalyzes the conversion of eugenol to methyleugenol in one of the final steps of phenylpropanoid pathway. There are no comprehensive reports on comparative EOMT gene expression and developmental stage specific accumulation of phenylpropenes in Ocimum tenuiflorum. Seven chemotypes, rich in eugenol and methyleugenol, were selected by assessment of volatile metabolites through multivariate data analysis. Isoeugenol accumulated in higher levels during juvenile stage (36.86 ng g(-1)), but reduced sharply during preflowering (8.04 ng g(-1)), flowering (2.29 ng g(-1)) and postflowering stages (0.17 ng g(-1)), whereas methyleugenol content gradually increased from juvenile (12.25 ng g(-1)) up to preflowering (16.35 ng g(-1)) and then decreased at flowering (7.13 ng g(-1)) and post flowering (5.95 ng g(-1)) from fresh tissue. Extreme variations of free intracellular and alkali hydrolysable cell wall released phenylpropanoid compounds were observed at different developmental stages. Analyses of EOMT genomic and cDNA sequences revealed a 843 bp open reading frame and the presence of a 90 bp intron. The translated proteins had eight catalytic domains, the major two being dimerisation superfamily and methyltransferase_2 superfamily. A validated 3D structure of EOMT protein was also determined. The chemotype Ot7 had a reduced reading frame that lacked both dimerisation domains and one of the two protein-kinase-phosphorylation sites; this was also reflected in reduced accumulation of methyleugenol compared to other chemotypes. EOMT transcripts showed enhanced expression in juvenile stage that increased further during preflowering but decreased at flowering and further at postflowering. The expression patterns may possibly be compared and correlated to the amounts of eugenol/isoeugenol and methyleugenol in different developmental stages of all chemotypes.

  19. Inlfuence of DNA methyltransferase 3b on FHIT expression and DNA methylation of the FHIT promoter region in hepatoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Jia-Xiang Wang; Yong-Gan Zhang; Long-Shuan Zhao

    2009-01-01

    BACKGROUND: Alterations in DNA methylation occur during the pathogenesis of human tumors. In this study, we investigated the inlfuence of DNA methyltransferase 3b (DNMT3b) on fragile histidine trial (FHIT) expression and on DNA methylation of the FHIT promoter region in the hepatoma cell line SMMC-7721. METHODS: DNMT3b siRNA was used to down-regulate DNMT3b expression. DNMT3b and FHIT proteins were determined by Western blotting. Methylation-speciifc PCR was used to analyze the methylation status of the FHIT gene. RESULTS: After DNMT3b siRNA transfection, the expression of DNMT3b was inhibited in SMMC-7721 cells, and the expression of FHIT was signiifcantly higher than that in the control group. There was no signiifcant difference in methylation status between the DNMT3b siRNA transfected cells and control cells. CONCLUSION: DNMT3b may play an important role in regulation of FHIT expression in hepatoma SMMC-7721 cells, but not through methylation of the FHIT promoter.

  20. Methylation-related chromatin structure is associated with exclusion of transcription factors from and suppressed expression of the O-6-methylguanine DNA methyltransferase gene in human glioma cell lines.

    OpenAIRE

    Costello, J F; Futscher, B.W.; Kroes, R A; Pieper, R O

    1994-01-01

    There is considerable interest in identifying factors responsible for expression of the O-6-methylguanine DNA methyltransferase (MGMT) gene, as MGMT is a major determinant in the response of glioma cells to the chemotherapeutic agent 1,3 bis(2-chloroethyl)-1-nitrosourea. Recently we have shown that MGMT expression is correlated in a direct, graded fashion with methylation in the body of the MGMT gene and in an inverse, graded fashion with promoter methylation in human glioma cell lines. To de...

  1. Benzo[a]pyrene diol epoxide suppresses retinoic acid receptor-β2 expression by recruiting DNA (cytosine-5--methyltransferase 3A

    Directory of Open Access Journals (Sweden)

    Xu Xiao-Chun

    2010-04-01

    Full Text Available Abstract Tobacco smoke is an important risk factor for various human cancers, including esophageal cancer. How benzo [a]pyrene diol epoxide (BPDE, a carcinogen present in tobacco smoke as well as in environmental pollution, induces esophageal carcinogenesis has yet to be defined. In this study, we investigated the molecular mechanism responsible for BPDE-suppressed expression of retinoic acid receptor-beta2 (RAR-β2 in esophageal cancer cells. We treated esophageal cancer cells with BPDE before performing methylation-specific polymerase chain reaction (MSP to find that BPDE induced methylation of the RAR-β2 gene promoter. We then performed chromatin immunoprecipitation (ChIP assays to find that BPDE recruited genes of the methylation machinery into the RAR-β2 gene promoter. We found that BPDE recruited DNA (cytosine-5--methyltransferase 3 alpha (DNMT3A, but not beta (DNMT3B, in a time-dependent manner to methylate the RAR-β2 gene promoter, which we confirmed by reverse transcription-polymerase chain reaction (RT-PCR analysis of the reduced RAR-β2 expression in these BPDE-treated esophageal cancer cell lines. However, BPDE did not significantly change DNMT3A expression, but it slightly reduced DNMT3B expression. DNA methylase inhibitor 5-aza-2'-deoxycytidine (5-Aza and DNMT3A small hairpin RNA (shRNA vector antagonized the effects of BPDE on RAR-β2 expressions. Transient transfection of the DNMT3A shRNA vector also antagonized BPDE's effects on expression of RAR-β2, c-Jun, phosphorylated extracellular signal-regulated protein kinases 1/2 (ERK1/2, and cyclooxygenase-2 (COX-2, suggesting a possible therapeutic effect. The results of this study form the link between the esophageal cancer risk factor BPDE and the reduced RAR-β2 expression.

  2. Ursolic acid attenuates temozolomide resistance in glioblastoma cells by downregulating O6-methylguanine-DNA methyltransferase (MGMT) expression

    Science.gov (United States)

    Zhu, Zhongling; Du, Shuangshuang; Ding, Fengxia; Guo, Shanshan; Ying, Guoguang; Yan, Zhao

    2016-01-01

    The DNA-alkylating agent temozolomide (TMZ) is an effective chemotherapeutic agent against malignant glioma, including glioblastoma multiforme (GBM). However, the clinical efficacy of TMZ is limited in many patients because of O6-methylguanine-DNA methyltransferase (MGMT)-driven resistance. Thus, new strategies to overcome TMZ resistance are urgently needed. Ursolic acid (UA) is a naturally derived pentacyclic triterpene acid that exerts broad anticancer effects, and shows capability to cross the blood-brain barrier. In this study, we evaluated the possible synergistic effect of TMZ and UA in resistant GBM cell lines. The results showed that UA prevented the proliferation of resistant GBM cells in a concentration-dependent manner. Compared with TMZ or UA treatment alone, the combination treatment of TMZ and UA synergistically enhanced cytotoxicity and senescence in TMZ-resistant GBM cells. This effect was correlated with the downregulation of MGMT. Moreover, experimental results with an in vivo mouse xenograft model showed that the combination treatment of UA and TMZ reduced tumor volumes by depleting MGMT. Therefore, UA as both a monotherapy and a resensitizer, might be a candidate agent for patients with refractory malignant gliomas. PMID:27508051

  3. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt

  4. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Aluru, Neelakanteswar, E-mail: naluru@whoi.edu [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Kuo, Elaine [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Helfrich, Lily W. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Northwestern University, 633 Clark St, Evanston, IL 60208 (United States); Karchner, Sibel I. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Linney, Elwood A. [Department of Molecular Genetics and Microbiology, Duke University Medical Center, Box 3020, Durham, NC 27710 (United States); Pais, June E. [New England Biolabs, 240 County Road, Ipswich, MA 01938 (United States); Franks, Diana G. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2015-04-15

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt

  5. Molecular cloning and characterization of juvenile hormone acid methyltransferase in the honey bee, Apis mellifera, and its differential expression during caste differentiation.

    Science.gov (United States)

    Li, Wenfeng; Huang, Zachary Y; Liu, Fang; Li, Zhiguo; Yan, Limin; Zhang, Shaowu; Chen, Shenglu; Zhong, Boxiong; Su, Songkun

    2013-01-01

    Juvenile hormone acid methyltransferase (JHAMT) is an enzyme involved in one of the final steps of juvenile hormone biosynthesis in insects. It transfers a methyl group from S-adenosyl-L-methionine (SAM) to the carboxyl group of either farnesoic acid (FA) or JH acid (JHA). Several genes coding for JHAMT have been cloned and characterized from insects from different orders, and they have been shown to play critical roles in metamorphosis and reproduction. However, the significance of JHAMT in Hymenopteran insects is unknown. We used RACE amplification method to clone JHAMT cDNA from the honey bee, Apis mellifera (AmJHAMT). The full length cDNA of AmJHAMT that we cloned is 1253bp long and encodes a 278-aa protein that shares 32-36% identity with known JHAMTs. A SAM-binding motif, conserved in the SAM-dependent methyltransferase (SAM-MT) superfamily, is present in AmJHAMT. Its secondary structure also contains a typical SAM-MT fold. Most of the active sites bound with SAM and substrates (JHA or FA) are conserved in AmJHAMT as in other JHAMT orthologs. Phylogenetic analysis clustered AmJHAMT with the other orthologs from Hymenoptera to form a major clade in the phylogenetic tree. Purified recombinant AmJHAMT protein expressed in E. coli was used to produce polyclonal antibodies and to verify the identity of AmJHAMT by immunoblotting and mass spectrometry. Quantitative RT-PCR and immunoblotting analyses revealed that queen larvae contained significantly higher levels of AmJHAMT mRNA and protein than worker larvae during the periods of caste development. The temporal profiles of both AmJHAMT mRNA and protein in queens and workers showed a similar pattern as the JH biosynthesis. These results suggest that the gene that we cloned codes for a functional JHAMT that catalyzes the final reactions of JH biosynthesis in honey bees. In addition, AmJHAMT may play an important role in honey bee caste differentiation. PMID:23874662

  6. Molecular cloning and characterization of juvenile hormone acid methyltransferase in the honey bee, Apis mellifera, and its differential expression during caste differentiation.

    Directory of Open Access Journals (Sweden)

    Wenfeng Li

    Full Text Available Juvenile hormone acid methyltransferase (JHAMT is an enzyme involved in one of the final steps of juvenile hormone biosynthesis in insects. It transfers a methyl group from S-adenosyl-L-methionine (SAM to the carboxyl group of either farnesoic acid (FA or JH acid (JHA. Several genes coding for JHAMT have been cloned and characterized from insects from different orders, and they have been shown to play critical roles in metamorphosis and reproduction. However, the significance of JHAMT in Hymenopteran insects is unknown. We used RACE amplification method to clone JHAMT cDNA from the honey bee, Apis mellifera (AmJHAMT. The full length cDNA of AmJHAMT that we cloned is 1253bp long and encodes a 278-aa protein that shares 32-36% identity with known JHAMTs. A SAM-binding motif, conserved in the SAM-dependent methyltransferase (SAM-MT superfamily, is present in AmJHAMT. Its secondary structure also contains a typical SAM-MT fold. Most of the active sites bound with SAM and substrates (JHA or FA are conserved in AmJHAMT as in other JHAMT orthologs. Phylogenetic analysis clustered AmJHAMT with the other orthologs from Hymenoptera to form a major clade in the phylogenetic tree. Purified recombinant AmJHAMT protein expressed in E. coli was used to produce polyclonal antibodies and to verify the identity of AmJHAMT by immunoblotting and mass spectrometry. Quantitative RT-PCR and immunoblotting analyses revealed that queen larvae contained significantly higher levels of AmJHAMT mRNA and protein than worker larvae during the periods of caste development. The temporal profiles of both AmJHAMT mRNA and protein in queens and workers showed a similar pattern as the JH biosynthesis. These results suggest that the gene that we cloned codes for a functional JHAMT that catalyzes the final reactions of JH biosynthesis in honey bees. In addition, AmJHAMT may play an important role in honey bee caste differentiation.

  7. Pine (Pinus morrisonicola Hayata) needle extracts sensitize GBM8901 human glioblastoma cells to temozolomide by downregulating autophagy and O(6)-methylguanine-DNA methyltransferase expression.

    Science.gov (United States)

    Liao, Chia-Leng; Chen, Chien-Min; Chang, Yan-Zin; Liu, Guang-Yaw; Hung, Hui-Chih; Hsieh, Tung-Ying; Lin, Chih-Li

    2014-10-29

    Pine needle extracts of Pinus morrisonicola (Hayata) are commonly used as a functional health beverage. However, it remains unclear what the mechanism is underlying the antitumor activity of pine needle extract. The aims of present study were to investigate the anti-glioblastoma effects of pine needle extracts as well as its bioactive compounds. From three different solvent extracts of pine needles, the water extract displayed the strongest cytotoxicity effects on GBM8901 glioblastoma cells. The isolated compounds were identified as pinocembrin, chrysin, and tiliroside. Chrysin was the most active ingredient of pine needle extract for the induction of apoptosis and suppression of migration and invasion. It also markedly inhibited temozolomide (TMZ)-induced autophagy and O(6)-methylguanine-DNA methyltransferase (MGMT) expression. Because both autophagy and MGMT overexpression have been implicated to TMZ-induced drug resistance in glioblastoma, our results showed that pine needle extract and chrysin may serve as a potential anticancer agent against glioblastoma, especially with regard to sensitizing glioblastoma cells resistant to TMZ.

  8. Production of Two Novel Methoxy-Isoflavones from Biotransformation of 8-Hydroxydaidzein by Recombinant Escherichia coli Expressing O-Methyltransferase SpOMT2884 from Streptomyces peucetius

    Directory of Open Access Journals (Sweden)

    Chien-Min Chiang

    2015-11-01

    Full Text Available Biotransformation of 8-hydroxydaidzein by recombinant Escherichia coli expressing O-methyltransferase (OMT SpOMT2884 from Streptomyces peucetius was investigated. Two metabolites were isolated and identified as 7,4′-dihydroxy-8-methoxy-isoflavone (1 and 8,4′-dihydroxy-7-methoxy-isoflavone (2, based on mass, 1H-nuclear magnetic resonance (NMR and 13C-NMR spectrophotometric analysis. The maximum production yields of compound (1 and (2 in a 5-L fermenter were 9.3 mg/L and 6.0 mg/L, respectively. The two methoxy-isoflavones showed dose-dependent inhibitory effects on melanogenesis in cultured B16 melanoma cells under non-toxic conditions. Among the effects, compound (1 decreased melanogenesis to 63.5% of the control at 25 μM. This is the first report on the 8-O-methylation activity of OMT toward isoflavones. In addition, the present study also first identified compound (1 with potent melanogenesis inhibitory activity.

  9. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins.

    Science.gov (United States)

    Verma, Pooja; Kaur, Harmeet; Petla, Bhanu Prakash; Rao, Venkateswara; Saxena, Saurabh C; Majee, Manoj

    2013-03-01

    PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) is a widely distributed protein-repairing enzyme that catalyzes the conversion of abnormal l-isoaspartyl residues in spontaneously damaged proteins to normal aspartyl residues. This enzyme is encoded by two divergent genes (PIMT1 and PIMT2) in plants, unlike many other organisms. While the biological role of PIMT1 has been elucidated, the role and significance of the PIMT2 gene in plants is not well defined. Here, we isolated the PIMT2 gene (CaPIMT2) from chickpea (Cicer arietinum), which exhibits a significant increase in isoaspartyl residues in seed proteins coupled with reduced germination vigor under artificial aging conditions. The CaPIMT2 gene is found to be highly divergent and encodes two possible isoforms (CaPIMT2 and CaPIMT2') differing by two amino acids in the region I catalytic domain through alternative splicing. Unlike CaPIMT1, both isoforms possess a unique 56-amino acid amino terminus and exhibit similar yet distinct enzymatic properties. Expression analysis revealed that CaPIMT2 is differentially regulated by stresses and abscisic acid. Confocal visualization of stably expressed green fluorescent protein-fused PIMT proteins and cell fractionation-immunoblot analysis revealed that apart from the plasma membrane, both CaPIMT2 isoforms localize predominantly in the nucleus, while CaPIMT1 localizes in the cytosol. Remarkably, CaPIMT2 enhances seed vigor and longevity by repairing abnormal isoaspartyl residues predominantly in nuclear proteins upon seed-specific expression in Arabidopsis (Arabidopsis thaliana), while CaPIMT1 enhances seed vigor and longevity by repairing such abnormal proteins mainly in the cytosolic fraction. Together, our data suggest that CaPIMT2 has most likely evolved through gene duplication, followed by subfunctionalization to specialize in repairing the nuclear proteome.

  10. Assessment of cellular estrogenic activity based on estrogen receptor-mediated reduction of soluble-form catechol-O-methyltransferase (COMT expression in an ELISA-based system.

    Directory of Open Access Journals (Sweden)

    Philip Wing-Lok Ho

    Full Text Available Xenoestrogens are either natural or synthetic compounds that mimic the effects of endogenous estrogen. These compounds, such as bisphenol-A (BPA, and phthalates, are commonly found in plastic wares. Exposure to these compounds poses major risk to human health because of the potential to cause endocrine disruption. There is huge demand for a wide range of chemicals to be assessed for such potential for the sake of public health. Classical in vivo assays for endocrine disruption are comprehensive but time-consuming and require sacrifice of experimental animals. Simple preliminary in vitro screening assays can reduce the time and expense involved. We previously demonstrated that catechol-O-methyltransferase (COMT is transcriptionally regulated by estrogen via estrogen receptor (ER. Therefore, detecting corresponding changes of COMT expression in estrogen-responsive cells may be a useful method to estimate estrogenic effects of various compounds. We developed a novel cell-based ELISA to evaluate cellular response to estrogenicity by reduction of soluble-COMT expression in ER-positive MCF-7 cells exposed to estrogenic compounds. In contrast to various existing methods that only detect bioactivity, this method elucidates direct physiological effect in a living cell in response to a compound. We validated our assay using three well-characterized estrogenic plasticizers - BPA, benzyl butyl phthalate (BBP, and di-n-butyl phthalate (DBP. Cells were exposed to either these plasticizers or 17β-estradiol (E2 in estrogen-depleted medium with or without an ER-antagonist, ICI 182,780, and COMT expression assayed. Exposure to each of these plasticizers (10(-9-10(-7M dose-dependently reduced COMT expression (p<0.05, which was blocked by ICI 182,780. Reduction of COMT expression was readily detectable in cells exposed to picomolar level of E2, comparable to other in vitro assays of similar sensitivity. To satisfy the demand for in vitro assays targeting different

  11. DNA methyltransferase 1, 3a, and 3b expression in hepatitis C associated human hepatocellular carcinoma and their clinicopathological association.

    Science.gov (United States)

    Siddiqui, Nadir Naveed; Ul Haq, Ahtesham; Siddiqui, Owais Ali; Khan, Rizma

    2016-08-01

    Identification of biomarker will obligate a substantial influence on various cancer management and treatment. We hypothesize that genetic/proteomic and epigenetic studies should be uncovering modifications which may be independently or jointly affect the expression of the genes that are involved in the progression of liver cancer (LC). For this purpose, we examined the effect of expressional changes of DNMTs on HCV infected LC of different genotypes. We found that both mRNA and protein expression levels of DNMT1, 3a, and 3b were upregulated in genotype 1b and 3a HCV infected patients as compared to control. However, DNMT3b mRNA levels did not change in genotypes 2a, 3, and 4, but were upregulated at the protein level by genotype 1b, 2a, and 3a. Furthermore, no significant changes were observed for DNMTs investigated in sample expressing the genotypes 5 and 6. Our findings suggest that HCV at least in part by altering DNMTs expression may play a significant role in HCC progression. PMID:26850594

  12. Anti-sense expression of putrescine N-methyltransferase confirms defensive role of nicotine in Nicotiana sylvestris against Manduca sexta

    NARCIS (Netherlands)

    Voelckel, C.; Krugel, T.; Gase, K.; Heidrich, N.; Van Dam, N.M.; Winz, R.; Baldwin, I.T.

    2001-01-01

    Several lines of evidence support the defensive function of nicotine production in the Nicotiana genus against a range of herbivores, but the evidence is largely correlative. To suppress nicotine production in planta and to test its defensive function, we expressed DNA of putrescine N-methyl transfe

  13. Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides.

    Science.gov (United States)

    Almutairi, Mashal M; Park, Sung Ryeol; Rose, Simon; Hansen, Douglas A; Vázquez-Laslop, Nora; Douthwaite, Stephen; Sherman, David H; Mankin, Alexander S

    2015-10-20

    Ketolides are promising new antimicrobials effective against a broad range of Gram-positive pathogens, in part because of the low propensity of these drugs to trigger the expression of resistance genes. A natural ketolide pikromycin and a related compound methymycin are produced by Streptomyces venezuelae strain ATCC 15439. The producer avoids the inhibitory effects of its own antibiotics by expressing two paralogous rRNA methylase genes pikR1 and pikR2 with seemingly redundant functions. We show here that the PikR1 and PikR2 enzymes mono- and dimethylate, respectively, the N6 amino group in 23S rRNA nucleotide A2058. PikR1 monomethylase is constitutively expressed; it confers low resistance at low fitness cost and is required for ketolide-induced activation of pikR2 to attain high-level resistance. The regulatory mechanism controlling pikR2 expression has been evolutionary optimized for preferential activation by ketolide antibiotics. The resistance genes and the induction mechanism remain fully functional when transferred to heterologous bacterial hosts. The anticipated wide use of ketolide antibiotics could promote horizontal transfer of these highly efficient resistance genes to pathogens. Taken together, these findings emphasized the need for surveillance of pikR1/pikR2-based bacterial resistance and the preemptive development of drugs that can remain effective against the ketolide-specific resistance mechanism.

  14. Cloning and expressing a highly functional and substrate specific farnesoic acid o-methyltransferase from the Asian citrus psyllid (Diaphorina citri Kuwayama).

    Science.gov (United States)

    Van Ekert, Evelien; Shatters, Robert G; Rougé, Pierre; Powell, Charles A; Smagghe, Guy; Borovsky, Dov

    2015-01-01

    The Asian citrus psyllid, Diaphorina citri, transmits a phloem-limited bacterium, Candidatus 'Liberibacter' asiaticus that causes citrus greening disease. Because juvenile hormone (JH) plays an important role in adult and nymphal development, we studied the final steps in JH biosynthesis in D. citri. A putative JH acid methyltransferase ortholog gene (jmtD) and its cognate cDNA were identified by searching D. citri genome database. Expression analysis shows expression in all life stages. In adults, it is expressed in the head-thorax, (containing the corpora allata), and the abdomen (containing ovaries and male accessory glands). A 3D protein model identified the catalytic groove with catalytically active amino acids and the S-adenosyl methionine (SAM)-binding loop. The cDNA was expressed in Escherichia coli cells and the purified enzyme showed high preference for farnesoic acid (FA) and homoFA (kcat of 0.752 × 10(-3) and 0.217 × 10(-3) s(-1), respectively) as compared to JH acid I (JHA I) (cis/trans/cis; 2Z, 6E, 10cis), JHA III (2E, 6E, 10cis), and JHA I (trans/cis/cis; 2E, 2Z, 10cis) (kcat of 0.081 × 10(-3), 0.013 × 10(-3), and 0.003 × 10(-3) s(-1), respectively). This suggests that this ortholog is a DcFA-o-methyl transferase gene (fmtD), not a jmtD, and that JH biosynthesis in D. citri proceeds from FA to JH III through methyl farnesoate (MF). DcFA-o-MT does not require Ca(2+), Mg(2+) or Zn(2+), however, Zn(2+) (1 mM) completely inhibits the enzyme probably by binding H115 at the active groove. This represents the first purified FA-o-MT from Hemiptera with preferred biological activity for FA and not JHA. PMID:25893162

  15. Cloning and expressing a highly functional and substrate specific farnesoic acid o-methyltransferase from the Asian citrus psyllid (Diaphorina citri Kuwayama).

    Science.gov (United States)

    Van Ekert, Evelien; Shatters, Robert G; Rougé, Pierre; Powell, Charles A; Smagghe, Guy; Borovsky, Dov

    2015-01-01

    The Asian citrus psyllid, Diaphorina citri, transmits a phloem-limited bacterium, Candidatus 'Liberibacter' asiaticus that causes citrus greening disease. Because juvenile hormone (JH) plays an important role in adult and nymphal development, we studied the final steps in JH biosynthesis in D. citri. A putative JH acid methyltransferase ortholog gene (jmtD) and its cognate cDNA were identified by searching D. citri genome database. Expression analysis shows expression in all life stages. In adults, it is expressed in the head-thorax, (containing the corpora allata), and the abdomen (containing ovaries and male accessory glands). A 3D protein model identified the catalytic groove with catalytically active amino acids and the S-adenosyl methionine (SAM)-binding loop. The cDNA was expressed in Escherichia coli cells and the purified enzyme showed high preference for farnesoic acid (FA) and homoFA (kcat of 0.752 × 10(-3) and 0.217 × 10(-3) s(-1), respectively) as compared to JH acid I (JHA I) (cis/trans/cis; 2Z, 6E, 10cis), JHA III (2E, 6E, 10cis), and JHA I (trans/cis/cis; 2E, 2Z, 10cis) (kcat of 0.081 × 10(-3), 0.013 × 10(-3), and 0.003 × 10(-3) s(-1), respectively). This suggests that this ortholog is a DcFA-o-methyl transferase gene (fmtD), not a jmtD, and that JH biosynthesis in D. citri proceeds from FA to JH III through methyl farnesoate (MF). DcFA-o-MT does not require Ca(2+), Mg(2+) or Zn(2+), however, Zn(2+) (1 mM) completely inhibits the enzyme probably by binding H115 at the active groove. This represents the first purified FA-o-MT from Hemiptera with preferred biological activity for FA and not JHA.

  16. Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides

    DEFF Research Database (Denmark)

    Almutairi, Mashal M; Park, Sung Ryeol; Rose, Simon;

    2015-01-01

    activation by ketolide antibiotics. The resistance genes and the induction mechanism remain fully functional when transferred to heterologous bacterial hosts. The anticipated wide use of ketolide antibiotics could promote horizontal transfer of these highly efficient resistance genes to pathogens. Taken......Ketolides are promising new antimicrobials effective against a broad range of Gram-positive pathogens, in part because of the low propensity of these drugs to trigger the expression of resistance genes. A natural ketolide pikromycin and a related compound methymycin are produced by Streptomyces...... venezuelae strain ATCC 15439. The producer avoids the inhibitory effects of its own antibiotics by expressing two paralogous rRNA methylase genes pikR1 and pikR2 with seemingly redundant functions. We show here that the PikR1 and PikR2 enzymes mono- and dimethylate, respectively, the N6 amino group in 23S r...

  17. The association of betaine, homocysteine and related metabolites with cognitive function in Dutch elderly people.

    NARCIS (Netherlands)

    Eussen, S.; Ueland, P.M.; Clarke, R.; Blom, H.J.; Hoefnagels, W.H.L.; Staveren, W.A. van; Groot, L.C. de

    2007-01-01

    The importance of the one-carbon metabolites, choline and homocysteine, to brain function is well known. However, the associations between the one-carbon metabolites choline, betaine, methionine and dimethylglycine with cognition in elderly are unclear. We therefore examined the associations of thes

  18. The association of betaine, homocysteine and related metabolites with cognitive function in Dutch elderly people

    NARCIS (Netherlands)

    Eussen, S.J.P.M.; Ueland, P.M.; Clarke, R.; Blom, H.J.; Hoefnagels, W.H.L.; Staveren, van W.A.; Groot, de C.P.G.M.

    2007-01-01

    The importance of the one-carbon metabolites, choline and homocysteine, to brain function is well known. However, the associations between the one-carbon metabolites choline, betaine, methionine and dimethylglycine with cognition in elderly are unclear. We therefore examined the associations of thes

  19. The association of betaine, homocysteine and related metabolites with cognitive function in Dutch elderly people

    OpenAIRE

    Eussen, S.J.P.M.; Ueland, P. M.; Clarke, R; Blom, H.J.; Hoefnagels, W.H.L.; Staveren, van, R.; Groot, de, W.T.

    2007-01-01

    The importance of the one-carbon metabolites, choline and homocysteine, to brain function is well known. However, the associations between the one-carbon metabolites choline, betaine, methionine and dimethylglycine with cognition in elderly are unclear. We therefore examined the associations of these metabolites with cognition in a double-blind, placebo-controlled trial. Individuals (n 195) were randomized to receive daily oral capsules with either 1000 ¿g cobalamin (vitamin B12), or 1000 ¿g ...

  20. miR-29b对肝癌细胞中甲基化转移酶表达的调控作用%Regulating the Expression of DNA Methyltransferase in Liver Cancer Cells by miR-29b

    Institute of Scientific and Technical Information of China (English)

    吕赛群; 金华君; 钱其军

    2011-01-01

    Abnormal DNA methylation plays an extremely important role in tumors.DNA methylation is completed through DNA methyltransferases (DNA methyhransferases, DMNTs).The miR-29 had a certain relationship with the expression of methylation transferase.In this study, an adenovirus vector carrying miR-29b is constructed and the virus is used to infect the liver cancer cell PLC.Then qRT-PCR is exploited to detect the relative quantity of miR-29b and methyltransferase in the infected PLC cells.The results show that the adenovirus carrying miR-29b can effectively elevate the cellular miR-29b and inhibit the expression of methyltransferases.%DNA甲基化异常在肿瘤发生中起着极为重要的作用,而基因组DNA的甲基化主要通过DNA甲基化转移酶(DNA methyhransferases,DNMTs)来完成.microRNA和甲基化转移酶的表达具有一定的联系.构建携带有miR-29b的腺病毒载体并包装病毒,鉴定正确后,将病毒感染肝癌细胞PLC,用qRT-PCR的方法检测miR-29b在PLC细胞中时甲基化转移酶表达的调控作用.结果表明,成功构建携带有miR-29b的腺病毒,qRT-PCR方法检测表明miR-29b能有效地调控甲基化转移酶的表达.

  1. The MarR family transcription factor Rv1404 coordinates adaptation of Mycobacterium tuberculosis to acid stress via controlled expression of Rv1405c, a virulence-associated methyltransferase.

    Science.gov (United States)

    Healy, Claire; Golby, Paul; MacHugh, David E; Gordon, Stephen V

    2016-03-01

    Coordinated regulation of gene expression is essential for pathogen adaptation in vivo. Understanding the control of these virulence circuits in the TB pathogen Mycobacterium tuberculosis is a key challenge if we are to increase our basic understanding of how this organism establishes infection. In this study we focused on the transcriptional regulator Rv1404 that shows similarity to the MarR family of transcriptional repressors. Rv1404 derepresses a set of genes in vivo that have been implicated in virulence and may therefore allow adaptation of M. tuberculosis to the intracellular environment. We used a combination of ChIP-qPCR and Electromobility Band Shift Assays (EMSA) to show that Rv1404 coordinates gene expression in response to stresses such as low pH in M. tuberculosis. Two genes regulated by Rv1404, rv1403c and rv1405c, encode putative SAM-dependent methyltransferases. To elucidate gene function, M. tuberculosis rv1403c and rv1405c mutants were constructed. The mutants showed attenuated growth in response to in vitro stress conditions that mimic the intracellular milieu. Our data sheds new light on the function of a novel regulon controlled by Rv1404 that coordinates adaptation of M. tuberculosis to the in vivo environment and reveals the Rv1405c and Rv1403c methyltransferases as playing a role in this adaptive process.

  2. Synthesis of Lysine Methyltransferase Inhibitors

    Directory of Open Access Journals (Sweden)

    Tao eYe

    2015-07-01

    Full Text Available Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  3. 病毒白细胞介素6对甲基转移酶1表达的影响%Effects of interleukin-6 on the expression of DNA methyltransferase1

    Institute of Scientific and Technical Information of China (English)

    徐建; 许雨乔; 潘世扬; 彭姗姗; 黄蕾; 孙瑞红

    2013-01-01

    Objective;To observe the effect of viral interleukin-6 (vIL-6) on the expression of DNA methyltransferase l(DNMTl). Methods: The eukaryotic expression plasmid carrying vIL-6 gene was transferred into 293T cells. The expression of DNMT1 was examined by quantitative RT-PCR and Western blot. DNMT1 activity was analyzed by colorimetry. Results Quantitative RT-PCR and Western blot demonstrated that vIL-6 increased the expression of DNMT1. Furthermore, vIL-6 upregulated the activity of DNMT1. Conclusion ;vIL-6 can induce the expression of DNMT1. It may be one of the molecular mechanisms of Kaposi's sarcoma associated herpesvirus(KSHV)-induced DNA methylation abnormalities and oncogenesis.%目的:观察病毒白细胞介素6(viral interleukin-6,vIL-6)对甲基转移酶1(DNA methyltransferase l,DNMT1)表达的影响.方法:vIL-6真核表达质粒转染293T细胞,荧光定量RT-PCR和Western blot法检测DNMTI表达的变化,比色法检测DNMT1的活性.结果:荧光定量RT-PCR和Western blot均表明vIL-6可显著促进DNMT1的表达,且vIL-6能上调DNMT1的活性.结论:vIL-6能诱导DNMT1的表达,可能是卡波济肉瘤相关疱疹病毒(KSHV)致DNA甲基化异常,促进肿瘤发生发展的分子机制之一.

  4. Genomic and proteomic analyses reveal multiple homologs of genes encoding enzymes of the methanol:coenzyme M methyltransferase system that are differentially expressed in methanol- and acetate-grown Methanosarcina thermophila.

    Science.gov (United States)

    Ding, Yan-Huai R; Zhang, Shi-Ping; Tomb, Jean-Francois; Ferry, James G

    2002-09-24

    Each of the genomic sequences of Methanosarcina acetivorans, Methanosarcina mazei, and Methanosarcina thermophila revealed two homologs of mtaA, three homologs of mtaB, and three homologs of mtaC encoding enzymes specific for methanogenesis from methanol. Two-dimensional gel electrophoretic analyses of polypeptides from M. thermophila established that methanol induces the expression of mtaA-1, mtaB-1, mtaB-2, mtaB-3, mtaC-1, mtaC-2, and mtaC-3 whereas mtaB-3 and mtaC-3 are constitutively expressed in acetate-grown cells. The gene product of one of three mttC homologs, encoding trimethylamine-specific methyltransferase I, was detected in methanol- but not acetate-grown M. thermophila. A postulated role for the multiple homologs is discussed. PMID:12393212

  5. Betaine as a determinant of postmethionine load total plasma homocysteine before and after B-vitamin supplementation.

    NARCIS (Netherlands)

    Holm, P.I.; Bleie, O.; Ueland, P.M.; Lien, E.A.; Refsum, H.; Nordrehaug, J.E.; Nygard, O.

    2004-01-01

    OBJECTIVE: Betaine is a substrate in the betaine-homocysteine methyltransferase reaction, converting homocysteine to methionine. There are only sparse data on plasma betaine as a determinant of the plasma total homocysteine (tHcy) concentration. METHODS AND RESULTS: Ninety patients undergoing corona

  6. Betaine concentration as a determinant of fasting total homocysteine concentrations and the effect of folic acid supplementation on betaine concentrations

    NARCIS (Netherlands)

    Boonstra, A.; Holm, P.I.; Ueland, P.M.; Olthof, M.R.; Clarke, R.; Verhoef, P.

    2005-01-01

    Background: Remethylation of homocysteine to methionine can occur through either the folate-dependent methionine synthase pathway or the betaine-dependent betaine-homocysteine methyltransferase pathway. The relevance of betaine as a determinant of fasting total homocysteine (tHcy) is not known, nor

  7. DNA甲基转移酶的表达调控及主要生物学功能%DNA methyltransferases:the role in regulation of gene expression and biological processes

    Institute of Scientific and Technical Information of China (English)

    苏玉; 王溪; 朱卫国

    2009-01-01

    DNA甲基化是表观遗传学的重要部分,同组蛋白修饰相互作用,通过改变染色质结构,调控基因表达.在哺乳类细胞或人体细胞中,DNA甲基化与细胞的增殖、衰老、癌变等生命现象有着重大关系.对催化DNA甲基化的DNA甲基转移酶(DNA methyltransferase,Dnmt)的研究可以揭示DNA甲基化对基因表达调控的机制,从而研究与之相关的重要生命活动.文章以DNA甲基转移酶作为切入点,探讨DNA甲基转移酶在基因表达调控中发挥的作用及其主要生物学功能.%Both hitone modification and DNA methylation remodulate chromatin structure and control gene expression or silence. As a main enzyme for DNA methylation, DNA methyltransferase (Dnmt) is not only associated with DNA methylation, but also links to many important biological activities, including cell proliferation, senescence and cancer development. This review focuses on structure, regulation and function in biological processes of Dnmt.

  8. Isolation and Characterization of Suv39h2, a Second Histone H3 Methyltransferase Gene That Displays Testis-Specific Expression

    OpenAIRE

    O'Carroll, Dónal; Scherthan, Harry; Peters, Antoine H. F. M.; Opravil, Susanne; Haynes, Andrew R.; Laible, Götz; Rea, Stephen; Schmid, Manfred; Lebersorger, Angelika; Jerratsch, Martin; Sattler, Lydia; Mattei, Marie G.; Denny, Paul; Brown, Stephen D. M.; Schweizer, Dieter

    2000-01-01

    Higher-order chromatin has been implicated in epigenetic gene control and in the functional organization of chromosomes. We have recently discovered mouse (Suv39h1) and human (SUV39H1) histone H3 lysine 9-selective methyltransferases (Suv39h HMTases) and shown that they modulate chromatin dynamics in somatic cells. We describe here the isolation, chromosomal assignment, and characterization of a second murine gene, Suv39h2. Like Suv39h1, Suv39h2 encodes an H3 HMTase that shares 59% identity w...

  9. Alternative splicing regulates the expression of G9A and SUV39H2 methyltransferases, and dramatically changes SUV39H2 functions

    OpenAIRE

    Mauger, Oriane; Klinck, Roscoe; Chabot, Benoit; Muchardt, Christian; Allemand, Eric; Batsche, Eric

    2015-01-01

    International audience Alternative splicing is the main source of proteome diversity. Here, we have investigated how alternative splicing affects the function of two human histone methyltransferases (HMTase): G9A and SUV39H2. We show that exon 10 in G9A and exon 3 in SUV39H2 are alternatively included in a variety of tissues and cell lines, as well as in a different species. The production of these variants is likely tightly regulated because both constitutive and alternative splicing fact...

  10. Melatonin Synthesis: Acetylserotonin O-Methyltransferase (ASMT) Is Strongly Expressed in a Subpopulation of Pinealocytes in the Male Rat Pineal Gland.

    Science.gov (United States)

    Rath, Martin F; Coon, Steven L; Amaral, Fernanda G; Weller, Joan L; Møller, Morten; Klein, David C

    2016-05-01

    The rat pineal gland has been extensively used in studies of melatonin synthesis. However, the cellular localization of melatonin synthesis in this species has not been investigated. Here we focus on the localization of melatonin synthesis using immunohistochemical methods to detect the last enzyme in melatonin synthesis, acetylserotonin O-methyltransferase (ASMT), and in situ hybridization techniques to study transcripts encoding ASMT and two other enzymes in melatonin synthesis, tryptophan hydroxylase (TPH)-1 and aralkylamine N-acetyltransferase. In sections of the rat pineal gland, marked cell-to-cell differences were found in ASMT immunostaining intensity and in the abundance of Tph1, Aanat, and Asmt transcripts. ASMT immunoreactivity was localized to the cytoplasm in pinealocytes in the parenchyma of the superficial pineal gland, and immunopositive pinealocytes were also detected in the pineal stalk and in the deep pineal gland. ASMT was found to inconsistently colocalize with S-antigen, a widely used pinealocyte marker; this colocalization was seen in cells throughout the pineal complex and also in displaced pinealocyte-like cells of the medial habenular nucleus. Inconsistent colocalization between ASMT and TPH protein was also detected in the pineal gland. ASMT protein was not detected in extraepithalamic parts of the central nervous system or in peripheral tissues. The findings in this report are of special interest because they provide reason to suspect that melatonin synthesis varies significantly among individual pinealocytes. PMID:26950199

  11. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT down-regulated, and normal maize plants

    Directory of Open Access Journals (Sweden)

    Martinant Jean-Pierre

    2008-06-01

    Full Text Available Abstract Background Silage maize is a major forage and energy resource for cattle feeding, and several studies have shown that lignin content and structure are the determining factors in forage maize feeding value. In maize, four natural brown-midrib mutants have modified lignin content, lignin structure and cell wall digestibility. The greatest lignin reduction and the highest cell wall digestibility were observed in the brown-midrib-3 (bm3 mutant, which is disrupted in the caffeic acid O-methyltransferase (COMT gene. Results Expression of cell wall related genes was investigated in basal and ear internodes of normal, COMT antisens (AS225, and bm3 maize plants of the INRA F2 line. A cell wall macro-array was developed with 651 gene specific tags of genes specifically involved in cell wall biogenesis. When comparing basal (older lignifying and ear (younger lignifying internodes of the normal line, all genes known to be involved in constitutive monolignol biosynthesis had a higher expression in younger ear internodes. The expression of the COMT gene was heavily reduced, especially in the younger lignifying tissues of the ear internode. Despite the fact that AS225 transgene expression was driven only in sclerenchyma tissues, COMT expression was also heavily reduced in AS225 ear and basal internodes. COMT disruption or down-regulation led to differential expressions of a few lignin pathway genes, which were all over-expressed, except for a phenylalanine ammonia-lyase gene. More unexpectedly, several transcription factor genes, cell signaling genes, transport and detoxification genes, genes involved in cell wall carbohydrate metabolism and genes encoding cell wall proteins, were differentially expressed, and mostly over-expressed, in COMT-deficient plants. Conclusion Differential gene expressions in COMT-deficient plants highlighted a probable disturbance in cell wall assembly. In addition, the gene expressions suggested modified chronology of the

  12. O6-Methylguanine-DNA methyltransferase protein expression by immunohistochemistry in brain and non-brain systemic tumours: systematic review and meta-analysis of correlation with methylation-specific polymerase chain reaction

    International Nuclear Information System (INIS)

    The DNA repair protein O6-Methylguanine-DNA methyltransferase (MGMT) confers resistance to alkylating agents. Several methods have been applied to its analysis, with methylation-specific polymerase chain reaction (MSP) the most commonly used for promoter methylation study, while immunohistochemistry (IHC) has become the most frequently used for the detection of MGMT protein expression. Agreement on the best and most reliable technique for evaluating MGMT status remains unsettled. The aim of this study was to perform a systematic review and meta-analysis of the correlation between IHC and MSP. A computer-aided search of MEDLINE (1950-October 2009), EBSCO (1966-October 2009) and EMBASE (1974-October 2009) was performed for relevant publications. Studies meeting inclusion criteria were those comparing MGMT protein expression by IHC with MGMT promoter methylation by MSP in the same cohort of patients. Methodological quality was assessed by using the QUADAS and STARD instruments. Previously published guidelines were followed for meta-analysis performance. Of 254 studies identified as eligible for full-text review, 52 (20.5%) met the inclusion criteria. The review showed that results of MGMT protein expression by IHC are not in close agreement with those obtained with MSP. Moreover, type of tumour (primary brain tumour vs others) was an independent covariate of accuracy estimates in the meta-regression analysis beyond the cut-off value. Protein expression assessed by IHC alone fails to reflect the promoter methylation status of MGMT. Thus, in attempts at clinical diagnosis the two methods seem to select different groups of patients and should not be used interchangeably

  13. Proteomics reveal a concerted upregulation of methionine metabolic pathway enzymes, and downregulation of carbonic anhydrase-III, in betaine supplemented ethanol-fed rats

    OpenAIRE

    Kharbanda, Kusum K; Vigneswara, Vasanthy; McVicker, Benita L.; Newlaczyl, Anna U.; Bailey, Kevin; Tuma, Dean; David E Ray; Carter, Wayne G.

    2009-01-01

    We employed a proteomic profiling strategy to examine the effects of ethanol and betaine diet supplementation on major liver protein level changes. Male Wistar rats were fed control, ethanol or betaine supplemented diets for 4 weeks. Livers were removed and liver cytosolic proteins resolved by one-dimensional and two-dimensional separation techniques. Significant upregulation of betaine homocysteine methyltransferase-1, methionine adenosyl transferase-1, and glycine N-methyltransferase were t...

  14. The Construction of a Mammalian Transfection Vector For Expression of Cytosine-5 Specific DNA Methyltransferase Gene M.Msp1 In Cultured Cells

    OpenAIRE

    ÖZDEMİR, Öztürk

    1998-01-01

    The expression vectors are designed for expression and purification of normal or recombi-nant gene of interest. There is a wide variety of stable and transferable selectable mammalian expres-sion vectors.The vector pCDM8 and its derivatives, pcDNAI/Ampicilline are widely used for cloning and analyzing of genes in higher eukaryotic cells. The vectors pRC/CMV, pcDNA3 and pRC/RSV are designed for high-level expression of recombinant genes in mammalian cells. In the present study, we have be...

  15. 儿童免疫性血小板减少症DNA甲基转移酶mRNA的表达%Expression of DNA methyltransferase mRNA in children with immune thrombocytopenia

    Institute of Scientific and Technical Information of China (English)

    肖爱菊; 王团结; 曹利佳; 石太新; 赵东菊; 李培岭; 任瑞娟

    2015-01-01

    目的:通过检测免疫性血小板减少症(ITP)患儿外周血淋巴细胞中DNA甲基转移酶1(Dnmt1)、DNA甲基转移酶3a(Dnmt3a)mRNA的表达,探讨DNA甲基化与儿童ITP发病机制之间的联系。方法采用RT-PCR方法检测36例新诊断ITP患儿与26例健康体检儿童外周血淋巴细胞中Dnmt1、Dnmt3a mRNA的表达水平;并进行分析比较。结果新诊断ITP患儿外周血淋巴细胞中Dnmt1的mRNA表达为(3.02±0.49),较对照组(4.58±0.52)明显降低,差异有统计学意义(t=11.95,P<0.01);ITP患儿Dnmt3a mRNA的表达为(1.49±0.44),较对照组(2.41±0.32)明显降低,差异有统计学意义(t=9.12,P<0.01)。结论新诊断ITP患儿可能存在DNA低甲基化,这种DNA低甲基化与儿童ITP发病机制关系密切。%Objective To study the relationship between DNA methylation and pathogenesis of childhood immune thrombocytopenic purpura (ITP) by examining the expression of DNA methyltransferase 1(Dnmt1) and DNA methyltransferase 3a (Dnmt3a) mRNA in peripheral blood lymphocytes of the children with ITP. Methods Expression of Dnmt 1 and Dnmt3a mRNA in the peripheral blood lymphocytes in 36 children with newly diagnosed ITP and 26 healthy children were detected using RT-PCR. Results Dnmt1 mRNA expression in peripheral blood lymphocytes in children diagnosed with ITP was 3.02±0.49, significantly lower than 4.58±0.52 in the control group (t=11.95, P<0.001). Dnmt3a mRNA expression in peripheral blood lymphocytes in children diagnosed with ITP was 1.49±0.44, signiifcantly lower than 2.41±0.32 in the control group (t=9.12, P<0.001). Conclusions Children with newly diagnosed ITP have lower DNA methylation status in peripheral blood lymphocytes as compared to that in healthy children. The DNA methylation may play an important role in the etiology of acute ITP in children.

  16. Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the G0/G1 to S phase transition in normal and tumor cells

    Science.gov (United States)

    Robertson, Keith D.; Keyomarsi, Khandan; Gonzales, Felicidad A.; Velicescu, Mihaela; Jones, Peter A.

    2000-01-01

    DNA methylation is essential for mammalian development, X-chromosome inactivation, and imprinting yet aberrant methylation patterns are one of the most common features of transformed cells. One of the proposed causes for these defects in the methylation machinery is overexpression of one or more of the three known catalytically active DNA methyltransferases (DNMTs) 1, 3a and 3b, yet there are clearly examples in which overexpression is minimal or non-existent but global methylation anomalies persist. An alternative mechanism which could give rise to global methylation errors is the improper expression of one or more of the DNMTs during the cell cycle. To begin to study the latter possibility we examined the expression of the mRNAs for DNMT1, 3a and 3b during the cell cycle of normal and transformed cells. We found that DNMT1 and 3b levels were significantly downregulated in G0/G1 while DNMT3a mRNA levels were less sensitive to cell cycle alterations and were maintained at a slightly higher level in tumor lines compared to normal cell strains. Enzymatic activity assays revealed a similar decrease in the overall methylation capacity of the cells during G0/G1 arrest and again revealed that a tumor cell line maintained a higher methylation capacity during arrest than a normal cell strain. These results reveal a new level of control exerted over the cellular DNA methylation machinery, the loss of which provides an alternative mechanism for the genesis of the aberrant methylation patterns observed in tumor cells. PMID:10773079

  17. The prognostic impact of O 6- methylguanine DNA methyltransferase and epidermal growth factor receptor expressions on primary gliosarcoma: A clinicopathologic and immunohistochemical study of seven cases at a single institution

    Directory of Open Access Journals (Sweden)

    Jui-Wei Lin

    2011-01-01

    Full Text Available Context: Gliosarcoma is an uncommon variant of glioblastoma characterized by a biphasic tissue pattern of glial and mesenchymal differentiation. O 6- methylguanine DNA methyltransferase (MGMT is a DNA repair protein that removes mutagenic and cytotoxic adducts from O 6 -guanine in DNA. Lack of MGMT protein expression immunohistochemically is related to drug responses in patients of malignant glioma treated with alkylating agents. Epidermal growth factor receptor (EGFR is the most frequently amplified gene in glioblastoma and associated with tumor invasiveness, angiogenesis, poor survival, and resistance to radiation therapy. Aims: To elucidate the relationship between the statuses of the MGMT as well as EGFR proteins and the prognosis. The study was undertaken on samples received at the Department of Pathology from 2003 to 2009. Materials and Methods: Clinicopathologic and immunohistochemical study of seven cases was performed. Results: This series included three men and four women with a mean age of 49.3 years at first surgery. The median progression-free survival (PFS was 22.2 months and 8.6 months for primary tumors with 0 to 1+ and 2+ to 3+ MGMT staining, respectively; the median overall survival (OS was 27.5 months and 14.2 months for primary tumors with 0 to 1+ and 2+ to 3+ MGMT staining, respectively. The median PFS was 17.2 months and 11.2 months for primary tumors with 0 to 1+ and 2+ to 3+ EGFR staining, respectively; the median OS was 20.4 months and 17.7 months for primary tumors with 0 to 1+ and 2+ to 3+ EGFR staining, respectively. Conclusions: The series showed that MGMT and EGFR protein expressions were both unfavorable prognostic factors for patients with gliosarcoma.

  18. 忽地笑酌-生育酚甲基转移酶基因LaTMT的克隆与表达分析%Cloning and expression analysis on γ-tocopherol methyltransferase gene LaTMT from Lycoris ;aurea

    Institute of Scientific and Technical Information of China (English)

    蔡黎丽; 徐晟; 马蕊; 汪仁; 夏冰

    2016-01-01

    LaTMT gene is 37 560 , theoretical isoelectric point is pI 8 . 70 , which is a hydrophilic protein without transmembrane structure but with signal peptide structure. And this protein has S-adenosylmethionine ( SAM) methyltransferase conserved domain and includes three SAM binding sites. Its tertiary structure includes 44. 08% of α-helix, 32. 84% of random coil, 12. 72% of extended strand and 10. 36% of β-turn. The analysis results of sequence alignment and phylogenetic tree show that LaTMT protein belongs to S-adenosylmethionine-dependent γ-tocopherol methyltransferase family, and its identity with γ-TMT protein from other plants is 64%-75%. In NJ phylogenetic tree, LaTMT protein andγ-TMT protein from monocotyledon are clustered into the same large category, and this protein with EgTMT of Elaeis guineensis Jacq. and EoTMT of Elaeis oleifera ( Kunth) Cortés is clustered into the same category, their relationship is close. The analysis result of genetic expression shows that LaTMT gene can express successfully in Escherichia coli, and its expression increases with prolonging of inducing time of isopropyl thiogalactoside ( IPTG) . Also, LaTMT gene can express in root, leaf, bud, ovary, stamen, petal and bulb of L. aurea, in which, relative expression is the highest in leaf, and that is relative low in ovary, stamen and bulb, with obvious tissue specificity. It is suggested that LaTMT gene from L. aurea has high conservation in evolutionary process, the gene is mainly located in chloroplast and is related to resistance of abiotic adversity stress.

  19. Epigenetic Regulation of Surfactant Protein A Gene (SP-A) Expression in Fetal Lung Reveals a Critical Role for Suv39h Methyltransferases during Development and Hypoxia ▿

    OpenAIRE

    Benlhabib, Houda; Mendelson, Carole R.

    2011-01-01

    SP-A gene expression is developmentally regulated in fetal lung. Cyclic AMP (cAMP) induction of SP-A expression in human fetal lung type II cells is O2 dependent and is mediated by increased binding of TTF-1/Nkx2.1 and NF-κB to a critical response element (TBE). This is associated with increased acetylation and decreased methylation of H3K9 at the TBE. Using chromatin immunoprecipitation analysis of fetal lung between 15.5 and 19.0 days of gestation, we observed that the developmental inducti...

  20. Differential gene expression in the liver of the African lungfish, Protopterus annectens, after 6 months of aestivation in air or 1 day of arousal from 6 months of aestivation.

    Directory of Open Access Journals (Sweden)

    Kum C Hiong

    Full Text Available The African lungfish, Protopterus annectens, can undergo aestivation during drought. Aestivation has three phases: induction, maintenance and arousal. The objective of this study was to examine the differential gene expression in the liver of P. annectens after 6 months (the maintenance phase of aestivation as compared with the freshwater control, or after 1 day of arousal from 6 months aestivation as compared with 6 months of aestivation using suppression subtractive hybridization. During the maintenance phase of aestivation, the mRNA expression of argininosuccinate synthetase 1 and carbamoyl phosphate synthetase III were up-regulated, indicating an increase in the ornithine-urea cycle capacity to detoxify ammonia to urea. There was also an increase in the expression of betaine homocysteine-S-transferase 1 which could reduce and prevent the accumulation of hepatic homocysteine. On the other hand, the down-regulation of superoxide dismutase 1 expression could signify a decrease in ROS production during the maintenance phase of aestivation. In addition, the maintenance phase was marked by decreases in expressions of genes related to blood coagulation, complement fixation and iron and copper metabolism, which could be strategies used to prevent thrombosis and to conserve energy. Unlike the maintenance phase of aestivation, there were increases in expressions of genes related to nitrogen, carbohydrate and lipid metabolism and fatty acid transport after 1 day of arousal from 6 months aestivation. There were also up-regulation in expressions of genes that were involved in the electron transport system and ATP synthesis, indicating a greater demand for metabolic energy during arousal. Overall, our results signify the importance of sustaining a low rate of waste production and conservation of energy store during the maintenance phase, and the dependence on internal energy store for repair and structural modification during the arousal phase, of

  1. Enhanced anti-tumor effect of zoledronic acid combined with temozolomide against human malignant glioma cell expressing O6-methylguanine DNA methyltransferase.

    Directory of Open Access Journals (Sweden)

    Junya Fukai

    Full Text Available Temozolomide (TMZ, a DNA methylating agent, is widely used in the adjuvant treatment of malignant gliomas. O6-methylguanine-DNA methyltranferase (MGMT, a DNA repair enzyme, is frequently discussed as the main factor that limits the efficacy of TMZ. Zoledronic acid (ZOL, which is clinically applied to treat cancer-induced bone diseases, appears to possess direct anti-tumor activity through apoptosis induction by inhibiting mevalonate pathway and prenylation of intracellular small G proteins. In this study, we evaluated whether ZOL can be effectively used as an adjuvant to TMZ in human malignant glioma cells that express MGMT. Malignant glioma cell lines, in which the expression of MGMT was detected, did not exhibit growth inhibition by TMZ even at a longer exposure. However, combination experiment of TMZ plus ZOL revealed that a supra-additive effect resulted in a significant decrease in cell growth. In combined TMZ/ZOL treatment, an increased apoptotic rate was apparent and significant activation of caspase-3 and cleavage of poly-(ADP-ribose polymerase were observed compared with each single drug exposure. There were decreased amounts of Ras-GTP, MAPK and Akt phosphorylation and MGMT expression in the ZOL-treated cells. Subcutanous xenograft models showed significant decrease of tumor growth with combined TMZ/ZOL treatment. These results suggest that ZOL efficaciously inhibits activity of Ras in malignant glioma cells and potentiates TMZ-mediated cytotoxicity, inducing growth inhibition and apoptosis of malignant glioma cells that express MGMT and resistant to TMZ. Based on this work, combination of TMZ with ZOL might be a potential therapy in malignant gliomas that receive less therapeutic effects of TMZ due to cell resistance.

  2. Molecular identification of carnosine N-methyltransferase as chicken histamine N-methyltransferase-like protein (hnmt-like.

    Directory of Open Access Journals (Sweden)

    Jakub Drozak

    Full Text Available Anserine (beta-alanyl-N(Pi-methyl-L-histidine, a naturally occurring derivative of carnosine (beta-alanyl-L-histidine, is an abundant constituent of skeletal muscles and brain of many vertebrates. Although it has long been proposed to serve as a proton buffer, radicals scavenger and transglycating agent, its physiological function remains obscure. The formation of anserine is catalyzed by carnosine N-methyltransferase which exhibits unknown molecular identity. In the present investigation, we have purified carnosine N-methyltransferase from chicken pectoral muscle about 640-fold until three major polypeptides of about 23, 26 and 37 kDa coeluting with the enzyme were identified in the preparation. Mass spectrometry analysis of these polypeptides resulted in an identification of histamine N-methyltransferase-like (HNMT-like protein as the only meaningful candidate. Analysis of GenBank database records indicated that the hnmt-like gene might be a paralogue of histamine N-methyltransferase gene, while comparison of their protein sequences suggested that HNMT-like protein might have acquired a new activity. Chicken HNMT-like protein was expressed in COS-7 cells, purified to homogeneity, and shown to catalyze the formation of anserine as confirmed by both chromatographic and mass spectrometry analysis. Both specificity and kinetic studies carried out on the native and recombinant enzyme were in agreement with published data. Particularly, several compounds structurally related to carnosine, including histamine and L-histidine, were tested as potential substrates for the enzyme, and carnosine was the only methyl group acceptor. The identification of the gene encoding carnosine N-methyltransferase might be beneficial for estimation of the biological functions of anserine.

  3. Dysregulated Hepatic Methionine Metabolism Drives Homocysteine Elevation in Diet-Induced Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Pacana, Tommy; Cazanave, Sophie; Verdianelli, Aurora; Patel, Vaishali; Min, Hae-Ki; Mirshahi, Faridoddin; Quinlivan, Eoin; Sanyal, Arun J

    2015-01-01

    Methionine metabolism plays a central role in methylation reactions, production of glutathione and methylarginines, and modulating homocysteine levels. The mechanisms by which these are affected in NAFLD are not fully understood. The aim is to perform a metabolomic, molecular and epigenetic analyses of hepatic methionine metabolism in diet-induced NAFLD. Female 129S1/SvlmJ;C57Bl/6J mice were fed a chow (n = 6) or high-fat high-cholesterol (HFHC) diet (n = 8) for 52 weeks. Metabolomic study, enzymatic expression and DNA methylation analyses were performed. HFHC diet led to weight gain, marked steatosis and extensive fibrosis. In the methionine cycle, hepatic methionine was depleted (30%, pmethionine ratio (pmethionine adenosyltransferase 1A, cystathionine β-synthase, γ-glutamylcysteine synthetase, betaine-homocysteine methyltransferase, and methionine synthase remained unchanged. Although gene expression of the DNA methyltransferase Dnmt3a decreased, the global DNA methylation was unaltered. Among individual genes, only HMG-CoA reductase (Hmgcr) was hypermethylated, and no methylation changes were observed in fatty acid synthase (Fasn), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (Nfκb1), c-Jun, B-cell lymphoma 2 (Bcl-2) and Caspase 3. NAFLD was associated with hepatic methionine deficiency and homocysteine elevation, resulting mainly from impaired homocysteine remethylation, and aberrancy in methyltransferase reactions. Despite increased PRMT1 expression, hepatic ADMA was depleted while circulating ADMA was increased, suggesting increased export to circulation.

  4. Association between BHMT gene rs3733890 polymorphism and cancer risk: evidence from a meta-analysis

    OpenAIRE

    Zhang, Li; Xu, Yue; Yan, Cunye; Hao, Zongyao; Zhou, Jun; Song, Fan; TAI, SHENG; Yang, Cheng; Liang, Chaozhao

    2016-01-01

    Yue Xu,1,* Cunye Yan,2,* Zongyao Hao,1 Jun Zhou,1 Song Fan,1 Sheng Tai,1 Cheng Yang,1 Li Zhang,1 Chaozhao Liang1 1Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, 2First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, People’s Republic of China *These authors contributed equally to this work Background and objective: The gene betaine-homocysteine methyltransferase (BHMT) has drawn much attenti...

  5. Evaluations of the trans-sulfuration pathway in multiple liver toxicity studies.

    Science.gov (United States)

    Schnackenberg, Laura K; Chen, Minjun; Sun, Jinchun; Holland, Ricky D; Dragan, Yvonne; Tong, Weida; Welsh, William; Beger, Richard D

    2009-02-15

    Drug-induced liver injury has been associated with the generation of reactive metabolites, which are primarily detoxified via glutathione conjugation. In this study, it was hypothesized that molecules involved in the synthesis of glutathione would be diminished to replenish the glutathione depleted through conjugation reactions. Since S-adenosylmethionine (SAMe) is the primary source of the sulfur atom in glutathione, UPLC/MS and NMR were used to evaluate metabolites involved with the transulfuration pathway in urine samples collected during studies of eight liver toxic compounds in Sprague-Dawley rats. Urinary levels of creatine were increased on day 1 or day 2 in 8 high dose liver toxicity studies. Taurine concentration in urine was increased in only 3 of 8 liver toxicity studies while SAMe was found to be reduced in 4 of 5 liver toxicity studies. To further validate the results from the metabonomic studies, microarray data from rat liver samples following treatment with acetaminophen was obtained from the Gene Expression Omnibus (GEO) database. Some genes involved in the trans-sulfuration pathway, including guanidinoacetate N-methyltransferase, glycine N-methyltransferase, betaine-homocysteine methyltransferase and cysteine dioxygenase were found to be significantly decreased while methionine adenosyl transferase II, alpha increased at 24 h post-dosing, which is consistent with the SAMe and creatine findings. The metabolic and transcriptomic results show that the trans-sulfuration pathway from SAMe to glutathione was disturbed due to the administration of heptatotoxicants.

  6. Genetic examination of SETD7 and SUV39H1/H2 methyltransferases and the risk of diabetes complications in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Syreeni, Anna; El-Osta, Assam; Forsblom, Carol;

    2011-01-01

    episodes of hyperglycemia. Epigenetic modifications mediated by histone methyltransferases are associated with gene-activating events that promote enhanced expression of key proinflammatory molecules implicated in vascular injury. In this study, we investigated genetic polymorphisms of the SETD7, SUV39H1......, and SUV39H2 methyltransferases as predictors of risk for micro- and macrovascular complications in type 1 diabetes....

  7. Expressions and clinical significance of DNA methyltransferase 1 in pancreatic carcinoma%DNA甲基转移酶1在胰腺癌组织中的表达及其临床意义

    Institute of Scientific and Technical Information of China (English)

    张尤历; 徐岷; 高道键; 张玉琦; 高军; 杜奕奇; 龚燕芳; 满晓华; 李兆申

    2010-01-01

    目的 探讨DNA甲基转移酶1(DNMT1)在胰腺癌组织中的表达及其临床意义.方法 收集手术切除的30例胰腺癌组织和配对癌旁组织.采用实时定量PCR法检测DNMT1 mRNA的表达;免疫组织化学法检测DNMT1蛋白的表达;分析胰腺癌组织DNMT1蛋白表达强度与临床病理参数之间的关系.结果 胰腺癌组织中DNMT1 mRNA的表达量为2.32(1.17~5.17),显著高于配对癌旁组织的0.78(0.07~3.14,P<0.05).胰腺癌组织中导管细胞DNMT1蛋白表达阳性率为(54.5±21.2)%,显著高于癌旁组织(10.9±15.0)%的表达阳性率(P<0.01).以胰腺癌导管细胞DNMT1阳性率54.5%为界,分为高表达组(19例)和低表达组(11例).DNMT1表达强度和临床分期(x2=6.897,P=0.029)、淋巴结转移(x2=4.739,P=0.029)、神经浸润与否(x2=5.44,P=0.020)相关,而与年龄、性别、肿瘤位置、肿瘤大小、肿瘤分化、血清CEA和CA19-9浓度无关.结论 胰腺癌组织DNMT1 mRNA和蛋白表达明显增加,DNMT1蛋白表达强度与胰腺癌的侵袭力、淋巴结转移和神经浸润相关.%Objective To investigate the expressions of DNA methyltransferase 1 (DNMT1) in pancreatic carcinoma and its clinical significance.Methods 30 samples of pancreatic cancer tissues and paired para-cancerous tissues were collected from patients who underwent curative pancreatectomy.The levels of DNMT1 mRNA were detected by real-time RT-PCR.Expressions of DNMT1 protein were detected by streptavidin peroxidase immunohistochemistry.The relationships between expression of DNMT1 and clinicopathological findings were analyzed.Results The value of relative quantification (RQ) of DNMT1 mRNA in human pancreatic cancer tissues was 2.32 (1.17 ~ 5.17 ), which was significant higher than 0.78 (0.07 ~3.14) in para-cancerous tissues(P <0.05).The index of expression of DNMT1 protein in human pancreatic cancer tissues was (54.5 ±21.2)% ,which was significant higher than( 10.9 ± 15.0)% in paracancerous tissues (P < 0

  8. DNA Methyltransferases Inhibitors from Natural Sources.

    Science.gov (United States)

    Zwergel, Clemens; Valente, Sergio; Mai, Antonello

    2016-01-01

    DNA methyltransferases (DNMTs) catalyze the methylation at cytosine-C5 mainly in a CpG dinucleotide context. Although DNA methylation is essential for fundamental processes like embryonic development or differentiation, aberrant expression and/or activities of DNMTs are involved in several pathologies, from neurodegeneration to cancer. DNMTs inhibition can arrest tumor growth, cells invasiveness and induce differentiation, whereas their increased expression is shown in numerous cancer types. Moreover, hypermethylated promoters of tumor suppressor genes lead to their silencing. Hence, the use of specific inhibitors of DNMT might reactivate those genes and stop or even reverse the aberrant cell processes. To date, the only approved DNMTs inhibitors for therapy belong to the nucleoside-based family of drugs, but they display relevant side effects as well as high chemical instability. Thus, there is a keen interest actually exists to develop novel, potent and safe inhibitors possessing a nonnucleoside structure. Increasing literature evidence is highlighting that natural sources could help the researchers to achieve this goal. Indeed, several polyphenols, flavonoids, antraquinones, and others are described able to inhibit DNMTs activity and/or expression, thus decreasing the methylation/silencing of different genes involved in tumorigenesis. These events can lead to re-expression of such genes and to cell death in diverse cancer cell lines. Epigallocatechin-3-gallate (1) and laccaic acid A (11) resulted the most effective DNMT1 inhibitors with submicromolar IC50 values, acting as competitive inhibitors. Compound 1 and 11 both displayed gene demethylation and re-activation in several cancers. However, all of the natural compounds described in this review showed important results, from gene reactivation to cell growth inhibition. Moreover, some of them displayed interesting activity even in rodent cancer models and very recently entered clinical trials. PMID:26303417

  9. Enhanced Levels of microRNA-125b in Vascular Smooth Muscle Cells of Diabetic db/db Mice Lead to Increased Inflammatory Gene Expression by Targeting the Histone Methyltransferase Suv39h1

    OpenAIRE

    Villeneuve, Louisa M.; KATO, MITSUO; Reddy, Marpadga A.; Wang, Mei; Lanting, Linda; Natarajan, Rama

    2010-01-01

    OBJECTIVE Diabetes remains a major risk factor for vascular complications that seem to persist even after achieving glycemic control, possibly due to “metabolic memory.” Using cultured vascular smooth muscle cells (MVSMC) from type 2 diabetic db/db mice, we recently showed that decreased promoter occupancy of the chromatin histone H3 lysine-9 methyltransferase Suv39h1 and the associated repressive epigenetic mark histone H3 lysine-9 trimethylation (H3K9me3) play key roles in sustained inflamm...

