WorldWideScience

Sample records for beta4 integrin function

  1. Beta4 integrin-dependent formation of polarized three-dimensionalarchitecture confers resistance to apoptosis in normal and malignantmammary epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Valerie M.; Lelievre, Sophie; Lakins, Johnathon N.; Chrenek, Micah A.; Jones, Jonathan C.R.; Giancotti, Filippo; Werb, Zena; Bissell, Mina J.

    2002-08-27

    Tumor cells can evade chemotherapy by acquiring resistanceto apoptosis. We investigated the molecular mechanism whereby malignantand nonmalignant mammary epithelial cells become insensitive toapoptosis. We show that regardless of growth status formation ofpolarized, three-dimensional structures driven by basement membraneconfers protection to apoptosis in both nonmalignant and malignantmammary epithelial cells. By contrast, irrespective of their malignantstatus, nonpolarized structures are sensitive to induction of apoptosis.Resistance to apoptosis requires ligation of beta4 integrins, whichregulates tissue polarity, hemidesmosome formation and NFkB activation.Expression of beta4 integrin that lacks the hemidesmosome targetingdomain interferes with tissue polarity and NFkB activation and permitsapoptosis. These results indicate that integrin-induced polarity maydrive tumor cell resistance to apoptosis-inducing agents via effects onNFkB.

  2. Expression of the alpha 6 beta 4 integrin by squamous cell carcinomas and basal cell carcinomas: possible relation to invasive potential?

    DEFF Research Database (Denmark)

    Rossen, K; Dahlstrøm, K K; Mercurio, A M;

    1994-01-01

    We have studied the expression of alpha 6 beta 4 integrin, a carcinoma laminin receptor in ten squamous cell carcinomas (SCCs) and ten basal cell carcinomas (BCCs) of the skin in order to examine whether changes in alpha 6 beta 4 integrin expression may be related to invasive and metastatic...... potential. Monoclonal antibodies specific for each subunit were applied on cryosections, using a three step indirect peroxidase technique. In normal epidermis the basal cells expressed both the alpha 6 and the beta 4 subunits, and the expression was polarized against the basement membrane. In SCCs the...

  3. Upregulating of Fas, integrin beta4 and P53 and depressing of PC-PLC activity and ROS level in VEC apoptosis by safrole oxide.

    Science.gov (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli

    2005-10-24

    Previously, we found that safrole oxide could trigger vascular endothelial cell (VEC) apoptosis. In this study, to investigate its mechanism to induce apoptosis in VECs, the activities of nitric oxide synthetase and phosphatidylcholine specific phospholipase C, the level of reactive oxygen species and the expressions of Fas, integrin beta4 and P53 were analyzed. The data showed that safrole oxide induced apoptosis by increasing the expressions of Fas, integrin beta4 and P53, and depressing the activity of Ca(2+)-independent phosphatidylcholine-specific phospholipase C and intracellular reactive oxygen species levels in VECs.

  4. Alpha6beta4 integrin crosslinking induces EGFR clustering and promotes EGF-mediated Rho activation in breast cancer

    Directory of Open Access Journals (Sweden)

    Woodward Wendy A

    2009-05-01

    Full Text Available Abstract Background The α6β4 integrin is overexpressed in the basal subtype of breast cancer and plays an important role in tumor cell motility and invasion. EGFR is also overexpressed in the basal subtype of breast cancer, and crosstalk between α6β4 integrin and EGFR appears to be important in tumor progression. Methods We evaluated the effects of α6β4 crosslinking on the distribution and function of EGFR in breast carcinoma cell line MDA-MB-231. Receptor distribution was evaluated by fluorescence microscopy and multispectral imaging flow cytometry, and ligand-mediated EGFR signaling was evaluated using Western blots and a Rho pull-down assay. Results Antibody-mediated crosslinking of α6β4 integrin was sufficient to induce cell-surface clustering of not only α6β4 but also EGFR in nonadherent cells. The induced clustering of EGFR was observed minimally after 5 min of integrin crosslinking but was more prominent after 15 min. EGFR clustering had minimal effect on the phosphorylation of Akt or Erk1,2 in response to EGF in suspended cells or in response to HB-EGF in adherent cells. However, EGFR clustering induced by crosslinking α6β4 had a marked effect on Rho activation in response to EGF. Conclusion Crosslinking α6β4 integrin in breast carcinoma cells induces EGFR clustering and preferentially promotes Rho activation in response to EGF. We hypothesize that this integrin-EGFR crosstalk may facilitate tumor cell cytoskeletal rearrangements important for tumor progression.

  5. Safrole oxide induces neuronal apoptosis through inhibition of integrin beta4/SOD activity and elevation of ROS/NADPH oxidase activity.

    Science.gov (United States)

    Su, Le; Zhao, BaoXiang; Lv, Xin; Wang, Nan; Zhao, Jing; Zhang, ShangLi; Miao, JunYing

    2007-02-20

    Neuronal apoptosis is a very important event in the development of the central nervous system (CNS), but the underlying mechanisms remain to be elucidated. We have previously shown that safrole oxide, a small molecule, induces integrin beta4 expression and promotes apoptosis in vascular endothelial cells. In this study, the effects of safrole oxide on cell growth and apoptosis have been examined in primary cultures of mouse neurons. Safrole oxide was found to significantly inhibit neuronal cell growth and to induce apoptosis. The inhibitory and apoptotic activities of safrole oxide followed a dose- and time-dependent manner. Interestingly, the expression of integrin beta4 was significantly inhibited with safrole oxide treatment. Furthermore, safrole oxide dramatically increases the level of intracellular reactive oxygen species (ROS) and the activity of NADPH oxidase. Moreover, manganese-dependent superoxide dismutase (MnSOD) activity was decreased significantly with safrole oxide treatment. Our study thus demonstrates that safrole oxide induces neuronal apoptosis through integrin beta4, ROS, NADPH, and MnSOD.

  6. Safrole oxide induces apoptosis by up-regulating Fas and FasL instead of integrin beta4 in A549 human lung cancer cells.

    Science.gov (United States)

    Du, AiYing; Zhao, BaoXiang; Miao, JunYing; Yin, DeLing; Zhang, ShangLi

    2006-04-01

    Previously, we found that 3,4-(methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) induced a typical apoptosis in A549 human lung cancer cells by activating caspase-3, -8, and -9. In this study, we further investigated which upstream pathways were activated by safrole oxide during the apoptosis. Immunofluorescence assay combined with laser scanning confocal microscopy revealed that both Fas and Fas ligand (FasL) were up-regulated by the small molecule. In addition, Fas protein distribution was altered, showing a clustering distribution instead of a homogeneous one. Subsequently, Western blot analysis confirmed the up-regulations of Fas and its membrane-binding form of FasL (m-FasL), as well as P53 protein. Conversely, safrole oxide hardly affected integrin beta4 subunit expression or distribution, which was reflected from the data obtained by immunofluorescence assay combined with laser scanning confocal microscopy. The results suggested that Fas/FasL pathway might be involved in safrole oxide-induced apoptosis of A549 cells, while integrin beta4 might be irrelevant to the apoptosis. Nevertheless, we first found the strong expression of integrin beta4 in A549 cells. The study first suggested that safrole oxide might be used as a small molecular promoter of Fas/FasL pathway to elicit apoptosis in A549 cells, which would lay the foundation for us to insight into the new strategies for lung cancer therapy.

  7. Localized bullous pemphigoid: report of a case with an immunofluorescence and electron microscopical studies on the lesional distribution of 180-KD bullous pemphigoid antigen, beta 4 integrin, and type VII collagen.

    Science.gov (United States)

    Kitajima, Y; Suzuki, M; Johkura, Y; Yaoita, H

    1993-07-01

    A 67-year-old woman with a left-sided hemiplegia had localized bullous pemphigoid demonstrating typical clinical lesions on the left pretibial skin and the radial-side skin of the right forearm. The histology showed a subepidermal blister with extensive hyperkeratosis, hypergranulosis, and acanthosis. Direct immunofluorescence revealed distinct linear deposits of IgG and C3 at the dermo-epidermal junction in the perilesional skin and in the roof of the blisters, but few deposits in nonlesional skin. Electron microscopy revealed separation in the lamina lucida. Indirect immunofluorescence of type VII collagen showed its localization in the blister floor. The distribution of the 180-KD bullous pemphigoid antigen (BPA) and beta 4 integrin, hemidesmosomal transmembrane proteins, were studied in the lesional skin by indirect immunofluorescence. Both 180-KD BPA and beta 4 integrin were localized in the blister roof. By immunoelectron microscopy, beta 4 integrin was detected in small groups on the cell surface facing the blister cavity. Since the epitope of the monoclonal antibody to 180-KD BPA used here is known to be localized at a distance of 20 to 50 nm from the membrane surface and this epitope retained in the blister roof, it appears that the blister was produced in the deep lamina lucida. The lesions were cleared with topical 0.05% clobetasole propionate ointment.

  8. Disintegrins: integrin selective ligands which activate integrin-coupled signaling and modulate leukocyte functions

    Directory of Open Access Journals (Sweden)

    Barja-Fidalgo C.

    2005-01-01

    Full Text Available Extracellular matrix proteins and cell adhesion receptors (integrins play essential roles in the regulation of cell adhesion and migration. Interactions of integrins with the extracellular matrix proteins lead to phosphorylation of several intracellular proteins such as focal adhesion kinase, activating different signaling pathways responsible for the regulation of a variety of cell functions, including cytoskeleton mobilization. Once leukocytes are guided to sites of infection, inflammation, or antigen presentation, integrins can participate in the initiation, maintenance, or termination of the immune and inflammatory responses. The modulation of neutrophil activation through integrin-mediated pathways is important in the homeostatic control of the resolution of inflammatory states. In addition, during recirculation, T lymphocyte movement through distinct microenvironments is mediated by integrins, which are critical for cell cycle, differentiation and gene expression. Disintegrins are a family of low-molecular weight, cysteine-rich peptides first identified in snake venom, usually containing an RGD (Arg-Gly-Asp motif, which confers the ability to selectively bind to integrins, inhibiting integrin-related functions in different cell systems. In this review we show that, depending on the cell type and the microenvironment, disintegrins are able to antagonize the effects of integrins or to act agonistically by activating integrin-mediated signaling. Disintegrins have proven useful as tools to improve the understanding of the molecular events regulated by integrin signaling in leukocytes and prototypes in order to design therapies able to interfere with integrin-mediated effects.

  9. Functional consequences of integrin gene mutations in mice

    DEFF Research Database (Denmark)

    Bouvard, D; Brakebusch, C; Gustafsson, E;

    2001-01-01

    Integrins are cell-surface receptors responsible for cell attachment to extracellular matrices and to other cells. The application of mouse genetics has significantly increased our understanding of integrin function in vivo. In this review, we summarize the phenotypes of mice carrying mutant inte...

  10. Interactions between beta subunits of the KCNMB family and Slo3: beta4 selectively modulates Slo3 expression and function.

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Yang

    Full Text Available BACKGROUND: The pH and voltage-regulated Slo3 K(+ channel, a homologue of the Ca(2+- and voltage-regulated Slo1 K(+ channel, is thought to be primarily expressed in sperm, but the properties of Slo3 studied in heterologous systems differ somewhat from the native sperm KSper pH-regulated current. There is the possibility that critical partners that regulate Slo3 function remain unidentified. The extensive amino acid identity between Slo3 and Slo1 suggests that auxiliary beta subunits regulating Slo1 channels might coassemble with and modulate Slo3 channels. Four distinct beta subunits composing the KCNMB family are known to regulate the function and expression of Slo1 Channels. METHODOLOGY/PRINCIPAL FINDINGS: To examine the ability of the KCNMB family of auxiliary beta subunits to regulate Slo3 function, we co-expressed Slo3 and each beta subunit in heterologous expression systems and investigated the functional consequences by electrophysiological and biochemical analyses. The beta4 subunit produced an 8-10 fold enhancement of Slo3 current expression in Xenopus oocytes and a similar enhancement of Slo3 surface expression as monitored by YFP-tagged Slo3 or biotin labeled Slo3. Neither beta1, beta2, nor beta3 mimicked the ability of beta4 to increase surface expression, although biochemical tests suggested that all four beta subunits are competent to coassemble with Slo3. Fluorescence microscopy from beta4 KO mice, in which an eGFP tag replaced the deleted exon, revealed that beta4 gene promoter is active in spermatocytes. Furthermore, quantitative RT-PCR demonstrated that beta4 and Slo3 exhibit comparable mRNA abundance in both testes and sperm. CONCLUSIONS/SIGNIFICANCE: These results argue that, for native mouse Slo3 channels, the beta4 subunit must be considered as a potential interaction partner and, furthermore, that KCNMB subunits may have functions unrelated to regulation of the Slo1 alpha subunit.

  11. Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits

    NARCIS (Netherlands)

    Pyott, Sonja J; Meredith, Andrea L; Fodor, Anthony A; Vázquez, Ana E; Yamoah, Ebenezer N; Aldrich, Richard W

    2007-01-01

    Large conductance voltage- and calcium-activated potassium (BK) channels are important for regulating many essential cellular functions, from neuronal action potential shape and firing rate to smooth muscle contractility. In amphibians, reptiles, and birds, BK channels mediate the intrinsic frequenc

  12. Relating conformation to function in integrin α5β1.

    Science.gov (United States)

    Su, Yang; Xia, Wei; Li, Jing; Walz, Thomas; Humphries, Martin J; Vestweber, Dietmar; Cabañas, Carlos; Lu, Chafen; Springer, Timothy A

    2016-07-01

    Whether β1 integrin ectodomains visit conformational states similarly to β2 and β3 integrins has not been characterized. Furthermore, despite a wealth of activating and inhibitory antibodies to β1 integrins, the conformational states that these antibodies stabilize, and the relation of these conformations to function, remain incompletely characterized. Using negative-stain electron microscopy, we show that the integrin α5β1 ectodomain adopts extended-closed and extended-open conformations as well as a bent conformation. Antibodies SNAKA51, 8E3, N29, and 9EG7 bind to different domains in the α5 or β1 legs, activate, and stabilize extended ectodomain conformations. Antibodies 12G10 and HUTS-4 bind to the β1 βI domain and hybrid domains, respectively, activate, and stabilize the open headpiece conformation. Antibody TS2/16 binds a similar epitope as 12G10, activates, and appears to stabilize an open βI domain conformation without requiring extension or hybrid domain swing-out. mAb13 and SG/19 bind to the βI domain and βI-hybrid domain interface, respectively, inhibit, and stabilize the closed conformation of the headpiece. The effects of the antibodies on cell adhesion to fibronectin substrates suggest that the extended-open conformation of α5β1 is adhesive and that the extended-closed and bent-closed conformations are nonadhesive. The functional effects and binding sites of antibodies and fibronectin were consistent with their ability in binding to α5β1 on cell surfaces to cross-enhance or inhibit one another by competitive or noncompetitive (allosteric) mechanisms.

  13. Evaluation of skeletal and cardiac muscle function after chronic administration of thymosin beta-4 in the dystrophin deficient mouse.

    Directory of Open Access Journals (Sweden)

    Christopher F Spurney

    Full Text Available Thymosin beta-4 (Tbeta4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. We studied the effects of chronic administration of Tbeta4 on the skeletal and cardiac muscle of dystrophin deficient mdx mice, the mouse model of Duchenne muscular dystrophy. Female wild type (C57BL10/ScSnJ and mdx mice, 8-10 weeks old, were treated with 150 microg of Tbeta4 twice a week for 6 months. To promote muscle pathology, mice were exercised for 30 minutes twice a week. Skeletal and cardiac muscle function were assessed via grip strength and high frequency echocardiography. Localization of Tbeta4 and amount of fibrosis were quantified using immunohistochemistry and Gomori's tri-chrome staining, respectively. Mdx mice treated with Tbeta4 showed a significant increase in skeletal muscle regenerating fibers compared to untreated mdx mice. Tbeta4 stained exclusively in the regenerating fibers of mdx mice. Although untreated mdx mice had significantly decreased skeletal muscle strength compared to untreated wild type, there were no significant improvements in mdx mice after treatment. Systolic cardiac function, measured as percent shortening fraction, was decreased in untreated mdx mice compared to untreated wild type and there was no significant difference after treatment in mdx mice. Skeletal and cardiac muscle fibrosis were also significantly increased in untreated mdx mice compared to wild type, but there was no significant improvement in treated mdx mice. In exercised dystrophin deficient mice, chronic administration of Tbeta4 increased the number of regenerating fibers in skeletal muscle and could have a potential role in treatment of skeletal muscle disease in Duchenne muscular dystrophy.

  14. STUDY ON FUNCTION OF FOCAL ADHENSIVE KINASE AND INTEGRIN α1 IN HYPERTROPHIC SCAR FIBROBLASTS

    Institute of Scientific and Technical Information of China (English)

    FU Min-gang; PING Ping; FAN Zhi-hong

    2008-01-01

    Objective To study the function of focal adhesion kinase (FAK) in the formation of hyper-trophic scar and its interrelationship with integrin α1. Methods Original fibroblasts from human hypertrophic scar and human normal dermis were cultured, and immanocytochemistry was applied to detect localization of expres-sion of FAK and integrin α1 in hypertrophic scar and human normal skin fibroblasts. The expression of integrin α1 was detected before and after FAK antibody blocking hypertrophic scar fibroblasts (HSFB) 48 h later. Meanwhile the collagen synthesis was evaluated by [3H] -proline incorporation and HSFB cell proliferation was measured by MTT method. Results The expression of FAK and integrin α1 of hypertrophic scar fibroblasts was higher than that of the normal skin fibroblasts significantly (P <0. 01). The expression of integrinct, was reduced after FAK be-ing blocked (P<0.01). Meanwhile the collagen synthesis of human scar-derived fibroblasts by [3H] -proline incor-poration was depressed respectively (P<0.01). The cell proliferation was inhibited by using 1:100 and 1:200 FAK antibody with MTT method (P<0.01). Conclusion FAK is the key point of signal transmission pathway medi-ated by integrin α1, which regulates protein synthesis of integrin α1, it may play an important role in the prolifera-tion and constriction of hypertrophic scar. FAK antibody can inhibit the collagen synthesis and cell proliferation of hypertrophic scar fibroblasts.

  15. Normal Platelet Integrin Function in Mice Lacking Hydrogen Peroxide-Induced Clone-5 (Hic-5.

    Directory of Open Access Journals (Sweden)

    Michael Popp

    Full Text Available Integrin αIIbβ3 plays a central role in the adhesion and aggregation of platelets and thus is essential for hemostasis and thrombosis. Integrin activation requires the transmission of a signal from the small cytoplasmic tails of the α or β subunit to the large extracellular domains resulting in conformational changes of the extracellular domains to enable ligand binding. Hydrogen peroxide-inducible clone-5 (Hic-5, a member of the paxillin family, serves as a focal adhesion adaptor protein associated with αIIbβ3 at its cytoplasmic tails. Previous studies suggested Hic-5 as a novel regulator of integrin αIIbβ3 activation and platelet aggregation in mice. To assess this in more detail, we generated Hic-5-null mice and analyzed activation and aggregation of their platelets in vitro and in vivo. Surprisingly, lack of Hic-5 had no detectable effect on platelet integrin activation and function in vitro and in vivo under all tested conditions. These results indicate that Hic-5 is dispensable for integrin αIIbβ3 activation and consequently for arterial thrombosis and hemostasis in mice.