  10. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nan [ORNL; Ferrer, Jean-Luc [Universite Joseph Fourier, France; Moon, Hong S [Department of Plant Sciences, University of Tennessee; Kapteyn, Jeremy [Institute of Biological Chemistry, Washington State University; Zhuang, Xiaofeng [Department of Plant Sciences, University of Tennessee; Hasebe, Mitsuyasu [Laboratory of Evolutionary Biology, National Institute for Biology, 38 Nishigounaka; Stewart, Neal C. [Department of Plant Sciences, University of Tennessee; Gang, David R. [Institute of Biological Chemistry, Washington State University; Chen, Feng [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5 lM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.

  11. Effect of alternative temozolomide schedules on glioblastoma O 6-methylguanine-DNA methyltransferase activity and survival

    OpenAIRE

    Robinson, C G; Palomo, J M; Rahmathulla, G; McGraw, M; Donze, J; L. Liu; Vogelbaum, M A

    2010-01-01

    Background: O 6-methylguanine-DNA methyltransferase (MGMT) expression in glioblastoma correlates with temozolomide resistance. Dose-intense temozolomide schedules deplete MGMT activity in peripheral blood mononuclear cells; however, no published data exist evaluating the effect of temozolomide schedules on intracranial tumour MGMT activity. Methods: Human glioblastoma cells (GBM43) with an unmethylated MGMT promoter were implanted intracranially in immunodeficient rodents. Three weeks later, ...

  12. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yuan [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); Wu, Keqiang [Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (China); Dhaubhadel, Sangeeta [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); An, Lizhe, E-mail: lizhean@lzu.edu.cn [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Tian, Lining, E-mail: tianl@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada)

    2010-05-28

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.

  13. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    International Nuclear Information System (INIS)

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.

  14. A Picrinine N-Methyltransferase Belongs to a New Family of γ-Tocopherol-Like Methyltransferases Found in Medicinal Plants That Make Biologically Active Monoterpenoid Indole Alkaloids.

    Science.gov (United States)

    Levac, Dylan; Cázares, Paulo; Yu, Fang; De Luca, Vincenzo

    2016-04-01

    Members of the Apocynaceae plant family produce a large number of monoterpenoid indole alkaloids (MIAs) with different substitution patterns that are responsible for their various biological activities. A novel N-methyltransferase involved in the vindoline pathway in Catharanthus roseus showing distinct similarity to γ-tocopherol C-methyltransferases was used in a bioinformatic screen of transcriptomes from Vinca minor, Rauvolfia serpentina, and C. roseus to identify 10 γ-tocopherol-like N-methyltransferases from a large annotated transcriptome database of different MIA-producing plant species (www.phytometasyn.ca). The biochemical function of two members of this group cloned from V. minor (VmPiNMT) and R. serpentina (RsPiNMT) have been characterized by screening their biochemical activities against potential MIA substrates harvested from the leaf surfaces of MIA-accumulating plants. The approach was validated by identifying the MIA picrinine from leaf surfaces of Amsonia hubrichtii as a substrate of VmPiNMT and RsPiNMT. Recombinant proteins were shown to have high substrate specificity and affinity for picrinine, converting it to N-methylpicrinine (ervincine). Developmental studies with V. minor and R. serpentina showed that RsPiNMT and VmPiNMT gene expression and biochemical activities were highest in younger leaf tissues. The assembly of at least 150 known N-methylated MIAs within members of the Apocynaceae family may have occurred as a result of the evolution of the γ-tocopherol-like N-methyltransferase family from γ-tocopherol methyltransferases. PMID:26848097

  15. mTOR信号通路抑制剂和DNA甲基转移酶抑制剂对人胃癌细胞株Syk表达的影响%Effects of mTOR Signaling Pathway Inhibitor and DNA Methyltransferase Inhibitor on Syk Expression in Human Gastric Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    孙丹凤; 张燕捷; 田筱青; 房静远

    2013-01-01

    背景:哺乳动物雷帕霉素靶蛋白(mTOR)信号途径和DNA甲基化均参与肿瘤的发生、发展.脾酪氨酸激酶(Syk)是一种候选抑癌基因,与肿瘤发生有关.目的:研究mTOR信号通路抑制剂和DNA甲基转移酶抑制剂对人胃癌细胞株Syk表达的调控作用.方法:分别单独或联合应用mTOR抑制剂雷帕霉素(RAPA)、DNA甲基转移酶抑制剂5-氮杂-2'-脱氧胞苷(5-Aza-dC)、磷脂酰肌醇-3-激酶/丝苏氨酸蛋白激酶(PI3K/Akt)抑制剂LY294002干预人胃癌细胞株MKN45和SGC7901,以细胞计数法检测细胞增殖能力,实时定量PCR法检测Syk表达情况,亚硫酸氢盐修饰后测序法检测DNA甲基化改变.结果:单独应用5-Aza-dC对细胞增殖抑制不明显,与RAPA、LY294002联合则显著抑制细胞增殖.单独应用5-Aza-dC可通过抑制DNA甲基化上调胃癌细胞的Syk表达,联合应用5-Aza-dC、RAPA和LY294002则显著上调Syk表达,但未进一步抑制DNA甲基化.结论:抑制mTOR信号通路可间接增强DNA甲基转移酶抑制剂上调Syk表达,从而抑制胃癌细胞生长.%Background: Mammalian target of rapamycin ( mTOR ) signaling pathway and DNA methylation play an important role in tumorigenesis, and spleen tyrosine kinase ( Syk ) is an anti-oncogene related to tumor development. Aims: To investigate the effects of mTOR signaling pathway inhibitor and DNA methyltransferase inhibitor on Syk expression in human gastric cancer cell lines. Methods: Human gastric cancer cell lines MKN45 and SGC7901 were treated with mTOR inhibitor rapamycin ( RAPA ), DNA methyltransferase inhibitor 5-aza-2 ' -deoxycytidine ( 5-Aza-dC ) and phosphatidylinositol 3 kinase/serine-threonine protein kinases ( PDK/Akt ) inhibitor LY294002. Cell proliferation was determined by cell counting method. Expression of Syk was determined by real-time quantitive PCR. DNA methylation was detected by bisulfite sequencing. Results: Treated with 5-Aza-dC had no significant effect on cell proliferation

  16. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    Energy Technology Data Exchange (ETDEWEB)

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  17. Discovery and characterization of new O-methyltransferase from the genome of the lignin-degrading fungus Phanerochaete chrysosporium for enhanced lignin degradation.

    Science.gov (United States)

    Thanh Mai Pham, Le; Kim, Yong Hwan

    2016-01-01

    Using bioinformatic homology search tools, this study utilized sequence phylogeny, gene organization and conserved motifs to identify members of the family of O-methyltransferases from lignin-degrading fungus Phanerochaete chrysosporium. The heterologous expression and characterization of O-methyltransferases from P. chrysosporium were studied. The expressed protein utilized S-(5'-adenosyl)-L-methionine p-toluenesulfonate salt (SAM) and methylated various free-hydroxyl phenolic compounds at both meta and para site. In the same motif, O-methyltransferases were also identified in other white-rot fungi including Bjerkandera adusta, Ceriporiopsis (Gelatoporia) subvermispora B, and Trametes versicolor. As free-hydroxyl phenolic compounds have been known as inhibitors for lignin peroxidase, the presence of O-methyltransferases in white-rot fungi suggested their biological functions in accelerating lignin degradation in white-rot basidiomycetes by converting those inhibitory groups into non-toxic methylated phenolic ones. PMID:26672450

  18. Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1.

    Science.gov (United States)

    Guja, Kip E; Venkataraman, Krithika; Yakubovskaya, Elena; Shi, Hui; Mejia, Edison; Hambardjieva, Elena; Karzai, A Wali; Garcia-Diaz, Miguel

    2013-09-01

    Eukaryotic transcription factor B (TFB) proteins are homologous to KsgA/Dim1 ribosomal RNA (rRNA) methyltransferases. The mammalian TFB1, mitochondrial (TFB1M) factor is an essential protein necessary for mitochondrial gene expression. TFB1M mediates an rRNA modification in the small ribosomal subunit and thus plays a role analogous to KsgA/Dim1 proteins. This modification has been linked to mitochondrial dysfunctions leading to maternally inherited deafness, aminoglycoside sensitivity and diabetes. Here, we present the first structural characterization of the mammalian TFB1 factor. We have solved two X-ray crystallographic structures of TFB1M with (2.1 Å) and without (2.0 Å) its cofactor S-adenosyl-L-methionine. These structures reveal that TFB1M shares a conserved methyltransferase core with other KsgA/Dim1 methyltransferases and shed light on the structural basis of S-adenosyl-L-methionine binding and methyltransferase activity. Together with mutagenesis studies, these data suggest a model for substrate binding and provide insight into the mechanism of methyl transfer, clarifying the role of this factor in an essential process for mitochondrial function. PMID:23804760

  19. Cations modulate the substrate specificity of bifunctional class I O-methyltransferase from Ammi majus.

    Science.gov (United States)

    Lukacin, Richard; Matern, Ulrich; Specker, Silvia; Vogt, Thomas

    2004-11-19

    Caffeoyl-coenzyme A O-methyltransferase cDNA was cloned from dark-grown Ammi majus L. (Apiaceae) cells treated with a crude fungal elicitor and the open reading frame was expressed in Escherichia coli. The translated polypeptide of 27.1-kDa shared significant identity to other members of this highly conserved class of proteins and was 98.8% identical to the corresponding O-methyltransferase from parsley. For biochemical characterization, the recombinant enzyme could be purified to apparent homogeneity by metal-affinity chromatography, although the recombinant enzyme did not contain any affinity tag. Based on sequence analysis and substrate specificity, the enzyme classifies as a cation-dependent O-methyltransferase with pronounced preference for caffeoyl coenzyme A, when assayed in the presence of Mg2+-ions. Surprisingly, however, the substrate specificity changed dramatically, when Mg2+ was replaced by Mn2+ or Co2+ in the assays. This effect could point to yet unknown functions and substrate specificities in situ and suggests promiscuous roles for the lignin specific cluster of plant O-methyltransferases.

  20. Properly substituted analogues of BIX-01294 lose inhibition of G9a histone methyltransferase and gain selective anti-DNA methyltransferase 3A activity.

    Directory of Open Access Journals (Sweden)

    Dante Rotili

    Full Text Available Chemical manipulations performed on the histone H3 lysine 9 methyltransferases (G9a/GLP inhibitor BIX-01294 afforded novel desmethoxyquinazolines able to inhibit the DNA methyltransferase DNMT3A at low micromolar levels without any significant inhibition of DNMT1 and G9a. In KG-1 cells such compounds, when tested at sub-toxic doses, induced the luciferase re-expression in a stable construct controlled by a cytomegalovirus (CMV promoter silenced by methylation (CMV-luc assay. Finally, in human lymphoma U-937 and RAJI cells, the N-(1-benzylpiperidin-4-yl-2-(4-phenylpiperazin-1-ylquinazolin-4-amine induced the highest proliferation arrest and cell death induction starting from 10 µM, in agreement with its DNMT3A inhibitory potency.

  1. Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1

    OpenAIRE

    Guja, Kip E.; Venkataraman, Krithika; Yakubovskaya, Elena; Hui SHI; Mejia, Edison; Hambardjieva, Elena; Karzai, A. Wali; Garcia-Diaz, Miguel

    2013-01-01

    Eukaryotic transcription factor B (TFB) proteins are homologous to KsgA/Dim1 ribosomal RNA (rRNA) methyltransferases. The mammalian TFB1, mitochondrial (TFB1M) factor is an essential protein necessary for mitochondrial gene expression. TFB1M mediates an rRNA modification in the small ribosomal subunit and thus plays a role analogous to KsgA/Dim1 proteins. This modification has been linked to mitochondrial dysfunctions leading to maternally inherited deafness, aminoglycoside sensitivity and di...

  2. miR-221/222 Target the DNA Methyltransferase MGMT in Glioma Cells

    OpenAIRE

    Cristina Quintavalle; Davide Mangani; Giuseppina Roscigno; Giulia Romano; Angel Diaz-Lagares; Margherita Iaboni; Elvira Donnarumma; Danilo Fiore; Pasqualino De Marinis; Ylermi Soini; Manel Esteller; Gerolama Condorelli

    2013-01-01

    Glioblastoma multiforme (GBM) is one of the most deadly types of cancer. To date, the best clinical approach for treatment is based on administration of temozolomide (TMZ) in combination with radiotherapy. Much evidence suggests that the intracellular level of the alkylating enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) impacts response to TMZ in GBM patients. MGMT expression is regulated by the methylation of its promoter. However, evidence indicates that this is not the only regula...

  3. The histone methyltransferase and putative oncoprotein MMSET is overexpressed in a large variety of human tumors

    DEFF Research Database (Denmark)

    Hudlebusch, Heidi Rye; Santoni-Rugiu, Eric; Simon, Ronald;

    2011-01-01

    Multiple myeloma SET (Suppressor of variegation, Enhancer of zeste, and Trithorax) domain (MMSET) is a histone lysine methyltransferase deregulated in a subgroup of multiple myelomas with the t(4;14)(p16;q32) translocation and poor prognosis. With the aim of understanding, if MMSET can be involve...... in other types of cancer we investigated the expression of MMSET protein in different types of human tumors....

  4. Substrate recognition and modification by the nosiheptide resistance methyltransferase.

    Directory of Open Access Journals (Sweden)

    Sitao Yin

    Full Text Available The proliferation of antibiotic resistant pathogens is an increasing threat to the general public. Resistance may be conferred by a number of mechanisms including covalent or mutational modification of the antibiotic binding site, covalent modification of the drug, or the over-expression of efflux pumps. The nosiheptide resistance methyltransferase (NHR confers resistance to the thiazole antibiotic nosiheptide in the nosiheptide producer organism Streptomyces actuosus through 2'O-methylation of 23S rRNA at the nucleotide A1067. Although the crystal structures of NHR and the closely related thiostrepton-resistance methyltransferase (TSR in complex with the cofactor S-Adenosyl-L-methionine (SAM are available, the principles behind NHR substrate recognition and catalysis remain unclear.We have analyzed the binding interactions between NHR and model 58 and 29 nucleotide substrate RNAs by gel electrophoresis mobility shift assays (EMSA and fluorescence anisotropy. We show that the enzyme binds to RNA as a dimer. By constructing a hetero-dimer complex composed of one wild-type subunit and one inactive mutant NHR-R135A subunit, we show that only one functional subunit of the NHR homodimer is required for its enzymatic activity. Mutational analysis suggests that the interactions between neighbouring bases (G1068 and U1066 and A1067 have an important role in methyltransfer activity, such that the substitution of a deoxy sugar spacer (5' to the target nucleotide achieved near wild-type levels of methylation. A series of atomic substitutions at specific positions on the substrate adenine show that local base-base interactions between neighbouring bases are important for methylation.Taken together these data suggest that local base-base interactions play an important role in aligning the substrate 2' hydroxyl group of A1067 for methyl group transfer. Methylation of nucleic acids is playing an increasingly important role in fundamental biological processes

  5. Effect of Zuojin Pill on Expression of APC and Activity of DNA Methyltransferase in Colorectal Adenomas%左金丸对大肠癌APC表达及DNA甲基转移酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    龚艳青; 文彬

    2010-01-01

    目的 研究左金丸对结肠腺瘤性息肉基因(adenomatous polyposis coli,APC)的表达及DNA甲基转移酶(DNA methyltransferase,Dnmts)各亚型Dnmt1、Dnmt3a、Dnmt3b活性的影响,探讨大肠癌的发病机制及左金丸中药的抑癌机理.方法 将120只Wistar大鼠按随机数字表法分为3组:正常组、左金丸组和对照组,每组40只.正常组为健康大鼠不做任何处理,左金丸组和对照组大鼠每周注射1次化学致癌剂1,2-二甲基酰肼(1,2-dimethylhydrazine,DMH)共12周,左金丸组从注射药物开始每天灌服左金丸汤剂,对照组与正常组灌服同等体积的生理盐水,分别在第11、21、34周将部分大鼠处死,切取肿物、进行切片、HE染色、病理观察Duke分期,用Western blotting半定量法检测不同肿瘤时期APC蛋白的表达;Elisa方法检测Dnmts活性.结果 APC相对蛋白含量比较:正常组>左金丸组>对照组,各组两两比较差异均有统计学意义(P左金丸组>正常组,各组两两比较差异均有统计学意义(P<0.05或P<0.01),其中对照组中Dnmt1、Dnmt3b的活性与肿瘤Dukes分期有关,随着肿瘤浸润程度的增加而升高.结论 APC蛋白参与了结直肠癌的发生,并且是肿瘤形成的早期事件,与肿瘤的发展进程无关;Dnmt1、Dnmt3a、Dnmt3b参与了结直肠癌的发生过程,且Dnmt1、Dnmt3b活性升高与结直肠癌进展有关;左金丸组APC蛋白表达量的增加及甲基转移酶活性的降低可能跟左金丸的抑癌作用有关.

  6. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase

    Institute of Scientific and Technical Information of China (English)

    Bin-Zhong Li; Guo-Liang Xu; Zheng Huang; Qing-Yan Cui; Xue-Hui Song; Lin Du; Albert Jeltsch; Ping Chen; Guohong Li; En Li

    2011-01-01

    Cytosine methylation of genomic DNA controls gene expression and maintains genome stability. How a specific DNA sequence is targeted for methylation by a methyltransferase is largely unknown. Here, we show that histone H3 tails lacking lysine 4 (K4) methylation function as an allosteric activator for methyltransferase Dnmt3a by binding to its plant homeodomain (PHD). In vitro, histone H3 peptides stimulated the methylation activity of Dnmt3a up to 8-fold, in a manner reversely correlated with the level of K4 methylation. The biological significance of allosteric regulation was manifested by molecular modeling and identification of key residues in both the PHD and the catalytic domain of Dnmt3a whose mutations impaired the stimulation of methylation activity by H3 peptides but not the binding of H3 peptides. Significantly, these mutant Dnmt3a proteins were almost inactive in DNA methylation when expressed in mouse embryonic stem cells while their recruitment to genomic targets was unaltered. We therefore propose a two-step mechanism for de novo DNA methylation - first recruitment of the methyltransferase probably assisted by a chromatin- or DNA-binding factor, and then allosteric activation depending on the interaction between Dnmt3a and the histone tails - the latter might serve as a checkpoint for the methylation activity.

  7. Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Robert J Wood

    Full Text Available BACKGROUND: DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics. METHODOLOGY/PRINCIPAL FINDINGS: Herein we report the expression and purification of Yersinia pestis Dam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that is suitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Dam inhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site. When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting in separation of fluorophore (fluorescein and quencher (dabcyl and therefore an increase in fluorescence. The assays were monitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisation of Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated for high throughput screening, giving a Z-factor of 0.71+/-0.07 indicating that it is a sensitive assay for the identification of inhibitors. CONCLUSIONS/SIGNIFICANCE: The assay is therefore suitable for high throughput screening for inhibitors of DNA adenine methyltransferases and the kinetic characterisation of the inhibition.

  8. Aflatoxin B1 induced upregulation of protein arginine methyltransferase 5 in human cell lines.

    Science.gov (United States)

    Ghufran, Md Sajid; Ghosh, Krishna; Kanade, Santosh R

    2016-09-01

    The exposure of naturally occurring mycotoxins affects human health and play a vital role in cancer initiation and progression. Aflatoxin B1 is a difuranocoumarin mycotoxin, classified as a group I carcinogen. The present study was conducted to assess the effect of aflatoxin B1 on epigenetic regulatory proteins. The protein arginine methyltransferase 5 expression was induced upon aflatoxin B1 treatment in a dose and time dependent manner. Further global arginine methylation was also increased in the same manner. This is the first report showing the induction of epigenetic regulatory protein, protein arginine methyltransferase 5 upon aflatoxin B1 treatment. Further study is required to establish the detailed pathway of PRMT5 induction. PMID:27242039

  9. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy.

    Science.gov (United States)

    Morera, Ludovica; Lübbert, Michael; Jung, Manfred

    2016-01-01

    The term epigenetics is defined as heritable changes in gene expression that are not due to alterations of the DNA sequence. In the last years, it has become more and more evident that dysregulated epigenetic regulatory processes have a central role in cancer onset and progression. In contrast to DNA mutations, epigenetic modifications are reversible and, hence, suitable for pharmacological interventions. Reversible histone methylation is an important process within epigenetic regulation, and the investigation of its role in cancer has led to the identification of lysine methyltransferases and demethylases as promising targets for new anticancer drugs. In this review, we describe those enzymes and their inhibitors that have already reached the first stages of clinical trials in cancer therapy, namely the histone methyltransferases DOT1L and EZH2 as well as the demethylase LSD1. PMID:27222667

  10. Methyltransferase and demethylase profiling studies during brown adipocyte differentiation.

    Science.gov (United States)

    Son, Min Jeong; Kim, Won Kon; Oh, Kyoung-Jin; Park, Anna; Lee, Da Som; Han, Baek Soo; Lee, Sang Chul; Bae, Kwang-Hee

    2016-07-01

    Although brown adipose tissue is important with regard to energy balance, the molecular mechanism of brown adipocyte differentiation has not been extensively studied. Specifically, regulation factors at the level of protein modification are largely unknown. In this study, we examine the changes in the expression level of enzymes which are involved in protein lysine methylation during brown adipocyte differentiation. Several enzymes, in this case SUV420H2, PRDM9, MLL3 and JHDM1D, were found to be up-regulated. On the other hand, Set7/9 was significantly down-regulated. In the case of SUV420H2, the expression level increased sharply during brown adipocyte differentiation, whereas the expression of SUV420H2 was marginally enhanced during the white adipocyte differentiation. The knock-down of SUV420H2 caused the suppression of brown adipocyte differentiation, as compared to a scrambled control. These results suggest that SUV420H2, a methyltransferase, is involved in brown adipocyte differentiation, and that the methylation of protein lysine is important in brown adipocyte differentiation. [BMB Reports 2016; 49(7): 388-393].

  11. A SAM-dependent methyltransferase cotranscribed with arsenate reductase alters resistance to peptidyl transferase center-binding antibiotics in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Singh, Sudhir; Singh, Chhaya; Tripathi, Anil Kumar

    2014-05-01

    The genome of Azospirillum brasilense harbors a gene encoding S-adenosylmethionine-dependent methyltransferase, which is located downstream of an arsenate reductase gene. Both genes are cotranscribed and translationally coupled. When they were cloned and expressed individually in an arsenate-sensitive strain of Escherichia coli, arsenate reductase conferred tolerance to arsenate; however, methyltransferase failed to do so. Sequence analysis revealed that methyltransferase was more closely related to a PrmB-type N5-glutamine methyltransferase than to the arsenate detoxifying methyltransferase ArsM. Insertional inactivation of prmB gene in A. brasilense resulted in an increased sensitivity to chloramphenicol and resistance to tiamulin and clindamycin, which are known to bind at the peptidyl transferase center (PTC) in the ribosome. These observations suggested that the inability of prmB:km mutant to methylate L3 protein might alter hydrophobicity in the antibiotic-binding pocket of the PTC, which might affect the binding of chloramphenicol, clindamycin, and tiamulin differentially. This is the first report showing the role of PrmB-type N5-glutamine methyltransferases in conferring resistance to tiamulin and clindamycin in any bacterium.

  12. Sequence Analysis of DNA Methyltransferase Gene from Largemouth bass ulcerative syndrome virus and Its Expression in Prokaryote%大口黑鲈溃疡综合征病毒甲基转移酶基因序列分析与原核表达

    Institute of Scientific and Technical Information of China (English)

    马冬梅; 白俊杰; 邓国成; 李胜杰

    2011-01-01

    In order to further reveal the characteristics of Largemouth bass ulcerative syndrome virus (LBUSV)isolated recently, and further study the group of LBUSV, DFV (Doctor fish virus) and LMBV (Largemouth bass virus), the full-length DNA methyltransferase (DNA MTase) gene was analyzed and expressed using prokaryotic system.A about 200 bp core fragment was amplified and sequenced, and the full-length of DNA MTase was identified by genome walking.The open reading frame (ORF) of DNA MTase gene was 663 bp encoding 220 amino acids (GenBank accession No.GU256634).Motif analysis indicated that LBUSV DNA MTase protein contained blocks Ⅰ, Ⅳ, Ⅵ and Ⅷ, and cofactor binding sites, substrate interacting sites and DNA binding sites were also found in LBUSV DNA MTase, and the proline-proline-cysteine tripeptide was proposed catalytic site.Additionally, the primers were designed according to DNA MTase ORF, and the PCR products were inserted in vector pBV220 and transformed to host Escherichia coli DH5α.After temperature inducement and SDS-PAGE analysis, the recombinant expression bacteria produced a special protein about 25 kD in molecular weight.The proportion of recombinant protein in total bacterial protein was about 30%.Characteristic analysis of DNA MTase gene showed that the predicted protein may play a role of DNA methyltransferase, and confirmed that the taxonomic status of LBUSV is genus Ranavirus of the family Iridoviridae.%为了对新分离到的大口黑鲈溃疡综合征病毒(Largemouth bass ulcerative syndrome virus,LBUSV)的特征作进一步了解,促进LBUSV、DFV(Doctor fish virus)和LMBV(Largemouth bass vires)这类病毒的深入研究,本文克隆了LBUSV DNA甲基转移酶(DNA MTase)基因约200 bp的保守核心片段,用基因组步移的方法扩增到了核心片段的侧翼序列,获得了DNA MTase基因的编码区全长序列.序列分析表明,DNA MTase基因开放阅读框共663 bp(GenBank登录号:GU256634),编码220个氨基

  13. Cytoplasmic sequestration of an O6-methylguanine-DNA methyltransferase enhancer binding protein in DNA repair-deficient human cells

    OpenAIRE

    Frank Y. Chen; Harris, Linda C.; Joanna S Remack; Brent, Thomas P.

    1997-01-01

    O6-Methylguanine-DNA methyltransferase (MGMT), an enzyme that repairs adducts at O6 of guanine in DNA, is a major determinant of susceptibility to simple methylating carcinogens or of tumor response to anticancer chloroethylating drugs. To investigate the mechanisms underlying cellular expression of this DNA repair enzyme, we focused on the role of a 59-bp enhancer of the human MGMT gene in the regulation of its expression. By using chloramphenicol acetyltransferase reporter assays, we found ...

  14. Sonic hedgehog信号对口腔鳞癌中组蛋白甲基化转移酶的研究%Sonic hedgehog signaling regulates the expression of histone methyltransferases in the head and neck squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    尹小楠; 马玉实; 杜娟; 范志朋

    2013-01-01

    目的 检测Sonic hedgehog信号在口腔鳞癌致病过程中是否具有调节组蛋白甲基化转移酶表达的功能.方法 利用人重组SHH-N蛋白及过表达M2-SMO在舌鳞状细胞癌细胞系SCC6激活Shh信号,利用Cyclopamine阻断Shh信号,采用Real-time PCR在mRNA水平检测组蛋白甲基化转移酶相关基因的表达.结果发现激活Shh信号通路,组蛋白甲基化转移酶DOT1、MLL2和MLL4在mRNA水平表达明显升高.抑制Shh信号通路,DOT1、MLL2和MLL4表达明显降低.结论 在口腔鳞癌中组蛋白甲基化转移酶DOT1、MLL2和MLL4是Shh信号通路的下游基因,其表达受Shh信号分子的正向调控.%Objective To invesligale whether the Sonic hedgehog (Shh) signaling could regulale the expression of histone melhyllransferases in the head and neck squamous cell carcinoma. Methods Human recombinanl SHH-N prolein and over-expression of the M2-SM0 were applied to aclivale the Shh signaling in tongue squamous cell carcinoma cell line SCC6 , and Cyclopamine was used lo block the Shh signaling. Real-lime PCR was used lo delet the expressions of hislone melhyllransferases al the mRNA level. Results The aclivalion of the Shh signaling up-regulated the expressions of hislone melhyllransferases DOT1, MLL2 and MLL4 al the mRNA level, and inhibilion of Shh signaling down-regulated DOT1, MLL2 and MLL4. Conclusion Hislone melhyllransferases DOT1, MLL2 and MLL4 were downslream genes of Shh signaling in head and neck squamous cell carcinoma, and their expressions were positively regulaled by Shh signaling.

  15. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zirong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060 (China); Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610 (United States); Jin, Guorong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060 (China); Lin, Shuibin [Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610 (United States); Lin, Xiumei [Department of Hematology, Guangzhou First Municipal People' s Hospital, Guangzhou 510180 (China); Gu, Yumei [Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610 (United States); Zhu, Yujuan; Hu, Chengbin; Zhang, Qingjiong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060 (China); Wu, Lizi [Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610 (United States); Shen, Huangxuan, E-mail: shenhx@mail.sysu.edu.cn [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060 (China)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer CDA-II inhibits myogenic differentiation in a dose-dependent manner. Black-Right-Pointing-Pointer CDA-II repressed expression of muscle transcription factors and structural proteins. Black-Right-Pointing-Pointer CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiation of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.

  16. Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase.

    Science.gov (United States)

    Li, Huaijun Michael; Rotter, David; Hartman, Thomas G; Pak, Fulya E; Havkin-Frenkel, Daphna; Belanger, Faith C

    2006-06-01

    The biosynthesis of many plant secondary compounds involves the methylation of one or more hydroxyl groups, catalyzed by O-methyltransferases (OMTs). Here, we report the characterization of two OMTs, Van OMT-2 and Van OMT-3, from the orchid Vanilla planifolia Andrews. These enzymes catalyze the methylation of a single outer hydroxyl group in substrates possessing a 1,2,3-trihydroxybenzene moiety, such as methyl gallate and myricetin. This is a substrate requirement not previously reported for any OMTs. Based on sequence analysis these enzymes are most similar to caffeic acid O-methyltransferases (COMTs), but they have negligible activity with typical COMT substrates. Seven of 12 conserved substrate-binding residues in COMTs are altered in Van OMT-2 and Van OMT-3. Phylogenetic analysis of the sequences suggests that Van OMT-2 and Van OMT-3 evolved from the V. planifolia COMT. These V. planifolia OMTs are new instances of COMT-like enzymes with novel substrate preferences.

  17. Distinction between the Cfr Methyltransferase Conferring Antibiotic Resistance and the Housekeeping RlmN Methyltransferase

    DEFF Research Database (Denmark)

    Atkinson, Gemma C; Hansen, Lykke H; Tenson, Tanel;

    2013-01-01

    The cfr gene encodes the Cfr methyltransferase that primarily methylates C-8 in A2503 of 23S rRNA in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to six classes of antibiotics of clinical and veterinary importance. The rlmN gene encodes the Rlm......N methyltransferase that methylates C-2 in A2503 in 23S rRNA and A37 in tRNA, but RlmN does not significantly influence antibiotic resistance. The enzymes are homologous and use the same mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate involving a methylated cysteine....... The differentiation between the two classes is supported by previous and new experimental evidence from antibiotic resistance, primer extensions, and mass spectrometry. Finally, evolutionary aspects of the distribution of Cfr- and RlmN-like enzymes are discussed....

  18. miR-29 Represses the Activities of DNA Methyltransferases and DNA Demethylases

    Directory of Open Access Journals (Sweden)

    Izuho Hatada

    2013-07-01

    Full Text Available Members of the microRNA-29 (miR-29 family directly target the DNA methyltransferases, DNMT3A and DNMT3B. Disturbances in the expression levels of miR-29 have been linked to tumorigenesis and tumor aggressiveness. Members of the miR-29 family are currently thought to repress DNA methylation and suppress tumorigenesis by protecting against de novo methylation. Here, we report that members of the miR-29 family repress the activities of DNA methyltransferases and DNA demethylases, which have opposing roles in control of DNA methylation status. Members of the miR-29 family directly inhibited DNA methyltransferases and two major factors involved in DNA demethylation, namely tet methylcytosine dioxygenase 1 (TET1 and thymine DNA glycosylase (TDG. Overexpression of miR-29 upregulated the global DNA methylation level in some cancer cells and downregulated DNA methylation in other cancer cells, suggesting that miR-29 suppresses tumorigenesis by protecting against changes in the existing DNA methylation status rather than by preventing de novo methylation of DNA.

  19. The Eukaryotic DNMT2 Genes Encode a New Class of Cytosine-5 DNA Methyltransferases

    Institute of Scientific and Technical Information of China (English)

    Lin-YaTang; M.NarsaReddy; VanyaRasheva; Tai-LinLee; Meng-JauLin; Ming-ShiuHung; C.-K.JamesShen

    2005-01-01

    DNMT2 is a subgroup of the eukaryotic cytosine-5 DNA methyltransferase gene family. Unlike the other family members, proteins encoded by DNMT2 genes were not known before to possess DNA methyltransferase activities. Most recently, we have showm that thegenome of Drosophila S2 cells stably expressing an exogenous Drosophila dDNMT2 cDNA became anoma-lously methylated at the 5'-positions of cytosines(Reddy, M. N., Tang, L. Y., Lee, T. L., and Shen, C.-K. J.(2003) Oncogene, in press). We present evidence here that the genomes of transgenic flies overexpressing the dDnmt2 protein also became hypermethylated at specific regions. Furthermore, transient transfection studies in combination with sodium bisulfite sequencing demonstrated that dDnmt2 as well as its mousc ortholog, mDnmt2, are capable of methylating a cotrans-fected plasmid DNA. These data provide solid evidence that the fly and mouse DNMT2 gene products are genuine cytosine-5 DNA methyltransferases.

  20. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid.

    Science.gov (United States)

    Ludwig-Müller, Jutta; Jülke, Sabine; Geiß, Kathleen; Richter, Franziska; Mithöfer, Axel; Šola, Ivana; Rusak, Gordana; Keenan, Sandi; Bulman, Simon

    2015-05-01

    The obligate biotrophic pathogen Plasmodiophora brassicae causes clubroot disease in Arabidopsis thaliana, which is characterized by large root galls. Salicylic acid (SA) production is a defence response in plants, and its methyl ester is involved in systemic signalling. Plasmodiophora brassicae seems to suppress plant defence reactions, but information on how this is achieved is scarce. Here, we profile the changes in SA metabolism during Arabidopsis clubroot disease. The accumulation of SA and the emission of methylated SA (methyl salicylate, MeSA) were observed in P. brassicae-infected Arabidopsis 28 days after inoculation. There is evidence that MeSA is transported from infected roots to the upper plant. Analysis of the mutant Atbsmt1, deficient in the methylation of SA, indicated that the Arabidopsis SA methyltransferase was not responsible for alterations in clubroot symptoms. We found that P. brassicae possesses a methyltransferase (PbBSMT) with homology to plant methyltransferases. The PbBSMT gene is maximally transcribed when SA production is highest. By heterologous expression and enzymatic analyses, we showed that PbBSMT can methylate SA, benzoic and anthranilic acids.

  1. Structures of NS5 Methyltransferase from Zika Virus.

    Science.gov (United States)

    Coloma, Javier; Jain, Rinku; Rajashankar, Kanagalaghatta R; García-Sastre, Adolfo; Aggarwal, Aneel K

    2016-09-20

    The Zika virus (ZIKV) poses a major public health emergency. To aid in the development of antivirals, we present two high-resolution crystal structures of the ZIKV NS5 methyltransferase: one bound to S-adenosylmethionine (SAM) and the other bound to SAM and 7-methyl guanosine diphosphate (7-MeGpp). We identify features of ZIKV NS5 methyltransferase that lend to structure-based antiviral drug discovery. Specifically, SAM analogs with functionalities on the Cβ atom of the methionine portion of the molecules that occupy the RNA binding tunnel may provide better specificity relative to human RNA methyltransferases.

  2. Structures of NS5 Methyltransferase from Zika Virus

    Directory of Open Access Journals (Sweden)

    Javier Coloma

    2016-09-01

    Full Text Available The Zika virus (ZIKV poses a major public health emergency. To aid in the development of antivirals, we present two high-resolution crystal structures of the ZIKV NS5 methyltransferase: one bound to S-adenosylmethionine (SAM and the other bound to SAM and 7-methyl guanosine diphosphate (7-MeGpp. We identify features of ZIKV NS5 methyltransferase that lend to structure-based antiviral drug discovery. Specifically, SAM analogs with functionalities on the Cβ atom of the methionine portion of the molecules that occupy the RNA binding tunnel may provide better specificity relative to human RNA methyltransferases.

  3. Structures of NS5 Methyltransferase from Zika Virus.

    Science.gov (United States)

    Coloma, Javier; Jain, Rinku; Rajashankar, Kanagalaghatta R; García-Sastre, Adolfo; Aggarwal, Aneel K

    2016-09-20

    The Zika virus (ZIKV) poses a major public health emergency. To aid in the development of antivirals, we present two high-resolution crystal structures of the ZIKV NS5 methyltransferase: one bound to S-adenosylmethionine (SAM) and the other bound to SAM and 7-methyl guanosine diphosphate (7-MeGpp). We identify features of ZIKV NS5 methyltransferase that lend to structure-based antiviral drug discovery. Specifically, SAM analogs with functionalities on the Cβ atom of the methionine portion of the molecules that occupy the RNA binding tunnel may provide better specificity relative to human RNA methyltransferases. PMID:27633330

  4. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    International Nuclear Information System (INIS)

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations

  5. 胶质母细胞瘤MGMT基因启动子甲基化与蛋白表达%Heterogeneity of O6-methylguanine-DNA methyltransferase protein expression and gene promoter methylation in glioblastoma

    Institute of Scientific and Technical Information of China (English)

    潘强; 杨学军; 纪延伟; 孙健; 韩建国; 高松; 李罡; 张文高

    2010-01-01

    Objective To study the correlation of MGMT gene promoter methylation and protein expression and their regional variation in different specimens obtained from different regions within the tumor in patients with newly diagnosed glioblastoma. Methods Two to four samples in the same tumor were collected from different regions in 30 patients with newly diagnosed glioblastoma patients. In five patients among them,mutispecimens were obtained under assistance of neuronavigation system during the operation. In all samples,MGMT promoter profile were analyzed by Methylation - specific polymerase - Chain - reaction analysis, MSP ,while MGMT protein expression was detected in tissue sections by immunohistochemistry,IHC. Results MGMT promoter methylation was detected in 43. 56% (44/101) specimens. MGMT protein expression in tissue sections was assessed and scored:(1 :no or positive tumor cells 50%) ,The rate of MGMT staining with a score 1,2,3 in all of tumor sections was 32. 67% ,43.56% ,23. 76% respectively. No significant correlation between MGMT protein expression and promoter methylation(x2 =2. 905, P =0.088) was found. The regional heterogeneity of MGMT protein expression within the same tumor was in 57% (17/30) patients ;and the regional heterogeneity of gene promoter methylation was in37%(11/30)patients. Conclusions MGMT promoter methylation is probably not the only modulating element in MGMT protein expression. The heterogeneity of MGMT protein expression and its promoter methylation in the same tumor questions their guiding significance in making therapeutic scheme for individual patients with malignant glioma in clinical practice.%目的 研究新发胶质母细胞瘤中肿瘤不同部位MGMT基因启动子甲基化及其蛋白表达关系及区域差异性.方法 在30例新发胶质母细胞瘤肿瘤不同部位采取2~4块标本,其中5例在术中神经导航引导下采取.甲基化特异性PCR(MSP)法检测标本中MGMT基因启动子甲基化状况,免疫组

  6. Monolignol 4-O-methyltransferases and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang-Jun; Bhuiya, Mohammad-Wadud; Zhang, Kewei

    2014-11-18

    Modified (iso)eugenol 4-O-methyltransferase enzymes having novel capacity for methylation of monolignols and reduction of lignin polymerization in plant cell wall are disclosed. Sequences encoding the modified enzymes are disclosed.

  7. Identification and functional characterization of lysine methyltransferases of Entamoeba histolytica.

    Science.gov (United States)

    Borbolla-Vázquez, Jessica; Orozco, Esther; Medina-Gómez, Christian; Martínez-Higuera, Aarón; Javier-Reyna, Rosario; Chávez, Bibiana; Betanzos, Abigail; Rodríguez, Mario A

    2016-07-01

    Lysine methylation of histones, a posttranslational modification catalyzed by lysine methyltransferases (HKMTs), plays an important role in the epigenetic regulation of transcription. Lysine methylation of non-histone proteins also impacts the biological function of proteins. Previously it has been shown that lysine methylation of histones of Entamoeba histolytica, the protozoan parasite that infects 50 million people worldwide each year and causing up to 100,000 deaths annually, is implicated in the epigenetic machinery of this microorganism. However, the identification and characterization of HKMTs in this parasite had not yet been determined. In this work we identified four HKMTs in E. histolytica (EhHKMT1 to EhHKMT4) that are expressed by trophozoites. Enzymatic assays indicated that all of them are able to transfer methyl groups to commercial histones. EhHKMT1, EhHKMT2 and EhHKMT4 were detected in nucleus and cytoplasm of trophozoites. In addition EhHKMT2 and EhHKMT4 were located in vesicles containing ingested cells during phagocytosis, and they co-immunoprecipitated with EhADH, a protein involved in the phagocytosis of this parasite. Results suggest that E. histolytica uses its HKMTs to regulate transcription by epigenetic mechanisms, and at least two of them could also be implicated in methylation of proteins that participate in phagocytosis. PMID:27062489

  8. Cloning and Expression Analysis of DNA Methyltransferases Encoding Gene Dim-2 from Beauveria bassiana%球孢白僵菌DNA甲基转移酶基因Dim-2的克隆及其表达分析

    Institute of Scientific and Technical Information of China (English)

    汪超; 谢翎; 黄勃

    2014-01-01

    The full-length cDNA of Dim-2 gene was cloned from Beauveria bassiana using a RACE technique. The cDNA of Dim-2 had a lenght of 4021 bp, including an open reading frame (ORF) with 3429 bp encoding 1142 amino acids. The protein had a molecular mass of 128 kD with a calculated pI of 6.13. The Realtime-PCR and HPLC analysis indicated that the degree of DNA methylation varied along with fungal growth development. The results showed that both the expression level of Dim-2 gene and the degree of DNA methylation reached the minimum levels at initial stage of sporulation (the 7th day). It was inferred that there was an internal relationship between DNA methylation caused by Dim-2 gene and growth development in B. bassiana. The study will benefit future functional studies of DNA methylation in developmental control of entomopathogenic fungi.%本研究运用RACE技术,从球孢白僵菌中克隆出完整的DNA甲基转移酶基因Dim-2的编码区序列。该基因cDNA全长4021 bp,5′端非翻译区283 bp,3′端非翻译区303 bp,开放阅读框(ORF)3429 bp,编码1142个氨基酸。蛋白理论分子量为128 kD,理论等电点为6.13。结构域分析显示,该基因编码蛋白含有1个BAH结构域和合成5-甲基胞嘧啶的活性区域。Real-time PCR与HPLC检测表明,球孢白僵菌DNA甲基化程度会随着其生长发育的变化而不断改变。结果显示,球孢白僵菌Dim-2基因的转录表达量与基因组DNA的5-甲基胞嘧啶百分含量在菌体培养初始产孢阶段(即培养第7 d),均出现了1个低谷。这可能意味着球孢白僵菌Dim-2基因所引起的DNA甲基化与其生长发育之间具有内在的联系。本研究将为进一步探索DNA甲基化在虫生真菌生长发育中具体功能机制奠定基础。

  9. Inhibition of SUV39H1 Methyltransferase Activity by DBC1*

    OpenAIRE

    Li, Zhenyu; Chen, Lihong; Kabra, Neha; Wang, Chuangui; Fang, Jia; Chen, Jiandong

    2009-01-01

    SUV39H1 is a histone H3K9-specific methyltransferase important for heterochromatin formation, regulation of gene expression, and induction of senescence in premalignant cells. SUV39H1 forms a complex with SirT1, and its activity is stimulated by SirT1 binding. Here we present evidence that the product of the DBC1 (deleted in breast cancer 1) gene disrupts the SUV39H1-SirT1 complex. Furthermore, DBC1 binds to the SUV39H1 catalytic domain and inhibits its ability to ...

  10. Queen pheromones modulate DNA methyltransferase activity in bee and ant workers.

    Science.gov (United States)

    Holman, Luke; Trontti, Kalevi; Helanterä, Heikki

    2016-01-01

    DNA methylation is emerging as an important regulator of polyphenism in the social insects. Research has concentrated on differences in methylation between queens and workers, though we hypothesized that methylation is involved in mediating other flexible phenotypes, including pheromone-dependent changes in worker behaviour and physiology. Here, we find that exposure to queen pheromone affects the expression of two DNA methyltransferase genes in Apis mellifera honeybees and in two species of Lasius ants, but not in Bombus terrestris bumblebees. These results suggest that queen pheromones influence the worker methylome, pointing to a novel proximate mechanism for these key social signals. PMID:26814223

  11. DNA methyltransferase-dependent transcription of the phage Mu mom gene.

    OpenAIRE

    Hattman, S

    1982-01-01

    The phage Mu mom gene controls an unusual DNA modification. Expression of the mom function requires an active host (dam+) DNA adenine methylase [S-adenosyl-L-methionine:DNA (6-aminopurine)-methyltransferase]; in dam- hosts, Mu development is normal except that the viral DNA does not undergo the mom modification. The present communication compares transcription of the mom gene in dam+ versus dam- cells. 32P-labeled probes were prepared by nick-translation of a purified mom gene-containing rest...

  12. The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants

    OpenAIRE

    Ying LI; Mukherjee, Indrani; Thum, Karen E; Tanurdzic, Milos; Katari, Manpreet S.; Obertello, Mariana; Edwards, Molly B; McCombie, W Richard; Martienssen, Robert A.; Coruzzi, Gloria M.

    2015-01-01

    Background Histone methylation modifies the epigenetic state of target genes to regulate gene expression in the context of developmental and environmental changes. Previously, we used a positive genetic screen to identify an Arabidopsis mutant, cli186, which was impaired in carbon and light signaling. Here, we report a deletion of the Arabidopsis histone methyltransferase SDG8 in this mutant (renamed sdg8-5), which provides a unique opportunity to study the global function of a specific histo...

  13. O6-Methylguanine-DNA methyltransferase status in neuroendocrine tumours: prognostic relevance and association with response to alkylating agents

    OpenAIRE

    Walter, T.; van Brakel, B; Vercherat, C; Hervieu, V; Forestier, J.; Chayvialle, J-A; Molin, Y.; Lombard-Bohas, C; Joly, M-O; Scoazec, J-Y

    2015-01-01

    Background: O6-Methylguanine-DNA methyltransferase (MGMT) loss of expression has been suggested to be predictive of response to temozolomide in neuroendocrine tumours (NETs), but so far, only limited data are available. We evaluated the prognostic and predictive value of MGMT status, assessed by two molecular methods and immunohistochemistry, in a large series of NETs of different origins. Methods: A total of 107 patients, including 53 treated by alkylants (temozolomide, dacarbazine or strept...

  14. Methylation pattern of the O6-methylguanine-DNA methyltransferase gene in colon during progressive colorectal tumorigenesis

    OpenAIRE

    NAGASAKA, Takeshi; Goel, Ajay; Notohara, Kenji; Takahata, Takaomi; Sasamoto, Hiromi; Uchida, Takuyuki; Nishida, Naoshi; Tanaka, Noriaki; Boland, Clement Richard; Matsubara, Nagahide

    2008-01-01

    O6-methylguanine-DNA methyltransferase (MGMT) is a DNA repair gene which is frequently methylated in colorectal cancer (CRC). However, it remains controversial whether methylation of specific CpG sequences within MGMT promoter leads to loss of its protein expression, and if MGMT methylation correlates with G to A transition mutations in KRAS. Two methylation sensitive regions (Mp and Eh region) of MGMT promoter were investigated in 593 specimens of colorectal tissue: 233 CRCs, 104 adenomatous...

  15. Genome-wide identification and comparative analysis of cytosine-5 DNA methyltransferases and demethylase families in wild and cultivated peanut

    Directory of Open Access Journals (Sweden)

    Pengfei eWang

    2016-02-01

    Full Text Available AbstractDNA methylation plays important roles in genome protection, regulation of gene expression and was associated with plants development. Plant DNA methylation pattern was mediated by cytosine-5 DNA methyltransferases and demethylase. Although the genomes of AA and BB wild peanuts have been fully sequence, these two gene families have not been studied. In this study we report the identification and analysis of putative cytosine-5 DNA methyltransferases (C5-MTases and demethylase in AA and BB wild peanuts. Cytosine-5 DNA methyltransferases in AA and BB wild peanuts could be classified in known MET, CMT and DRM2 groups based on their domain organization. This result was supported by the gene and protein structural characteristics and phylogenetic analysis. We found that some wild peanut DRM2 numbers didn’t contain UBA domain which was different from other plants such as Arabidopsis, maize, soybean. Five DNA demethylase were found in AA genome and five in BB genome. The selective pressure analysis showed that wild peanut C5-MTases gene mainly underwent purifying selection but many positive selection sites can be detected. Conversely, DNA demethylase genes mainly underwent positive selection during evolution. Additionally, the expression dynamic of cytosine-5 DNA methyltransferases and demethylase genes in different cultivated peanut tissues were analyzed. Expression result showed that cold, heat or drought stress could influence the expression level of C5-MTases and DNA demethylase genes in cultivated peanut. These results are useful for better understanding the complexity of these two gene families, and will facilitate epigenetic studies in peanut.

  16. Cloning and characterization of a norbelladine 4'-O-methyltransferase involved in the biosynthesis of the Alzheimer's drug galanthamine in Narcissus sp. aff. pseudonarcissus.

    Directory of Open Access Journals (Sweden)

    Matthew B Kilgore

    Full Text Available Galanthamine is an Amaryllidaceae alkaloid used to treat the symptoms of Alzheimer's disease. This compound is primarily isolated from daffodil (Narcissus spp., snowdrop (Galanthus spp., and summer snowflake (Leucojum aestivum. Despite its importance as a medicine, no genes involved in the biosynthetic pathway of galanthamine have been identified. This absence of genetic information on biosynthetic pathways is a limiting factor in the development of synthetic biology platforms for many important botanical medicines. The paucity of information is largely due to the limitations of traditional methods for finding biochemical pathway enzymes and genes in non-model organisms. A new bioinformatic approach using several recent technological improvements was applied to search for genes in the proposed galanthamine biosynthetic pathway, first targeting methyltransferases due to strong signature amino acid sequences in the proteins. Using Illumina sequencing, a de novo transcriptome assembly was constructed for daffodil. BLAST was used to identify sequences that contain signatures for plant O-methyltransferases in this transcriptome. The program HAYSTACK was then used to identify methyltransferases that fit a model for galanthamine biosynthesis in leaf, bulb and inflorescence tissues. One candidate gene for the methylation of norbelladine to 4'-O-methylnorbelladine in the proposed galanthamine biosynthetic pathway was identified. This methyltransferase cDNA was expressed in E. coli and the protein purified by affinity chromatography. The resulting protein was found to be a norbelladine 4'-O-methyltransferase (NpN4OMT of the proposed galanthamine biosynthetic pathway.

  17. Isolation of DNA methyltransferase from plants

    International Nuclear Information System (INIS)

    DNA methyltransferases (DMT) were isolated from nuclei of cauliflower, soybean, and pea by extraction with 0.35 M NaCl. Assays were performed on hemimethylated Micrococcus luteus DNA or on M. luteus DNA to test for maintenance or de novo methylase activity, respectively. Fully methylated DNA was used as a substrate to determine background levels of methylation. Based on these tests, yields of maintenance DMT activity in the crude extract from pea hypocotyl, soybean hypocotyl, and cauliflower inflorescence were 2.8, 0.9, and 1.6 units per g wet tissue (one unit equals 1 pmol of methyl from [3H]AdoMet incorporated into acid precipitable material per h at 300). Two peaks of DMT activity were detected in the soybean nuclear extract following phosphocellulose chromatography. One eluted at 0.4 M and the other at 0.8 M KCl. With both fractions maintenance activity was approximately 2 times that of the de novo activity. Using gel filtration the DMT eluted at 220,000 Daltons. The optimal pH for activity was between 6.5 and 7.0, and the optimal temperature was 300

  18. Purification and properties of thioether methyltransferase

    International Nuclear Information System (INIS)

    A method to assay activity was developed which measures acceptance of methyl groups from [methyl-3H]-S-adenosylmethionine by dimethyl selenide. The product, [3H]trimethylselenonium ion, is separated by HPLC and quantitated by scintillation counting. Thioether methyltransferase from mouse liver and lung resides primarily in the cytosol. In terms of specific activity the enzyme is most active in the lung and liver. Purification from lung cytosol requires a three-step process of DEAE and gel filtration column chromatographies followed by chromatofocusing. SDS-Polyacrylamide gel electrophoresis shows a single homogeneous band with a molecular mass of 28,000 daltons. Vmax and Km values for dimethyl selenide as a substrate are 15. 7 pmol/min and 0.44 μM, respectively. Our studies have also shown that this purified enzyme is capable of methylating a wide range of compounds. To further test the enzyme's role in detoxification, in vivo studies were performed by injecting mice with substrate and [methyl-3H]methionine and analyzing tissue extracts and urine for [methyl-3H]sulfonium

  19. CpG methyltransferase induced down-regulation of claudin-7,-8 and its effects on proliferation and apoptosis of human colorectal cancer HT-29 cells

    Institute of Scientific and Technical Information of China (English)

    王文辉

    2013-01-01

    Objective To explore the regulatory effect of CpG methyltransferase (M.SssI) on expression of claudin-7and claudin-8,promoting apoptosis and inhibiting proliferation of human colorectal cancer HT-29 cells.Methods HT-29 cells were treated with M.SssI (50 U/ml) for

  20. Furanocoumarin biosynthesis in Ammi majus L. Cloning of bergaptol O-methyltransferase.

    Science.gov (United States)

    Hehmann, Marc; Lukacin, Richard; Ekiert, Halina; Matern, Ulrich

    2004-03-01

    Plants belonging to the Apiaceae or Rutaceae accumulate methoxylated psoralens, such as bergapten or xanthotoxin, as the final products of their furanocoumarin biosynthesis, and the rate of accumulation depends on environmental and other cues. Distinct O-methyltransferase activities had been reported to methylate bergaptol to bergapten and xanthotoxol to xanthotoxin, from induced cell cultures of Ruta graveolens, Petroselinum crispum and Ammi majus. Bergaptol 5-O-methyltransferase (BMT) cDNA was cloned from dark-grown Ammi majus L. cells treated with a crude fungal elicitor. The translated polypeptide of 38.7 kDa, composed of 354 amino acids, revealed considerable sequence similarity to heterologous caffeic acid 3-O-methyltransferases (COMTs). For homologous comparison, COMT was cloned from A. majus plants and shown to share 64% identity and about 79% similarity with the BMT sequence at the polypeptide level. Functional expression of both enzymes in Escherichia coli revealed that the BMT activity in the bacterial extracts was labile and rapidly lost on purification, whereas the COMT activity remained stable. Furthermore, the recombinant AmBMT, which was most active in potassium phosphate buffer of pH 8 at 42 degrees C, showed narrow substrate specificity for bergaptol (Km SAM 6.5 micro m; Km Bergaptol 2.8 micro m) when assayed with a variety of substrates, including xanthotoxol, while the AmCOMT accepted 5-hydroxyferulic acid, esculetin and other substrates. Dark-grown A. majus cells expressed significant BMT activity which nevertheless increased sevenfold within 8 h upon the addition of elicitor and reached a transient maximum at 8-11 h, whereas the COMT activity was rather low and did not respond to the elicitation. Complementary Northern blotting revealed that the BMT transcript abundance increased to a maximum at 7 h, while only a weak constitutive signal was observed for the COMT transcript. The AmBMT sequence thus represents a novel database accession

  1. Systematic Comparisons of Orthologous Selenocysteine Methyltransferase and Homocysteine Methyltransferase Genes from Seven Monocots Species

    Directory of Open Access Journals (Sweden)

    De-yong ZHAO

    2015-06-01

    Full Text Available Identifying and manipulating genes underlying selenium metabolism could be helpful for increasing selenium content in crop grain, which is an important way to overcome diseases resulted from selenium deficiency. A reciprocal smallest distance algorithm (RSD approach was applied using two experimentally confirmed Homocysteine S-Methyltransferases genes (HMT1 and HMT2 and a putative Selenocysteine Methyltransferase (SMT from dicots plant Arabidopsis thaliana, to explore their orthologs in seven sequenced diploid monocot species: Oryza sativa, Zea mays, Sorghum bicolor, Brachypodium distachyon, Hordeum vulgare, Aegilops tauschii (the D-genome donor of common wheat and Triticum urartu (the A-genome donor of common wheat. HMT1 was apparently diverged from HMT2 and most of SMT orthologs were the same with that of HMT2 in this study, leading to the hypothesis that SMT and HMT originate from one common ancestor gene. Identifying orthologs provide candidates for further experimental confirmation; also it could be helpful in designing primers to clone SMT or HMT orthologs in other crops.

  2. DNA甲基转移酶1与甲基-CpG-结合蛋白2异常表达在宫颈病变中的作用及相互关系%Effect of DNA methyltransferase 1 and methyl-CpG-binding protein 2 abnormal expression on cervical lesions and related interaction

    Institute of Scientific and Technical Information of China (English)

    康慧杰; 王金桃; 高晨菲; 白丽霞; 丁玲; 许娟; 吴婷婷; 白兰

    2013-01-01

    目的 探讨DNA甲基转移酶l(DNMT)和甲基-CpG-结合蛋白2(MeCP2)与宫颈癌发生发展的关系及其在宫颈癌变中的相互作用.方法 选择经病理学确诊的宫颈鳞状细胞癌(SCC)患者74例、低度宫颈上皮内瘤样变(CINⅠ)患者52例、高度宫颈上皮内瘤样变(CINⅡ-Ⅲ)患者60例和宫颈炎(CI)患者58例为研究对象.在收集全部对象人口学特征、人乳头瘤病毒感染、生殖因素等相关资料同时,检测DNMT1和MeCP2蛋白(Western blot法)和mRNA (real-time PCR法)的相对表达量.采用SPSS 17.0分析软件,计算相关资料的t检验、x2检验、因素与疾病之间关联强度指标(OR值及其95%CI)及其交互作用.结果 随着宫颈病变的加重,DNMT1和MeCP2蛋白表达水平逐渐增高(H=94.33,P<0.001;F=21.580,P<0.001),DNMTl和MeCP2 mRNA的表达水平亦逐渐增高(F=4.758,P=0.003; F=7.804,P<0.001).相关分析表明,DNMT1与MeCP2(r=0.287,P<0.001)和rnRNA(r=0.179,P=0.005)表达均存在正相关关系.交互作用分析显示,DNMT1与MeCP2蛋白和mRNA高表达在SCC组和CINⅡ-Ⅲ组存在正相加交互作用.结论 DNMT1及MeCP2高表达可增加宫颈癌和癌前病变发生的风险,两者在CIN Ⅱ-Ⅲ组和SCC组存在正相加交互作用.%Objective To explore the effect of DNA methyltransferase 1 (DNMT1) and methyl-CpG-binding protein 2 (MeCP2) on cervical cancer and cervix precancerous lesion.Methods 74 patients with cervix squamous cell carcinoma (SCC),52 patients with cervical intraepithelial neoplasm Ⅰ (CIN Ⅰ),60 patients with cervical intraepithelial neoplasm Ⅱ-Ⅲ(CIN Ⅱ-Ⅲ) and 58 patients with histologically diagnosed cervix inflammation (CI),were included in this study.Information as demography,reproductive history,life style,HPV infection were collected.Western Blot were used to detect the expression of DNMT1 protein and MeCP2 protein.Real-time PCR was used to detect the expression of DNMT 1 and MeCP2 mRNA.Results Levels of DNMT1 and MeCP2

  3. DNA甲基转移酶1基因在人肝外胆管癌组织和细胞中的表达及意义%The Expression and Significance of DNA Methyltransferase 1 Gene in Extrahepatic Cholangiocarcinoma Tissues and Cells

    Institute of Scientific and Technical Information of China (English)

    左石; 邹声泉; 孙诚谊

    2011-01-01

    Objective: To study the expression of DNA methyltransferase 1 (DNMT1) in human ex-trahepatic cholangiocarcinoma (ECC) tissues and cell line QBC939, and to analyze the relationship between the expression level of DNMT1 and clinicopathologic features of ECC, and so as to explore the roles of DNMT1 in the tumorigenesis of ECC. Methods: The expression of DNMT1 protein was detected in 24 ECC specimens and in 20 chronic cholangeitis tissue specimens with immunohistochemistry method. The results of the two kinds of tissues were compared, and their relationship with the clinico-patholigic features of ECC was analyzed. RT-PCR and Western Blot were used to detect the expression of DNMT1 gene and protein in human biliary tract carcinoma cell line QBC939 respectively. Results: (1) The rates of positive DNMT1 protein expression cells were (37. 57 ± 11. 24) % and (10. 73 ± 6. 61 ) % in ECC specimens and in chronic cholangeitis specimens respectively. There were significant differences between the two groups (P=0.005 ) ; (2) The increased expression of DNMT1 protein was correlated with differentiation grade of carcinoma. The protein levels of DNMT1 were high in poorly differentiated cholangiocarcinoma, moderate in moderately differentiated cholangiocarcinoma, and low in well differentiated cholangiocarcinoma. The increased expression of DNMT1 protein was not correlated with gender, age, size of tumor, tumor location, lymph node metastasis or clinical TNM stage. (3) DNMT1 mRNA and protein were both positive in human biliary tract carcinoma cell line QBC939. Conclusions: (1) The expression level of DNMT1 protein in ECC is significantly higher than that in chronic cholangeitis tissues. The increased DNMT1 protein level is correlated with the differentiation grade of tumor and is not correlated with gender, age, tumor size, tumor location, lymph node metastasis or clinical TNM stage. This result suggests that the over-expression of DNMT1 may relate to the pathogen-esis of biliary

  4. Characterization of Leishmania major phosphatidylethanolamine methyltransferases LmjPEM1 and LmjPEM2 and their inhibition by choline analogs

    Science.gov (United States)

    Bibis, Stergios S.; Dahlstrom, Kelly; Zhu, Tongtong; Zufferey, Rachel

    2014-01-01

    Phosphatidylcholine (PC) is the most abundant phospholipid in the membranes of the human parasite Leishmania. It is synthesized via two metabolic routes, the de novo pathway that starts with the uptake of choline, and the threefold methylation of phosphatidylethanolamine. Choline was shown to be dispensable for Leishmania; thus, the methylation pathway likely represents the primary route for PC production. Here, we have identified and characterized two phosphatidylethanolamine methyltransferases, LmjPEM1 and LmjPEM2. Both enzymes are expressed in promastigotes as well as in the vertebrate form amastigotes, suggesting that these methyltransferases are important for the development of the parasite throughout its life cycle. These enzymes are maximally expressed during the log phase of growth which correlates with the demand of PC synthesis during cell multiplication. Immunofluorescence studies combined with cell fractionation have shown that both methyltransferases are localized at the endoplasmic reticulum membrane. Heterologous expression in yeast has demonstrated that LmjPEM1 and LmjPEM2 complement the choline auxotrophy phenotype of a yeast double null mutant lacking phosphatidylethanolamine methyltransferase activity. LmjPEM1 catalyzes the first, and to a lesser extent, the second methylation reaction. In contrast, LmjPEM2 has the capacity to add the second and third methyl group onto phosphatidylethanolamine to yield (lyso)PC; it can also add the first methyl group, albeit with very low efficiency. Finally, we have demonstrated using inhibition studies with choline analogs that miltefosine and octadecyltrimethylammonium bromide are potent inhibitors of this metabolic pathway. PMID:25176160

  5. Characterization of a multifunctional methyltransferase from the orchid Vanilla planifolia.

    Science.gov (United States)

    Pak, F E; Gropper, S; Dai, W D; Havkin-Frenkel, D; Belanger, F C

    2004-07-01

    The final enzymatic step in the synthesis of the flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde) is believed to be methylation of 3,4-dihydroxybenzaldehyde. We have isolated and functionally characterized a cDNA that encodes a multifunctional methyltransferase from Vanilla planifolia tissue cultures that can catalyze the conversion of 3,4-dihydroxybenzaldehyde to vanillin, although 3,4-dihydroxybenzaldehyde is not the preferred substrate. The higher catalytic efficiency of the purified recombinant enzyme with the substrates caffeoyl aldehyde and 5-OH-coniferaldehyde, and its tissue distribution, suggest this methyltransferase may primarily function in lignin biosynthesis. However, since the enzyme characterized here does have 3,4-dihydroxybenzaldehyde-O-methyltransferase activity, it may be useful in engineering strategies for the synthesis of natural vanillin from alternate sources.

  6. Crystallization and preliminary X-ray crystallographic studies of O-methyltransferase from Anabaena PCC 7120

    International Nuclear Information System (INIS)

    The O-methyltransferase (OMT) from the Anabaena PCC 7120 has been overexpressed in a soluble form in E. coli, purified and crystallized. The crystals belonged to space group C2221 and diffracted to 2.4 Å resolution. O-Methyltransferase (OMT) is a ubiquitous enzyme that exists in bacteria, plants and humans and catalyzes a methyl-transfer reaction using S-adenosyl-l-methionine as a methyl donor and a wide range of phenolics as acceptors. To investigate the structure and function of OMTs, omt from Anabaena PCC 7120 was cloned into expression vector pET21a and expressed in a soluble form in Escherichia coli strain BL21 (DE3). The recombinant OMT protein was purified to homogeneity using a two-step strategy. Crystals of OMT that diffracted to a resolution of 2.4 Å were obtained using the hanging-drop vapour-diffusion method. The crystals belonged to space group C2221, with unit-cell parameters a = 131.620, b = 227.994, c = 150.777 Å, α = β = γ = 90°. There are eight molecules per asymmetric unit

  7. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia.

    Science.gov (United States)

    Cole, Christopher B; Verdoni, Angela M; Ketkar, Shamika; Leight, Elizabeth R; Russler-Germain, David A; Lamprecht, Tamara L; Demeter, Ryan T; Magrini, Vincent; Ley, Timothy J

    2016-01-01

    The DNA methyltransferases DNMT3A and DNMT3B are primarily responsible for de novo methylation of specific cytosine residues in CpG dinucleotides during mammalian development. While loss-of-function mutations in DNMT3A are highly recurrent in acute myeloid leukemia (AML), DNMT3A mutations are almost never found in AML patients with translocations that create oncogenic fusion genes such as PML-RARA, RUNX1-RUNX1T1, and MLL-AF9. Here, we explored how DNMT3A is involved in the function of these fusion genes. We used retroviral vectors to express PML-RARA, RUNX1-RUNX1T1, or MLL-AF9 in bone marrow cells derived from WT or DNMT3A-deficient mice. Additionally, we examined the phenotypes of hematopoietic cells from Ctsg-PML-RARA mice, which express PML-RARA in early hematopoietic progenitors and myeloid precursors, with or without DNMT3A. We determined that the methyltransferase activity of DNMT3A, but not DNMT3B, is required for aberrant PML-RARA-driven self-renewal ex vivo and that DNMT3A is dispensable for RUNX1-RUNX1T1- and MLL-AF9-driven self-renewal. Furthermore, both the PML-RARA-driven competitive transplantation advantage and development of acute promyelocytic leukemia (APL) required DNMT3A. Together, these findings suggest that PML-RARA requires DNMT3A to initiate APL in mice. PMID:26595813

  8. Protein arginine methyltransferase 5 (PRMT5) is a novel coactivator of constitutive androstane receptor (CAR).

    Science.gov (United States)

    Kanno, Yuichiro; Inajima, Jun; Kato, Sayaka; Matsumoto, Maika; Tokumoto, Chikako; Kure, Yuki; Inouye, Yoshio

    2015-03-27

    The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that protein arginine methyltransferase 5 (PRMT5) is a novel CAR-interacting protein. Furthermore, the PRMT-dependent induction of a CAR reporter gene, which was independent of methyltransferase activity, was enhanced in the presence of steroid receptor coactivator 1 (SRC1), peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) or DEAD box DNA/RNA helicase DP97. Using tetracycline inducible-hCAR system in HepG2 cells, we showed that knockdown of PRMT5 with small interfering RNA suppressed tetracycline -induced mRNA expression of CYP2B6 but not of CYP2C9 or CYP3A4. PRMT5 enhanced phenobarbital-mediated transactivation of a phenobarbital-responsive enhancer module (PBREM)-driven reporter gene in co-operation with PGC-1α in rat primary hepatocytes. Based on these findings, we suggest PRMT5 to be a gene (or promoter)-selective coactivator of CAR by mediating the formation of complexes between hCAR and appropriate coactivators. PMID:25721668

  9. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics

    DEFF Research Database (Denmark)

    Long, K. S.; Poehlsgaard, Jacob; Kehrenberg, C.;

    2006-01-01

    A novel multidrug resistance phenotype mediated by the Cfr rRNA methyltransferase is observed in Staphylococcus aureus and Escherichia coli. The cfr gene has previously been identified as a phenicol and lincosamide resistance gene on plasmids isolated from Staphylococcus spp. of animal origin...... and recently shown to encode a methyltransferase that modifies 23S rRNA at A2503. Antimicrobial susceptibility testing shows that S. aureus and E. coli strains expressing the cfr gene exhibit elevated MICs to a number of chemically unrelated drugs. The phenotype is named PhLOPSA for resistance to the following...... drug classes: Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Each of these five drug classes contains important antimicrobial agents that are currently used in human and/or veterinary medicine. We find that binding of the PhLOPSA drugs, which bind...

  10. GAMT2 Encodes a Methyltransferase of Gibberellic Acid That is Involved in Seed Maturation and Germination in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Shufan Xing; Genji Qin; Yan Shi; Zhiqiang Ma; Zhangliang Chen; Hongya Gu; Li-Jia Qu

    2007-01-01

    Salicylic acid methyltransferase (SAMT), benzoic acid methyltransferase (BAMT) and theobromine methyltransferase (TH) (henceforth, SABATH) family proteins belong to a unique class of methyltransferase that can methylate small molecular compounds including indole-3-acidic acid (IAA), salicylic acid (SA) and jasmonic acid (JA), in plants. Here we report that the GAMT2 protein, which has 34.2% similarity with IAMT1 in the amino acid sequence, can methylate gibberellic acid (GA). Bioinformatics analysis suggests that GAMT2 may be able to methylate one molecule larger than SA. GAMT2 is predominantly expressed in the developing seed embryo and endosperm in Arabidopsis.During seed germination, the expression of GAMT2 decreases until the cotyledons expand out of the seed coat.Overexpression of GAMT2 in Arabidopsis resulted in multiple phenotypes, including dwarfism, retarded growth,late flowering, and reduced fertility, which are similar to the phenotypes of GA-deficient mutants. Seed germination assay showed that GAMT2 overexpression in plants was hypersensitive to GA biosynthesis inhibitor (ancymidol)and abscisic acid (ABA) treatments, whereas the GAMT2 null mutant (SALK_075450) was slightly insensitive to such treatments, suggesting that GAMT2 may methylate GA or ABA. Enzyme activity analysis indicated that GAMT2 was able to methylate GA3 into Methyl-GA3 in vitro, but could not methylate ABA. Microarray analysis on GAMT2overexpression plants suggested that Methyl-GA may be an inactive form of GA in Arabidopsis. These data suggest that GAMT2 is involved in seed maturation and germination by modulating GA activity.

  11. O6-methylguanine-DNA methyltransferase as a prognostic and predictive marker for basal-like breast cancer treated with cyclophosphamide-based chemotherapy

    OpenAIRE

    ISONO, SAYURI; FUJISHIMA, MAKOTO; AZUMI, TATSUYA; HASHIMOTO, YUKIHIKO; Komoike, Yoshifumi; YUKAWA, MASAO; WATATANI, MASAHIRO

    2014-01-01

    The O6-methylguanine-DNA methyltransferase (MGMT) protein protects cells from alkylating agents by removing alkyl groups from the O6-position of guanine. However, its effect on DNA damage induced by cyclophosphamide (CPM) is unclear. The present study investigated whether MGMT expression was correlated with prognosis in patients with breast cancer that was managed according to a common therapeutic protocol or treated with CPM-based chemotherapy. The intrinsic subtypes and MGMT protein express...

  12. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity

    OpenAIRE

    Hegi, M E; L. Liu; Herman, J G; Stupp, R; Wick, W.; Weller, M.; Mehta, M P; Gilbert, M. R.

    2008-01-01

    Resistance to alkylating agents via direct DNA repair by O(6)-methylguanine methyltransferase (MGMT) remains a significant barrier to the successful treatment of patients with malignant glioma. The relative expression of MGMT in the tumor may determine response to alkylating agents, and epigenetic silencing of the MGMT gene by promoter methylation plays an important role in regulating MGMT expression in gliomas. MGMT promoter methylation is correlated with improved progression-free and overal...

  13. Diversity in mechanism and function of tRNA methyltransferases

    Science.gov (United States)

    Swinehart, William E; Jackman, Jane E

    2015-01-01

    tRNA molecules undergo extensive post-transcriptional processing to generate the mature functional tRNA species that are essential for translation in all organisms. These processing steps include the introduction of numerous specific chemical modifications to nucleotide bases and sugars; among these modifications, methylation reactions are by far the most abundant. The tRNA methyltransferases comprise a diverse enzyme superfamily, including members of multiple structural classes that appear to have arisen independently during evolution. Even among closely related family members, examples of unusual substrate specificity and chemistry have been observed. Here we review recent advances in tRNA methyltransferase mechanism and function with a particular emphasis on discoveries of alternative substrate specificities and chemistry associated with some methyltransferases. Although the molecular function for a specific tRNA methylation may not always be clear, mutations in tRNA methyltransferases have been increasingly associated with human disease. The impact of tRNA methylation on human biology is also discussed. PMID:25626150

  14. Yorkie Promotes Transcription by Recruiting a Histone Methyltransferase Complex

    Directory of Open Access Journals (Sweden)

    Hyangyee Oh

    2014-07-01

    Full Text Available Hippo signaling limits organ growth by inhibiting the transcriptional coactivator Yorkie. Despite the key role of Yorkie in both normal and oncogenic growth, the mechanism by which it activates transcription has not been defined. We report that Yorkie binding to chromatin correlates with histone H3K4 methylation and is sufficient to locally increase it. We show that Yorkie can recruit a histone methyltransferase complex through binding between WW domains of Yorkie and PPxY sequence motifs of NcoA6, a subunit of the Trithorax-related (Trr methyltransferase complex. Cell culture and in vivo assays establish that this recruitment of NcoA6 contributes to Yorkie’s ability to activate transcription. Mammalian NcoA6, a subunit of Trr-homologous methyltransferase complexes, can similarly interact with Yorkie’s mammalian homolog YAP. Our results implicate direct recruitment of a histone methyltransferase complex as central to transcriptional activation by Yorkie, linking the control of cell proliferation by Hippo signaling to chromatin modification.

  15. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome...

  16. Label-free electrochemical detection of human methyltransferase from tumors.

    Science.gov (United States)

    Furst, Ariel L; Muren, Natalie B; Hill, Michael G; Barton, Jacqueline K

    2014-10-21

    The role of abnormal DNA methyltransferase activity in the development and progression of cancer is an essential and rapidly growing area of research, both for improved diagnosis and treatment. However, current technologies for the assessment of methyltransferase activity, particularly from crude tumor samples, limit this work because they rely on radioactivity or fluorescence and require bulky instrumentation. Here, we report an electrochemical platform that overcomes these limitations for the label-free detection of human DNA(cytosine-5)-methyltransferase1 (DNMT1) methyltransferase activity, enabling measurements from crude cultured colorectal cancer cell lysates (HCT116) and biopsied tumor tissues. Our multiplexed detection system involving patterning and detection from a secondary electrode array combines low-density DNA monolayer patterning and electrocatalytically amplified DNA charge transport chemistry to measure selectively and sensitively DNMT1 activity within these complex and congested cellular samples. Based on differences in DNMT1 activity measured with this assay, we distinguish colorectal tumor tissue from healthy adjacent tissue, illustrating the effectiveness of this two-electrode platform for clinical applications. PMID:25288757

  17. Cancer stem cell overexpression of nicotinamide N-methyltransferase enhances cellular radiation resistance

    DEFF Research Database (Denmark)

    D’Andrea, Filippo P.; Safwat, Akmal; Kassem, Moustapha;

    2011-01-01

    found the genes involved in cancer, proliferation, DNA repair and cell death. ConclusionsThe higher radiation resistance in clone CE8 is likely due to NNMT overexpression. The higher levels of NNMT could affect the cellular damage resistance through depletion of the accessible amounts of nicotinamide...... that could explain cancer stem cell radiation resistance. MethodsTumorigenic mesenchymal cancer stem cell clones BB3 and CE8 were irradiated at varying doses and assayed for clonogenic surviving fraction. Altered gene expression before and after 2Gy was assessed by Affymetric exon chip analysis and further...... validated with q-RT-PCR using TaqMan probes. ResultsThe CE8 clone was more radiation resistant than the BB3 clone. From a pool of 15 validated genes with altered expression in the CE8 clone, we found the enzyme nicotinamide N-methyltransferase (NNMT) more than 5-fold upregulated. In-depth pathway analysis...

  18. Identification of the methyltransferase targeting C2499 in Deinococcus radiodurans 23S ribosomal RNA.

    Science.gov (United States)

    Mundus, Julie; Flyvbjerg, Karen Freund; Kirpekar, Finn

    2016-01-01

    The bacterium Deinococcus radiodurans-like all other organisms-introduces nucleotide modifications into its ribosomal RNA. We have previously found that the bacterium contains a Carbon-5 methylation on cytidine 2499 of its 23S ribosomal RNA, which is so far the only modified version of cytidine 2499 reported. Using homology search, we identified the open reading frame DR_0049 as the primary candidate gene for the methyltransferase that modifies cytidine 2499. Mass spectrometric analysis demonstrated that recombinantly expressed DR0049 protein methylates E. coli cytidine 2499 both in vitro and in vivo. We also inactivated the DR_0049 gene in D. radiodurans through insertion of a chloramphenicol resistance cassette. This resulted in complete absence of the cytidine 2499 methylation, which all together demonstrates that DR_0049 encodes the methyltransferase producing m(5)C2499 in D. radiodurans 23S rRNA. Growth experiments disclosed that inactivation of DR_0049 is associated with a severe growth defect, but available ribosome structures show that cytidine 2499 is positioned very similar in D. radiodurans harbouring the modification and E. coli without the modification. Hence there is no obvious structure-based explanation for the requirement for the C2499 posttranscriptional modification in D. radiodurans.

  19. Identification and characterization of new molecular partners for the protein arginine methyltransferase 6 (PRMT6.

    Directory of Open Access Journals (Sweden)

    Alessandra Lo Sardo

    Full Text Available PRMT6 is a protein arginine methyltransferase that has been implicated in transcriptional regulation, DNA repair, and human immunodeficiency virus pathogenesis. Only few substrates of this enzyme are known and therefore its cellular role is not well understood. To identify in an unbiased manner substrates and potential regulators of PRMT6 we have used a yeast two-hybrid approach. We identified 36 new putative partners for PRMT6 and we validated the interaction in vivo for 7 of them. In addition, using invitro methylation assay we identified 4 new substrates for PRMT6, extending the involvement of this enzyme to other cellular processes beyond its well-established role in gene expression regulation. Holistic approaches create molecular connections that allow to test functional hypotheses. The assembly of PRMT6 protein network allowed us to formulate functional hypotheses which led to the discovery of new molecular partners for the architectural transcription factor HMGA1a, a known substrate for PRMT6, and to provide evidences for a modulatory role of HMGA1a on the methyltransferase activity of PRMT6.

  20. On the evolutionary origin of eukaryotic DNA methyltransferases and Dnmt2.

    Directory of Open Access Journals (Sweden)

    Tomasz P Jurkowski

    Full Text Available The Dnmt2 enzymes show strong amino acid sequence similarity with eukaryotic and prokaryotic DNA-(cytosine C5-methyltransferases. Yet, Dnmt2 enzymes from several species were shown to methylate tRNA-Asp and had been proposed that eukaryotic DNA methyltransferases evolved from a Dnmt2-like tRNA methyltransferase ancestor [Goll et al., 2006, Science, 311, 395-8]. It was the aim of this study to investigate if this hypothesis could be supported by evidence from sequence alignments. We present phylogenetic analyses based on sequence alignments of the methyltransferase catalytic domains of more than 2300 eukaryotic and prokaryotic DNA-(cytosine C5-methyltransferases and analyzed the distribution of DNA methyltransferases in eukaryotic species. The Dnmt2 homologues were reliably identified by an additional conserved CFT motif next to motif IX. All DNA methyltransferases and Dnmt2 enzymes were clearly separated from other RNA-(cytosine-C5-methyltransferases. Our sequence alignments and phylogenetic analyses indicate that the last universal eukaryotic ancestor contained at least one member of the Dnmt1, Dnmt2 and Dnmt3 families of enzymes and additional RNA methyltransferases. The similarity of Dnmt2 enzymes with DNA methyltransferases and absence of similarity with RNA methyltransferases combined with their strong RNA methylation activity suggest that the ancestor of Dnmt2 was a DNA methyltransferase and an early Dnmt2 enzyme changed its substrate preference to tRNA. There is no phylogenetic evidence that Dnmt2 was the precursor of eukaryotic Dnmts. Most likely, the eukaryotic Dnmt1 and Dnmt3 families of DNA methyltransferases had an independent origin in the prokaryotic DNA methyltransferase sequence space.

  1. Identification of an S-adenosylmethionine (SAM) dependent arsenic methyltransferase in Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Hamdi, Mohamad [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States); Yoshinaga, Masafumi; Packianathan, Charles; Qin, Jie [Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, FL33199 (United States); Hallauer, Janell; McDermott, Joseph R. [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States); Yang, Hung-Chi [Department of Medical Biotechnology and Laboratory Sciences, Chang-Gung University, Tao-Yuan, Kwei-San 333, Taiwan (China); Tsai, Kan-Jen [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Liu, Zijuan, E-mail: liu2345@oakland.edu [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States)

    2012-07-15

    Arsenic methylation is an important cellular metabolic process that modulates arsenic toxicity and carcinogenicity. Biomethylation of arsenic produces a series of mono-, di- and tri-methylated arsenic metabolites that can be detected in tissues and excretions. Here we report that zebrafish exposed to arsenite (As{sup III}) produces organic arsenicals, including MMA{sup III}, MMA{sup V} and DMA{sup V} with characteristic tissue ratios, demonstrating that an arsenic methylation pathway exists in zebrafish. In mammals, cellular inorganic arsenic is methylated by a SAM-dependent arsenic methyltransferase, AS3MT. A zebrafish arsenic methyltransferase homolog, As3mt, was identified by sequence alignment. Western blotting analysis showed that As3mt was universally expressed in zebrafish tissues. Prominent expression in liver and intestine correlated with methylated arsenic metabolites detected in those tissues. As3mt was expressed in and purified from Escherichia coli for in vitro functional studies. Our results demonstrated that As3mt methylated As{sup III} to DMA{sup V} as an end product and produced MMA{sup III} and MMA{sup V} as intermediates. The activity of As3mt was inhibited by elevated concentrations of the substrate As{sup III} as well as the metalloid selenite, which is a well-known antagonistic micronutrient of arsenic toxicity. The activity As3mt was abolished by substitution of either Cys160 or Cys210, which corresponds to conserved cysteine residues in AS3MT homologs, suggesting that they are involved in catalysis. Expression in zebrafish of an enzyme that has a similar function to human and rodent orthologs in catalyzing intracellular arsenic biomethylation validates the applicability of zebrafish as a valuable vertebrate model for understanding arsenic-associated diseases in humans. -- Highlights: ► Zebrafish methylated As{sup III} to MMA{sup III}, MMA{sup V} and DMA{sup V}. ► A zebrafish arsenic methyltransferase (As3mt) was purified in E. coli.

  2. Structure and Function of Flavivirus NS5 Methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Zhou,Y.; Ray, D.; Zhao, Y.; Dong, H.; Ren, S.; Li, Z.; Guo, Y.; Bernard, K.; Shi, P.; Li, H.

    2007-01-01

    The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m{sup 7}GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA {yields} m{sup 7}GpppA {yields} m{sup 7}GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m{sup 7}GpppA-RNA can be readily methylated to m{sup 7}GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 {angstrom} resolution showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K{sub 61}-D{sub 146}-K{sub 182}-E{sub 218} motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.

  3. Sex-specific dysregulation of cysteine oxidation and the methionine and folate cycles in female cystathionine gamma-lyase null mice: a serendipitous model of the methylfolate trap.

    Science.gov (United States)

    Jiang, Hua; Hurt, K Joseph; Breen, Kelsey; Stabler, Sally P; Allen, Robert H; Orlicky, David J; Maclean, Kenneth N

    2015-01-01

    In addition to its role in the endogenous synthesis of cysteine, cystathionine gamma-lyase (CGL) is a major physiological source of the vasorelaxant hydrogen sulfide. Cgl null mice are potentially useful for studying the influence of this compound upon vascular tone and endothelial function. Here, we confirm a previous report that female Cgl null mice exhibit an approximate 45-fold increase in plasma total homocysteine compared to wild type controls. This level of homocysteine is approximately 3.5-fold higher than that observed in male Cgl null mice and is essentially equivalent to that observed in mouse models of cystathionine beta synthase deficient homocystinuria. Cgl null mice of both sexes exhibited decreased expression of methylenetetrahydrofolate reductase and cysteinesulfinate decarboxylase compared to WT controls. Female Cgl null mice exhibited a sex-specific induction of betaine homocysteine S-methyltransferase and methionine adenosyltransferase 1, alpha and a 70% decrease in methionine synthase expression accompanied by significantly decreased plasma methionine. Decreased plasma cysteine levels in female Cgl null mice were associated with sex-specific dysregulation of cysteine dioxygenase expression. Comparative histological assessment between cystathionine beta-synthase and Cgl null mice indicated that the therapeutic potential of cystathionine against liver injury merits possible further investigation. Collectively, our data demonstrates the importance of considering sex when investigating mouse models of inborn errors of metabolism and indicate that while female Cgl null mice are of questionable utility for studying the physiological role of hydrogen sulfide, they could serve as a useful model for studying the consequences of methionine synthase deficiency and the methylfolate trap.

  4. Proteomic Analysis of One-carbon Metabolism-related Marker in Liver of Rat Offspring.

    Science.gov (United States)

    You, Young-Ah; Lee, Ji Hye; Kwon, Eun Jin; Yoo, Jae Young; Kwon, Woo-Sung; Pang, Myung-Geol; Kim, Young Ju

    2015-11-01

    Maternal food intake has a significant effect on the fetal environment, and an inadequate maternal diet may result in intrauterine growth restriction. Intrauterine growth restriction newborn rat pups nursed by normal diet-fed dams exhibited rapid catch-up growth, which plays a critical role in the risk for metabolic and cardiovascular disease in later life. Specifically, one-carbon metabolism in the liver plays a critical role in placental and fetal growth. Impaired functioning of one-carbon metabolism is associated with increased homocysteine levels. In this study, we applied a comprehensive proteomic approach to identify differential expression of proteins related to one-carbon metabolism in the livers of rat offspring as an effect of maternal food restriction during gestation. Data are available via ProteomeXchange with identifier PXD002578. We determined that betaine-homocysteine S-methyltransferase 1, methylenetetrahydrofolate dehydrogenase 1, and ATP synthase subunit beta mitochondrial (ATP5B) expression levels were significantly reduced in the livers of rat offspring exposed to maternal food restriction during gestation compared with in the offspring of rats fed a normal diet (p food restriction during gestation and normal diet during lactation. However, in female offspring only expression levels of methylenetetrahydrofolate dehydrogenase 1 were negatively correlated with homocysteine concentration. This study shows that maternal food restriction during late gestation and normal diet during lactation lead to increased homocysteine concentration through disturbance of one-carbon metabolism in the livers of male offspring. This suggests that male offspring have an increased gender-specific susceptibility to disease in later life through fetal programming.

  5. Sex-specific dysregulation of cysteine oxidation and the methionine and folate cycles in female cystathionine gamma-lyase null mice: a serendipitous model of the methylfolate trap

    Directory of Open Access Journals (Sweden)

    Hua Jiang

    2015-09-01

    Full Text Available In addition to its role in the endogenous synthesis of cysteine, cystathionine gamma-lyase (CGL is a major physiological source of the vasorelaxant hydrogen sulfide. Cgl null mice are potentially useful for studying the influence of this compound upon vascular tone and endothelial function. Here, we confirm a previous report that female Cgl null mice exhibit an approximate 45-fold increase in plasma total homocysteine compared to wild type controls. This level of homocysteine is approximately 3.5-fold higher than that observed in male Cgl null mice and is essentially equivalent to that observed in mouse models of cystathionine beta synthase deficient homocystinuria. Cgl null mice of both sexes exhibited decreased expression of methylenetetrahydrofolate reductase and cysteinesulfinate decarboxylase compared to WT controls. Female Cgl null mice exhibited a sex-specific induction of betaine homocysteine S-methyltransferase and methionine adenosyltransferase 1, alpha and a 70% decrease in methionine synthase expression accompanied by significantly decreased plasma methionine. Decreased plasma cysteine levels in female Cgl null mice were associated with sex-specific dysregulation of cysteine dioxygenase expression. Comparative histological assessment between cystathionine beta-synthase and Cgl null mice indicated that the therapeutic potential of cystathionine against liver injury merits possible further investigation. Collectively, our data demonstrates the importance of considering sex when investigating mouse models of inborn errors of metabolism and indicate that while female Cgl null mice are of questionable utility for studying the physiological role of hydrogen sulfide, they could serve as a useful model for studying the consequences of methionine synthase deficiency and the methylfolate trap.

  6. Physiology and posttranscriptional regulation of methanol:coenzyme M methyltransferase isozymes in Methanosarcina acetivorans C2A.

    Science.gov (United States)

    Opulencia, Rina B; Bose, Arpita; Metcalf, William W

    2009-11-01

    Methanosarcina species possess three operons (mtaCB1, mtaCB2, and mtaCB3) encoding methanol-specific methyltransferase 1 (MT1) isozymes and two genes (mtaA1 and mtaA2) with the potential to encode a methanol-specific methyltransferase 2 (MT2). Previous genetic studies showed that these genes are differentially regulated and encode enzymes with distinct levels of methyltransferase activity. Here, the effects of promoter strength on growth and on the rate of methane production were examined by constructing strains in which the mtaCB promoters were exchanged. When expressed from the strong PmtaC1 or PmtaC2 promoter, each of the MtaC and MtaB proteins supported growth and methane production at wild-type levels. In contrast, all mtaCB operons exhibited poorer growth and lower rates of methane production when PmtaC3 controlled their expression. Thus, previously observed phenotypic differences can be attributed largely to differences in promoter activity. Strains carrying various combinations of mtaC, mtaB, and mtaA expressed from the strong, tetracycline-regulated PmcrB(tetO1) promoter exhibited similar growth characteristics on methanol, showing that all combinations of MtaC, MtaB, and MtaA can form functional MT1/MT2 complexes. However, an in vitro assay of coupled MT1/MT2 activity showed significant variation between the strains. Surprisingly, these variations in activity correlated with differences in protein abundance, despite the fact that all the encoding genes were expressed from the same promoter. Quantitative reverse transcriptase PCR and reporter gene fusion data suggest that the mtaCBA transcripts show different stabilities, which are strongly influenced by the growth substrate. PMID:19767431

  7. Protein arginine methyltransferase 5 (PRMT5) is a novel coactivator of constitutive androstane receptor (CAR)

    International Nuclear Information System (INIS)

    The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that protein arginine methyltransferase 5 (PRMT5) is a novel CAR-interacting protein. Furthermore, the PRMT-dependent induction of a CAR reporter gene, which was independent of methyltransferase activity, was enhanced in the presence of steroid receptor coactivator 1 (SRC1), peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) or DEAD box DNA/RNA helicase DP97. Using tetracycline inducible-hCAR system in HepG2 cells, we showed that knockdown of PRMT5 with small interfering RNA suppressed tetracycline -induced mRNA expression of CYP2B6 but not of CYP2C9 or CYP3A4. PRMT5 enhanced phenobarbital-mediated transactivation of a phenobarbital-responsive enhancer module (PBREM)-driven reporter gene in co-operation with PGC-1α in rat primary hepatocytes. Based on these findings, we suggest PRMT5 to be a gene (or promoter)-selective coactivator of CAR by mediating the formation of complexes between hCAR and appropriate coactivators. - Highlights: • Nuclear receptor CAR interact with PRMT5. • PRMT5 enhances transcriptional activity of CAR. • PRMT5 synergistically enhances transactivity of CAR by the co-expression of SRC-1, DP97 or PGC1α. • PRMT5 is a gene-selective co-activator for hCAR

  8. Protein arginine methyltransferase 5 (PRMT5) is a novel coactivator of constitutive androstane receptor (CAR)

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Yuichiro, E-mail: ykanno@phar.toho-u.ac.jp; Inajima, Jun; Kato, Sayaka; Matsumoto, Maika; Tokumoto, Chikako; Kure, Yuki; Inouye, Yoshio

    2015-03-27

    The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that protein arginine methyltransferase 5 (PRMT5) is a novel CAR-interacting protein. Furthermore, the PRMT-dependent induction of a CAR reporter gene, which was independent of methyltransferase activity, was enhanced in the presence of steroid receptor coactivator 1 (SRC1), peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) or DEAD box DNA/RNA helicase DP97. Using tetracycline inducible-hCAR system in HepG2 cells, we showed that knockdown of PRMT5 with small interfering RNA suppressed tetracycline -induced mRNA expression of CYP2B6 but not of CYP2C9 or CYP3A4. PRMT5 enhanced phenobarbital-mediated transactivation of a phenobarbital-responsive enhancer module (PBREM)-driven reporter gene in co-operation with PGC-1α in rat primary hepatocytes. Based on these findings, we suggest PRMT5 to be a gene (or promoter)-selective coactivator of CAR by mediating the formation of complexes between hCAR and appropriate coactivators. - Highlights: • Nuclear receptor CAR interact with PRMT5. • PRMT5 enhances transcriptional activity of CAR. • PRMT5 synergistically enhances transactivity of CAR by the co-expression of SRC-1, DP97 or PGC1α. • PRMT5 is a gene-selective co-activator for hCAR.

  9. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode.

    Science.gov (United States)

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Zhu, Junwei J; Zhuang, Xiaofeng; Liu, Wusheng; Pantalone, Vincent R; Arelli, Prakash R; Stewart, Charles N; Chen, Feng

    2013-12-01

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence-related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full-length cDNAs of GmSAMT1 from a SCN-resistant soybean line and from a SCN-susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli-expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μM. To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN-susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.

  10. The betaine/GABA transporter and betaine: roles in brain, kidney and liver

    Directory of Open Access Journals (Sweden)

    Stephen A Kempson

    2014-04-01

    Full Text Available The physiological roles of the betaine/GABA transporter (BGT1; slc6a12 are still being debated. BGT1 is a member of the solute carrier family 6 (the neurotransmitter, sodium symporter transporter family and mediates cellular uptake of betaine and GABA in a sodium- and chloride- dependent process. Most of the studies of BGT1 concern its function and regulation in the kidney medulla where its role is best understood. The conditions here are hostile due to hyperosmolarity and significant concentrations of NH4Cl and urea. To withstand the hyperosmolarity, cells trigger osmotic adaptation, involving concentration of a transcriptional factor TonEBP/NFAT5 in the nucleus, and accumulate betaine and other osmolytes. Data from renal cells in culture, primarily MDCK, revealed that transcriptional regulation of BGT1 by TonEBP/NFAT5 is relatively slow. To allow more acute control of the abundance of BGT1 protein in the plasma membrane, there is also post-translation regulation of BGT1 protein trafficking which is dependent on intracellular calcium and ATP. Further, betaine may be important in liver metabolism as a methyl donor. In fact, in the mouse the liver is the organ with the highest content of BGT1. Hepatocytes express high levels of both BGT1 and the only enzyme that can metabolize betaine, namely betaine:homocysteine –S-methyltransferase (BHMT1. The BHMT1 enzyme removes a methyl group from betaine and transfers it to homocysteine, a potential risk factor for cardiovascular disease. Finally, BGT1 has been proposed to play a role in controlling brain excitability and thereby represents a target for anticonvulsive drug development. The latter hypothesis is controversial due to very low expression levels of BGT1 relative to other GABA transporters in brain, and also the primary location of BGT1 at the surface of the brain in the leptomeninges. These issues are discussed in detail.

  11. 亚砷酸钠对HaCaT细胞中DNMT1、HDAC1基因mRNA转录及蛋白表达的影响%Effects of Sodium Arsenite on Transcription and Expression of DNA Methyltransferase 1 (DNMT1) and Histone Deacetylase 1 (HDAC1) Gene in HaCaT Cells

    Institute of Scientific and Technical Information of China (English)

    潘雪莉; 张爱华

    2011-01-01

    Objective To observe the influences of different doses of sodium .arsenite on mRNA transcription and protein expression of DNA methyltransferase 1 (DNMTl) and histone deacetylase 1 (HDA Cl) gene in HaCaT cells. Methods HaCaT cells were treated with NaAsO2 at the doses of 0, 3.13, 6.25, 12.5,25 μmol/L, every other day, 24 h one time, for three times.The mRNA transcription of DNMT1 and HDA Cl was detected by real-time quantitative PCR, the protein expression of DNMT1 and HDAC1 was detected by Western blot. Human epidermal squamous carcinoma cell line A431 cells were set as the positive control group. Results Among the groups of HaCaT cells treated by 0, 3.13, 6.25, 12.5 and 25μmol/L NaAsO2, the level of DNMT1 mRNA transcription were 0.650 90±0.174 05, 0.930 53±0.145 56, 0.752 93±0.244 62, 0.558 1l ±0.051 02 and 0.370 17±0.08 84, the differences were significant (F=6.539, P<0.05); the level of HDAC1 mRNA transcription were 2.02180±0.179 57,1.496 98±0.107 55, 1.303 24±0.152 08, 1.037 75±0.204 88 and 0.816 74±0.153 12, the differences were significant(F=17.914,P<0.05). The level of DNMT1 protein expression were 0.000 87±0.000 10, 0.026 04±0.002 63, 0.283 19±0.072 62, 0.842 61±0.082 39 and 1.579 87±0.200 83, the differences were significant(F=27.799, P<0.05); the level of HDACl protein expression were 0.034 65±0.012 03, 0.273 65±0.012 02, 0.634 90±0.239 76, 0.775 03±0.126 51 and 1.126 16±0.167 52, the differences were significant(F=9.820, P<0.05). Conclusion DNMT1 and HDACl protein high expression is the important molecular event of arsenic-induced skin lesion, which may provide the possibility for using its inhibitors to explore the arsenic poisoning prevention and treatment.%目的 了解不同剂量的亚砷酸钠(NaAsO2)对人皮肤角质形成细胞(HaCaT细胞)中DNA甲基转移酶1(DNMT1)、组蛋白去乙酰化酶1(HDAC1)基因mRNA转录和蛋白表达的影响.方法 分别以0、3.13、6.25、12.5和25μmol/L NaAsO2溶液

  12. Miniaturization of High-Throughput Epigenetic Methyltransferase Assays with Acoustic Liquid Handling.

    Science.gov (United States)

    Edwards, Bonnie; Lesnick, John; Wang, Jing; Tang, Nga; Peters, Carl

    2016-02-01

    Epigenetics continues to emerge as an important target class for drug discovery and cancer research. As programs scale to evaluate many new targets related to epigenetic expression, new tools and techniques are required to enable efficient and reproducible high-throughput epigenetic screening. Assay miniaturization increases screening throughput and reduces operating costs. Echo liquid handlers can transfer compounds, samples, reagents, and beads in submicroliter volumes to high-density assay formats using only acoustic energy-no contact or tips required. This eliminates tip costs and reduces the risk of reagent carryover. In this study, we demonstrate the miniaturization of a methyltransferase assay using Echo liquid handlers and two different assay technologies: AlphaLISA from PerkinElmer and EPIgeneous HTRF from Cisbio.

  13. Plant isoflavone and isoflavanone O-methyltransferase genes

    Science.gov (United States)

    Broeckling, Bettina E.; Liu, Chang-Jun; Dixon, Richard A.

    2014-08-19

    The invention provides enzymes that encode O-methyltransferases (OMTs) from Medicago truncatula that allow modification to plant (iso)flavonoid biosynthetic pathways. In certain aspects of the invention, the genes encoding these enzymes are provided. The invention therefore allows the modification of plants for isoflavonoid content. Transgenic plants comprising such enzymes are also provided, as well as methods for improving disease resistance in plants. Methods for producing food and nutraceuticals, and the resulting compositions, are also provided.

  14. Structural characterization of the mitomycin 7-O-methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shanteri; Chang, Aram; Goff, Randal D.; Bingman, Craig A.; Grüschow, Sabine; Sherman, David H.; Phillips, Jr., George N.; Thorson, Jon S. (Michigan); (UW)

    2014-10-02

    Mitomycins are quinone-containing antibiotics, widely used as antitumor drugs in chemotherapy. Mitomycin-7-O-methyltransferase (MmcR), a key tailoring enzyme involved in the biosynthesis of mitomycin in Streptomyces lavendulae, catalyzes the 7-O-methylation of both C9{beta}- and C9{alpha}-configured 7-hydroxymitomycins. We have determined the crystal structures of the MmcR-S-adenosylhomocysteine (SAH) binary complex and MmcR-SAH-mitomycin A (MMA) ternary complex at resolutions of 1.9 and 2.3 {angstrom}, respectively. The study revealed MmcR to adopt a common S-adenosyl-L-methionine-dependent O-methyltransferase fold and the presence of a structurally conserved active site general acid-base pair is consistent with a proton-assisted methyltransfer common to most methyltransferases. Given the importance of C7 alkylation to modulate mitomycin redox potential, this study may also present a template toward the future engineering of catalysts to generate uniquely bioactive mitomycins.

  15. Imatinib causes epigenetic alterations of PTEN gene via upregulation of DNA methyltransferases and polycomb group proteins

    International Nuclear Information System (INIS)

    We have recently reported the possible imatinib-resistant mechanism; long-term exposure of leukemia cells to imatinib downregulated levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) via hypermethylation of its promoter region (Leukemia 2010; 24: 1631). The present study explored the molecular mechanisms by which imatinib caused methylation on the promoter region of this tumor suppressor gene in leukemia cells. Real-time reverse transcription PCR found that long-term exposure of chronic eosinophilic leukemia EOL-1 cells expressing FIP1L1/platelet-derived growth factor receptor-α to imatinib induced expression of DNA methyltransferase 3A (DNMT3A) and histone-methyltransferase enhancer of zeste homolog 2 (EZH2), a family of polycomb group, thereby increasing methylation of the gene. Immunoprecipitation assay found the increased complex formation of DNMT3A and EZH2 proteins in these cells. Moreover, chromatin immunoprecipitation assay showed that amounts of both DNMT3A and EZH2 proteins bound around the promoter region of PTEN gene were increased in EOL-1 cells after exposure to imatinib. Furthermore, we found that levels of DNMT3A and EZH2 were strikingly increased in leukemia cells isolated from individuals with chronic myelogenous leukemia (n=1) and Philadelphia chromosome-positive acute lymphoblastic leukemia (n=2), who relapsed after treatment with imatinib compared with those isolated at their initial presentation. Taken together, imatinib could cause drug-resistance via recruitment of polycomb gene complex to the promoter region of the PTEN and downregulation of this gene's transcripts in leukemia patients

  16. Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nan [ORNL; Yao, Jianzhuang [University of Tennessee, Knoxville (UTK); Chaiprasongsuk, Minta [University of Tennessee, Knoxville (UTK); Li, Guanglin [University of Tennessee, Knoxville (UTK); Guan, Ju [University of Tennessee, Knoxville (UTK); Tschaplinski, Timothy J [ORNL; Guo, Hong [University of Tennessee, Knoxville (UTK); Chen, Feng [University of Tennessee, Knoxville (UTK)

    2013-01-01

    Methyl jasmonate is a metabolite known to be produced by many plants and has roles in diverse biological processes. It is biosynthesized by the action of S-adenosyl-L-methionine:jasmonic acid carboxyl methyltransferase (JMT), which belongs to the SABATH family of methyltransferases. Herein is reported the isolation and biochemical characterization of a JMT gene from black cottonwood (Populus trichocarpa). The genome of P. trichocarpa contains 28 SABATH genes (PtSABATH1 to PtSABATH28). Recombinant PtSABATH3 expressed in Escherichia coli showed the highest level of activity with jasmonic acid (JA) among carboxylic acids tested. It was therefore renamed PtJMT1. PtJMT1 also displayed activity with benzoic acid (BA), with which the activity was about 22% of that with JA. PtSABATH2 and PtSABATH4 were most similar to PtJMT1 among all PtSABATHs. However, neither of them had activity with JA. The apparent Km values of PtJMT1 using JA and BA as substrate were 175 lM and 341 lM, respectively. Mutation of Ser-153 and Asn-361, two residues in the active site of PtJMT1, to Tyr and Ser respectively, led to higher specific activity with BA than with JA. Homology-based structural modeling indicated that substrate alignment, in which Asn-361 is involved, plays a role in determining the substrate specificity of PtJMT1. In the leaves of young seedlings of black cottonwood, the expression of PtJMT1 was induced by plant defense signal molecules methyl jasmonate and salicylic acid and a fungal elicitor alamethicin, suggesting that PtJMT1 may have a role in plant defense against biotic stresses. Phylogenetic analysis suggests that PtJMT1 shares a common ancestor with the Arabidopsis JMT, and functional divergence of these two apparent JMT orthologs has occurred since the split of poplar and Arabidopsis lineages.

  17. DNA repair methyltransferase (Mgmt) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents.

    OpenAIRE

    Glassner, Brian; Weeda, Geert; Allan, James; Broekhof, Jose'; Carls, Nick; Donker, Ingrid; Engelward, Bevin; Hampson, Richard; Hersmus, Remko; Hickman, Mark; Roth, Richard; Warren, Henry; Wu, Mavis; Hoeijmakers, Jan; Samson, Leona

    1999-01-01

    textabstractWe have generated mice deficient in O6-methylguanine DNA methyltransferase activity encoded by the murine Mgmt gene using homologous recombination to delete the region encoding the Mgmt active site cysteine. Tissues from Mgmt null mice displayed very low O6-methylguanine DNA methyltransferase activity, suggesting that Mgmt constitutes the major, if not the only, O6-methylguanine DNA methyltransferase. Primary mouse embryo fibroblasts and bone marrow cells from Mgmt -/- mice were s...

  18. Effects of sodium arsenite on hypermethylation, transcription and expression of O6-methylguanine-DNA methyltransferase gene in HaCaT cells%亚砷酸钠对HaCaT细胞MGMT基因甲基化和mRNA及蛋白表达水平的影响

    Institute of Scientific and Technical Information of China (English)

    潘雪莉; 张爱华

    2011-01-01

    Objective To investigate the DNA methylation feature and DNA methylation regulation to its transcription and expression of O6-methylguanine-DNA methyltransferase gene (MGMT) in NaAsO2-treated HaCaT cells. Methods HaCaT cells were treated 72 hours at intervals and repeatedly by 3.13, 6.25,12.50, and 25.00 μmol/L NaAsO2, MGMT gene promoter region was amplified in the transcription initiation site - 329 - + 93 region by bisulfate-sequencing polymerase chain reaction (BSP), the mRNA transcription and the protein expression of MGMT was detected by real-time quantitative PCR and Western blotting. NaAsO2-untreated HaCaT cell was set as a blank control, and human epidermal squamous carcinoma cell strain A431 was set as a positive control. Results Among the groups of HaCaT cells treated with 3.13, 6.25, 12.50 and 25.00 μmol/L NaAsO2, the positive rates of the DNA methylation of promoter region in MGMT gene were 0.63%(l/160), 6.25% (10/160), 10.63%( 17/160) and 18.75% (30/160), respectively, and methylated CpG sites were mainly located in - 249--146 region relative to transcription start site. There was no DNA methylation in the blank control. There were significant differences between the blank control and the NaAsO2-treated cells (x2 = 76.687, P< 0.05). Average levels of MGMT mRNA were 1.518 31 ± 0.180 54, 1.425 22 ± 0.180 39, 1.014 54 ± 0.096 79 and 0.887 72 ± 0.020 00, respectively among the groups of HaCaT cells treated with 3.13, 6.25, 12.50 and 25.00 μmol/L NaAsO2, compared with the blank control cells(1.198 29 ± 0.159 97), there were significant differences(F = 37.359, P < 0.05). Average levels of MGMT protein were 1.174 47 ± 0.064 75, 0.848 83 ± 0.057 01, 0.471 63 ± 0.023 34 and 0.240 34 ± 0.014 43, respectively among the groups of HaCaT cells treated with 3.13, 6.25, 12.50 and 25.00 μmol/L NaAsO2, compared with the blank control cells (1.066 19 ± 0.061 24), there were significant differences(F = 20.687, P < 0.05). Conclusions Arsenic can cause Cp

  19. Age-Associated Decrease of the Histone Methyltransferase SUV39H1 in HSC Perturbs Heterochromatin and B Lymphoid Differentiation

    OpenAIRE

    Dounia Djeghloul; Klaudia Kuranda; Isabelle Kuzniak; Daniela Barbieri; Irina Naguibneva; Caroline Choisy; Jean-Christophe Bories; Christine Dosquet; Marika Pla; Valérie Vanneaux; Gérard Socié; Françoise Porteu; David Garrick; Michele Goodhardt

    2016-01-01

    The capacity of hematopoietic stem cells (HSC) to generate B lymphocytes declines with age, contributing to impaired immune function in the elderly. Here we show that the histone methyltransferase SUV39H1 plays an important role in human B lymphoid differentiation and that expression of SUV39H1 decreases with age in both human and mouse HSC, leading to a global reduction in H3K9 trimethylation and perturbed heterochromatin function. Further, we demonstrate that SUV39H1 is a target of microRNA...

  20. The histone methyltransferase SUV420H2 and Heterochromatin Proteins HP1 interact but show different dynamic behaviours

    OpenAIRE

    Souza Patricia P; Völkel Pamela; Trinel Dave; Vandamme Julien; Rosnoblet Claire; Héliot Laurent; Angrand Pierre-Olivier

    2009-01-01

    Abstract Background Histone lysine methylation plays a fundamental role in chromatin organization and marks distinct chromatin regions. In particular, trimethylation at lysine 9 of histone H3 (H3K9) and at lysine 20 of histone H4 (H4K20) governed by the histone methyltransferases SUV39H1/2 and SUV420H1/2 respectively, have emerged as a hallmark of pericentric heterochromatin. Controlled chromatin organization is crucial for gene expression regulation and genome stability. Therefore, it is ess...

  1. Age-Associated Decrease of the Histone Methyltransferase SUV39H1 in HSC Perturbs Heterochromatin and B Lymphoid Differentiation

    OpenAIRE

    Djeghloul, Dounia; Kuranda, Klaudia; Kuzniak, Isabelle; Barbieri, Daniela; Naguibneva, Irina; Choisy, Caroline; Bories, Jean-Christophe; Dosquet, Christine; Pla, Marika; Vanneaux, Valérie; Socié, Gérard; Porteu, Françoise; Garrick, David; Goodhardt, Michele

    2016-01-01

    Summary The capacity of hematopoietic stem cells (HSC) to generate B lymphocytes declines with age, contributing to impaired immune function in the elderly. Here we show that the histone methyltransferase SUV39H1 plays an important role in human B lymphoid differentiation and that expression of SUV39H1 decreases with age in both human and mouse HSC, leading to a global reduction in H3K9 trimethylation and perturbed heterochromatin function. Further, we demonstrate that SUV39H1 is a target of ...

  2. Molecular Cloning and Characterization of O-Methyltransferase from Mango Fruit (Mangifera indica cv. Alphonso).

    Science.gov (United States)

    Chidley, Hemangi G; Oak, Pranjali S; Deshpande, Ashish B; Pujari, Keshav H; Giri, Ashok P; Gupta, Vidya S

    2016-05-01

    Flavour of ripe Alphonso mango is invariably dominated by the de novo appearance of lactones and furanones during ripening. Of these, furanones comprising furaneol (4-hydroxy-2,5-dimethyl-3(2H)-furanone) and mesifuran (2,5-dimethyl-4-methoxy-3(2H)-furanone) are of particular importance due to their sweet, fruity caramel-like flavour characters and low odour detection thresholds. We isolated a 1056 bp complete open reading frame of a cDNA encoding S-adenosyl-L-methionine-dependent O-methyltransferase from Alphonso mango. The recombinantly expressed enzyme, MiOMTS showed substrate specificity towards furaneol and protocatechuic aldehyde synthesizing mesifuran and vanillin, respectively, in an in vitro assay reaction. A semi-quantitative PCR analysis showed fruit-specific expression of MiOMTS transcripts. Quantitative real-time PCR displayed ripening-related expression pattern of MiOMTS in both pulp and skin of Alphonso mango. Also, early and significantly enhanced accumulation of its transcripts was detected in pulp and skin of ethylene-treated fruits. Ripening-related and fruit-specific expression profile of MiOMTS and substrate specificity towards furaneol is a suggestive of its involvement in the synthesis of mesifuran in Alphonso mango. Moreover, a significant trigger in the expression of MiOMTS transcripts in ethylene-treated fruits point towards the transcriptional regulation of mesifuran biosynthesis by ethylene. PMID:27039187

  3. Protein arginine methyltransferase 5 is associated with malignant phenotype and peritoneal metastasis in gastric cancer.

    Science.gov (United States)

    Kanda, Mitsuro; Shimizu, Dai; Fujii, Tsutomu; Tanaka, Haruyoshi; Shibata, Masahiro; Iwata, Naoki; Hayashi, Masamichi; Kobayashi, Daisuke; Tanaka, Chie; Yamada, Suguru; Nakayama, Goro; Sugimoto, Hiroyuki; Koike, Masahiko; Fujiwara, Michitaka; Kodera, Yasuhiro

    2016-09-01

    Identification of novel gastric cancer (GC)-related molecules is necessary to improve management of patients with GC in both diagnostic and therapeutic aspects. The aim of the present study was to determine whether protein arginine methyltransferase 5 (PRMT5) acts as an oncogene in the progression of GC and whether it serves as a novel diagnostic marker and therapeutic target. We conducted global expression profiling of GC cell lines and RNA interference experiments to evaluate the effect of PRMT5 expression on the phenotype of GC cells. We analysed tissues of 179 patients with GC to assess the association of PRMT5 mRNA levels with clinicopathological factors. Differential expression of PRMT5 mRNA by GC cell lines correlated positively with the levels of GEMIN2, STAT3 and TGFB3. PRMT5 knockdown reduced the proliferation, invasion and migration of a GC cell line. PRMT5 mRNA levels were significantly higher in GC tissues than the corresponding adjacent normal tissues and were independent of tumour depth, differentiation and lymph node metastasis. High PRMT5 expression was an independent risk factor of positive peritoneal lavage cytology (odds ratio 3.90, P=0.003) and decreased survival. PRMT5 enhances the malignant phenotype of GC cell lines and its expression in gastric tissues may serve as a biomarker for patient stratification and a potential target of therapy. PMID:27315569

  4. Screening of hepatocyte proteins binding to complete S protein of hepatitis B virus by yeast-two hybrid system

    Institute of Scientific and Technical Information of China (English)

    Gui-Qin Bai; Jun Cheng; Shu-Lin Zhang; Yan-Ping Huang; Lin Wang; Yan Liu; Shu-Mei Lin

    2005-01-01

    AIM: To investigate the biological function of complete S protein and to look for proteins interacting with complete S protein in hepatocytes.METHODS: We constructed bait plasmid expressing complete S protein of HBV by cloning the gene of complete S protein into pGBKT7, then the recombinant plasmid DNA was transformed into yeast AH109 (a type). The transformed yeast AH109 was mated with yeast Y187 (α type) containing liver cDNA library plasmid in 2xYPDA medium. Diploid yeast was plated on synthetic dropout nutrient medium (SD/Trp-Leu-His-Ade) containing X-α-gal for selection and screening. After extracting and sequencing of plasmids from positive (blue) colonies, we underwent sequence analysis by bioinformatics.RESULTS: Nineteen colonies were selected and sequenced.Among them, five colonies were Homo sapiens solute carrier family 25, member 23 (SLC25A23), one was Homo sapiens calreticulin, one was human serum albumin (ALB)gene, one was Homo sapiens metallothionein 2A, two were Homo sapiens betaine-homocysteine methyltransferase,three were Homo sapiensNa+ and H+ coupled amino acid transport system N, one was Homo sapiens CD81 antigen (target of anti-proliferative antibody 1) (CD81), three were Homo sapiens diazepam binding inhibitor, two colonies were new genes with unknown function.CONCLUSION: The yeast-two hybrid system is an effective method for identifying hepatocyte proteins interacting with complete S protein of HBV. The complete S protein may bind to different proteins i.e., its multiple functions in vivo.

  5. Reprogramming metabolism by histone methyltransferase NSD2 drives endocrine resistance via coordinated activation of pentose phosphate pathway enzymes.

    Science.gov (United States)

    Wang, Junjian; Duan, Zhijian; Nugent, Zoann; Zou, June X; Borowsky, Alexander D; Zhang, Yanhong; Tepper, Clifford G; Li, Jian Jian; Fiehn, Oliver; Xu, Jianzhen; Kung, Hsing-Jien; Murphy, Leigh C; Chen, Hong-Wu

    2016-08-10

    Metabolic reprogramming such as the aerobic glycolysis or Warburg effect is well recognized as a common feature of tumorigenesis. However, molecular mechanisms underlying metabolic alterations for tumor therapeutic resistance are poorly understood. Through gene expression profiling analysis we found that histone H3K36 methyltransferase NSD2/MMSET/WHSC1 expression was highly elevated in tamoxifen-resistant breast cancer cell lines and clinical tumors. IHC analysis indicated that NSD2 protein overexpression was associated with the disease recurrence and poor survival. Ectopic expression of NSD2 wild type, but not the methylase-defective mutant, drove endocrine resistance in multiple cell models and xenograft tumors. Mechanistically, NSD2 was recruited to and methylated H3K36me2 at the promoters of key glucose metabolic enzyme genes. Its overexpression coordinately up-regulated hexokinase 2 (HK2) and glucose-6-phosphate dehydrogenase (G6PD), two key enzymes of glycolysis and the pentose phosphate pathway (PPP), as well as TP53-induced glycolysis regulatory phosphatase TIGAR. Consequently, NSD2-driven tamoxifen-resistant cells and tumors displayed heightened PPP activity, elevated NADPH production, and reduced ROS level, without significantly altered glycolysis. These results illustrate a coordinated, epigenetic activation of key glucose metabolic enzymes in therapeutic resistance and nominate methyltransferase NSD2 as a potential therapeutic target for endocrine resistant breast cancer. PMID:27164560

  6. A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α.

    Science.gov (United States)

    Begley, Ulrike; Sosa, Maria Soledad; Avivar-Valderas, Alvaro; Patil, Ashish; Endres, Lauren; Estrada, Yeriel; Chan, Clement T Y; Su, Dan; Dedon, Peter C; Aguirre-Ghiso, Julio A; Begley, Thomas

    2013-03-01

    Emerging evidence points to aberrant regulation of translation as a driver of cell transformation in cancer. Given the direct control of translation by tRNA modifications, tRNA modifying enzymes may function as regulators of cancer progression. Here, we show that a tRNA methyltransferase 9-like (hTRM9L/KIAA1456) mRNA is down-regulated in breast, bladder, colorectal, cervix and testicular carcinomas. In the aggressive SW620 and HCT116 colon carcinoma cell lines, hTRM9L is silenced and its re-expression and methyltransferase activity dramatically suppressed tumour growth in vivo. This growth inhibition was linked to decreased proliferation, senescence-like G0/G1-arrest and up-regulation of the RB interacting protein LIN9. Additionally, SW620 cells re-expressing hTRM9L did not respond to hypoxia via HIF1-α-dependent induction of GLUT1. Importantly, hTRM9L-negative tumours were highly sensitive to aminoglycoside antibiotics and this was associated with altered tRNA modification levels compared to antibiotic resistant hTRM9L-expressing SW620 cells. Our study links hTRM9L and tRNA modifications to inhibition of tumour growth via LIN9 and HIF1-α-dependent mechanisms. It also suggests that aminoglycoside antibiotics may be useful to treat hTRM9L-deficient tumours. PMID:23381944

  7. Reprogramming metabolism by histone methyltransferase NSD2 drives endocrine resistance via coordinated activation of pentose phosphate pathway enzymes.

    Science.gov (United States)

    Wang, Junjian; Duan, Zhijian; Nugent, Zoann; Zou, June X; Borowsky, Alexander D; Zhang, Yanhong; Tepper, Clifford G; Li, Jian Jian; Fiehn, Oliver; Xu, Jianzhen; Kung, Hsing-Jien; Murphy, Leigh C; Chen, Hong-Wu

    2016-08-10

    Metabolic reprogramming such as the aerobic glycolysis or Warburg effect is well recognized as a common feature of tumorigenesis. However, molecular mechanisms underlying metabolic alterations for tumor therapeutic resistance are poorly understood. Through gene expression profiling analysis we found that histone H3K36 methyltransferase NSD2/MMSET/WHSC1 expression was highly elevated in tamoxifen-resistant breast cancer cell lines and clinical tumors. IHC analysis indicated that NSD2 protein overexpression was associated with the disease recurrence and poor survival. Ectopic expression of NSD2 wild type, but not the methylase-defective mutant, drove endocrine resistance in multiple cell models and xenograft tumors. Mechanistically, NSD2 was recruited to and methylated H3K36me2 at the promoters of key glucose metabolic enzyme genes. Its overexpression coordinately up-regulated hexokinase 2 (HK2) and glucose-6-phosphate dehydrogenase (G6PD), two key enzymes of glycolysis and the pentose phosphate pathway (PPP), as well as TP53-induced glycolysis regulatory phosphatase TIGAR. Consequently, NSD2-driven tamoxifen-resistant cells and tumors displayed heightened PPP activity, elevated NADPH production, and reduced ROS level, without significantly altered glycolysis. These results illustrate a coordinated, epigenetic activation of key glucose metabolic enzymes in therapeutic resistance and nominate methyltransferase NSD2 as a potential therapeutic target for endocrine resistant breast cancer.

  8. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Kouichi, E-mail: koumno@akita-pu.ac.jp [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Matsuzaki, Masahiro [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Kanazawa, Shiho [Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Tokiwano, Tetsuo; Yoshizawa, Yuko [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Kato, Misako [Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan)

    2014-10-03

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-{sup 14}C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or

  9. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    International Nuclear Information System (INIS)

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-14C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or with

  10. Role of microRNAs and DNA methyltransferases in transmitting induced genomic instability between cell generations

    Directory of Open Access Journals (Sweden)

    Katriina eHuumonen

    2014-09-01

    Full Text Available There is limited understanding of how radiation or chemicals induce genomic instability, and how the instability is epigenetically transmitted to the progeny of exposed cells or organisms. Here we measured the expression of microRNAs (miRNAs and DNA methyltransferases (DNMTs in murine embryonal fibroblasts exposed to ionizing radiation or 2,3,7,8 -tetrachlorodibenzo-p-dioxin (TCDD, which were previously shown to induce genomic instability in this cell line. Cadmium was used as a reference agent that does not induce genomic instability in our experimental model. Measurements at 8 and 15 days after exposure did not identify any such persistent changes that could be considered as signals transmitting genomic instability to the progeny of exposed cells. However, measurements at 2 days after exposure revealed findings that may reflect initial stages of genomic instability. Changes that were common to TCDD and two doses of radiation (but not to cadmium included 5 candidate signature miRNAs and general up-regulation of miRNA expression. Expression of DNMT3a, DNMT3b and DNMT2 were suppressed by cadmium but not by TCDD or radiation, consistently with the hypothesis that sufficient expression of DNMTs is necessary in the initial phase of induced genomic instability.

  11. DNA methyltransferase inhibition increases efficacy of adoptive cellular immunotherapy of murine breast cancer.

    Science.gov (United States)

    Terracina, Krista P; Graham, Laura J; Payne, Kyle K; Manjili, Masoud H; Baek, Annabel; Damle, Sheela R; Bear, Harry D

    2016-09-01

    Adoptive T cell immunotherapy is a promising approach to cancer treatment that currently has limited clinical applications. DNA methyltransferase inhibitors (DNAMTi) have known potential to affect the immune system through multiple mechanisms that could enhance the cytotoxic T cell responses, including: upregulation of tumor antigen expression, increased MHC class I expression, and blunting of myeloid derived suppressor cells (MDSCs) expansion. In this study, we have investigated the effect of combining the DNAMTi, decitabine, with adoptive T cell immunotherapy in the murine 4T1 mammary carcinoma model. We found that expression of neu, MHC class I molecules, and several murine cancer testis antigens (CTA) was increased by decitabine treatment of 4T1 cells in vitro. Decitabine also increased expression of multiple CTA in two human breast cancer cell lines. Decitabine-treated 4T1 cells stimulated greater IFN-gamma release from tumor-sensitized lymphocytes, implying increased immunogenicity. Expansion of CD11b + Gr1 + MDSC in 4T1 tumor-bearing mice was significantly diminished by decitabine treatment. Decitabine treatment improved the efficacy of adoptive T cell immunotherapy in mice with established 4T1 tumors, with greater inhibition of tumor growth and an increased cure rate. Decitabine may have a role in combination with existing and emerging immunotherapies for breast cancer. PMID:27416831

  12. Protective effect of O6-methylguanine-DNA-methyltransferase on mammalian cells

    Institute of Scientific and Technical Information of China (English)

    LI Dong-bo; WANG Ji-shi; FANG Qin; SUN Hai-yang; XU Wei; LI Wei-da

    2007-01-01

    Background O6-methylguanine-DNA-methyltransferase (MGMT) is a specific DNA revising enzyme transferring alkylated groups from DNA to its cysteine residue to avoid the abnormal twisting of DNA. Therefore, it is one of the drug resistant genes targeted in the treatment of cancer. This study explored the protective effect of MGMT gene transferred into mammalian cells.Methods Mammalian expression vector containing the MGMT gene cloned from human hepatocytes by RT-PCR was constructed and transferred into K562 cells and human peripheral blood mononuclear cells (PBMCs) via liposome, then assayed for gene expression at RNA and protein levels. MTT assay was used to check the drug resistance of cells transfected with MGMT gene.Results MGMT gene was successfully cloned. Real-time PCR showed that the mRNA expression in gene transfected groups in K562 cell line and PBMC were 13.4 and 4.0 times that of the empty vector transfected groups respectively.Results of Western blotting showed distinct higher expression of MGMT in gene transfected group than in other two groups. The IC50 values increased to 7 and 2 times that of the original values respectively in stable transfected K562 cells and transient transfected PBMC.Conclusion The alkylating resistance of eukaryotic cells is enhanced after being transfected with MGMT gene which protein product performs the protective function, and may provide the reference for the protective model of peripheral blood cells in cancer chemotherapy.

  13. 亚砷酸钠对人皮肤角质形成细胞MGMT基因组蛋白乙酰化及转录与表达的影响%Effects of Sodium Arsenite on Histone Acetylation, Transcription and Expression of O6-Methylguanine-DNA Methyltransferase Gene in HaCaT Cells

    Institute of Scientific and Technical Information of China (English)

    潘雪莉; 张爱华

    2011-01-01

    [Objective]To observe the influences of different doses of sodium arsenite on histone acetylation regulation, mRNA transcription and protein expression of O6-methylguanine-DNA methyltransferase gene( MGMT)in HaCaT cells.[Methods]HaCaT cells were treated with 25.00, 12.50, 6.25 and 3.13 μmol/L NaAsO2 for 72h at intervals and repeatedly.Histone acetylation modifications in two transcription regulatory region ( ChIP1, ChIP2 region ) and in coding region ( ChIP3 region, the control region ) of MGMT gene were detected by chromatin immuno-precipitation combined with quantitative PCR, the mRNA transcription and the protein expression of MGMT were detected by real-time quantitative PCR and Western blot.HaCaT cells untreated with NaAsO2( 0.00 μmol/L )were set as the blank control group, human epidermal squamous carcinoma cell line A31 cells were set as the positive control group.[Results]Among the groups of HaCaT cells treated with 0.00, 3.13, 6.25, 12.50 and 25.00 μmol/L NaAsO2, the levels of histone acetylation of H3K9 in ChIP1 transcription regulatory region of MGMT gene were 176.68 ± 8.50, 175.71 ± 18.14, 161.26 ± 16.28, 146.23 ±24.00 and 82.64 ± 33.87 respectively, the differences were significant( F= 28.809, P < 0.05 ).The levels of histone acetylation of H4 in ChIP1 transcription regulatory region were 183.59 ± 11.98, 180.84 ± 24.10, 166.52 ± 5.48, 156.87 ± 10.64 and 103.42 ± 7.04, the differences were significant ( F= 36.493, P < 0.05 ).The levels of histone acetylation of H3K9 in ChIP2 transcription regulatory region were 171.11 ± 16.54, 167.55 ± 8.97, 156.51 ± 8.59, 135.88 ± 16.55 and 82.01 ± 3.96, the differences were significant( F=49.626,P<0.05 ).The levels of histone acetylation of H4 in ChIP2 transcription regulatory region were 117.23 ± 16.21, 143.29 ± 10.59, 135.87 ±7.44, 105.48 ± 7.56 and 78.79 ± 6.92, the differences were significant( F=25.438, P<0.05 ).The levels of histone acetylation of H3K9 in ChIP3 coding region were 37

  14. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond.

    Science.gov (United States)

    Stopa, Nicole; Krebs, Jocelyn E; Shechter, David

    2015-06-01

    Post-translational arginine methylation is responsible for regulation of many biological processes. The protein arginine methyltransferase 5 (PRMT5, also known as Hsl7, Jbp1, Skb1, Capsuleen, or Dart5) is the major enzyme responsible for mono- and symmetric dimethylation of arginine. An expanding literature demonstrates its critical biological function in a wide range of cellular processes. Histone and other protein methylation by PRMT5 regulate genome organization, transcription, stem cells, primordial germ cells, differentiation, the cell cycle, and spliceosome assembly. Metazoan PRMT5 is found in complex with the WD-repeat protein MEP50 (also known as Wdr77, androgen receptor coactivator p44, or Valois). PRMT5 also directly associates with a range of other protein factors, including pICln, Menin, CoPR5 and RioK1 that may alter its subcellular localization and protein substrate selection. Protein substrate and PRMT5-MEP50 post-translation modifications induce crosstalk to regulate PRMT5 activity. Crystal structures of C. elegans PRMT5 and human and frog PRMT5-MEP50 complexes provide substantial insight into the mechanisms of substrate recognition and procession to dimethylation. Enzymological studies of PRMT5 have uncovered compelling insights essential for future development of specific PRMT5 inhibitors. In addition, newly accumulating evidence implicates PRMT5 and MEP50 expression levels and their methyltransferase activity in cancer tumorigenesis, and, significantly, as markers of poor clinical outcome, marking them as potential oncogenes. Here, we review the substantial new literature on PRMT5 and its partners to highlight the significance of understanding this essential enzyme in health and disease.

  15. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin.

    Science.gov (United States)

    McGann, Patrick; Chahine, Sarah; Okafor, Darius; Ong, Ana C; Maybank, Rosslyn; Kwak, Yoon I; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2016-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test. PMID:26537447

  16. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin

    OpenAIRE

    McGann, Patrick; Chahine, Sarah; Okafor, Darius; Ong, Ana C; Maybank, Rosslyn; Kwak, Yoon I.; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2015-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test.

  17. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation

    DEFF Research Database (Denmark)

    Shaknovich, Rita; Cerchietti, Leandro; Tsikitas, Lucas;

    2011-01-01

    cells. Among DNA methyltransferases (DNMTs), only DNMT1 was significantly up-regulated in GC B cells. Dnmt1 hypomorphic mice displayed deficient GC formation and treatment of mice with the DNA methyltransferase inhibitor decitabine resulted in failure to form GCs after immune stimulation. Notably...

  18. O6-甲基鸟嘌呤-DNA-甲基转移酶(MGMT)在乳腺癌中的表达及其临床意义%Expressions of O6 methylguanine-DNA methyltransferase(MGMT) in breast cancer and Its clinical significance

    Institute of Scientific and Technical Information of China (English)

    白金君; 王发亮; 薄爱华; 雷杰

    2008-01-01

    目的:研究DNA修复酶(O6-methylguanine-DNA methyltransferase,MGMT)在乳腺癌中的表达及其临床意义.方法:乳腺癌和腺瘤标本共计143例,10%福尔马林固定,石蜡包埋,采用SABC免疫组织化学方法检测MGMT表达.结果:MGMT在乳腺癌和乳腺腺瘤中的阳性率分别为57.85%和13.64%,组间比较具有显著性差异.MGMT在乳腺癌中的表达与患者的年龄、淋巴结转移有关.结论:MGMT的异常表达与乳腺癌的淋巴结转移有关;MGMT可以作为判断乳癌发生和预后的重要指标;检测其表达可以指导临床上化疗方案的制定.

  19. Purification and characterization of DNA methyltransferases from Neisseria gonorrhoeae.

    OpenAIRE

    Piekarowicz, A; Yuan, R.; Stein, D C

    1988-01-01

    Three DNA methyltransferases, M.NgoAI, and M.NgoBI and M.NgoBII, free of any nuclease activities were isolated from Neisseria gonorrhoeae strains WR220 and MUG116 respectively. M.NgoAI recognizes the sequence 5' GGCC 3' and methylates the first 5' cytosine on both strands. M.NgoBI and M.NgoBII recognize 5' TCACC 3' and 5' GTAN5CTC 3' respectively. M.NgoBII methylates cytosine on only one strand to produce 5' GTAN5mCTC 3'.

  20. Knock-down of protein L-isoaspartyl O-methyltransferase increases β-amyloid production by decreasing ADAM10 and ADAM17 levels

    Institute of Scientific and Technical Information of China (English)

    Narkhyun BAE; Se Eun BYEON; Jihyuk SONG; Sang-Jin LEE; Moosik KWON; Inhee MOOK-JUNG; Jae Youl CHO; Sungyoul HONG

    2011-01-01

    Aim: To examine the role of protein L-isoaspartyl O-methyltransferase (PIMT; EC 2.1.1.77) on the secretion of Aβ peptides.Methods: HEK293 APPsw cells were treated with PIMT siRNA or adenosine dialdehyde (AdOX), a broad-spectrum methyltransferase inhibitor. Under the conditions, the level of Aβ secretion and regulatory mechanism by PIMT were examined.Results: Knock-down of PIMT and treatment with AdOX significantly increased Aβ40 secretion. Reductions in levels of PIMT decreased the secretion of soluble amyloid precursor protein alpha (sAPPα) without altering the total expression of APP or its membrane-bound C83 fragment. However, the levels of the C99 fragment generated by β-secretase were enhanced. Moreover, the decreased secretion of sAPPα resulting from PIMT knock-down seemed to be linked with the suppression of the expression of α-secretase gene products,α-disintegrin and metalloprotease 10 (ADAM10) and ADAM17, as indicated by Western blot analysis. In contrast, ADAM10 was not down-regulated in response to treatment with the protein arginine methyltransferase (PRMT) inhibitor, AMI-1.Conclusion: This study demonstrates a novel role for PIMT, but not PRMT, as a negative regulator of Aβ peptide formation and a potential protective factor in the pathogenesis of AD.