  16. Functional analysis of the putative integrin recognition motif on adeno-associated virus 9.

    Science.gov (United States)

    Shen, Shen; Berry, Garrett E; Castellanos Rivera, Ruth M; Cheung, Roland Y; Troupes, Andrew N; Brown, Sarah M; Kafri, Tal; Asokan, Aravind

    2015-01-16

    Adeno-associated viruses (AAVs) display a highly conserved NGR motif on the capsid surface. Earlier studies have established this tripeptide motif as being essential for integrin-mediated uptake of recombinant AAV serotype 2 (AAV2) in cultured cells. However, functional attributes of this putative integrin recognition motif in other recombinant AAV serotypes displaying systemic transduction in vivo remain unknown. In this study, we dissect the biology of an integrin domain capsid mutant derived from the human isolate AAV9 in mice. The AAV9/NGA mutant shows decreased systemic transduction in mice. This defective phenotype was accompanied by rapid clearance of mutant virions from the blood circulation and nonspecific sequestration by the spleen. Transient vascular hyperpermeability, induced by histamine coinjection, exacerbated AAV9/NGA uptake by the spleen but not the liver. However, such treatment did not affect AAV9 virions, suggesting a potential entry/post-entry defect for the mutant in different tissues. Further characterization revealed modestly decreased cell surface binding but a more pronounced defect in the cellular entry of mutant virions. These findings were corroborated by the observation that blocking multiple integrins adversely affected recombinant AAV9 transduction in different cell types, albeit with variable efficiencies. From a structural perspective, we observed that the integrin recognition motif is located in close proximity to the galactose binding footprint on AAV9 capsids and postulate that this feature could influence cell surface attachment, cellular uptake at the tissue level, and systemic clearance by the reticuloendothelial system. PMID:25404742

  17. Allosteric Modulation of Beta1 Integrin Function Induces Lung Tissue Repair

    Directory of Open Access Journals (Sweden)

    Rehab AlJamal-Naylor

    2012-01-01

    Full Text Available The cellular cytoskeleton, adhesion receptors, extracellular matrix composition, and their spatial distribution are together fundamental in a cell's balanced mechanical sensing of its environment. We show that, in lung injury, extracellular matrix-integrin interactions are altered and this leads to signalling alteration and mechanical missensing. The missensing, secondary to matrix alteration and cell surface receptor alterations, leads to increased cellular stiffness, injury, and death. We have identified a monoclonal antibody against β1 integrin which caused matrix remodelling and enhancement of cell survival. The antibody acts as an allosteric dual agonist/antagonist modulator of β1 integrin. Intriguingly, this antibody reversed both functional and structural tissue injury in an animal model of degenerative disease in lung.

  18. Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor.

    Science.gov (United States)

    Almeida, E A; Huovila, A P; Sutherland, A E; Stephens, L E; Calarco, P G; Shaw, L M; Mercurio, A M; Sonnenberg, A; Primakoff, P; Myles, D G; White, J M

    1995-06-30

    Binding between sperm and egg plasma membranes is an essential step in fertilization. Whereas fertilin, a mammalian sperm surface protein, is involved in this crucial interaction, sperm receptors on the egg plasma membrane have not been identified. Because fertilin contains a predicted integrin ligand domain, we investigated the expression and function of integrin subunits in unfertilized mouse eggs. Polymerase chain reactions detected mRNAs for alpha 5, alpha 6, alpha v, beta 1, beta 3, and beta 5. Immunofluorescence revealed alpha 6 beta 1 and alpha v beta 3 on the plasma membrane. GoH3, a function-blocking anti-alpha 6 monoclonal antibody, abolished sperm binding, but a nonfunction-blocking anti-alpha 6 monoclonal antibody, a function-blocking anti-alpha v beta 3 polyclonal antibody, and an RGD peptide had no effect. Somatic cells bound sperm avidly, but only if they expressed alpha 6 beta 1. A peptide analog of the fertilin integrin ligand domain inhibited sperm binding to eggs and alpha 6 beta 1+ cells and diminished GoH3 staining of eggs. Our results indicate a novel role for the integrin alpha 6 beta 1 as a cell-cell adhesion receptor that mediates sperm-egg binding. PMID:7600577

  19. Short-chain ceramides depress integrin cell surface expression and function in colorectal cancer cells.

    Science.gov (United States)

    Morad, Samy A F; Bridges, Lance C; Almeida Larrea, Alex D; Mayen, Anthony L; MacDougall, Matthew R; Davis, Traci S; Kester, Mark; Cabot, Myles C

    2016-07-01

    Colorectal cancer (CRC) is highly metastatic, significantly so to liver, a characteristic that embodies one of the most challenging aspects of treatment. The integrin family of cell-cell and cell-matrix adhesion receptors plays a central role in migration and invasion, functions that underlie metastatic potential. In the present work we sought to determine the impact of ceramide, which plays a key modulatory role in cancer suppression, on integrin cell surface expression and function in CRC cells in order to reveal possible ceramide-centric effects on tumor cell motility. Human CRC cells LoVo, HT-29, and HCT-116 were employed, which represent lines established from primary and metastatic sites. A cell-permeable, short-chain analog, C6-ceramide, was used as ceramide mimic. Exposure of cells to C6-ceramide (24 h) promoted a dose-dependent (2.5-10 µM) decrease in the expression of cell surface β1 and β4 integrin subunits in all cell lines; at 10 µM C6-ceramide, the decreases ranged from 30 to 50% of the control. Expression of cell surface αVβ6 integrin, which is associated with advanced invasion in CRC, was also suppressed by C6-ceramide. Decreases in integrin expression translated to diminished cellular adhesion, 50% of the control at 5 µM C6-ceramide, and markedly reduced cellular migration, approximately 30-40% of the control in all cell lines. Physicochemical examination revealed potent efficacy of nano-formulated C6-ceramide, but inferior activity of dihydro-C6-ceramide and L-C6-ceramide, compared to the unsaturated counterpart and the natural d-enantiomer, respectively. These studies demonstrate novel actions of ceramides that may have application in suppression of tumor metastasis, in addition to their known tumor suppressor effects. PMID:27045476

  20. 奶牛乳腺中整联蛋白alpha6、beta4表达对细胞增殖的影响%Effects on cell proliferaton and expression of integrin subunits α6 and β4 in cow mammary gland

    Institute of Scientific and Technical Information of China (English)

    赵锋; 刘畅; 高学军; 李庆章

    2012-01-01

    用组织免疫荧光和蛋白印迹检测两种整联蛋白亚基的定位和表达水平,并观察阻断它们的功能对乳腺上皮细胞增殖的影响.结果表明,奶牛乳腺中整联蛋白α6和β4主要在青春期和妊娠期的导管和腺泡的基底侧腺上皮细胞和肌上皮细胞表达,而脂肪细胞和成纤维细胞几乎无表达,α6亚基显示出基底侧极性分布,β4亚基在整个细胞膜均匀分布.阻断整联蛋白亚基功能会显著抑制细胞增殖,表明它们对于促进青春期和妊娠期导管和腺泡发育时的细胞增殖有着重要作用.%We aimed to investigate expression and faction of integrin α6 and β4 subunits in healthy Holstein cow mammary gland. Im-munofluorescence and Western blotting assay was carried out for integrin protein distribution and protein level, further their effects on mammary epithelial cells proliferation. Results showed that integrin α6 and β4 both localized on the basal side membrane of ductal or alveolar glandular epithelial cells as well as myoepithelial cells in virgin and pregnant adult mammary gland, the former showing the distribution with baso-lateral polarity, and the latter which were detcted throughout the cell membrane, were also negative in adipocytes and fibroblasts. During perinatal and lactation integrin α6 and β4 protein levels were relatively low. As key cell surface receptor subunits for laminin substrate in vitro, blocking their functions could significandy inhibit the proliferation of mammary epithelial cells. It concluded that the two integrin subunits promote cell proliferation for ducts or alveoli growth during puberty and pregnancy period.

  1. Extracellular K(+) and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and beta1 integrins.

    Science.gov (United States)

    Levite, M; Cahalon, L; Peretz, A; Hershkoviz, R; Sobko, A; Ariel, A; Desai, R; Attali, B; Lider, O

    2000-04-01

    Elevated extracellular K(+) ([K(+)](o)), in the absence of "classical" immunological stimulatory signals, was found to itself be a sufficient stimulus to activate T cell beta1 integrin moieties, and to induce integrin-mediated adhesion and migration. Gating of T cell voltage-gated K(+) channels (Kv1.3) appears to be the crucial "decision-making" step, through which various physiological factors, including elevated [K(+)](o) levels, affect the T cell beta1 integrin function: opening of the channel leads to function, whereas its blockage prevents it. In support of this notion, we found that the proadhesive effects of the chemokine macrophage-inflammatory protein 1beta, the neuropeptide calcitonin gene-related peptide (CGRP), as well as elevated [K(+)](o) levels, are blocked by specific Kv1.3 channel blockers, and that the unique physiological ability of substance P to inhibit T cell adhesion correlates with Kv1.3 inhibition. Interestingly, the Kv1.3 channels and the beta1 integrins coimmunoprecipitate, suggesting that their physical association underlies their functional cooperation on the T cell surface. This study shows that T cells can be activated and driven to integrin function by a pathway that does not involve any of its specific receptors (i.e., by elevated [K(+)](o)). In addition, our results suggest that undesired T cell integrin function in a series of pathological conditions can be arrested by molecules that block the Kv1.3 channels. PMID:10748234

  2. Integrin Trafficking and Tumor Progression

    Directory of Open Access Journals (Sweden)

    Sejeong Shin

    2012-01-01

    Full Text Available Integrins are major mediators of cancer cell adhesion to extracellular matrix. Through this interaction, integrins play critical roles in cell migration, invasion, metastasis, and resistance to apoptosis during tumor progression. Recent studies highlight the importance of integrin trafficking, endocytosis and recycling, for the functions of integrins in cancer cells. Understanding the molecular mechanisms of integrin trafficking is pivotal for understanding tumor progression and for the development of anticancer drugs.

  3. Use of integrin-linked kinase to extend function of encapsulated pancreatic tissue

    Energy Technology Data Exchange (ETDEWEB)

    Blanchette, James O [Department of Chemical Engineering, University of South Carolina, Columbia, SC (United States); Langer, Steven J; Leinwand, Leslie L [Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO (United States); Sahai, Suchit; Topiwala, Pritesh S [Biomedical Engineering Program, University of South Carolina, Columbia, SC (United States); Anseth, Kristi S, E-mail: blanchej@cec.sc.ed [Howard Hughes Medical Institute, Boulder, CO (United States)

    2010-12-15

    We have studied the impact of overexpression of an intracellular signaling protein, integrin-linked kinase (ILK), on the survival and function of encapsulated islet tissue used for the treatment of type 1 diabetes. The dimensions of the encapsulated tissue can impact the stresses placed on the tissue and ILK overexpression shows the ability to extend function of dissociated cells as well as intact islets. These results suggest that lost cell-extracellular matrix interactions in cell encapsulation systems can lead to decreased insulin secretion and ILK signaling is a target to overcome this phenomenon. (communication)

  4. Integrins mediating bone signal transduction

    Institute of Scientific and Technical Information of China (English)

    HE Chuanglong; WANG Yuanliang; YANG Lihua; ZHANG Jun

    2004-01-01

    Integrin-mediated adhesions play critical roles in diverse cell functions. Integrins offers a platform on which mechanical stimuli, cytoskeletal organization, biochemical signals can concentrate. Mechanical stimuli transmitted by integrins influence the cytoskeleton, in turn, the cytoskeleton influences cell adhesion via integrins, then cell adhesion results in a series of signal transduction cascades. In skeleton, integrins also have a key role for bone resoption by osteoclasts and reformation by osteoblasts. In present review, the proteins involved in integrin signal transduction and integrin signal transduction pathways were discussed, mainly on the basic mechanisms of integrin signaling and the roles of integrins in bone signal transduction, which may give insight into new therapeutic agents to all kinds of skeletal diseases and new strategies for bone tissue engineering.

  5. Integrin αEβ7: molecular features and functional significance in the immune system.

    Science.gov (United States)

    Hadley, Gregg A; Higgins, Jonathan M G

    2014-01-01

    Alpha E beta 7 (αEβ7) is an α-I domain-containing integrin that is highly expressed by a variety of leukocyte populations at mucosal sites including intraepithelial T cells, dendritic cells, mast cells, and T regulatory cells (Treg). Expression depends largely or solely on transforming growth factor beta (TGF-β) isoforms. The best characterized ligand for αEβ7 is E-cadherin on epithelial cells, though there is evidence of a second ligand in the human system. An exposed acidic residue on the distal aspect of E-cadherin domain 1 interacts with the MIDAS site in the αE α-I domain. By binding to E-cadherin, αEβ7 contributes to mucosal specific retention of leukocytes within epithelia. Studies on αE knockout mice have identified an additional important function for this integrin in allograft rejection and have also indicated that it may have a role in immunoregulation. Recent studies point to a multifaceted role for αEβ7 in regulating both innate and acquired immune responses to foreign antigen. PMID:25023170

  6. Localization of thymosin beta-4 in tumors

    DEFF Research Database (Denmark)

    Larsson, L. -I.; Holck, Susanne

    2007-01-01

    Overexpression of thymosin beta-4 has been linked to malignant progression but the localization of this polypeptide within tumors is incompletely known. We therefore examined breast cancers for thymosin beta-4 using immunofluorescence. Reactive cells were identified with monoclonal cell marker...... in the tumor microenvironment may modulate tumor behavior....

  7. Roles of integrin activation in eosinophil function and the eosinophilic inflammation of asthma

    OpenAIRE

    Barthel, Steven R; Johansson, Mats W.; McNamee, Dawn M.; Deane F Mosher

    2007-01-01

    Eosinophilic inflammation is a characteristic feature of asthma. Integrins are highly versatile cellular receptors that regulate extravasation of eosinophils from the postcapillary segment of the bronchial circulation to the airway wall and airspace. Such movement into the asthmatic lung is described as a sequential, multistep paradigm, whereby integrins on circulating eosinophils become activated, eosinophils tether in flow and roll on bronchial endothelial cells, integrins on rolling eosino...

  8. Conditional deletion of the Itgb4 integrin gene in Schwann cells leads to delayed peripheral nerve regeneration.

    NARCIS (Netherlands)

    Zee, C.E.E.M. van der; Kreft, M.; Beckers, G.; Kuipers, A.; Sonnenberg, A.

    2008-01-01

    Several different integrins participate in the complex interactions that promote repair of the peripheral nervous system. The role of the integrin alpha6beta4 in peripheral nerve regeneration was investigated in mice by cre-mediated deletion of the Itgb4 (beta4) gene in Schwann cells. After a crush

  9. Functional blockade of α5β1 integrin induces scattering and genomic landscape remodeling of hepatic progenitor cells

    Directory of Open Access Journals (Sweden)

    Lorenti Alicia

    2010-10-01

    Full Text Available Abstract Background Cell scattering is a physiological process executed by stem and progenitor cells during embryonic liver development and postnatal organ regeneration. Here, we investigated the genomic events occurring during this process induced by functional blockade of α5β1 integrin in liver progenitor cells. Results Cells treated with a specific antibody against α5β1 integrin exhibited cell spreading and scattering, over-expression of liver stem/progenitor cell markers and activation of the ERK1/2 and p38 MAPKs signaling cascades, in a similar manner to the process triggered by HGF/SF1 stimulation. Gene expression profiling revealed marked transcriptional changes of genes involved in cell adhesion and migration, as well as genes encoding chromatin remodeling factors. These responses were accompanied by conspicuous spatial reorganization of centromeres, while integrin genes conserved their spatial positioning in the interphase nucleus. Conclusion Collectively, our results demonstrate that α5β1 integrin functional blockade induces cell migration of hepatic progenitor cells, and that this involves a dramatic remodeling of the nuclear landscape.

  10. A function blocking anti-mouse integrin α5β1 antibody inhibits angiogenesis and impedes tumor growth in vivo

    Directory of Open Access Journals (Sweden)

    Powers David

    2007-11-01

    Full Text Available Abstract Background Integrins are important adhesion molecules that regulate tumor and endothelial cell survival, proliferation and migration. The integrin α5β1 has been shown to play a critical role during angiogenesis. An inhibitor of this integrin, volociximab (M200, inhibits endothelial cell growth and movement in vitro, independent of the growth factor milieu, and inhibits tumor growth in vivo in the rabbit VX2 carcinoma model. Although volociximab has already been tested in open label, pilot phase II clinical trials in melanoma, pancreatic and renal cell cancer, evaluation of the mechanism of action of volociximab has been limited because this antibody does not cross-react with murine α5β1, precluding its use in standard mouse xenograft models. Methods We generated a panel of rat-anti-mouse α5β1 antibodies, with the intent of identifying an antibody that recapitulated the properties of volociximab. Hybridoma clones were screened for analogous function to volociximab, including specificity for α5β1 heterodimer and blocking of integrin binding to fibronectin. A subset of antibodies that met these criteria were further characterized for their capacities to bind to mouse endothelial cells, inhibit cell migration and block angiogenesis in vitro. One antibody that encompassed all of these attributes, 339.1, was selected from this panel and tested in xenograft models. Results A panel of antibodies was characterized for specificity and potency. The affinity of antibody 339.1 for mouse integrin α5β1 was determined to be 0.59 nM, as measured by BIAcore. This antibody does not significantly cross-react with human integrin, however 339.1 inhibits murine endothelial cell migration and tube formation and elicits cell death in these cells (EC50 = 5.3 nM. In multiple xenograft models, 339.1 inhibited the growth of established tumors by 40–60% (p Conclusion The results herein demonstrate that 339.1, like volociximab, exhibits potent anti-α5β1

  11. Neisseria meningitidis adhesin NadA targets beta1 integrins: functional similarity to Yersinia invasin.

    Science.gov (United States)

    Nägele, Virginie; Heesemann, Jürgen; Schielke, Stephanie; Jiménez-Soto, Luisa F; Kurzai, Oliver; Ackermann, Nikolaus

    2011-06-10

    Meningococci are facultative-pathogenic bacteria endowed with a set of adhesins allowing colonization of the human upper respiratory tract, leading to fulminant meningitis and septicemia. The Neisseria adhesin NadA was identified in about 50% of N. meningitidis isolates and is closely related to the Yersinia adhesin YadA, the prototype of the oligomeric coiled-coil adhesin (Oca) family. NadA is known to be involved in cell adhesion, invasion, and induction of proinflammatory cytokines. Because of the enormous diversity of neisserial cell adhesins the analysis of the specific contribution of NadA in meningococcal host interactions is limited. Therefore, we used a non-invasive Y. enterocolitica mutant as carrier to study the role of NadA in host cell interaction. NadA was shown to be efficiently produced and localized in its oligomeric form on the bacterial surface of Y. enterocolitica. Additionally, NadA mediated a β1 integrin-dependent adherence with subsequent internalization of yersiniae by a β1 integrin-positive cell line. Using recombinant NadA(24-210) protein and human and murine β1 integrin-expressing cell lines we could demonstrate the role of the β1 integrin subunit as putative receptor for NadA. Subsequent inhibition assays revealed specific interaction of NadA(24-210) with the human β1 integrin subunit. Cumulatively, these results indicate that Y. enterocolitica is a suitable toolbox system for analysis of the adhesive properties of NadA, revealing strong evidence that β1 integrins are important receptors for NadA. Thus, this study demonstrated for the first time a direct interaction between the Oca-family member NadA and human β1 integrins.