  1. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wenyu [Univ. of Toronto, ON (Canada); Chory, Emma J. [Dana-Farber Cancer Inst., Boston, MA (United States); Northeastern Univ., Boston, MA (United States); Wernimont, Amy K. [Univ. of Toronto, ON (Canada); Tempel, Wolfram [Univ. of Toronto, ON (Canada); Scopton, Alex [Univ. of Toronto, ON (Canada); Federation, Alexander [Dana-Farber Cancer Inst., Boston, MA (United States); Marineau, Jason J. [Dana-Farber Cancer Inst., Boston, MA (United States); Qi, Jun [Dana-Farber Cancer Inst., Boston, MA (United States); Barsyte-Lovejoy, Dalia [Univ. of Toronto, ON (Canada); Yi, Joanna [Dana-Farber Cancer Inst., Boston, MA (United States); Marcellus, Richard [Ontario Inst. for Cancer Research, Toronto, ON (Canada); Iacob, Roxana E. [Northeastern Univ., Boston, MA (United States); Engen, John R. [Northeastern Univ., Boston, MA (United States); Griffin, Carly [Ontario Inst. for Cancer Research, Toronto, ON (Canada); Aman, Ahmed [Ontario Inst. for Cancer Research, Toronto, ON (Canada); Wienholds, Erno [Univ. of Toronto, ON (Canada); Li, Fengling [Univ. of Toronto, ON (Canada); Pineda, Javier [Dana-Farber Cancer Inst., Boston, MA (United States); Univ. of Notre Dame, IN (United States); Estiu, Guillermina [Univ. of Notre Dame, IN (United States); Shatseva, Tatiana [Univ. of Toronto, ON (Canada); Hajian, Taraneh [Univ. of Toronto, ON (Canada); Al-awar, Rima [Ontario Inst. for Cancer Research, Toronto, ON (Canada); Dick, John E. [Univ. of Toronto, ON (Canada); Vedadi, Masoud [Univ. of Toronto, ON (Canada); Brown, Peter J. [Univ. of Toronto, ON (Canada); Arrowsmith, Cheryl H. [Univ. of Toronto, ON (Canada); Bradner, James E. [Dana-Farber Cancer Inst., Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Schapira, Matthieu [Univ. of Toronto, ON (Canada)

    2012-12-18

    Selective inhibition of protein methyltransferases is a promising new approach to drug discovery. An attractive strategy towards this goal is the development of compounds that selectively inhibit binding of the cofactor, S-adenosylmethionine, within specific protein methyltransferases. Here we report the three-dimensional structure of the protein methyltransferase DOT1L bound toEPZ004777, the first S-adenosylmethionine-competitive inhibitor of a protein methyltransferase with in vivo efficacy. This structure and those of four new analogues reveal remodelling of the catalytic site. EPZ004777 and a brominated analogue, SGC0946, inhibit DOT1L in vitro and selectively kill mixed lineage leukaemia cells, in which DOT1L is aberrantly localized via interaction with an oncogenic MLL fusion protein. These data provide important new insight into mechanisms of cell-active S-adenosylmethionine-competitive protein methyltransferase inhibitors, and establish a foundation for the further development of drug-like inhibitors of DOT1L for cancer therapy.

  2. miR-221/222 Target the DNA Methyltransferase MGMT in Glioma Cells

    Science.gov (United States)

    Roscigno, Giuseppina; Romano, Giulia; Diaz-Lagares, Angel; Iaboni, Margherita; Donnarumma, Elvira; Fiore, Danilo; De Marinis, Pasqualino; Soini, Ylermi; Esteller, Manel; Condorelli, Gerolama

    2013-01-01

    Glioblastoma multiforme (GBM) is one of the most deadly types of cancer. To date, the best clinical approach for treatment is based on administration of temozolomide (TMZ) in combination with radiotherapy. Much evidence suggests that the intracellular level of the alkylating enzyme O6-methylguanine–DNA methyltransferase (MGMT) impacts response to TMZ in GBM patients. MGMT expression is regulated by the methylation of its promoter. However, evidence indicates that this is not the only regulatory mechanism present. Here, we describe a hitherto unknown microRNA-mediated mechanism of MGMT expression regulation. We show that miR-221 and miR-222 are upregulated in GMB patients and that these paralogues target MGMT mRNA, inducing greater TMZ-mediated cell death. However, miR-221/miR-222 also increase DNA damage and, thus, chromosomal rearrangements. Indeed, miR-221 overexpression in glioma cells led to an increase in markers of DNA damage, an effect rescued by re-expression of MGMT. Thus, chronic miR-221/222-mediated MGMT downregulation may render cells unable to repair genetic damage. This, associated also to miR-221/222 oncogenic potential, may poor GBM prognosis. PMID:24147153

  3. MiR-221/222 target the DNA methyltransferase MGMT in glioma cells.

    Directory of Open Access Journals (Sweden)

    Cristina Quintavalle

    Full Text Available Glioblastoma multiforme (GBM is one of the most deadly types of cancer. To date, the best clinical approach for treatment is based on administration of temozolomide (TMZ in combination with radiotherapy. Much evidence suggests that the intracellular level of the alkylating enzyme O(6-methylguanine-DNA methyltransferase (MGMT impacts response to TMZ in GBM patients. MGMT expression is regulated by the methylation of its promoter. However, evidence indicates that this is not the only regulatory mechanism present. Here, we describe a hitherto unknown microRNA-mediated mechanism of MGMT expression regulation. We show that miR-221 and miR-222 are upregulated in GMB patients and that these paralogues target MGMT mRNA, inducing greater TMZ-mediated cell death. However, miR-221/miR-222 also increase DNA damage and, thus, chromosomal rearrangements. Indeed, miR-221 overexpression in glioma cells led to an increase in markers of DNA damage, an effect rescued by re-expression of MGMT. Thus, chronic miR-221/222-mediated MGMT downregulation may render cells unable to repair genetic damage. This, associated also to miR-221/222 oncogenic potential, may poor GBM prognosis.

  4. Novel Protein Arginine Methyltransferase 8 Isoform Is Essential for Cell Proliferation.

    Science.gov (United States)

    Hernandez, Sarah; Dominko, Tanja

    2016-09-01

    Identification of molecular mechanisms that regulate cellular replicative lifespan is needed to better understand the transition between a normal and a neoplastic cell phenotype. We have previously reported that low oxygen-mediated activity of FGF2 leads to an increase in cellular lifespan and acquisition of regeneration competence in human dermal fibroblasts (iRC cells). Though cells display a more plastic developmental phenotype, they remain non-tumorigenic when injected into SCID mice (Page et al. [2009] Cloning Stem Cells 11:417-426; Page et al. [2011] Eng Part A 17:2629-2640) allowing for investigation of mechanisms that regulate increased cellular lifespan in a non-tumorigenic system. Analysis of chromatin modification enzymes by qRT-PCR revealed a 13.3-fold upregulation of the arginine methyltransferase PRMT8 in iRC cells. Increased protein expression was confirmed in both iRC and human embryonic stem cells-the first demonstration of endogenous human PRMT8 expression outside the brain. Furthermore, iRC cells express a novel PRMT8 mRNA variant. Using siRNA-mediated knockdown we demonstrated that this novel variant was required for proliferation of human dermal fibroblasts (hDFs) and grade IV glioblastomas. PRMT8 upregulation in a non-tumorigenic system may offer a potential diagnostic biomarker and a therapeutic target for cells in pre-cancerous and cancerous states. J. Cell. Biochem. 117: 2056-2066, 2016. © 2016 Wiley Periodicals, Inc. PMID:26851891

  5. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    Science.gov (United States)

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks. PMID:26776948

  6. Lipid substrate specificity of phosphatidylethanolamine N-methyltransferase of Tetrahymena

    International Nuclear Information System (INIS)

    The ciliate protozoan Tetrahymena thermophila forms about 60% of its phosphatidylcholine by methylation of phosphatidylethanolamine with S-adenosylmethionine using the enzyme phosphatidylethanolamine N-methyltransferase. Analogues of ethanolamine or of ethanolamine phosphate are incorporated into the phospholipids of Tetrahymena when cells are cultured in their presence. These compounds, 3-amino-1-propanol, 2-aminoethylphosphonate, 3-aminopropylphosphonate and N,N-dimethylaminoethylphosphonate replace from 50 to 75% of the ethanolamine phosphate in phosphatidylethanolamine. However, analysis of the phospholipids of lipid-altered Tetrahymena showed that none of the phosphatidylethanolamine analogues had been converted to the corresponding phosphatidylcholine analogue. No incorration of [14C-CH3]methionine into the phosphatidylcholine analogues could be demonstrated in vivo, nor was label from [3H-CH3]S-adenosylmethionine incorporated in virto. Thus, only phosphatidylethanolamine and its monomethyl and dimethyl derivatives have been found to be substrates for the phosphatidylethanoiamine N-methyltransferase. The enzyme therefore requires a phospholipid substrate containing an ester linkage between the alkylamine and phosphorus, with the amino group required to be β to the alcohol

  7. An allosteric inhibitor of protein arginine methyltransferase 3.

    Science.gov (United States)

    Siarheyeva, Alena; Senisterra, Guillermo; Allali-Hassani, Abdellah; Dong, Aiping; Dobrovetsky, Elena; Wasney, Gregory A; Chau, Irene; Marcellus, Richard; Hajian, Taraneh; Liu, Feng; Korboukh, Ilia; Smil, David; Bolshan, Yuri; Min, Jinrong; Wu, Hong; Zeng, Hong; Loppnau, Peter; Poda, Gennadiy; Griffin, Carly; Aman, Ahmed; Brown, Peter J; Jin, Jian; Al-Awar, Rima; Arrowsmith, Cheryl H; Schapira, Matthieu; Vedadi, Masoud

    2012-08-01

    PRMT3, a protein arginine methyltransferase, has been shown to influence ribosomal biosynthesis by catalyzing the dimethylation of the 40S ribosomal protein S2. Although PRMT3 has been reported to be a cytosolic protein, it has been shown to methylate histone H4 peptide (H4 1-24) in vitro. Here, we report the identification of a PRMT3 inhibitor (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea; compound 1) with IC50 value of 2.5 μM by screening a library of 16,000 compounds using H4 (1-24) peptide as a substrate. The crystal structure of PRMT3 in complex with compound 1 as well as kinetic analysis reveals an allosteric mechanism of inhibition. Mutating PRMT3 residues within the allosteric site or using compound 1 analogs that disrupt interactions with allosteric site residues both abrogated binding and inhibitory activity. These data demonstrate an allosteric mechanism for inhibition of protein arginine methyltransferases, an emerging class of therapeutic targets.

  8. Structural biology of human H3K9 methyltransferases.

    Directory of Open Access Journals (Sweden)

    Hong Wu

    Full Text Available UNLABELLED: SET domain methyltransferases deposit methyl marks on specific histone tail lysine residues and play a major role in epigenetic regulation of gene transcription. We solved the structures of the catalytic domains of GLP, G9a, Suv39H2 and PRDM2, four of the eight known human H3K9 methyltransferases in their apo conformation or in complex with the methyl donating cofactor, and peptide substrates. We analyzed the structural determinants for methylation state specificity, and designed a G9a mutant able to tri-methylate H3K9. We show that the I-SET domain acts as a rigid docking platform, while induced-fit of the Post-SET domain is necessary to achieve a catalytically competent conformation. We also propose a model where long-range electrostatics bring enzyme and histone substrate together, while the presence of an arginine upstream of the target lysine is critical for binding and specificity. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  9. Targeted DNA Methylation by a DNA Methyltransferase Coupled to a Triple Helix Forming Oligonucleotide To Down-Regulate the Epithelial Cell Adhesion Molecule

    OpenAIRE

    van der Gun, Bernardina T. F.; Maluszynska-Hoffman, Maria; Kiss, Antal; Arendzen, Alice J.; Ruiters, Marcel H.J.; McLaughlin, Pamela M. J.; Weinhold, Elmar; Rots, Marianne G.

    2010-01-01

    The epithelial cell adhesion molecule (EpCAM) is a membrane glycoprotein that has been identified as a marker of cancer-initiating cells. EpCAM is highly expressed on most carcinomas, and transient silencing of EpCAM expression leads to reduced oncogenic potential. To silence the EpCAM gene in a persistent manner via targeted DNA methylation, a low activity mutant (C141S) of the CpG-specific DNA methyltransferase M.SssI was coupled to a triple-helix-forming oligonucleotide (TFO−C141S) specifi...

  10. Role of type II protein arginine methyltransferase 5 in the regulation of Circadian Per1 gene.

    Directory of Open Access Journals (Sweden)

    Jungtae Na

    Full Text Available Circadian clocks are the endogenous oscillators that regulate rhythmic physiological and behavioral changes to correspond to daily light-dark cycles. Molecular dissections have revealed that transcriptional feedback loops of the circadian clock genes drive the molecular oscillation, in which PER/CRY complexes inhibit the transcriptional activity of the CLOCK/BMAL1 heterodimer to constitute a negative feedback loop. In this study, we identified the type II protein arginine methyltransferase 5 (PRMT5 as an interacting molecule of CRY1. Although the Prmt5 gene was constitutively expressed, increased interaction of PRMT5 with CRY1 was observed when the Per1 gene was repressed both in synchronized mouse liver and NIH3T3 cells. Moreover, rhythmic recruitment of PRMT5 and CRY1 to the Per1 gene promoter was found to be associated with an increased level of histone H4R3 dimethylation and Per1 gene repression. Consistently, decreased histone H4R3 dimethylation and altered rhythmic Per1 gene expression were observed in Prmt5-depleted cells. Taken together, these findings provide an insight into the link between histone arginine methylation by PRMT5 and transcriptional regulation of the circadian Per1 gene.

  11. The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos.

    Science.gov (United States)

    Eymery, Angeline; Liu, Zichuan; Ozonov, Evgeniy A; Stadler, Michael B; Peters, Antoine H F M

    2016-08-01

    Oocytes develop the competence for meiosis and early embryogenesis during their growth. Setdb1 is a histone H3 lysine 9 (H3K9) methyltransferase required for post-implantation development and has been implicated in the transcriptional silencing of genes and endogenous retroviral elements (ERVs). To address its role in oogenesis and pre-implantation development, we conditionally deleted Setdb1 in growing oocytes. Loss of Setdb1 expression greatly impaired meiosis. It delayed meiotic resumption, altered the dynamics of chromatin condensation, and impaired kinetochore-spindle interactions, bipolar spindle organization and chromosome segregation in more mature oocytes. The observed phenotypes related to changes in abundance of specific transcripts in mutant oocytes. Setdb1 maternally deficient embryos arrested during pre-implantation development and showed comparable defects during cell cycle progression and in chromosome segregation. Finally, transcriptional profiling data indicate that Setdb1 downregulates rather than silences expression of ERVK and ERVL-MaLR retrotransposons and associated chimearic transcripts during oogenesis. Our results identify Setdb1 as a newly discovered meiotic and embryonic competence factor safeguarding genome integrity at the onset of life. PMID:27317807

  12. Identification and characterization of DNAzymes targeting DNA methyltransferase I for suppressing bladder cancer proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiangbo; Zhang, Lu; Ding, Nianhua; Yang, Xinghui; Zhang, Jin; He, Jiang; Li, Zhi; Sun, Lun-Quan, E-mail: lunquansun@csu.edu.cn

    2015-05-29

    Epigenetic inactivation of genes plays a critical role in many important human diseases, especially in cancer. A core mechanism for epigenetic inactivation of the genes is methylation of CpG islands in genome DNA, which is catalyzed by DNA methyltransferases (DNMTs). The inhibition of DNMTs may lead to demethylation and expression of the silenced tumor suppressor genes. Although DNMT inhibitors are currently being developed as potential anticancer agents, only limited success is achieved due to substantial toxicity. Here, we utilized a multiplex selection system to generate efficient RNA-cleaving DNAzymes targeting DNMT1. The lead molecule from the selection was shown to possess efficient kinetic profiles and high efficiency in inhibiting the enzyme activity. Transfection of the DNAzyme caused significant down-regulation of DNMT1 expression and reactivation of p16 gene, resulting in reduced cell proliferation of bladder cancers. This study provides an alternative for targeting DNMTs for potential cancer therapy. - Highlights: • Identified DNMT1-targeted DNAzymes by multiplex selection system. • Biochemically characterized a lead DNAzyme with high kinetic efficiency. • Validated DNMT1-targeted DNAzyme in its enzymatic and cellular activities.

  13. An O-methyltransferase modifies accumulation of methylated anthocyanins in seedlings of tomato.

    Science.gov (United States)

    Gomez Roldan, Maria Victoria; Outchkourov, Nikolay; van Houwelingen, Adèle; Lammers, Michiel; Romero de la Fuente, Irene; Ziklo, Noa; Aharoni, Asaph; Hall, Robert D; Beekwilder, Jules

    2014-11-01

    Anthocyanins contribute to the appearance of fruit by conferring to them a red, blue or purple colour. In a food context, they have also been suggested to promote consumer health. In purple tomato tissues, such as hypocotyls, stems and purple fruits, various anthocyanins accumulate. These molecules have characteristic patterns of modification, including hydroxylations, methylations, glycosylations and acylations. The genetic basis for many of these modifications has not been fully elucidated, and nor has their role in the functioning of anthocyanins. In this paper, AnthOMT, an O-methyltransferase (OMT) mediating the methylation of anthocyanins, has been identified and functionally characterized using a combined metabolomics and transcriptomics approach. Gene candidates were selected from the draft tomato genome, and their expression was subsequently monitored in a tomato seedling system comprising three tissues and involving several time points. In addition, we also followed gene expression in wild-type red and purple transgenic tomato fruits expressing Rosea1 and Delila transcription factors. Of the 57 candidates identified, only a single OMT gene showed patterns strongly correlating with both accumulation of anthocyanins and expression of anthocyanin biosynthesis genes. This candidate (AnthOMT) was compared to a closely related caffeoyl CoA OMT by recombinant expression in Escherichia coli, and then tested for substrate specificity. AnthOMT showed a strong affinity for glycosylated anthocyanins, while other flavonoid glycosides and aglycones were much less preferred. Gene silencing experiments with AnthOMT resulted in reduced levels of the predominant methylated anthocyanins. This confirms the role of this enzyme in the diversification of tomato anthocyanins. PMID:25227758

  14. An O-methyltransferase modifies accumulation of methylated anthocyanins in seedlings of tomato.

    Science.gov (United States)

    Gomez Roldan, Maria Victoria; Outchkourov, Nikolay; van Houwelingen, Adèle; Lammers, Michiel; Romero de la Fuente, Irene; Ziklo, Noa; Aharoni, Asaph; Hall, Robert D; Beekwilder, Jules

    2014-11-01

    Anthocyanins contribute to the appearance of fruit by conferring to them a red, blue or purple colour. In a food context, they have also been suggested to promote consumer health. In purple tomato tissues, such as hypocotyls, stems and purple fruits, various anthocyanins accumulate. These molecules have characteristic patterns of modification, including hydroxylations, methylations, glycosylations and acylations. The genetic basis for many of these modifications has not been fully elucidated, and nor has their role in the functioning of anthocyanins. In this paper, AnthOMT, an O-methyltransferase (OMT) mediating the methylation of anthocyanins, has been identified and functionally characterized using a combined metabolomics and transcriptomics approach. Gene candidates were selected from the draft tomato genome, and their expression was subsequently monitored in a tomato seedling system comprising three tissues and involving several time points. In addition, we also followed gene expression in wild-type red and purple transgenic tomato fruits expressing Rosea1 and Delila transcription factors. Of the 57 candidates identified, only a single OMT gene showed patterns strongly correlating with both accumulation of anthocyanins and expression of anthocyanin biosynthesis genes. This candidate (AnthOMT) was compared to a closely related caffeoyl CoA OMT by recombinant expression in Escherichia coli, and then tested for substrate specificity. AnthOMT showed a strong affinity for glycosylated anthocyanins, while other flavonoid glycosides and aglycones were much less preferred. Gene silencing experiments with AnthOMT resulted in reduced levels of the predominant methylated anthocyanins. This confirms the role of this enzyme in the diversification of tomato anthocyanins.

  15. Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells

    Directory of Open Access Journals (Sweden)

    Yoda Satoshi

    2008-11-01

    Full Text Available Abstract Background Alterations in the processing of the genetic information in carcinogenesis result from stable genetic mutations or epigenetic modifications. It is becoming clear that nucleosomal histones are central to proper gene expression and that aberrant DNA methylation of genes and histone methylation plays important roles in tumor progression. To date, several histone lysine methyltransferases (HKMTs have been identified and histone lysine methylation is now considered to be a critical regulator of transcription. However, still relatively little is known about the role of HKMTs in tumorigenesis. Results We observed differential HKMT expression in a lung cancer model in which normal human bronchial epithelial (NHBE cells expressing telomerase, SV40 large T antigen, and Ras were immortal, formed colonies in soft agar, and expressed specific HKMTs for H3 lysine 9 and 27 residues but not for H3 lysine 4 residue. Modifications in the H3 tails affect the binding of proteins to the histone tails and regulate protein function and the position of lysine methylation marks a gene to be either activated or repressed. In the present study, suppression by siRNA of HKMTs (EZH2, G9A, SETDB1 and SUV39H1 that are over-expressed in immortalized and transformed cells lead to reduced cell proliferation and much less anchorage-independent colony growth. We also found that the suppression of H3-K9, G9A and SUV39H1 induced apoptosis and the suppression of H3-K27, EZH2 caused G1 arrest. Conclusion Our results indicate the potential of these HKMTs in addition to the other targets for epigenetics such as DNMTs and HDACs to be interesting therapeutic targets.

  16. Unusual pseudosubstrate specificity of a novel 3,5-dimethoxyphenol O-methyltransferase cloned from Ruta graveolens L.

    Science.gov (United States)

    Burga, Laura; Wellmann, Frank; Lukacin, Richard; Witte, Simone; Schwab, Wilfried; Schröder, Joachim; Matern, Ulrich

    2005-08-01

    A cDNA was cloned from Ruta graveolens cells encoding a novel O-methyltransferase (OMT) with high similarity to orcinol or chavicol/eugenol OMTs, but containing a serine-rich N-terminus and a 13 amino acid insertion between motifs IV and V. Expression in Escherichia coli revealed S-adenosyl-l-methionine-dependent OMT activity with methoxylated phenols only with an apparent Km of 20.4 for the prime substrate 3,5-dimethoxyphenol. The enzyme forms a homodimer of 84 kDa, and the activity was insignificantly affected by 2.0 mM Ca2+ or Mg2+, whereas Fe2+, Co2+, Zn2+, Cu2+ or Hg2+ were inhibitory (78-100%). Dithiothreitol (DTT) suppressed the OMT activity. This effect was examined further, and, in the presence of Zn2+ as a potential thiol methyltransferase (TMT) cofactor, the recombinant OMT methylated DTT to DTT-monomethylthioether. Sets of kinetic OMT experiments with 3,5-dimethoxyphenol at various Zn2+/DTT concentrations revealed the competitive binding of DTT with an apparent Ki of 52.0 microM. Thus, the OMT exhibited TMT activity with almost equivalent affinity to the thiol pseudosubstrate which is structurally unrelated to methoxyphenols.

  17. Ribosomal protein methylation in Escherichia coli: the gene prmA, encoding the ribosomal protein L11 methyltransferase, is dispensable.

    Science.gov (United States)

    Vanet, A; Plumbridge, J A; Guérin, M F; Alix, J H

    1994-12-01

    The prmA gene, located at 72 min on the Escherichia coli chromosome, is the genetic determinant of ribosomal protein L11-methyltransferase activity. Mutations at this locus, prmA1 and prmA3, result in a severely undermethylated form of L11. No effect, other than the lack of methyl groups on L11, has been ascribed to these mutations. DNA sequence analysis of the mutant alleles prmA1 and prmA3 detected point mutations near the C-terminus of the protein and plasmids overproducing the wild-type and the two mutant proteins have been constructed. The wild-type PrmA protein could be crosslinked to its radiolabelled substrate, S-adenosyl-L-methionine (SAM), by u.v. irradiation indicating that it is the gene for the methyltransferase rather than a regulatory protein. One of the mutant proteins, PrmA3, was also weakly crosslinked to SAM. Both mutant enzymes when expressed from the overproducing plasmids were capable of catalysing the incorporation of 3H-labelled methyl groups from SAM to L11 in vitro. This confirmed the observation that the mutant proteins possess significant residual activity which could account for their lack of growth phenotype. However, a strain carrying an in vitro-constructed null mutation of the prmA gene, transferred to the E. coli chromosome by homologous recombination, was perfectly viable. PMID:7715456

  18. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.; Cooper, Laurie P.; White, John H. [School of Chemistry, University of Edinburgh, The King' s Buildings, Edinburgh, EH9 3JJ (United Kingdom); Dryden, David T.F., E-mail: david.dryden@ed.ac.uk [School of Chemistry, University of Edinburgh, The King' s Buildings, Edinburgh, EH9 3JJ (United Kingdom)

    2010-07-23

    Research highlights: {yields} Successful fusion of GFP to M.EcoKI DNA methyltransferase. {yields} GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. {yields} FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerster resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.

  19. Histopathological changes in rat liver in hyper-and hypothyroidism are associated with DNA methyltransferase activity

    Institute of Scientific and Technical Information of China (English)

    Zaporozhan VM; Mescheryakova NV

    2013-01-01

    [Objective] There is evidence that thyroid hormones (TH) could affect on collagen development.Also there is some data that methylation play a significant role in fibrogenesis.That's why the aim of the article was to find out if such pathomorphological changes in liver as fibrosis that were caused by TH could be associated with the changes of DNA methyltransferase activity.[Methods] Experimental study was presented on 89 mature white rats.3 experimental groups were performed:1-experimental hyperthyroidism,2-experimental hypothyroidism,3-control group.The thyroid profile for T3,T4,TTH and profile activity for DNA methyltransferase (DNMT) were determined.The weight of liver was examined.Microscopy and morphometry were performed.[Results] In experimental hyperthyroidism and hypothyroidism the respective changes in TH concentrations occur with a normal level of TTH.It was revealed gender differences in TH levels under impaired thyroid status.In hypothyroidism a decrease of TH concentration occurs in females and males,but it is more expressed in males.In hyperthyroidism the increased concentrations of TH is observed in all rodents,but it is more significant in males.The weight of liver gain in hyperthyroid rodents and decreased of liver weight in hypothyroid rats.In experimentally hyperthyroidism the pathomorphological changed in liver were characterized as an acute vascular insufficiency,hypertension,inflammation,toxic effects of hormones,an initial stage of hepatitis with a high activity,traces of old hemorrhage and a marked fibrosis in the liver.Hypothyroidism also effects on the liver with the signs of acute vascular insufficiency,hypoxia,toxic effects of hormones,necrosis and mild fibrotic changes in the liver tissue.The enzymatic activity of DNMT was increased both in hyperthyroidism and in hypothyroidism.[Conclusions] From results that were've obtained we could conclude that persistent shifts of TH cause pathomorphological changes in the liver.They were more

  20. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  1. O-demethylase from Acetobacterium dehalogenans--cloning, sequencing, and active expression of the gene encoding the corrinoid protein.

    Science.gov (United States)

    Kaufmann, F; Wohlfarth, G; Diekert, G

    1998-10-15

    The ether-cleaving O-demethylase from the strictly anaerobic homoacetogen Acetobacterium dehalogenans catalyses the methyltransfer from 4-hydroxy-3-methoxy-benzoate (vanillate) to tetrahydrofolate. In the first step a vanillate :corrinoid protein methyltransferase (methyltransferase I) mediates the methylation of a 25-kDa corrinoid protein with the cofactor reduced to cob(I)alamin. The methyl group is then transferred to tetrahydrofolate by the action of a methylcorrinoid protein:tetrahydrofolate methyltransferase (methyltransferase II). Using primers derived from the amino-terminal sequences of the corrinoid protein and the vanillate:corrinoid protein methyltransferase (methyltransferase I), a 723-bp fragment was amplified by PCR, which contained the gene odmA encoding the corrinoid protein of O-demethylase. Downstream of odmA, part of the odmB gene encoding methyltransferase I was identified. The amino acid sequence deduced from odmA showed about 60% similarity to the cobalamin-binding domain of methionine synthase from Escherichia coli (MetH) and to corrinoid proteins of methyltransferase systems involved in methanogenesis from methanol and methylamines. The sequence contained the DXHXXG consensus sequence typical for displacement of the dimethylbenzimidazole base of the corrinoid cofactor by a histidine from the protein. Heterologous expression of odmA in E. coli yielded a colourless, oxygen-insensitive apoprotein, which was able to bind one mol cobalamin or methylcobalamin/mol protein. Both of these reconstituted forms of the protein were active in the overall O-demethylation reaction. OdmA reconstituted with hydroxocobalamin and reduced by titanium(III) citrate to the cob(I)alamin form was methylated with vanillate by methyltransferase I in an irreversible reaction. Methylcobalamin carrying OdmA served as methyl group donor for the methylation of tetrahydrofolate by methyltransferase II. This reaction was found to be reversible, since methyltranSferase II

  2. Relationship between the Expression of O6-methylguanine DNA methyltransferase in Glioma and the Survival Time of Patients%MGMT在脑胶质瘤组织中的表达及其与患者生存期的关系

    Institute of Scientific and Technical Information of China (English)

    孙彦辉; 张亚卓; 王忠诚; 孙梅珍; 赵东海

    2004-01-01

    背景与目的:目前的研究已经证实 DNA修复酶-- 6 氧甲基鸟嘌呤 DNA甲基转移酶( O6 methylguanine DNA methyltransferase,MGMT)在脑胶质瘤组织中的表达与肿瘤的耐药性有一定的关系,并且能够影响肿瘤的化疗效果.本研究通过分析 MGMT在脑胶质瘤组织中的表达及其与患者生存期的关系,为基于耐药机制上的脑胶质瘤分子分类提供参考资料.方法:用组织芯片技术和免疫组织化学方法检测 311例脑胶质瘤石蜡标本中 MGMT的表达情况,并对所有患者进行手术后的 5年随访.结果: MGMT表达阳性者 126例,占 40.51% (126/311).其中,星形细胞瘤中阳性率为 50.41% (61/121),少枝胶质细胞瘤中为 25.71% (18/70),少枝星形细胞瘤中为 28.13% (18/64),胶质母细胞瘤中为 51.79% (29/56);在Ⅰ~Ⅱ级胶质瘤中 , MGMT表达的阳性率为 36.56% (68/186),而在Ⅲ~Ⅳ级胶质瘤中为 46.40% (58/125),经χ 2检验分析,两者之间有显著性差异 (P< 0.001);将 MGMT的表达与患者生存期的关系绘制成 Kaplan Meier生存曲线,并进行 log rank 分析, MGMT表达阳性者与阴性者之间的差异有显著性 (P< 0.05).结论: MGMT在脑胶质瘤的异常表达与肿瘤的组织类型、病理级别有关, MGMT表达阳性患者的生存期明显低于表达阴性的患者.

  3. Expression of O6-methylguanine-DNA methyltransferase in human gliomas and therapeutic evaluation of STZ and ACNU combination chemotherapy%MGMT在神经胶质瘤中表达的临床意义及联合应用STZ对愈后的影响

    Institute of Scientific and Technical Information of China (English)

    胡苹; 娄晋宁; 章扬培; 马雄君; 赵奎明

    2006-01-01

    目的:通过观察神经胶质瘤中O6-甲基鸟嘌呤DNA甲基转移酶(O6-methylguanine-DNA methyltransferase MGMT)的表达状态,探讨MGMT在胶质瘤中的表达与亚硝脲(ACNU/BCNU)耐药之间的关系;同时对于部分MGMT阳性患者给予链脲菌素(STZ)联合ACNU/BCNU治疗,观察疗效.方法:采用免疫组化法对神经胶质瘤石蜡标本检测MGMT,并与临床亚硝脲的随访结果进行比较;对8例MGMT阳性率高且对亚硝脲治疗无效的难治性脑瘤患者,开展STZ联合ACNU治疗.结果:68例神经胶质瘤,MGMT表达的总阳性率为55.9%.在使用亚硝脲治疗的患者中,除8例加用STZ联合治疗外,余60例中,27例MGMT(-)者,使用ACNU治疗绝大部分有效;30例MGMT(+~++)者,使用ACNU治疗后绝大部分复发或死亡,表明MGMT表达与亚硝脲化疗呈负相关;另外8例MGMT阳性患者在进行了STZ联合ACNU治疗后,1例可测肿瘤全部消失,2例肿瘤体积缩小在50%以上,4例肿瘤体积消退<50%,1例无效.结论:MGMT阳性的胶质瘤患者比MGMT阴性的患者明显耐药,且耐药程度与MGMT表达强度无关,仅与其是否阳性有关.对于MGMT阳性患者,可选择ACNU/BCNU联合STZ使用,以提高亚硝脲的疗效.因此,化疗前检测胶质瘤MGMT的表达情况,预测化疗敏感性,对指导临床化疗具有重要意义.

  4. Proteome identification of proteins interacting with histone methyltransferase SET8

    Institute of Scientific and Technical Information of China (English)

    Yi Qin; Huafang Ouyang; Jing Liu; Youhua Xie

    2013-01-01

    SET8 (also known as PR-Set7/9,SETD8,KMT5A),a member of the SET domain containing methyltransferase family,which specifically catalyzes mono-methylation of K20 on histone H4 (H4K20me1),has been implicated in multiple biological processes,such as gene transcriptional regulation,cell cycle control,genomic integrity maintenance and development.In this study,we used GST-SET8 fusion protein as bait to search for SET8 interaction partners to elucidate physiological functions of SET8.In combination with mass spectrometry,we identified 40 proteins that potentially interact with SET8.DDX21,a nucleolar protein,was further confirmed to associate with SET8.Furthermore,we discovered a novel function of SET8 in the regulation of rRNA transcription.

  5. Clinical utility of thiopurine S-methyltransferase genotyping.

    Science.gov (United States)

    Corominas, Hèctor; Baiget, Montserrat

    2004-01-01

    Thiopurine S-methyltransferase (TPMT) is a cytosolic enzyme that plays a major role in the metabolism of thiopurine drugs such as mercaptopurine and azathioprine. The interindividual differences in response to thiopurine administration is in part due to the presence of genetic polymorphisms in the gene that regulates TPMT activity. TPMT genotype correlates well with the in vivo enzyme activity within erythrocytes. Patients with genetically determined decreased TPMT activity develop severe myelosuppression when treated with standard doses of thiopurine drugs because an excess of thioguanine nucleotides accumulates in hematopoietic tissues. TPMT genotyping provides clinicians with a reliable method for identifying TPMT-deficient patients who can benefit from low doses of thiopurine drugs in order to reduce the risk of developing adverse effects. Moreover, the administration of higher doses of the drug could improve therapeutic response in patients in whom the TPMT genotyping demonstrates the absence of mutated alleles.

  6. RmtA, a Putative Arginine Methyltransferase, Regulates Secondary Metabolism and Development in Aspergillus flavus

    Science.gov (United States)

    Satterlee, Timothy; Cary, Jeffrey W.; Calvo, Ana M.

    2016-01-01

    Aspergillus flavus colonizes numerous oil seed crops such as corn, peanuts, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been described to be involved in epigenetics regulation through histone modification. Epigenetics regulation affects a variety of cellular processes, including morphogenesis and secondary metabolism. Our study shows that deletion of rmtA in A. flavus results in hyperconidiating colonies, indicating that rmtA is a repressor of asexual development in this fungus. The increase in conidiation in the absence of rmtA coincides with greater expression of brlA, abaA, and wetA compared to that in the wild type. Additionally, the rmtA deletion mutant presents a drastic reduction or loss of sclerotial production, while forced expression of this gene increased the ability of this fungus to generate these resistant structures, revealing rmtA as a positive regulator of sclerotial formation. Importantly, rmtA is also required for the production of aflatoxin B1 in A. flavus, affecting the expression of aflJ. Furthermore, biosynthesis of additional metabolites is also controlled by rmtA, indicating a broad regulatory output in the control of secondary metabolism. This study also revealed that rmtA positively regulates the expression of the global regulatory gene veA, which could contribute to mediate the effects of rmtA on development and secondary metabolism in this relevant opportunistic plant pathogen. PMID:27213959

  7. Identification of white campion (Silene latifolia guaiacol O-methyltransferase involved in the biosynthesis of veratrole, a key volatile for pollinator attraction

    Directory of Open Access Journals (Sweden)

    Gupta Alok K

    2012-08-01

    Full Text Available Abstract Background Silene latifolia and its pollinator, the noctuid moth Hadena bicruris, represent an open nursery pollination system wherein floral volatiles, especially veratrole (1, 2-dimethoxybenzene, lilac aldehydes, and phenylacetaldehyde are of key importance for floral signaling. Despite the important role of floral scent in ensuring reproductive success in S. latifolia, the molecular basis of scent biosynthesis in this species has not yet been investigated. Results We isolated two full-length cDNAs from S. latifolia that show similarity to rose orcinol O-methyltransferase. Biochemical analysis showed that both S. latifolia guaiacol O-methyltransferase1 (SlGOMT1 &S. latifolia guaiacol O-methyltransferase2 (SlGOMT2 encode proteins that catalyze the methylation of guaiacol to form veratrole. A large Km value difference between SlGOMT1 (~10 μM and SlGOMT2 (~501 μM resulted that SlGOMT1 is 31-fold more catalytically efficient than SlGOMT2. qRT-PCR expression analysis showed that the SlGOMT genes are specifically expressed in flowers and male S. latifolia flowers had 3- to 4-folds higher level of GOMT gene transcripts than female flower tissues. Two related cDNAs, S. dioica O-methyltransferase1 (SdOMT1 and S. dioica O-methyltransferase2 (SdOMT2, were also obtained from the sister species Silene dioica, but the proteins they encode did not methylate guaiacol, consistent with the lack of veratrole emission in the flowers of this species. Our evolutionary analysis uncovered that SlGOMT1 and SlGOMT2 genes evolved under positive selection, whereas SdOMT1 and SdOMT2 genes show no evidence for selection. Conclusions Altogether, we report the identification and functional characterization of the gene, SlGOMT1 that efficiently catalyzes veratrole formation, whereas another copy of this gene with only one amino acid difference, SlGOMT2 was found to be less efficient for veratrole synthesis in S. latifolia.

  8. Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N6-adenine DNA methyltransferases of Neisseria meningitidis

    Science.gov (United States)

    Seib, Kate L.; Jen, Freda E.-C.; Tan, Aimee; Scott, Adeana L.; Kumar, Ritesh; Power, Peter M.; Chen, Li-Tzu; Wu, Hsing-Ju; Wang, Andrew H.-J.; Hill, Dorothea M. C.; Luyten, Yvette A.; Morgan, Richard D.; Roberts, Richard J.; Maiden, Martin C. J.; Boitano, Matthew; Clark, Tyson A.; Korlach, Jonas; Rao, Desirazu N.; Jennings, Michael P.

    2015-01-01

    Phase variation (random ON/OFF switching) of gene expression is a common feature of host-adapted pathogenic bacteria. Phase variably expressed N6-adenine DNA methyltransferases (Mod) alter global methylation patterns resulting in changes in gene expression. These systems constitute phase variable regulons called phasevarions. Neisseria meningitidis phasevarions regulate genes including virulence factors and vaccine candidates, and alter phenotypes including antibiotic resistance. The target site recognized by these Type III N6-adenine DNA methyltransferases is not known. Single molecule, real-time (SMRT) methylome analysis was used to identify the recognition site for three key N. meningitidis methyltransferases: ModA11 (exemplified by M.NmeMC58I) (5′-CGYm6AG-3′), ModA12 (exemplified by M.Nme77I, M.Nme18I and M.Nme579II) (5′-ACm6ACC-3′) and ModD1 (exemplified by M.Nme579I) (5′-CCm6AGC-3′). Restriction inhibition assays and mutagenesis confirmed the SMRT methylome analysis. The ModA11 site is complex and atypical and is dependent on the type of pyrimidine at the central position, in combination with the bases flanking the core recognition sequence 5′-CGYm6AG-3′. The observed efficiency of methylation in the modA11 strain (MC58) genome ranged from 4.6% at 5′-GCGCm6AGG-3′ sites, to 100% at 5′-ACGTm6AGG-3′ sites. Analysis of the distribution of modified sites in the respective genomes shows many cases of association with intergenic regions of genes with altered expression due to phasevarion switching. PMID:25845594

  9. An audit of thiopurine methyltransferase genotyping and phenotyping before intended azathioprine treatment for dermatological conditions

    DEFF Research Database (Denmark)

    Vestergaard, T; Bygum, A

    2009-01-01

    Summary Background. Determining thiopurine methyltransferase (TPMT) genotype and phenotype before azathioprine treatment predicts which patients are most likely to develop myelosuppression. Aim. To evaluate the course of azathioprine treatment in people with TPMT heterozygosity and whether this d...

  10. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    Science.gov (United States)

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  11. “MGMT for pt mgmt”: Is Methylguanine-DNA Methyltransferase Testing Ready for Patient Management?

    OpenAIRE

    Iafrate, A. John; Louis, David N.

    2008-01-01

    This Commentary reports on a robust quantitative assay for the interpretation of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation assays that should facilitate the comparison and implementation of such assays across laboratories.

  12. Molecular Basis for the Regulation of the H3K4 Methyltransferase Activity of PRDM9

    Directory of Open Access Journals (Sweden)

    Hong Wu

    2013-10-01

    Full Text Available PRDM9, a histone lysine methyltransferase, is a key determinant of the localization of meiotic recombination hot spots in humans and mice and the only vertebrate protein known to be involved in hybrid sterility. Here, we report the crystal structure of the PRDM9 methyltransferase domain in complex with a histone H3 peptide dimethylated on lysine 4 (H3K4me2 and S-adenosylhomocysteine (AdoHcy, which provides insights into the methyltransferase activity of PRDM proteins. We show that the genuine substrate of PRDM9 is histone H3 lysine 4 (H3K4 and that the enzyme possesses mono-, di-, and trimethylation activities. We also determined the crystal structure of PRDM9 in its autoinhibited state, which revealed a rearrangement of the substrate and cofactor binding sites by a concerted action of the pre-SET and post-SET domains, providing important insights into the regulatory mechanisms of histone lysine methyltransferase activity.

  13. Structure–function analysis of vaccinia virus mRNA cap (guanine-N7) methyltransferase

    OpenAIRE

    Zheng, Sushuang; Shuman, Stewart

    2008-01-01

    The guanine-N7 methyltransferase domain of vaccinia virus mRNA capping enzyme is a heterodimer composed of a catalytic subunit and a stimulatory subunit. Structure–function analysis of the catalytic subunit by alanine scanning and conservative substitutions (49 mutations at 25 amino acids) identified 12 functional groups essential for methyltransferase activity in vivo, most of which were essential for cap methylation in vitro. Defects in cap binding were demonstrated for a subset of lethal m...

  14. The RNA–Methyltransferase Misu (NSun2) Poises Epidermal Stem Cells to Differentiate

    OpenAIRE

    Sandra Blanco; Agata Kurowski; Jennifer Nichols; Watt, Fiona M.; Salvador Aznar Benitah; Michaela Frye

    2011-01-01

    Homeostasis of most adult tissues is maintained by balancing stem cell self-renewal and differentiation, but whether post-transcriptional mechanisms can regulate this process is unknown. Here, we identify that an RNA methyltransferase (Misu/Nsun2) is required to balance stem cell self-renewal and differentiation in skin. In the epidermis, this methyltransferase is found in a defined sub-population of hair follicle stem cells poised to undergo lineage commitment, and its depletion results in e...

  15. Characterization of NF-kB-mediated inhibition of catechol-O-methyltransferase

    Directory of Open Access Journals (Sweden)

    Conrad Matthew

    2009-03-01

    Full Text Available Abstract Background Catechol-O-methyltransferase (COMT, an enzyme that metabolizes catecholamines, has recently been implicated in the modulation of pain. Specifically, low COMT activity is associated with heightened pain perception and development of musculoskeletal pain in humans as well as increased experimental pain sensitivity in rodents. Results We report that the proinflammatory cytokine tumor necrosis factor α (TNFα downregulates COMT mRNA and protein in astrocytes. Examination of the distal COMT promoter (P2-COMT reveals a putative binding site for nuclear factor κB (NF-κB, the pivotal regulator of inflammation and the target of TNFα. Cell culture assays and functional deletion analyses of the cloned P2-COMT promoter demonstrate that TNFα inhibits P2-COMT activity in astrocytes by inducing NF-κB complex recruitment to the specific κB binding site. Conclusion Collectively, our findings provide the first evidence for NF-κB-mediated inhibition of COMT expression in the central nervous system, suggesting that COMT contributes to the pathogenesis of inflammatory pain states.

  16. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China); Zhao, Bo; Kieff, Elliott [Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave., Boston 02115, MA (United States); Peng, Chih-Wen, E-mail: pengcw@mail.tcu.edu.tw [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China)

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  17. Mechanistic insights on the inhibition of c5 DNA methyltransferases by zebularine.

    Directory of Open Access Journals (Sweden)

    Christine Champion

    Full Text Available In mammals DNA methylation occurs at position 5 of cytosine in a CpG context and regulates gene expression. It plays an important role in diseases and inhibitors of DNA methyltransferases (DNMTs--the enzymes responsible for DNA methylation--are used in clinics for cancer therapy. The most potent inhibitors are 5-azacytidine and 5-azadeoxycytidine. Zebularine (1-(beta-D-ribofuranosyl-2(1H- pyrimidinone is another cytidine analog described as a potent inhibitor that acts by forming a covalent complex with DNMT when incorporated into DNA. Here we bring additional experiments to explain its mechanism of action. First, we observe an increase in the DNA binding when zebularine is incorporated into the DNA, compared to deoxycytidine and 5-fluorodeoxycytidine, together with a strong decrease in the dissociation rate. Second, we show by denaturing gel analysis that the intermediate covalent complex between the enzyme and the DNA is reversible, differing thus from 5-fluorodeoxycytidine. Third, no methylation reaction occurs when zebularine is present in the DNA. We confirm that zebularine exerts its demethylation activity by stabilizing the binding of DNMTs to DNA, hindering the methylation and decreasing the dissociation, thereby trapping the enzyme and preventing turnover even at other sites.

  18. Characterization and structure of DhpI, a phosphonate O-methyltransferase involved in dehydrophos biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Hee; Bae, Brian; Kuemin, Michael; Circello, Benjamin T.; Metcalf, William W.; Nair, Satish K.; van der Donk, Wilfred A. (UIUC)

    2012-03-15

    Phosphonate natural products possess a range of biological activities as a consequence of their ability to mimic phosphate esters or tetrahedral intermediates formed in enzymatic reactions involved in carboxyl group metabolism. The dianionic form of these compounds at pH 7 poses a drawback with respect to their ability to mimic carboxylates and tetrahedral intermediates. Microorganisms producing phosphonates have evolved two solutions to overcome this hurdle: biosynthesis of monoanionic phosphinates containing two P-C bonds or esterification of the phosphonate group. The latter solution was first discovered for the antibiotic dehydrophos that contains a methyl ester of a phosphonodehydroalanine group. We report here the expression, purification, substrate scope, and structure of the O-methyltransferase from the dehydrophos biosynthetic gene cluster. The enzyme utilizes S-adenosylmethionine to methylate a variety of phosphonates including 1-hydroxyethylphosphonate, 1,2-dihydroxyethylphosphonate, and acetyl-1-aminoethylphosphonate. Kinetic analysis showed that the best substrates are tripeptides containing as C-terminal residue a phosphonate analog of alanine suggesting the enzyme acts late in the biosynthesis of dehydrophos. These conclusions are corroborated by the X-ray structure that reveals an active site that can accommodate a tripeptide substrate. Furthermore, the structural studies demonstrate a conformational change brought about by substrate or product binding. Interestingly, the enzyme has low substrate specificity and was used to methylate the clinical antibiotic fosfomycin and the antimalaria clinical candidate fosmidomycin, showing its promise for applications in bioengineering.

  19. Arsenic (+3 oxidation state methyltransferase is a specific but replaceable factor against arsenic toxicity

    Directory of Open Access Journals (Sweden)

    Maki Tokumoto

    2014-01-01

    Full Text Available Inorganic metalloids, such as arsenic (As, antimony (Sb, selenium (Se, and tellurium (Te, are methylated in biota. In particular, As, Se, and Te are methylated and excreted in urine. The biomethylation is thought to be a means to detoxify the metalloids. The methylation of As is catalyzed by arsenic (+3 oxidation state methyltransferase (AS3MT. However, it is still unclear whether AS3MT catalyzes the methylation of the other metalloids. It is also unclear whether other factors catalyze the As methylation instead of AS3MT. Recombinant human AS3MT (rhAS3MT was prepared and used in the in vitro methylation of As, Se, and Te. As, but not Se and Te, was specifically methylated in the presence of rhAS3MT. Then, siRNA targeting AS3MT was introduced into human hepatocarcinoma (HepG2 cells. Although AS3MT protein expression was completely silenced by the gene knockdown, no increase in As toxicity was found in the HepG2 cells transfected with AS3MT-targeting siRNA. We conclude that AS3MT catalyzes the methylation of As and not other biomethylatable metalloids, such as Se and Te. We speculate that other methylation enzyme(s also catalyze the methylation of As in HepG2 cells.

  20. ANTITUMOR EFFECT OF SARCNU IN A 06-METHYLGUANINE-DNA METHYLTRANSFERASE POSITIVE HUMAN GLIOMA XENOGRAFT MODEL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To assess whether novel analogue of nitrosoureas, 2-chloroethyl-3-sarcosinamide-1-nitrosourea (SarCNU), has antitumor effect to 06-methylguanine-DNA methyltransferase (MGMT) positive tumors in vivo. Methods: MGMT positive human glioma cell line SF-767 xenografts in nude mice were treated with SarCNU. The antitumor efficacy of SarCNU was compared with the results of 1, 3-bis(2-chloroethyl)-1-nitrosourea (BCNU) treatment with or without 06-benzylguanine (06-BG) preadministration. Results: Since the SF-767 is MGMT strongly positive, BCNU treatment alone did not result in a satisfactory anticancer effect. As expected, 06-BG by depleting MGMT activity, significantly enhanced BCNU antitumor efficacy (p<0.001). More interestingly, SarCNU treatment alone had a better antitumor effect than 06-BG plus BCNU treatment (F=51.7, p=0.00036). Conclusion: Since SarCNU enters cells via extraneuronal monoamine transporter (EMT), the enhanced antitumor activity of SarCNU in this MGMT positive human tumor xenograft model may be due to the presence of EMT in SF-767.SarCNU may be used as an alternative treatment for MGMT positive tumors, specifically for tumors expressing EMT.

  1. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2.

    Directory of Open Access Journals (Sweden)

    Jafar Kiani

    2013-05-01

    Full Text Available RNA-mediated transmission of phenotypes is an important way to explain non-Mendelian heredity. We have previously shown that small non-coding RNAs can induce hereditary epigenetic variations in mice and act as the transgenerational signalling molecules. Two prominent examples for these paramutations include the epigenetic modulation of the Kit gene, resulting in altered fur coloration, and the modulation of the Sox9 gene, resulting in an overgrowth phenotype. We now report that expression of the Dnmt2 RNA methyltransferase is required for the establishment and hereditary maintenance of both paramutations. Our data show that the Kit paramutant phenotype was not transmitted to the progeny of Dnmt2(-/- mice and that the Sox9 paramutation was also not established in Dnmt2(-/- embryos. Similarly, RNA from Dnmt2-negative Kit heterozygotes did not induce the paramutant phenotype when microinjected into Dnmt2-deficient fertilized eggs and microinjection of the miR-124 microRNA failed to induce the characteristic giant phenotype. In agreement with an RNA-mediated mechanism of inheritance, no change was observed in the DNA methylation profiles of the Kit locus between the wild-type and paramutant mice. RNA bisulfite sequencing confirmed Dnmt2-dependent tRNA methylation in mouse sperm and also indicated Dnmt2-dependent cytosine methylation in Kit RNA in paramutant embryos. Together, these findings uncover a novel function of Dnmt2 in RNA-mediated epigenetic heredity.

  2. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation.

  3. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity

    International Nuclear Information System (INIS)

    Histone modifications and DNA methylation are two major factors in epigenetic phenomenon. Unlike the histone deacetylase inhibitors, which are known to exert radiosensitizing effects, there have only been a few studies thus far concerning the role of DNA methyltransferase (DNMT) inhibitors as radiosensitizers. The principal objective of this study was to evaluate the effects of DNMT inhibitors on the radiosensitivity of human cancer cell lines, and to elucidate the mechanisms relevant to that process. A549 (lung cancer) and U373MG (glioblastoma) cells were exposed to radiation with or without six DNMT inhibitors (5-azacytidine, 5-aza-2'-deoxycytidine, zebularine, hydralazine, epigallocatechin gallate, and psammaplin A) for 18 hours prior to radiation, after which cell survival was evaluated via clonogenic assays. Cell cycle and apoptosis were analyzed via flow cytometry. Expressions of DNMT1, 3A/3B, and cleaved caspase-3 were detected via Western blotting. Expression of γH2AX, a marker of radiation-induced DNA double-strand break, was examined by immunocytochemistry. Pretreatment with psammaplin A, 5-aza-2'-deoxycytidine, and zebularine radiosensitized both A549 and U373MG cells. Pretreatment with psammaplin A increased the sub-G1 fraction of A549 cells, as compared to cells exposed to radiation alone. Prolongation of γH2AX expression was observed in the cells treated with DNMT inhibitors prior to radiation as compared with those treated by radiation alone. Psammaplin A, 5-aza-2'-deoxycytidine, and zebularine induce radiosensitivity in both A549 and U373MG cell lines, and suggest that this effect might be associated with the inhibition of DNA repair

  4. Cloning, functional characterization and catalytic mechanism of a bergaptol O-methyltransferase from Peucedanum praeruptorum Dunn

    Directory of Open Access Journals (Sweden)

    Yucheng eZhao

    2016-05-01

    Full Text Available Coumarins are main active components of Peucedanum praeruptorum Dunn. Among them, methoxylated coumarin compound, such as bergapten, xanthotoxin and isopimpinellin, has high officinal value and plays an important role in medicinal field. However, major issues associated with the biosynthesis mechanism of coumarins remain unsolved and no corresponding enzyme has been cloned from P. praeruptorum. In this study, a local BLASTN program was conducted to find the candidate genes from P. praeruptorum transcriptome database using the nucleotide sequence of Ammi majus bergaptol O-methyltransferase (AmBMT, GenBank accession No: AY443006 as a template. As a result, a 1335 bp full-length of cDNA sequence which contains an open reading frame of 1080 bp encoding a BMT polypeptide of 359 amino acids was obtained. The recombinant protein was functionally expressed in Escherichia coli and displayed an observed activity to bergaptol. In vitro experiments show that the protein has narrow substrate specificity for bergaptol. Expression profile indicated that the cloned gene had a higher expression level in roots and can be induced by methyl jasmonate (MeJA. Subcellular localization analysis showed that the BMT protein was located in cytoplasm in planta. Homology modeling and docking based site-directed mutagenesis have been employed to investigate the amino acid residues in BMT required for substrate binding and catalysis. Conservative amino acid substitutions at residue H264 affected BMT catalysis, whereas substitutions at residues F171, M175, D226 and L312 affected substrate binding. The systemic study summarized here will enlarge our knowledge on OMTs and provide useful information in investigating the coumarins biosynthesis mechanism in P. praeruptorum.

  5. Aberrant DNA methylation in 5'regions of DNA methyltransferase genes in aborted bovine clones

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning.It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation.DNA methylation is established and maintained by DNA methyltransferases(DNMTs),therefore,it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs.Since DNA methylation can strongly inhibit gene expression,aberrant DNA methylation of DNMT genes may disturb gene expression.But presently,it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos.In our study,we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a,Dnmt3b,Dnmtl and Dnmt2 in four aborted bovine clones.Using bisulfite sequencing method,we found that 3 out of 4 aborted bovine clones(AF1,AF2 and AF3)showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b.indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed.However,the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF)fetuses.Besides,we found that tle 5'regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults.IVF fetuses,sperm and aborted clones.Together,our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.

  6. Pederin-type pathways of uncultivated bacterial symbionts: analysis of o-methyltransferases and generation of a biosynthetic hybrid.

    Science.gov (United States)

    Zimmermann, Katrin; Engeser, Marianne; Blunt, John W; Munro, Murray H G; Piel, Jörn

    2009-03-01

    The complex polyketide pederin is a potent antitumor agent isolated from Paederus spp. rove beetles. We have previously isolated a set of genes from a bacterial endosymbiont that are good candidates for pederin biosynthesis. To biochemically study this pathway, we expressed three methyltransferases from the putative pederin pathway and used the partially unmethylated analogue mycalamide A from the marine sponge Mycale hentscheli as test substrate. Analysis by high-resolution MS/MS and NMR revealed that PedO regiospecifically methylates the marine compound to generate the nonnatural hybrid compound 18-O-methylmycalamide A with increased cytotoxicity. To our knowledge, this is the first biochemical evidence that invertebrates can obtain defensive complex polyketides from bacterial symbionts. PMID:19206228

  7. Pederin-type pathways of uncultivated bacterial symbionts: analysis of o-methyltransferases and generation of a biosynthetic hybrid.

    Science.gov (United States)

    Zimmermann, Katrin; Engeser, Marianne; Blunt, John W; Munro, Murray H G; Piel, Jörn

    2009-03-01

    The complex polyketide pederin is a potent antitumor agent isolated from Paederus spp. rove beetles. We have previously isolated a set of genes from a bacterial endosymbiont that are good candidates for pederin biosynthesis. To biochemically study this pathway, we expressed three methyltransferases from the putative pederin pathway and used the partially unmethylated analogue mycalamide A from the marine sponge Mycale hentscheli as test substrate. Analysis by high-resolution MS/MS and NMR revealed that PedO regiospecifically methylates the marine compound to generate the nonnatural hybrid compound 18-O-methylmycalamide A with increased cytotoxicity. To our knowledge, this is the first biochemical evidence that invertebrates can obtain defensive complex polyketides from bacterial symbionts.

  8. 5-氮杂-2'-脱氧胞苷对涎腺腺样囊性癌细胞系细胞MGMT和hMLH1基因表达的影响%Effect of 5-Aza-CdR on O6-methylguanine-DNA methyltransferase and human homosapiens mutL homolog 1 genes expression in salivary adenoid cystic carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    韩一凡; 李江; 王旭; 张春叶; 田臻

    2012-01-01

    Objective To investigate the effect of 5-aza-2'-deoxycytidine (5-Aza-CdR),a methylation inhibitor,on O6-methylguanine-DNA methyltransferase (MGMT) and human homo sapiens mutL homolog 1 (hMLH1) gene expression in salivary adenoid cystic carcinoma(SACC) cell line.Methods Methyl thiazolyl tetraxolium (MTT) assay was used to test the cytotoxicity of 5-Aza-CdR treatment at different concentrations.And then the mRNA expression of hMLH1 and MGMT was detected by reverse trancriptase polymerase chain reaction (RT-PCR) and real time PCR.Results The half maximal inhibitory concentration of a substance(IC50) value of 5-Aza-CdR in SACC-83 and SACC-LM cells was (11.816 ± 0.023) μmoL/L and (5.751 ± 0.049) μmol/L,respectively.RT-PCR and real time PCR showed that mRNA expression level of MGMT and hMLH1 in SACC cells increased after treated by 5-Aza-CdR (P < 0.01).Conclusions 5-Aza-CdR can change cells morphology and up-regulate mRNA expression of MGMT and hMLH1,which may be correlated with the reversion of hypermethylation status on these gene promoters in tumor cells.%目的 观察5-氮杂-2’-脱氧胞苷(5-aza-2-deoxycytidine,5-Aza-CdR)对体外培养人涎腺腺样囊性癌(salivary adenoid cystic carcinoma,SACC)细胞系细胞O6-甲基鸟嘌呤-DNA甲基转移酶(O6-methylguanine-DNA methyhransferase,MGMT)和人类mutL同源物1(homo sapiens mutL homolog 1,hMLH1)基因表达的影响,探讨DNA甲基转移酶抑制剂应用于SACC治疗的可行性及机制.方法 用不同浓度5-Aza-CdR分别处理体外培养SACC-83和SACC-LM细胞作为药物处理组,以药物处理浓度0 μmol/L为对照组.甲基噻唑基四唑法确定5-Aza-CdR的半数抑制浓度(half maximal inhibitory concentration of a substance,IC50);实时聚合酶链反应和反转录聚合酶链反应检测用药后细胞中MGMT和hMLH1 mRNA表达水平.结果 药物处理细胞24 h后细胞形态发生变化,并且随时间延长变化愈加显著.5-Aza-CdR对SACC-83和SACC-LM细胞的IC50

  9. Cloning and characterization of a cDNA from Aspergillus parasiticus encoding an O-methyltransferase involved in aflatoxin biosynthesis.

    Science.gov (United States)

    Yu, J; Cary, J W; Bhatnagar, D; Cleveland, T E; Keller, N P; Chu, F S

    1993-11-01

    Aflatoxins are polyketide-derived secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. Among the catalytic steps in the aflatoxin biosynthetic pathway, the conversion of sterigmatocystin to O-methylsterigmatocystin and the conversion of dihydrosterigmatocystin to dihydro-O-methylsterigmatocystin are catalyzed by an S-adenosylmethionine-dependent O-methyltransferase. A cDNA library was constructed by using RNA isolated from a 24-h-old culture of wild-type A. parasiticus SRRC 143 and was screened by using polyclonal antiserum raised against a purified 40-kDa O-methyltransferase protein. A clone that harbored a full-length cDNA insert (1,460 bp) containing the 1,254-bp coding region of the gene omt-1 was identified by the antiserum and isolated. The complete cDNA sequence was determined, and the corresponding 418-amino-acid sequence of the native enzyme with a molecular weight of 46,000 was deduced. This 46-kDa native enzyme has a leader sequence of 41 amino acids, and the mature form of the enzyme apparently consists of 377 amino acids and has a molecular weight of 42,000. Direct sequencing of the purified mature enzyme from A. parasiticus SRRC 163 showed that 19 of 22 amino acid residues were identical to the amino acid residues in an internal region of the deduced amino acid sequence of the mature protein. The 1,460-bp omt-1 cDNA was cloned into an Escherichia coli expression system; a Western blot (immunoblot) analysis of crude extracts from this expression system revealed a 51-kDa fusion protein (fused with a 5-kDa beta-galactosidase N-terminal fragment).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8285664

  10. Human Mitochondrial Transcription Factor B1 Interacts with the C-Terminal Activation Region of h-mtTFA and Stimulates Transcription Independently of Its RNA Methyltransferase Activity

    OpenAIRE

    McCulloch, Vicki; Shadel, Gerald S.

    2003-01-01

    A significant advancement in understanding mitochondrial gene expression is the recent identification of two new human mitochondrial transcription factors, h-mtTFB1 and h-mtTFB2. Both proteins stimulate transcription in collaboration with the high-mobility group box transcription factor, h-mtTFA, and are homologous to rRNA methyltransferases. In fact, the dual-function nature of h-mtTFB1 was recently demonstrated by its ability to methylate a conserved rRNA substrate. Here, we demonstrate tha...

  11. Molecular cloning and characterization of the gene encoding the adenine methyltransferase M.CviRI from Chlorella virus XZ-6E.

    OpenAIRE

    Stefan, C; Xia, Y N; Van Etten, J L

    1991-01-01

    The gene encoding the DNA methyltransferase M.CviRI from Chlorella virus XZ-6E was cloned and expressed in Escherichia coli. M.CviRI methylates adenine in TGCA sequences. DNA containing the M.CviRI gene was sequenced and a single open reading frame of 1137 bp was identified which could code for a polypeptide of 379 amino acids with a predicted molecular weight of 42,814. Comparison of the M.CviRI predicted amino acid sequence with another Chlorella virus and 14 bacterial adenine methyltransfe...

  12. Increasing DNA repair methyltransferase levels via bone marrow stem cell transduction rescues mice from the toxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea, a chemotherapeutic alkylating agent.

    OpenAIRE

    R. Maze; Carney, J P; Kelley, M R; Glassner, B J; Williams, D.A.; Samson, L

    1996-01-01

    The chloroethylnitrosourea (CNU) alkylating agents are commonly used for cancer chemotherapy, but their usefulness is limited by severe bone marrow toxicity that causes the cumulative depletion of all hematopoietic lineages (pancytopenia). Bone marrow CNU sensitivity is probably due to the inefficient repair of CNU-induced DNA damage; relative to other tissues, bone marrow cells express extremely low levels of the O6-methylguanine DNA methyltransferase (MGMT) protein that repairs cytotoxic O6...

  13. Identification of 1,2,3,4,6-Penta-O-galloyl-β-d-glucopyranoside as a Glycine N-Methyltransferase Enhancer by High-Throughput Screening of Natural Products Inhibits Hepatocellular Carcinoma

    OpenAIRE

    Rajni Kant; Chia-Hung Yen; Chung-Kuang Lu; Ying-Chi Lin; Jih-Heng Li; Yi-Ming Arthur Chen

    2016-01-01

    Glycine N-methyltransferase (GNMT) expression is vastly downregulated in hepatocellular carcinomas (HCC). High rates of GNMT knockout mice developed HCC, while overexpression of GNMT prevented aflatoxin-induced carcinogenicity and inhibited liver cancer cell proliferation. Therefore, in this study, we aimed for the identification of a GNMT inducer for HCC therapy. We established a GNMT promoter-driven luciferase reporter assay as a drug screening platform. Screening of 324 pure compounds and ...

  14. O-6-methylguanine-deoxyribonucleic acid methyltransferase methylation enhances response to temozolomide treatment in esophageal cancer

    Directory of Open Access Journals (Sweden)

    Rifat Hasina

    2013-01-01

    Full Text Available Background: World-wide, esophageal cancer is a growing epidemic and patients frequently present with advanced disease that is surgically inoperable. Hence, chemotherapy is the predominate treatment. Cytotoxic platinum compounds are mostly used, but their efficacy is only moderate. Newer alkylating agents have shown promise in other tumor types, but little is known about their utility in esophageal cancer. Methods: We utilized archived human esophageal cancer samples and esophageal cancer cell lines to evaluate O-6-methylguanine-deoxyribonucleic acid methyltransferase (MGMT hypermethylation status and determined sensitivity to the alkylating drug temozolomide (TMZ. Immunoblot analysis was performed to determine MGMT protein expression in cell lines. To assess and confirm the effect of TMZ treatment in a methylated esophageal cancer cell line in vivo, a mouse flank xenograft tumor model was utilized. Results: Nearly 71% (12/17 of adenocarcinoma and 38% (3/8 of squamous cell carcinoma (SCC patient samples were MGMT hypermethylated. Out of four adenocarcinoma and nine SCC cell lines tested, one of each histology was hypermethylated. Immunoblot analyses confirmed that hypermethylated cell lines did not express the MGMT protein. In vitro cell viability assays showed the methylated Kyse-140 and FLO cells to be sensitive to TMZ at an IC 50 of 52-420 μM, whereas unmethylated cells Kyse-410 and SKGT-4 did not respond. In an in vivo xenograft tumor model with Kyse-140 cells, which are MGMT hypermethylated, TMZ treatment abrogated tumor growth by more than 60%. Conclusion: MGMT methylation may be an important biomarker in subsets of esophageal cancers and targeting by TMZ may be utilized to successfully treat these patients.

  15. Thiopurine methyltransferase predicts the extent of cytotoxicty and DNA damage in astroglial cells after thioguanine exposure.

    Directory of Open Access Journals (Sweden)

    Amira Hosni-Ahmed

    Full Text Available Thiopurine methyltransferase (Tpmt is the primary enzyme responsible for deactivating thiopurine drugs. Thiopurine drugs (i.e., thioguanine [TG], mercaptopurine, azathioprine are commonly used for the treatment of cancer, organ transplant, and autoimmune disorders. Chronic thiopurine therapy has been linked to the development of brain cancer (most commonly astrocytomas, and Tpmt status has been associated with this risk. Therefore, we investigated whether the level of Tpmt protein activity could predict TG-associated cytotoxicity and DNA damage in astrocytic cells. We found that TG induced cytotoxicity in a dose-dependent manner in Tpmt(+/+, Tpmt(+/- and Tpmt(-/- primary mouse astrocytes and that a low Tpmt phenotype predicted significantly higher sensitivity to TG than did a high Tpmt phenotype. We also found that TG exposure induced significantly more DNA damage in the form of single strand breaks (SSBs and double strand breaks (DSBs in primary astrocytes with low Tpmt versus high Tpmt. More interestingly, we found that Tpmt(+/- astrocytes had the highest degree of cytotoxicity and genotoxicity (i.e., IC(50, SSBs and DSBs after TG exposure. We then used human glioma cell lines as model astroglial cells to represent high (T98 and low (A172 Tpmt expressers and found that A172 had the highest degree of cytoxicity and SSBs after TG exposure. When we over-expressed Tpmt in the A172 cell line, we found that TG IC(50 was significantly higher and SSB's were significantly lower as compared to mock transfected cells. This study shows that low Tpmt can lead to greater sensitivity to thiopurine therapy in astroglial cells. When Tpmt deactivation at the germ-line is considered, this study also suggests that heterozygosity may be subject to the greatest genotoxic effects of thiopurine therapy.