  12. Molecular dynamics and docking simulation of a natural variant of Activated Protein C with impaired protease activity: implications for integrin-mediated antiseptic function.

    Science.gov (United States)

    D'Ursi, Pasqualina; Orro, Alessandro; Morra, Giulia; Moscatelli, Marco; Trombetti, Gabriele; Milanesi, Luciano; Rovida, Ermanna

    2015-01-01

    Activated Protein C (APC) is a multifunctional serine protease, primarily known for its anticoagulant function in the coagulation system. Several studies have already elucidated its role in counteracting apoptosis and inflammation in cells, while significant effort is still ongoing for defining its involvement in sepsis. Earlier literature has shown that the antiseptic function of APC is mediated by its binding to leukocyte integrins, which is due to the presence of the integrin binding motif Arg-Gly-Asp at the N-terminus of the APC catalytic chain. Many natural mutants have been identified in patients with Protein C deficiency diagnosis including a variant of specificity pocket (Gly216Asp). In this work, we present a molecular model of the complex of APC with αVβ3 integrin obtained by protein-protein docking approach. A computational analysis of this variant is hereby presented, based on molecular dynamics and docking simulations, aiming at investigating the effects of the Gly216Asp mutation on the protein conformation and inferring its functional implications. Our study shows that such mutation is likely to impair the protease activity while preserving the overall protein fold. Moreover, superposition of the integrin binding motifs in wild-type and mutant forms suggests that the interaction with integrin can still occur and thus the mutant is likely to retain its antiseptic function related to the neutrophyl integrin binding. Therapeutic applications could result in this APC mutant which retains antiseptic function without anticoagulant side effects.

  13. Integrin Activation and Viral Infection

    Institute of Scientific and Technical Information of China (English)

    Shan-dian GAO; Jun-zheng DU; Jian-hua ZHOU; Hui-yun CHANG; Qing-ge XIE

    2008-01-01

    Integrins are members of a ubiquitous membrane receptor family which includes 18 different α subunits and 8 β subunits forming more than 20 α/β heterodimers. Integrins play key functions in vascular endothelial cell and tumour cell adhesion, lymphocyte trafficking, tumor growth and viral infection. Current understanding of the molecular basis of integrins as viral receptors has been achieved through many decades of study into the biology of transmembrane glycoproteins and their interactions with several viruses. This review provides a summary of the current knowledge on the molecular bases of interactions between viruses and integrins, which are of potential practical significance. Inhibition of virus-integrin interactions at the points of virus attachment or entry will provide a novel approach for the therapeutic treatment of viral diseases.

  14. Beta-1 integrin-mediated adhesion may be initiated by multiple incomplete bonds, thus accounting for the functional importance of receptor clustering.

    Science.gov (United States)

    Vitte, Joana; Benoliel, Anne-Marie; Eymeric, Philippe; Bongrand, Pierre; Pierres, Anne

    2004-06-01

    The regulation of cell integrin receptors involves modulation of membrane expression, shift between different affinity states, and topographical redistribution on the cell membrane. Here we attempted to assess quantitatively the functional importance of receptor clustering. We studied beta-1 integrin-mediated attachment of THP-1 cells to fibronectin-coated surfaces under low shear flow. Cells displayed multiple binding events with a half-life of the order of 1 s. The duration of binding events after the first second after arrest was quantitatively accounted for by a model assuming the existence of a short-time intermediate binding state with 3.6 s(-1) dissociation rate and 1.3 s(-1) transition frequency toward a more stable state. Cell binding to surfaces coated with lower fibronectin densities was concluded to be mediated by single molecular interactions, whereas multiple bonds were formed intermediate state. Receptor aggregation was induced by treating cells with neutral antiintegrin antibody and antiimmunoglobulin antibodies. A semiquantitative confocal microscopy study suggested that this treatment increased between 40% and 100% the average number of integrin receptors located in a volume of approximately 0.045 microm(3) surrounding each integrin. This aggregation induced up to 2.7-fold increase of the average number of bonds. Flow cytometric analysis of fluorescent ligand binding showed that THP-1 cells displayed low-affinity beta-1 integrins with a dissociation constant in the micromolar range. It is concluded that the initial step of cell adhesion was mediated by multiple incomplete bonds rather than a single equilibrium-state ligand receptor association. This interpretation accounts for the functional importance of integrin clustering.

  15. Integrin Targeted Delivery of Chemotherapeutics

    Directory of Open Access Journals (Sweden)

    Kai Chen, Xiaoyuan Chen

    2011-01-01

    Full Text Available Targeted delivery of chemotherapeutics is defined in the sense, that is, to maximize the therapeutic index of a chemotherapeutic agent by strictly localizing its pharmacological activity to the site or tissue of action. Integrins are a family of heterodimeric transmembrane glycoproteins involved in a wide range of cell-to-extracellular matrix (ECM and cell-to-cell interactions. As cell surface receptors, integrins readily interact with extracellular ligands and play a vital role in angiogenesis, leukocytes function and tumor development, which sets up integrins as an excellent target for chemotherapy treatment. The peptide ligands containing the arginine-glycine-aspartic acid (RGD, which displays a strong binding affinity and selectivity to integrins, particularly to integrin αvβ3, have been developed to conjugate with various conventional chemotherapeutic agents, such as small molecules, peptides and proteins, and nanoparticle-carried drugs for integtrin targeted therapeutic studies. This review highlights the recent advances in integrin targeted delivery of chemotherapeutic agents with emphasis on target of integrin αvβ3, and describes the considerations for the design of the diverse RGD peptide-chemotherapeutics conjugates and their major applications.

  16. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Shuichi Segawa

    Full Text Available Probiotics exhibit beneficial effects on human health, particularly in the maintenance of intestinal homeostasis in a complex manner notwithstanding the diversity of an intestinal flora between individuals. Thus, it is highly probable that some common molecules secreted by probiotic and/or commensal bacteria contribute to the maintenance of intestinal homeostasis and protect the intestinal epithelium from injurious stimuli. To address this question, we aimed to isolate the cytoprotective compound from a lactobacillus strain, Lactobacillus brevis SBC8803 which possess the ability to induce cytoprotective heat shock proteins in mouse small intestine. L. brevis was incubated in MRS broth and the supernatant was passed through with a 0.2-µm filter. Caco2/bbe cells were treated with the culture supernatant, and HSP27 expression was evaluated by Western blotting. HSP27-inducible components were separated by ammonium sulfate precipitation, DEAE anion exchange chromatography, gel filtration, and HPLC. Finally, we identified that the HSP27-inducible fraction was polyphosphate (poly P, a simple repeated structure of phosphates, which is a common product of lactobacilli and other bacteria associated with intestinal microflora without any definitive physiological functions. Then, poly P was synthesized by poly P-synthesizing enzyme polyphosphate kinase. The synthesized poly P significantly induced HSP27 from Caco2/BBE cells. In addition, Poly P suppressed the oxidant-induced intestinal permeability in the mouse small intestine and pharmacological inhibitors of p38 MAPK and integrins counteract its protective effect. Daily intrarectal administration of poly P (10 µg improved the inflammation grade and survival rate in 4% sodium dextran sulfate-administered mice. This study, for the first time, demonstrated that poly P is the molecule responsible for maintaining intestinal barrier actions which are mediated through the intestinal integrin β1-p38 MAPK.

  17. Genetic analysis of beta1 integrin function: confirmed, new and revised roles for a crucial family of cell adhesion molecules

    DEFF Research Database (Denmark)

    Brakebusch, C; Hirsch, E; Potocnik, A;

    1997-01-01

    findings derived from such studies concerning the biological roles of beta1 integrins in early development, differentiation and migration, hematopoiesis, tumorigenesis, and supramolecular assembly of extracellular matrix proteins. While several former results were confirmed, others were contradicted...

  18. Structural and functional analysis of coxsackievirus A9 integrin αvβ6 binding and uncoating.

    Science.gov (United States)

    Shakeel, Shabih; Seitsonen, Jani J T; Kajander, Tommi; Laurinmäki, Pasi; Hyypiä, Timo; Susi, Petri; Butcher, Sarah J

    2013-04-01

    Coxsackievirus A9 (CVA9) is an important pathogen of the Picornaviridae family. It utilizes cellular receptors from the integrin αv family for binding to its host cells prior to entry and genome release. Among the integrins tested, it has the highest affinity for αvβ6, which recognizes the arginine-glycine-aspartic acid (RGD) loop present on the C terminus of viral capsid protein, VP1. As the atomic model of CVA9 lacks the RGD loop, we used surface plasmon resonance, electron cryo-microscopy, and image reconstruction to characterize the capsid-integrin interactions and the conformational changes on genome release. We show that the integrin binds to the capsid with nanomolar affinity and that the binding of integrin to the virion does not induce uncoating, thereby implying that further steps are required for release of the genome. Electron cryo-tomography and single-particle image reconstruction revealed variation in the number and conformation of the integrins bound to the capsid, with the integrin footprint mapping close to the predicted site for the exposed RGD loop on VP1. Comparison of empty and RNA-filled capsid reconstructions showed that the capsid undergoes conformational changes when the genome is released, so that the RNA-capsid interactions in the N termini of VP1 and VP4 are lost, VP4 is removed, and the capsid becomes more porous, as has been reported for poliovirus 1, human rhinovirus 2, enterovirus 71, and coxsackievirus A7. These results are important for understanding the structural basis of integrin binding to CVA9 and the molecular events leading to CVA9 cell entry and uncoating.

  19. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow

    DEFF Research Database (Denmark)

    Potocnik, A J; Brakebusch, C; Fässler, R

    2000-01-01

    Homing of hematopoietic stem cells (HSCs) into hematopoietic organs is a prerequisite for the establishment of hematopoiesis during embryogenesis and after bone marrow transplantation. We show that beta1 integrin-deficient HSCs from the para-aortic splanchnopleura and the fetal blood had hematoly......Homing of hematopoietic stem cells (HSCs) into hematopoietic organs is a prerequisite for the establishment of hematopoiesis during embryogenesis and after bone marrow transplantation. We show that beta1 integrin-deficient HSCs from the para-aortic splanchnopleura and the fetal blood had...

  20. EPB41L5 functions to post-transcriptionally regulate cadherin and integrin during epithelial–mesenchymal transition

    Science.gov (United States)

    Hirano, Mariko; Hashimoto, Shigeru; Yonemura, Shigenobu; Sabe, Hisataka; Aizawa, Shinichi

    2008-01-01

    EPB41L5 belongs to the band 4.1 superfamily. We investigate here the involvement of EPB41L5 in epithelial–mesenchymal transition (EMT) during mouse gastrulation. EPB41L5 expression is induced during TGFβ-stimulated EMT, whereas silencing of EPB41L5 by siRNA inhibits this transition. In EPB41L5 mutants, cell–cell adhesion is enhanced, and EMT is greatly impaired during gastrulation. Moreover, cell attachment, spreading, and mobility are greatly reduced by EPB41L5 deficiency. Gene transcription regulation during EMT occurs normally at the mRNA level; EPB41L5 siRNA does not affect either the decrease in E-cadherin or the increase in integrin expression. However, at the protein level, the decrease in E-cadherin and increase in integrin are inhibited in both EPB41L5 siRNA-treated NMuMG cells and mutant mesoderm. We find that EPB41L5 binds p120ctn through its N-terminal FERM domain, inhibiting p120ctn–E-cadherin binding. EPB41L5 overexpression causes E-cadherin relocalization into Rab5-positive vesicles in epithelial cells. At the same time, EPB41L5 binds to paxillin through its C terminus, enhancing integrin/paxillin association, thereby stimulating focal adhesion formation. PMID:18794329

  1. EPB41L5 functions to post-transcriptionally regulate cadherin and integrin during epithelial-mesenchymal transition.

    Science.gov (United States)

    Hirano, Mariko; Hashimoto, Shigeru; Yonemura, Shigenobu; Sabe, Hisataka; Aizawa, Shinichi

    2008-09-22

    EPB41L5 belongs to the band 4.1 superfamily. We investigate here the involvement of EPB41L5 in epithelial-mesenchymal transition (EMT) during mouse gastrulation. EPB41L5 expression is induced during TGFbeta-stimulated EMT, whereas silencing of EPB41L5 by siRNA inhibits this transition. In EPB41L5 mutants, cell-cell adhesion is enhanced, and EMT is greatly impaired during gastrulation. Moreover, cell attachment, spreading, and mobility are greatly reduced by EPB41L5 deficiency. Gene transcription regulation during EMT occurs normally at the mRNA level; EPB41L5 siRNA does not affect either the decrease in E-cadherin or the increase in integrin expression. However, at the protein level, the decrease in E-cadherin and increase in integrin are inhibited in both EPB41L5 siRNA-treated NMuMG cells and mutant mesoderm. We find that EPB41L5 binds p120ctn through its N-terminal FERM domain, inhibiting p120ctn-E-cadherin binding. EPB41L5 overexpression causes E-cadherin relocalization into Rab5-positive vesicles in epithelial cells. At the same time, EPB41L5 binds to paxillin through its C terminus, enhancing integrin/paxillin association, thereby stimulating focal adhesion formation. PMID:18794329

  2. Functionalized self-assembling peptide improves INS-1 β-cell function and proliferation via the integrin/FAK/ERK/cyclin pathway

    Directory of Open Access Journals (Sweden)

    Liu JP

    2015-05-01

    Full Text Available Jingping Liu,1 Shuyun Liu,1 Younan Chen,1 Xiaojun Zhao,2 Yanrong Lu,1 Jingqiu Cheng1 1Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, 2Laboratory of Nanomedicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Islet transplantation is considered to be a curative treatment for type 1 diabetes mellitus. However, disruption of the extracellular matrix (ECM leads to β-cell destruction and graft dysfunction. In this study, we developed a functionalized self-assembling peptide, KLD-F, with ECM mimic motifs derived from fibronectin and collagen IV, and evaluated its effect on β-cell function and proliferation. Atomic force microscopy and rheological results showed that KLD-F could self-assemble into a nanofibrous scaffold and change into a hydrogel in physiological saline condition. In a three-dimensional cell culture model, KLD-F improved ECM remodeling and cell-cell adhesion of INS-1 β-cells by upregulation of E-cadherin, fibronectin, and collagen IV. KLD-F also enhanced glucose-stimulated insulin secretion and expression of β-cell function genes, including Glut2, Ins1, MafA, and Pdx-1 in INS-1 cells. Moreover, KLD-F promoted proliferation of INS-1 β-cells and upregulated Ki67 expression by mediating cell cycle progression. In addition, KLD-F improved β-cell function and proliferation via an integrin/focal adhesion kinase/extracellular signal-regulated kinase/cyclin D pathway. This study highlights the fact that the β-cell-ECM interaction reestablished with this functionalized self-assembling peptide is a promising method to improve the therapeutic efficacy of islet transplantation. Keywords: extracellular matrix, self-assembling peptide, islet transplantation, β-cell proliferation, insulin secretion

  3. A Comparison of IRT Equating and Beta 4 Equating.

    Science.gov (United States)

    Kim, Dong-In; Brennan, Robert; Kolen, Michael

    Four equating methods were compared using four equating criteria: first-order equity (FOE), second-order equity (SOE), conditional mean squared error (CMSE) difference, and the equipercentile equating property. The four methods were: (1) three parameter logistic (3PL) model true score equating; (2) 3PL observed score equating; (3) beta 4 true…

  4. The PlA2 polymorphism of integrin β3 enhances outside-in signaling and adhesive functions

    OpenAIRE

    Vijayan, K. Vinod; Pascal J. Goldschmidt-Clermont; Roos, Christine; Bray, Paul F.

    2000-01-01

    Genetic factors are believed to influence the development of arterial thromboses. Because integrin αIIbβ3 plays a crucial role in thrombus formation, we analyzed receptor adhesive properties using Chinese hamster ovary and human kidney embryonal 293 cells overexpressing the PlA1 or PlA2 polymorphic forms of αIIbβ3. Soluble fibrinogen binding was no different between PlA1 and PlA2 cells, either in a resting state or when αIIbβ3 was activated with anti-LIBS6. PlA1 and PlA2 cells bound equivalen...

  5. Structural insight into the function of myelin basic protein as a ligand for integrin αMβ2

    DEFF Research Database (Denmark)

    Stapulionis, Romualdas; Oliveira, Cristiano; Gjelstrup, Mikkel Carstensen;

    2008-01-01

    Multiple sclerosis (MS) is an inflammatory disease where phagocytic cells infiltrate the nerve tissue and act as terminal agents in destruction of the myelin sheath. However, the mechanism that triggers the ability of these cells to recognize myelin remains obscure. We show that myelin basic...... protein (MBP), a major autoantigen in MS, is a potent and specific ligand for the integrin αMβ2 (Mac-1, CD11b/CD18) expressed mainly on phagocytic cells. MBP undergoes a dramatic conformational change when liberated from the lipid-rich environment of the myelin sheath. The MS drug glatiramer acetate...

  6. Genetic analysis of beta1 integrin "activation motifs" in mice

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Meyer, Hannelore; Legate, Kyle R;

    2006-01-01

    /beta tails, leading to tail separation and integrin activation. We analyzed mice in which we mutated the tyrosines of the beta1 tail and the membrane-proximal aspartic acid required for the salt bridge. Tyrosine-to-alanine substitutions abolished beta1 integrin functions and led to a beta1 integrin...... and the membrane-proximal salt bridge between alpha and beta1 tails have no apparent function under physiological conditions in vivo....

  7. Why Integrin as a Primary Target for Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Gang Niu, Xiaoyuan Chen

    2011-01-01

    Full Text Available Integrin-mediated cell adhesion is involved in many essential normal cellular and pathological functions including cell survival, growth, differentiation, migration, inflammatory responses, platelet aggregation, tissue repair and tumor invasion. 24 different heterodimerized transmembrane integrin receptors are combined from 18 different α and 8 different β subunits. Each integrin subunit contains a large extracellular domain, a single transmembrane domain and a usually short cytoplasmic domain. Integrins bind extracellular matrix (ECM proteins through their large extracellular domain, and engage the cytoskeleton via their short cytoplasmic tails. These integrin-mediated linkages on either side of the plasma membrane are dynamically linked. Thus, integrins communicate over the plasma membrane in both directions, i.e., outside-in and inside-out signaling. In outside-in signaling through integrins, conformational changes of integrin induced by ligand binding on the extracellular domain altered the cytoplasmic domain structures to elicit various intracellular signaling pathways. Inside-out signaling originates from non-integrin cell surface receptors or cytoplasmic molecules and it activates signaling pathways inside the cells, ultimately resulting in the activation/deactivation of integrins. Integrins are one of key family proteins for cell adhesion regulation through binding to a large number of ECM molecules and cell membrane proteins. Lack of expression of integrins may result in a wide variety of effects ranging from blockage in pre-implantation to embryonic or perinatal lethality and developmental defects. Based on both the key role they played in angiogenesis, leukocytes function and tumor development and easy accessibility as cell surface receptors interacting with extracellular ligands, the integrin superfamily represents the best opportunity of targeting both antibodies and small-molecule antagonists for both therapeutic and diagnostic

  8. Cellular growth and survival are mediated by beta 1 integrins in normal human breast epithelium but not in breast carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Howlett, Anthony R; Bailey, Nina; Damsky, Caroline; Petersen, Ole W; Bissell, Mina J

    1994-11-28

    We previously established a rapid three-dimensional assay for discrimination of normal and malignant human breast epithelial cells using a laminin-rich reconstituted basement membrane. In this assay, normal epithelial cells differentiate into well-organized acinar structures whereas tumor cells fail to recapitulate this process and produce large, disordered colonies. The data suggest that breast acinar morphogenesis and differentiation is regulated by cell-extracellular matrix (ECM) interactions and that these interactions are altered in malignancy. Here, we investigated the role of ECM receptors (integrins) in these processes and report on the expression and function of potential laminin receptors in normal and tumorigenic breast epithelial cells. Immmunocytochemical analysis showed that normal and carcinoma cells in a three-dimensional substratum express profiles of integrins similar to normal and malignant breast tissues in situ. Normal cells express {alpha}1, {alpha}2, {alpha}3, {alpha}6, {beta}1 and {beta}4 integrin subunits, whereas breast carcinoma cells show variable losses, disordered expression, or down regulation of these subunits. Function-blocking experiments using inhibitory antiintegrin subunit antibodies showed a >5-fold inhibition of the formation of acinar structures by normal cells in the presence of either anti-{beta}1 or anti-{alpha}3 antibodies, whereas anti-{alpha}2 or -{alpha}6 had little or no effect. In experiments where collagen type I gels were used instead of basement membrane, acinar morphogenesis was blocked by anti-{beta}1 and -{alpha}2 antibodies but not by anti-{alpha}3. These data suggest a specificity of integrin utilization dependent on the ECM ligands encountered by the cell. The interruption of normal acinar morphogenesis by anti-integrin antibodies was associated with an inhibition of cell growth and induction of apoptosis. Function-blocking antibodies had no inhibitory effect on the rate of tumor cell growth, survival or

  9. Inelastic laser light scattering spectroscopy and functionalization of semiconductor quantum dots with peptides and integrins of cancer cells for biophotonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Bairamov, B [A.F. Ioffe Physico-Technical Institute, RAS, St. Petersburg, 194021 (Russian Federation); Toporov, V [A.F. Ioffe Physico-Technical Institute, RAS, St. Petersburg, 194021 (Russian Federation); Bayramov, F [A.F. Ioffe Physico-Technical Institute, RAS, St. Petersburg, 194021 (Russian Federation); Lanzov, V [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); Dutta, M [Deparment of Electrical and Computer Engineering, University of Illinois, Chicago, IL 60607 (United States); Stroscio, M A [Deparment of Electrical and Computer Engineering, University of Illinois, Chicago, IL 60607 (United States); Irmer, G [Institute of Theoretical Physics, D-09596, Freiberg (Germany)

    2007-12-15

    Results of our study of structural properties of the nanoscale integrated semiconductor quantum dots such as CdS and ZnS-capped CdSe, conjugated with biomolecules such as short peptides and cells are presented. Nanoscale functionalization of semiconductor quantum dots with biomedical structures is promising for many applications and novel studies of intrinsic properties of both constituent systems. We study CdS semiconductor quantum dots functionalized with peptides composed of the following amino acid chains: CGGGRGDS, CGGGRVDS, CGGIKVAV, and CGGGLDV, where R is arginine, D is aspartic acid, S is serine, V is valine, K is lysine and L is Levine. As will be seen the cysteine (C) amino acid links to CdS semiconductor quantum dots via the thiol link. Furthermore, the GGG sequences of glycine (G) amino acids provide a spacer in the amino acid chain. At the same time the RGDS, RVDS, IKAV, and LDV sequences have selective bonding affinities to specialized transmembrane cellular structures known as integrins of neurons and MDA-MB-435 cancer cells, respectively. Since protein hydration is known to be a key factor affecting protein energy balance, we also studied a role that water and other bioenvironments may play in stability, surface properties, dynamical and structural characteristics of these systems. We found also the roles that the quantum confinement and functionalizing in the biomedical environments play in altering and determining the electronic, optical, and vibrational properties of these nanostructures as well as demonstrated the effectiveness to use the semiconductor quantum dots as integrin sensitive biotags.

  10. Integrin receptors and ligand-gated channels.

    Science.gov (United States)

    Morini, Raffaella; Becchetti, Andrea

    2010-01-01

    Plastic expression of different integrin subunits controls the different stages of neural development, whereas in the adult integrins regulate synaptic stability. Evidence of integrin-channel crosstalk exists for ionotropic glutamate receptors. As is often the case in other tissues, integrin engagement regulates channel activity through complex signaling pathways that often include tyrosine phosphorylation cascades. The specific pathways recruited by integrin activation depend on cerebral region and cell type. In turn, ion channels control integrin expression onto the plasma membrane and their ligand binding affinity. The most extensive studies concern the hippocampus and suggest implications for neuronal circuit plasticity. The physiological relevance of these findings depends on whether adhesion molecules, aside from determining tissue stability, contribute to synaptogenesis and the responsiveness of mature synapses, thus contributing to long-term circuit consolidation. Little evidence is available for other ligand-gated channels, with the exception of nicotinic receptors. These exert a variety of functions in neurons and non neural tissue, both in development and in the adult, by regulating cell cycle, synaptogenesis and synaptic circuit refinement. Detailed studies in epidermal keratinocytes have shed some light on the possible mechanisms through which ACh can regulate cell motility, which may be of general relevance for morphogenetic processes. As to the control of mature synapses, most results concern the integrinic control of nicotinic receptors in the neuromuscular junction. Following this lead, a few studies have addressed similar topics in adult cerebral synapses. However, pursuing and interpreting these results in the brain is especially difficult because of the complexity of the nicotinic roles and the widespread contribution of nonsynaptic, paracrine transmission. From a pathological point of view, considering the well-known contribution of both

  11. Localized lipid packing of transmembrane domains impedes integrin clustering.

    Directory of Open Access Journals (Sweden)

    Mehrdad Mehrbod

    Full Text Available Integrin clustering plays a pivotal role in a host of cell functions. Hetero-dimeric integrin adhesion receptors regulate cell migration, survival, and differentiation by communicating signals bidirectionally across the plasma membrane. Thus far, crystallographic structures of integrin components are solved only separately, and for some integrin types. Also, the sequence of interactions that leads to signal transduction remains ambiguous. Particularly, it remains controversial whether the homo-dimerization of integrin transmembrane domains occurs following the integrin activation (i.e. when integrin ectodomain is stretched out or if it regulates integrin clustering. This study employs molecular dynamics modeling approaches to address these questions in molecular details and sheds light on the crucial effect of the plasma membrane. Conducting a normal mode analysis of the intact αllbβ3 integrin, it is demonstrated that the ectodomain and transmembrane-cytoplasmic domains are connected via a membrane-proximal hinge region, thus merely transmembrane-cytoplasmic domains are modeled. By measuring the free energy change and force required to form integrin homo-oligomers, this study suggests that the β-subunit homo-oligomerization potentially regulates integrin clustering, as opposed to α-subunit, which appears to be a poor regulator for the clustering process. If α-subunits are to regulate the clustering they should overcome a high-energy barrier formed by a stable lipid pack around them. Finally, an outside-in activation-clustering scenario is speculated, explaining how further loading the already-active integrin affects its homo-oligomerization so that focal adhesions grow in size.

  12. Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis

    DEFF Research Database (Denmark)

    Aszodi, Attila; Hunziker, Ernst B; Brakebusch, Cord;

    2003-01-01

    Beta1 integrins are highly expressed on chondrocytes, where they mediate adhesion to cartilage matrix proteins. To assess the functions of beta1 integrin during skeletogenesis, we inactivated the beta1 integrin gene in chondrocytes. We show here that these mutant mice develop a chondrodysplasia o...

  13. Differential expression of integrins and laminin-5 in normal oral epithelia

    DEFF Research Database (Denmark)

    Thorup, A K; Dabelsteen, Erik; Schou, S;

    1997-01-01

    epithelia, whereas there was increased suprabasal expression in nonkeratinized mucosa. These results indicate inhomogeneity in the basal cell population of oral squamous epithelia and differential expression of integrins, which may reflect differences in the underlying stroma. Laminin-5 deposits...... of different integrins and laminin-5 was studied in oral epithelium to characterize regional variations in these adhesion molecules. Monoclonal antibodies directed against alpha 2-alpha 6 beta 1/alpha 6 beta 4 and laminin-5 were examined in cryopreserved biopsies of normal mucosa by immunohistochemistry...... in the stroma underneath the junctional epithelium may indicate subclinical gingival inflammation....

  14. The talin head domain reinforces integrin-mediated adhesion by promoting adhesion complex stability and clustering.

    Directory of Open Access Journals (Sweden)

    Stephanie J Ellis

    2014-11-01

    Full Text Available Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development.

  15. IFN-γ-inducible protein of 10 kDa upregulates the effector functions of eosinophils through β2 integrin and CXCR3

    Directory of Open Access Journals (Sweden)

    Kobayashi Takehito

    2011-10-01

    Full Text Available Abstract Background Eosinophils play an important role in the pathogenesis of bronchial asthma and its exacerbation. Recent reports suggest the involvement of IFN-γ-inducible protein of 10 kDa (IP-10 in virus-induced asthma exacerbation. The objective of this study was to examine whether CXCR3 ligands including IP-10 modify the effector functions of eosinophils. Methods Eosinophils isolated from the blood of healthy donors were stimulated with CXCR3 ligands and their adhesion to rh-ICAM-1 was then measured using eosinophil peroxidase assays. The generation of eosinophil superoxide anion (O2- was examined based on the superoxide dismutase-inhibitable reduction of cytochrome C. Eosinophil-derived neurotoxin (EDN release was evaluated to determine whether CXCR3 ligands induced eosinophil degranulation. Cytokine and chemokine production by eosinophils was examined using a Bio-plex assay. Results Eosinophil adhesion to ICAM-1 was significantly enhanced by IP-10, which also significantly induced eosinophil O2- generation in the presence of ICAM-1. Both the enhanced adhesion and O2- generation were inhibited by an anti-β2 integrin mAb or an anti-CXCR3 mAb. Other CXCR3 ligands, such as monokine induced by IFN-γ (Mig and IFN-inducible T cell α chemoattractant (I-TAC, also induced eosinophil adhesion and O2- generation in the presence of ICAM-1. IP-10, but not Mig or I-TAC, increased the release of EDN. IP-10 increased the production of a number of cytokines and chemokines by eosinophils. Conclusions These findings suggest that CXCR3 ligands such as IP-10 can directly upregulate the effector functions of eosinophils. These effects might be involved in the activation and infiltration of eosinophils in the airway of asthma, especially in virus-induced asthma exacerbation.

  16. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking.

    Science.gov (United States)

    Lee, Hee Doo; Kim, Yeon Hyang; Kim, Doo-Sik

    2014-04-01

    Integrin trafficking, including internalization, recycling, and lysosomal degradation, is crucial for the regulation of cellular functions. Exosomes, nano-sized extracellular vesicles, are believed to play important roles in intercellular communications. This study demonstrates that exosomes released from human macrophages negatively regulate endothelial cell migration through control of integrin trafficking. Macrophage-derived exosomes promote internalization of integrin β1 in primary HUVECs. The internalized integrin β1 persistently accumulates in the perinuclear region and is not recycled back to the plasma membrane. Experimental results indicate that macrophage-derived exosomes stimulate trafficking of internalized integrin β1 to lysosomal compartments with a corresponding decrease in the integrin destined for recycling endosomes, resulting in proteolytic degradation of the integrin. Moreover, ubiquitination of HUVEC integrin β1 is enhanced by the exosomes, and exosome-mediated integrin degradation is blocked by bafilomycin A, a lysosomal degradation inhibitor. Macrophage-derived exosomes were also shown to effectively suppress collagen-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and HUVEC migration, which are both dependent on integrin β1. These observations provide new insight into the functional significance of exosomes in the regulation of integrin trafficking.

  17. Integrin-α5β1 is not required for mural cell functions during development of blood vessels but is required for lymphatic-blood vessel separation and lymphovenous valve formation.

    Science.gov (United States)

    Turner, Christopher J; Badu-Nkansah, Kwabena; Crowley, Denise; van der Flier, Arjan; Hynes, Richard O

    2014-08-15

    Integrin α5β1 is essential for vascular development but it remains unclear precisely where and how it functions. Here, we report that deletion of the gene encoding the integrin-α5 subunit (Itga5) using the Pdgfrb-Cre transgenic mouse line, leads to oedema, haemorrhage and increased levels of embryonic lethality. Unexpectedly, these defects were not caused by loss of α5 from Pdgfrb-Cre expressing mural cells (pericytes and vascular smooth muscle cells), which wrap around the endothelium and stabilise blood vessels, nor by defects in the heart or great vessels, but were due to abnormal development of the lymphatic vasculature. Reminiscent of the pathologies seen in the human lymphatic malformation, fetal cystic hygroma, α5 mutants display defects both in the separation of their blood and lymphatic vasculature and in the formation of the lymphovenous valves. As a consequence, α5-deficient mice develop dilated, blood-filled lymphatic vessels and lymphatic capillaries that are ectopically covered with smooth muscle cells. Analysis of the expression of Pdgfrb during lymphatic development suggests that these defects probably arise from loss of α5β1 integrin in subsets of specialised Prox1(+)Pdgfrb(+) venous endothelial cells that are essential for the separation of the jugular lymph sac from the cardinal vein and formation of the lymphovenous valve leaflets.

  18. Integrins (alpha7beta1) in muscle function and survival. Disrupted expression in merosin-deficient congenital muscular dystrophy

    DEFF Research Database (Denmark)

    Vachon, P H; Xu, H; Liu, L;

    1997-01-01

    isoforms in myofibers of merosin-deficient human patients and mice, but not in dystrophin-deficient or sarcoglycan-deficient humans and animals. It was shown previously that skeletal muscle fibers require merosin for survival and function (Vachon, P.H., F. Loechel, H. Xu, U.M. Wewer, and E. Engvall. 1996...

  19. Universality in Chiral Random Matrix Theory at $\\beta =1$ and $\\beta =4$

    CERN Document Server

    Sener, M K

    1998-01-01

    In this paper the kernel for spectral correlation functions of the invariant chiral random matrix ensembles with real ($\\beta =1$) and quaternion real ($\\beta = 4$) matrix elements is expressed in terms of the kernel of the corresponding complex Hermitean random matrix ensembles ($\\beta=2$). Such identities are exact in case of a Gaussian probability distribution and, under certain smoothness assumptions, they are shown to be valid asymptotically for an arbitrary finite polynomial potential. They are proved by means of a construction proposed by Brézin and Neuberger. Microscopic universality for all three chiral ensembles then follows from universal behavior for $\\beta =2$ both at the hard edge (shown by Akemann, Damgaard, Magnea and Nishigaki) and at the soft edge of the spectrum (shown by Kanzieper and Freilikher).

  20. Deletion of integrin-linked kinase from neural crest cells in mice results in aortic aneurysms and embryonic lethality

    OpenAIRE

    Arnold, Thomas D.; Keling Zang; Ainara Vallejo-Illarramendi

    2013-01-01

    SUMMARY Neural crest cells (NCCs) participate in the remodeling of the cardiac outflow tract and pharyngeal arch arteries during cardiovascular development. Integrin-linked kinase (ILK) is a serine/threonine kinase and a major regulator of integrin signaling. It links integrins to the actin cytoskeleton and recruits other adaptor molecules into a large complex to regulate actin dynamics and integrin function. Using the Cre-lox system, we deleted Ilk from NCCs of mice to investigate its rol...

  1. T Cell Integrin Overexpression as a Model of Murine Autoimmunity

    Directory of Open Access Journals (Sweden)

    Yung Raymond L.

    2003-01-01

    Full Text Available Integrin adhesion molecules have important adhesion and signaling functions. They also play a central role in the pathogenesis of many autoimmune diseases. Over the past few years we have described a T cell adoptive transfer model to investigate the role of T cell integrin adhesion molecules in the development of autoimmunity. This report summarizes the methods we used in establishing this murine model. By treating murine CD4+ T cells with DNA hypomethylating agents and by transfection we were able to test the in vitro effects of integrin overexpression on T cell autoreactive proliferation, cytotoxicity, adhesion and trafficking. Furthermore, we showed that the ability to induce in vivo autoimmunity may be unique to the integrin lymphocyte function associated antigen-1 (LFA-1.

  2. IPP Complex Reinforces Adhesion by Relaying Tension-Dependent Signals to Inhibit Integrin Turnover

    Directory of Open Access Journals (Sweden)

    Katerina M. Vakaloglou

    2016-03-01

    Full Text Available Cytoskeleton-mediated forces regulate the assembly and function of integrin adhesions; however, the underlying mechanisms remain unclear. The tripartite IPP complex, comprising ILK, Parvin, and PINCH, mediates the integrin-actin link at Drosophila embryo muscle attachment sites (MASs. Here, we demonstrate a developmentally earlier function for the IPP complex: to reinforce integrin-extracellular matrix (ECM adhesion in response to tension. In IPP-complex mutants, the integrin-ECM linkage at MASs breaks in response to intense muscle contractility. Mechanistically, the IPP complex is required to relay force-elicited signals that decelerate integrin turnover at the plasma membrane so that the integrin immobile fraction is adequate to withstand tension. Epistasis analysis shows that alleviation of muscle contractility, downregulation of endocytosis, and enhanced integrin binding to the ECM are sufficient to restore integrin-ECM adhesion and maintain integrin-adhesome organization in IPP-complex mutants. Our findings reveal a role for the IPP complex as an essential mechanosensitive regulatory switch of integrin turnover in vivo.

  3. Functional Role of mTORC2 versus Integrin-Linked Kinase in Mediating Ser473-Akt Phosphorylation in PTEN-Negative Prostate and Breast Cancer Cell Lines.