  16. Purification, crystallization and preliminary X-ray crystallographic analysis of 23S RNA m2G2445 methyltransferase RlmL from Escherichia coli

    International Nuclear Information System (INIS)

    RlmL, a 23S rRNA m2G2445 methyltransferase from Escherichia coli, was expressed, purified and crystallized, and crystals diffracted to 2.2 Å. The RlmL (YcbY) protein in Escherichia coli is an rRNA methyltransferase that is specific for m2G2445 modification of 23S RNA. The rlmL gene was cloned into the expression vector pET28a and expressed in the host E. coli strain BL21 (DE3). Recombinant protein with a six-histidine tag was purified by Ni2+-affinity chromatography followed by gel filtration. Crystals were grown using the hanging-drop vapour-diffusion method and a detergent was used as an additive to improve diffraction quality. The final crystals diffracted to 2.2 Å resolution. The crystals belonged to space group P21, with unit-cell parameters a = 73.6, b = 140.8, c = 102.9 Å, β = 102.3°. The crystal has a most probable solvent content of 62.8% with two molecules in the asymmetric unit

  17. Characterization of the phospholipid methyltransferase in RBC ghost preparations

    International Nuclear Information System (INIS)

    The activity of the phospholipid methyltransferase from human RBC ghosts was studied using radio-HPLC techniques to analyze the products. Both monomethyl phosphatidyl ethanolamine (MMPE) and dimethyl phosphatidyl ethanolamine (DMPE) were used as substrated. The reaction rate was linear for 45 min. Apparent K/sub M/s of 24-28 uM and 19-21 uM were measured for these two substrates, respectively. The reaction rate was not linear with protein. It appeared to increase logarithmic. An apparent K/sub M/ for S-adenosylmethionine was 36-45 uM. These K/sub M/ values are similar to those reported by others for liver. As the concentration of MMPE was increased, the ratio of DMPE/PC also increased due largely to a greater increase in DMPE formation. Optimal reaction rates for the formation of DMPE were 0.9-1.3 pmol/mg/min, and an optimal rate of about 1.7-2.4 pmol/min/mg was measured for the conversion of DMPE to phosphatidyl choline (PC). Freezing the ghost preparation did not affect the activity of the enzyme. When no exogenous phospholipid was added to the incubation, the sum of the formation rates of all three methylated products was about 26 pmol/mg/hr. The relative amount of each product was 46% MMPE, 32% DMPE and 22% PC. When either MMPE or DMPE was added as substrate, the formation of MMPE was reduced to less than 1%

  18. Theoretical insights into catalytic mechanism of protein arginine methyltransferase 1.

    Directory of Open Access Journals (Sweden)

    Ruihan Zhang

    Full Text Available Protein arginine methyltransferase 1 (PRMT1, the major arginine asymmetric dimethylation enzyme in mammals, is emerging as a potential drug target for cancer and cardiovascular disease. Understanding the catalytic mechanism of PRMT1 will facilitate inhibitor design. However, detailed mechanisms of the methyl transfer process and substrate deprotonation of PRMT1 remain unclear. In this study, we present a theoretical study on PRMT1 catalyzed arginine dimethylation by employing molecular dynamics (MD simulation and quantum mechanics/molecular mechanics (QM/MM calculation. Ternary complex models, composed of PRMT1, peptide substrate, and S-adenosyl-methionine (AdoMet as cofactor, were constructed and verified by 30-ns MD simulation. The snapshots selected from the MD trajectory were applied for the QM/MM calculation. The typical SN2-favored transition states of the first and second methyl transfers were identified from the potential energy profile. Deprotonation of substrate arginine occurs immediately after methyl transfer, and the carboxylate group of E144 acts as proton acceptor. Furthermore, natural bond orbital analysis and electrostatic potential calculation showed that E144 facilitates the charge redistribution during the reaction and reduces the energy barrier. In this study, we propose the detailed mechanism of PRMT1-catalyzed asymmetric dimethylation, which increases insight on the small-molecule effectors design, and enables further investigations into the physiological function of this family.

  19. The Role of Protein Arginine Methyltransferases in Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Ji Hye Kim

    2016-01-01

    Full Text Available Protein arginine methyltransferases (PRMTs mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV. Although most PRMTs do not require posttranslational modification (PTM to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6 in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses.

  20. Euchromatin histone methyltransferase 1 regulates cortical neuronal network development

    Science.gov (United States)

    Bart Martens, Marijn; Frega, Monica; Classen, Jessica; Epping, Lisa; Bijvank, Elske; Benevento, Marco; van Bokhoven, Hans; Tiesinga, Paul; Schubert, Dirk; Nadif Kasri, Nael

    2016-01-01

    Heterozygous mutations or deletions in the human Euchromatin histone methyltransferase 1 (EHMT1) gene cause Kleefstra syndrome, a neurodevelopmental disorder that is characterized by autistic-like features and severe intellectual disability (ID). Neurodevelopmental disorders including ID and autism may be related to deficits in activity-dependent wiring of brain circuits during development. Although Kleefstra syndrome has been associated with dendritic and synaptic defects in mice and Drosophila, little is known about the role of EHMT1 in the development of cortical neuronal networks. Here we used micro-electrode arrays and whole-cell patch-clamp recordings to investigate the impact of EHMT1 deficiency at the network and single cell level. We show that EHMT1 deficiency impaired neural network activity during the transition from uncorrelated background action potential firing to synchronized network bursting. Spontaneous bursting and excitatory synaptic currents were transiently reduced, whereas miniature excitatory postsynaptic currents were not affected. Finally, we show that loss of function of EHMT1 ultimately resulted in less regular network bursting patterns later in development. These data suggest that the developmental impairments observed in EHMT1-deficient networks may result in a temporal misalignment between activity-dependent developmental processes thereby contributing to the pathophysiology of Kleefstra syndrome. PMID:27767173

  1. Anhydrobiosis vs. aging: comparative genomics of protein repair L-isoaspartyl methyltransferases in the sleeping chironomid. .

    Science.gov (United States)

    Gusev, Oleg; Kikawada, Takahiro; Shagimardanova, Elena; Suetsugu, Yoshitaka; Ayupov, Rustam

    Origin of anhydrobiosis in the larvae of the sleeping chironomid Polypedilum vanderplanki represents unique example of set of evolutionary events in a single species, resulted in acquiring new ability allowing survival in extremely changeable environment. Complex comparative analysis of the genome of P. vanderplanki resulted in discovery of a set of features, including existence of the set of unique clusters of genes contributing in desiccation resistance. Surprisingly, in several cases, the genes mainly contributing to the formation of the molecular shield in the larvae are sleeping chironomid-specific and have no homology with genes from other insects, including P. nubifer - a chironomid from the same genus. Protein L-isoaspartyl methyltransferase (PIMT) acts on proteins that have been non-enzymatically damaged due to age, and partially restores aspartic residues, extending life of the polypeptides. PIMT a highly conserved enzyme present in nearly all eukaryotes, and microorganisms mostly in a single copy (or in a few isoforms in certain plants and some bacteria). While conducting a comparative analysis of the genomes of two chironomid midge species different in their ability to stand complete water loss, we have noticed that structure and number of PIMT-coding genes in the desiccation resistant (anhydrobiotic) midge (Polypedilum vanderplanki, Pv) is different from those of the common desiccation-sensitive midge (Polypedilum nubifer, Pn) and the rest of insects. Both species have a clear orthologous PIMT shared by all insects. At the same time, in contrast to Pn which has only one PIMT gene (PnPimt-1), the Pv genome contains 12 additional genes paralogous to Pimt1 (PvPimt-2-12) presumably coding functional PIMT proteins, which are arranged in a single cluster. Remarkably, PvPimt-1 location in the Pv is different from the rest of Pimt-like genes. PvPimt-1 gene is ubiquitously expressed during the life cycle, but expression of the PvPimt2-12 is limited to the eggs

  2. Involvement of histone methyltransferase GLP in HIV-1 latency through catalysis of H3K9 dimethylation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Donglin; Qu, Xiying; Li, Lin; Zhou, Xin; Liu, Sijie; Lin, Shiguan; Wang, Pengfei; Liu, Shaohui; Kong, Chuijin; Wang, Xiaohui; Liu, Lin; Zhu, Huanzhang, E-mail: hzzhu@fudan.edu.cn

    2013-06-05

    Understanding the mechanism of HIV-1 latency is crucial to eradication of the viral reservoir in HIV-1-infected individuals. However, the role of histone methyltransferase (HMT) G9a-like protein (GLP) in HIV-1 latency is still unclear. In the present work, we established four clonal cell lines containing HIV-1 vector. We found that the integration sites of most clonal cell lines favored active gene regions. However, we also observed hypomethylation of CpG of HIV 5′LTR in all four clonal cell lines. Additionally, 5′-deoxy-5′-methylthioadenosine (MTA), a broad-spectrum histone methyltransferase inhibitor, was used to examine the role of histone methylation in HIV-1 latency. MTA was found to decrease the level of H3K9 dimethylation, causing reactivation of latent HIV-1 in C11 cells. GLP knockdown by small interfering RNA clearly induced HIV-1 LTR expression. Results suggest that GLP may play a significant role in the maintenance of HIV-1 latency by catalyzing dimethylation of H3K9. - Highlights: ► We have established an in vitro model of HIV-1 latency. ► The integration sites of most clonal cell lines favor in active gene regions. ► Hypomethylation occurs in CpG islands of HIV 5′LTR in all four clonal cell lines. ► MTA can reactivate latent HIV-1 by decreasing the level of H3K9 me2 in C11 cells. ► HMT GLP may play a significant role in the maintenance of HIV-1 latency.

  3. Functional characterization of two new members of the caffeoyl CoA O-methyltransferase-like gene family from Vanilla planifolia reveals a new class of plastid-localized O-methyltransferases.

    Science.gov (United States)

    Widiez, Thomas; Hartman, Thomas G; Dudai, Nativ; Yan, Qing; Lawton, Michael; Havkin-Frenkel, Daphna; Belanger, Faith C

    2011-08-01

    Caffeoyl CoA O-methyltransferases (OMTs) have been characterized from numerous plant species and have been demonstrated to be involved in lignin biosynthesis. Higher plant species are known to have additional caffeoyl CoA OMT-like genes, which have not been well characterized. Here, we identified two new caffeoyl CoA OMT-like genes by screening a cDNA library from specialized hair cells of pods of the orchid Vanilla planifolia. Characterization of the corresponding two enzymes, designated Vp-OMT4 and Vp-OMT5, revealed that in vitro both enzymes preferred as a substrate the flavone tricetin, yet their sequences and phylogenetic relationships to other enzymes are distinct from each other. Quantitative analysis of gene expression indicated a dramatic tissue-specific expression pattern for Vp-OMT4, which was highly expressed in the hair cells of the developing pod, the likely location of vanillin biosynthesis. Although Vp-OMT4 had a lower activity with the proposed vanillin precursor, 3,4-dihydroxybenzaldehyde, than with tricetin, the tissue specificity of expression suggests it may be a candidate for an enzyme involved in vanillin biosynthesis. In contrast, the Vp-OMT5 gene was mainly expressed in leaf tissue and only marginally expressed in pod hair cells. Phylogenetic analysis suggests Vp-OMT5 evolved from a cyanobacterial enzyme and it clustered within a clade in which the sequences from eukaryotic species had predicted chloroplast transit peptides. Transient expression of a GFP-fusion in tobacco demonstrated that Vp-OMT5 was localized in the plastids. This is the first flavonoid OMT demonstrated to be targeted to the plastids.

  4. Mechanistic studies on transcriptional coactivator protein arginine methyltransferase 1.

    Science.gov (United States)

    Rust, Heather L; Zurita-Lopez, Cecilia I; Clarke, Steven; Thompson, Paul R

    2011-04-26

    Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups from S-adenosylmethionine (SAM) to the guanidinium group of arginine residues in a number of important cell signaling proteins. PRMT1 is the founding member of this family, and its activity appears to be dysregulated in heart disease and cancer. To begin to characterize the catalytic mechanism of this isozyme, we assessed the effects of mutating a number of highly conserved active site residues (i.e., Y39, R54, E100, E144, E153, M155, and H293), which are believed to play key roles in SAM recognition, substrate binding, and catalysis. The results of these studies, as well as pH-rate studies, and the determination of solvent isotope effects (SIEs) indicate that M155 plays a critical role in both SAM binding and the processivity of the reaction but is not responsible for the regiospecific formation of asymmetrically dimethylated arginine (ADMA). Additionally, mutagenesis studies on H293, combined with pH studies and the lack of a normal SIE, do not support a role for this residue as a general base. Furthermore, the lack of a normal SIE with either the wild type or catalytically impaired mutants suggests that general acid/base catalysis is not important for promoting methyl transfer. This result, combined with the fact that the E144A/E153A double mutant retains considerably more activity then the single mutants alone, suggests that the PRMT1-catalyzed reaction is primarily driven by bringing the substrate guanidinium into the proximity of the S-methyl group of SAM and that the prior deprotonation of the substrate guanidinium is not required for methyl transfer.

  5. Structural Basis of Substrate Recognition in Thiopurine S-Methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yi; Feng, Qiping; Wilk, Dennis; Adjei, Araba A.; Salavaggione, Oreste E.; Weinshilboum, Richard M.; Yee, Vivien C. (Case Western); (MCCM)

    2008-09-23

    Thiopurine S-methyltransferase (TPMT) modulates the cytotoxic effects of thiopurine prodrugs such as 6-mercaptopurine by methylating them in a reaction using S-adenosyl-l-methionine as the donor. Patients with TPMT variant allozymes exhibit diminished levels of protein and/or enzyme activity and are at risk for thiopurine drug-induced toxicity. We have determined two crystal structures of murine TPMT, as a binary complex with the product S-adenosyl-l-homocysteine and as a ternary complex with S-adenosyl-l-homocysteine and the substrate 6-mercaptopurine, to 1.8 and 2.0 {angstrom} resolution, respectively. Comparison of the structures reveals that an active site loop becomes ordered upon 6-mercaptopurine binding. The positions of the two ligands are consistent with the expected S{sub N}2 reaction mechanism. Arg147 and Arg221, the only polar amino acids near 6-mercaptopurine, are highlighted as possible participants in substrate deprotonation. To probe whether these residues are important for catalysis, point mutants were prepared in the human enzyme. Substitution of Arg152 (Arg147 in murine TPMT) with glutamic acid decreases V{sub max} and increases K{sub m} for 6-mercaptopurine but not K{sub m} for S-adenosyl-l-methionine. Substitution at this position with alanine or histidine and similar substitutions of Arg226 (Arg221 in murine TPMT) result in no effect on enzyme activity. The double mutant Arg152Ala/Arg226Ala exhibits a decreased V{sub max} and increased K{sub m} for 6-mercaptopurine. These observations suggest that either Arg152 or Arg226 may participate in some fashion in the TPMT reaction, with one residue compensating when the other is altered, and that Arg152 may interact with substrate more directly than Arg226, consistent with observations in the murine TPMT crystal structure.

  6. Negative in vitro selection identifies the rRNA recognition motif for ErmE methyltransferase

    DEFF Research Database (Denmark)

    Nielsen, A K; Douthwaite, S; Vester, B

    1999-01-01

    Erm methyltransferases modify bacterial 23S ribosomal RNA at adenosine 2058 (A2058, Escherichia coli numbering) conferring resistance to macrolide, lincosamide, and streptogramin B (MLS) antibiotics. The motif that is recognized by Erm methyltransferases is contained within helix 73 of 23S r......RNA and the adjacent single-stranded region around A2058. An RNA transcript of 72 nt that displays this motif functions as an efficient substrate for the ErmE methyltransferase. Pools of degenerate RNAs were formed by doping 34-nt positions that extend over and beyond the putative Erm recognition motif within the 72......-mer RNA. The RNAs were passed through a series of rounds of methylation with ErmE. After each round, RNAs were selected that had partially or completely lost their ability to be methylated. After several rounds of methylation/selection, 187 subclones were analyzed. Forty-three of the subclones...

  7. Discovery of a Potent Class I Protein Arginine Methyltransferase Fragment Inhibitor.

    Science.gov (United States)

    Ferreira de Freitas, Renato; Eram, Mohammad S; Szewczyk, Magdalena M; Steuber, Holger; Smil, David; Wu, Hong; Li, Fengling; Senisterra, Guillermo; Dong, Aiping; Brown, Peter J; Hitchcock, Marion; Moosmayer, Dieter; Stegmann, Christian M; Egner, Ursula; Arrowsmith, Cheryl; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Schapira, Matthieu

    2016-02-11

    Protein methyltransferases (PMTs) are a promising target class in oncology and other disease areas. They are composed of SET domain methyltransferases and structurally unrelated Rossman-fold enzymes that include protein arginine methyltransferases (PRMTs). In the absence of a well-defined medicinal chemistry tool-kit focused on PMTs, most current inhibitors were identified by screening large and diverse libraries of leadlike molecules. So far, no successful fragment-based approach was reported against this target class. Here, by deconstructing potent PRMT inhibitors, we find that chemical moieties occupying the substrate arginine-binding site can act as efficient fragment inhibitors. Screening a fragment library against PRMT6 produced numerous hits, including a 300 nM inhibitor (ligand efficiency of 0.56) that decreased global histone 3 arginine 2 methylation in cells, and can serve as a warhead for the development of PRMT chemical probes.

  8. The Roles of Two miRNAs in Regulating the Immune Response of Sea Cucumber.

    Science.gov (United States)

    Zhang, Pengjuan; Li, Chenghua; Zhang, Ran; Zhang, Weiwei; Jin, Chunhua; Wang, Lingling; Song, Linsheng

    2015-12-01

    MicroRNAs (miRNAs) have emerged as key regulators in many pathological processes by suppressing the transcriptional and post-transcriptional expression of target genes. MiR-2008 was previously found to be significantly up-regulated in diseased sea cucumber Apostichopus japonicus by high-through sequencing, whereas the reads of miR-137, a well-documented tumor repressor, displayed no significant change. In the present study, we found that miR-137 expression was slightly attenuated and miR-2008 was significantly enhanced after Vibrio splendidus infection or Lipopolysaccharides application. Further target screening and dual-luciferase reporter assay revealed that the two important miRNAs shared a common target gene of betaine-homocysteine S-methyltransferase (AjBHMT), which exhibited noncorrelated messenger RNA and protein expression patterns after bacterial challenge. In order to fully understand their regulatory mechanisms, we conducted the functional experiments in vitro and in vivo. The overexpression of miR-137 in sea cucumber or primary coelomocytes significantly decreased, whereas the inhibition of miR-137 increased the mRNA and protein expression levels of AjBHMT. In contrast, miR-2008 overexpression and inhibition showed no effect on AjBHMT mRNA levels, but the concentration of AjBHMT protein displayed significant changes both in vitro and in vivo. Consistently, the homocysteine (Hcy) contents were also accordingly altered in the aberrant expression analysis of both miRNAs, consistent with the results of the AjBHMT silencing assay in vitro and in vivo. More importantly, small interfering RNA mediated AjBHMT knockdown and Hcy exposure analyses both significantly increased reactive oxygen species (ROS) production and decreased the number of surviving invasive pathogen in sea cucumber coelomocytes. Taken together, these findings confirmed the differential roles of sea cucumber miR-137 and miR-2008 in regulating the common target AjBHMT to promote ROS production

  9. Liver proteomics in progressive alcoholic steatosis

    International Nuclear Information System (INIS)

    Fatty liver is an early stage of alcoholic and nonalcoholic liver disease (ALD and NALD) that progresses to steatohepatitis and other irreversible conditions. In this study, we identified proteins that were differentially expressed in the livers of rats fed 5% ethanol in a Lieber–DeCarli diet daily for 1 and 3 months by discovery proteomics (two-dimensional gel electrophoresis and mass spectrometry) and non-parametric modeling (Multivariate Adaptive Regression Splines). Hepatic fatty infiltration was significantly higher in ethanol-fed animals as compared to controls, and more pronounced at 3 months of ethanol feeding. Discovery proteomics identified changes in the expression of proteins involved in alcohol, lipid, and amino acid metabolism after ethanol feeding. At 1 and 3 months, 12 and 15 different proteins were differentially expressed. Of the identified proteins, down regulation of alcohol dehydrogenase (− 1.6) at 1 month and up regulation of aldehyde dehydrogenase (2.1) at 3 months could be a protective/adaptive mechanism against ethanol toxicity. In addition, betaine-homocysteine S-methyltransferase 2 a protein responsible for methionine metabolism and previously implicated in fatty liver development was significantly up regulated (1.4) at ethanol-induced fatty liver stage (1 month) while peroxiredoxin-1 was down regulated (− 1.5) at late fatty liver stage (3 months). Nonparametric analysis of the protein spots yielded fewer proteins and narrowed the list of possible markers and identified D-dopachrome tautomerase (− 1.7, at 3 months) as a possible marker for ethanol-induced early steatohepatitis. The observed differential regulation of proteins have potential to serve as biomarker signature for the detection of steatosis and its progression to steatohepatitis once validated in plasma/serum. -- Graphical abstract: The figure shows the Hierarchial cluster analysis of differentially expressed protein spots obtained after ethanol feeding for 1 (1–3

  10. Liver proteomics in progressive alcoholic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Harshica [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Wiktorowicz, John E.; Soman, Kizhake V. [Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Kaphalia, Bhupendra S.; Khan, M. Firoze [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Shakeel Ansari, G.A., E-mail: sansari@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-02-01

    Fatty liver is an early stage of alcoholic and nonalcoholic liver disease (ALD and NALD) that progresses to steatohepatitis and other irreversible conditions. In this study, we identified proteins that were differentially expressed in the livers of rats fed 5% ethanol in a Lieber–DeCarli diet daily for 1 and 3 months by discovery proteomics (two-dimensional gel electrophoresis and mass spectrometry) and non-parametric modeling (Multivariate Adaptive Regression Splines). Hepatic fatty infiltration was significantly higher in ethanol-fed animals as compared to controls, and more pronounced at 3 months of ethanol feeding. Discovery proteomics identified changes in the expression of proteins involved in alcohol, lipid, and amino acid metabolism after ethanol feeding. At 1 and 3 months, 12 and 15 different proteins were differentially expressed. Of the identified proteins, down regulation of alcohol dehydrogenase (− 1.6) at 1 month and up regulation of aldehyde dehydrogenase (2.1) at 3 months could be a protective/adaptive mechanism against ethanol toxicity. In addition, betaine-homocysteine S-methyltransferase 2 a protein responsible for methionine metabolism and previously implicated in fatty liver development was significantly up regulated (1.4) at ethanol-induced fatty liver stage (1 month) while peroxiredoxin-1 was down regulated (− 1.5) at late fatty liver stage (3 months). Nonparametric analysis of the protein spots yielded fewer proteins and narrowed the list of possible markers and identified D-dopachrome tautomerase (− 1.7, at 3 months) as a possible marker for ethanol-induced early steatohepatitis. The observed differential regulation of proteins have potential to serve as biomarker signature for the detection of steatosis and its progression to steatohepatitis once validated in plasma/serum. -- Graphical abstract: The figure shows the Hierarchial cluster analysis of differentially expressed protein spots obtained after ethanol feeding for 1 (1–3

  11. Approaches to enzyme and substrate design of the murine Dnmt3a DNA methyltransferase.

    Science.gov (United States)

    Jurkowska, Renata Z; Siddique, Abu Nasar; Jurkowski, Tomasz P; Jeltsch, Albert

    2011-07-01

    Dnmt3a-C, the catalytic domain of the Dnmt3a DNA-(cytosine-C5)-methyltransferase, is active in an isolated form but, like the full-length Dnmt3a, shows only weak DNA methylation activity. To improve this activity by directed evolution, we set up a selection system in which Dnmt3a-C methylated its own expression plasmid in E. coli, and protected it from cleavage by methylation-sensitive restriction enzymes. However, despite screening about 400 clones that were selected in three rounds from a random mutagenesis library of 60 000 clones, we were not able to isolate a variant with improved activity, most likely because of a background of uncleaved plasmids and plasmids that had lost the restriction sites. To improve the catalytic activity of Dnmt3a-C by optimization of the sequence of the DNA substrate, we analyzed its flanking-sequence preference in detail by bisulfite DNA-methylation analysis and sequencing of individual clones. Based on the enrichment and depletion of certain bases in the positions flanking >1300 methylated CpG sites, we were able to define a sequence-preference profile for Dnmt3a-C from the -6 to the +6 position of the flanking sequence. This revealed preferences for T over a purine at position -2, A over G at -1, a pyrimidine at +1, and A and T over G at +3. We designed one "good" substrate optimized for methylation and one "bad" substrate designed not to be efficiently methylated, and showed that the optimized substrate is methylated >20 times more rapidly at its central CpG site. The optimized Dnmt3a-C substrate can be applied in enzymatic high-throughput assays with Dnmt3a-C (e.g., for inhibitor screening), because the increased activity provides an improved dynamic range and better signal/noise ratio.

  12. DNA methyltransferase activity is required for memory-related neural plasticity in the lateral amygdala.

    Science.gov (United States)

    Maddox, Stephanie A; Watts, Casey S; Schafe, Glenn E

    2014-01-01

    We have previously shown that auditory Pavlovian fear conditioning is associated with an increase in DNA methyltransferase (DNMT) expression in the lateral amygdala (LA) and that intra-LA infusion or bath application of an inhibitor of DNMT activity impairs the consolidation of an auditory fear memory and long-term potentiation (LTP) at thalamic and cortical inputs to the LA, in vitro. In the present study, we use awake behaving neurophysiological techniques to examine the role of DNMT activity in memory-related neurophysiological changes accompanying fear memory consolidation and reconsolidation in the LA, in vivo. We show that auditory fear conditioning results in a training-related enhancement in the amplitude of short-latency auditory-evoked field potentials (AEFPs) in the LA. Intra-LA infusion of a DNMT inhibitor impairs both fear memory consolidation and, in parallel, the consolidation of training-related neural plasticity in the LA; that is, short-term memory (STM) and short-term training-related increases in AEFP amplitude in the LA are intact, while long-term memory (LTM) and long-term retention of training-related increases in AEFP amplitudes are impaired. In separate experiments, we show that intra-LA infusion of a DNMT inhibitor following retrieval of an auditory fear memory has no effect on post-retrieval STM or short-term retention of training-related changes in AEFP amplitude in the LA, but significantly impairs both post-retrieval LTM and long-term retention of AEFP amplitude changes in the LA. These findings are the first to demonstrate the necessity of DNMT activity in the consolidation and reconsolidation of memory-associated neural plasticity, in vivo.

  13. Structural Basis of Substrate Recognition in Human Nicotinamide N-Methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yi; Sartini, Davide; Pozzi, Valentina; Wilk, Dennis; Emanuelli, Monica; Yee, Vivien C. (Case Western); (Politecnica Valencia)

    2012-05-02

    Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation of nicotinamide, pyridines, and other analogues using S-adenosyl-L-methionine as donor. NNMT plays a significant role in the regulation of metabolic pathways and is expressed at markedly high levels in several kinds of cancers, presenting it as a potential molecular target for cancer therapy. We have determined the crystal structure of human NNMT as a ternary complex bound to both the demethylated donor S-adenosyl-L-homocysteine and the acceptor substrate nicotinamide, to 2.7 {angstrom} resolution. These studies reveal the structural basis for nicotinamide binding and highlight several residues in the active site which may play roles in nicotinamide recognition and NNMT catalysis. The functional importance of these residues was probed by mutagenesis. Of three residues near the nicotinamide's amide group, substitution of S201 and S213 had no effect on enzyme activity while replacement of D197 dramatically decreased activity. Substitutions of Y20, whose side chain hydroxyl interacts with both the nicotinamide aromatic ring and AdoHcy carboxylate, also compromised activity. Enzyme kinetics analysis revealed k{sub cat}/K{sub m} decreases of 2-3 orders of magnitude for the D197A and Y20A mutants, confirming the functional importance of these active site residues. The mutants exhibited substantially increased K{sub m} for both NCA and AdoMet and modestly decreased k{sub cat}. MD simulations revealed long-range conformational effects which provide an explanation for the large increase in K{sub m}(AdoMet) for the D197A mutant, which interacts directly only with nicotinamide in the ternary complex crystal structure.

  14. Age-Associated Decrease of the Histone Methyltransferase SUV39H1 in HSC Perturbs Heterochromatin and B Lymphoid Differentiation

    Directory of Open Access Journals (Sweden)

    Dounia Djeghloul

    2016-06-01

    Full Text Available The capacity of hematopoietic stem cells (HSC to generate B lymphocytes declines with age, contributing to impaired immune function in the elderly. Here we show that the histone methyltransferase SUV39H1 plays an important role in human B lymphoid differentiation and that expression of SUV39H1 decreases with age in both human and mouse HSC, leading to a global reduction in H3K9 trimethylation and perturbed heterochromatin function. Further, we demonstrate that SUV39H1 is a target of microRNA miR-125b, a known regulator of HSC function, and that expression of miR-125b increases with age in human HSC. Overexpression of miR-125b and inhibition of SUV39H1 in young HSC induced loss of B cell potential. Conversely, both inhibition of miR-125 and enforced expression of SUV39H1 improved the capacity of HSC from elderly individuals to generate B cells. Our findings highlight the importance of heterochromatin regulation in HSC aging and B lymphopoiesis.

  15. The SET-2/SET1 Histone H3K4 Methyltransferase Maintains Pluripotency in the Caenorhabditis elegans Germline

    Directory of Open Access Journals (Sweden)

    Valérie J. Robert

    2014-10-01

    Full Text Available Histone H3 Lys 4 methylation (H3K4me is deposited by the conserved SET1/MLL methyltransferases acting in multiprotein complexes, including Ash2 and Wdr5. Although individual subunits contribute to complex activity, how they influence gene expression in specific tissues remains largely unknown. In Caenorhabditis elegans, SET-2/SET1, WDR-5.1, and ASH-2 are differentially required for germline H3K4 methylation. Using expression profiling on germlines from animals lacking set-2, ash-2, or wdr-5.1, we show that these subunits play unique as well as redundant functions in order to promote expression of germline genes and repress somatic genes. Furthermore, we show that in set-2- and wdr-5.1-deficient germlines, somatic gene misexpression is associated with conversion of germ cells into somatic cells and that nuclear RNAi acts in parallel with SET-2 and WDR-5.1 to maintain germline identity. These findings uncover a unique role for SET-2 and WDR-5.1 in preserving germline pluripotency and underline the complexity of the cellular network regulating this process.

  16. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica.

    Science.gov (United States)

    Waditee, Rungaroon; Tanaka, Yoshito; Aoki, Kenji; Hibino, Takashi; Jikuya, Hiroshi; Takano, Jun; Takabe, Tetsuko; Takabe, Teruhiro

    2003-02-14

    Glycine betaine (N,N,N-trimethylglycine) is an important osmoprotectant and is synthesized in response to abiotic stresses. Although almost all known biosynthetic pathways of betaine are two-step oxidation of choline, here we isolated two N-methyltransferase genes from a halotolerant cyanobacterium Aphanothece halophytica. One of gene products (ORF1) catalyzed the methylation reactions of glycine and sarcosine with S-adenosylmethionine acting as the methyl donor. The other one (ORF2) specifically catalyzed the methylation of dimethylglycine to betaine. Both enzymes are active as monomers. Betaine, a final product, did not show the feed back inhibition for the methyltransferases even in the presence of 2 m. A reaction product, S-adenosyl homocysteine, inhibited the methylation reactions with relatively low affinities. The co-expressing of two enzymes in Escherichia coli increased the betaine level and enhanced the growth rates. Immunoblot analysis revealed that the accumulation levels of both enzymes in A. halophytica cells increased with increasing the salinity. These results indicate that A. halophytica cells synthesize betaine from glycine by a three-step methylation. The changes of amino acids Arg-169 to Lys or Glu in ORF1 and Pro-171 to Gln and/or Met-172 to Arg in ORF2 significantly decreased V(max) and increased K(m) for methyl acceptors (glycine, sarcosine, and dimethylglycine) but modestly affected K(m) for S-adenosylmethionine, indicating the importance of these amino acids for the binding of methyl acceptors. Physiological and functional properties of methyltransferases were discussed. PMID:12466265

  17. DTL, the Drosophila homolog of PIMT/Tgs1 nuclear receptor coactivator-interacting protein/RNA methyltransferase, has an essential role in development.

    Science.gov (United States)

    Komonyi, Orbán; Pápai, Gábor; Enunlu, Izzet; Muratoglu, Selen; Pankotai, Tibor; Kopitova, Darija; Maróy, Péter; Udvardy, Andor; Boros, Imre

    2005-04-01

    We describe a novel Drosophila gene, dtl (Drosophila Tat-like), which encodes a 60-kDa protein with RNA binding activity and a methyltransferase (MTase) domain. Dtl has an essential role in Drosophila development. The homologs of DTL recently described include PIMT (peroxisome proliferator-activated receptor-interacting protein with a methyltransferase domain), an RNA-binding protein that interacts with and enhances the nuclear receptor coactivator function, and TGS1, the methyltransferase involved in the formation of the 2,2,7-trimethylguanosine (m3G) cap of non-coding small RNAs. DTL is expressed throughout all of the developmental stages of Drosophila. The dtl mRNA has two ORFs (uORF and dORF). The product of dORF is the 60-kDa PIMT/TGS1 homolog protein that is translated from an internal AUG located 538 bp downstream from the 5' end of the message. This product of dtl is responsible for the formation of the m3G cap of small RNAs of Drosophila. Trimethylguanosine synthase activity is essential in Drosophila. The deletion in the dORF or point mutation in the putative MTase active site results in a reduced pool of m3G cap-containing RNAs and lethality in the early pupa stage. The 5' region of the dtl message also has the coding capacity (uORF) for a 178 amino acid protein. For complete rescue of the lethal phenotype of dtl mutants, the presence of the entire dtl transcription unit is required. Transgenes that carry mutations within the uORF restore the MTase activity but result in only partial rescue of the lethal phenotype. Interestingly, two transgenes bearing a mutation in uORF or dORF in trans can result in complete rescue.

  18. The RNA-methyltransferase Misu (NSun2 poises epidermal stem cells to differentiate.

    Directory of Open Access Journals (Sweden)

    Sandra Blanco

    2011-12-01

    Full Text Available Homeostasis of most adult tissues is maintained by balancing stem cell self-renewal and differentiation, but whether post-transcriptional mechanisms can regulate this process is unknown. Here, we identify that an RNA methyltransferase (Misu/Nsun2 is required to balance stem cell self-renewal and differentiation in skin. In the epidermis, this methyltransferase is found in a defined sub-population of hair follicle stem cells poised to undergo lineage commitment, and its depletion results in enhanced quiescence and aberrant stem cell differentiation. Our results reveal that post-transcriptional RNA methylation can play a previously unappreciated role in controlling stem cell fate.

  19. Study on methylation and expressions of p16INK4a,Runx3 and O-6-methylguanine-DNA methyltransferase genes in gastdc carcinogenesis%胃癌形成过程中p16IN4a、Runx3和O-6-甲基鸟嘌呤-DNA甲基转移酶基因甲基化及其表达研究

    Institute of Scientific and Technical Information of China (English)

    张斌; 曹俊; 刘文佳; 陈敏; 邹晓平

    2009-01-01

    目的 研究胃癌形成过程中p16INK4a、Runx3和O-6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)基因启动子区的高甲基化状态,同时检测MGMT的蛋白表达情况.探讨抑癌基因启动子区高甲基化与胃癌发生的关系.方法 选择经透明帽法进行首次黏膜病变切除者43例,其中异型增生27例,早期胃癌16例.选择胃镜活检证实为慢性萎缩性胃炎伴肠上皮化生者14例.另取20例正常胃黏膜活检组织作为对照.采用甲基化特异聚合酶链反应(MSP)检测每例组织中p16INK4a、Runx3和MGMT基因启动子区的甲基化状态,对所有甲基化p16INK4a产物进行测序,免疫组化检测MGMT蛋白表达情况.结果 肠上皮化生、异型增生和早期胃癌中p16INK4a基因甲基化率依次为14.3%(2/14)、22.2%(6/27)和37.5%(6/16);Runx3基因甲基化率依次为14.3%(2/14)、48.1%(13/27)和50.0%(8/16);MGMT基因甲基化率依次为7.1%(1/14)、48.1%(13/27)和50.0%(8/16).20名正常对照均未检出基因甲基化,与异型增生和早期胃癌相比差异有统计学意义(P<0.05).Runx3和MGMT两种基因在异型增生和早期胃癌中的甲基化率显著高于肠上皮化生组(P<0.05).各组病变中三种基因甲基化联合分析发现,异型增生和早期胃癌中甲基化的基因种类高于肠上皮化生组.差异有统计学意义(P<0.01).基因甲基化与息者年龄、性别、幽门螺杆菌感染以及病变部位无相关性,但p16INK4a和MGMT基因甲基化与血清癌胚抗原水平升高显著相关(P值分别为0.003和0.039).MGMT基因启动子区高甲基化与其蛋白失表达密切相关(χ2=12.821,P=0.001).结论 抑癌基因启动子区高甲基化是基因失活的主要机制,可能是胃癌发生的早期分子事件.p16INK4a、Runx3和MGMT基因启动子区高甲基化在胃癌形成过程中起着重要的作用.%Objective To investigate the promoter methylation of p16INK4a,Runx3 and O-6-methylguanine-DNA methyltransferase genes

  20. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells.

    Science.gov (United States)

    Suriguga; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation.

  1. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Suriguga,; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun, E-mail: yizc@buaa.edu.cn

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation.

  2. The critical role of protein arginine methyltransferase prmt8 in zebrafish embryonic and neural development is non-redundant with its paralogue prmt1.

    Directory of Open Access Journals (Sweden)

    Yu-ling Lin

    Full Text Available Protein arginine methyltransferase (PRMT 1 is the most conserved and widely distributed PRMT in eukaryotes. PRMT8 is a vertebrate-restricted paralogue of PRMT1 with an extra N-terminal sequence and brain-specific expression. We use zebrafish (Danio rerio as a vertebrate model to study PRMT8 function and putative redundancy with PRMT1. The transcripts of zebrafish prmt8 were specifically expressed in adult zebrafish brain and ubiquitously expressed from zygotic to early segmentation stage before the neuronal development. Whole-mount in situ hybridization revealed ubiquitous prmt8 expression pattern during early embryonic stages, similar to that of prmt1. Knockdown of prmt8 with antisense morpholino oligonucleotide phenocopied prmt1-knockdown, with convergence/extension defects at gastrulation. Other abnormalities observed later include short body axis, curled tails, small and malformed brain and eyes. Catalytically inactive prmt8 failed to complement the morphants, indicating the importance of methyltransferase activity. Full-length prmt8 but not prmt1 cRNA can rescue the phenotypic changes. Nevertheless, cRNA encoding Prmt1 fused with the N-terminus of Prmt8 can rescue the prmt8 morphants. In contrast, N-terminus- deleted but not full-length prmt8 cRNA can rescue the prmt1 morphants as efficiently as prmt1 cRNA. Abnormal brain morphologies illustrated with brain markers and loss of fluorescent neurons in a transgenic fish upon prmt8 knockdown confirm the critical roles of prmt8 in neural development. In summery, our study is the first report showing the expression and function of prmt8 in early zebrafish embryogenesis. Our results indicate that prmt8 may play important roles non-overlapping with prmt1 in embryonic and neural development depending on its specific N-terminus.

  3. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases

    Directory of Open Access Journals (Sweden)

    Purta Elzbieta

    2007-03-01

    Full Text Available Abstract Background SPOUT methyltransferases (MTases are a large class of S-adenosyl-L-methionine-dependent enzymes that exhibit an unusual alpha/beta fold with a very deep topological knot. In 2001, when no crystal structures were available for any of these proteins, Anantharaman, Koonin, and Aravind identified homology between SpoU and TrmD MTases and defined the SPOUT superfamily. Since then, multiple crystal structures of knotted MTases have been solved and numerous new homologous sequences appeared in the databases. However, no comprehensive comparative analysis of these proteins has been carried out to classify them based on structural and evolutionary criteria and to guide functional predictions. Results We carried out extensive searches of databases of protein structures and sequences to collect all members of previously identified SPOUT MTases, and to identify previously unknown homologs. Based on sequence clustering, characterization of domain architecture, structure predictions and sequence/structure comparisons, we re-defined families within the SPOUT superfamily and predicted putative active sites and biochemical functions for the so far uncharacterized members. We have also delineated the common core of SPOUT MTases and inferred a multiple sequence alignment for the conserved knot region, from which we calculated the phylogenetic tree of the superfamily. We have also studied phylogenetic distribution of different families, and used this information to infer the evolutionary history of the SPOUT superfamily. Conclusion We present the first phylogenetic tree of the SPOUT superfamily since it was defined, together with a new scheme for its classification, and discussion about conservation of sequence and structure in different families, and their functional implications. We identified four protein families as new members of the SPOUT superfamily. Three of these families are functionally uncharacterized (COG1772, COG1901, and COG4080

  4. DNA甲基转移酶在SLE表观遗传中的作用%Roles of DNA methyltransferases in the epigenetic inheritance of systemic lupus erythematosus

    Institute of Scientific and Technical Information of China (English)

    朱小华; 徐金华; 项蕾红

    2009-01-01

    Epigenetic studies have indicated the importance of DNA hypomethylation in the etiology of systemic lupus erythematosus (SLE).DNA methyltransferases is the catalyst of DNA methylation reaction,as well as an important molecule interfering the methylation level.The mRNA transcriptional level and activity of DNA methyltransferases ale regulated by various factors,such as promoter epitope modification,signal transducer and activator of transcription-3 (STAT3),transcription factor Spl and Sp3,tumor-suppressing gene p53,methyl-CpG binding proteins (MeCP2),and so on.The expression and activity of DNA methyltransferases are downregulated in patients with lupus erythematous.which is linked with the DNA hypomethylation of T cells.To investigate the action pathway of DNA methyltransferases in the epigenetic pathogenesis of systemic lupus erythematosus,and to disclose the regulation mechanism of epigenetic inheritance of systemic lupus erythematosus,may provide new strategies and regimens for the treatment of this disease.%SLE的表观遗传学研究显示,DNA低甲基化状态在SLE发病机制中具有重要作用.DNA甲基转移酶是DNA甲基化反应的催化剂,是干预DNA甲基化状态的重要物质.DNA甲基转移酶的转录水平和括性受启动子表位修饰、信号传导与转录激活因子3、肿瘤抑制基因p53、转录因子家族Sp蛋白、甲基化CG序列结合蛋白等多种因素调控.狼疮患者DNA甲基转移酶的表达与活性降低,并与T淋巴细胞DNA低甲基化发生机制相关.探讨DNA甲基转移酶在SLE表观遗传学发病机制中的作用通路,揭示SLE表观遗传学的调控机制,将为SLE治疗提出新的治疗方案.

  5. A NOVEL S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE FROM RAT LIVER CYTOSOL

    Science.gov (United States)

    A Novel S-Adenosyl-L-methionine: Arsenic(III) Methyltransferase from Rat Liver CytosolShan Lin, Qing Shi, F. Brent Nix, Miroslav Styblo, Melinda A. Beck, Karen M. Herbin-Davis, Larry L. Hall, Josef B. Simeonsson, and David J. Thomas S-adenosyl-L-methionine (AdoMet): ar...

  6. Association of Catechol-O-Methyltransferase (COMT) Polymorphism and Academic Achievement in a Chinese Cohort

    Science.gov (United States)

    Yeh, Ting-Kuang; Chang, Chun-Yen; Hu, Chung-Yi; Yeh, Ting-Chi; Lin, Ming-Yeh

    2009-01-01

    Catechol-O-methyltransferase (COMT) is a methylation enzyme that catalyzes the degradation pathway and inactivation of dopamine. It is accepted widely as being involved in the modulation of dopaminergic physiology and prefrontal cortex (PFC) function. The COMT Val158Met polymorphism is associated with variation in COMT activity. COMT 158Met allele…

  7. rmtA, encoding a putative anginine methyltransferase, regulates secondary metabolism and development in Aspergillus flavus

    Science.gov (United States)

    Aspergillus flavus is found colonizing numerous oil seed crops such as corn, peanuts, sorghum, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been de...

  8. Catechol-O-methyltransferase gene methylation and substance use in adolescents : the TRAILS study

    NARCIS (Netherlands)

    van der Knaap, L. J.; Schaefer, J. M.; Franken, I. H. A.; Verhulst, F. C.; van Oort, F. V. A.; Riese, H.

    2014-01-01

    Substance use often starts in adolescence and poses a major problem for society and individual health. The dopamine system plays a role in substance use, and catechol-O-methyltransferase (COMT) is an important enzyme that degrades dopamine. The Val(108/158)Met polymorphism modulates COMT activity an

  9. Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry

    DEFF Research Database (Denmark)

    Vranken, Charlotte; Deen, Jochem; Dirix, Lieve;

    2014-01-01

    We demonstrate an approach to optical DNA mapping, which enables near single-molecule characterization of whole bacteriophage genomes. Our approach uses a DNA methyltransferase enzyme to target labelling to specific sites and copper-catalysed azide-alkyne cycloaddition to couple a fluorophore to ...

  10. SABATH Methyltransferases from White Spruce (Picea glauca [Moench] Voss): Gene Cloning, Functional Characterization and Structural Analysis

    Science.gov (United States)

    Known members of the plant SABATH family of methyltransferases have important biological functions by methylating hormones, signaling molecules and other metabolites. While all previously characterized SABATH genes were isolated from angiosperms, in this article, we report on the isolation and funct...

  11. Catechol-O-methyltransferase gene methylation and substance use in adolescents: The TRAILS study

    NARCIS (Netherlands)

    L.J. van der Knaap (Lisette); J.M. Schäfer (Johanna); I.H.A. Franken (Ingmar); F.C. Verhulst (Frank); F.V.A. van Oort (Floor); H. Riese (Harriëtte)

    2014-01-01

    textabstractSubstance use often starts in adolescence and poses a major problem for society and individual health. The dopamine system plays a role in substance use, and catechol-O-methyltransferase (COMT) is an important enzyme that degrades dopamine. The Val108/158Met polymorphism modul

  12. Global developmental delay in guanidionacetate methyltransferase deficiency : differences in formal testing and clinical observation

    NARCIS (Netherlands)

    Verbruggen, Krijn T.; Knijff, Wilma A.; Soorani-Lunsing, Roelineke J.; Sijens, Paul E.; Verhoeven, Nanda M.; Salomons, Gajja S.; Goorhuis-Brouwer, Siena M.; van Spronsen, Francjan J.

    2007-01-01

    Guanidinoacetate N-methyltransferase (GAMT) deficiency is a defect in the biosynthesis of creatine (Cr). So far, reports have not focused on the description of developmental abilities in this disorder. Here, we present the result of formal testing of developmental abilities in a GAMT-deficient patie

  13. DNA repair methyltransferase (Mgmt) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents.

    NARCIS (Netherlands)

    B.J. Glassner (Brian); G. Weeda (Geert); J.M. Allan (James); J.L.M. Broekhof (Jose'); N.H.E. Carls (Nick); I. Donker (Ingrid); B.P. Engelward (Bevin); R.J. Hampson (Richard); R. Hersmus (Remko); M.J. Hickman (Mark); R.B. Roth (Richard); H.B. Warren (Henry); M.M. Wu (Mavis); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1999-01-01

    textabstractWe have generated mice deficient in O6-methylguanine DNA methyltransferase activity encoded by the murine Mgmt gene using homologous recombination to delete the region encoding the Mgmt active site cysteine. Tissues from Mgmt null mice displayed very low O6-methylguanine DNA methyltransf

  14. Local chromatin microenvironment determines DNMT activity : from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase

    NARCIS (Netherlands)

    van der Wijst, Monique G. P.; Venkiteswaran, Muralidhar; Chen, Hui; Xu, Guo-Liang; Plosch, Torsten; Rots, Marianne G.

    2015-01-01

    Insights on active DNA demethylation disproved the original assumption that DNA methylation is a stable epigenetic modification. Interestingly, mammalian DNA methyltransferases 3A and 3B (DNMT-3A and -3B) have also been reported to induce active DNA demethylation, in addition to their well-known fun

  15. DNA methyltransferase and alcohol dehydrogenase: gene-nutrient interactions in relation to risk of colorectal polyps.

    NARCIS (Netherlands)

    Jung, A.Y.; Poole, E.M.; Bigler, J.; Whitton, J.; Potter, J.D.; Ulrich, C.M.

    2008-01-01

    Disturbances in DNA methylation are a characteristic of colorectal carcinogenesis. Folate-mediated one-carbon metabolism is essential for providing one-carbon groups for DNA methylation via DNA methyltransferases (DNMTs). Alcohol, a folate antagonist, could adversely affect one-carbon metabolism. In

  16. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing

    DEFF Research Database (Denmark)

    Relling, M V; Gardner, E E; Sandborn, W J;

    2011-01-01

    Thiopurine methyltransferase (TPMT) activity exhibits monogenic co-dominant inheritance, with ethnic differences in the frequency of occurrence of variant alleles. With conventional thiopurine doses, homozygous TPMT-deficient patients (~1 in 178 to 1 in 3,736 individuals with two nonfunctional TP...

  17. A fluorescence resonance energy transfer-based method for histone methyltransferases

    DEFF Research Database (Denmark)

    Devkota, Kanchan; Lohse, Brian; Nyby Jakobsen, Camilla;

    2015-01-01

    A simple dye–quencher fluorescence resonance energy transfer (FRET)-based assay for methyltransferases was developed and used to determine kinetic parameters and inhibitory activity at EHMT1 and EHMT2. Peptides mimicking the truncated histone H3 tail were functionalized in each end with a dye...

  18. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity

    DEFF Research Database (Denmark)

    Pasini, Diego; Bracken, Adrian P; Jensen, Michael R;

    2004-01-01

    SUZ12 is a recently identified Polycomb group (PcG) protein, which together with EZH2 and EED forms different Polycomb repressive complexes (PRC2/3). These complexes contain histone H3 lysine (K) 27/9 and histone H1 K26 methyltransferase activity specified by the EZH2 SET domain. Here we show...

  19. The histone methyltransferase SET8 is required for S-phase progression

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Elvers, Ingegerd; Trelle, Morten Beck;

    2008-01-01

    Chromatin structure and function is influenced by histone posttranslational modifications. SET8 (also known as PR-Set7 and SETD8) is a histone methyltransferase that monomethylates histonfe H4-K20. However, a function for SET8 in mammalian cell proliferation has not been determined. We show...

  20. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray.

    Science.gov (United States)

    Stewart, M David; Lopez, Suhujey; Nagandla, Harika; Soibam, Benjamin; Benham, Ashley; Nguyen, Jasmine; Valenzuela, Nicolas; Wu, Harry J; Burns, Alan R; Rasmussen, Tara L; Tucker, Haley O; Schwartz, Robert J

    2016-03-01

    The Smyd1 gene encodes a lysine methyltransferase specifically expressed in striated muscle. Because Smyd1-null mouse embryos die from heart malformation prior to formation of skeletal muscle, we developed a Smyd1 conditional-knockout allele to determine the consequence of SMYD1 loss in mammalian skeletal muscle. Ablation of SMYD1 specifically in skeletal myocytes after myofiber differentiation using Myf6(cre) produced a non-degenerative myopathy. Mutant mice exhibited weakness, myofiber hypotrophy, prevalence of oxidative myofibers, reduction in triad numbers, regional myofibrillar disorganization/breakdown and a high percentage of myofibers with centralized nuclei. Notably, we found broad upregulation of muscle development genes in the absence of regenerating or degenerating myofibers. These data suggest that the afflicted fibers are in a continual state of repair in an attempt to restore damaged myofibrils. Disease severity was greater for males than females. Despite equivalent expression in all fiber types, loss of SMYD1 primarily affected fast-twitch muscle, illustrating fiber-type-specific functions for SMYD1. This work illustrates a crucial role for SMYD1 in skeletal muscle physiology and myofibril integrity. PMID:26935107

  1. O6-methylguanine-DNA methyltransferase (MGMT) Promoter methylation is a rare event in soft tissue sarcoma

    International Nuclear Information System (INIS)

    Gene silencing of O6-methylguanine–DNA methyltransferase (MGMT) by promoter methylation improves the outcome of glioblastoma patients after combined therapy of alkylating chemotherapeutic agents and radiation. The purpose of this study was to assess the frequency of MGMT promoter methylation in soft tissue sarcoma to identify patients eligible for alkylating agent chemotherapy such as temozolomide. Paraffin tumor blocks of 75 patients with representative STS subtypes were evaluated. The methylation status of the MGMT promoter was assessed by methylation-specific polymerase-chain-reaction analysis (PCR). Furthermore, immunohistochemistry was applied to verify expression of MGMT. MGMT gene silencing was assumed if MGMT promoter methylation was present and the fraction of tumor cells expressing MGMT was 20% or less. Methylation specific PCR detected methylated MGMT promoter in 10/75 cases. Immunohistochemical staining of nuclear MGMT was negative in 15/75 cases. 6/75 tumor samples showed MGMT promoter methylation and negative immunohistochemical nuclear staining of MGMT. In none of the tested STS subtypes we found a fraction of tumors with MGMT silencing exceeding 22%. MGMT gene silencing is a rare event in soft tissue sarcoma and cannot be recommended as a selection criterion for the therapy of STS patients with alkylating agents such as temozolomide

  2. O6-methylguanine-DNA methyltransferase (MGMT Promoter methylation is a rare event in soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Jakob Jens

    2012-10-01

    Full Text Available Abstract Background Gene silencing of O6-methylguanine–DNA methyltransferase (MGMT by promoter methylation improves the outcome of glioblastoma patients after combined therapy of alkylating chemotherapeutic agents and radiation. The purpose of this study was to assess the frequency of MGMT promoter methylation in soft tissue sarcoma to identify patients eligible for alkylating agent chemotherapy such as temozolomide. Findings Paraffin tumor blocks of 75 patients with representative STS subtypes were evaluated. The methylation status of the MGMT promoter was assessed by methylation-specific polymerase-chain-reaction analysis (PCR. Furthermore, immunohistochemistry was applied to verify expression of MGMT. MGMT gene silencing was assumed if MGMT promoter methylation was present and the fraction of tumor cells expressing MGMT was 20% or less. Methylation specific PCR detected methylated MGMT promoter in 10/75 cases. Immunohistochemical staining of nuclear MGMT was negative in 15/75 cases. 6/75 tumor samples showed MGMT promoter methylation and negative immunohistochemical nuclear staining of MGMT. In none of the tested STS subtypes we found a fraction of tumors with MGMT silencing exceeding 22%. Conclusion MGMT gene silencing is a rare event in soft tissue sarcoma and cannot be recommended as a selection criterion for the therapy of STS patients with alkylating agents such as temozolomide.

  3. An O-Methyltransferase Is Required for Infection of Tick Cells by Anaplasma phagocytophilum.

    Directory of Open Access Journals (Sweden)

    Adela S Oliva Chávez

    Full Text Available Anaplasma phagocytophilum, the causative agent of Human Granulocytic Anaplasmosis (HGA, is an obligately intracellular α-proteobacterium that is transmitted by Ixodes spp ticks. However, the pathogen is not transovarially transmitted between tick generations and therefore needs to survive in both a mammalian host and the arthropod vector to complete its life cycle. To adapt to different environments, pathogens rely on differential gene expression as well as the modification of proteins and other molecules. Random transposon mutagenesis of A. phagocytophilum resulted in an insertion within the coding region of an o-methyltransferase (omt family 3 gene. In wild-type bacteria, expression of omt was up-regulated during binding to tick cells (ISE6 at 2 hr post-inoculation, but nearly absent by 4 hr p.i. Gene disruption reduced bacterial binding to ISE6 cells, and the mutant bacteria that were able to enter the cells were arrested in their replication and development. Analyses of the proteomes of wild-type versus mutant bacteria during binding to ISE6 cells identified Major Surface Protein 4 (Msp4, but also hypothetical protein APH_0406, as the most differentially methylated. Importantly, two glutamic acid residues (the targets of the OMT were methyl-modified in wild-type Msp4, whereas a single asparagine (not a target of the OMT was methylated in APH_0406. In vitro methylation assays demonstrated that recombinant OMT specifically methylated Msp4. Towards a greater understanding of the overall structure and catalytic activity of the OMT, we solved the apo (PDB_ID:4OA8, the S-adenosine homocystein-bound (PDB_ID:4OA5, the SAH-Mn2+ bound (PDB_ID:4PCA, and SAM- Mn2+ bound (PDB_ID:4PCL X-ray crystal structures of the enzyme. Here, we characterized a mutation in A. phagocytophilum that affected the ability of the bacteria to productively infect cells from its natural vector. Nevertheless, due to the lack of complementation, we cannot rule out secondary

  4. An O-Methyltransferase Is Required for Infection of Tick Cells by Anaplasma phagocytophilum.

    Science.gov (United States)

    Oliva Chávez, Adela S; Fairman, James W; Felsheim, Roderick F; Nelson, Curtis M; Herron, Michael J; Higgins, LeeAnn; Burkhardt, Nicole Y; Oliver, Jonathan D; Markowski, Todd W; Kurtti, Timothy J; Edwards, Thomas E; Munderloh, Ulrike G

    2015-01-01

    Anaplasma phagocytophilum, the causative agent of Human Granulocytic Anaplasmosis (HGA), is an obligately intracellular α-proteobacterium that is transmitted by Ixodes spp ticks. However, the pathogen is not transovarially transmitted between tick generations and therefore needs to survive in both a mammalian host and the arthropod vector to complete its life cycle. To adapt to different environments, pathogens rely on differential gene expression as well as the modification of proteins and other molecules. Random transposon mutagenesis of A. phagocytophilum resulted in an insertion within the coding region of an o-methyltransferase (omt) family 3 gene. In wild-type bacteria, expression of omt was up-regulated during binding to tick cells (ISE6) at 2 hr post-inoculation, but nearly absent by 4 hr p.i. Gene disruption reduced bacterial binding to ISE6 cells, and the mutant bacteria that were able to enter the cells were arrested in their replication and development. Analyses of the proteomes of wild-type versus mutant bacteria during binding to ISE6 cells identified Major Surface Protein 4 (Msp4), but also hypothetical protein APH_0406, as the most differentially methylated. Importantly, two glutamic acid residues (the targets of the OMT) were methyl-modified in wild-type Msp4, whereas a single asparagine (not a target of the OMT) was methylated in APH_0406. In vitro methylation assays demonstrated that recombinant OMT specifically methylated Msp4. Towards a greater understanding of the overall structure and catalytic activity of the OMT, we solved the apo (PDB_ID:4OA8), the S-adenosine homocystein-bound (PDB_ID:4OA5), the SAH-Mn2+ bound (PDB_ID:4PCA), and SAM- Mn2+ bound (PDB_ID:4PCL) X-ray crystal structures of the enzyme. Here, we characterized a mutation in A. phagocytophilum that affected the ability of the bacteria to productively infect cells from its natural vector. Nevertheless, due to the lack of complementation, we cannot rule out secondary mutations

  5. A new nuclear function of the Entamoeba histolytica glycolytic enzyme enolase: the metabolic regulation of cytosine-5 methyltransferase 2 (Dnmt2 activity.

    Directory of Open Access Journals (Sweden)

    Ayala Tovy

    2010-02-01

    Full Text Available Cytosine-5 methyltransferases of the Dnmt2 family function as DNA and tRNA methyltransferases. Insight into the role and biological significance of Dnmt2 is greatly hampered by a lack of knowledge about its protein interactions. In this report, we address the subject of protein interaction by identifying enolase through a yeast two-hybrid screen as a Dnmt2-binding protein. Enolase, which is known to catalyze the conversion of 2-phosphoglycerate (2-PG to phosphoenolpyruvate (PEP, was shown to have both a cytoplasmatic and a nuclear localization in the parasite Entamoeba histolytica. We discovered that enolase acts as a Dnmt2 inhibitor. This unexpected inhibitory activity was antagonized by 2-PG, which suggests that glucose metabolism controls the non-glycolytic function of enolase. Interestingly, glucose starvation drives enolase to accumulate within the nucleus, which in turn leads to the formation of additional enolase-E.histolytica DNMT2 homolog (Ehmeth complex, and to a significant reduction of the tRNA(Asp methylation in the parasite. The crucial role of enolase as a Dnmt2 inhibitor was also demonstrated in E.histolytica expressing a nuclear localization signal (NLS-fused-enolase. These results establish enolase as the first Dnmt2 interacting protein, and highlight an unexpected role of a glycolytic enzyme in the modulation of Dnmt2 activity.

  6. Type III methyltransferase M.NgoAX from Neisseria gonorrhoeae FA1090 regulates biofilm formation and human cell invasion

    Directory of Open Access Journals (Sweden)

    Agnieszka eKwiatek

    2015-12-01

    Full Text Available Neisseria gonorrhoeae is the etiological factor of the sexually transmitted gonorrhea disease that may lead, under specific conditions, to systemic infections. The gonococcal genome encodes many Restriction Modification (RM systems, which main biological role is to defend the pathogen from potentially harmful foreign DNA. However, RM systems seem also to be involved in several other functions. In this study, we examined the effect of inactivation the N. gonorrhoeae FA1090 ngo0545 gene encoding M.NgoAX methyltransferase on the global gene expression, biofilm formation, interactions with human epithelial host cells and overall bacterial growth. Expression microarrays showed at least a two-fold deregulation of a total of 121 genes in the NgoAX knock-out mutant compared to the wt strain under standard grow conditions. As determined by the assay with crystal violet, the NgoAX knock-out strain formed a slightly larger biofilm biomass per cell than the wt strain (OD570/600 = 13.8  2.24 and 9.35  2.06, respectively. SCLM observations showed that the biofilm formed by the gonococcal ngo0545 gene mutant is more relaxed and dispersed than the one formed by the wt strain. Thickness of the biofilm formed by both strains was 48.3 (14.9 µm for the mutant and 28.6 (4.0 µm for the wt. This more relaxed feature of the biofilm in respect to adhesion and bacterial interactions seems advantageous for pathogenesis of the NgoAX-deficient gonococci at the stage of human epithelial cell invasion. Indeed, the overall adhesion of mutant bacterial cells to human cells was lower than adhesion of the wt gonococci (adhesion index = 0.672 ( 0.2 and 2.15 ( 1.53, respectively; yet, a higher number of mutant than wt bacteria were found inside the Hec-1-B epithelial cells (invasion index = 3.38 ( 0.93  105 for mutant and 4.67 ( 3.09  104 for the wt strain. These results indicate that NgoAX-deficient cells have lower ability to attach to human cells

  7. Physiology and Posttranscriptional Regulation of Methanol:Coenzyme M Methyltransferase Isozymes in Methanosarcina acetivorans C2A ▿ §

    OpenAIRE

    Opulencia, Rina B.; Bose, Arpita; Metcalf, William W.

    2009-01-01

    Methanosarcina species possess three operons (mtaCB1, mtaCB2, and mtaCB3) encoding methanol-specific methyltransferase 1 (MT1) isozymes and two genes (mtaA1 and mtaA2) with the potential to encode a methanol-specific methyltransferase 2 (MT2). Previous genetic studies showed that these genes are differentially regulated and encode enzymes with distinct levels of methyltransferase activity. Here, the effects of promoter strength on growth and on the rate of methane production were examined by ...

  8. Hypermethylation and post-transcriptional regulation of DNA methyltransferases in the ovarian carcinomas of the laying hen.

    Directory of Open Access Journals (Sweden)

    Jin-Young Lee

    Full Text Available DNA methyltransferases (DNMTs are key regulators of DNA methylation and have crucial roles in carcinogenesis, embryogenesis and epigenetic modification. In general, DNMT1 has enzymatic activity affecting maintenance of DNA methylation, whereas DNMT3A and DNMT3B are involved in de novo methylation events. Although DNMT genes are well known in mammals including humans and mice, they are not well studied in avian species, especially the laying hen which is recognized as an excellent animal model for research on human ovarian carcinogenesis. Results of the present study demonstrated that expression of DNMT1, DNMT3A and DNMT3B genes was significantly increased, particularly in the glandular epithelia (GE of cancerous ovaries, but not normal ovaries. Consistent with this result, immunoreactive 5-methylcytosine protein was predominantly abundant in nuclei of stromal and GE cells of cancerous ovaries, but it was also found that, to a lesser extent, in nuclei of stromal cells of normal ovaries. Methylation-specific PCR analysis detected hypermethylation of the promoter regions of the tumor suppressor genes in the initiation and development of chicken ovarian cancer. Further, several microRNAs, specifically miR-1741, miR-16c, and miR-222, and miR-1632 were discovered to influence expression of DNMT3A and DNMT3B, respectively, via their 3'-UTR which suggests post-transcriptional regulation of their expression in laying hens. Collectively, results of the present study demonstrated increased expression of DNMT genes in cancerous ovaries of laying hens and post-transcriptional regulation of those genes by specific microRNAs, as well as control of hypermethylation of the promoters of tumor suppressor genes.

  9. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs.

    Directory of Open Access Journals (Sweden)

    Ah-Young So

    Full Text Available Epigenetic regulation of gene expression is well known mechanism that regulates cellular senescence of cancer cells. Here we show that inhibition of DNA methyltransferases (DNMTs with 5-azacytidine (5-AzaC or with specific small interfering RNA (siRNA against DNMT1 and 3b induced the cellular senescence of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs and increased p16(INK4A and p21(CIP1/WAF1 expression. DNMT inhibition changed histone marks into the active forms and decreased the methylation of CpG islands in the p16(INK4A and p21(CIP1/WAF1 promoter regions. Enrichment of EZH2, the key factor that methylates histone H3 lysine 9 and 27 residues, was decreased on the p16(INK4A and p21(CIP1/WAF1 promoter regions. We found that DNMT inhibition decreased expression levels of Polycomb-group (PcG proteins and increased expression of microRNAs (miRNAs, which target PcG proteins. Decreased CpG island methylation and increased levels of active histone marks at genomic regions encoding miRNAs were observed after 5-AzaC treatment. Taken together, DNMTs have a critical role in regulating the cellular senescence of hUCB-MSCs through controlling not only the DNA methylation status but also active/inactive histone marks at genomic regions of PcG-targeting miRNAs and p16(INK4A and p21(CIP1/WAF1 promoter regions.

  10. Screen of single nucleotide polymorphism of DNA methyltransferase 1 in patients with systemic lupus erythematosus%SLE患者DNA甲基转移酶1单核苷酸多态性分析

    Institute of Scientific and Technical Information of China (English)

    徐金华; 朱小华; 施伟民

    2009-01-01

    Objective To screen single nucleotide polymorphism(SNP)of DNA methyltransferase 1 gene in patients with systemic lupus erythematosus(SLE).and to investigate the significance of abnormal expression of DNA methyltransferase in the pathogenesis of SLE.Methods Peripheral blood mononuclear cells(PBMCs)were obtained from 11 patients with SLE and 12 normal human controls.DNA was extracted from the PBMCs.and PCR was performed to amplify some exons(1 to 7)and corresponding introns followed by direct sequencing.Results There was a 21397T/C SNP in the intron 7 between exon 7 and exon 8 of DNA methyltransferase 1 gene in patients with SLE.The frequency of CC homozygote increased in patients with SLE compared with that in normal controls(5/11 vs 1/12,X~2=4.10,P<0.05).Conclusions There is a 21397T/C SNP in DNA methyltransferase 1 gene in patients with SLE.which may be a component of genetic background underlying the abnormal expression Of DNA methyltransferase 1.%目的 比较SLE患者DNMT1基因的单核苷酸多态性,探讨DNMT表达异常在SLE发病中的意义.方法 选取SLE患者11例,正常人对照12例.外周血单一核细胞DNA提取后应用PCR结合测序方法检测并分析DNMT1基因的部分外显子exon1~exon7及相应的内含子的单核苷酸多态性,并做进一步基因型分析.结果 SLE患者中DNMT1外显子7与8之间内含子7存在21397位T→C(胸腺嘧啶→胞嘧啶)的改变,CC的纯合子较正常人对照组明显增加(X~2=4.10,P<0.05).结论 SLE患者DNMTl基因存在单核苷酸多态性,可能是DNMTI基因表达异常的遗传成分之一.

  11. Systematic analysis of O-methyltransferase gene family and identification of potential members involved in the formation of O-methylated flavonoids in Citrus.

    Science.gov (United States)

    Liu, Xiaogang; Luo, Yan; Wu, Hongkun; Xi, Wanpeng; Yu, Jie; Zhang, Qiuyun; Zhou, Zhiqin

    2016-01-10

    The O-methylation of various secondary metabolites is mainly catalyzed by S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase (OMT) proteins that are encoded by the O-methyltransferase gene family. Citrus fruits are a rich source of O-methylated flavonoids that have a broad spectrum of biological activities, including anti-inflammatory, anticarcinogenic, and antiatherogenic properties. However, little is known about this gene family and its members that are involved in the O-methylation of flavonoids and their regulation in Citrus. In this study, 58 OMT genes were identified from the entire Citrus sinensis genome and compared with those from 3 other representative dicot plants. A comprehensive analysis was performed, including functional/substrate predictions, identification of chromosomal locations, phylogenetic relationships, gene structures, and conserved motifs. Distribution mapping revealed that the 58 OMT genes were unevenly distributed on the 9 citrus chromosomes. Phylogenetic analysis of 164 OMT proteins from C.sinensis, Arabidopsis thaliana, Populus trichocarpa, and Vitis vinifera showed that these proteins were categorized into group I (COMT subfamily) and group II (CCoAOMT subfamily), which were further divided into 10 and 2 subgroups, respectively. Finally, digital gene expression and quantitative real-time polymerase chain reaction analyses revealed that citrus OMT genes had distinct temporal and spatial expression patterns in different tissues and developmental stages. Interestingly, 18 and 11 of the 27 genes predicted to be involved in O-methylation of flavonoids had higher expression in the peel and pulp during fruit development, respectively. The citrus OMT gene family identified in this study might help in the selection of appropriate candidate genes and facilitate functional studies in Citrus.

  12. Systematic analysis of O-methyltransferase gene family and identification of potential members involved in the formation of O-methylated flavonoids in Citrus.

    Science.gov (United States)

    Liu, Xiaogang; Luo, Yan; Wu, Hongkun; Xi, Wanpeng; Yu, Jie; Zhang, Qiuyun; Zhou, Zhiqin

    2016-01-10

    The O-methylation of various secondary metabolites is mainly catalyzed by S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase (OMT) proteins that are encoded by the O-methyltransferase gene family. Citrus fruits are a rich source of O-methylated flavonoids that have a broad spectrum of biological activities, including anti-inflammatory, anticarcinogenic, and antiatherogenic properties. However, little is known about this gene family and its members that are involved in the O-methylation of flavonoids and their regulation in Citrus. In this study, 58 OMT genes were identified from the entire Citrus sinensis genome and compared with those from 3 other representative dicot plants. A comprehensive analysis was performed, including functional/substrate predictions, identification of chromosomal locations, phylogenetic relationships, gene structures, and conserved motifs. Distribution mapping revealed that the 58 OMT genes were unevenly distributed on the 9 citrus chromosomes. Phylogenetic analysis of 164 OMT proteins from C.sinensis, Arabidopsis thaliana, Populus trichocarpa, and Vitis vinifera showed that these proteins were categorized into group I (COMT subfamily) and group II (CCoAOMT subfamily), which were further divided into 10 and 2 subgroups, respectively. Finally, digital gene expression and quantitative real-time polymerase chain reaction analyses revealed that citrus OMT genes had distinct temporal and spatial expression patterns in different tissues and developmental stages. Interestingly, 18 and 11 of the 27 genes predicted to be involved in O-methylation of flavonoids had higher expression in the peel and pulp during fruit development, respectively. The citrus OMT gene family identified in this study might help in the selection of appropriate candidate genes and facilitate functional studies in Citrus. PMID:26407870

  13. A conformational switch in the active site of BT_2972, a methyltransferase from an antibiotic resistant pathogen B. thetaiotaomicron.

    Directory of Open Access Journals (Sweden)

    Veerendra Kumar

    Full Text Available Methylation is one of the most common biochemical reactions involved in cellular and metabolic functions and is catalysed by the action of methyltransferases. Bacteroides thetaiotaomicron is an antibiotic-resistant bacterium that confers resistance through methylation, and as yet, there is no report on the structure of methyltransferases from this bacterium. Here, we report the crystal structure of an AdoMet-dependent methyltransferase, BT_2972 and its complex with AdoMet and AdoHcy for B. thetaiotaomicron VPI-5482 strain along with isothermal titration calorimetric assessment of the binding affinities. Comparison of the apo and complexed BT_2972 structures reveals a significant conformational change between open and closed forms of the active site that presumably regulates the association with cofactors and may aid interaction with substrate. Together, our analysis suggests that BT_2972 is a small molecule methyltransferase and might catalyze two O-methylation reaction steps involved in the ubiquinone biosynthesis pathway.

  14. A conformational switch in the active site of BT_2972, a methyltransferase from an antibiotic resistant pathogen B. thetaiotaomicron.

    Science.gov (United States)

    Kumar, Veerendra; Sivaraman, J

    2011-01-01

    Methylation is one of the most common biochemical reactions involved in cellular and metabolic functions and is catalysed by the action of methyltransferases. Bacteroides thetaiotaomicron is an antibiotic-resistant bacterium that confers resistance through methylation, and as yet, there is no report on the structure of methyltransferases from this bacterium. Here, we report the crystal structure of an AdoMet-dependent methyltransferase, BT_2972 and its complex with AdoMet and AdoHcy for B. thetaiotaomicron VPI-5482 strain along with isothermal titration calorimetric assessment of the binding affinities. Comparison of the apo and complexed BT_2972 structures reveals a significant conformational change between open and closed forms of the active site that presumably regulates the association with cofactors and may aid interaction with substrate. Together, our analysis suggests that BT_2972 is a small molecule methyltransferase and might catalyze two O-methylation reaction steps involved in the ubiquinone biosynthesis pathway. PMID:22140448

  15. N-6-Adenine-Specific DNA Methyltransferase 1 (N6AMT1) Polymorphisms and Arsenic Methylation in Andean Women

    OpenAIRE

    Harari, Florencia; Engström, Karin; Concha, Gabriela; Colque, Graciela; Vahter, Marie; Broberg, Karin

    2013-01-01

    BACKGROUND: In humans, inorganic arsenic is metabolized to methylated metabolites mainly by arsenic (+3 oxidation state) methyltransferase (AS3MT). AS3MT polymorphisms are associated with arsenic metabolism efficiency. Recently, a putative N-6-adenine-specific DNA methyltransferase 1 (N6AMT1) was found to methylate arsenic in vitro. OBJECTIVE: We evaluated the role of N6AMT1 polymorphisms in arsenic methylation efficiency in humans. METHODS: We assessed arsenic methylation efficiency in 188 w...

  16. Arsenic Methylation in Arabidopsis thaliana Expressing an Algal Arsenite Methyltransferase Gene Increases Arsenic Phytotoxicity.

    Science.gov (United States)

    Tang, Zhong; Lv, Yanling; Chen, Fei; Zhang, Wenwen; Rosen, Barry P; Zhao, Fang-Jie

    2016-04-01

    Arsenic (As) contamination in soil can lead to elevated transfer of As to the food chain. One potential mitigation strategy is to genetically engineer plants to enable them to transform inorganic As to methylated and volatile As species. In this study, we genetically engineered two ecotypes of Arabidopsis thaliana with the arsenite (As(III)) S-adenosylmethyltransferase (arsM) gene from the eukaryotic alga Chlamydomonas reinhardtii. The transgenic A. thaliana plants gained a strong ability to methylate As, converting most of the inorganic As into dimethylarsenate [DMA(V)] in the shoots. Small amounts of volatile As were detected from the transgenic plants. However, the transgenic plants became more sensitive to As(III) in the medium, suggesting that DMA(V) is more phytotoxic than inorganic As. The study demonstrates a negative consequence of engineered As methylation in plants and points to a need for arsM genes with a strong ability to methylate As to volatile species. PMID:26998776

  17. GRIP1-associated SET-domain methyltransferase in glucocorticoid receptor target gene expression

    OpenAIRE

    Chinenov, Yurii; Sacta, Maria A.; Cruz, Anna R.; Rogatsky, Inez

    2008-01-01

    Transcriptional regulators such as the glucocorticoid receptor (GR) recruit multiple cofactors to activate or repress transcription. Although most cofactors are intrinsically bifunctional, little is known about the molecular mechanisms dictating the specific polarity of regulation. Furthermore, chromatin modifications thought to be confined to silent loci appear in actively transcribed genes suggesting that similar enzymatic activities may mediate constitutive and transient chromatin states. ...

  18. An assessment of the role of DNA adenine methyltransferase on gene expression regulation in E coli.

    Directory of Open Access Journals (Sweden)

    Aswin Sai Narain Seshasayee

    Full Text Available N6-Adenine methylation is an important epigenetic signal, which regulates various processes, such as DNA replication and repair and transcription. In gamma-proteobacteria, Dam is a stand-alone enzyme that methylates GATC sites, which are non-randomly distributed in the genome. Some of these overlap with transcription factor binding sites. This work describes a global computational analysis of a published Dam knockout microarray alongside other publicly available data to throw insights into the extent to which Dam regulates transcription by interfering with protein binding. The results indicate that DNA methylation by DAM may not globally affect gene transcription by physically blocking access of transcription factors to binding sites. Down-regulation of Dam during stationary phase correlates with the activity of TFs whose binding sites are enriched for GATC sites.

  19. Investigating the potential role of genetic and epigenetic variation of DNA methyltransferase genes in hyperplastic polyposis syndrome.

    Directory of Open Access Journals (Sweden)

    Musa Drini

    Full Text Available BACKGROUND: Hyperplastic Polyposis Syndrome (HPS is a condition associated with multiple serrated polyps, and an increased risk of colorectal cancer (CRC. At least half of CRCs arising in HPS show a CpG island methylator phenotype (CIMP, potentially linked to aberrant DNA methyltransferase (DNMT activity. CIMP is associated with methylation of tumor suppressor genes including regulators of DNA mismatch repair (such as MLH1, MGMT, and negative regulators of Wnt signaling (such as WIF1. In this study, we investigated the potential for interaction of genetic and epigenetic variation in DNMT genes, in the aetiology of HPS. METHODS: We utilized high resolution melting (HRM analysis to screen 45 cases with HPS for novel sequence variants in DNMT1, DNMT3A, DNMT3B, and DNMT3L. 21 polyps from 13 patients were screened for BRAF and KRAS mutations, with assessment of promoter methylation in the DNMT1, DNMT3A, DNMT3B, DNMT3L MLH1, MGMT, and WIF1 gene promoters. RESULTS: No pathologic germline mutations were observed in any DNA-methyltransferase gene. However, the T allele of rs62106244 (intron 10 of DNMT1 gene was over-represented in cases with HPS (p<0.01 compared with population controls. The DNMT1, DNMT3A and DNMT3B promoters were unmethylated in all instances. Interestingly, the DNMT3L promoter showed low levels of methylation in polyps and normal colonic mucosa relative to matched disease free cells with methylation level negatively correlated to expression level in normal colonic tissue. DNMT3L promoter hypomethylation was more often found in polyps harbouring KRAS mutations (p = 0.0053. BRAF mutations were common (11 out of 21 polyps, whilst KRAS mutations were identified in 4 of 21 polyps. CONCLUSIONS: Genetic or epigenetic alterations in DNMT genes do not appear to be associated with HPS, but further investigation of genetic variation at rs62106244 is justified given the high frequency of the minor allele in this case series.

  20. Chaperone protein L-isoaspartate (D-aspartyl) O-methyltransferase as a novel predictor of poor prognosis in lung adenocarcinoma.

    Science.gov (United States)

    Saito, Heisuke; Yamashita, Masahiro; Ogasawara, Masahito; Yamada, Noriyuki; Niisato, Miyuki; Tomoyasu, Makoto; Deguchi, Hiroyuki; Tanita, Tatsuo; Ishida, Kazuyuki; Sugai, Tamotsu; Yamauchi, Kohei

    2016-04-01

    Endoplasmic reticulum stress and chaperone dysfunction have recently been associated with poor prognoses in various cancers. The newly discovered chaperone protein L-isoaspartyl (D-aspartyl) O-methyltransferase (PIMT) regulates the viability of cancer cells in various cancers, although no clinical information regarding the relationship between lung cancer and PIMT expression has been reported. In this study, we aimed to elucidate the relationship between PIMT expression and the prognosis of lung adenocarcinoma. Paraffin-embedded lung tissues obtained from 208 patients with surgically resected lung adenocarcinoma were subjected to immunohistochemical analyses using primary antibodies against PIMT. Kaplan-Meier curves, log-rank tests, and the Cox proportional hazards model were used to analyze the association between PIMT expression and patient survival. Strong PIMT expression was detected in 106 (50.9%) patients, being particularly observed in patients with advanced stages of lung adenocarcinoma. Strong PIMT expression was associated with that of 78-kDa glucose-regulated protein, a marker of endoplasmic reticulum stress. Patients with strong PIMT expression had a shorter survival time (Kaplan-Meier analysis, Plung adenocarcinoma, including those with stage I disease (hazard ratios, 6.45 and 6.81, respectively; 95% confidence intervals, 2.46-16.9 and 1.79-25.8, respectively; Plung adenocarcinoma, and this finding might help clinicians determine the need for postoperative adjuvant chemotherapy in patients with stage I lung adenocarcinoma.

  1. Protein repair L-isoaspartyl methyltransferase 1 (PIMT1) in rice improves seed longevity by preserving embryo vigor and viability.

    Science.gov (United States)

    Wei, Yidong; Xu, Huibin; Diao, Lirong; Zhu, Yongsheng; Xie, Hongguang; Cai, Qiuhua; Wu, Fangxi; Wang, Zonghua; Zhang, Jianfu; Xie, Huaan

    2015-11-01

    Damaged proteins containing abnormal isoaspartyl (isoAsp) accumulate as seeds age and the abnormality is thought to undermine seed vigor. Protein-L-isoaspartyl methyltransferase (PIMT) is involved in isoAsp-containing protein repair. Two PIMT genes from rice (Oryza sativa L.), designated as OsPIMT1 and OsPIMT2, were isolated and investigated for their roles. The results indicated that OsPIMT2 was mainly present in green tissues, but OsPIMT1 largely accumulated in embryos. Confocal visualization of the transient expression of OsPIMTs showed that OsPIMT2 was localized in the chloroplast and nucleus, whereas OsPIMT1 was predominately found in the cytosol. Artificial aging results highlighted the sensitivity of the seeds of OsPIMT1 mutant line when subjected to accelerated aging. Overexpression of OsPIMT1 in transgenic seeds reduced the accumulation of isoAsp-containing protein in embryos, and increased embryo viability. The germination percentage of transgenic seeds overexpressing OsPIMT1 increased 9-15% compared to the WT seeds after 21-day of artificial aging, whereas seeds from the OsPIMT1 RNAi lines overaccumulated isoAsp in embryos and experienced rapid loss of seed germinability. Taken together, these data strongly indicated that OsPIMT1-related seed longevity improvement is probably due to the repair of detrimental isoAsp-containing proteins that over accumulate in embryos when subjected to accelerated aging. PMID:26438231

  2. Molecular Cloning and Functional Characterization of a Novel Isoflavone 3′-O-methyltransferase from Pueraria lobata

    Science.gov (United States)

    Li, Jia; Li, Changfu; Gou, Junbo; Zhang, Yansheng

    2016-01-01

    Pueraria lobata roots accumulate 3′-, 4′- and 7-O-methylated isoflavones and many of these methylated compounds exhibit various pharmacological activities. Either the 4′- or 7-O-methylation activity has been investigated at molecular levels in several legume species. However, the gene encoding the isoflavone 3′-O-methyltransferase (OMT) has not yet been isolated from any plant species. In this study, we reported the first cDNA encoding the isoflavone 3′-OMT from P. lobata (designated PlOMT4). Heterologous expressions in yeast and Escherichia coli cells showed that the gene product exhibits an enzyme activity to methylate the 3′-hydroxy group of the isoflavone substrate. The transcript abundance of PlOMT4 matches well with its enzymatic product in different organs of P. lobata and in the plant roots in response to methyl jasmonate elicitation. Integration of the biochemical with metabolic and transcript data supported the proposed function of PlOMT4. The identification of PlOMT4 would not only help to understand the isoflavonoid metabolism in P. lobata but also potentially provide an enzyme catalyst for methylating existing drug candidates to improve their hydrophobicity.

  3. The DNA methyltransferase inhibitor zebularine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Highlights: ► Zebularine inhibited cell growth of gastric cancer in a time- and dose-dependent manner. ► Chromatin condensation and nuclear fragmentation were induced. ► Zebularine promoted apoptosis via mitochondrial pathways. ► Tumorigenicity was inhibited by zebularine. -- Abstract: DNA methyltransferase (DNMT) inhibitor zebularine has been reported to potentiate the anti-tumor effect by reactivating the expression of tumor suppressor genes and apoptosis-related genes in various malignant cells. However, the apoptotic signaling pathway in gastric cancer cells induced by zebularine is not well understood. In the study, the effects of zebularine on the growth and apoptosis of gastric cancer cells were investigated by MTT assay, Hoechst assay, Western blot analysis, flow cytometric analysis of annexin V-FITC/PI staining, and TUNEL assay. Zebularine was an effective inhibitor of human gastric cancer cells proliferation in vitro and in vivo. The effects were dose dependent. A zebularine concentration of 50 μM accounted for the inhibition of cell proliferation of 67% at 48 h. The treatment with zebularine upregulated Bax, and decreased Bcl-2 protein. Caspase-3 was activated, suggesting that the apoptosis is mediated by mitochondrial pathways. Moreover, zebularine injection successfully inhibited the tumor growth via apoptosis induction which was demonstrated by TUNEL assay in xenograft tumor mouse model. These results demonstrated that zebularine induced apoptosis in gastric cancer cells via mitochondrial pathways, and zebularine might become a therapeutic approach for the treatment of gastric cancer.

  4. Posttranslational Regulation of O(6)-Methylguanine-DNA Methyltransferase (MGMT) and New Opportunities for Treatment of Brain Cancers.

    Science.gov (United States)

    Srivenugopal, Kalkunte S; Rawat, Amit; Niture, Suryakant K; Paranjpe, Ameya; Velu, Chinavenmani; Venugopal, Sanjay N; Madala, Hanumantha Rao; Basak, Debasish; Punganuru, Surendra R

    2016-01-01

    O(6)-Methylguanine-DNA-methyltransferase (MGMT) is an antimutagenic DNA repair protein highly expressed in human brain tumors. Because MGMT repairs the mutagenic, carcinogenic and cytotoxic O(6)-alkylguanine adducts, including those generated by the clinically used anticancer alkylating agents, it has emerged as a central and rational target for overcoming tumor resistance to alkylating agents. Although the pseudosubstrates for MGMT [O(6)-benzylguanine, O(6)-(4- bromothenyl)guanine] have gained attention as powerful and clinically-relevant inhibitors, bone marrow suppression due to excessive alkylation damage has diminished this strategy. Our laboratory has been working on various posttranslational modifications of MGMT that affect its protein stability, DNA repair activity and response to oxidative stress. While these modifications greatly impact the physiological regulation of MGMT, they also highlight the opportunities for inactivating DNA repair and new drug discovery in this specific area. This review briefly describes the newer aspects of MGMT posttranslational regulation by ubiquitination, sumoylation and glutathionylation and reveals how the reactivity of the active site Cys145 can be exploited for potent inhibition and depletion of MGMT by thiol-reacting drugs such as the disulfiram and various dithiocarbamate derivatives. The possible repurposing of these nontoxic and safe drugs for improved therapy of pediatric and adult brain tumors is discussed. PMID:26202203

  5. Purification of Histone Lysine Methyltransferase SMYD2 and Co-Crystallization with a Target Peptide from Estrogen Receptor α.

    Science.gov (United States)

    Jiang, Yuanyuan; Holcomb, Joshua; Spellmon, Nicholas; Yang, Zhe

    2016-01-01

    Methylation of estrogen receptor α by the histone lysine methyltransferase SMYD2 regulates ERα chromatin recruitment and its target gene expression. This protocol describes SMYD2 purification and crystallization of SMYD2 in complex with an ERα peptide. Recombinant SMYD2 is overexpressed in Escherichia coli cells. After release from the cells by French Press, SMYD2 is purified to apparent homogeneity with multiple chromatography methods. Nickel affinity column purifies SMYD2 based on specific interaction of its 6×His tag with the bead-immobilized nickel ions. Desalting column is used for protein buffer exchange. Gel filtration column purifies SMYD2 based on molecular size. The entire purification process is monitored and analyzed by SDS-polyacrylamide gel electrophoresis. Crystallization of SMYD2 is performed with the hanging drop vapor diffusion method. Crystals of the SMYD2-ERα peptide complex are obtained by microseeding using seeding bead. This method can give rise to large size of crystals which are suitable for X-ray diffraction data collection. X-ray crystallographic study of the SMYD2-ERα complex can provide structural insight into posttranslational regulation of ERα signaling.

  6. The DNA methyltransferase inhibitor zebularine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wei, E-mail: polo5352877@163.com [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan (China); Zhou, Wei; Yu, Hong-gang; Luo, He-Sheng; Shen, Lei [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan (China)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Zebularine inhibited cell growth of gastric cancer in a time- and dose-dependent manner. Black-Right-Pointing-Pointer Chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Zebularine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by zebularine. -- Abstract: DNA methyltransferase (DNMT) inhibitor zebularine has been reported to potentiate the anti-tumor effect by reactivating the expression of tumor suppressor genes and apoptosis-related genes in various malignant cells. However, the apoptotic signaling pathway in gastric cancer cells induced by zebularine is not well understood. In the study, the effects of zebularine on the growth and apoptosis of gastric cancer cells were investigated by MTT assay, Hoechst assay, Western blot analysis, flow cytometric analysis of annexin V-FITC/PI staining, and TUNEL assay. Zebularine was an effective inhibitor of human gastric cancer cells proliferation in vitro and in vivo. The effects were dose dependent. A zebularine concentration of 50 {mu}M accounted for the inhibition of cell proliferation of 67% at 48 h. The treatment with zebularine upregulated Bax, and decreased Bcl-2 protein. Caspase-3 was activated, suggesting that the apoptosis is mediated by mitochondrial pathways. Moreover, zebularine injection successfully inhibited the tumor growth via apoptosis induction which was demonstrated by TUNEL assay in xenograft tumor mouse model. These results demonstrated that zebularine induced apoptosis in gastric cancer cells via mitochondrial pathways, and zebularine might become a therapeutic approach for the treatment of gastric cancer.

  7. Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Aishu; Qiu, Yu [Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 401147 (China); Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, 401147 (China); Cui, Hongjuan [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 (China); Fu, Gang, E-mail: fg.ras@hotmail.com [Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 401147 (China); Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, 401147 (China)

    2015-03-27

    Objective: To explore whether inhibition of H3K9 Methyltransferase G9a could exert an antitumoral effect in oral squamous cell carcinoma (OSCC). Materials and methods: First we checked G9a expression in two OSCC cell lines Tca8113 and KB. Next we used a special G9a inhibitor BIX01294 (BIX) to explore the effect of inhibition of G9a on OSCC in vitro. Cell growth was tested by typlan blue staining, MTT assay and Brdu immunofluorescence staining. Cell autophagy was examined by monodansylcadaverine (MDC) staining, LC3-II immunofluorescence staining and LC3-II western blot assay. Cell apoptosis was checked by FITC Annexin-V and PI labeling, tunnel staining and caspase 3 western blot assay. Finally, the effect of inhibition of G9a on clonogenesis and tumorigenesis capacity of OSCC was analyzed by soft agar growth and xenograft model. Results: Here we showed that G9a was expressed in both Tca8113 and KB cells. Inhibition of G9a using BIX significantly reduced cell growth and proliferation in Tca8113 and KB. Inhibition of G9a induced cell autophagy with conversion of LC3-I to LC3-II and cell apoptosis with the expression of cleaved caspase 3. We also found that inhibition of G9a reduced colony formation in soft agar and repressed tumor growth in mouse xenograph model. Conclusion: Our results suggested that G9a might be a potential epigenetic target for OSCC treatment. - Highlights: • Inhibition of G9a reduced cell growth and proliferation in OSCC cells. • Inhibition of G9a induces autophagy and apoptosis in OSCC cells. • Inhibition of G9a repressed tumor growth in mouse xenograph model.

  8. Immunomodulatory drugs act as inhibitors of DNA methyltransferases and induce PU.1 up-regulation in myeloma cells.

    Science.gov (United States)

    Endo, Shinya; Amano, Masayuki; Nishimura, Nao; Ueno, Niina; Ueno, Shikiko; Yuki, Hiromichi; Fujiwara, Shiho; Wada, Naoko; Hirata, Shinya; Hata, Hiroyuki; Mitsuya, Hiroaki; Okuno, Yutaka

    2016-01-01

    Immunomodulatory drugs (IMiDs) such as thalidomide, lenalidomide, and pomalidomide are efficacious in the treatment of multiple myeloma and significantly prolong their survival. However, the mechanisms of such effects of IMiDs have not been fully elucidated. Recently, cereblon has been identified as a target binding protein of thalidomide. Lenalidomide-resistant myeloma cell lines often lose the expression of cereblon, suggesting that IMiDs act as an anti-myeloma agent through interacting with cereblon. Cereblon binds to damaged DNA-binding protein and functions as a ubiquitin ligase, inducing degradation of IKZF1 and IKZF3 that are essential transcription factors for B and T cell development. Degradation of both IKZF1 and IKZF3 reportedly suppresses myeloma cell growth. Here, we found that IMiDs act as inhibitors of DNA methyltransferases (DMNTs). We previously reported that PU.1, which is an ETS family transcription factor and essential for myeloid and lymphoid development, functions as a tumor suppressor in myeloma cells. PU.1 induces growth arrest and apoptosis of myeloma cell lines. In this study, we found that low-dose lenalidomide and pomalidomide up-regulate PU.1 expression through inducing demethylation of the PU.1 promoter. In addition, IMiDs inhibited DNMT1, DNMT3a, and DNMT3b activities in vitro. Furthermore, lenalidomide and pomalidomide decreased the methylation status of the whole genome in myeloma cells. Collectively, IMiDs exert demethylation activity through inhibiting DNMT1, 3a, and 3b, and up-regulating PU.1 expression, which may be one of the mechanisms of the anti-myeloma activity of IMiDs.

  9. Discovery of sphingosine 1-O-methyltransferase in rat kidney and liver homogenates

    Institute of Scientific and Technical Information of China (English)

    Santosh J SACKET; Dong-soon IM

    2008-01-01

    Aim:To characterize sphingosine methyltransferase in rat tissues.Methods:By using S-adenosyl-L-(methyl-3H) methionine,enzymatic activity was measured in the rat liver and kidney homogenates.Results:The optimum pH and reaction time for the enzyme assay were pH 7.8 and 1 h.ZnCl2 inhibited the activity,but not MgCl2,CaCl2,CoCl2,or NiCl2.In the kidney homogenate,enzymatic activity was detectable in the cytosol and all membrane fractions from the plasma membrane and other organelles; however,in the liver homogenate,enzymatic activity was detectable in all membrane fractions,but not in the cytosol.We also tested the enzymatic activity with structurally-modified sphingosine derivatives.Conclusion:We found sphingosine l-O-methyltransferase activity in the rat liver and kidney homogenates.

  10. Hypomethylation of ERVs in the sperm of mice haploinsufficient for the histone methyltransferase Setdb1 correlates with a paternal effect on phenotype.

    Science.gov (United States)

    Daxinger, Lucia; Oey, Harald; Isbel, Luke; Whitelaw, Nadia C; Youngson, Neil A; Spurling, Alex; Vonk, Kelly K D; Whitelaw, Emma

    2016-01-01

    The number of reports of paternal epigenetic influences on the phenotype of offspring in rodents is increasing but the molecular events involved remain unclear. Here, we show that haploinsufficiency for the histone 3 lysine 9 methyltransferase Setdb1 in the sire can influence the coat colour phenotype of wild type offspring. This effect occurs when the allele that directly drives coat colour is inherited from the dam, inferring that the effect involves an "in trans" step. The implication of this finding is that epigenetic state of the sperm can alter the expression of genes inherited on the maternally derived chromosomes. Whole genome bisulphite sequencing revealed that Setdb1 mutant mice show DNA hypomethylation at specific classes of transposable elements in the sperm. Our results identify Setdb1 as a paternal effect gene in the mouse and suggest that epigenetic inheritance may be more likely in individuals with altered levels of epigenetic modifiers. PMID:27112447

  11. Increase of O6-methylguanine-DNA-methyltransferase and N3-methyladenine glycosylase RNA transcripts in rat hepatoma cells treated with DNA-damaging agents

    International Nuclear Information System (INIS)

    A variety of DNA-damaging agents increase the O6-methylguanine-DNA-methyltransferase (transferase) and the N3-methyladenine (3-meAde)-DNA-glycosylase activities in a rat hepatoma cell line (H4 cells). Using two cDNA expressing either the rat 3-meAde-DNA-glycosylase or the transferase, the level of mRNA transcripts was measured by hybridization in H4 cells treated with three different inducing agents, gamma-rays, cis-dichlorodiammine platinum II or N-methyl-9-hydroxy ellipticinium. The two mRNA increased 24 hours after the cell treatments but this enhanced transcription was a transient phenomenon, as it was no longer observed after 96 hours. No significant DNA amplification was detectable in the treated cells

  12. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability

    DEFF Research Database (Denmark)

    Tatton-Brown, Katrina; Seal, Sheila; Ruark, Elise;

    2014-01-01

    Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism. To identify new causes of human overgrowth, we performed exome sequencing in ten proband...... and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P intellectual disability and greater height. DNMT3A encodes a DNA methyltransferase essential for establishing...

  13. Survival and tumorigenesis in O6-methylguanine DNA methyltransferase-deficient mice following cyclophosphamide exposure

    OpenAIRE

    Nagasubramanian, Ramamoorthy; Hansen, Ryan J.; Delaney, Shannon M.; Cherian, Mathew M.; Samson, Leona D.; Kogan, Scott C.; Dolan, M. Eileen

    2008-01-01

    O6-methylguanine DNA methyltransferase (MGMT) deficiency is associated with an increased susceptibility to alkylating agent toxicity. To understand the contribution of MGMT in protecting against cyclophosphamide (CP)-induced toxicity, mutagenesis and tumorigenesis, we compared the biological effects of this agent in transgenic Mgmt knockout and wild-type mice. In addition, neurofibromin (Nf1)+/− background was used to increase the likelihood of CP-induced tumorigenesis. Cohorts of Mgmt-profic...

  14. Somatic mutations in glioblastoma are associated with methylguanine-DNA methyltransferase methylation

    OpenAIRE

    McDonald, Kerrie L.; Tabone, Tania; Nowak, Anna K; Erber, Wendy N.

    2015-01-01

    The high level of methylguanine-DNA methyltransferase (MGMT) in glioblastoma is responsible for resistance to alkylating agents, such as temozolomide (TMZ). In glioblastomas with a methylated MGMT promoter, MGMT deficiency is presumed, resulting in an enhanced effect of TMZ. The aim of the present study was to investigate whether genomic alterations work synergistically with MGMT methylation status and contribute to the response to treatment and overall prognosis in glioblastoma. The current ...

  15. Three-dimensional culture sensitizes epithelial ovarian cancer cells to EZH2 methyltransferase inhibition

    Science.gov (United States)

    Amatangelo, Michael D.; Garipov, Azat; Li, Hua; Conejo-Garcia, Jose R.; Speicher, David W.; Zhang, Rugang

    2013-01-01

    Inhibitors of EZH2 methyltransferase activity have been demonstrated to selectively suppress the growth of diffused large B cell lymphoma (DLBCL) cells with gain-of-function mutations in EZH2, while exhibiting very limited effects on the growth of DLBCL cells with wild-type EZH2. Given that EZH2 is often overexpressed but not mutated in solid tumors, it is important to investigate the determinants of sensitivity of solid tumor cells to EZH2 inhibitors. In the current study, we show that three-dimensional (3D) culture of epithelial ovarian cancer (EOC) cells that overexpress EZH2 sensitizes these cells to EZH2 methyltransferase inhibition. Treatment of EOC cells with GSK343, a specific inhibitor of EZH2 methyltransferase, decreases the level of H3K27Me3, the product of EZH2’s enzymatic activity. However, GSK343 exhibited limited effects on the growth of EOC cells in conventional two-dimensional (2D) culture. In contrast, GSK343 significantly suppressed the growth of EOC cells cultured in 3D matrigel extracellular matrix (ECM), which more closely mimics the tumor microenvironment in vivo. Notably, GSK343 induces apoptosis of EOC cells in 3D but not 2D culture. In addition, GSK343 significantly inhibited the invasion of EOC cells. In summary, we show that the 3D ECM sensitizes EOC cells to EZH2 methyltransferase inhibition, which suppresses cell growth, induces apoptosis and inhibits invasion. Our findings imply that in EZH2 wild-type solid tumors, the ECM tumor microenvironment plays an important role in determining sensitivity to EZH2 inhibition and suggest that targeting the ECM represents a novel strategy for enhancing EZH2 inhibitor efficacy. PMID:23759589

  16. Catecholamine-o-methyltransferase polymorphisms are associated with postoperative pain intensity.

    LENUS (Irish Health Repository)

    Lee, Peter J

    2011-02-01

    single nucleotide polymorphisms (SNPs) in the genes for catecholamine-O-methyltransferase (COMT), μ-opioid receptor and GTP cyclohydrolase (GCH1) have been linked to acute and chronic pain states. COMT polymorphisms are associated with experimental pain sensitivity and a chronic pain state. No such association has been identified perioperatively. We carried out a prospective observational clinical trial to examine associations between these parameters and the development of postoperative pain in patients undergoing third molar (M3) extraction.

  17. Towards more specific O6-Methylguanine-DNA methyltransferase (MGMT) inactivators

    OpenAIRE

    CORDEIRO MACHADO, ALESSANDRA; MC MURRY, THOMAS; Rozas, Isabel

    2011-01-01

    PUBLISHED Searching for a novel family of inactivators of the human DNA repair protein O6?methylguanine?DNA methyltransferase (MGMT) which is known to bind to the DNA minor groove, we have computationally modelled and synthesised two series of 2?amino?6?aryloxy?5?nitropyrimidines with morpholino or aminodiaryl substituents (potential minor groove binders) at the 4?position. Synthesis of these compounds was achieved by successive substitution of each of the two Cl atoms of 2?amino?4,6?dichl...

  18. O6-methylguanine-DNA methyltransferase (MGMT): can function explain a suicidal mechanism?

    OpenAIRE

    Gouws, Chrisna; Pretorius, Petrus Jacobus

    2011-01-01

    Why does O6-methylguanine-DNA methyltransferase (MGMT), an indispensable DNA repair enzyme, have a mechanism which seems to run counter to its importance? This enzyme is key to the removal of detrimental alkyl adducts from guanine bases. Although the mechanism is well known, an unusual feature surrounds its mode of action, which is its so-called suicidal endpoint. In addition, induction of MGMT is highly variable and its kinetics is atypical. These features raise some questions on the seeming...

  19. Kupplung der DNA-Methyltransferase M.SssI mit Triplehelix-bildenden Oligodesoxynucleotiden

    OpenAIRE

    Monami, Amélie Joséphine

    2007-01-01

    DNA modifying enzymes, like DNA methyltransferases (DNA MTases) and restriction endonucleases (REases), could in principle be used to map or manipulate genomes. However, these enzymes are inappropriate for that purpose because of their generally short recognition sequences. An increase of their sequence specificity would therefore be desirable. One strategy to produce megaspecific DNA modifying enzymes is to couple them with triple helix forming oligodeoxynucleotide (TFO). These additional DN...

  20. Thiopurine S-methyltransferase polymorphisms and thiopurine toxicity in treatment of inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To evaluate the relationship between thiopu- rine S-methyltransferase (TPMT) polymorphisms and thiopurine-induced adverse drug reactions (ADRs) in inflammatory bowel disease (IBD). METHODS: Eligible articles that compared the frequency of TPMT polymorphisms among thiopurine-tolerant and-intolerant adult IBD patients were included. Statistical analysis was performed with Review Manager 5.0. Sub-analysis/sensitivity analysis was also performed. RESULTS: Nine studies that investigated a total of 1309 part...

  1. Genetic, physiological and biochemical characterization of multiple methanol methyltransferase isozymes in Methanosarcina acetivorans C2A.

    Science.gov (United States)

    Pritchett, Matthew A; Metcalf, William W

    2005-06-01

    Biochemical evidence suggests that methanol catabolism in Methanosarcina species requires the concerted effort of methanol:5-hydroxybenzimidazolylcobamide methyltransferase (MtaB), a corrinoid-containing methyl-accepting protein (MtaC) and Co-methyl-5-hydroxybenzimidazolylcobamide:2-mercapto-ethanesulphonic acid methyltransferase (MtaA). Here we show that Methanosarcina acetivorans possesses three operons encoding putative methanol-specific MtaB and corrinoid proteins: mtaCB1, mtaCB2 and mtaCB3. Deletion mutants lacking the three operons, in all possible combinations, were constructed and characterized. Strains deleted for any two of the operons grew on methanol, whereas strains lacking all three did not. Therefore, each operon encodes a bona fide methanol-utilizing MtaB/corrinoid protein pair. Most of the mutants were similar to the wild-type strain, with the exception of the DeltamtaCB1 DeltamtaCB2 double mutant, which grew more slowly and had reduced cell yields on methanol medium. However, all mutants displayed significantly longer lag times when switching from growth on trimethylamine to growth on methanol. This indicates that all three operons are required for wild-type growth on methanol and suggests that each operon has a distinct role in the metabolism of this substrate. The combined methanol:CoM methyltransferase activity of strains carrying only mtaCB1 was twofold higher than strains carrying only mtaCB2 and fourfold higher than strains carrying only mtaCB3. Interestingly, the presence of the mtaCB2 and mtaCB3 operons, in addition to the mtaCB1 operon, did not increase the overall methyltransferase activity, suggesting that these strains may be limited by MtaA availability. All deletion mutants were unaffected with respect to growth on trimethylamine and acetate corroborating biochemical evidence indicating that each methanogenic substrate has specific methyltransfer enzymes. PMID:15882413

  2. Identification and Characterization of a Highly Conserved Crenarchaeal Protein Lysine Methyltransferase with Broad Substrate Specificity

    OpenAIRE

    Chu, Yindi; Zhang, Zhenfeng; Wang, Qian; Luo, Yuanming; Huang, Li

    2012-01-01

    Protein lysine methylation occurs extensively in the Crenarchaeota, a major kingdom in the Archaea. However, the enzymes responsible for this type of posttranslational modification have not been found. Here we report the identification and characterization of the first crenarchaeal protein lysine methyltransferase, designated aKMT, from the hyperthermophilic crenarchaeon Sulfolobus islandicus. The enzyme was capable of transferring methyl groups to selected lysine residues in a substrate prot...

  3. Cooperativity between DNA Methyltransferases in the Maintenance Methylation of Repetitive Elements

    Science.gov (United States)

    Liang, Gangning; Chan, Matilda F.; Tomigahara, Yoshitaka; Tsai, Yvonne C.; Gonzales, Felicidad A.; Li, En; Laird, Peter W.; Jones, Peter A.

    2002-01-01

    We used mouse embryonic stem (ES) cells with systematic gene knockouts for DNA methyltransferases to delineate the roles of DNA methyltransferase 1 (Dnmt1) and Dnmt3a and -3b in maintaining methylation patterns in the mouse genome. Dnmt1 alone was able to maintain methylation of most CpG-poor regions analyzed. In contrast, both Dnmt1 and Dnmt3a and/or Dnmt3b were required for methylation of a select class of sequences which included abundant murine LINE-1 promoters. We used a novel hemimethylation assay to show that even in wild-type cells these sequences contain high levels of hemimethylated DNA, suggestive of poor maintenance methylation. We showed that Dnmt3a and/or -3b could restore methylation of these sequences to pretreatment levels following transient exposure of cells to 5-aza-CdR, whereas Dnmt1 by itself could not. We conclude that ongoing de novo methylation by Dnmt3a and/or Dnmt3b compensates for inefficient maintenance methylation by Dnmt1 of these endogenous repetitive sequences. Our results reveal a previously unrecognized degree of cooperativity among mammalian DNA methyltransferases in ES cells. PMID:11756544

  4. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses

    Energy Technology Data Exchange (ETDEWEB)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario [Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Via Celoria 26, 20133 Milano (Italy); Lamballeire, Xavier de; Brisbare, Nadege [Unité des Virus Emergents, Faculté de Médecine, 27 Boulevard Jean Moulin, 13005 Marseille (France); Dalle, Karen; Lantez, Violaine; Egloff, Marie-Pierre; Coutard, Bruno; Canard, Bruno [Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS ESIL, Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 9 (France); Gould, Ernest; Forrester, Naomi [CEH Oxford, Mansfield Road, Oxford OX1 3SR (United Kingdom); Bolognesi, Martino, E-mail: martino.bolognesi@unimi.it [Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Via Celoria 26, 20133 Milano (Italy)

    2006-08-01

    Two methyltransferases from flaviviruses (Meaban and Yokose viruses) have been overexpressed and crystallized. Diffraction data and characterization of the two crystal forms are presented, together with a preliminary molecular-replacement solution for both enzymes. Viral methyltranferases (MTase) are involved in the third step of the mRNA-capping process, transferring a methyl group from S-adenosyl-l-methionine (SAM) to the capped mRNA. MTases are classified into two groups: (guanine-N7)-methyltransferases (N7MTases), which add a methyl group onto the N7 atom of guanine, and (nucleoside-2′-O-)-methyltransferases (2′OMTases), which add a methyl group to a ribose hydroxyl. The MTases of two flaviviruses, Meaban and Yokose viruses, have been overexpressed, purified and crystallized in complex with SAM. Characterization of the crystals together with details of preliminary X-ray diffraction data collection (at 2.8 and 2.7 Å resolution, respectively) are reported here. The sequence homology relative to Dengue virus 2′OMTase and the structural conservation of specific residues in the putative active sites suggest that both enzymes belong to the 2′OMTase subgroup.

  5. Rapid restriction enzyme free detection of DNA methyltransferase activity based on DNA-templated silver nanoclusters.

    Science.gov (United States)

    Kermani, Hanie Ahmadzade; Hosseini, Morteza; Dadmehr, Mehdi; Ganjali, Mohammad Reza

    2016-06-01

    DNA methylation has significant roles in gene regulation. DNA methyltransferase (MTase) enzyme characterizes DNA methylation and also induces an aberrant methylation pattern that is related to many diseases, especially cancers. Thus, it is required to develop a method to detect the DNA MTase activity. In this study, we developed a new sensitive and reliable method for methyltransferase activity assay by employing DNA-templated silver nanoclusters (DNA/Ag NCs) without using restriction enzymes. The Ag NCs have been utilized for the determination of M.SssI MTase activity and its inhibition. We designed an oligonucleotide probe which contained an inserted six-cytosine loop as Ag NCs formation template. The changes in fluorescence intensity were monitored to quantify the M.SssI activity. The fluorescence spectra showed a linear decrease in the range of 0.4 to 20 U/ml with a detection limit of 0.1 U/ml, which was significant compared with previous reports. The proposed method was applied successfully for demonstrating the Gentamicin effect as MTase inhibitor. The proposed method showed convenient reproducibility and sensitivity indicating its potential for the determination of methyltransferase activity. PMID:27052776

  6. Methylated nucleosides in tRNA and tRNA methyltransferases

    Directory of Open Access Journals (Sweden)

    Hiroyuki eHori

    2014-05-01

    Full Text Available To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s. Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon–anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.

  7. Purification of homologous protein carboxyl methyltransferase isozymes from human and bovine erythrocytes

    International Nuclear Information System (INIS)

    The authors have purified the two major isozymes of the L-isoaspartyl/D-aspartyl protein methyltransferase from both human and bovine erythrocytes. These four enzymes all have polypeptide molecular weights of approximately 26,500 and appear to be monomers in solution. Each of these enzymes cross-reacts with antibodies directed against protein carboxyl methyltransferase I from bovine brain. Their structures also appear to be similar when analyzed by dodecyl sulfate gel electrophoresis for the large fragments produced by digestion with Staphylococcus aureus protease V8 or when analyzed by high-performance liquid chromatography (HPLC) for tryptic peptides. The structural relatedness of these enzymes was confirmed by sequence analysis of a total of 433 residues in 32 tryptic fragments of the human erythrocyte isozymes I and II and of the bovine erythrocyte isozyme II. They found sequence identity or probable identity in 111 out of 112 residues when they compared the human isozymes I and II and identities in 127 out of 134 residues when the human and bovine isozymes II were compared. These results suggest that the erythrocyte isozymes from both organisms may have nearly identical structures and confirm the similarities in the function of these methyltransferases that have been previously demonstrated

  8. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  9. Chromatin Targeting of de Novo DNA Methyltransferases by the PWWP Domain

    Institute of Scientific and Technical Information of China (English)

    Ying-ZiGe; Min-TiePu; HumairaGowher; Hai-PingWu; Jian-PingDing; AlbertJeltsch; Guo-LiangXu

    2005-01-01

    DNA methylation patterns of mammalian genomes are generated in gametogenesis and early embryonic development. Two de novo DNA methyltransferases, Dnmt3a and Dnmt3b, are responsible for the process. Both en-zymes contain a long N-terminal regulatory region linked to a conserved C-terminal domain responsible forthe catalytic activity. Although a PWWP domain in the N-terminal region has been shown to bind DNA in vitro, it is unclear how the DNA methyltransferases access their substrate in chromatin in vivo. We show here that the two proteins are associated with chromatin including mitotic chromosomes in mammalian cells, and the PWWP domain is essential for the chromatin targeting of the enzymes. The functional significance of PWWPmediated chromatin targeting is suggested by the fact that a missense mutation in this domain of human DNMT3B causes immunodeficiency, centromeric heterochromatin instability, facial anomalies (ICF) syndrome, which is characterized by loss of methylation insatellite DNA, pericentromeric instability, and immunodeficiency. We demonstrate that the mutant protein completely loses its chromatin targeting capacity. Our data establish the PWWP domain as a novel chromatin/chromosome-targeting module and suggest that the PWWP-mediated chromatin association is essential for the function of the de novo methyltransferases during development.

  10. Inhibition of methyltransferases accelerates degradation of cFLIP and sensitizes B-cell lymphoma cells to TRAIL-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Frank K Braun

    Full Text Available Non-Hodgkin lymphomas (NHLs are characterized by specific abnormalities that alter cell cycle regulation, DNA damage response, and apoptotic signaling. It is believed that cancer cells are particularly sensitive to cell death induced by tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL. However, many cancer cells show blocked TRAIL signaling due to up-regulated expression of anti-apoptotic factors, such as cFLIP. This hurdle to TRAIL's tumor cytotoxicity might be overcome by combining TRAIL-based therapy with drugs that reverse blockages of its apoptotic signaling. In this study, we investigated the impact of a pan-methyltransferase inhibitor (3-deazaneplanocin A, or DZNep on TRAIL-induced apoptosis in aggressive B-cell NHLs: mantle cell, Burkitt, and diffuse large B-cell lymphomas. We characterized TRAIL apoptosis regulation and caspase activation in several NHL-derived cell lines pre-treated with DZNep. We found that DZNep increased cancer cell sensitivity to TRAIL signaling by promoting caspase-8 processing through accelerated cFLIP degradation. No change in cFLIP mRNA level indicated independence of promoter methylation alterations in methyltransferase activity induced by DZNep profoundly affected cFLIP mRNA stability and protein stability. This appears to be in part through increased levels of cFLIP-targeting microRNAs (miR-512-3p and miR-346. However, additional microRNAs and cFLIP-regulating mechanisms appear to be involved in DZNep-mediated enhanced response to extrinsic apoptotic stimuli. The capacity of DZNep to target cFLIP expression on multiple levels underscores DZNep's potential in TRAIL-based therapies for B-cell NHLs.

  11. Active Methyl Cycle and Transfer Related Gene Expression in Response to Drought Stress in Rice Leaves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-li; ZHOU Jian; HAN Zhuo; SHANG Qi; WANG Ze-gang; GU Xiao-hui; GE Cai-lin

    2012-01-01

    Three rice varieties,Zhonghan 3,Shanyou 63 and Aizizhan,were used as materials in detecting differential active methyl cycle and transfer related gene expression in response to drought stress.The experiment was performed by gene chip and mRNA differential display technologies under the conditions of drought simulated with 10% PEG6000 solution.The results indicated that the methyl cycle could be activated in the leaves of Zhonghan 3 and Shanyou 63 but inhibited in the leaves of Aizizhan under drought stress.Furthermore,drought stress could induce the expression of a large number of methyltransferase genes,especially the transcription of Rubisco protein methylation related genes,which are beneficial for prevention of Rubisco protein oxidation and degradation,and drought stress could inhibit the transcription of DNA methyltransferase genes and histone methyltransferase genes.This result confirmed that the active methyl cycle and transfer related genes were involved in rice drought resistance.

  12. 少突胶质细胞肿瘤1p/19q联合缺失与p53、10号染色体上磷酸酶及张力蛋白同源物和6-甲基鸟嘌呤-DNA甲基转移酶蛋白表达的关系%Correlations between the combined deletions of chromosome 1p/19q and p53, phosphatase and tensin homolog deleted on chromosome ten and O6-methylguanine DNA methyltransferase protein expression in oligodendroglial tumors

    Institute of Scientific and Technical Information of China (English)

    张建国; 李玉; 刘正国; 韩双印

    2012-01-01

    Objective To investigate the frequencies of chromosome 1p/19q co-deletion and its correlation with p53,phosphatase and tensin homolog deleted on chromosome ten (PTEN) and O6-methylguanine DNA methyltransferase (MGMT) protein expression in oligodendroglial tumors.Methods Samples of 68 oligodendroglial tumors (42 oligodendrogliomas and 26 anaplastic oligodendrogliomas) were collected.The 1p/19q status was detected by Fluorescence in Situ Hybridization (FISH) and the expression levels of p53,PTEN and MGMT protein were estimated semi-quantitatively by immunohistochemistry,then the correlations with I p/19q co-deletion were analyzed by t-test.Results The frequencies of 1p deletion,19q deletion,and 1p/19q co-deletion were 67.65% (46/68),61.76% (42/68) and 57.35% (39/68)respectively in 68 oligodendroglial tumor samples.There was no obvious difference of 1 p/19q co-deletion between low-grade oligedendroglioma and anaplastic oligodendroglioma ( P > 0.05 ).The frequency of 1p/19q co-deletion in frontal lobe (76.67%,23/30) was higher than that in temporal (45.00%,9/20) and the other lobes (38.89%,7/18) (P <0.05).There was no significant correlation between 1p/19q co-deletion,age and gender (P > 0.05 ). p53 and MGMT protein expression were positively correlated with tumor grade,but PTEN protein expression negatively correlated with tumor grade in oligodendroglial tumors (P < 0.05 ).Furthermore,there was a significant association between 1 p/19q co-deletion and low p53 and MGMT protein expression (P < 0.05 ),but there was no significant correlation with PTEN protein expression in oligodendroglial tumors (P > 0.05).Conclusion The combined deletion of chromosome 1 p/19q negatively correlates with the expression of p53 and MGMT protein in oligodendroglial tumors,which may be valuable in the diagnosis,treatment and prognostic prediction for oligodendroglial tumors.%目的 探讨少突胶质细胞肿瘤染色体1p/19q联合缺失及其与p53、10号染色体

  13. The catechol-O-methyltransferase inhibitory potential of Z-vallesiachotamine by in silicoand in vitro approaches

    Directory of Open Access Journals (Sweden)

    Carolina dos Santos Passos

    2015-08-01

    Full Text Available AbstractZ-Vallesiachotamine is a monoterpene indole alkaloid that has a β-N-acrylate group in its structure. This class of compounds has already been described in different Psychotriaspecies. Our research group observed that E/Z-vallesiachotamine exhibits a multifunctional feature, being able to inhibit targets related to neurodegeneration, such as monoamine oxidase A, sirtuins 1 and 2, and butyrylcholinesterase enzymes. Aiming at better characterizing the multifunctional profile of this compound, its effect on cathecol-O-methyltransferase activity was investigated. The cathecol-O-methyltransferase activity was evaluated in vitro by a fluorescence-based method, using S-(5′-adenosyl-l-methionine as methyl donor and aesculetin as substrate. The assay optimization was performed varying the concentrations of methyl donor (S-(5′-adenosyl-l-methionine and enzyme. It was observed that the highest concentrations of both factors (2.25 U of the enzyme and 100 µM of S-(5′-adenosyl-l-methionine afforded the more reproducible results. The in vitro assay demonstrated that Z-vallesiachotamine was able to inhibit the cathecol-O-methyltransferase activity with an IC50 close to 200 µM. Molecular docking studies indicated that Z-vallesiachotamine can bind the catechol pocket of catechol-O-methyltransferase enzyme. The present work demonstrated for the first time the inhibitory properties of Z-vallesiachotamine on cathecol-O-methyltransferase enzyme, affording additional evidence regarding its multifunctional effects in targets related to neurodegenerative diseases.

  14. Crystal structures of histone and p53 methyltransferase SmyD2 reveal a conformational flexibility of the autoinhibitory C-terminal domain.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Jiang

    Full Text Available SmyD2 belongs to a new class of chromatin regulators that control gene expression in heart development and tumorigenesis. Besides methylation of histone H3 K4, SmyD2 can methylate non-histone targets including p53 and the retinoblastoma tumor suppressor. The methyltransferase activity of SmyD proteins has been proposed to be regulated by autoinhibition via the intra- and interdomain bending of the conserved C-terminal domain (CTD. However, there has been no direct evidence of a conformational change in the CTD. Here, we report two crystal structures of SmyD2 bound either to the cofactor product S-adenosylhomocysteine or to the inhibitor sinefungin. SmyD2 has a two-lobed structure with the active site located at the bottom of a deep crevice formed between the CTD and the catalytic domain. By extensive engagement with the methyltransferase domain, the CTD stabilizes the autoinhibited conformation of SmyD2 and restricts access to the catalytic site. Unexpectedly, despite that the two SmyD2 structures are highly superimposable, significant differences are observed in the first two helices of the CTDs: the two helices bend outwards and move away from the catalytic domain to generate a less closed conformation in the sinefungin-bound structure. Although the overall fold of the individual domains is structurally conserved among SmyD proteins, SmyD2 appear to be a conformational "intermediate" between a close form of SmyD3 and an open form of SmyD1. In addition, the structures reveal that the CTD is structurally similar to tetratricopeptide repeats (TPR, a motif through which many cochaperones bind to the heat shock protein Hsp90. Our results thus provide the first evidence for the intradomain flexibility of the TPR-like CTD, which may be important for the activation of SmyD proteins by Hsp90.

  15. The ASH1 HOMOLOG 2 (ASHH2 histone H3 methyltransferase is required for ovule and anther development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Paul E Grini

    Full Text Available BACKGROUND: SET-domain proteins are histone lysine (K methyltransferases (HMTase implicated in defining transcriptionally permissive or repressive chromatin. The Arabidopsis ASH1 HOMOLOG 2 (ASHH2 protein (also called SDG8, EFS and CCR1 has been suggested to methylate H3K4 and/or H3K36 and is similar to Drosophila ASH1, a positive maintainer of gene expression, and yeast Set2, a H3K36 HMTase. Mutation of the ASHH2 gene has pleiotropic developmental effects. Here we focus on the role of ASHH2 in plant reproduction. METHODOLOGY/PRINCIPAL FINDINGS: A slightly reduced transmission of the ashh2 allele in reciprocal crosses implied involvement in gametogenesis or gamete function. However, the main requirement of ASHH2 is sporophytic. On the female side, close to 80% of mature ovules lack embryo sac. On the male side, anthers frequently develop without pollen sacs or with specific defects in the tapetum layer, resulting in reduction in the number of functional pollen per anther by up to approximately 90%. In consistence with the phenotypic findings, an ASHH2 promoter-reporter gene was expressed at the site of megaspore mother cell formation as well as tapetum layers and pollen. ashh2 mutations also result in homeotic changes in floral organ identity. Transcriptional profiling identified more than 300 up-regulated and 600 down-regulated genes in ashh2 mutant inflorescences, whereof the latter included genes involved in determination of floral organ identity, embryo sac and anther/pollen development. This was confirmed by real-time PCR. In the chromatin of such genes (AP1, AtDMC1 and MYB99 we observed a reduction of H3K36 trimethylation (me3, but not H3K4me3 or H3K36me2. CONCLUSIONS/SIGNIFICANCE: The severe distortion of reproductive organ development in ashh2 mutants, argues that ASHH2 is required for the correct expression of genes essential to reproductive development. The reduction in the ashh2 mutant of H3K36me3 on down-regulated genes relevant to

  16. Genome-wide gene expression profiling of testicular carcinoma in situ progression into overt tumours

    DEFF Research Database (Denmark)

    Almstrup, K; Hoei-Hansen, C E; Nielsen, J E;

    2005-01-01

    The carcinoma in situ (CIS) cell is the common precursor of nearly all testicular germ cell tumours (TGCT). In a previous study, we examined the gene expression profile of CIS cells and found many features common to embryonic stem cells indicating that initiation of neoplastic transformation into...... found that both DNMT3B (DNA (cytosine-5-)-methyltransferase 3 beta) and DNMT3L (DNA (cytosine-5-)-methyltransferase 3 like) were overexpressed in the N-SEMs, indicating the epigenetic differences between N-SEMs and classical SEM....

  17. 2'-O methylation of internal adenosine by flavivirus NS5 methyltransferase.

    Directory of Open Access Journals (Sweden)

    Hongping Dong

    Full Text Available RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2'-O methyltransferase activities that are required for the formation of 5' type I cap (m(7GpppAm of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4 specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2'-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N⁶-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2'-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2'-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2'-O-methyladenosine. The 2'-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2'-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2'-O methylation of internal adenosine of

  18. Archease from Pyrococcus abyssi improves substrate specificity and solubility of a tRNA m5C methyltransferase

    DEFF Research Database (Denmark)

    Auxilien, Sylvie; El Khadali, Fatima; Rasmussen, Anette;

    2007-01-01

    Members of the archease superfamily of proteins are represented in all three domains of life. Archease genes are generally located adjacent to genes encoding proteins involved in DNA or RNA processing. Archease have therefore been predicted to play a modulator or chaperone role in selected steps...... of DNA or RNA metabolism, although the roles of archeases remain to be established experimentally. Here we report the function of one of these archeases from the hyperthermophile Pyrococcus abyssi. The corresponding gene (PAB1946) is located in a bicistronic operon immediately upstream from a second open...... reading frame (PAB1947), which is shown here to encode a tRNA m(5)C methyltransferase. In vitro, the purified recombinant methyltransferase catalyzes m(5)C formation at several cytosines within tRNAs with preference for C49. The specificity of the methyltransferase is increased by the archease...

  19. Structural Basis for Binding of RNA and Cofactor by a KsgA Methyltransferase

    OpenAIRE

    Tu, Chao; Tropea, Joseph E.; Austin, Brian P; Court, Donald L.; Waugh, David S.; Ji, Xinhua

    2009-01-01

    Among methyltransferases, KsgA and the reaction it catalyzes are conserved throughout evolution. However, the specifics of substrate recognition by the enzyme remain unknown. Here, we report structures of Aquifex aeolicus KsgA, in its ligand-free form, in complex with RNA and in complex with both RNA and S-adenosylhomocysteine (SAH, reaction product of cofactor S-adenosylmethionine), providing the first pieces of structural information on KsgA-RNA and KsgA-SAH interactions. Moreover, the stru...

  20. Juvenile hormone acid methyltransferase: A key regulatory enzyme for insect metamorphosis

    OpenAIRE

    Shinoda, Tetsuro; Itoyama, Kyo

    2003-01-01

    Juvenile hormone (JH) acid methyltransferase (JHAMT) is an enzyme that converts JH acids or inactive precursors of JHs to active JHs at the final step of JH biosynthesis pathway in insects. By fluorescent mRNA differential display, we have cloned a cDNA encoding JHAMT from the corpora allata (CA) of the silkworm, Bombyx mori (BmJHAMT). The BmJHAMT cDNA encodes an ORF of 278 aa with a calculated molecular mass of 32,544 Da. The predicted amino acid sequence contains a conserved S-adenosyl-l-me...

  1. EmtA, a rRNA methyltransferase conferring high-level evernimicin resistance

    DEFF Research Database (Denmark)

    Mann, P. A.; Xiong, L.; Mankin, A. S.;

    2001-01-01

    Enterococcus faecium strain 9631355 was isolated from animal sources on the basis of its resistance to the growth promotant avilamycin. The strain also exhibited high-level resistance to evernimicin, a drug undergoing evaluation as a therapeutic agent in humans. Ribosomes from strain 9631355...... exhibited a dramatic reduction in evernimicin binding, shown by both cell-free translation assays and direct-binding assays. The resistance determinant was cloned from strain 9631355; sequence alignments suggested it was a methyltransferase and therefore it was designated emtA for evernimicin...

  2. O6-Methylguanine-DNA methyltransferase deficiency in developing brain: Implications for brain tumorigenesis

    OpenAIRE

    Bobola, Michael S.; Blank, A.; Berger, Mitchel S.; Silber, John R

    2007-01-01

    The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) is a cardinal defense against the mutagenic and carcinogenic effects of alkylating agents. We have reported evidence that absence of detectable MGMT activity (MGMT− phenotype) in human brain is a predisposing factor for primary brain tumors that affects ca. 12% of individuals [J.R. Silber, et. al. Proc. Natl. Acad. Sci. USA 93 (1996) 6941–6946]. We report here that MGMT− phenotype in the brain of children and adults, and the...

  3. The DmtA methyltransferase contributes to Aspergillus flavus conidiation, sclerotial production, aflatoxin biosynthesis and virulence

    OpenAIRE

    Kunlong Yang; Linlin Liang; Fanlei Ran; Yinghang Liu; Zhenguo Li; Huahui Lan; Peili Gao; Zhenhong Zhuang; Feng Zhang; Xinyi Nie; Shimuye Kalayu Yirga; Shihua Wang

    2016-01-01

    DNA methylation is essential for epigenetic regulation of gene transcription and development in many animals, plants and fungi. We investigated whether DNA methylation plays a role in the development and secondary metabolism of Aspergillus flavus, identified the DmtA methyltransferase from A. flavus, and produced a dmtA knock-out mutant by replacing the dmtA coding sequence with the pyrG selectable marker. The A. flavus dmtA null mutant lines produced white fluffy mycelium in liquid medium, a...

  4. Histone methyltransferase Suv39h1 represses MyoD-stimulated myogenic differentiation

    OpenAIRE

    Mal, Asoke K.

    2006-01-01

    Suv39h1 is a histone H3 lysine-9 (H3-K9) specific methyltransferase (HMT) that is associated with gene silencing through chromatin modification. The transition from proliferation into differentiation of muscle cell is accompanied by transcriptional activation of previously silent muscle genes. I report Suv39h1 interaction with myogenic regulator MyoD in proliferating muscle cells and its HMT activity, which is associated with MyoD, diminishes as differentiation proceeds. The Suv39h1–MyoD comp...

  5. Crystal structure of phosphoethanolamine methyltransferase from Plasmodium falciparum in complex with amodiaquine

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soon Goo; Alpert, Tara D.; Jez, Joseph M. (WU)

    2012-07-17

    Phosphoethanolamine N-methyltransferase (PMT) is essential for phospholipid biogenesis in the malarial parasite Plasmodium falciparum. PfPMT catalyzes the triple methylation of phosphoethanolamine to produce phosphocholine, which is then used for phosphatidylcholine synthesis. Here we describe the 2.0 {angstrom} resolution X-ray crystal structure of PfPMT in complex with amodiaquine. To better characterize inhibition of PfPMT by amodiaquine, we determined the IC{sub 50} values of a series of aminoquinolines using a direct radiochemical assay. Both structural and functional analyses provide a possible approach for the development of new small molecule inhibitors of PfPMT.

  6. DNA Methyltransferase Gene dDnmt2 and Longevity of Drosophila

    Institute of Scientific and Technical Information of China (English)

    Meng-JauLin; Lin-YaTang; M.NarsaReddy; C.K.JamesShen

    2005-01-01

    The DNA methylation program of the fruit fly Drosophila melanogaster is carried out by the single DNA methyltransferase gene dDnmt2, the function of which is unknown before. We present evidence that intactness of the gene is required for maintenance of the normal life span of the fruit flies. In contrast, overexpression of dDnmt2 could extend Drosophila life span. The study links the Drosophila DNA methylation program with the small heatshock proteins and longevity/aging and has interesting implication on the eukaryotic DNA methyl-ation programs in general.

  7. Histone methyltransferase G9a contributes to H3K27 methylation in vivo

    Institute of Scientific and Technical Information of China (English)

    Hui Wu; Bing Zhu; Xiuzhen Chen; Jun Xiong; Yingfeng Li; Hong Li; Xiaojun Ding; Sheng Liu; She Chen; Shaorong Gao

    2011-01-01

    @@ Dear Editor, Histone modifications play a vital role in the conformation and function of their associated chromatin templates[1].Histone H3K27 methylation mediated by the PRC2 complex is critical for transcriptional regulation,Polycomb silencing,Drosophila segmentation,mammalian X inactivation and cancer[1].Interestingly,H3K27me1(H3 mono-methylated at residue K27)levels in vivo remain unaffected after PRC2 disruption[2,3],which is an indication for the existence of other contributing histone methyltransferase(s)to H3K27me1.

  8. Discovery and development of DNA methyltransferase inhibitors using in silico approaches.

    Science.gov (United States)

    Medina-Franco, José L; Méndez-Lucio, Oscar; Dueñas-González, Alfonso; Yoo, Jakyung

    2015-05-01

    Multiple strategies have evolved during the past few years to advance epigenetic compounds targeting DNA methyltransferases (DNMTs). Significant progress has been made in HTS, lead optimization and determination of 3D structures of DNMTs. In light of the emerging concept of epi-informatics, computational approaches are employed to accelerate the development of DNMT inhibitors helping to screen chemical databases, mine the DNMT-relevant chemical space, uncover SAR and design focused libraries. Computational methods also synergize with natural-product-based drug discovery and drug repurposing. Herein, we survey the latest developments of in silico approaches to advance epigenetic drug and probe discovery targeting DNMTs.

  9. Protein L-isoaspartyl methyltransferase1 (CaPIMT1) from chickpea mitigates oxidative stress-induced growth inhibition of Escherichia coli.

    Science.gov (United States)

    Verma, Pooja; Singh, Ajeet; Kaur, Harmeet; Majee, Manoj

    2010-01-01

    PROTEIN L-ISOASPARTYL METHYLTRANSFERASE (PIMT) repairs deleterious L-isoaspartyl residues synthesized spontaneously in proteins due to aging or stressful environments and is widespread in living organisms including plants. Even though PIMT activity has been detected from various plant sources, detailed studies are limited to a few species. Our present study on a chickpea (Cicer arietinum) PIMT reveals that apart from seed, PIMT activity is present in other organs and noticeably enhanced during stressful conditions. Using degenerate oligonucleotides and RACE strategy, a full length cDNA (CaPIMT1) was cloned and sequenced. The cDNA is 920 bp in length and contains only one open reading frame of 690 bp encoding 229 amino acids. Genomic structure reveals that the CaPIMT1 gene spans about 2,050 bp in length and contains four exons and three introns. By quantitative real-time RT-PCR, we demonstrate that the transcript of CaPIMT1 is distributed across the organs with maximum levels in seed and is also enhanced under various environmental stress conditions. Purified bacterially expressed protein is further characterized for its catalytic properties. The activity is found to be elevated towards high temperature and pH conditions. Escherichia coli expressing CaPIMT1 show greater tolerance to oxidative stress than E. coli without CaPIMT1. Taken together, our results suggest that PIMT from chickpea shows a distinct pattern of expression and may have a specific role in stress adaptation apart from seed.

  10. Set7/9, a methyltransferase, regulates the thermogenic program during brown adipocyte differentiation through the modulation of p53 acetylation.