    Science.gov (United States)

    Lee, Su-Lin; Chou, Chih-Chien; Chuang, Hsiao-Ching; Hsu, En-Chi; Chiu, Po-Chen; Kulp, Samuel K; Byrd, John C; Chen, Ching-Shih

    2013-01-01

    Although the rictor-mTOR complex (mTORC2) has been shown to act as phosphoinositide-dependent kinase (PDK)2 in many cell types, other kinases have also been implicated in mediating Ser473-Akt phosphorylation. Here, we demonstrated the cell line specificity of integrin-linked kinase (ILK) versus mTORC2 as PDK2 in LNCaP and PC-3 prostate and MDA-MB-468 breast cancer cells, of which the PTEN-negative status allowed the study of Ser473-Akt phosphorylation independent of external stimulation. PC-3 and MDA-MB-468 cells showed upregulated ILK expression relative to LNCaP cells, which expressed a high abundance of mTOR. Exposure to Ku-0063794, a second-generation mTOR inhibitor, decreased Ser473-Akt phosphorylation in LNCaP cells, but not in PC-3 or MDA-MB-468 cells. In contrast, treatment with T315, a novel ILK inhibitor, reduced the phosphorylation of Ser473-Akt in PC-3 and MDA-MB-468 cells without affecting that in LNCaP cells. This cell line specificity was verified by comparing Ser473-Akt phosphorylation status after genetic knockdown of rictor, ILK, and other putative Ser-473-Akt kinases. Genetic knockdown of rictor, but not ILK or the other kinases examined, inhibited Ser473-Akt phosphorylation in LNCaP cells. Conversely, PC-3 and MDA-MB-468 cells were susceptible to the effect of ILK silencing on Ser473-Akt phosphorylation, while knockdown of rictor or any of the other target kinases had no appreciable effect. Co-immunoprecipitation analysis demonstrated the physical interaction between ILK and Akt in PC-3 cells, and T315 blocked ILK-mediated Ser473 phosphorylation of bacterially expressed Akt. ILK also formed complexes with rictor in PC-3 and MDA-MB-468 cells that were disrupted by T315, but such complexes were not observed in LNCaP cells. In the PTEN-functional MDA-MB-231 cell line, both T315 and Ku-0063794 suppressed EGF-induced Ser473-Akt phosphorylation. Inhibition of ILK by T315 or siRNA-mediated knockdown suppressed epithelial-mesenchymal transition in MDA

  4. Functional Role of mTORC2 versus Integrin-Linked Kinase in Mediating Ser473-Akt Phosphorylation in PTEN-Negative Prostate and Breast Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Su-Lin Lee

    Full Text Available Although the rictor-mTOR complex (mTORC2 has been shown to act as phosphoinositide-dependent kinase (PDK2 in many cell types, other kinases have also been implicated in mediating Ser473-Akt phosphorylation. Here, we demonstrated the cell line specificity of integrin-linked kinase (ILK versus mTORC2 as PDK2 in LNCaP and PC-3 prostate and MDA-MB-468 breast cancer cells, of which the PTEN-negative status allowed the study of Ser473-Akt phosphorylation independent of external stimulation. PC-3 and MDA-MB-468 cells showed upregulated ILK expression relative to LNCaP cells, which expressed a high abundance of mTOR. Exposure to Ku-0063794, a second-generation mTOR inhibitor, decreased Ser473-Akt phosphorylation in LNCaP cells, but not in PC-3 or MDA-MB-468 cells. In contrast, treatment with T315, a novel ILK inhibitor, reduced the phosphorylation of Ser473-Akt in PC-3 and MDA-MB-468 cells without affecting that in LNCaP cells. This cell line specificity was verified by comparing Ser473-Akt phosphorylation status after genetic knockdown of rictor, ILK, and other putative Ser-473-Akt kinases. Genetic knockdown of rictor, but not ILK or the other kinases examined, inhibited Ser473-Akt phosphorylation in LNCaP cells. Conversely, PC-3 and MDA-MB-468 cells were susceptible to the effect of ILK silencing on Ser473-Akt phosphorylation, while knockdown of rictor or any of the other target kinases had no appreciable effect. Co-immunoprecipitation analysis demonstrated the physical interaction between ILK and Akt in PC-3 cells, and T315 blocked ILK-mediated Ser473 phosphorylation of bacterially expressed Akt. ILK also formed complexes with rictor in PC-3 and MDA-MB-468 cells that were disrupted by T315, but such complexes were not observed in LNCaP cells. In the PTEN-functional MDA-MB-231 cell line, both T315 and Ku-0063794 suppressed EGF-induced Ser473-Akt phosphorylation. Inhibition of ILK by T315 or siRNA-mediated knockdown suppressed epithelial

  5. LFA-1 and Mac-1 integrins bind to the serine/threonine-rich domain of thrombomodulin.

    Science.gov (United States)

    Kawamoto, Eiji; Okamoto, Takayuki; Takagi, Yoshimi; Honda, Goichi; Suzuki, Koji; Imai, Hiroshi; Shimaoka, Motomu

    2016-05-13

    LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins regulate leukocyte trafficking in health and disease by binding primarily to IgSF ligand ICAM-1 and ICAM-2 on endothelial cells. Here we have shown that the anti-coagulant molecule thrombomodulin (TM), found on the surface of endothelial cells, functions as a potentially new ligand for leukocyte integrins. We generated a recombinant extracellular domain of human TM and Fc fusion protein (TM-domains 123-Fc), and showed that pheripheral blood mononuclear cells (PBMCs) bind to TM-domains 123-Fc dependent upon integrin activation. We then demonstrated that αL integrin-blocking mAb, αM integrin-blocking mAb, and β2 integrin-blocking mAb inhibited the binding of PBMCs to TM-domains 123-Fc. Furthermore, we show that the serine/threonine-rich domain (domain 3) of TM is required for the interaction with the LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins to occur on PBMCs. These results demonstrate that the LFA-1 and Mac-1 integrins on leukocytes bind to TM, thereby establishing the molecular and structural basis underlying LFA-1 and Mac-1 integrin interaction with TM on endothelial cells. In fact, integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells. PMID:27055590

  6. CCN2: a mechanosignaling sensor modulating integrin-dependent connective tissue remodeling in fibroblasts?

    OpenAIRE

    Leask, Andrew

    2013-01-01

    Tensegrity (tensional integrity) is an emerging concept governing the structure of the body. Integrin-mediated mechanical tension is essential for connective tissue function in vivo. For example, in adult skin fibroblasts, the integrin β1 subunit mediates adhesion to collagen and fibronectin. Moreover, integrin β1, through its abilities to activate latent TGFβ1 and promote collagen production through focal adhesion kinase/rac1/nicotinamide adenine dinucleotide phosphate oxidase (NOX)/reactive...

  7. Occurrence of thymosin beta4 in human breast cancer cells and in other cell types of the tumor microenvironment

    DEFF Research Database (Denmark)

    Larsson, L.-I.; Holck, Susanne

    2007-01-01

    that there is a considerable heterogeneity in the cellular distribution of thymosin beta4 in breast cancer. In most tumors examined, cancer cells showed low or intermediate reactivity for thymosin beta4, whereas leukocytes and macrophages showed intense reactivity. In addition, endothelial cells showed variable reactivity...... the tumor microenvironment produce thymosin beta4 and that such expression varies from tumor to tumor. Such heterogeneity of expression should be taken into account when the role of thymosin beta4 in tumor biology is assessed....

  8. A cyclic-RGD-BioShuttle functionalized with TMZ by DARinv “Click Chemistry” targeted to αvβ3 integrin for therapy

    Directory of Open Access Journals (Sweden)

    Klaus Braun, Manfred Wiessler, Rüdiger Pipkorn, Volker Ehemann, Tobias Bäuerle, Heinz Fleischhacker, Gabriele Müller, Peter Lorenz, Waldemar Waldeck

    2010-01-01

    Full Text Available Clinical experiences often document, that a successful tumor control requires high doses of drug applications. It is widely believed that unavoidable adverse reactions could be minimized by using gene-therapeutic strategies protecting the tumor-surrounding healthy tissue as well as the bone-marrow. One new approach in this direction is the use of “Targeted Therapies” realizing a selective drug targeting to gain effectual amounts at the target site, even with drastically reduced application doses. MCF-7 breast cancer cells expressing the αvβ3 [alpha(vbeta(3] integrin receptor are considered as appropriate candidates for such a targeted therapy. The modularly composed BioShuttle carrier consisting of different units designed to facilitate the passage across the cell membranes and for subcellular addressing of diagnostic and/or therapeutic molecules could be considered as an eligible delivery platform. Here we used the cyclic RGD-BioShuttle as a carrier for temozolomide (TMZ at the αvβ3 integrin receptor realizing local TMZ concentrations sufficient for cell killing. The IC50 values are 12 µMol/L in the case of cRGD-BioShuttle-TMZ and 100 µMol/L for underivatized TMZ, which confirms the advantage of TMZ reformulation to realize local concentrations sufficient for cell killing.Our paper focuses on the design, synthesis and application of the cRGD-BioShuttle conjugate composed of the cyclic RGD, a αvβ3 integrin-ligand, ligated to the cytotoxic drug TMZ. The ligation was carried out by the Diels Alder Reaction with inverse electron demand (DARinv.

  9. A cyclic-RGD-BioShuttle functionalized with TMZ by DARinv “Click Chemistry” targeted to αvβ3 integrin for therapy

    Science.gov (United States)

    Braun, Klaus; Wiessler, Manfred; Pipkorn, Rüdiger; Ehemann, Volker; Bäuerle, Tobias; Fleischhacker, Heinz; Müller, Gabriele; Lorenz, Peter; Waldeck, Waldemar

    2010-01-01

    Clinical experiences often document, that a successful tumor control requires high doses of drug applications. It is widely believed that unavoidable adverse reactions could be minimized by using gene-therapeutic strategies protecting the tumor-surrounding healthy tissue as well as the bone-marrow. One new approach in this direction is the use of “Targeted Therapies” realizing a selective drug targeting to gain effectual amounts at the target site, even with drastically reduced application doses. MCF-7 breast cancer cells expressing the αvβ3 [alpha(v)beta(3)] integrin receptor are considered as appropriate candidates for such a targeted therapy. The modularly composed BioShuttle carrier consisting of different units designed to facilitate the passage across the cell membranes and for subcellular addressing of diagnostic and/or therapeutic molecules could be considered as an eligible delivery platform. Here we used the cyclic RGD-BioShuttle as a carrier for temozolomide (TMZ) at the αvβ3 integrin receptor realizing local TMZ concentrations sufficient for cell killing. The IC50 values are 12 µMol/L in the case of cRGD-BioShuttle-TMZ and 100 µMol/L for underivatized TMZ, which confirms the advantage of TMZ reformulation to realize local concentrations sufficient for cell killing. Our paper focuses on the design, synthesis and application of the cRGD-BioShuttle conjugate composed of the cyclic RGD, a αvβ3 integrin-ligand, ligated to the cytotoxic drug TMZ. The ligation was carried out by the Diels Alder Reaction with inverse electron demand (DARinv). PMID:20922134

  10. Essential function for PDLIM2 in cell polarization in three-dimensional cultures by feedback regulation of the β1-integrin-RhoA signaling axis.

    Science.gov (United States)

    Deevi, Ravi Kiran; Cox, Orla T; O'Connor, Rosemary

    2014-05-01

    PDLIM2 is a cytoskeletal and nuclear PDZ-LIM domain protein that regulates the stability of Nuclear Factor kappa-B (NFκB) and other transcription factors, and is required for polarized cell migration. PDLIM2 expression is suppressed by methylation in different cancers, but is strongly expressed in invasive breast cancer cells that have undergone an Epithelial Mesenchymal Transition (EMT). PDLIM2 is also expressed in non-transformed breast myoepithelial MCF10A cells and here we asked whether it is important for maintaining the polarized, epithelial phenotype of these cells. Suppression of PDLIM2 in MCF10A cells was sufficient to disrupt cell polarization and acini formation with increased proliferation and reduced apoptosis in the luminal space compared to control acini with hollow lumina. Spheroids with suppressed PDLIM2 exhibited increased expression of cell-cell and cell-matrix adhesion proteins including beta 1 (β1) integrin. Interestingly, levels of the Insulin-like growth factor 1 receptor (IGF-1 R) and Receptor of activated protein kinase C 1 (RACK1), which scaffolds IGF-1R to β1 integrin, were also increased, indicating a transformed phenotype. Focal Adhesion Kinase (FAK) and cofilin phosphorylation, and RhoA Guanosine Triphosphatase (GTPase) activity were all enhanced in these spheroids compared to control acini. Importantly, inhibition of either FAK or Rho Kinase (ROCK) was sufficient to rescue the polarity defect. We conclude that PDLIM2 expression is essential for feedback regulation of the β1-integrin-RhoA signalling axis and integration of cellular microenvironment signals with gene expression to control the polarity of breast epithelial acini structures. This is a mechanism by which PDLIM2 could mediate tumour suppression in breast epithelium. PMID:24863845

  11. Can alterations in integrin and laminin-5 expression be used as markers of malignancy?

    DEFF Research Database (Denmark)

    Thorup, A K; Reibel, J; Schiødt, M;

    1998-01-01

    Development of squamous cell carcinomas (SCCs) involves alterations in the adhesive interactions in the epithelium and invasion through the basement membrane. Therefore, changes in the expression of receptors and ligands involved in cell-cell and cell-matrix adhesion may be essential for the...... transformation of a premalignant into a malignant lesion. The aim of this study was to examine if expression of specific cell adhesion molecules can be used as markers of malignant development. By immunohistochemistry, we examined the expression pattern of integrins alpha2beta1, alpha3beta1, alpha6beta4 and...... laminin-5 in biopsies from SCCs (n=18), premalignant lesions (leukoplakias, n=21) and non-premalignant tissue with chronic inflammation (n=11). In poorly differentiated SCCs, patchy loss of alpha3beta1, alpha6beta4 and laminin-5 expression was pronounced at the invasion front, whereas there was a tendency...

  12. Betal-integrins in the primary cilium of MDCK cells potentiate fibronectin-induced Ca2+ signalling

    DEFF Research Database (Denmark)

    Prætorius, Helle; Prætorius, Jeppe; Nielsen, Søren;

    2004-01-01

    Because β1-integrin is involved in sensing of fluid flow rate in endothelial cells, a function that in Madin-Darby canine kidney (MDCK) cells is confined to the primary cilium, we hypothesized β1-integrin to be an important part of the primary ciliary mechanosensory apparatus in MDCK cells. We...... observed that β1-integrin, α3-integrin, and perhaps α5-integrin were localized to the primary cilium of MDCK cells by combining lectin and immunofluorescence confocal microscopy. β1-Integrin was also colocalized with tubulin to the primary cilia of the rat renal collecting ducts, as well as to the cilia...... of proximal tubules and thick ascending limbs. Immunogold-electron microscopy confirmed the presence of β1-integrin on primary cilia of MDCK cells and rat collecting ducts. Intracellular Ca2+ levels, monitored by fluorescence microscopy on fluo 4-loaded MDCK cells, significantly increased on addition...

  13. Thymosin Beta 4 protects mice from monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Pulmonary hypertension (PH is a progressive vascular disease of pulmonary arteries that impedes ejection of blood by the right ventricle. As a result there is an increase in pulmonary vascular resistance and pulmonary arterial pressure causing right ventricular hypertrophy (RVH and RV failure. The pathology of PAH involves vascular cell remodeling including pulmonary arterial endothelial cell (PAEC dysfunction and pulmonary arterial smooth muscle cell (PASMC proliferation. Current therapies are limited to reverse the vascular remodeling. Investigating a key molecule is required for development of new therapeutic intervention. Thymosin beta-4 (Tβ4 is a ubiquitous G-actin sequestering protein with diverse biological function and promotes wound healing and modulates inflammatory responses. However, it remains unknown whether Tβ4 has any protective role in PH. The purpose of this study is to evaluate the whether Tβ4 can be used as a vascular-protective agent. In monocrotaline (MCT-induced PH mouse model, we showed that mice treated with Tβ4 significantly attenuated the systolic pressure and RVH, compared to the MCT treated mice. Our data revealed for the first time that Tβ4 selectively targets Notch3-Col 3A-CTGF gene axis in preventing MCT-induced PH and RVH. Our study may provide pre-clinical evidence for Tβ4 and may consider as vasculo-protective agent for the treatment of PH induced RVH.

  14. Expression of integrin in hepatic fibrosis and intervention of resveratrol

    Institute of Scientific and Technical Information of China (English)

    Jianye WU; Chuanyong GUO; Jun LIU; Xuanfu XUAN

    2009-01-01

    The aim of this study was to explore the expression of integrin-β1 in different stages of hepatic fibrosis and intervention of resveratrol as well as the way by which integrin-β1 promoted hepatic fibrosis. Hepatic fibrosis models of male Sprague Dawley (SD) rats were created and intragastric administration of resveratrol was given in low (40 mg/kg), middle (120mg/kg) and high (200 mg/kg) dose groups. The expression of integrin-β1, transforming growth factor-β (TGF-β) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in different stages of hepatic fibrosis was detected by using RT-PCR. The expression of hexadecenoic acid (HA) and precollagen Ⅲ (pc Ⅲ) was assayed by radioimmunoassay. The expression of integrin-β1, TGF-β and TIMP-1 was determined in each group. Liver function and pathological sections of each group in different stages of hepatic fibrosis was tested to judge the therapeutic efficacy of resveratrol at different doses. The expression of integrin-β1 in normal control group was low and steady and was not increased with the development of hepatic fibrosis, but it was increased in other groups. The expression levels of integrin-β1 in the model control group (0.878±0.03, P 0.05). The expression levels of integrin-β1 and TGF-β in middle dose group and high dose group were higher than other groups (P<0.01). The expression levels of integrin-β1 and TGF-β in model control group and low dose group were lower than the normal control group (P < 0.01). The expression levels of TIMP-1 in the model control and low dose groups were higher than the other groups (P < 0.01). The expression levels of TIMP-1 in the middle dose group and the high dose group were lower than the normal control group (P<0.01). The expression of integrin-β1 existed in all stages of hepatic fibrosis of SD rats, and it was increased with the development of hepatic fibrosis. The expression of TGF-β and TIMP-1 was consistent with that ofintegrin-β1 in different stages of

  15. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and β4 integrin function in MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Hepatocyte growth factor (HGF) and its receptor, Met, known to control invasive growth program have recently been shown to play crucial roles in the survival of breast cancer patients. The diet-derived flavonoids have been reported to possess anti-invasion properties; however, knowledge on the pharmacological and molecular mechanisms in suppressing HGF/Met-mediated tumor invasion and metastasis is poorly understood. In our preliminary study, we use HGF as an invasive inducer to investigate the effect of flavonoids including apigenin, naringenin, genistein and kaempferol on HGF-dependent invasive growth of MDA-MB-231 human breast cancer cells. Results show that apigenin presents the most potent anti-migration and anti-invasion properties by Boyden chamber assay. Furthermore, apigenin represses the HGF-induced cell motility and scattering and inhibits the HGF-promoted cell migration and invasion in a dose-dependent manner. The effect of apigenin on HGF-induced signaling activation involving invasive growth was evaluated by immunoblotting analysis, it shows that apigenin blocks the HGF-induced Akt phosphorylation but not Met, ERK, and JNK phosphorylation. In addition to MDA-MB-231 cells, apigenin exhibits inhibitory effect on HGF-induced Akt phosphorylation in hepatoma SK-Hep1 cells and lung carcinoma A549 cells. By indirect immunofluorescence microscopy assay, apigenin inhibits the HGF-induced clustering of β4 integrin at actin-rich adhesive site and lamellipodia through PI3K-dependent manner. Treatment of apigenin inhibited HGF-stimulated integrin β4 function including cell-matrix adhesion and cell-endothelial cells adhesion in MDA-MB-231 cells. By Akt-siRNA transfection analysis, it confirmed that apigenin inhibited HGF-promoted invasive growth involving blocking PI3K/Akt pathway. Finally, we evaluated the effect of apigenin on HGF-promoted metastasis by lung colonization of tumor cells in nude mice and organ metastasis of tumor cells in chick embryo. By

  16. The newcomer in the integrin family: Integrin a9 in biology and cancer

    DEFF Research Database (Denmark)

    Høye, Anette Melissa; Couchman, John Robert; Wewer, Ulla M.;

    2012-01-01

    Integrins are heterodimeric transmembrane receptors regulating cell-cell and cell-extracellular matrix interactions. Of the 24 integrin heterodimers identified in humans, a9ß1 integrin is one of the least studied. a9, together with a4, comprise a more recent evolutionary sub-family of integrins t...