    Science.gov (United States)

    Son, Min Jeong; Kim, Won Kon; Park, Anna; Oh, Kyoung-Jin; Kim, Jeong-Hoon; Han, Baek Soo; Kim, Il Chul; Chi, Seung-Wook; Park, Sung Goo; Lee, Sang Chul; Bae, Kwang-Hee

    2016-08-15

    Brown adipose tissue, which is mainly composed of brown adipocytes, plays a key role in the regulation of energy balance via dissipation of extra energy as heat, and consequently counteracts obesity and its associated-disorders. Therefore, brown adipocyte differentiation should be tightly controlled at the multiple regulation steps. Among these, the regulation at the level of post-translational modifications (PTMs) is largely unknown. Here, we investigated the changes in the expression level of the enzymes involved in protein lysine methylation during brown adipocyte differentiation by using quantitative real-time PCR (qPCR) array analysis. Several enzymes showing differential expression patterns were identified. In particular, the expression level of methyltransferase Set7/9 was dramatically repressed during brown adipocyte differentiation. Although there was no significant change in lipid accumulation, ectopic expression of Set7/9 led to enhanced expression of several key thermogenic genes, such as uncoupling protein-1 (UCP-1), Cidea, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), and PR domain containing 16 (PRDM16). In contrast, knockdown of endogenous Set7/9 led to significantly reduced expression of these thermogenic genes. Furthermore, suppressed mitochondrial DNA content and decreased oxygen consumption rate were also detected upon Set7/9 knockdown. We found that p53 acetylation was regulated by Set7/9-dependent interaction with Sirt1. Based on these results, we suggest that Set7/9 acts as a fine regulator of the thermogenic program during brown adipocyte differentiation by regulation of p53 acetylation. Thus, Set7/9 could be used as a valuable target for regulating thermogenic capacity and consequently to overcome obesity and its related metabolic diseases. PMID:27132805

  11. X-ray crystal structure of N-6 adenine deoxyribose nucleic acid methyltransferase from Streptococcus pneumoniae

    Science.gov (United States)

    Tran, Phidung Hong

    X-ray diffraction by using resonant anomalous scattering has become a popular tool for solving crystal structures in the last ten years with the expanded availability of tunable synchrotron radiation for protein crystallography. Mercury atoms were used for phasing. The crystal structure of N-6 deoxyribose nucleic acid methyltransferase from Streptoccocus pneumoniae (DpnM) was solved by using the Multiple Anomalous Diffraction technique. The crystal structure reveals the formation of mercaptide between the mercury ion and the thiol group on the cysteine amino acid in a hydrophobic environment. The crystal structure contains the bound ligand, S- adenosyl-l-methionine on the surface of the concave opening. The direction of the β-strands on the beta sheets are identical to other solved methyltransferases. The highly conserved motifs, DPPY and the FxGxG, are found to be important in ligand binding and possibly in methyl group transfer. The structure has a concave cleft with an opening on the order of 30 Å that can accommodate a DNA duplex. By molecular modelling coupled to sequence alignment, two other highly conserved residues Arg21 and Gly19 are found to be important in catalysis.

  12. Regulation of DNA replication and chromosomal polyploidy by the MLL-WDR5-RBBP5 methyltransferases

    Science.gov (United States)

    Lu, Fei; Wu, Xiaojun; Yin, Feng; Chia-Fang Lee, Christina; Yu, Min; Mihaylov, Ivailo S.; Yu, Jiekai; Sun, Hong

    2016-01-01

    ABSTRACT DNA replication licensing occurs on chromatin, but how the chromatin template is regulated for replication remains mostly unclear. Here, we have analyzed the requirement of histone methyltransferases for a specific type of replication: the DNA re-replication induced by the downregulation of either Geminin, an inhibitor of replication licensing protein CDT1, or the CRL4CDT2 ubiquitin E3 ligase. We found that siRNA-mediated reduction of essential components of the MLL-WDR5-RBBP5 methyltransferase complexes including WDR5 or RBBP5, which transfer methyl groups to histone H3 at K4 (H3K4), suppressed DNA re-replication and chromosomal polyploidy. Reduction of WDR5/RBBP5 also prevented the activation of H2AX checkpoint caused by re-replication, but not by ultraviolet or X-ray irradiation; and the components of MLL complexes co-localized with the origin recognition complex (ORC) and MCM2-7 replicative helicase complexes at replication origins to control the levels of methylated H3K4. Downregulation of WDR5 or RBBP5 reduced the methylated H3K4 and suppressed the recruitment of MCM2-7 complexes onto replication origins. Our studies indicate that the MLL complexes and H3K4 methylation are required for DNA replication but not for DNA damage repair. PMID:27744293

  13. Improved radioenzymatic assay for plasma norepinephrine using purified phenylethanolamine n-methyltransferase

    International Nuclear Information System (INIS)

    Radioenzymatic assays have been developed for catecholamines using either catechol O-methyltransferase (COMT) or phenylethanolamine N-methyltransferase (PNMT). Assays using PNMT are specific for norepinephrine (NE) and require minimal manipulative effort but until now have been less sensitive than the more complex procedures using COMT. The authors report an improved purification scheme for bovine PNMT which has permitted development of an NE assay with dramatically improved sensitivity (0.5 pg), specificity and reproducibility (C.V. < 5%). PNMT was purified by sequential pH 5.0 treatment and dialysis and by column chromatographic procedures using DEAE-Sephacel, Sepharcryl S-200 and Phenyl-Boronate Agarose. Recovery of PNMT through the purification scheme was 50%, while blank recovery was <.001%. NE can be directly quantified in 25 ul of human plasma and an 80 tube assay can be completed within 4 h. The capillary to venous plasma NE gradient was examined in 8 normotensive male subjects. Capillary plasma (NE (211.2 +/- 61.3 pg/ml)) was lower than venous plasma NE (366.6 +/- 92.5 pg/ml) in all subjects (p < 0.005). This difference suggests that capillary (NE) may be a unique indicator of sympathetic nervous system activity in vivo. In conclusion, purification of PNMT has facilitated development of an improved radioenzymatic for NE with significantly improved sensitivity

  14. Thiopurine methyltransferase activity in the erythrocytes of adults and children: and HPLC-linked assay.

    Science.gov (United States)

    Micheli, V; Jacomelli, G; Fioravanti, A; Morozzi, G; Marcolongo, R; Pompucci, G

    1997-03-18

    A non-radioactive method that uses reverse-phase high performance liquid chromatography is described for the determination of thiopurine methyltransferase (E.C. 2.1.1.67) activity in human erythrocytes. The method is based on the direct quantitation of 6-methyl-mercaptopurine produced from 6-mercaptopurine by crude erythrocyte lysates. The method is accurate and reliable and suitable for diagnostic use. Activity values in control adults ranged from 5 to 32 pmol/h/mg haemoglobin. The activity in the erythrocytes of adult males was significantly higher compared to females (21 +/- 5 and 15 +/- 8 pmol/h/mg haemoglobin, respectively). The activity measured in the erythrocytes of children (22 +/- 5 pmol/h/mg haemoglobin) did not show any significant difference compared to adults. Thiopurine methyltransferase activity was measured in a female patient with systemic sclerosis who developed severe bone marrow depression after treatment with azathioprine and allopurinol. Activity (6.3 +/- 0.5 pmol/h/mg haemoglobin) was found in the lowest range of controls thus supporting the hypothesis that it could be responsible for increased azathioprine cytotoxicity. PMID:9086303

  15. Highly sensitive detection of M.SssI DNA methyltransferase activity using a personal glucose meter.

    Science.gov (United States)

    Deng, Huimin; Peng, Si Ying; Gao, Zhiqiang

    2016-08-01

    A simple method for highly sensitive and selective detection of M.SssI CpG methyltransferase (M.SssI MTase) activity is developed, leveraging on the portability and ease of use of a personal glucose meter (PGM). Briefly, DNA-invertase conjugates are hybridized with their complementary DNA strands pre-immobilized on magnetic beads. The 5'-CCGG-3' sequence present in the DNA duplexes serves as the recognition site for both Hpa II restriction enzyme and M.SssI MTase (5'-CG-3'). Hpa II restriction enzyme specifically cleaves at unmethylated 5'-CCGG-3' sequence, and the invertase that remains on the methylated DNA catalyzes the hydrolysis of sucrose to glucose and fructose. It is found that the amount of glucose is proportional to the M.SssI MTase methylation activity in the range of 0.5 to 80 U/mL with a detection limit of 0.37 U/mL. Due to the specific recognition sequence present in the DNA strands, this method also shows high selectivity for M.SssI MTase. In addition, inhibition studies with 5'-azacytidine demonstrate the capability of inhibition screening using this method. Graphical abstract Deteciton of M.SssI DNA methyltransferase activity by a personal glucose meter. PMID:27311957

  16. Burkholderia glumae ToxA Is a Dual-Specificity Methyltransferase That Catalyzes the Last Two Steps of Toxoflavin Biosynthesis.

    Science.gov (United States)

    Fenwick, Michael K; Philmus, Benjamin; Begley, Tadhg P; Ealick, Steven E

    2016-05-17

    Toxoflavin is a major virulence factor of the rice pathogen Burkholderia glumae. The tox operon of B. glumae contains five putative toxoflavin biosynthetic genes toxABCDE. ToxA is a predicted S-adenosylmethionine-dependent methyltransferase, and toxA knockouts of B. glumae are less virulent in plant infection models. In this study, we show that ToxA performs two consecutive methylations to convert the putative azapteridine intermediate, 1,6-didemethyltoxoflavin, to toxoflavin. In addition, we report a series of crystal structures of ToxA complexes that reveals the molecular basis of the dual methyltransferase activity. The results suggest sequential methylations with initial methylation at N6 of 1,6-didemethyltoxoflavin followed by methylation at N1. The two azapteridine orientations that position N6 or N1 for methylation are coplanar with a 140° rotation between them. The structure of ToxA contains a class I methyltransferase fold having an N-terminal extension that either closes over the active site or is largely disordered. The ordered conformation places Tyr7 at a position of a structurally conserved tyrosine site of unknown function in various methyltransferases. Crystal structures of ToxA-Y7F consistently show a closed active site, whereas structures of ToxA-Y7A consistently show an open active site, suggesting that the hydroxyl group of Tyr7 plays a role in opening and closing the active site during the multistep reaction. PMID:27070241

  17. Thirteen new patients with guanidinoacetate methyltransferase deficiency and functional characterization of nineteen novel missense variants in the GAMT gene

    DEFF Research Database (Denmark)

    Mercimek-Mahmutoglu, Saadet; Ndika, Joseph; Kanhai, Warsha;

    2014-01-01

    Guanidinoacetate methyltransferase deficiency (GAMT-D) is an autosomal recessively inherited disorder of creatine biosynthesis. Creatine deficiency on cranial proton magnetic resonance spectroscopy, and elevated guanidinoacetate levels in body fluids are the biomarkers of GAMT-D. In 74 patients 5...

  18. The effect of Ecstasy on memory is moderated by a functional polymorphism in the cathechol-O-methyltransferase (COMT) gene

    NARCIS (Netherlands)

    T. Schilt; M.W.J. Koeter; M.M.L. de Win; J.R. Zinkstok; T.A. van Amelsvoort; B. Schmand; W. van den Brink

    2009-01-01

    There is ample evidence for decreased verbal memory in heavy Ecstasy users. However, findings on the presence of a dose-response relation are inconsistent, possibly due to individual differences in genetic vulnerability. Catechol-O-methyltransferase (COMT) is involved in the catabolism of Ecstasy. T

  19. No up-regulation of the phosphatidylethanolamine N-methyltransferase pathway and choline production by sex hormones in cats

    NARCIS (Netherlands)

    Valtolina, Chiara; Vaandrager, Arie B; Favier, Robert P; Robben, Joris H; Tuohetahuntila, Maidina; Kummeling, Anne; Jeusette, Isabelle; Rothuizen, Jan

    2015-01-01

    BACKGROUND: Feline hepatic lipidosis (FHL) is a common cholestatic disease affecting cats of any breed, age and sex. Both choline deficiency and low hepatic phosphatidylethanolamine N-methyltransferase (PEMT) activity are associated with hepatic lipidosis (HL) in humans, mice and rats. The PEMT expr

  20. Azathioprine-associated acute myeloid leukemia in a patient with Crohn's disease and thiopurine S-methyltransferase deficiency

    DEFF Research Database (Denmark)

    Yenson, P.R.; Forrest, D.; Schmiegelow, K.;

    2008-01-01

    Immunosuppressive thiopurines like azathioprine, 6-mercaptopurine, and thioguanine are commonly used in inflammatory and neoplastic disorders. A subset of these patients are genetically slow metabolizers due to point-mutations in enzyme thiopurine S-methyltransferase (TPMT), and are at a higher r...

  1. Current understanding of the interplay between catechol-O-methyltransferase genetic variants, sleep, brain development and cognitive performance in schizophrenia

    NARCIS (Netherlands)

    Tucci, Valter; Lassi, Glenda; Kas, Martien J

    2012-01-01

    Abnormal sleep is an endophenotype of schizophrenia. Here we provide an overview of the genetic mechanisms that link specific sleep physiological processes to schizophrenia-related cognitive defects. In particular, we will review the possible relationships between catechol-O-methyltransferase (COMT)

  2. Characterization of cytosine methylated regions and 5-cytosine DNA methyltransferase (Ehmeth) in the protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Fisher, Ohad; Siman-Tov, Rama; Ankri, Serge

    2004-01-01

    The DNA methylation status of the protozoan parasite Entamoeba histolytica was heretofore unknown. In the present study, we developed a new technique, based on the affinity of methylated DNA to 5-methylcytosine antibodies, to identify methylated DNA in this parasite. Ribosomal DNA and ribosomal DNA circles were isolated by this method and we confirmed the validity of our approach by sodium bisulfite sequencing. We also report the identification and the characterization of a gene, Ehmeth, encoding a DNA methyltransferase strongly homologous to the human DNA methyltransferase 2 (Dnmt2). Immunofluorescence microscopy using an antibody raised against a recombinant Ehmeth showed that Ehmeth is concentrated in the nuclei of trophozoites. The recombinant Ehmeth has a weak but significant methyltransferase activity when E.histolytica genomic DNA is used as substrate. 5-Azacytidine (5-AzaC), an inhibitor of DNA methyltransferase, was used to study in vivo the role of DNA methylation in E.histolytica. Genomic DNA of trophozoites grown with 5-AzaC (23 microM) was undermethylated and the ability of 5-AzaC-treated trophozoites to kill mammalian cells or to cause liver abscess in hamsters was strongly impaired.

  3. Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Brenner, Everton A; Zein, Imad; Chen, Yongsheng;

    2010-01-01

    Background OMT (O-methyltransferase) genes are involved in lignin biosynthesis, which relates to stover cell wall digestibility. Reduced lignin content is an important determinant of both forage quality and ethanol conversion efficiency of maize stover. Results Variation in genomic sequences codi...

  4. Vagus nerve contributes to the development of steatohepatitis and obesity in phosphatidylethanolamine N-methyltransferase deficient mice

    NARCIS (Netherlands)

    Gao, Xia; van der Veen, Jelske N.; Zhu, Linfu; Chaba, Todd; Ordonez, Marta; Lingrell, Susanne; Koonen, Debby P. Y.; Dyck, Jason R. B.; Gomez-Munoz, Antonio; Vance, Dennis E.; Jacobs, Rene L.

    2015-01-01

    BACKGROUND & AIMS: Phosphatidylethanolamine N-methyltransferase (PEMT), a liver enriched enzyme, is responsible for approximately one third of hepatic phosphatidylcholine biosynthesis. When fed a high-fat diet (HFD), Pemt(-/-) mice are protected from HF-induced obesity; however, they develop steatoh

  5. MGMT expression: insights into its regulation. 1. Epigenetic factors

    OpenAIRE

    Iatsyshyna A. P.

    2013-01-01

    O6-methylguanine-DNA methyltransferase (MGMT) is the DNA repair enzyme responsible for removing of alkylation adducts from the O6-guanine in DNA. Despite MGMT prevents mutations and cell death, this enzyme can provide resistance of cancer cells to alkylating agents of chemotherapy. The high intra- and inter-individual variations in the human MGMT expression level have been observed indicating to a complicated regulation of this gene. This review is focused on the study of epigenetic factors w...

  6. MGMT expression: insights into its regulation. 2. Single nucleotide polymorphisms

    OpenAIRE

    Iatsyshyna A. P.; Pidpala O. V.; Lukash L. L.

    2013-01-01

    High intra- and interindividual variations in the expression levels of the human O6-methylguanine-DNA methyltransferase (MGMT) gene have been observed. This DNA repair enzyme can be a cause of resistance of cancer cells to alkylating chemotherapy. It has been studied the association of single nucleotide polymorphisms (SNPs) of MGMT with the risk for different types of cancer, progression-free survival in patients with cancer treated with alkylating chemotherapy, as well as an effect of SNPs o...

  7. Severe Hypomyelination and Developmental Defects Are Caused in Mice Lacking Protein Arginine Methyltransferase 1 (PRMT1) in the Central Nervous System.

    Science.gov (United States)

    Hashimoto, Misuzu; Murata, Kazuya; Ishida, Junji; Kanou, Akihiko; Kasuya, Yoshitoshi; Fukamizu, Akiyoshi

    2016-01-29

    Protein arginine methyltransferase 1 (PRMT1) is involved in cell proliferation, DNA damage response, and transcriptional regulation. Although PRMT1 is extensively expressed in the CNS at embryonic and perinatal stages, the physiological role of PRMT1 has been poorly understood. Here, to investigate the primary function of PRMT1 in the CNS, we generated CNS-specific PRMT1 knock-out mice by the Cre-loxP system. These mice exhibited postnatal growth retardation with tremors, and most of them died within 2 weeks after birth. Brain histological analyses revealed prominent cell reduction in the white matter tracts of the mutant mice. Furthermore, ultrastructural analysis demonstrated that myelin sheath was almost completely ablated in the CNS of these animals. In agreement with hypomyelination, we also observed that most major myelin proteins including myelin basic protein (MBP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), and myelin-associated glycoprotein (MAG) were dramatically decreased, although neuronal and astrocytic markers were preserved in the brain of CNS-specific PRMT1 knock-out mice. These animals had a reduced number of OLIG2(+) oligodendrocyte lineage cells in the white matter. We found that expressions of transcription factors essential for oligodendrocyte specification and further maturation were significantly suppressed in the brain of the mutant mice. Our findings provide evidence that PRMT1 is required for CNS development, especially for oligodendrocyte maturation processes.

  8. EFFECT OF STRESS ON THE ACTIVITIES OF KEY ENZYMES IN HOMOCYSTEINE METABOLISM%应激对同型半胱氨酸关键代谢酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    弓景波; 王新兴; 杲修杰; 井然; 钱捷; 钱令嘉

    2013-01-01

    Objective To investigate the change of the activity of methionine synthase,methylenetetrahydrofolate reductase and betaine-homocysteine methyltransferase in liver and kidney of rats during stress process,so as to explore the effect of chronic restraint stress on methylation metabolism pathways of homocysteine in rats.Methods The model of restraint stress was adopted in our experiment.The activities of methionine synthase and methylenetetrahydrofotate reductase in liver and kidney were detected by high performance liquid chromatography:the activity of betaine-homocysteine methyltransferase was detected by automatic amino-acid analyzer.ELISA kits were used for determination of plasma folate,vitamin B6,vitamin B12 levels.Results The activities of methionine synthase,methylenetetrahydrofolate reductase,betaine-homocysteine methyltransferase and the plasma vitamins in stress group were reduced compared with the control group (P<0.05).Conclusion The activities of homocysteine methylation pathways were decreased by chronic restraint stress,which may be an important cause for hyperhomocysteinemia.%目的 观察慢性束缚应激大鼠肝脏和肾脏内同型半胱氨酸甲基代谢途径中重要代谢酶活性的变化,探讨应激所致机体同型半胱氨酸代谢障碍的作用.方法 采用慢性束缚应激方法建立大鼠应激模型;HPLC法检测血浆同型半胱氨酸、肝脏及肾脏甲硫氨酸合成酶和亚甲基四氢叶酸还原酶的活性;采用氨基酸自动分析仪检测甜菜碱高半胱氨酸甲基转移酶的活性.采用ELISA试剂盒测定血浆叶酸、维生素B6、维生素B12水平.结果 束缚应激大鼠肝脏和肾脏细胞内同型半胱氨酸甲基化代谢途径中的甲硫氨酸合成酶,亚甲基四氢叶酸还原酶及甜菜碱高半胱氨酸甲基转移酶活性比对照组呈现总体下降的趋势.其血浆辅酶含量与对照组比呈现减低趋势.结论 慢性应激所引起的肝脏细胞和肾脏细胞内同型

  9. Refolding of a fully functional flavivirus methyltransferase revealed that S-adenosyl methionine but not S-adenosyl homocysteine is copurified with flavivirus methyltransferase.

    Science.gov (United States)

    Brecher, Matthew B; Li, Zhong; Zhang, Jing; Chen, Hui; Lin, Qishan; Liu, Binbin; Li, Hongmin

    2015-01-01

    Methylation of flavivirus RNA is vital for its stability and translation in the infected host cell. This methylation is mediated by the flavivirus methyltransferase (MTase), which methylates the N7 and 2'-O positions of the viral RNA cap by using S-adenosyl-l-methionine (SAM) as a methyl donor. In this report, we demonstrate that SAM, in contrast to the reaction by-product S-adenosyl-l-homocysteine, which was assumed previously, is copurified with the Dengue (DNV) and West Nile virus MTases produced in Escherichia coli (E. coli). This endogenous SAM can be removed by denaturation and refolding of the MTase protein. The refolded MTase of DNV serotype 3 (DNV3) displays methylation activity comparable to native enzyme, and its crystal structure at 2.1 Å is almost identical to that of native MTase. We characterized the binding of Sinefungin (SIN), a previously described SAM-analog inhibitor of MTase function, to the native and refolded DNV3 MTase by isothermal titration calorimetry, and found that SIN binds to refolded MTase with more than 16 times the affinity of SIN binding to the MTase purified natively. Moreover, we show that SAM is also copurified with other flavivirus MTases, indicating that purification by refolding may be a generally applicable tool for studying flavivirus MTase inhibition.

  10. Methanol:coenzyme M methyltransferase from Methanosarcina barkeri. Zinc dependence and thermodynamics of the methanol:cob(I)alamin methyltransferase reaction.

    Science.gov (United States)

    Sauer, K; Thauer, R K

    1997-10-01

    In Methanosarcina barkeri, methanogenesis from methanol is initiated by the formation of methyl-coenzyme M from methanol and coenzyme M. This methyl transfer reaction is catalyzed by two enzymes, designated methyltransferases 1 (MT1) and 2 (MT2). Transferase MT1, which is composed of a 50-kDa subunit, MtaB, and a 27-kDa corrinoid-harbouring subunit, MtaC, has been shown recently to catalyze the methylation of free cob(I)alamin with methanol [Sauer, K., Harms, U. & Thauer, R. K. (1997) Eur. J. Biochem. 243, 670-677]. We report here that this reaction is catalyzed by subunit MtaB overproduced in Escherichia coli. MtaB also catalyzed the formation of methanol from methylcobalamin and H2O, the hydrolysis being associated with a free-energy change deltaG(o)' of approximately +7.0 kJ/mol. MtaB was found to contain 1 mol zinc, and its activity to be zinc dependent (pK(Zn2+) = 9.3). The zinc dependence of the MT2 (MtaA)-catalyzed reaction is also described (pK(Zn2+) = 9.6). PMID:9363780

  11. Mutant MMP-9 and HGF gene transfer enhance resolution of CCl4-induced liver fibrosis in rats: role of ASH1 and EZH2 methyltransferases repression.

    Directory of Open Access Journals (Sweden)

    Hussein Atta

    Full Text Available Hepatocyte growth factor (HGF gene transfer inhibits liver fibrosis by regulating aberrant cellular functions, while mutant matrix metalloproteinase-9 (mMMP-9 enhances matrix degradation by neutralizing the elevated tissue inhibitor of metalloproteinase-1 (TIMP-1. It was shown that ASH1 and EZH2 methyltransferases are involved in development of liver fibrosis; however, their role in the resolution phase of liver fibrosis has not been investigated. This study evaluated the role of ASH1 and EZH2 in two mechanistically different therapeutic modalities, HGF and mMMP-9 gene transfer in CCl4 induced rat liver fibrosis. Liver fibrosis was induced in rats with twice a week intraperitoneal injection of CCl4 for 8 weeks. Adenovirus vectors encoding mMMP-9 or HGF genes were injected through tail vein at weeks six and seven and were sacrificed one week after the second injection. A healthy animal group was likewise injected with saline to serve as a negative control. Rats treated with mMMP-9 showed significantly lower fibrosis score, less Sirius red stained collagen area, reduced hydroxyproline and ALT concentration, decreased transforming growth factor beta 1 (TGF-β1 mRNA and lower labeling indices of α smooth muscle actin (α-SMA and proliferating cell nuclear antigen (PCNA stained cells compared with HGF- or saline-treated rats. Furthermore, TIMP-1 protein expression in mMMP-9 group was markedly reduced compared with all fibrotic groups. ASH1 and EZH2 protein expression was significantly elevated in fibrotic liver and significantly decreased in mMMP-9- and HGF-treated compared to saline-treated fibrotic livers with further reduction in the mMMP-9 group.Gene transfer of mMMP-9 and HGF reduced liver fibrosis in rats. ASH1 and EZH2 methyltransferases are significantly reduced in mMMP-9 and HGF treated rats which underlines the central role of these enzymes during fibrogenesis. Future studies should evaluate the role of selective pharmacologic inhibitors

  12. Hypermethylation of CpG island in O6-methylguanine-DNA methyltransferase gene was associated with K-rasG to A mutation in colorectal tumor

    Institute of Scientific and Technical Information of China (English)

    Jian Qi; You-Qing Zhu; Mei-Fang Huang; Dong Yang

    2005-01-01

    AIM: To investigate the functions of promoter hypermethylation of O6-methylguanine-DNA methyltransferase (MGMT) gene in colorectal tumorigenesis and progression.METHODS: The promoter hypermethylation of MGMT gene was detected in 27 sporadic colorectal adenomas,62 sporadic colorectal carcinomas and 20 normal colorectal mucosa tissues by methylation-specific PCR. At the same time, the expression of MGMT protein was carried out in the same samples using immunohistochemistry. Mutantallele-specific amplification was used to detect K-rasG to A point mutation in codon 12.RESULTS: None of the normal colorectal mucosa tissues showed methylated bands. Promoter hypermethylation was detected in 40.7% (11 of 27) of adenomas and 43.5% (27 of 62) of carcinomas. MGMT proteins were expressed in nucleus and cytoplasm of normal colorectal mucosa tissues. Loss of MGMT expression was found in 22.2% (6 of 27) of adenomas and 45.2% (28 of 62) of carcinomas. The difference between them was significant (P = 0.041). In the 6 adenomas and 28 carcinomas losing MGMT expression, 5 and 24 cases presented methylation,respectively (P = 0.027, P<0.001). Thirteen of the 19 colorectal tumors with K-rasG to A point mutation in codon 12 had methylated MGMT(P = 0.011). The frequencies of K-rasG to A point mutation were 35.3% (12 of 34) and 12.7% (7 of 55) in tumors losing MGMT expression and with normal expression, respectively.CONCLUSION: Promoter hypermethylation and loss of expression of MGMT gene were common events in colorectal tumorigenesis, and loss of expression of MGMT occurs more frequently in carcinomas than in adenomas in sporadic patients. Hypermethylation of the CpG island of MGMT gene was associated with loss of MGMT expression and K-ras G to A point mutation in colorectal tumor. The frequency of K-ras G to A point mutation was increased in tumors losing MGMT expression. It suggests that epigenetic inactivation of MGMT plays an important role in colorectal neoplasia.

  13. Structural Basis for Binding of RNA and Cofactor by a KsgA Methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Chao; Tropea, Joseph E.; Austin, Brian P.; Court, Donald L.; Waugh, David S.; Ji, Xinhua; (NCI)

    2009-03-27

    Among methyltransferases, KsgA and the reaction it catalyzes are conserved throughout evolution. However, the specifics of substrate recognition by the enzyme remain unknown. Here we report structures of Aquifex aeolicus KsgA, in its ligand-free form, in complex with RNA, and in complex with both RNA and S-adenosylhomocysteine (SAH, reaction product of cofactor S-adenosylmethionine), revealing critical structural information on KsgA-RNA and KsgA-SAH interactions. Moreover, the structures show how conformational changes that occur upon RNA binding create the cofactor-binding site. There are nine conserved functional motifs (motifs IVIII and X) in KsgA. Prior to RNA binding, motifs I and VIII are flexible, each exhibiting two distinct conformations. Upon RNA binding, the two motifs become stabilized in one of these conformations, which is compatible with the binding of SAH. Motif X, which is also stabilized upon RNA binding, is directly involved in the binding of SAH.

  14. Brain Histamine N-Methyltransferase As a Possible Target of Treatment for Methamphetamine Overdose

    Science.gov (United States)

    Kitanaka, Junichi; Kitanaka, Nobue; Hall, F. Scott; Uhl, George R.; Takemura, Motohiko

    2016-01-01

    Stereotypical behaviors induced by methamphetamine (METH) overdose are one of the overt symptoms of METH abuse, which can be easily assessed in animal models. Currently, there is no successful treatment for METH overdose. There is increasing evidence that elevated levels of brain histamine can attenuate METH-induced behavioral abnormalities, which might therefore constitute a novel therapeutic treatment for METH abuse and METH overdose. In mammals, histamine N-methyltransferase (HMT) is the sole enzyme responsible for degrading histamine in the brain. Metoprine, one of the most potent HMT inhibitors, can cross the blood–brain barrier and increase brain histamine levels by inhibiting HMT. Consequently, this compound can be a candidate for a prototype of drugs for the treatment of METH overdose. PMID:26966348

  15. Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus

    DEFF Research Database (Denmark)

    Demirci, Hasan; Larsen, Line H G; Hansen, Trine;

    2010-01-01

    Cells devote a significant effort toward the production of multiple modified nucleotides in rRNAs, which fine tune the ribosome function. Here, we report that two methyltransferases, RsmB and RsmF, are responsible for all four 5-methylcytidine (m(5)C) modifications in 16S rRNA of Thermus...... thermophilus. Like Escherichia coli RsmB, T. thermophilus RsmB produces m(5)C967. In contrast to E. coli RsmF, which introduces a single m(5)C1407 modification, T. thermophilus RsmF modifies three positions, generating m(5)C1400 and m(5)C1404 in addition to m(5)C1407. These three residues are clustered near...

  16. Strategy to target the substrate binding site of SET domain protein methyltransferases.

    Science.gov (United States)

    Nguyen, Kong T; Li, Fengling; Poda, Gennadiy; Smil, David; Vedadi, Masoud; Schapira, Matthieu

    2013-03-25

    Protein methyltransferases (PMTs) are a novel gene family of therapeutic relevance involved in chromatin-mediated signaling and other biological mechanisms. Most PMTs are organized around the structurally conserved SET domain that catalyzes the methylation of a substrate lysine. A few potent chemical inhibitors compete with the protein substrate, and all are anchored in the channel recruiting the methyl-accepting lysine. We propose a novel strategy to design focused chemical libraries targeting the substrate binding site, where a limited number of warheads each occupying the lysine-channel of multiple enzymes would be decorated by different substituents. A variety of sequence and structure-based approaches used to analyze the diversity of the lysine channel of SET domain PMTs support the relevance of this strategy. We show that chemical fragments derived from published inhibitors are valid warheads that can be used in the design of novel focused libraries targeting other PMTs.

  17. Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase.

    Science.gov (United States)

    Yang, Shuang; Zheng, Xiangdong; Lu, Chao; Li, Guo-Min; Allis, C David; Li, Haitao

    2016-07-15

    High-frequency point mutations of genes encoding histones have been identified recently as novel drivers in a number of tumors. Specifically, the H3K36M/I mutations were shown to be oncogenic in chondroblastomas and undifferentiated sarcomas by inhibiting H3K36 methyltransferases, including SETD2. Here we report the crystal structures of the SETD2 catalytic domain bound to H3K36M or H3K36I peptides with SAH (S-adenosylhomocysteine). In the complex structure, the catalytic domain adopts an open conformation, with the K36M/I peptide snuggly positioned in a newly formed substrate channel. Our structural and biochemical data reveal the molecular basis underying oncohistone recognition by and inhibition of SETD2. PMID:27474439

  18. Minimal Substrate Features for Erm Methyltransferases Defined by Using a Combinatorial Oligonucleotide Library

    DEFF Research Database (Denmark)

    Hansen, Lykke H; Lobedanz, Sune; Douthwaite, Stephen;

    2011-01-01

    Erm methyltransferases are prevalent in pathogenic bacteria and confer resistance to macrolide, lincosamide, and streptogramin B antibiotics by specifically methylating the 23S ribosomal RNA at nucleotide A2058. We have identified motifs within the rRNA substrate that are required for methylation...... by Erm. Substrate molecules were constructed in a combinatorial manner from two separate sets (top and bottom strands) of short RNA sequences. Modifications, including LNA monomers with locked sugar residues, were incorporated into the substrates to stabilize their structures. In functional substrates......, the A2058 methylation target (on the 13- to 19-nucleotide top strand) was displayed in an unpaired sequence immediately following a conserved irregular helix, and these are the specific structural features recognized by Erm. Erm methylation was enhanced by stabilizing the top-strand conformation...

  19. Mechanistic and biological significance of DNA methyltransferase 1 upregulated by growth factors in human hepatocellular carcinoma.

    Science.gov (United States)

    Fang, Qin-Liang; Yin, Yi-Rui; Xie, Cheng-Rong; Zhang, Sheng; Zhao, Wen-Xiu; Pan, Chao; Wang, Xiao-Min; Yin, Zhen-Yu

    2015-02-01

    Dysregulation of growth factor signaling plays a pivotal role in controlling the malignancy phenotype and progression of hepatocellular carcinoma (HCC). However, the precise oncogenic mechanisms underlying transcription regulation of certain tumor suppressor genes (TSGs) by growth factors are poorly understood. In the present study, we report a novel insulin-like growth factor 1 (IGF1) pathway that mediates de novo DNA methylation and TSG (such as DLC1 and CHD5) silencing by upregulation of the DNA methyltransferase 1 (DNMT1) via an AKT/β-transducin repeat-containing protein (βTrCP)-mediated ubiquitin-proteasome pathway in HCC. Analysis of DNA methylation in CpG islands of target genes revealed high co-localization of DNMT1 and DNMT3B on the promoters of TSGs associated with enhanced CpG hypermethylation. Our results point to a novel epigenetic mechanism for growth factor-mediated repression of TSG transcription that involves DNA methylation. PMID:25420499

  20. Rationalization of Activity Cliffs of a Sulfonamide Inhibitor of DNA Methyltransferases with Induced-Fit Docking

    Directory of Open Access Journals (Sweden)

    José L. Medina-Franco

    2014-02-01

    Full Text Available Inhibitors of human DNA methyltransferases (DNMT are of increasing interest to develop novel epi-drugs for the treatment of cancer and other diseases. As the number of compounds with reported DNMT inhibition is increasing, molecular docking is shedding light to elucidate their mechanism of action and further interpret structure–activity relationships. Herein, we present a structure-based rationalization of the activity of SW155246, a distinct sulfonamide compound recently reported as an inhibitor of human DNMT1 obtained from high-throughput screening. We used flexible and induce-fit docking to develop a binding model of SW155246 with a crystallographic structure of human DNMT1. Results were in excellent agreement with experimental information providing a three-dimensional structural interpretation of ‘activity cliffs’, e.g., analogues of SW155246 with a high structural similarity to the sulfonamide compound, but with no activity in the enzymatic assay.

  1. Characterisation of the histone methyltransferase SET8 in cell cycle progression and the DNA damage response

    DEFF Research Database (Denmark)

    Jørgensen, Stine

    2008-01-01

    Histone modifications and their catalysing enzymes have within the last few years proven to be essential players in many biological processes. Due to their ability to modulate chromatin structure and affect signalling pathways they are found to affect diverse processes such as transcription, DNA...... recombination and repair. I therefore initiated a mass spectrometry based study to identify changes in histone modifications after DNA damage. By using SILAC labelling of cells to quantatively measure the changes in histone modifications, we observed a marked reduction in the level of monomethylated Histone H4...... lysine 20 (H4K20me1) after damage. H4K20me1 is catalysed by the histone methyltransferase SET8 (aka PR-SET7), and functional studies of this enzyme revealed that SET8 is important for S phase progression. We also showed that depletion of SET8 in several different cancer cell lines results in accumulation...

  2. Histone methyltransferases and demethylases:regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Peng Deng; Qian-Ming Chen; Christine Hong; Cun-Yu Wang

    2015-01-01

    Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-based regenerative medicine, such as craniofacial bone regeneration, and in new treatments for metabolic bone diseases, such as osteoporosis. In recent years, histone modification has been a growing topic in the field of MSC lineage specification, in which the Su(var)3–9, enhancer-of-zeste, trithorax (SET) domain-containing family and the Jumonji C (JmjC) domain-containing family represent the major histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), respectively. In this review, we summarize the current understanding of the epigenetic mechanisms by which SET domain-containing KMTs and JmjC domain-containing KDMs balance the osteogenic and adipogenic differentiation of MSCs.

  3. Ash2 acts as an ecdysone receptor coactivator by stabilizing the histone methyltransferase Trr.

    Science.gov (United States)

    Carbonell, Albert; Mazo, Alexander; Serras, Florenci; Corominas, Montserrat

    2013-02-01

    The molting hormone ecdysone triggers chromatin changes via histone modifications that are important for gene regulation. On hormone activation, the ecdysone receptor (EcR) binds to the SET domain-containing histone H3 methyltransferase trithorax-related protein (Trr). Methylation of histone H3 at lysine 4 (H3K4me), which is associated with transcriptional activation, requires several cofactors, including Ash2. We find that ash2 mutants have severe defects in pupariation and metamorphosis due to a lack of activation of ecdysone-responsive genes. This transcriptional defect is caused by the absence of the H3K4me3 marks set by Trr in these genes. We present evidence that Ash2 interacts with Trr and is required for its stabilization. Thus we propose that Ash2 functions together with Trr as an ecdysone receptor coactivator.

  4. Maternal Risk for Down Syndrome Is Modulated by Genes Involved in Folate Metabolism

    Directory of Open Access Journals (Sweden)

    Bruna Lancia Zampieri

    2012-01-01

    Full Text Available Studies have shown that the maternal risk for Down syndrome (DS may be modulated by alterations in folate metabolism. The aim of this study was to evaluate the influence of 12 genetic polymorphisms involved in folate metabolism on maternal risk for DS. In addition, we evaluated the impact of these polymorphisms on serum folate and plasma methylmalonic acid (MMA, an indicator of vitamin B12 status concentrations. The polymorphisms transcobalamin II (TCN2 c.776C>G, betaine-homocysteine S-methyltransferase (BHMT c.742A>G, methylenetetrahydrofolate reductase (NAD(PH (MTHFR c.677 C>T and the MTHFR 677C-1298A-1317T haplotype modulate DS risk. The polymorphisms MTHFR c.677C>T and solute carrier family 19 (folate transporter, member 1 (SLC19A1 c.80 A>G modulate folate concentrations, whereas the 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR c.66A>G polymorphism affects the MMA concentration. These results are consistent with the modulation of the maternal risk for DS by these polymorphisms.

  5. Characterization of three O-methyltransferases involved in noscapine biosynthesis in opium poppy.

    Science.gov (United States)

    Dang, Thu-Thuy T; Facchini, Peter J

    2012-06-01

    Noscapine is a benzylisoquinoline alkaloid produced in opium poppy (Papaver somniferum) and other members of the Papaveraceae. It has been used as a cough suppressant and more recently was shown to possess anticancer activity. However, the biosynthesis of noscapine in opium poppy has not been established. A proposed pathway leading from (S)-reticuline to noscapine includes (S)-scoulerine, (S)-canadine, and (S)-N-methylcanadine as intermediates. Stem cDNA libraries and latex extracts of eight opium poppy cultivars displaying different alkaloid profiles were subjected to massively parallel pyrosequencing and liquid chromatography-tandem mass spectrometry, respectively. Comparative transcript and metabolite profiling revealed the occurrence of three cDNAs encoding O-methyltransferases designated as SOMT1, SOMT2, and SOMT3 that correlated with the accumulation of noscapine in the eight cultivars. SOMT transcripts were detected in all opium poppy organs but were most abundant in aerial organs, where noscapine primarily accumulates. SOMT2 and SOMT3 showed strict substrate specificity and regiospecificity as 9-O-methyltransferases targeting (S)-scoulerine. In contrast, SOMT1 was able to sequentially 9- and 2-O-methylate (S)-scoulerine, yielding (S)-tetrahydropalmatine. SOMT1 also sequentially 3'- and 7-O-methylated both (S)-norreticuline and (S)-reticuline with relatively high substrate affinity, yielding (S)-tetrahydropapaverine and (S)-laudanosine, respectively. The metabolic functions of SOMT1, SOMT2, and SOMT3 were investigated in planta using virus-induced gene silencing. Reduction of SOMT1 or SOMT2 transcript levels resulted in a significant decrease in noscapine accumulation. Reduced SOMT1 transcript levels also caused a decrease in papaverine accumulation, confirming the selective roles for these enzymes in the biosynthesis of both alkaloids in opium poppy. PMID:22535422

  6. Computational Investigation of the Interplay of Substrate Positioning and Reactivity in Catechol O-Methyltransferase.

    Science.gov (United States)

    Patra, Niladri; Ioannidis, Efthymios I; Kulik, Heather J

    2016-01-01

    Catechol O-methyltransferase (COMT) is a SAM- and Mg2+-dependent methyltransferase that regulates neurotransmitters through methylation. Simulations and experiments have identified divergent catecholamine substrate orientations in the COMT active site: molecular dynamics simulations have favored a monodentate coordination of catecholate substrates to the active site Mg2+, and crystal structures instead preserve bidentate coordination along with short (2.65 Å) methyl donor-acceptor distances. We carry out longer dynamics (up to 350 ns) to quantify interconversion between bidentate and monodentate binding poses. We provide a systematic determination of the relative free energy of the monodentate and bidentate structures in order to identify whether structural differences alter the nature of the methyl transfer mechanism and source of enzymatic rate enhancement. We demonstrate that the bidentate and monodentate binding modes are close in energy but separated by a 7 kcal/mol free energy barrier. Analysis of interactions in the two binding modes reveals that the driving force for monodentate catecholate orientations in classical molecular dynamics simulations is derived from stronger electrostatic stabilization afforded by alternate Mg2+ coordination with strongly charged active site carboxylates. Mixed semi-empirical-classical (SQM/MM) substrate C-O distances (2.7 Å) for the bidentate case are in excellent agreement with COMT X-ray crystal structures, as long as charge transfer between the substrates, Mg2+, and surrounding ligands is permitted. SQM/MM free energy barriers for methyl transfer from bidentate and monodentate catecholate configurations are comparable at around 21-22 kcal/mol, in good agreement with experiment (18-19 kcal/mol). Overall, the work suggests that both binding poses are viable for methyl transfer, and accurate descriptions of charge transfer and electrostatics are needed to provide balanced relative barriers when multiple binding poses are

  7. Functional characterisation of three o-methyltransferases involved in the biosynthesis of phenolglycolipids in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Roxane Simeone

    Full Text Available Phenolic glycolipids are produced by a very limited number of slow-growing mycobacterial species, most of which are pathogen for humans. In Mycobacterium tuberculosis, the etiologic agent of tuberculosis, these molecules play a role in the pathogenicity by modulating the host immune response during infection. The major variant of phenolic glycolipids produced by M. tuberculosis, named PGL-tb, consists of a large lipid core terminated by a glycosylated aromatic nucleus. The carbohydrate part is composed of three sugar residues, two rhamnosyl units and a terminal fucosyl residue, which is per-O-methylated, and seems to be important for pathogenicity. While most of the genes responsible for the synthesis of the lipid core domain and the saccharide appendage of PGL-tb have been characterized, the enzymes involved in the O-methylation of the fucosyl residue of PGL-tb remain unknown. In this study we report the identification and characterization of the methyltransferases required for the O-methylation of the terminal fucosyl residue of PGL-tb. These enzymes are encoded by genes Rv2954c, Rv2955c and Rv2956. Mutants of M. tuberculosis harboring deletion within these genes were constructed. Purification and analysis of the phenolglycolipids produced by these strains, using a combination of mass spectrometry and NMR spectroscopy, revealed that Rv2954c, Rv2955c and Rv2956 encode the methyltransferases that respectively catalysed the O-methylation of the hydroxyl groups located at positions 3, 4 and 2 of the terminal fucosyl residue of PGL-tb. Our data also suggest that methylation at these positions is a sequential process, starting with position 2, followed by positions 4 and 3.

  8. Ursolic acid inhibited growth of hepatocellular carcinoma HepG2 cells through AMPKα-mediated reduction of DNA methyltransferase 1.

    Science.gov (United States)

    Yie, Yinyi; Zhao, Shunyu; Tang, Qin; Zheng, Fang; Wu, Jingjing; Yang, LiJuan; Deng, ShiGuan; Hann, Swei Sunny

    2015-04-01

    Hepatocellular carcinoma (HCC), the major histological subtype of primary liver cancer, remains one of the most common malignancies worldwide. Due to the complicated pathogenesis of this malignancy, the outcome for comprehensive treatment is limited. Chinese herbal medicine (CHM) is emerging as a promising choice for its multi-targets and coordinated intervention effects against HCC. Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid found in CHM, exerts anti-tumor effects and is emerging as an effective compound for cancer prevention and therapy. However, the molecular mechanisms underlying the action of UA remain largely unknown. In this study, we showed that UA inhibited the growth of HCC cells and induced apoptosis in the dose- and time-dependent fashion. Furthermore, we found that UA induced phosphorylation of AMP-activated protein kinase alpha (AMPKα) and suppressed the protein expression of DNA methyltransferase 1 (DNMT1) in the dose-dependent manner. The inhibitor of AMPK, compound C blocked, while an activator of AMPK, metformin augmented the effect of UA on DNMT1 expression. In addition, UA suppressed the expression of transcription factor Sp1. Conversely, overexpression of Sp1 reversed the effect of UA on DNMT1 expression and cell growth. Collectively, our results show for the first time that UA inhibits growth of HCC through AMPKα-mediated inhibition of Sp1; this in turn results in inhibition of DNMT1. This study reveals a potential novel mechanism by which UA controls growth of HCC cells and suggests that DNMT1 could be novel target for HCC chemoprevention and treatment.

  9. Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas

    OpenAIRE

    Everhard, Sibille; Tost, Jörg; Abdalaoui, Hafida El; Crinière, Emmanuelle; Busato, Florence; Marie, Yannick; Gut, Ivo G.; Sanson, Marc; Mokhtari, Karima; Laigle-Donadey, Florence; Hoang-Xuan, Khê; Delattre, Jean-Yves; Thillet, Joëlle

    2009-01-01

    The O6-methylguanine-DNA methyltransferase gene (MGMT) is methylated in several cancers, including gliomas. However, the functional role of cysteine-phosphate-guanine (CpG) island (CGI) methylation in MGMT silencing is still controversial. The aim of this study was to investigate whether MGMT CGI methylation correlates inversely with RNA expression of MGMT in glioblastomas and to determine the CpG region whose methylation best reflects the level of expression. The methylation level of CpG sit...

  10. Prognostic impact of MGMT promoter methylation and MGMT and CD133 expression in colorectal adenocarcinoma

    OpenAIRE

    Oliver, Jaime Antonio; Ortiz Quesada, Ra??l; Melguizo Alonso, Consolaci??n; ??lvarez, Pablo Juan; G??mez-Mill??n, Jaime; Prados, Jos??

    2014-01-01

    Background: New biomarkers are needed for the prognosis of advanced colorectal cancer, which remains incurable by conventional treatments. O6-methylguanine DNA methyltransferase (MGMT) methylation and protein expression have been related to colorectal cancer treatment failure and tumor progression. Moreover, the presence in these tumors of cancer stem cells, which are characterized by CD133 expression, has been associated with chemoresistance, radioresistance, metastasis, and local recurr...

  11. Functions that Protect Escherichia coli from Tightly Bound DNA-Protein Complexes Created by Mutant EcoRII Methyltransferase.

    Directory of Open Access Journals (Sweden)

    Morgan L Henderson

    Full Text Available Expression of mutant EcoRII methyltransferase protein (M.EcoRII-C186A in Escherichia coli leads to tightly bound DNA-protein complexes (TBCs, located sporadically on the chromosome rather than in tandem arrays. The mechanisms behind the lethality induced by such sporadic TBCs are not well studied, nor is it clear whether very tight binding but non-covalent complexes are processed in the same way as covalent DNA-protein crosslinks (DPCs. Using 2D gel electrophoresis, we found that TBCs induced by M.EcoRII-C186A block replication forks in vivo. Specific bubble molecules were detected as spots on the 2D gel, only when M.EcoRII-C186A was induced, and a mutation that eliminates a specific EcoRII methylation site led to disappearance of the corresponding spot. We also performed a candidate gene screen for mutants that are hypersensitive to TBCs induced by M.EcoRII-C186A. We found several gene products necessary for protection against these TBCs that are known to also protect against DPCs induced with wild-type M.EcoRII (after 5-azacytidine incorporation: RecA, RecBC, RecG, RuvABC, UvrD, FtsK, XerCD and SsrA (tmRNA. In contrast, the RecFOR pathway and Rep helicase are needed for protection against TBCs but not DPCs induced by M.EcoRII. We propose that stalled fork processing by RecFOR and RecA promotes release of tightly bound (but non-covalent blocking proteins, perhaps by licensing Rep helicase-driven dissociation of the blocking M.EcoRII-C186A. Our studies also argued against the involvement of several proteins that might be expected to protect against TBCs. We took the opportunity to directly compare the sensitivity of all tested mutants to two quinolone antibiotics, which target bacterial type II topoisomerases and induce a unique form of DPC. We uncovered rep, ftsK and xerCD as novel quinolone hypersensitive mutants, and also obtained evidence against the involvement of a number of functions that might be expected to protect against quinolones.

  12. Modulation of cell adhesion and migration by the histone methyltransferase subunit mDpy-30 and its interacting proteins.

    Directory of Open Access Journals (Sweden)

    Bin Xia

    Full Text Available We have previously shown that a subset of mDpy-30, an accessory subunit of the nuclear histone H3 lysine 4 methyltransferase (H3K4MT complex, also localizes at the trans-Golgi network (TGN, where its recruitment is mediated by the TGN-localized ARF guanine nucleotide exchange factor (ArfGEF BIG1. Depletion of mDpy-30 inhibits the endosome-to-TGN transport of internalized CIMPR receptors and concurrently promotes their accumulation at the cell protrusion. These observations suggest mDpy-30 may play a novel role at the crossroads of endosomal trafficking, nuclear transcription and adhesion/migration. Here we provide novel mechanistic and functional insight into this association. First, we demonstrate a direct interaction between mDpy-30 and BIG1 and locate the binding region in the N-terminus of BIG1. Second, we provide evidence that the depletion or overexpression of mDpy-30 enhances or inhibits cellular adhesion/migration of glioma cells in vitro, respectively. A similar increase in cell adhesion/migration is observed in cells with reduced levels of BIG1 or other H3K4MT subunits. Third, knockdown of mDpy-30, BIG1, or the RbBP5 H3K4MT subunit increases the targeting of beta1 integrin to cell protrusions, and suppression of H3K4MT activity by depleting mDpy-30 or RbBP5 leads to increased protein and mRNA levels of beta1 integrin. Moreover, stimulation of cell adhesion/migration via mDpy-30 knockdown is abolished after treating cells with a function-blocking antibody to beta1 integrin. Taken together, these data indicate that mDpy-30 and its interacting proteins function as a novel class of cellular adhesion/migration modulators partially by affecting the subcellular distribution of endosomal compartments as well as the expression of key adhesion/migration proteins such as beta1 integrin.

  13. Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene.

    Directory of Open Access Journals (Sweden)

    Dario Nicetto

    Full Text Available Post-translational modifications (PTMs of histones exert fundamental roles in regulating gene expression. During development, groups of PTMs are constrained by unknown mechanisms into combinatorial patterns, which facilitate transitions from uncommitted embryonic cells into differentiated somatic cell lineages. Repressive histone modifications such as H3K9me3 or H3K27me3 have been investigated in detail, but the role of H4K20me3 in development is currently unknown. Here we show that Xenopus laevis Suv4-20h1 and h2 histone methyltransferases (HMTases are essential for induction and differentiation of the neuroectoderm. Morpholino-mediated knockdown of the two HMTases leads to a selective and specific downregulation of genes controlling neural induction, thereby effectively blocking differentiation of the neuroectoderm. Global transcriptome analysis supports the notion that these effects arise from the transcriptional deregulation of specific genes rather than widespread, pleiotropic effects. Interestingly, morphant embryos fail to repress the Oct4-related Xenopus gene Oct-25. We validate Oct-25 as a direct target of xSu4-20h enzyme mediated gene repression, showing by chromatin immunoprecipitaton that it is decorated with the H4K20me3 mark downstream of the promoter in normal, but not in double-morphant, embryos. Since knockdown of Oct-25 protein significantly rescues the neural differentiation defect in xSuv4-20h double-morphant embryos, we conclude that the epistatic relationship between Suv4-20h enzymes and Oct-25 controls the transit from pluripotent to differentiation-competent neural cells. Consistent with these results in Xenopus, murine Suv4-20h1/h2 double-knockout embryonic stem (DKO ES cells exhibit increased Oct4 protein levels before and during EB formation, and reveal a compromised and biased capacity for in vitro differentiation, when compared to normal ES cells. Together, these results suggest a regulatory mechanism, conserved

  14. Functions that Protect Escherichia coli from Tightly Bound DNA-Protein Complexes Created by Mutant EcoRII Methyltransferase.

    Science.gov (United States)

    Henderson, Morgan L; Kreuzer, Kenneth N

    2015-01-01

    Expression of mutant EcoRII methyltransferase protein (M.EcoRII-C186A) in Escherichia coli leads to tightly bound DNA-protein complexes (TBCs), located sporadically on the chromosome rather than in tandem arrays. The mechanisms behind the lethality induced by such sporadic TBCs are not well studied, nor is it clear whether very tight binding but non-covalent complexes are processed in the same way as covalent DNA-protein crosslinks (DPCs). Using 2D gel electrophoresis, we found that TBCs induced by M.EcoRII-C186A block replication forks in vivo. Specific bubble molecules were detected as spots on the 2D gel, only when M.EcoRII-C186A was induced, and a mutation that eliminates a specific EcoRII methylation site led to disappearance of the corresponding spot. We also performed a candidate gene screen for mutants that are hypersensitive to TBCs induced by M.EcoRII-C186A. We found several gene products necessary for protection against these TBCs that are known to also protect against DPCs induced with wild-type M.EcoRII (after 5-azacytidine incorporation): RecA, RecBC, RecG, RuvABC, UvrD, FtsK, XerCD and SsrA (tmRNA). In contrast, the RecFOR pathway and Rep helicase are needed for protection against TBCs but not DPCs induced by M.EcoRII. We propose that stalled fork processing by RecFOR and RecA promotes release of tightly bound (but non-covalent) blocking proteins, perhaps by licensing Rep helicase-driven dissociation of the blocking M.EcoRII-C186A. Our studies also argued against the involvement of several proteins that might be expected to protect against TBCs. We took the opportunity to directly compare the sensitivity of all tested mutants to two quinolone antibiotics, which target bacterial type II topoisomerases and induce a unique form of DPC. We uncovered rep, ftsK and xerCD as novel quinolone hypersensitive mutants, and also obtained evidence against the involvement of a number of functions that might be expected to protect against quinolones. PMID:25993347

  15. Large-Scale, Protection-Free Synthesis of Se-Adenosyl-l-selenomethionine Analogues and Their Application as Cofactor Surrogates of Methyltransferases

    OpenAIRE

    Bothwell, Ian R.; Luo, Minkui

    2014-01-01

    S-Adenosyl-l-methionine (SAM) analogues have previously demonstrated their utility as chemical reporters of methyltransferases. Here we describe the facile, large-scale synthesis of Se-alkyl Se-adenosyl-l-selenomethionine (SeAM) analogues and their precursor, Se-adenosyl-l-selenohomocysteine (SeAH). Comparison of SeAM analogues with their equivalent SAM analogues suggests that sulfonium-to-selenonium substitution can enhance their compatibility with certain protein methyltransferases, favorin...

  16. Research Progress of N-methyltransferases Involved in Caffeine Biosynthesis%咖啡碱合成N-甲基转移酶研究进展

    Institute of Scientific and Technical Information of China (English)

    晏嫦妤; 任秋婧; 陈小芳; 李斌; 陈忠正

    2014-01-01

    Caffeine is one of the main quality and functional components in beverage such as tea, coffee, etc. At present, a xanthosine→7-methylxanthosine→7-methylxanthine→theobromine→caffeine pathway is supported as the major route to caffeine, and it is synthesized through three methylation reactions by N- methyltransferase and a nucleosidase reaction by nucleoside hydrolase. N- methyltransferases(NMTs) are important enzymes in caffeine synthesis process. In this paper, the profile of caffeine in plant and the pathway of caffeine synthesis were introduced, and the research progress on the enzymology properties, gene cloning and expression, the relationship of gene function and structure of NMTs involved in caffeine biosynthesis were mainly reviewed. Finally, the research emphasis in the field for the future was discussed and prospected.%咖啡碱是茶叶、咖啡等饮料的主要品质成分及功能成分之一。在植物体内咖啡碱生物合成的核心途径为:黄嘌呤核苷→7-甲基黄嘌呤核苷→7-甲基黄嘌呤→可可碱→咖啡碱,其中包括3步由 N-甲基转移酶催化的转甲基化反应和1步由核糖核苷水解酶催化的脱核苷反应。N-甲基转移酶是参与咖啡碱生物合成的关键酶类。介绍了植物中咖啡碱的基本情况及其生物合成途径,重点综述了咖啡碱合成 N-甲基转移酶的酶学特性、N M Ts 的克隆、基因结构与功能的关系以及基因表达调控研究等方面国内外的研究进展,并对未来该领域的研究重点进行了探讨和展望。

  17. Inhibition of Nonsmall Cell Lung Cancer Cell Migration by Protein Arginine Methyltransferase 1-small Hairpin RNA Through Inhibiting Epithelial-mesenchymal Transition, Extracellular Matrix Degradation, and Src Phosphorylation In Vitro

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2015-01-01

    Full Text Available Background: Protein arginine methyltransferases 1 (PRMT1 is over-expressed in a variety of cancers, including lung cancer, and is correlated with a poor prognosis of tumor development. This study aimed to investigate the role of PRMT1 in nonsmall cell lung cancer (NSCLC migration in vitro. Methods: In this study, PRMT1 expression in the NSCLC cell line A549 was silenced using lentiviral vector-mediated short hairpin RNAs. Cell migration was measured using both scratch wound healing and transwell cell migration assays. The mRNA expression levels of matrix metalloproteinase 2 (MMP-2 and tissue inhibitor of metalloproteinase 1, 2 (TIMP1, 2 were measured using quantitative real-time reverse transcription-polymerase chain reaction. The expression levels of protein markers for epithelial-mesenchymal transition (EMT (E-cadherin, N-cadherin, focal adhesion kinase (FAK, Src, AKT, and their corresponding phosphorylated states were detected by Western blot. Results: Cell migration was significantly inhibited in the PRMT1 silenced group compared to the control group. The mRNA expression of MMP-2 decreased while TIMP1 and TIMP2 increased significantly. E-cadherin mRNA expression also increased while N-cadherin decreased. Only phosphorylated Src levels decreased in the silenced group while FAK or AKT remained unchanged. Conclusions: PRMT1-small hairpin RNA inhibits the migration abilities of NSCLC A549 cells by inhibiting EMT, extracellular matrix degradation, and Src phosphorylation in vitro.

  18. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells

    Directory of Open Access Journals (Sweden)

    Sharma Shikhar

    2012-01-01

    Full Text Available Abstract Background DNA methylation, histone modifications and nucleosome occupancy act in concert for regulation of gene expression patterns in mammalian cells. Recently, G9a, a H3K9 methyltransferase, has been shown to play a role in establishment of DNA methylation at embryonic gene targets in ES cells through recruitment of de novo DNMT3A/3B enzymes. However, whether G9a plays a similar role in maintenance of DNA methylation in somatic cells is still unclear. Results Here we show that G9a is not essential for maintenance of DNA methylation in somatic cells. Knockdown of G9a has no measurable effect on DNA methylation levels at G9a-target loci. DNMT3A/3B remain stably anchored to nucleosomes containing methylated DNA even in the absence of G9a, ensuring faithful propagation of methylated states in cooperation with DNMT1 through somatic divisions. Moreover, G9a also associates with nucleosomes in a DNMT3A/3B and DNA methylation-independent manner. However, G9a knockdown synergizes with pharmacologic inhibition of DNMTs resulting in increased hypomethylation and inhibition of cell proliferation. Conclusions Taken together, these data suggest that G9a is not involved in maintenance of DNA methylation in somatic cells but might play a role in re-initiation of de novo methylation after treatment with hypomethylating drugs, thus serving as a potential target for combinatorial treatments strategies involving DNMTs inhibitors.

  19. Differences in folate-protein interactions result in differing inhibition of native rat liver and recombinant glycine N-methyltransferase by 5-methyltetrahydrofolate

    Energy Technology Data Exchange (ETDEWEB)

    Luka, Zigmund; Pakhomova, Svetlana; Loukachevitch, Lioudmila V; Newcomer, Marcia E; Wagner, Conrad [Vanderbilt; (LSU)

    2012-06-27

    Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. In mammalian liver it reduces S-adenosylmethionine levels by using it to methylate glycine, producing N-methylglycine (sarcosine) and S-adenosylhomocysteine. GNMT is inhibited by binding two molecules of 5-methyltetrahydrofolate (mono- or polyglutamate forms) per tetramer of the active enzyme. Inhibition is sensitive to the status of the N-terminal valine of GNMT and to polyglutamation of the folate inhibitor. It is inhibited by pentaglutamate form more efficiently compared to monoglutamate form. The native rat liver GNMT contains an acetylated N-terminal valine and is inhibited much more efficiently compared to the recombinant protein expressed in E. coli where the N-terminus is not acetylated. In this work we used a protein crystallography approach to evaluate the structural basis for these differences. We show that in the folate-GNMT complexes with the native enzyme, two folate molecules establish three and four hydrogen bonds with the protein. In the folate-recombinant GNMT complex only one hydrogen bond is established. This difference results in more effective inhibition by folate of the native liver GNMT activity compared to the recombinant enzyme.

  20. MYC acts via the PTEN tumor suppressor to elicit autoregulation and genome-wide gene repression by activation of the Ezh2 methyltransferase

    Science.gov (United States)

    Kaur, Mandeep; Cole, Michael D.

    2012-01-01

    The control of normal cell growth is a balance between stimulatory and inhibitory signals. MYC is a pleiotropic transcription factor that both activates and represses a broad range of target genes and is indispensable for cell growth. While much is known about gene activation by MYC, there is no established mechanism for the majority of MYC repressed genes. We report that MYC transcriptionally activates the PTEN tumor suppressor in normal cells to inactivate the PI3K pathway, thus suppressing AKT activation. Suppression of AKT enhances the activity of the EZH2 histone methyltransferase, a subunit of the epigenetic repressor Polycomb Repressive Complex 2 (PRC2), while simultaneously stabilizing the protein. MYC mediated enhancement in EZH2 protein level and activity results in local and genome-wide elevation in the repressive H3K27me3 histone modification, leading to widespread gene repression including feedback autoregulation of the MYC gene itself. Depletion of either PTEN or EZH2 and inhibition of the PI3K/AKT pathway leads to gene derepression. Importantly, expression of a phospho-defective EZH2 mutant is sufficient to recapitulate nearly half of all MYC-mediated gene repression. We present a novel epigenetic model for MYC-mediated gene repression and propose that PTEN and MYC exist in homeostatic balance to control normal growth which is disrupted in cancer cells. PMID:23135913

  1. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence.

    Science.gov (United States)

    Tan, Aimee; Hill, Dorothea M C; Harrison, Odile B; Srikhanta, Yogitha N; Jennings, Michael P; Maiden, Martin C J; Seib, Kate L

    2016-01-01

    Neisseria meningitidis is a human-specific bacterium that varies in invasive potential. All meningococci are carried in the nasopharynx, and most genotypes are very infrequently associated with invasive meningococcal disease; however, those belonging to the 'hyperinvasive lineages' are more frequently associated with sepsis or meningitis. Genome content is highly conserved between carriage and disease isolates, and differential gene expression has been proposed as a major determinant of the hyperinvasive phenotype. Three phase variable DNA methyltransferases (ModA, ModB and ModD), which mediate epigenetic regulation of distinct phase variable regulons (phasevarions), have been identified in N. meningitidis. Each mod gene has distinct alleles, defined by their Mod DNA recognition domain, and these target and methylate different DNA sequences, thereby regulating distinct gene sets. Here 211 meningococcal carriage and >1,400 disease isolates were surveyed for the distribution of meningococcal mod alleles. While modA11-12 and modB1-2 were found in most isolates, rarer alleles (e.g., modA15, modB4, modD1-6) were specific to particular genotypes as defined by clonal complex. This suggests that phase variable Mod proteins may be associated with distinct phenotypes and hence invasive potential of N. meningitidis strains. PMID:26867950

  2. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence.

    Science.gov (United States)

    Tan, Aimee; Hill, Dorothea M C; Harrison, Odile B; Srikhanta, Yogitha N; Jennings, Michael P; Maiden, Martin C J; Seib, Kate L

    2016-01-01

    Neisseria meningitidis is a human-specific bacterium that varies in invasive potential. All meningococci are carried in the nasopharynx, and most genotypes are very infrequently associated with invasive meningococcal disease; however, those belonging to the 'hyperinvasive lineages' are more frequently associated with sepsis or meningitis. Genome content is highly conserved between carriage and disease isolates, and differential gene expression has been proposed as a major determinant of the hyperinvasive phenotype. Three phase variable DNA methyltransferases (ModA, ModB and ModD), which mediate epigenetic regulation of distinct phase variable regulons (phasevarions), have been identified in N. meningitidis. Each mod gene has distinct alleles, defined by their Mod DNA recognition domain, and these target and methylate different DNA sequences, thereby regulating distinct gene sets. Here 211 meningococcal carriage and >1,400 disease isolates were surveyed for the distribution of meningococcal mod alleles. While modA11-12 and modB1-2 were found in most isolates, rarer alleles (e.g., modA15, modB4, modD1-6) were specific to particular genotypes as defined by clonal complex. This suggests that phase variable Mod proteins may be associated with distinct phenotypes and hence invasive potential of N. meningitidis strains.

  3. Achaete-scute complex homolog-1 promotes DNA repair in the lung carcinogenesis through matrix metalloproteinase-7 and O(6-methylguanine-DNA methyltransferase.

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Wang

    Full Text Available Lung cancer is the leading cause of cancer-related deaths in the world. Achaete-scute complex homolog-1 (Ascl1 is a member of the basic helix-loop-helix (bHLH transcription factor family that has multiple functions in the normal and neoplastic lung such as the regulation of neuroendocrine differentiation, prevention of apoptosis and promotion of tumor-initiating cells. We now show that Ascl1 directly regulates matrix metalloproteinase-7 (MMP-7 and O(6-methylguanine-DNA methyltransferase (MGMT. Loss- and gain-of-function experiments in human bronchial epithelial and lung carcinoma cell lines revealed that Ascl1, MMP-7 and MGMT are able to protect cells from the tobacco-specific nitrosamine NNK-induced DNA damage and the alkylating agent cisplatin-induced apoptosis. We also examined the role of Ascl1 in NNK-induced lung tumorigenesis in vivo. Using transgenic mice which constitutively expressed human Ascl1 in airway lining cells, we found that there was a delay in lung tumorigenesis. We conclude that Ascl1 potentially enhances DNA repair through activation of MMP-7 and MGMT which may impact lung carcinogenesis and chemoresistance. The study has uncovered a novel and unexpected function of Ascl1 which will contribute to better understanding of lung carcinogenesis and the broad implications of transcription factors in tobacco-related carcinogenesis.