  17. Cellular Trafficking of Thymosin Beta-4 in HEPG2 Cells Following Serum Starvation

    Science.gov (United States)

    Pichiri, Giuseppina; Coni, Pierpaolo; Nemolato, Sonia; Cabras, Tiziana; Fanari, Mattia Umberto; Sanna, Alice; Di Felice, Eliana; Messana, Irene; Castagnola, Massimo; Faa, Gavino

    2013-01-01

    Thymosin beta-4 (Tβ4) is an ubiquitous multi-functional regenerative peptide, related to many critical biological processes, with a dynamic and flexible conformation which may influence its functions and its subcellular distribution. For these reasons, the intracellular localization and trafficking of Tβ4 is still not completely defined and is still under investigation in in vivo as well as in vitro studies. In the current study we used HepG2 cells, a human hepatoma cell line; cells growing in normal conditions with fetal bovine serum expressed high levels of Tβ4, restricted to the cytoplasm until 72 h. At 84 h, a diffuse Tβ4 cytoplasmic immunostaining shifted to a focal perinuclear and nuclear reactivity. In the absence of serum, nuclear reactivity was localized in small granules, evenly dispersed throughout the entire nuclear envelop, and was observed as earlier as at 48 h. Cytoplasmic immunostaining for Tβ4 in HepG2 cells under starvation appeared significantly lower at 48 h and decreased progressively at 72 and at 84 h. At these time points, the decrease in cytoplasmic staining was associated with a progressive increase in nuclear reactivity, suggesting a possible translocation of the peptide from the cytoplasm to the nuclear membrane. The normal immunocytochemical pattern was restored when culture cells submitted to starvation for 84 h received a new complete medium for 48 h. Mass spectrometry analysis, performed on the nuclear and cytosolic fractions of HepG2 growing with and without serum, showed that Tβ4 was detectable only in the cytosolic and not in the intranuclear fraction. These data suggest that Tβ4 is able to translocate from different cytoplasmic domains to the nuclear membrane and back, based on different stress conditions within the cell. The punctuate pattern of nuclear Tβ4 immunostaining associated with Tβ4 absence in the nucleoplasm suggest that this peptide might be localized in the nuclear pores, where it could regulate the pore

  18. Cellular trafficking of thymosin beta-4 in HEPG2 cells following serum starvation.

    Directory of Open Access Journals (Sweden)

    Giuseppina Pichiri

    Full Text Available Thymosin beta-4 (Tβ4 is an ubiquitous multi-functional regenerative peptide, related to many critical biological processes, with a dynamic and flexible conformation which may influence its functions and its subcellular distribution. For these reasons, the intracellular localization and trafficking of Tβ4 is still not completely defined and is still under investigation in in vivo as well as in vitro studies. In the current study we used HepG2 cells, a human hepatoma cell line; cells growing in normal conditions with fetal bovine serum expressed high levels of Tβ4, restricted to the cytoplasm until 72 h. At 84 h, a diffuse Tβ4 cytoplasmic immunostaining shifted to a focal perinuclear and nuclear reactivity. In the absence of serum, nuclear reactivity was localized in small granules, evenly dispersed throughout the entire nuclear envelop, and was observed as earlier as at 48 h. Cytoplasmic immunostaining for Tβ4 in HepG2 cells under starvation appeared significantly lower at 48 h and decreased progressively at 72 and at 84 h. At these time points, the decrease in cytoplasmic staining was associated with a progressive increase in nuclear reactivity, suggesting a possible translocation of the peptide from the cytoplasm to the nuclear membrane. The normal immunocytochemical pattern was restored when culture cells submitted to starvation for 84 h received a new complete medium for 48 h. Mass spectrometry analysis, performed on the nuclear and cytosolic fractions of HepG2 growing with and without serum, showed that Tβ4 was detectable only in the cytosolic and not in the intranuclear fraction. These data suggest that Tβ4 is able to translocate from different cytoplasmic domains to the nuclear membrane and back, based on different stress conditions within the cell. The punctuate pattern of nuclear Tβ4 immunostaining associated with Tβ4 absence in the nucleoplasm suggest that this peptide might be localized in the nuclear pores, where it could

  19. Interactions between the discoidin domain receptor 1 and β1 integrin regulate attachment to collagen

    Directory of Open Access Journals (Sweden)

    Lisa A. Staudinger

    2013-09-01

    Collagen degradation by phagocytosis is essential for physiological collagen turnover and connective tissue homeostasis. The rate limiting step of phagocytosis is the binding of specific adhesion receptors, which include the integrins and discoidin domain receptors (DDR, to fibrillar collagen. While previous data suggest that these two receptors interact, the functional nature of these interactions is not defined. In mouse and human fibroblasts we examined the effects of DDR1 knockdown and over-expression on β1 integrin subunit function. DDR1 expression levels were positively associated with enhanced contraction of floating and attached collagen gels, increased collagen binding and increased collagen remodeling. In DDR1 over-expressing cells compared with control cells, there were increased numbers, area and length of focal adhesions immunostained for talin, paxillin, vinculin and activated β1 integrin. After treatment with the integrin-cleaving protease jararhagin, in comparison to controls, DDR1 over-expressing cells exhibited increased β1 integrin cleavage at the cell membrane, indicating that DDR1 over-expression affected the access and susceptibility of cell-surface β1 integrin to the protease. DDR1 over-expression was associated with increased glycosylation of the β1 integrin subunit, which when blocked by deoxymannojirimycin, reduced collagen binding. Collectively these data indicate that DDR1 regulates β1 integrin interactions with fibrillar collagen, which positively impacts the binding step of collagen phagocytosis and collagen remodeling.

  20. Conservation of the Human Integrin-Type Beta-Propeller Domain in Bacteria

    Science.gov (United States)

    Chouhan, Bhanupratap; Denesyuk, Alexander; Heino, Jyrki; Johnson, Mark S.; Denessiouk, Konstantin

    2011-01-01

    Integrins are heterodimeric cell-surface receptors with key functions in cell-cell and cell-matrix adhesion. Integrin α and β subunits are present throughout the metazoans, but it is unclear whether the subunits predate the origin of multicellular organisms. Several component domains have been detected in bacteria, one of which, a specific 7-bladed β-propeller domain, is a unique feature of the integrin α subunits. Here, we describe a structure-derived motif, which incorporates key features of each blade from the X-ray structures of human αIIbβ3 and αVβ3, includes elements of the FG-GAP/Cage and Ca2+-binding motifs, and is specific only for the metazoan integrin domains. Separately, we searched for the metazoan integrin type β-propeller domains among all available sequences from bacteria and unicellular eukaryotic organisms, which must incorporate seven repeats, corresponding to the seven blades of the β-propeller domain, and so that the newly found structure-derived motif would exist in every repeat. As the result, among 47 available genomes of unicellular eukaryotes we could not find a single instance of seven repeats with the motif. Several sequences contained three repeats, a predicted transmembrane segment, and a short cytoplasmic motif associated with some integrins, but otherwise differ from the metazoan integrin α subunits. Among the available bacterial sequences, we found five examples containing seven sequential metazoan integrin-specific motifs within the seven repeats. The motifs differ in having one Ca2+-binding site per repeat, whereas metazoan integrins have three or four sites. The bacterial sequences are more conserved in terms of motif conservation and loop length, suggesting that the structure is more regular and compact than those example structures from human integrins. Although the bacterial examples are not full-length integrins, the full-length metazoan-type 7-bladed β-propeller domains are present, and sometimes two tandem

  1. Conservation of the human integrin-type beta-propeller domain in bacteria.

    Directory of Open Access Journals (Sweden)

    Bhanupratap Chouhan

    Full Text Available Integrins are heterodimeric cell-surface receptors with key functions in cell-cell and cell-matrix adhesion. Integrin α and β subunits are present throughout the metazoans, but it is unclear whether the subunits predate the origin of multicellular organisms. Several component domains have been detected in bacteria, one of which, a specific 7-bladed β-propeller domain, is a unique feature of the integrin α subunits. Here, we describe a structure-derived motif, which incorporates key features of each blade from the X-ray structures of human αIIbβ3 and αVβ3, includes elements of the FG-GAP/Cage and Ca(2+-binding motifs, and is specific only for the metazoan integrin domains. Separately, we searched for the metazoan integrin type β-propeller domains among all available sequences from bacteria and unicellular eukaryotic organisms, which must incorporate seven repeats, corresponding to the seven blades of the β-propeller domain, and so that the newly found structure-derived motif would exist in every repeat. As the result, among 47 available genomes of unicellular eukaryotes we could not find a single instance of seven repeats with the motif. Several sequences contained three repeats, a predicted transmembrane segment, and a short cytoplasmic motif associated with some integrins, but otherwise differ from the metazoan integrin α subunits. Among the available bacterial sequences, we found five examples containing seven sequential metazoan integrin-specific motifs within the seven repeats. The motifs differ in having one Ca(2+-binding site per repeat, whereas metazoan integrins have three or four sites. The bacterial sequences are more conserved in terms of motif conservation and loop length, suggesting that the structure is more regular and compact than those example structures from human integrins. Although the bacterial examples are not full-length integrins, the full-length metazoan-type 7-bladed β-propeller domains are present, and

  2. The Anticancer Activity of Organotelluranes: Potential Role in Integrin Inactivation.

    Science.gov (United States)

    Silberman, Alon; Kalechman, Yona; Hirsch, Shira; Erlich, Ziv; Sredni, Benjamin; Albeck, Amnon

    2016-05-17

    Organic Te(IV) compounds (organotelluranes) differing in their labile ligands exhibited anti-integrin activities in vitro and anti-metastatic properties in vivo. They underwent ligand substitution with l-cysteine, as a thiol model compound. Unlike inorganic Te(IV) compounds, the organotelluranes did not form a stable complex with cysteine, but rather immediately oxidized it. The organotelluranes inhibited integrin functions, such as adhesion, migration, and metalloproteinase secretion mediation in B16F10 murine melanoma cells. In comparison, a reduced derivative with no labile ligand inhibited adhesion of B16F10 cells to a significantly lower extent, thus pointing to the importance of the labile ligands of the Te(IV) atom. One of the organotelluranes inhibited circulating cancer cells in vivo, possibly by integrin inhibition. Our results extend the current knowledge on the reactivity and mechanism of organotelluranes with different labile ligands and highlight their clinical potential.

  3. The role of integrins in the development and homeostasis of the epidermis and skin appendages.

    Science.gov (United States)

    Rippa, A L; Vorotelyak, E A; Vasiliev, A V; Terskikh, V V

    2013-10-01

    Integrins play a critical role in the regulation of adhesion, migration, proliferation, and differentiation of cells. Because of the variety of the functions they play in the cell, they are necessary for the formation and maintenance of tissue structure integrity. The trove of data accumulated by researchers suggests that integrins participate in the morphogenesis of the epidermis and its appendages. The development of mice with tissue-specific integrin genes knockout and determination of the genetic basis for a number of skin diseases in humans showed the significance of integrins in the biology, physiology, and morphogenesis of the epidermis and hair follicles. This review discusses the data on the role of different classes of integrin receptors in the biology of epidermal cells, as well as the development of the epidermis and hair follicles. PMID:24455180

  4. Integrin β3 is required in infection and proliferation of classical swine fever virus.

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    Full Text Available Classical Swine Fever (CSF is a highly infectious fatal pig disease, resulting in huge economic loss to the swine industry. Integrins are membrane-bound signal mediators, expressed on a variety of cell surfaces and are known as receptors or co-receptors for many viruses. However, the role of integrin β3 in CSFV infection is unknown. Here, through quantitive PCR, immunofluorescence (IFC and immunocytohistochemistry (ICC, we revealed that ST (swine testicles epithelial cells have a prominent advantage in CSFV proliferation as compared to EC (swine umbilical vein endothelial cell, IEC (swine intestinal epithelial cell and PK (porcine kidney epithelial cells. Meanwhile, ST cells had remarkably more integrin β3 expression as compared to EC, IEC and PK cells, which was positively correlated with CSFV infection and proliferation. Integrin β3 was up-regulated post CSFV infection in all the four cell lines, while the CSFV proliferation rate was decreased in integrin β3 function-blocked cells. ShRNA1755 dramatically decreased integrin β3, with a deficiency of 96% at the mRNA level and 80% at the protein level. CSFV proliferation was dramatically reduced in integrin β3 constantly-defected cells (ICDC, with the deficiencies of 92.6%, 99% and 81.7% at 24 h, 48 h and 72 h post CSFV infection, respectively. These results demonstrate that integrin β3 is required in CSFV infection and proliferation, which provide a new insight into the mechanism of CSFV infection.

  5. Increasing α7β1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression

    OpenAIRE

    LIU, Jianming; Burkin, Dean J.; Kaufman, Stephen J.

    2007-01-01

    The dystrophin-glycoprotein complex maintains the integrity of skeletal muscle by associating laminin in the extracellular matrix with the actin cytoskeleton. Several human muscular dystrophies arise from defects in the components of this complex. The α7β1-integrin also binds laminin and links the extracellular matrix with the cytoskeleton. Enhancement of α7-integrin levels alleviates pathology in mdx/utrn−/− mice, a model of Duchenne muscular dystrophy, and thus the integrin may functionally...

  6. Integrin-blocking antibodies delay keratinocyte re-epithelialization in a human three-dimensional wound healing model.

    Directory of Open Access Journals (Sweden)

    Christophe Egles

    Full Text Available The alpha6beta4 integrin plays a significant role in tumor growth, angiogenesis and metastasis through modulation of growth factor signaling, and is a potentially important therapeutic target. However, alpha6beta4-mediated cell-matrix adhesion is critical in normal keratinocyte attachment, signaling and anchorage to the basement membrane through its interaction with laminin-5, raising potential risks for targeted therapy. Bioengineered Human Skin Equivalent (HSE, which have been shown to mimic their normal and wounded counterparts, have been used here to investigate the consequences of targeting beta4 to establish toxic effects on normal tissue homeostasis and epithelial wound repair. We tested two antibodies directed to different beta4 epitopes, one adhesion-blocking (ASC-8 and one non-adhesion blocking (ASC-3, and determined that these antibodies were appropriately localized to the basal surface of keratinocytes at the basement membrane interface where beta4 is expressed. While normal tissue architecture was not altered, ASC-8 induced a sub-basal split at the basement membrane in non-wounded tissue. In addition, wound closure was significantly inhibited by ASC-8, but not by ASC-3, as the epithelial tongue only covered 40 percent of the wound area at 120 hours post-wounding. These results demonstrate beta4 adhesion-blocking antibodies may have adverse effects on normal tissue, whereas antibodies directed to other epitopes may provide safer alternatives for therapy. Taken together, we conclude that these three-dimensional tissue models provide a biologically relevant platform to identify toxic effects induced by candidate therapeutics, which will allow generation of findings that are more predictive of in vivo responses early in the drug development process.

  7. Integrin Expression Regulates Neuroblastoma Attachment and Migration

    Directory of Open Access Journals (Sweden)

    Amy Meyer

    2004-07-01

    Full Text Available Neuroblastoma (NBL is the most common malignant disease of infancy, and children with bone metastasis have a mortality rate greater than 90%. Two major classes of proteins, integrins and growth factors, regulate the metastatic process. We have previously shown that tumorigenic NBL cells express higher levels of the type I insulin-like growth factor receptor (IGF-IR and that β1 integrin expression is inversely proportional to tumorigenic potential in NBL. In the current study, we analyze the effect of β1 integrin and IGF-IR on NBL cell attachment and migration. Nontumorigenic S-cells express high levels of β1 integrin, whereas tumorigenic N-cells express little β1 integrin. Alterations in (3, integrin are due to regulation at the protein level, as translation is decreased in N-type cells. Moreover, inhibition of protein synthesis shows that β1 integrin is degraded more slowly in S-type cells (SHEP than in N-type cells (SH-SY5Y and IMR32. Inhibition of α5β1 integrin prevents SHEP (but not SH-SY5Y or IMR32 cell attachment to fibronectin and increases SHEP cell migration. Increases in IGF-IR decrease β1 integrin expression, and enhance SHEP cell migration, potentially through increased expression of αvβ3. These data suggest that specific classes of integrins in concert with IGF-IR regulate NBL attachment and migration.

  8. The α11 integrin mediates fibroblast-extracellular matrix-cardiomyocyte interactions in health and disease.

    Science.gov (United States)

    Civitarese, Robert A; Talior-Volodarsky, Ilana; Desjardins, Jean-Francois; Kabir, Golam; Switzer, Jennifer; Mitchell, Melissa; Kapus, Andras; McCulloch, Christopher A; Gullberg, Donald; Connelly, Kim A

    2016-07-01

    Excessive cardiac interstitial fibrosis impairs normal cardiac function. We have shown that the α11β1 (α11) integrin mediates fibrotic responses to glycated collagen in rat myocardium by a pathway involving transforming growth factor-β. Little is known of the role of the α11 integrin in the developing mammalian heart. Therefore, we examined the impact of deletion of the α11 integrin in wild-type mice and in mice treated with streptozotocin (STZ) to elucidate the role of the α11 integrin in normal cardiac homeostasis and in the pathogenesis of diabetes-related fibrosis. As anticipated, cardiac fibrosis was reduced in α11 integrin knockout mice (α11(-/-); C57BL/6 background) treated with STZ compared with STZ-treated wild-type mice (P organization at intercalated disks and impaired gap-junction development. Overall, deletion of the α11 integrin attenuates cardiac fibrosis in the mammalian mouse heart and reduces ECM formation as a result of diabetes. Furthermore, α11 integrin deletion impairs cardiac function and alters cardiomyocyte morphology. These findings shed further light on the poorly understood interaction between the fibroblast-cardiomyocyte and the ECM. PMID:27199132

  9. Modeled Microgravity Disrupts Collagen I/Integrin Signaling During Osteoblastic Differentiation of Human Mesenchymal Stem Cells

    Science.gov (United States)

    Meyers, Valerie E.; Zayzafoon, Majd; Gonda, Steven R.; Gathings, William E.; McDonald, Jay M.

    2004-01-01

    Spaceflight leads to reduced bone mineral density in weight bearing bones that is primarily attributed to a reduction in bone formation. We have previously demonstrated severely reduced osteoblastogenesis of human mesenchymal stem cells (hMSC) following seven days culture in modeled microgravity. One potential mechanism for reduced osteoblastic differentiation is disruption of type I collagen-integrin interactions and reduced integrin signaling. Integrins are heterodimeric transmembrane receptors that bind extracellular matrix proteins and produce signals essential for proper cellular function, survival, and differentiation. Therefore, we investigated the effects of modeled microgravity on integrin expression and function in hMSC. We demonstrate that seven days of culture in modeled microgravity leads to reduced expression of the extracellular matrix protein, type I collagen (Col I). Conversely, modeled microgravity consistently increases Col I-specific alpha2 and beta1 integrin protein expression. Despite this increase in integrin sub-unit expression, autophosphorylation of adhesion-dependent kinases, focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2), is significantly reduced. Activation of Akt is unaffected by the reduction in FAK activation. However, reduced downstream signaling via the Ras-MAPK pathway is evidenced by a reduction in Ras and ERK activation. Taken together, our findings indicate that modeled microgravity decreases integrin/MAPK signaling, which likely contributes to the observed reduction in osteoblastogenesis.

  10. Anti-Integrin Therapy for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Eiji Kawamoto

    2012-01-01

    Full Text Available Integrins are the foremost family of cell adhesion molecules that regulate immune cell trafficking in health and diseases. Integrin alpha4 mediates organ-specific migration of immune cells to the inflamed brain, thereby playing the critical role in the pathogenesis of multiple sclerosis. Anti-alpha4 integrin therapy aiming to block infiltration of autoreactive lymphocytes to the inflamed brain has been validated in several clinical trials for the treatment of multiple sclerosis. This paper provides readers with an overview of the molecular and structural bases of integrin activation as well as rationale for using anti-alpha4 integrin therapy for multiple sclerosis and then chronicles the rise and fall of this treatment strategy using natalizumab, a humanized anti-alpha4 integrin.

  11. A thymosin beta-4 is involved in production of hemocytes and immune defense of Hong Kong oyster, Crassostrea hongkongensis.

    Science.gov (United States)

    Li, Jun; Zhang, Yuehuan; Liu, Ying; Zhang, Yang; Xiang, Zhiming; Qu, Fufa; Yu, Ziniu

    2016-04-01

    Thymosin beta-4 (Tβ4) is a ubiquitous protein with multiple and diverse intracellular and extracellular functions in vertebrates. In this study, the full-length cDNA of Tβ4 was cloned and identified in Crassostrea hongkongensis, designated as ChTβ4. The full-length cDNA of ChTβ4 consists of 530 bp with an open reading frame of 126 bp encoding a 41 amino acid polypeptide. SMART analysis indicated that there is one thymosin domain and a highly conserved actin-binding motif (18LKKTET23) in ChTβ4. In vivo injection of recombinant ChTβ4 protein could significantly increase total hemocytes count in oysters, and knockdown of the expression of ChTβ4 resulted in a significant decrease in the circulating hemocytes. Tissue distribution analysis revealed a ubiquitous presence of ChTβ4, with the highest expression in hemocytes. The upregulated transcripts of ChTβ4 in response to bacterial challenge and tissue injury suggest that ChTβ4 is involved in both innate immunity against pathogen infection and wound healing. Moreover, bacteria-clearance experiment showed ChTβ4 could facilitate the clearance of injected bacteria in oysters. In vivo injection with ChTβ4 resulted in reduction of the intracellular ROS in hemocytes, which was associated with increased expression of antioxidant enzymes Cu/Zn superoxide dismutase (SOD), Catalase, and Glutathione Peroxidase (GPX) by pre-treatment with ChTβ4. These results suggest that ChTβ4 is a thymosin beta-4 homolog and plays a vital role in the immune defense of C. hongkongensis.

  12. Activation of integrin α5 mediated by flow requires its translocation to membrane lipid rafts in vascular endothelial cells.

    Science.gov (United States)

    Sun, Xiaoli; Fu, Yi; Gu, Mingxia; Zhang, Lu; Li, Dan; Li, Hongliang; Chien, Shu; Shyy, John Y-J; Zhu, Yi

    2016-01-19

    Local flow patterns determine the uneven distribution of atherosclerotic lesions. Membrane lipid rafts and integrins are crucial for shear stress-regulated endothelial function. In this study, we investigate the role of lipid rafts and integrin α5 in regulating the inflammatory response in endothelial cells (ECs) under atheroprone versus atheroprotective flow. Lipid raft proteins were isolated from ECs exposed to oscillatory shear stress (OS) or pulsatile shear stress, and then analyzed by quantitative proteomics. Among 396 proteins redistributed in lipid rafts, integrin α5 was the most significantly elevated in lipid rafts under OS. In addition, OS increased the level of activated integrin α5 in lipid rafts through the regulation of membrane cholesterol and fluidity. Disruption of F-actin-based cytoskeleton and knockdown of caveolin-1 prevented the OS-induced integrin α5 translocation and activation. In vivo, integrin α5 activation and EC dysfunction were observed in the atheroprone areas of low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice, and knockdown of integrin α5 markedly attenuated EC dysfunction in partially ligated carotid arteries. Consistent with these findings, mice with haploinsufficency of integrin α5 exhibited a reduction of atherosclerotic lesions in the regions under atheroprone flow. The present study has revealed an integrin- and membrane lipid raft-dependent mechanotransduction mechanism by which atheroprone flow causes endothelial dysfunction.

  13. Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions.

    Science.gov (United States)

    Blandin, Anne-Florence; Noulet, Fanny; Renner, Guillaume; Mercier, Marie-Cécile; Choulier, Laurence; Vauchelles, Romain; Ronde, Philippe; Carreiras, Franck; Etienne-Selloum, Nelly; Vereb, Gyorgy; Lelong-Rebel, Isabelle; Martin, Sophie; Dontenwill, Monique; Lehmann, Maxime

    2016-07-01

    Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma. PMID:27063097

  14. The involvement of Gab1 and PI 3-kinase in β1 integrin signaling in keratinocytes

    International Nuclear Information System (INIS)

    The control of the stem cell compartment in epidermis is closely linked to the regulation of keratinocyte proliferation and differentiation. β1 integrins are expressed 2-fold higher by stem cells than transit-amplifying cells. Signaling from these β1 integrins is critical for the regulation of the epidermal stem cell compartment. To clarify the functional relevance of this differential expression of β1 integrins, we established HaCaT cells with high β1integrin expression by repeated flow cytometric sorting of this population from the parental cell line. In these obtained cells expressing β1 integrins by 5-fold, MAPK activation was markedly increased. Regarding the upstream of MAPK, Gab1 phosphorylation was also higher with high β1 integrin expression, while Shc phosphorylation was not altered. In addition, enhanced phosphatidylinositol 3-kinase activation was also observed. These observations suggest that Gab1 and phosphatidylinositol 3-kinase play pivotal roles in the β1 integrin-mediated regulation of the epidermal stem cell compartment

  15. Interaction of alphaVbeta3 and alphaVbeta6 integrins with human parechovirus 1.

    Science.gov (United States)

    Seitsonen, Jani; Susi, Petri; Heikkilä, Outi; Sinkovits, Robert S; Laurinmäki, Pasi; Hyypiä, Timo; Butcher, Sarah J

    2010-09-01

    Human parechovirus (HPEV) infections are very common in early childhood and can be severe in neonates. It has been shown that integrins are important for cellular infectivity of HPEV1 through experiments using peptide blocking assays and function-blocking antibodies to alpha(V) integrins. The interaction of HPEV1 with alpha(V) integrins is presumably mediated by a C-terminal RGD motif in the capsid protein VP1. We characterized the binding of integrins alpha(V)beta(3) and alpha(V)beta(6) to HPEV1 by biochemical and structural studies. We showed that although HPEV1 bound efficiently to immobilized integrins, alpha(V)beta(6) bound more efficiently than alpha(V)beta(3) to immobilized HPEV1. Moreover, soluble alpha(V)beta(6), but not alpha(V)beta(3), blocked HPEV1 cellular infectivity, indicating that it is a high-affinity receptor for HPEV1. We also showed that HPEV1 binding to integrins in vitro could be partially blocked by RGD peptides. Using electron cryo-microscopy and image reconstruction, we showed that HPEV1 has the typical T=1 (pseudo T=3) organization of a picornavirus. Complexes of HPEV1 and integrins indicated that both integrin footprints reside between the 5-fold and 3-fold symmetry axes. This result does not match the RGD position predicted from the coxsackievirus A9 X-ray structure but is consistent with the predicted location of this motif in the shorter C terminus found in HPEV1. This first structural characterization of a parechovirus indicates that the differences in receptor binding are due to the amino acid differences in the integrins rather than to significantly different viral footprints.

  16. Signaling through urokinase and urokinase receptor in lung cancer cells requires interactions with beta1 integrins.

    Science.gov (United States)

    Tang, Chi-Hui; Hill, Marla L; Brumwell, Alexis N; Chapman, Harold A; Wei, Ying

    2008-11-15

    The urokinase receptor (uPAR) is upregulated upon tumor cell invasion and correlates with poor lung cancer survival. Although a cis-interaction with integrins has been ascribed to uPAR, whether this interaction alone is critical to urokinase (uPA)- and uPAR-dependent signaling and tumor promotion is unclear. Here we report the functional consequences of point mutations of uPAR (H249A-D262A) that eliminate beta1 integrin interactions but maintain uPA binding, vitronectin attachment and association with alphaV integrins, caveolin and epidermal growth factor receptor. Disruption of uPAR interactions with beta1 integrins recapitulated previously reported findings with beta1-integrin-derived peptides that attenuated matrix-dependent ERK activation, MMP expression and in vitro migration by human lung adenocarcinoma cell lines. The uPAR mutant cells acquired enhanced capacity to adhere to vitronectin via uPAR-alphaVbeta5-integrin, rather than through the uPAR-alpha3beta1-integrin complex and they were unable to initiate uPA signaling to activate ERK, Akt or Stat1. In an orthotopic lung cancer model, uPAR mutant cells exhibited reduced tumor size compared with cells expressing wild-type uPAR. Taken together, the results indicate that uPAR-beta1-integrin interactions are essential to signals induced by integrin matrix ligands or uPA that support lung cancer cell invasion in vitro and progression in vivo. PMID:18940913

  17. Persistent cell migration and adhesion rely on retrograde transport of β(1) integrin.

    Science.gov (United States)

    Shafaq-Zadah, Massiullah; Gomes-Santos, Carina S; Bardin, Sabine; Maiuri, Paolo; Maurin, Mathieu; Iranzo, Julian; Gautreau, Alexis; Lamaze, Christophe; Caswell, Patrick; Goud, Bruno; Johannes, Ludger

    2016-01-01

    Integrins have key functions in cell adhesion and migration. How integrins are dynamically relocalized to the leading edge in highly polarized migratory cells has remained unexplored. Here, we demonstrate that β1 integrin (known as PAT-3 in Caenorhabditis elegans), but not β3, is transported from the plasma membrane to the trans-Golgi network, to be resecreted in a polarized manner. This retrograde trafficking is restricted to the non-ligand-bound conformation of β1 integrin. Retrograde trafficking inhibition abrogates several β1-integrin-specific functions such as cell adhesion in early embryonic development of mice, and persistent cell migration in the developing posterior gonad arm of C. elegans. Our results establish a paradigm according to which retrograde trafficking, and not endosomal recycling, is the key driver for β1 integrin function in highly polarized cells. These data more generally suggest that the retrograde route is used to relocalize plasma membrane machinery from previous sites of function to the leading edge of migratory cells.

  18. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin

    DEFF Research Database (Denmark)

    Goldfinger, L E; Hopkinson, S B; deHart, G W;

    1999-01-01

    Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found in epithe......Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found...... in epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix...

  19. Lipid raft regulates the initial spreading of melanoma A375 cells by modulating β1 integrin clustering.

    Science.gov (United States)

    Wang, Ruifei; Bi, Jiajia; Ampah, Khamal Kwesi; Zhang, Chunmei; Li, Ziyi; Jiao, Yang; Wang, Xiaoru; Ba, Xueqing; Zeng, Xianlu

    2013-08-01

    Cell adhesion and spreading require integrins-mediated cell-extracellular matrix interaction. Integrins function through binding to extracellular matrix and subsequent clustering to initiate focal adhesion formation and actin cytoskeleton rearrangement. Lipid raft, a liquid ordered plasma membrane microdomain, has been reported to play major roles in membrane motility by regulating cell surface receptor function. Here, we identified that lipid raft integrity was required for β1 integrin-mediated initial spreading of melanoma A375 cells on fibronectin. We found that lipid raft disruption with methyl-β-cyclodextrin led to the inability of focal adhesion formation and actin cytoskeleton rearrangement by preventing β1 integrin clustering. Furthermore, we explored the possible mechanism by which lipid raft regulates β1 integrin clustering and demonstrated that intact lipid raft could recruit and modify some adaptor proteins, such as talin, α-actinin, vinculin, paxillin and FAK. Lipid raft could regulate the location of these proteins in lipid raft fractions and facilitate their binding to β1 integrin, which may be crucial for β1 integrin clustering. We also showed that lipid raft disruption impaired A375 cell migration in both transwell and wound healing models. Together, these findings provide a new insight for the relationship between lipid raft and the regulation of integrins.

  20. CCN2: a mechanosignaling sensor modulating integrin-dependent connective tissue remodeling in fibroblasts?

    Science.gov (United States)

    Leask, Andrew

    2013-08-01

    Tensegrity (tensional integrity) is an emerging concept governing the structure of the body. Integrin-mediated mechanical tension is essential for connective tissue function in vivo. For example, in adult skin fibroblasts, the integrin β1 subunit mediates adhesion to collagen and fibronectin. Moreover, integrin β1, through its abilities to activate latent TGFβ1 and promote collagen production through focal adhesion kinase/rac1/nicotinamide adenine dinucleotide phosphate oxidase (NOX)/reactive oxygen species (ROS), is essential for dermal homeostasis, repair and fibrosis. The integrin β1-interacting protein CCN2, a member of the CCN family of proteins, is induced by TGFβ1; yet, CCN2 is not a simple downstream mediator of TGFβ1, but instead synergistically promote TGFβ1-induced adhesive signaling and fibrosis. Due to its selective ability to sense mechanical forces in the microenvironment, CCN2 may represent an exquisitely precise target for therapeutic intervention. PMID:23729366

  1. PECAM-1 (CD31) Homophilic Interaction Up-Regulates α6β1 on Transmigrated Neutrophils In Vivo and Plays a Functional Role in the Ability of α6 Integrins to Mediate Leukocyte Migration through the Perivascular Basement Membrane

    OpenAIRE

    Dangerfield, John; Larbi, Karen Y.; Huang, Miao-Tzu; Dewar, Ann; Nourshargh, Sussan

    2002-01-01

    Platelet-endothelial cell adhesion molecule (PECAM)-1 has been implicated in leukocyte migration through the perivascular basement membrane (PBM) though the mechanisms involved are unclear. The present results demonstrate that the ability of α6 integrins to mediate neutrophil migration through the PBM is PECAM-1 dependent, a response associated with PECAM-1–mediated increased expression of α6β1 on transmigrating neutrophils in vivo. An anti-α6 integrins mAb (GoH3) inhibited (78%, P < 0.001) n...

  2. Integrin-like proteins are localized to plasma membrane fractions, not plastids, in Arabidopsis

    Science.gov (United States)

    Swatzell, L. J.; Edelmann, R. E.; Makaroff, C. A.; Kiss, J. Z.

    1999-01-01

    Integrins are a large family of integral membrane proteins that function in signal transduction in animal systems. These proteins are conserved in vertebrates, invertebrates, and fungi. Evidence from previous research suggests that integrin-like proteins may be present in plants as well, and that these proteins may function in signal transduction during gravitropism. In past studies, researchers have used monoclonal and polyclonal antibodies to localize beta 1 integrin-like proteins in plants. However, there is a disparity between data collected from these studies, especially since molecular weights obtained from these investigations range from 55-120 kDa for integrin-like proteins. To date, a complete investigation which employs all three basic immunolabeling procedures, immunoblotting, immunofluorescence microscopy, and immunogold labeling, in addition to extensive fractionation and exhaustive controls, has been lacking. In this paper, we demonstrate that use of a polyclonal antibody against the cytoplasmic domain of avian beta 1-integrin can produce potential artifacts in immunolocalization studies. However, these problems can be eliminated through use of starchless mutants or proper specimen preparation prior to electrophoresis. We also show that this antibody, when applied within the described parameters and with careful controls, identifies a large (100 kDa) integrin-like protein that is localized to plasma membrane fractions in Arabidopsis.

  3. Mesangial cell αvβ8-integrin regulates glomerular capillary integrity and repair.

    Science.gov (United States)

    Lakhe-Reddy, Sujata; Li, Vincent; Arnold, Thomas D; Khan, Shenaz; Schelling, Jeffrey R

    2014-06-15

    αvβ8-Integrin is most abundantly expressed in the kidney, brain, and female reproductive organs, and its cognate ligand is latent transforming growth factor (LTGF)-β. Kidney αvβ8-integrin localizes to mesangial cells, and global β8-integrin gene (Itgb8) deletion results in embryonic lethality due to impaired placentation and cerebral hemorrhage. To circumvent the lethality and better define kidney αvβ8-integrin function, Cre-lox technology was used to generate mesangial-specific Itgb8-null mice. Platelet-derived growth factor-β receptor (PDGFBR)-Cre mice crossed with a reporter strain revealed functional Cre recombinase activity in a predicted mesangial pattern. However, mating between two different PDGFBR-Cre or Ren1(d)-Cre strains with Itgb8 (flox/-) mice consistently resulted in incomplete recombination, with no renal phenotype in mosaic offspring. Induction of a renal phenotype with Habu snake venom, a reversible mesangiolytic agent, caused exaggerated glomerular capillary microaneurysms and delayed recovery in Cre(+/-) PDGFRB (flox/-) mice compared with Cre(+/-) PDGFRB (flox/+) control mice. To establish the mechanism, in vitro experiments were conducted in Itgb8-null versus Itgb8-expressing mesangial cells and fibroblasts, which revealed β8-integrin-regulated adhesion to Arg-Gly-Asp (RGD) peptides within a mesangial-conditioned matrix as well as β8-integrin-dependent migration on RGD-containing LTGF-β or vitronectin matrices. We speculate that kidney αvβ8-integrin indirectly controls glomerular capillary integrity through mechanical tension generated by binding RGD peptides in the mesangial matrix, and healing after glomerular injury may be facilitated by mesangial cell migration, which is guided by transient β8-integrin interactions with RGD ligands.

  4. Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells.

    Science.gov (United States)

    Chen, Hongfeng; Titushkin, Igor; Stroscio, Michael; Cho, Michael

    2007-02-15

    Functionalized quantum dots offer several advantages for tracking the motion of individual molecules on the cell surface, including selective binding, precise optical identification of cell surface molecules, and detailed examination of the molecular motion without photobleaching. We have used quantum dots conjugated with integrin antibodies and performed studies to quantitatively demonstrate changes in the integrin dynamics during osteogenic differentiation of human bone marrow derived progenitor cells (BMPCs). Consistent with the unusually strong BMPC adhesion previously observed, integrins on the surface of undifferentiated BMPC were found in clusters and the lateral diffusion was slow (e.g., approximately 10(-11) cm2/s). At times as early as those after a 3-day incubation in the osteogenic differentiation media, the integrin diffusion coefficients increased by an order of magnitude, and the integrin dynamics became indistinguishable from that measured on the surface of terminally differentiated human osteoblasts. Furthermore, microfilaments in BMPCs consisted of atypically thick bundles of stress fibers that were responsible for restricting the integrin lateral mobility. Studies using laser optical tweezers showed that, unlike fully differentiated osteoblasts, the BMPC cytoskeleton is weakly associated with its cell membrane. Based on these findings, it appears likely that the altered integrin dynamics is correlated with BMPC differentiation and that the integrin lateral mobility is restricted by direct links to microfilaments.

  5. Integrin-mediated interactions with extracellular matrix proteins for nucleus pulposus cells of the human intervertebral disc.

    Science.gov (United States)

    Bridgen, D T; Gilchrist, C L; Richardson, W J; Isaacs, R E; Brown, C R; Yang, K L; Chen, J; Setton, L A

    2013-10-01

    The extracellular matrix (ECM) of the human intervertebral disc is rich in molecules that interact with cells through integrin-mediated attachments. Porcine nucleus pulposus (NP) cells have been shown to interact with laminin (LM) isoforms LM-111 and LM-511 through select integrins that regulate biosynthesis and cell attachment. Since human NP cells lose many phenotypic characteristics with age, attachment and interaction with the ECM may be altered. Expression of LM-binding integrins was quantified for human NP cells using flow cytometry. The cell-ECM attachment mechanism was determined by quantifying cell attachment to LM-111, LM-511, or type II collagen after functionally blocking specific integrin subunits. Human NP cells express integrins β1, α3, and α5, with over 70% of cells positive for each subunit. Blocking subunit β1 inhibited NP cell attachment to all substrates. Blocking subunits α1, α2, α3, and α5 simultaneously, but not individually, inhibits NP cell attachment to laminins. While integrin α6β1 mediated porcine NP cell attachment to LM-111, we found integrins α3, α5, and β1 instead contributed to human NP cell attachment. These findings identify integrin subunits that may mediate interactions with the ECM for human NP cells and could be used to promote cell attachment, survival, and biosynthesis in cell-based therapeutics.