  4. 30S Subunit-Dependent Activation of the Sorangium cellulosum So ce56 Aminoglycoside Resistance-Conferring 16S rRNA Methyltransferase Kmr

    Science.gov (United States)

    Savic, Miloje; Sunita, S.; Zelinskaya, Natalia; Desai, Pooja M.; Macmaster, Rachel; Vinal, Kellie

    2015-01-01

    Methylation of bacterial 16S rRNA within the ribosomal decoding center confers exceptionally high resistance to aminoglycoside antibiotics. This resistance mechanism is exploited by aminoglycoside producers for self-protection while functionally equivalent methyltransferases have been acquired by human and animal pathogenic bacteria. Here, we report structural and functional analyses of the Sorangium cellulosum So ce56 aminoglycoside resistance-conferring methyltransferase Kmr. Our results demonstrate that Kmr is a 16S rRNA methyltransferase acting at residue A1408 to confer a canonical aminoglycoside resistance spectrum in Escherichia coli. Kmr possesses a class I methyltransferase core fold but with dramatic differences in the regions which augment this structure to confer substrate specificity in functionally related enzymes. Most strikingly, the region linking core β-strands 6 and 7, which forms part of the S-adenosyl-l-methionine (SAM) binding pocket and contributes to base flipping by the m1A1408 methyltransferase NpmA, is disordered in Kmr, correlating with an exceptionally weak affinity for SAM. Kmr is unexpectedly insensitive to substitutions of residues critical for activity of other 16S rRNA (A1408) methyltransferases and also to the effects of by-product inhibition by S-adenosylhomocysteine (SAH). Collectively, our results indicate that adoption of a catalytically competent Kmr conformation and binding of the obligatory cosubstrate SAM must be induced by interaction with the 30S subunit substrate. PMID:25733511

  5. (Accumulation of methyl-deficient rat liver messenger ribonucleic acid on ethionine administration). Progress report. [Methyltransferase activity in Ehrlich ascites tumor cells and effects of phorbol ester on methyltransferase activity

    Energy Technology Data Exchange (ETDEWEB)

    Borek, E.

    1980-01-01

    Enzyme fractions were isolated from Ehrlich ascites cells which introduced methyl groups into methyl deficient rat liver mRNA and unmethylated vaccinia mRNA. The methyl groups were incorporated at the 5' end into cap 1 structures by the viral enzyme, whereas both cap 0 and cap 1 structures were formed by the Ehrlich ascites cell enzymes. Preliminary results indicate the presence of adenine N/sup 6/-methyltransferase activity in Ehrlich ascites cells. These results indicate that mRNA deficient in 5'-cap methylation and in internal methylation of adenine accumulated in rats on exposure to ethionine. The methyl-deficient mRNA isolated from the liver of ethionine-fed rats differed in its translational properties from mRNA isolated from control animals. Preliminary experiments indicate that single topical application of 17n moles of TPA to mouse skin altered tRNA methyltransferases. The extent of methylation was increased over 2-fold in mouse skin treated with TPA for 48 hours. These changes have been observed as early as 12 hours following TPA treatment. In contrast, the application of initiating dose of DMBA had no effect on these enzymes. It should be emphasized that the changes in tRNA methyltransferases produced by TPA are not merely an increase of the concentration of the enzyme, rather that they represent alterations of specificity of a battery of enzymes. In turn the change in enzyme specificity can produce alterations in the structure of tRNA. (ERB)

  6. A female adnexal tumor of probable Wolffian origin showing positive O-6-methylguanine-DNA methyltransferase methylation

    Science.gov (United States)

    Kwon, Min Jung; Yun, Min Jeong

    2016-01-01

    Female adnexal tumor of probable Wolffian origin (FATWO) is a rare disease entity that arises from the mesonephric duct system. FATWO is different than other gynecological cancers in terms of embryology. Here, we describe the case of a 52-year-old woman with malignant FATWO. The patient underwent explorative laparotomy and surgical staging after a frozen section revealed malignancy. Detailed examination of the pathologic findings were consistent with FATWO. Counseling and further testing were provided to the patient to assess the risk of germline mutation and epigenetic change. An O-6-methylguanine-DNA methyltransferase gene methylation test was positive, and all other tests were normal. This is the first study to report a case of O-6-methylguanine-DNA methyltransferase methylation with FATWO in Korea. PMID:27462603

  7. Crystallization and preliminary crystallographic analysis of tRNA (m7G46) methyltransferase from Escherichia coli

    Science.gov (United States)

    Liu, Qi; Gao, Yang; Yang, Weili; Zhou, Huihao; Gao, Yongxiang; Zhang, Xiao; Teng, Maikun; Niu, Liwen

    2008-01-01

    Transfer RNA (tRNA) (m7G46) methyltransferase (TrmB) belongs to the Rossmann-fold methyltransferase (RFM) family and uses S-adenosyl-l-methionine (SAM) as the methyl-group donor to catalyze the formation of N 7-­methylguanosine (m7G) at position 46 in the variable loop of tRNAs. After attempts to crystallize full-length Escherichia coli TrmB (EcTrmB) failed, a truncated protein lacking the first 32 residues of the N-terminus but with an additional His6 tag at the C-terminus was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 (PEG 3350) as precipitant at 283 K. An X-ray diffraction data set was collected using a single flash-cooled crystal that belonged to space group P21. PMID:18678947

  8. Crystallization and preliminary crystallographic analysis of tRNA (m(7)G46) methyltransferase from Escherichia coli.

    Science.gov (United States)

    Liu, Qi; Gao, Yang; Yang, Weili; Zhou, Huihao; Gao, Yongxiang; Zhang, Xiao; Teng, Maikun; Niu, Liwen

    2008-08-01

    Transfer RNA (tRNA) (m(7)G46) methyltransferase (TrmB) belongs to the Rossmann-fold methyltransferase (RFM) family and uses S-adenosyl-L-methionine (SAM) as the methyl-group donor to catalyze the formation of N(7)-methylguanosine (m(7)G) at position 46 in the variable loop of tRNAs. After attempts to crystallize full-length Escherichia coli TrmB (EcTrmB) failed, a truncated protein lacking the first 32 residues of the N-terminus but with an additional His(6) tag at the C-terminus was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 (PEG 3350) as precipitant at 283 K. An X-ray diffraction data set was collected using a single flash-cooled crystal that belonged to space group P2(1).

  9. Facile synthesis of N-6 adenosine modified analogue toward S-adenosyl methionine derived probe for protein arginine methyltransferases

    Institute of Scientific and Technical Information of China (English)

    Wei Hong; James Dowden

    2011-01-01

    Chemically modified cellular co-factors that provide function, such as immobilization or incorporation of fluorescent dyes, are valuable probes of biological activity. A convenient route to obtain S-adenosyl methionine (AdoMet) analogues modified at N-6 adenosine to feature a linker terminating in azide functionality is described herein. Subsequent decoration of such AdoMet analogues with guanidinium terminated linkers leads to novel potential bisubstrate inhibitors for protein arginine methyltransferases, PRMTs.

  10. O6-methylguanine DNA methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas

    OpenAIRE

    Fan, C-H; Liu, W-L; Cao, H.; Wen, C; Chen, L.; G. Jiang

    2013-01-01

    Temozolomide (TMZ) is an alkylating agent currently used as first-line therapy for gliomas treatment due to its DNA-damaging effect. However, drug resistance occurs, preventing multi-cycle use of this chemotherapeutic agent. One of the major mechanisms of cancer drug resistance is enhanced activity of a DNA repair enzyme, O6-methylguanine-DNA-methyltransferase (MGMT), which counteracts chemotherapy-induced DNA alkylation and is a key component of chemoresistance. MGMT repairs TMZ-induced DNA ...

  11. Effects of Active‐Site Modification and Quaternary Structure on the Regioselectivity of Catechol‐O‐Methyltransferase

    OpenAIRE

    Law, Brian J. C.; Bennett, Matthew R.; Thompson, Mark L; Levy, Colin; Shepherd, Sarah A; Leys, David; Micklefield, Jason

    2016-01-01

    Abstract Catechol‐O‐methyltransferase (COMT), an important therapeutic target in the treatment of Parkinson's disease, is also being developed for biocatalytic processes, including vanillin production, although lack of regioselectivity has precluded its more widespread application. By using structural and mechanistic information, regiocomplementary COMT variants were engineered that deliver either meta‐ or para‐methylated catechols. X‐ray crystallography further revealed how the active‐site r...

  12. Cloning and characterization of a cDNA from Aspergillus parasiticus encoding an O-methyltransferase involved in aflatoxin biosynthesis.

    OpenAIRE

    Yu, J.; Cary, J W; D. Bhatnagar; Cleveland, T E; Keller, N. P.; Chu, F S

    1993-01-01

    Aflatoxins are polyketide-derived secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. Among the catalytic steps in the aflatoxin biosynthetic pathway, the conversion of sterigmatocystin to O-methylsterigmatocystin and the conversion of dihydrosterigmatocystin to dihydro-O-methylsterigmatocystin are catalyzed by an S-adenosylmethionine-dependent O-methyltransferase. A cDNA library was constructed by using RNA isolated from a 24-h-old culture of wild-type...

  13. Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function

    OpenAIRE

    Tan, Hao-Yang; Chen, Qiang; Sust, Steven; Joshua W Buckholtz; Meyers, John D.; Egan, Michael F.; Mattay, Venkata S.; Meyer-Lindenberg, Andreas; Weinberger, Daniel R.; Callicott, Joseph H.

    2007-01-01

    Dopaminergic and glutamatergic systems are critical components responsible for prefrontal signal-to-noise tuning in working memory. Recent functional MRI (fMRI) studies of genetic variation in these systems in catechol-O-methyltransferase (COMT) and in metabotropic glutamate receptor mgluR3 (GRM3), respectively, suggest that these genes influence prefrontal physiological signal-to-noise in humans. Here, using fMRI, we extend these individual gene findings to examine the combined effects of CO...

  14. Therapy and progression – induced O6-methylguanine-DNA methyltransferase and mismatch repair alterations in recurrent glioblastoma multiforme

    OpenAIRE

    Agarwal, S.; Suri, V.; M C Sharma; C. Sarkar

    2015-01-01

    Despite multimodality treatment protocol including surgical resection, radiotherapy, and chemotherapy in patients with glioblastoma multiforme (GBM), most suffer from treatment failure and tumor recurrence within a few months of initial surgery. The effectiveness of temozolomide (TMZ), the most commonly used chemotherapeutic agent, is largely dependent on the methylation status of the promoter of the gene O6-methylguanine-DNA methyltransferase (MGMT) and the integrity of the mismatch repair (...

  15. Noncompetitive Inhibition of Indolethylamine-N-methyltransferase by N,N-Dimethyltryptamine and N,N-Dimethylaminopropyltryptamine

    OpenAIRE

    Chu, Uyen B.; Vorperian, Sevahn K.; Satyshur, Kenneth; Eickstaedt, Kelsey; Cozzi, Nicholas V; Mavlyutov, Timur; Hajipour, Abdol R.; Ruoho, Arnold E.

    2014-01-01

    Indolethylamine-N-methyltransferase (INMT) is a Class 1 transmethylation enzyme known for its production of N,N-dimethyltryptamine (DMT), a hallucinogen with affinity for various serotonergic, adrenergic, histaminergic, dopaminergic, and sigma-1 receptors. DMT is produced via the action of INMT on the endogenous substrates tryptamine and S-adenosyl-l-methionine (SAM). The biological, biochemical, and selective small molecule regulation of INMT enzyme activity remain largely unknown. Kinetic m...

  16. The Histone Methyltransferase Inhibitor A-366 Uncovers a Role for G9a/GLP in the Epigenetics of Leukemia.

    Directory of Open Access Journals (Sweden)

    William N Pappano

    Full Text Available Histone methyltransferases are epigenetic regulators that modify key lysine and arginine residues on histones and are believed to play an important role in cancer development and maintenance. These epigenetic modifications are potentially reversible and as a result this class of enzymes has drawn great interest as potential therapeutic targets of small molecule inhibitors. Previous studies have suggested that the histone lysine methyltransferase G9a (EHMT2 is required to perpetuate malignant phenotypes through multiple mechanisms in a variety of cancer types. To further elucidate the enzymatic role of G9a in cancer, we describe herein the biological activities of a novel peptide-competitive histone methyltransferase inhibitor, A-366, that selectively inhibits G9a and the closely related GLP (EHMT1, but not other histone methyltransferases. A-366 has significantly less cytotoxic effects on the growth of tumor cell lines compared to other known G9a/GLP small molecule inhibitors despite equivalent cellular activity on methylation of H3K9me2. Additionally, the selectivity profile of A-366 has aided in the discovery of a potentially important role for G9a/GLP in maintenance of leukemia. Treatment of various leukemia cell lines in vitro resulted in marked differentiation and morphological changes of these tumor cell lines. Furthermore, treatment of a flank xenograft leukemia model with A-366 resulted in growth inhibition in vivo consistent with the profile of H3K9me2 reduction observed. In summary, A-366 is a novel and highly selective inhibitor of G9a/GLP that has enabled the discovery of a role for G9a/GLP enzymatic activity in the growth and differentiation status of leukemia cells.

  17. Catechol O-Methyltransferase Haplotype Predicts Immediate Musculoskeletal Neck Pain and Psychological Symptoms after Motor Vehicle Collision

    OpenAIRE

    McLean, Samuel A.; Diatchenko, Luda; Lee, Young M.; Swor, Robert A.; Domeier, Robert M; Jones, Jeffrey S.; Jones, Christopher W.; Reed, Caroline; Harris, Richard E; Maixner, William; Clauw, Daniel J.; Liberzon, Israel

    2010-01-01

    Genetic variations in the catechol-o-methyltransferase (COMT) gene have been associated with experimental pain and risk of chronic pain development, but no studies have examined genetic predictors of neck pain intensity and other patient characteristics after motor vehicle collision (MVC). We evaluated the association between COMT genotype and acute neck pain intensity and other patient characteristics in 89 Caucasian individuals presenting to the emergency department (ED) after MVC. In the E...

  18. Investigating the Potential Role of Genetic and Epigenetic Variation of DNA Methyltransferase Genes in Hyperplastic Polyposis Syndrome

    OpenAIRE

    Drini, Musa; Nicholas C. Wong; Hamish S Scott; Craig, Jeffrey M; Dobrovic, Alexander; Chelsee A Hewitt; Dow, Christofer; Young, Joanne P; Jenkins, Mark A; Saffery, Richard; Macrae, Finlay A.

    2011-01-01

    Background Hyperplastic Polyposis Syndrome (HPS) is a condition associated with multiple serrated polyps, and an increased risk of colorectal cancer (CRC). At least half of CRCs arising in HPS show a CpG island methylator phenotype (CIMP), potentially linked to aberrant DNA methyltransferase (DNMT) activity. CIMP is associated with methylation of tumor suppressor genes including regulators of DNA mismatch repair (such as MLH1, MGMT), and negative regulators of Wnt signaling (such as WIF1). In...

  19. A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases

    OpenAIRE

    Southall, Stacey M.; Cronin, Nora B.; Wilson, Jon R.

    2013-01-01

    The delivery of site-specific post-translational modifications to histones generates an epigenetic regulatory network that directs fundamental DNA-mediated processes and governs key stages in development. Methylation of histone H4 lysine-20 has been implicated in DNA repair, transcriptional silencing, genomic stability and regulation of replication. We present the structure of the histone H4K20 methyltransferase Suv4-20h2 in complex with its histone H4 peptide substrate and S-adenosyl methion...

  20. Protein Isoaspartate Methyltransferase Prevents Apoptosis Induced by Oxidative Stress in Endothelial Cells: Role of Bcl-Xl Deamidation and Methylation

    OpenAIRE

    Amelia Cimmino; Rosanna Capasso; Fabbri Muller; Irene Sambri; Lucia Masella; Marianna Raimo; Maria Luigia De Bonis; Stefania D'Angelo; Vincenzo Zappia; Patrizia Galletti; Diego Ingrosso

    2008-01-01

    BACKGROUND: Natural proteins undergo in vivo spontaneous post-biosynthetic deamidation of specific asparagine residues with isoaspartyl formation. Deamidated-isomerized molecules are both structurally and functionally altered. The enzyme isoaspartyl protein carboxyl-O-methyltransferase (PCMT; EC 2.1.1.77) has peculiar substrate specificity towards these deamidated proteins. It catalyzes methyl esterification of the free alpha-carboxyl group at the isoaspartyl site, thus initiating the repair ...

  1. Molecular phylogenetics and comparative modeling of HEN1, a methyltransferase involved in plant microRNA biogenesis

    Directory of Open Access Journals (Sweden)

    Obarska Agnieszka

    2006-01-01

    Full Text Available Abstract Background Recently, HEN1 protein from Arabidopsis thaliana was discovered as an essential enzyme in plant microRNA (miRNA biogenesis. HEN1 transfers a methyl group from S-adenosylmethionine to the 2'-OH or 3'-OH group of the last nucleotide of miRNA/miRNA* duplexes produced by the nuclease Dicer. Previously it was found that HEN1 possesses a Rossmann-fold methyltransferase (RFM domain and a long N-terminal extension including a putative double-stranded RNA-binding motif (DSRM. However, little is known about the details of the structure and the mechanism of action of this enzyme, and about its phylogenetic origin. Results Extensive database searches were carried out to identify orthologs and close paralogs of HEN1. Based on the multiple sequence alignment a phylogenetic tree of the HEN1 family was constructed. The fold-recognition approach was used to identify related methyltransferases with experimentally solved structures and to guide the homology modeling of the HEN1 catalytic domain. Additionally, we identified a La-like predicted RNA binding domain located C-terminally to the DSRM domain and a domain with a peptide prolyl cis/trans isomerase (PPIase fold, but without the conserved PPIase active site, located N-terminally to the catalytic domain. Conclusion The bioinformatics analysis revealed that the catalytic domain of HEN1 is not closely related to any known RNA:2'-OH methyltransferases (e.g. to the RrmJ/fibrillarin superfamily, but rather to small-molecule methyltransferases. The structural model was used as a platform to identify the putative active site and substrate-binding residues of HEN and to propose its mechanism of action.

  2. The Role of the Methyltransferase Domain of Bifunctional Restriction Enzyme RM.BpuSI in Cleavage Activity

    OpenAIRE

    Arthur Sarrade-Loucheur; Shuang-yong Xu; Siu-Hong Chan

    2013-01-01

    Restriction enzyme (REase) RM.BpuSI can be described as a Type IIS/C/G REase for its cleavage site outside of the recognition sequence (Type IIS), bifunctional polypeptide possessing both methyltransferase (MTase) and endonuclease activities (Type IIC) and endonuclease activity stimulated by S-adenosyl-L-methionine (SAM) (Type IIG). The stimulatory effect of SAM on cleavage activity presents a major paradox: a co-factor of the MTase activity that renders the substrate unsusceptible to cleavag...

  3. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence

    Science.gov (United States)

    James, Allison E.; Rogovskyy, Artem S.; Crowley, Michael A.; Bankhead, Troy

    2016-01-01

    DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence. PMID:27195796

  4. Crystallization and preliminary crystallographic analysis of tRNA (m{sup 7}G46) methyltransferase from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Gao, Yang; Yang, Weili; Zhou, Huihao; Gao, Yongxiang; Zhang, Xiao; Teng, Maikun, E-mail: mkteng@ustc.edu.cn; Niu, Liwen, E-mail: mkteng@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027 (China); Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230027 (China)

    2008-08-01

    tRNA (m{sup 7}G46) methyltransferase from E. coli was overexpressed, purified and crystallized. Diffraction data were collected to 2.04 Å resolution. Transfer RNA (tRNA) (m{sup 7}G46) methyltransferase (TrmB) belongs to the Rossmann-fold methyltransferase (RFM) family and uses S-adenosyl-l-methionine (SAM) as the methyl-group donor to catalyze the formation of N{sup 7}-methylguanosine (m{sup 7}G) at position 46 in the variable loop of tRNAs. After attempts to crystallize full-length Escherichia coli TrmB (EcTrmB) failed, a truncated protein lacking the first 32 residues of the N-terminus but with an additional His{sub 6} tag at the C-terminus was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 (PEG 3350) as precipitant at 283 K. An X-ray diffraction data set was collected using a single flash-cooled crystal that belonged to space group P2{sub 1}.

  5. Structure of the corrinoid:coenzyme M methyltransferase MtaA from Methanosarcina mazei.

    Science.gov (United States)

    Hoeppner, Astrid; Thomas, Frank; Rueppel, Alma; Hensel, Reinhard; Blankenfeldt, Wulf; Bayer, Peter; Faust, Annette

    2012-11-01

    The zinc-containing corrinoid:coenzyme M methyltransferase MtaA is part of the methanol-coenzyme M-methyltransferase complex of Methanosarcina mazei. The whole complex consists of three subunits: MtaA, MtaB and MtaC. The MtaB-MtaC complex catalyses the cleavage of methanol (bound to MtaB) and the transfer of the methyl group onto the cobalt of cob(I)alamin (bound to MtaC). The MtaA-MtaC complex catalyses methyl transfer from methyl-cob(III)alamin (bound to MtaC) to coenzyme M (bound to MtaA). The crystal structure of the MtaB-MtaC complex from M. barkeri has previously been determined. Here, the crystal structures of MtaA from M. mazei in a substrate-free but Zn(2+)-bound state and in complex with Zn(2+) and coenzyme M (HS-CoM) are reported at resolutions of 1.8 and 2.1 Å, respectively. A search for homologous proteins revealed that MtaA exhibits 23% sequence identity to human uroporphyrinogen III decarboxylase, which has also the highest structural similarity (r.m.s.d. of 2.03 Å for 306 aligned amino acids). The main structural feature of MtaA is a TIM-barrel-like fold, which is also found in all other zinc enzymes that catalyse thiol-group alkylation. The active site of MtaA is situated at the narrow bottom of a funnel such that the thiolate group of HS-CoM points towards the Zn(2+) ion. The Zn(2+) ion in the active site of MtaA is coordinated tetrahedrally via His240, Cys242 and Cys319. In the substrate-free form the fourth ligand is Glu263. Binding of HS-CoM leads to exchange of the O-ligand of Glu263 for the S-ligand of HS-CoM with inversion of the zinc geometry. The interface between MtaA and MtaC for transfer of the methyl group from MtaC-bound methylcobalamin is most likely to be formed by the core complex of MtaB-MtaC and the N-terminal segment (a long loop containing three α-helices and a β-hairpin) of MtaA, which is not part of the TIM-barrel core structure of MtaA. PMID:23090404

  6. A Comparative Study on the In Vitro Effects of the DNA Methyltransferase Inhibitor 5-Azacytidine (5-AzaC) in Breast/Mammary Cancer of Different Mammalian Species.

    Science.gov (United States)

    Harman, Rebecca M; Curtis, Theresa M; Argyle, David J; Coonrod, Scott A; Van de Walle, Gerlinde R

    2016-06-01

    Murine models are indispensible for the study of human breast cancer, but they have limitations: tumors arising spontaneously in humans must be induced in mice, and long-term follow up is limited by the short life span of rodents. In contrast, dogs and cats develop mammary tumors spontaneously and are relatively long-lived. This study examines the effects of the DNA methyltransferase (DNMT) inhibitor 5-Azacytidine (5-AzaC) on normal and tumoral mammary cell lines derived from dogs, cats and humans, as proof of concept that small companion animals are useful models of human breast cancer. Our findings show that treatment with 5-AzaC reduces in vitro tumorigenicity in all three species based on growth and invasion assays, mitochondrial activity and susceptibility to apoptosis. Interestingly, we found that the effects of 5-AzaC on gene expression varied not only between the different species but also between different tumoral cell lines within the same species, and confirmed the correlation between loss of methylation in a specific gene promotor region and increased expression of the associated gene using bisulfite sequencing. In addition, treatment with a high dose of 5-AzaC was toxic to tumoral, but not healthy, mammary cell lines from all species, indicating this drug has therapeutic potential. Importantly, we confirmed these results in primary malignant cells isolated from canine and feline adenocarcinomas. The similarities observed between the three species suggest dogs and cats can be useful models for the study of human breast cancer and the pre-clinical evaluation of novel therapeutics. PMID:27002722

  7. IN VITRO STUDY ON THE CLONING AND TRANSDUCTION OF HUMAN O6-METHYLGUANINE-DNA-METHYLTRANSFERASE CDNA INTO HUMAN UMBILICAL CORD BLOOD CD34+ CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To explore whether human umbilical cord blood hematopoietic progenitor cells transduced with human O6-methylguanine-DNA-methyltransferase (MGMT) gene could increase resistance to 1,3-Bis(2-Chloroethyl)-1-Nitrosourea (BCNU). Methods: The cDNA encoding the MGMT was isolated by using RT-PCR method from total RNA of fresh human liver, the fragment was cloned into pGEM-T vector and further subcloned into G1Na retrovirus vector. Then the G1Na-MGMT was transduced into the packaging cell lines GP+E86 and PA317 by LipofectAMINE. By using the medium containing BCNU for cloning selection and ping-ponging supernatant infection between ecotropic producer clone and amphotropic producer clone, high titer amphotropic PA317 producer clone with the highest titer up to 5.8′ 105 CFU/ml was obtained. Cord blood CD34+ cells were transfected repeatedly with supernatant of retrovirus containing human MGMT-cDNA under stimulation of hemopoietic growth factors. Results: The retrovirus vector construction was verified by restriction endonuclease analysis and DNA sequencing. PCR, RT-PCR, Southern Blot, Western Blot and MTT analyses showed that MGMT drug resistance gene has been integrated into the genomic DNA of cord blood CD34+ cells and expressed efficiently. The transgene cord blood CD34+ cells conferred 4-folds stronger resistance to BCNU than untransduced cells. Conclusion: The retrovirus vector-mediated transfer of MGMT drug resistance gene into human cord blood CD34+ cells and its expression provided an experimental foundation for gene therapy in clinical trial.

  8. The SUVR4 histone lysine methyltransferase binds ubiquitin and converts H3K9me1 to H3K9me3 on transposon chromatin in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Silje V Veiseth

    2011-03-01

    Full Text Available Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3 is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation-dependent and -independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity.

  9. DNA-methyltransferase 3B 39179 G > T polymorphism and risk of sporadic colorectal cancer in a subset of Iranian population

    Directory of Open Access Journals (Sweden)

    Abdolreza Daraei

    2011-01-01

    Full Text Available Background: Epigenetic event is a biological regulation that influences the expression of various genes involved in cancer. DNA methylation is established by DNA methyltransferases, particularly DNAmethyltransferase 3B (DNMT3B. It seems to play an oncogenic role in the creation of abnormal methylation during tumorigenesis. The polymorphisms of the DNMT3B gene may influence DNMT3B activity in DNA methylation and increase the susceptibility to several cancers. These genetic polymorphisms have been studied in several cancers in different populations. Methods: In this study, we performed a case-control study with 125 colorectal cancer patients and 135 cancer-free controls to evaluate the association between DNMT3B G39179T polymorphism (rs1569686 in the promoter region and the risk of sporadic colorectal cancer. Up to now, few studies have investigated the role of this gene variant in sporadic colorectal cancer with no familial history. The genotypes of DNMT3B G39179T polymorphism was analyzed by PCR-RFLP. Results: We found that compared with G allele carriers, statistically the DNMT3B TT genotype (%34 was significantly associated with increased risk of colorectal cancer (adjusted OR, 3.993, 95% CI, 1.726-9.238, P = 0.001. Compared with DNMT3B TT genotype, the GT and GG genotypes had lower risk of developing sporadic colorectal cancer (OR = 0.848, 95% CI = 0.436-1.650. Conclusions: Our findings were consistent with that of previously reported case-control studies with colorectal cancer. These results suggest that the DNMT3B G39179T polymorphism influences DNMT3B expression, thus contributing to the genetic susceptibility to colorectal cancer. Further mechanistic studies are needed to unravel the causal molecular mechanisms.

  10. Quantitation of DNA methyltransferase activity via chronocoulometry in combination with rolling chain amplification.

    Science.gov (United States)

    Ji, Jingjing; Liu, Yuanjian; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2016-11-15

    In this paper, a rolling chain amplification (RCA) strategy was proposed for chronocoulometric detection of DNA methyltransferase (MTase) activity. Briefly, after the double DNA helix structure was assembled on the surface of gold electrode, it was first methylated by M. SssI MTase and then RCA was realized in the presence of E. coli and phi29 DNA polymerase. Successively, numerous hexaammineruthenium (III) chloride ([Ru(NH3)6)(3+), RuHex) were adsorbed on replicons by electrostatic interaction and generated a large electrochemical readout, the signal was "on". On the contrary, in the absence of M. SssI MTase, the methylated CpG site in the unmethylated double DNA helix structure could be specifically recognized and cleaved by HpaII, resulting in a disconnection of RCA from the electrode. This led seldom RuHex to be absorbed onto the surface of electrode, the signal was "off". Based on the proposed strategy, the activity of M. SssI MTase was assayed in the range of 0.5-60U/mL with a detection limit of 0.09U/mL (S/N=3). In addition, the inhibition of procaine and epicatechin on M. SssI MTase activity was evaluated. When the proposed method was applied in complex matrix such as human serum samples, acceptable accuracy, precision and high sensitivity were achieved. Therefore, the proposed method was a potential useful mean for clinical diagnosis and drug development. PMID:27155113

  11. Biochemical and Computational Analysis of the Substrate Specificities of Cfr and RlmN Methyltransferases

    DEFF Research Database (Denmark)

    Ntokou, Eleni; Hansen, Lykke Haastrup; Kongsted, Jacob;

    2015-01-01

    Cfr and RlmN methyltransferases both modify adenine 2503 in 23S rRNA (Escherichia coli numbering). RlmN methylates position C2 of adenine while Cfr methylates position C8, and to a lesser extent C2, conferring antibiotic resistance to peptidyl transferase inhibitors. Cfr and RlmN show high sequence......-ray structure of RlmN. We used a trinucleotide as target sequence and assessed its positioning at the active site for methylation. The calculations are in accordance with different poses of the trinucleotide in the two enzymes indicating major evolutionary changes to shift the C2/C8 specificities. To explore...... to be responsible for the C2/C8 specificity and most of the combinations involve interchanging segments at this site. Almost all replacements showed no function in the primer extension assay, apart from a few that had a weak effect. Thus Cfr and RlmN appear to be much less similar than expected from their sequence...

  12. Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis.

    Science.gov (United States)

    Ren, Jinqi; Wang, Yaqing; Liang, Yuheng; Zhang, Yongqing; Bao, Shilai; Xu, Zhiheng

    2010-04-23

    Modulation of ribosomal assembly is a fine tuning mechanism for cell number and organ size control. Many ribosomal proteins undergo post-translational modification, but their exact roles remain elusive. Here, we report that ribosomal protein s10 (RPS10) is a novel substrate of an oncoprotein, protein-arginine methyltransferase 5 (PRMT5). We show that PRMT5 interacts with RPS10 and catalyzes its methylation at the Arg(158) and Arg(160) residues. The methylation of RPS10 at Arg(158) and Arg(160) plays a role in the proper assembly of ribosomes, protein synthesis, and optimal cell proliferation. The RPS10-R158K/R160K mutant is not efficiently assembled into ribosomes and is unstable and prone to degradation by the proteasomal pathway. In nucleoli, RPS10 interacts with nucleophosmin/B23 and is predominantly concentrated in the granular component region, which is required for ribosome assembly. The RPS10 methylation mutant interacts weakly with nucleophosmin/B23 and fails to concentrate in the granular component region. Our results suggest that PRMT5 is likely to regulate cell proliferation through the methylation of ribosome proteins, and thus reveal a novel mechanism for PRMT5 in tumorigenesis.

  13. Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice.

    Science.gov (United States)

    Qi, Jinfeng; Li, Jiancai; Han, Xiu; Li, Ran; Wu, Jianqiang; Yu, Haixin; Hu, Lingfei; Xiao, Yutao; Lu, Jing; Lou, Yonggen

    2016-06-01

    Jasmonic acid (JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase (JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate (MeJA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene, OsJMT1, whose encoding protein was localized in the cytosol, we found that the recombinant OsJMT1 protein catalyzed JA to MeJA. OsJMT1 is up-regulated in response to infestation with the brown planthopper (BPH; Nilaparvata lugens). Plants in which OsJMT1 had been overexpressed (oe-JMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased MeJA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine (JA-Ile). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs, probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H2 O2 and MeJA in oe-JMT plants. These results indicate that OsJMT1, by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice. PMID:26466818

  14. Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1).

    Science.gov (United States)

    Takeshita, Kohei; Suetake, Isao; Yamashita, Eiki; Suga, Michihiro; Narita, Hirotaka; Nakagawa, Atsushi; Tajima, Shoji

    2011-05-31

    Methylation of cytosine in DNA plays a crucial role in development through inheritable gene silencing. The DNA methyltransferase Dnmt1 is responsible for the propagation of methylation patterns to the next generation via its preferential methylation of hemimethylated CpG sites in the genome; however, how Dnmt1 maintains methylation patterns is not fully understood. Here we report the crystal structure of the large fragment (291-1620) of mouse Dnmt1 and its complexes with cofactor S-adenosyl-L-methionine and its product S-adenosyl-L-homocystein. Notably, in the absence of DNA, the N-terminal domain responsible for targeting Dnmt1 to replication foci is inserted into the DNA-binding pocket, indicating that this domain must be removed for methylation to occur. Upon binding of S-adenosyl-L-methionine, the catalytic cysteine residue undergoes a conformation transition to a catalytically competent position. For the recognition of hemimethylated DNA, Dnmt1 is expected to utilize a target recognition domain that overhangs the putative DNA-binding pocket. Taking into considerations the recent report of a shorter fragment structure of Dnmt1 that the CXXC motif positions itself in the catalytic pocket and prevents aberrant de novo methylation, we propose that maintenance methylation is a multistep process accompanied by structural changes. PMID:21518897

  15. Inhibitor designing, virtual screening, and docking studies for methyltransferase: A potential target against dengue virus

    Science.gov (United States)

    Singh, Jagbir; Kumar, Mahesh; Mansuri, Rani; Sahoo, Ganesh Chandra; Deep, Aakash

    2016-01-01

    Aim: Aim of this work was to design and identify some S-adenosyl-L-homocysteine (SAH) analogs as inhibitors of S-adenosyl-L-methionine-dependent methyltransferase (MTase) protein using computational approaches. Introduction: According to the current scenario the dengue has been a global burden. The people are being killed by dengue virus in an abundant number. Despite of lot of research being going on dengue worldwide, there is no single drug which can kill its virus. This creates an urge for new drug target identification and designing. MTase has been reported as an effective target against dengue virus as it catalyzes an essential step in methylation and capping of viral RNA for viral replication. Materials and Methods: The crystal structure of MTase in complex with SAH was used for designing new analogs of SAH. SAH analogs designed were analyzed on the basis of docking, ADMET, and toxicity analysis done using Discovery Studio 3.5. Results: Seventeen analogs found noncarcinogenic, nonmutagenic, as well as good ADMET properties and good drug-like profile. Conclusion: These SAH analogs, inhibitors of MTase may act as drugs against dengue virus. Further synthesis and biological testing against dengue virus is under observation. PMID:27413346

  16. Analyses of methyltransferases across the pathogenicity spectrum of different mycobacterial species point to an extremophile connection.

    Science.gov (United States)

    Grover, Sonam; Gupta, Paras; Kahlon, Parvinderdeep S; Goyal, Sukriti; Grover, Abhinav; Dalal, Kuldeep; Sabeeha; Ehtesham, Nasreen Z; Hasnain, Seyed E

    2016-05-26

    Tuberculosis is a devastating disease, taking one human life every 20 seconds globally. We hypothesize that professional pathogens such as M.tb have acquired specific features that might assist in causing infection, persistence and transmissible pathology in their host. We have identified 121 methyltransferases (MTases) in the M.tb proteome, which use a variety of substrates - DNA, RNA, protein, intermediates of mycolic acid biosynthesis and other fatty acids - that are involved in cellular maintenance within the host. A comparative analysis of the proteome of the virulent strain H37Rv and the avirulent strain H37Ra identified 3 MTases, which displayed significant variations in terms of N-terminal extension/deletion and point mutations, possibly impacting various physicochemical properties. The cross-proteomic comparison of MTases of M.tb H37Rv with 15 different Mycobacterium species revealed the acquisition of novel MTases in a MTB complex as a function of evolution. Phylogenetic analysis revealed that these newly acquired MTases showed common roots with certain extremophiles such as halophilic and acidophilic organisms. Our results establish an evolutionary relationship of M.tb with halotolerant organisms and also the role of MTases of M.tb in withstanding the host osmotic stress, thereby pointing to their likely role in pathogenesis, virulence and niche adaptation. PMID:26983646

  17. Targeting EZH2 methyltransferase activity in ARID1A mutated cancer cells is synthetic lethal

    Science.gov (United States)

    Biter, Benjamin G.; Aird, Katherine M.; Garipov, Azat; Li, Hua; Amatangelo, Michael; Kossenkov, Andrew V.; Schultz, David C.; Liu, Qin; Shih, Ie-Ming; Conejo-Garcia, Jose R.; Speicher, David W.; Zhang, Rugang

    2015-01-01

    ARID1A, a chromatin remodeler, shows one of the highest mutation rates across many cancer types. Notably, ARID1A is mutated in over 50% of ovarian clear cell carcinomas, which currently has no effective therapy. To date, clinically applicable targeted cancer therapy based on ARID1A mutational status has not been described. Here we show that inhibition of the EZH2 methyltransferase acts in a synthetic lethal manner in ARID1A mutated ovarian cancer cells. ARID1A mutational status correlates with response to the EZH2 inhibitor. We identified PIK3IP1 as a direct ARID1A/EZH2 target, which is upregulated by EZH2 inhibition and contributes to the observed synthetic lethality by inhibiting PI3K/AKT signaling. Significantly, EZH2 inhibition causes regression of ARID1A mutated ovarian tumors in vivo. Together, these data demonstrate for the first time a synthetic lethality between ARID1A mutation and EZH2 inhibition. They indicate that pharmacological inhibition of EZH2 represents a novel treatment strategy for ARID1A mutated cancers. PMID:25686104

  18. Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice

    Institute of Scientific and Technical Information of China (English)

    Jinfeng Qi; Yonggen Lou; Jiancai Li; Xiu Han; Ran Li; Jianqiang Wu; Haixin Yu; Lingfei Hu; Yutao Xiao; Jing Lu

    2016-01-01

    Jasmonic acid (JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase (JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate (MeJA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene, OsJMT1, whose encoding protein was localized in the cytosol, we found that the recombinant OsJMT1 protein catalyzed JA to MeJA. OsJMT1 is up-regulated in response to infestation with the brown planthopper (BPH; Nilaparvata lugens). Plants in which OsJMT1 had been overexpressed (oe-JMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased MeJA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine (JA-Ile). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs, probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H2O2 and MeJA in oe-JMT plants. These results indicate that OsJMT1, by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice.

  19. Purification and properties of S-adenosylmethionine:dimethylselenide methyltransferase from the mouse

    International Nuclear Information System (INIS)

    Selenite is detoxified by reduction to H2Se and methylation from S-adenosylmethionine (AdoMet) to yield methylselenol, dimethylselenide (DMSe; exhaled), and trimethylselenonium ion (TMSe; excreted in urine). DMSe methyltransferase (DMSeMT) was assayed by its ability to generate [3H]TMSe from DMSe and [methyl-3H]AdoMet, with TMSe separated by cation-exchange HPLC. DMSeMT is found primarily in the cytosol. In terms of specific activity (umol/min/mg protein), the enzyme is most active in the lung (298) and liver (105), with much lower activity in kidney (8), heart (7), muscle (8), RBC (4), and is negligible in brain and spleen. Initial purification from liver cytosol was by DEAE and gel filtration column chromatography. Gel filtration and SDS polyacrylamide gel electrophoroesis indicate that the enzyme is monomeric with a molecular weight of 30,000 daltons. Activity assays on liver cytosol indicate a pH optimum of 6. DMSeMT is inhibited 50% by 25 uM Sinefungin, an AdoMet analog, and by its product, S-adenosylhomocysteine, at 40 uM. Purification to homogeneity will allow analysis of the ability of this enzyme to also catalyze the methylation of H2Se and/or to methylselenol

  20. O6-methylguanine DNA methyltransferase in human fetal tissues: fetal and maternal factors

    International Nuclear Information System (INIS)

    O6-Methylguanine methyltransferase (O6-MT) was measured and compared in extracts of 7 human fetal tissues obtained from 21 different fetal specimens as a function of fetal age and race, and maternal smoking and drug usage. Activity was determined from the proteinase-K solubilized radioactivity transferred from the DNA to the O6-MT. S9 homogenates were incubated with a heat depurinated [3H]-methylnitrosourea alkylated DNA. Liver exhibited the highest activity followed by kidney, lung, small intestine, large intestine, skin and brain. Each of the tissues exhibited a 3- to 5-fold level of interindividual variation of O6-MT. There did not appear to be any significant difference of O6-MT in the tissues obtained from mothers who smoked cigarettes during pregnancy. Also, fetal race and age did not appear to account for the level of variation of O6-MT. The fetal tissues obtained from an individual using phenobarbital and smoking exhibited 4-fold increases in O6-MT activity. The tissues obtained from another individual on kidney dialysis were 2- to 3-fold higher than the normal population. These data suggest that the variation in human O6-MT can not be explained by racial or smoking factors, but may be modulated by certain drugs

  1. Molecular characterization of methanogenic N(5)-methyl-tetrahydromethanopterin: Coenzyme M methyltransferase.

    Science.gov (United States)

    Upadhyay, Vikrant; Ceh, Katharina; Tumulka, Franz; Abele, Rupert; Hoffmann, Jan; Langer, Julian; Shima, Seigo; Ermler, Ulrich

    2016-09-01

    Methanogenic archaea share one ion gradient forming reaction in their energy metabolism catalyzed by the membrane-spanning multisubunit complex N(5)-methyl-tetrahydromethanopterin: coenzyme M methyltransferase (MtrABCDEFGH or simply Mtr). In this reaction the methyl group transfer from methyl-tetrahydromethanopterin to coenzyme M mediated by cobalamin is coupled with the vectorial translocation of Na(+) across the cytoplasmic membrane. No detailed structural and mechanistic data are reported about this process. In the present work we describe a procedure to provide a highly pure and homogenous Mtr complex on the basis of a selective removal of the only soluble subunit MtrH with the membrane perturbing agent dimethyl maleic anhydride and a subsequent two-step chromatographic purification. A molecular mass determination of the Mtr complex by laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) and size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) resulted in a (MtrABCDEFG)3 heterotrimeric complex of ca. 430kDa with both techniques. Taking into account that the membrane protein complex contains various firmly bound small molecules, predominantly detergent molecules, the stoichiometry of the subunits is most likely 1:1. A schematic model for the subunit arrangement within the MtrABCDEFG protomer was deduced from the mass of Mtr subcomplexes obtained by harsh IR-laser LILBID-MS. PMID:27342374

  2. Catechol-O-methyltransferase val158met Polymorphism Interacts with Sex to Affect Face Recognition Ability

    Science.gov (United States)

    Lamb, Yvette N.; McKay, Nicole S.; Singh, Shrimal S.; Waldie, Karen E.; Kirk, Ian J.

    2016-01-01

    The catechol-O-methyltransferase (COMT) val158met polymorphism affects the breakdown of synaptic dopamine. Consequently, this polymorphism has been associated with a variety of neurophysiological and behavioral outcomes. Some of the effects have been found to be sex-specific and it appears estrogen may act to down-regulate the activity of the COMT enzyme. The dopaminergic system has been implicated in face recognition, a form of cognition for which a female advantage has typically been reported. This study aimed to investigate potential joint effects of sex and COMT genotype on face recognition. A sample of 142 university students was genotyped and assessed using the Faces I subtest of the Wechsler Memory Scale – Third Edition (WMS-III). A significant two-way interaction between sex and COMT genotype on face recognition performance was found. Of the male participants, COMT val homozygotes and heterozygotes had significantly lower scores than met homozygotes. Scores did not differ between genotypes for female participants. While male val homozygotes had significantly lower scores than female val homozygotes, no sex differences were observed in the heterozygotes and met homozygotes. This study contributes to the accumulating literature documenting sex-specific effects of the COMT polymorphism by demonstrating a COMT-sex interaction for face recognition, and is consistent with a role for dopamine in face recognition. PMID:27445927

  3. Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs

    Science.gov (United States)

    Gayatri, Sitaram; Cowles, Martis W.; Vemulapalli, Vidyasiri; Cheng, Donghang; Sun, Zu-Wen; Bedford, Mark T.

    2016-01-01

    Signal transduction in response to stimuli relies on the generation of cascades of posttranslational modifications that promote protein-protein interactions and facilitate the assembly of distinct signaling complexes. Arginine methylation is one such modification, which is catalyzed by a family of nine protein arginine methyltransferases, or PRMTs. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the use of Oriented Peptide Array Libraries (OPALs) to methodically dissect the preferred methylation motifs for three of these enzymes – PRMT1, CARM1 and PRMT9. In parallel, we show that an OPAL platform with a fixed methylarginine residue can be used to validate the methyl-specific and sequence-specific properties of antibodies that have been generated against different PRMT substrates, and can also be used to confirm the pan nature of some methylarginine-specific antibodies. PMID:27338245

  4. Polymorphism of the catechol-O-methyltransferase gene in Han Chinese patients with psoriasis vulgaris

    Directory of Open Access Journals (Sweden)

    Lin Gao

    2009-01-01

    Full Text Available Psoriasis vulgaris is defined by a series of linked cellular changes in the skin: hyperplasia of epidermal keratinocytes, vascular hyperplasia and ectasia, and infiltration of T lymphocytes, neutrophils and other types of leukocytes in the affected skin. Catechol-O-methyltransferase ( COMT 158 polymorphism can reduce the activity of the COMT enzyme that may trigger defective differentiation of keratinocytes in psoriasis. Immunocytes can degrade and inactivate catecholamines via monamine oxidase (MAO and COMT in the cells. We hypothesized that the COMT-158 G > A polymorphism was associated with the risk of psoriasis vulgaris in Han Chinese people. In a hospital-based case-control study, 524 patients with psoriasis vulgaris and 549 psoriasis-free controls were studied. COMT-158 G > A polymorphism was genotyped using the PCR sequence-specific primer (PCR-SSP technique. We found no statistically significant association between the COMT-158 allele A and the risk of psoriasis vulgaris (p = 0.739 adjusted OR = 1.03; 95% CI = 0.81-1.31. This suggests that the COMT-158 G > A polymorphism may not contribute to the etiology of psoriasis vulgaris in the Han Chinese population.

  5. Single-Turnover Kinetics of Methyl Transfer to tRNA by Methyltransferases

    Science.gov (United States)

    Hou, Ya-Ming

    2016-01-01

    Summary Methyl transfer from S-adenosyl methionine (abbreviated as AdoMet) to biologically active molecules such as mRNAs and tRNAs is one of the most fundamental and widespread reactions in nature, occurring in all three domains of life. The measurement of kinetic constants of AdoMet-dependent methyl transfer is therefore important for understanding the reaction mechanism in the context of biology. When kinetic constants of methyl transfer are measured in steady state over multiple rounds of turnover, the meaning of these constants is difficult to define and is often limited by non-chemical steps of the reaction, such as product release after each turnover. Here the measurement of kinetic constants of methyl transfer by tRNA methyltransferases in rapid equilibrium binding condition for one methyl transfer is described. The advantage of such a measurement is that the meaning of kinetic constants can be directly assigned to the steps associated with the chemistry of methyl transfer, including the substrate binding affinity to the methyl transferase, the pre-chemistry re-arrangement of the active site, and the chemical step of methyl transfer. An additional advantage is that kinetic constants measured for one methyl transfer can be correlated with structural information of the methyl transferase to gain direct insight into its reaction mechanism. PMID:26965259

  6. Structural and functional profiling of the human histone methyltransferase SMYD3.

    Directory of Open Access Journals (Sweden)

    Kenneth W Foreman

    Full Text Available The SET and MYND Domain (SMYD proteins comprise a unique family of multi-domain SET histone methyltransferases that are implicated in human cancer progression. Here we report an analysis of the crystal structure of the full length human SMYD3 in a complex with an analog of the S-adenosyl methionine (SAM methyl donor cofactor. The structure revealed an overall compact architecture in which the "split-SET" domain adopts a canonical SET domain fold and closely assembles with a Zn-binding MYND domain and a C-terminal superhelical 9 α-helical bundle similar to that observed for the mouse SMYD1 structure. Together, these structurally interlocked domains impose a highly confined binding pocket for histone substrates, suggesting a regulated mechanism for its enzymatic activity. Our mutational and biochemical analyses confirm regulatory roles of the unique structural elements both inside and outside the core SET domain and establish a previously undetected preference for trimethylation of H4K20.

  7. Structural and Functional Profiling of the Human Histone Methyltransferase SMYD3

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, Kenneth W.; Brown, Mark; Park, Frances; Emtage, Spencer; Harriss, June; Das, Chhaya; Zhu, Li; Crew, Andy; Arnold, Lee; Shaaban, Salam; Tucker, Philip (AltheaDx); (DiscoverEluc.); (Abbott Bioresearch); (OSI Pharm.); (Lilly); (Texas)

    2012-10-23

    The SET and MYND Domain (SMYD) proteins comprise a unique family of multi-domain SET histone methyltransferases that are implicated in human cancer progression. Here we report an analysis of the crystal structure of the full length human SMYD3 in a complex with an analog of the S-adenosyl methionine (SAM) methyl donor cofactor. The structure revealed an overall compact architecture in which the 'split-SET' domain adopts a canonical SET domain fold and closely assembles with a Zn-binding MYND domain and a C-terminal superhelical 9 ?-helical bundle similar to that observed for the mouse SMYD1 structure. Together, these structurally interlocked domains impose a highly confined binding pocket for histone substrates, suggesting a regulated mechanism for its enzymatic activity. Our mutational and biochemical analyses confirm regulatory roles of the unique structural elements both inside and outside the core SET domain and establish a previously undetected preference for trimethylation of H4K20.

  8. EWS is a substrate of type I protein arginine methyltransferase, PRMT8.

    Science.gov (United States)

    Kim, Jun-Dal; Kako, Koichiro; Kakiuchi, Misako; Park, Gwi Gun; Fukamizu, Akiyoshi

    2008-09-01

    EWS, a pro-oncoprotein which is encoded by the Ewing sarcoma (EWS) gene, contains arginine-glycine-glycine repeats (RGG box) in its COOH-terminus. We previously found that the RGG box of EWS is a target for dimethylation catalyzed by protein arginine methyltransferases (PRMTs). Although it has been observed that arginine residues in EWS are dimethylated in vivo, the endogenous enzyme(s) responsible for this reaction have not been identified to date. In the present study, we determined that EWS was physically associated with PRMT8, the novel eighth member of the PRMT family, through the COOH-terminal region of EWS including RGG3 with the NH2-terminal region of PRMT8 encompassing the S-adenosyl-L-methionine binding domain, and that arginine residues in EWS were asymmetrically dimethylated by PRMT8 using amino acid analysis with thin-layer chromatography. These results suggested that EWS is a substrate for PRMT8, as efficient as for PRMT1.

  9. Catechol O-methyltransferase Val158Met polymorphism is associated with cognitive performance in nondemented adults.

    Science.gov (United States)

    de Frias, Cindy M; Annerbrink, Kristina; Westberg, Lars; Eriksson, Elias; Adolfsson, Rolf; Nilsson, Lars-Göran

    2005-07-01

    The catechol O-methyltransferase (COMT) gene is essential in the metabolic degradation of dopamine in the prefrontal cortex. In the present study, we examined the effect of a Val158Met polymorphism in the COMT gene on individual differences and changes in cognition (executive functions and visuospatial ability) in adulthood and old age. The participants were 292 nondemented men (initially aged 35-85 years) from a random sample of the population (i.e., the Betula study) tested at two occasions with a 5-year interval. Confirmatory factor analyses were used to test the underlying structure of three indicators of executive functions (verbal fluency, working memory, and Tower of Hanoi). Associations between COMT, age, executive functioning, and visuospatial (block design) tasks were examined using repeated-measures analyses of variance. Carriers of the Val allele (with higher enzyme activity) compared with carriers of the Met/Met genotype (with low enzyme activity) performed worse on executive functioning and visuospatial tasks. Individuals with the Val/Val genotype declined in executive functioning over the 5-year period, whereas carriers of the Met allele remained stable in performance. An Age x COMT interaction for visuospatial ability located the effect for middle-aged men only. This COMT polymorphism is a plausible candidate gene for executive functioning and fluid intelligence in nondemented middle-aged and older adults. PMID:16102234

  10. Catechol-O-methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Kathryn T Hall

    Full Text Available Identifying patients who are potential placebo responders has major implications for clinical practice and trial design. Catechol-O-methyltransferase (COMT, an important enzyme in dopamine catabolism plays a key role in processes associated with the placebo effect such as reward, pain, memory and learning. We hypothesized that the COMT functional val158met polymorphism, was a predictor of placebo effects and tested our hypothesis in a subset of 104 patients from a previously reported randomized controlled trial in irritable bowel syndrome (IBS. The three treatment arms from this study were: no-treatment ("waitlist", placebo treatment alone ("limited" and, placebo treatment "augmented" with a supportive patient-health care provider interaction. The primary outcome measure was change from baseline in IBS-Symptom Severity Scale (IBS-SSS after three weeks of treatment. In a regression model, the number of methionine alleles in COMT val158met was linearly related to placebo response as measured by changes in IBS-SSS (p = .035. The strongest placebo response occurred in met/met homozygotes treated in the augmented placebo arm. A smaller met/met associated effect was observed with limited placebo treatment and there was no effect in the waitlist control. These data support our hypothesis that the COMT val158met polymorphism is a potential biomarker of placebo response.

  11. Analysis of oxidative stress status, catalase and catechol-O-methyltransferase polymorphisms in Egyptian vitiligo patients.

    Directory of Open Access Journals (Sweden)

    Dina A Mehaney

    Full Text Available Vitiligo is the most common depigmentation disorder of the skin. Oxidative stress is implicated as one of the probable events involved in vitiligo pathogenesis possibly contributing to melanocyte destruction. Evidence indicates that certain genes including those involved in oxidative stress and melanin synthesis are crucial for development of vitiligo. This study evaluates the oxidative stress status, the role of catalase (CAT and catechol-O-Methyltransferase (COMT gene polymorphisms in the etiology of generalized vitiligo in Egyptians. Total antioxidant capacity (TAC and malondialdehyde (MDA levels as well as CAT exon 9 T/C and COMT 158 G/A polymorphisms were determined in 89 patients and 90 age and sex-matched controls. Our results showed significantly lower TAC along with higher MDA levels in vitiligo patients compared with controls. Meanwhile, genotype and allele distributions of CAT and COMT polymorphisms in cases were not significantly different from those of controls. Moreover, we found no association between both polymorphisms and vitiligo susceptibility. In conclusion, the enhanced oxidative stress with the lack of association between CAT and COMT polymorphisms and susceptibility to vitiligo in our patients suggest that mutations in other genes related to the oxidative pathway might contribute to the etiology of generalized vitiligo in Egyptian population.

  12. Sequential Inactivation of Gliotoxin by the S-Methyltransferase TmtA.

    Science.gov (United States)

    Duell, Elke R; Glaser, Manuel; Le Chapelain, Camille; Antes, Iris; Groll, Michael; Huber, Eva M

    2016-04-15

    The epipolythiodioxopiperazine (ETP) gliotoxin mediates toxicity via its reactive thiol groups and thereby contributes to virulence of the human pathogenic fungus Aspergillus fumigatus. Self-intoxication of the mold is prevented either by reversible oxidation of reduced gliotoxin or by irreversible conversion to bis(methylthio)gliotoxin. The latter is produced by the S-methyltransferase TmtA and attenuates ETP biosynthesis. Here, we report the crystal structure of TmtA in complex with S-(5'-adenosyl)-l-homocysteine. TmtA features one substrate and one cofactor binding pocket per protein, and thus, bis-thiomethylation of gliotoxin occurs sequentially. Molecular docking of substrates and products into the active site of TmtA reveals that gliotoxin forms specific interactions with the protein surroundings, and free energy calculations indicate that methylation of the C10a-SH group precedes alkylation of the C3-SH site. Altogether, TmtA is well suited to selectively convert gliotoxin and to control its biosynthesis, suggesting that homologous enzymes serve to regulate the production of their toxic natural sulfur compounds in a similar manner.

  13. 5-Methyltetrahydrofolate-homocysteine methyltransferase gene polymorphism (MTR and risk of head and neck cancer

    Directory of Open Access Journals (Sweden)

    A.L.S. Galbiatti

    2010-05-01

    Full Text Available The functional effect of the A>G transition at position 2756 on the MTR gene (5-methyltetrahydrofolate-homocysteine methyltransferase, involved in folate metabolism, may be a risk factor for head and neck squamous cell carcinoma (HNSCC. The frequency of MTR A2756G (rs1805087 polymorphism was compared between HNSCC patients and individuals without history of neoplasias. The association of this polymorphism with clinical histopathological parameters was evaluated. A total of 705 individuals were included in the study. The polymerase chain reaction-restriction fragment length polymorphism technique was used to genotype the polymorphism. For statistical analysis, the chi-square test (univariate analysis was used for comparisons between groups and multiple logistic regression (multivariate analysis was used for interactions between the polymorphism and risk factors and clinical histopathological parameters. Using univariate analysis, the results did not show significant differences in allelic or genotypic distributions. Multivariable analysis showed that tobacco and alcohol consumption (P < 0.05, AG genotype (P = 0.019 and G allele (P = 0.028 may be predictors of the disease and a higher frequency of the G polymorphic allele was detected in men with HNSCC compared to male controls (P = 0.008. The analysis of polymorphism regarding clinical histopathological parameters did not show any association with the primary site, aggressiveness, lymph node involvement or extension of the tumor. In conclusion, our data provide evidence that supports an association between the polymorphism and the risk of HNSCC.

  14. Crystal structures of the bifunctional tRNA methyltransferase Trm5a.

    Science.gov (United States)

    Wang, Caiyan; Jia, Qian; Chen, Ran; Wei, Yuming; Li, Juntao; Ma, Jie; Xie, Wei

    2016-01-01

    tRNA methyltransferase Trm5 catalyses the transfer of a methyl group from S-adenosyl-L-methionine to G37 in eukaryotes and archaea. The N1-methylated guanosine is the product of the initial step of the wyosine hypermodification, which is essential for the maintenance of the reading frame during translation. As a unique member of this enzyme family, Trm5a from Pyrococcus abyssi (PaTrm5a) catalyses not only the methylation of N1, but also the further methylation of C7 on 4-demethylwyosine at position 37 to produce isowyosine, but the mechanism for the double methylation is poorly understood. Here we report four crystal structures of PaTrm5a ranging from 1.7- to 2.3-Å, in the apo form or in complex with various SAM analogues. These structures reveal that Asp243 specifically recognises the base moiety of SAM at the active site. Interestingly, the protein in our structures all displays an extended conformation, quite different from the well-folded conformation of Trm5b from Methanocaldococcus jannaschii reported previously, despite their similar overall architectures. To rule out the possibilities of crystallisation artefacts, we conducted the fluorescence resonance energy transfer (FRET) experiments. The FRET data suggested that PaTrm5a adopts a naturally extended conformation in solution, and therefore the open conformation is a genuine state of PaTrm5a. PMID:27629654

  15. Clinical implication of thiopurine methyltransferase polymorphism in children with acute lymphoblastic leukemia: A preliminary Egyptian study

    Directory of Open Access Journals (Sweden)

    Farida H El-Rashedy

    2015-01-01

    Full Text Available Background: 6-mercaptopurine (6-MP is an essential component of pediatric acute lymphoblastic leukemia (ALL maintenance therapy. Individual variability in this drug-related toxicity could be attributed in part to genetic polymorphism thiopurine methyltransferase (TPMT. Aim: To investigate the frequency of common TPMT polymorphisms in a cohort of Egyptian children with ALL and the possible relation between these polymorphisms and 6-MP with short-term complications. Materials and Methods: This study included 25 children. Data related to 6-MP toxicity during the maintenance phase were collected from the patients′ files. DNA was isolated and genotyping for TPMT G460A, and A719G mutations were performed by polymerase chain reaction-restriction fragment length polymorphism. Results: Twenty (80% of the included 25 patients had a polymorphic TPMT allele. TPMTFNx013A was the most frequent (14/25, 56%, 8 patients were homozygous and 6 were heterozygous. TPMTFNx013C mutant allele was found in 4 patients (16% in the heterozygous state while 2 patients (8% were found to be heterozygous for TPMTFNx013B mutant allele. TPMT mutant patients, especially homozygous, were at greater risk of 6-MP hematological toxicity without significant difference regarding hepatic toxicity. Conclusions: TPMT polymorphism was common among the studied group and was associated with increased risk of drug toxicity. A population-based multi-center study is required to confirm our results.

  16. DNA methyltransferase 3b is dispensable for mouse neural crest development.

    Directory of Open Access Journals (Sweden)

    Bridget T Jacques-Fricke

    Full Text Available The neural crest is a population of multipotent cells that migrates extensively throughout vertebrate embryos to form diverse structures. Mice mutant for the de novo DNA methyltransferase DNMT3b exhibit defects in two neural crest derivatives, the craniofacial skeleton and cardiac ventricular septum, suggesting that DNMT3b activity is necessary for neural crest development. Nevertheless, the requirement for DNMT3b specifically in neural crest cells, as opposed to interacting cell types, has not been determined. Using a conditional DNMT3b allele crossed to the neural crest cre drivers Wnt1-cre and Sox10-cre, neural crest DNMT3b mutants were generated. In both neural crest-specific and fully DNMT3b-mutant embryos, cranial neural crest cells exhibited only subtle migration defects, with increased numbers of dispersed cells trailing organized streams in the head. In spite of this, the resulting cranial ganglia, craniofacial skeleton, and heart developed normally when neural crest cells lacked DNMT3b. This indicates that DNTM3b is not necessary in cranial neural crest cells for their development. We conclude that defects in neural crest derivatives in DNMT3b mutant mice reflect a requirement for DNMT3b in lineages such as the branchial arch mesendoderm or the cardiac mesoderm that interact with neural crest cells during formation of these structures.

  17. The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling.

    Directory of Open Access Journals (Sweden)

    Juliane Schmidt

    Full Text Available The characterization of factors contributing to the formation and development of surface-associated bacterial communities known as biofilms has become an area of intense interest since biofilms have a major impact on human health, the environment and industry. Various studies have demonstrated that motility, including swimming, swarming and twitching, seems to play an important role in the surface colonization and establishment of structured biofilms. Thereby, the impact of chemotaxis on biofilm formation has been less intensively studied. Pseudomonas aeruginosa has a very complex chemosensory system with two Che systems implicated in flagella-mediated motility. In this study, we demonstrate that the chemotaxis protein CheR1 is a methyltransferase that binds S-adenosylmethionine and transfers a methyl group from this methyl donor to the chemoreceptor PctA, an activity which can be stimulated by the attractant serine but not by glutamine. We furthermore demonstrate that CheR1 does not only play a role in flagella-mediated chemotaxis but that its activity is essential for the formation and maintenance of bacterial biofilm structures. We propose a model in which motility and chemotaxis impact on initial attachment processes, dispersion and reattachment and increase the efficiency and frequency of surface sampling in P. aeruginosa.

  18. Cloning of NruI and Sbo13I restriction and modification sstems in E. coli and amino acid sequence comparison of M.NruI and M.Sbo13I with other amino-methyltransferases

    Directory of Open Access Journals (Sweden)

    Benner Jack

    2010-05-01

    Full Text Available Abstract Background NruI and Sbo13I are restriction enzyme isoschizomers with the same recognition sequence 5' TCG↓CGA 3' (cleavage as indicated↓. Here we report the cloning of NruI and Sbo13I restriction-modification (R-M systems in E. coli. The NruI restriction endonuclease gene (nruIR was cloned by PCR and inverse PCR using primers designed from the N-terminal amino acid sequence. The NruI methylase gene (nruIM was derived by inverse PCR walking. Results The amino acid sequences of NruI endonuclease and methylase are very similar to the Sbo13I R-M system which has been cloned and expressed in E. coli by phage selection of a plasmid DNA library. Dot blot analysis using rabbit polyclonal antibodies to N6mA- or N4mC-modified DNA indicated that M.NruI is possibly a N6mA-type amino-methyltransferase that most likely modifies the external A in the 5' TCGCGA 3' sequence. M.Sbo13I, however, is implicated as a probable N4mC-type methylase since plasmid carrying sbo13IM gene is not restricted by Mrr endonuclease and Sbo13I digestion is not blocked by Dam methylation of the overlapping site. The amino acid sequence of M.NruI and M.Sbo13I did not show significant sequence similarity to many known amino-methyltransferases in the α, β, and γ groups, except to a few putative methylases in sequenced microbial genomes. Conclusions The order of the conserved amino acid motifs (blocks in M.NruI/M.Sbo13I is similar to the γ. group amino-methyltranferases, but with two distinct features: In motif IV, the sequence is DPPY instead of NPPY; there are two additional conserved motifs, IVa and Xa as extension of motifs IV and X, in this family of enzymes. We propose that M.NruI and M.Sbo13I form a subgroup in the γ group of amino-methyltransferases.

  19. Determination of apoptosis, proliferation status and O6-methylguanine DNA methyltransferase methylation profiles in different immunophenotypic profiles of diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Nilay Şen Türk

    2011-03-01

    Full Text Available Objective: Our aim was to investigate the expression of apoptosis-associated proteins (bcl-2, bcl-xl, bax, bak, bid, apoptotic index (AI and proliferation index (PI in germinal center B-cell-like immunophenotypic profile (GCB and non-GCB of diffuse large B-cell lymphoma (DLBCL. Materials and Methods: The methylation status of the promoter region of O6-methylguanine-DNA yerine O6-methylguanine-DNA methyltransferase (MGMT gene and its relation with immunophenotypic differentiation of DLBCLs were also investigated. 101 cases were classified as GCB (29 cases or non-GCB (72 cases. Apoptosis-associated proteins and PI were determined by IHC, and TUNEL method was used to determine AI. MGMT methylation analysis was performed by real-time PCR. Results: The PI was significantly higher in GCB compared with non-GCB (p=0.011. Percentage of cells stained with bcl-6 was positively correlated with the percentage of cells expressing bcl-2 (p=0.023, AI (p=0.006 and PI (p<0.001, while a significant negative correlation was observed with the percentage of cells expressing bax (p=0.027. The percentage of cells stained with MUM1 showed a significantly positive correlation with the percentage of cells expressing bcl-xl (p=0.003, bid (p=0.002, AI (p<0.001, and PI (p=0.001. MGMT methylation analysis was performed in 95 samples, and methylated profile was found in 31 cases (32.6%. GCB was found in 6 cases (22.2% and non-GCB was determined in 25 cases (36.8% out of 31 with MGMT methylated samples. There was no significant association between MGMT methylation status and immunophenotypic profiles (p=0.173. Conclusion: These results suggest that bcl-6 protein expression may be responsible for the high PI in GCB. Additionally, we found that apoptosis-associated proteins were not significantly associated with immunophenotypic profiles.

  20. Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex

    Directory of Open Access Journals (Sweden)

    Gottlieb Paul D

    2006-06-01

    Full Text Available Abstract Background Disrupting the balance of histone lysine methylation alters the expression of genes involved in tumorigenesis including proto-oncogenes and cell cycle regulators. Methylation of lysine residues is commonly catalyzed by a family of proteins that contain the SET domain. Here, we report the identification and characterization of the SET domain-containing protein, Smyd2. Results Smyd2 mRNA is most highly expressed in heart and brain tissue, as demonstrated by northern analysis and in situ hybridization. Over-expressed Smyd2 localizes to the cytoplasm and the nucleus in 293T cells. Although accumulating evidence suggests that methylation of histone 3, lysine 36 (H3K36 is associated with actively transcribed genes, we show that the SET domain of Smyd2 mediates H3K36 dimethylation and that Smyd2 represses transcription from an SV40-luciferase reporter. Smyd2 associates specifically with the Sin3A histone deacetylase complex, which was recently linked to H3K36 methylation within the coding regions of active genes in yeast. Finally, we report that exogenous expression of Smyd2 suppresses cell proliferation. Conclusion We propose that Sin3A-mediated deacetylation within the coding regions of active genes is directly linked to the histone methyltransferase activity of Smyd2. Moreover, Smyd2 appears to restrain cell proliferation, likely through direct modulation of chromatin structure.