  6. Function of Integrin-Linked Kinase in Modulating the Stemness of IL-6–Abundant Breast Cancer Cells by Regulating γ-Secretase–Mediated Notch1 Activation in Caveolae

    Directory of Open Access Journals (Sweden)

    En-Chi Hsu

    2015-06-01

    Full Text Available Interleukin-6 (IL-6 and Notch signaling are important regulators of breast cancer stem cells (CSCs, which drive the malignant phenotype through self-renewal, differentiation, and development of therapeutic resistance. We investigated the role of integrin-linked kinase (ILK in regulating IL-6–driven Notch1 activation and the ability to target breast CSCs through ILK inhibition. Ectopic expression/short hairpin RNA-mediated knockdown of ILK, pharmacological inhibition of ILK with the small molecule T315, Western blot analysis, immunofluorescence, and luciferase reporter assays were used to evaluate the regulation of IL-6–driven Notch1 activation by ILK in IL-6–producing triple-negative breast cancer cell lines (MDA-MB-231, SUM-159 and in MCF-7 and MCF-7IL-6 cells. The effects of ILK on γ-secretase complex assembly and cellular localization were determined by immunofluorescence, Western blots of membrane fractions, and immunoprecipitation. In vivo effects of T315-induced ILK inhibition on CSCs in SUM-159 xenograft models were assessed by mammosphere assays, flow cytometry, and tumorigenicity assays. Results show that the genetic knockdown or pharmacological inhibition of ILK suppressed Notch1 activation and the abundance of the γ-secretase components presenilin-1, nicastrin, and presenilin enhancer 2 at the posttranscriptional level via inhibition of caveolin-1-dependent membrane assembly of the γ-secretase complex. Accordingly, knockdown of ILK inhibited breast CSC-like properties in vitro and the breast CSC subpopulation in vivo in xenograft tumor models. Based on these findings, we propose a novel function of ILK in regulating γ-secretase–mediated Notch1 activation, which suggests the targeting of ILK as a therapeutic approach to suppress IL-6–induced breast CSCs.

  7. RGD-Binding Integrins in Prostate Cancer: Expression Patterns and Therapeutic Prospects against Bone Metastasis

    International Nuclear Information System (INIS)

    Prostate cancer is the third leading cause of male cancer deaths in the developed world. The current lack of highly specific detection methods and efficient therapeutic agents for advanced disease have been identified as problems requiring further research. The integrins play a vital role in the cross-talk between the cell and extracellular matrix, enhancing the growth, migration, invasion and metastasis of cancer cells. Progression and metastasis of prostate adenocarcinoma is strongly associated with changes in integrin expression, notably abnormal expression and activation of the β3 integrins in tumour cells, which promotes haematogenous spread and tumour growth in bone. As such, influencing integrin cell expression and function using targeted therapeutics represents a potential treatment for bone metastasis, the most common and debilitating complication of advanced prostate cancer. In this review, we highlight the multiple ways in which RGD-binding integrins contribute to prostate cancer progression and metastasis, and identify the rationale for development of multi-integrin antagonists targeting the RGD-binding subfamily as molecularly targeted agents for its treatment

  8. Multiple proteins of White spot syndrome virus involved in recognition of -integrin

    Indian Academy of Sciences (India)

    Jing-Yan Zhang; Qing-Hui Liu; Jie Huang

    2014-06-01

    The recognition and attachment of virus to its host cell surface is a critical step for viral infection. Recent research revealed that -integrin was involved in White spot syndrome virus (WSSV) infection. In this study, the interaction of -integrin with structure proteins of WSSV and motifs involved in WSSV infection was examined. The results showed that envelope proteins VP26, VP31, VP37, VP90 and nucleocapsid protein VP136 interacted with LvInt. RGD-, YGL- and LDV-related peptide functioned as motifs of WSSV proteins binding with -integrin. The -integrin ligand of RGDT had better blocking effect compared with that of YGL- and LDV-related peptides. In vivo assay indicated that RGD-, LDV- and YGL-related peptides could partially block WSSV infection. These data collectively indicate that multiple proteins were involved in recognition of -integrin. Identification of proteins in WSSV that are associated with -integrin will assist development of new agents for effective control of the white spot syndrome.

  9. Thymosin Beta-4 Recombinant Adeno-associated Virus Enhances Human Nucleus Pulposus Cell Proliferation and Reduces Cell Apoptosis and Senescence

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yi Wang; Qing-San Zhu; Yi-Wei Wang; Ruo-Feng Yin

    2015-01-01

    Background:Thymosin beta-4 (TB-4) is considered key roles in tissue development,maintenance and pathological processes.The study aimed to prove TB-4 positive biological function on nucleus pulposus (NP) cell apoptosis and slowing the process of cell aging while increasing the cell proliferation.Methods:TB-4 recombinant adeno-associated virus (AAV) was constructed and induced to human NP cells.Cell of same group were cultured without gene modification as controlled group.Proliferation capacity and cell apoptosis were observed during 6 passages of the cells.Morphology and expression of the TB-4 gene were documented as parameter of cell activity during cell passage.Results:NP cells with TB-4 transfection has normal TB-4 expression and exocytosis.NP cells with TB-4 transfection performed significantly higher cell activity than that at the control group in each generation.TB-4 recombinant AAV-transfected human NP cells also show slower cell aging,lower cell apoptosis and higher cell proliferation than control group.Conclusions:TB-4 can prevent NP cell apoptosis,slow NP cell aging and promote NP cell proliferation.AAV transfection technique was able to highly and stably express TB-4 in human NP cells,which may provide a new pathway for innovation in the treatment of intervertebral disc degenerative diseases.

  10. FreeBSD 6.0-Beta4发布

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    9月7日,FreeBSD项目组发布FreeBSD 6.0-Beta4版。这是继7月15日发布FreeBSD 6.0第一个测试版后推出的第四个Beta版本。FreeBSD6.0增加了更多无线网卡和无线安全标准支持,并且改进文件系统,支持对Linux所使用的ReiserFS文件系统进行读操作。FreeBSD项目组计划在FreeBSD 6.0正式推出后,对FreeBSD开发网站进行改版。

  11. Thymosin beta(4 and beta(10 levels in pre-term newborn oral cavity and foetal salivary glands evidence a switch of secretion during foetal development.

    Directory of Open Access Journals (Sweden)

    Sonia Nemolato

    Full Text Available BACKGROUND: Thymosin beta(4, its sulfoxide, and thymosin beta(10 were detected in whole saliva of human pre-term newborns by reversed-phase high performance chromatography coupled to electrospray ion-trap mass spectrometry. METHODOLOGY/PRINCIPAL FINDINGS: Despite high inter-individual variability, concentration of beta-thymosins increases with an inversely proportional trend to postmenstrual age (PMA: gestational age plus chronological age after birth reaching a value more than twenty times higher than in adult whole saliva at 190 days (27 weeks of PMA (thymosin beta(4 concentration: more than 2.0 micromol/L versus 0.1 micromol/L. On the other hand, the ratio between thymosin beta(4 and thymosin beta(10 exhibits a constant value of about 4 along all the range of PMA (190-550 days of PMA examined. In order to investigate thymosin beta(4 origin and to better establish the trend of its production as a function of gestational age (GA, immunohistochemical analysis of major and minor salivary glands of different pre-term fetuses were carried out, starting from 84 days (12 weeks of gestational age. Reactive granules were seen in all glands with a maximum of expression around 140-150 days of GA, even though with high inter- and intra-individual variability. In infants and adults reactive granules in acinar cells were not observed, but just a diffuse cytoplasmatic staining in ductal cells. SIGNIFICANCE: This study outlines for the first time that salivary glands during foetal life express and secrete peptides such as beta-thymosins probably involved in the development of the oral cavity and its annexes. The secretion increases from about 12 weeks till to about 21 weeks of GA, subsequently it decreases, almost disappearing in the period of expected date of delivery, when the gland switches towards the secretion of adult specific salivary peptides. The switch observed may be an example of further secretion switches involving other exocrine and endocrine

  12. Tumour exosome integrins determine organotropic metastasis.

    Science.gov (United States)

    Hoshino, Ayuko; Costa-Silva, Bruno; Shen, Tang-Long; Rodrigues, Goncalo; Hashimoto, Ayako; Tesic Mark, Milica; Molina, Henrik; Kohsaka, Shinji; Di Giannatale, Angela; Ceder, Sophia; Singh, Swarnima; Williams, Caitlin; Soplop, Nadine; Uryu, Kunihiro; Pharmer, Lindsay; King, Tari; Bojmar, Linda; Davies, Alexander E; Ararso, Yonathan; Zhang, Tuo; Zhang, Haiying; Hernandez, Jonathan; Weiss, Joshua M; Dumont-Cole, Vanessa D; Kramer, Kimberly; Wexler, Leonard H; Narendran, Aru; Schwartz, Gary K; Healey, John H; Sandstrom, Per; Labori, Knut Jørgen; Kure, Elin H; Grandgenett, Paul M; Hollingsworth, Michael A; de Sousa, Maria; Kaur, Sukhwinder; Jain, Maneesh; Mallya, Kavita; Batra, Surinder K; Jarnagin, William R; Brady, Mary S; Fodstad, Oystein; Muller, Volkmar; Pantel, Klaus; Minn, Andy J; Bissell, Mina J; Garcia, Benjamin A; Kang, Yibin; Rajasekhar, Vinagolu K; Ghajar, Cyrus M; Matei, Irina; Peinado, Hector; Bromberg, Jacqueline; Lyden, David

    2015-11-19

    Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.

  13. Induction of cell scattering by expression of beta1 integrins in beta1-deficient epithelial cells requires activation of members of the rho family of GTPases and downregulation of cadherin and catenin function

    DEFF Research Database (Denmark)

    Gimond, C; van Der Flier, A; van Delft, S;

    1999-01-01

    was required for a complete morphological transition towards the spindle-shaped fibroblast-like phenotype. The expression of an interleukin-2 receptor (IL2R)-beta1A chimera and its incorporation into focal adhesions also induced the disruption of cadherin-based adhesions and the reorganization of ECM......Adhesion receptors, which connect cells to each other and to the surrounding extracellular matrix (ECM), play a crucial role in the control of tissue structure and of morphogenesis. In this work, we have studied how intercellular adhesion molecules and beta1 integrins influence each other using two......-catenin protein levels accompanied by their redistribution from the cytoskeleton-associated fraction to the detergent-soluble fraction. Regulation of alpha-catenin protein levels by beta1 integrins is likely to play a role in the morphological transition, since overexpression of alpha-catenin in GE11 cells before...

  14. αvβ3-integrin is a major sensor and activator of innate immunity to herpes simplex virus-1

    OpenAIRE

    Gianni, Tatiana; Leoni, Valerio; Chesnokova, Liudmila S; Lindsey M Hutt-Fletcher; Campadelli-Fiume, Gabriella

    2012-01-01

    Pathogens are sensed by Toll-like receptors (TLRs) and a growing number of non-TLR receptors. Integrins constitute a family of signaling receptors exploited by viruses and bacteria to access cells. By gain- and loss-of-function approaches we found that αvβ3-integrin is a sensor of and plays a crucial role in the innate defense against herpes simplex virus (HSV). αvβ3-integrin signaled through two pathways. One concurred with TLR2, affected activation/induction of interferons type 1 (IFNs-1), ...

  15. β7-Integrin exacerbates experimental DSS-induced colitis in mice by directing inflammatory monocytes into the colon.

    Science.gov (United States)

    Schippers, A; Muschaweck, M; Clahsen, T; Tautorat, S; Grieb, L; Tenbrock, K; Gaßler, N; Wagner, N

    2016-03-01

    Leukocyte recruitment is pivotal for the initiation and perpetuation of inflammatory bowel disease (IBD) and controlled by the specificity and interactions of chemokines and adhesion molecules. Interactions of the adhesion molecules α4β7-integrin and mucosal addressin cell-adhesion molecule-1 (MAdCAM-1) promote the accumulation of pathogenic T-cell populations in the inflamed intestine. We aimed to elucidate the significance of β7-integrin expression on innate immune cells for the pathogenesis of IBD. We demonstrate that β7-integrin deficiency protects recombination-activating gene-2 (RAG-2)-deficient mice from dextran sodium sulfate (DSS)-induced colitis and coincides with decreased numbers of colonic effector monocytes. We also show that β7-integrin is expressed on most CD11b(+)CD64(low)Ly6C(+) bone marrow progenitors and contributes to colonic recruitment of these proinflammatory monocytes. Importantly, adoptive transfer of CD115(+) wild-type (WT) monocytes partially restored the susceptibility of RAG-2/β7-integrin double-deficient mice to DSS-induced colitis, thereby demonstrating the functional importance of β7-integrin-expressing monocytes for the development of DSS colitis. We also reveal that genetic ablation of MAdCAM-1 ameliorates experimental colitis in RAG-2-deficient mice as well. In summary, we demonstrate a previously unknown role of α4β7-integrin-MAdCAM-1 interactions as drivers of colitis by directing inflammatory monocytes into the colon.

  16. Signal regulatory protein alpha negatively regulates beta2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis.

    Directory of Open Access Journals (Sweden)

    Dan-Qing Liu

    Full Text Available BACKGROUND: Signal regulate protein alpha (SIRPalpha is involved in many functional aspects of monocytes. Here we investigate the role of SIRPalpha in regulating beta(2 integrin-mediated monocyte adhesion, transendothelial migration (TEM and phagocytosis. METHODOLOGY/PRINCIPAL FINDINGS: THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs resulted in a decrease of SIRPalpha expression but an increase of beta(2 integrin cell surface expression and beta(2 integrin-mediated adhesion to tumor necrosis factor-alpha (TNFalpha-stimulated human microvascular endothelial cell (HMEC-1 monolayers. In contrast, SIRPalpha overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1-triggered cell surface expression of beta(2 integrins, in particular CD11b/CD18. SIRPalpha overexpression reduced beta(2 integrin-mediated firm adhesion of THP-1 cells to either TNFalpha-stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1. SIRPalpha overexpression also reduced MCP-1-initiated migration of THP-1 cells across TNFalpha-stimulated HMEC-1 monolayers. Furthermore, beta(2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPalpha overexpression. CONCLUSIONS/SIGNIFICANCE: SIRPalpha negatively regulates beta(2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis.

  17. A preliminary optical and electron microscopic study of the beta(1) integrin distribution pattern of human osteosarcoma-derived cells.

    Science.gov (United States)

    Banai, Kiarash; Brady, Ken; McDonald, Fraser

    2004-07-01

    Immunogold labelling was used to study the organisation of the beta(1) integrins on osteosarcoma-derived osteoblasts (Saos-2 and MG-63). Monolayers of cells were prepared in multiwell culture plates on both uncovered and collagen-covered coverslips, and beta(1) integrins were primarily labelled using mouse monoclonal antibodies to beta(1) integrins. Indirect immunofluorescence labels using an anti-mouse fluorescein-conjugated goat antibody showed an even distribution of the beta(1) integrins on the cell membranes of all cell types used. A concentration of 2 microg/ml of the primary antibodies and a 1:100 dilution of the secondary antibodies were determined as the optimal concentration for labelling to use with indirect localisation of the primary antibodies gold conjugated to goat anti-mouse antibodies and viewed under an electron microscope. Ten nanometre gold particles were used for transmission electron microscopy (TEM) and 40 nm gold particles for scanning electron microscopy. TEM showed that beta(1) integrins were mainly clustered on the cell membrane processes with less labelling on the cell membranes themselves. The distribution of beta(1) integrins on osteosarcoma cells supports the concept that integrins may function by forming focal adhesions at the site of the cytoplasmic membrane processes. PMID:15241608

  18. Expressions of integrin subunits in osteoblasts during weightlessness simulation using clionstat

    Science.gov (United States)

    Zhang, S.; Wang, B.; Zhao, D.; Nie, J.; Li, Y.

    Space flight experiments and studies carried out in altered gravity environments have revealed that exposure to altered gravity conditions results in (mal)adaptation of cellular function. In the present study, we used a clinostat to generate a vector-averaged gravity to simulate weightlessness environment. We then observed the responses of rat calvarial osteoblasts subsequent to rotation at 30 revolutions per minute (rpm) for 72 h. We found that the gene expressions of three integrin subunits started to change from 24 h of rotation in clinostat but not in stationary cultures. The decreased percent changes of integrin a5 mRNA at 24, 48 and 72 h were 11.3 +/- 2.6%, 18.7 +/- 4.2% and 9.8 +/ - 2.1%, respectively. The same trend was saw in the expression of integrin av mRNA as 23.0 +/- 4.7%, 12.3 +/- 1.6% and 16.7 +/- 3.2%, respectively. Moreover, the expressions of integrin ß1 mRNA in different periods were also declined with the percent changes of 15.3 +/- 1.3%, 11.4 +/- 1.2% and 26.4 +/- 5.5%, respectively. All cells contain membrane-anchored attachment proteins able to recognize specific chemical motifs in the extracellular macromolecules forming the supporting scaffold, made of various types of collagen, adhesive glycoproteins, elastin, proteoglycans, etc. These cell-matrix interactions are mainly mediated by receptors of the integrins family, heterodimeric molecules made of an extracellular domain connected through a transmembrane sequence to an intracytoplasmic tail. Our results suggest that vector-averaged gravity causes alterations of signal transduction and integrin-mediated cell adhesion in osteoblasts by altering the gene expressions of several crucial integrin subunits. These alterations might contribute to the pathogenesis of osteoporotic bone loss as observed in actual space flights.

  19. Fibrinogen interaction of CHO cells expressing chimeric αIIb/αvβ3 integrin

    Institute of Scientific and Technical Information of China (English)

    Juan-juan CHEN; Xiao-yu SU; Xiao-dong XI; Li-ping LIN; Jian DING; He LU

    2008-01-01

    Aim: The molecular mechanisms of the affinity regulation of αvβ3 integrin are important in tumor development, wound repairing, and angiogenesis. It has been established that the cytoplasmic domains of αvβ3 integrin play an important role in integrin-ligand affinity regulation. However, the relationship of structure-func-tion within these domains remains unclear. Methods: The extracellular and trans-membrane domain of αⅡb was fused to the αv integrin cytoplasmic domain, and the chimeric α subunit was coexpressed in Chinese hamster ovary (CHO) cells with the wild-type β3 subunit or with 3 mutant 133 sequences bearing truncations at the positions of T741, Y747, and F754, respectively. The CHO cells expressing these recombinant integrins were tested for soluble fibrinogen binding and the cell adhesion and spreading on immobilized fibrinogen. Results: All 4 types of integrins bound soluble fibrinogen in the absence of agonist stimulation, and only the cells expressing the chimeric α subunit with the wild-type β3 subunit, but not those with truncated β3, could adhere to and spread on immobilized fibrinogen. Conclusion: The substitution αⅡb at the cytoplasmic domain with the ctv cyto-plasmic sequence rendered the extracellular αⅡbβ3 a constitutively activated con-formation for ligands without the need of "inside-out" signals. Our results also indicated that the COOH-terminal sequence of β3 might play a key role in integrin αⅡb/αvβ3-mediated cell adhesion and spreading on immobilized fibrinogen. The cells expressing αⅡb/αvβ3 have enormous potential for facilitating drug screen-ing for antagonists either to αvβ3 intracellular interactions or to αⅡbβ3 receptor functions.

  20. The role of integrin α(V)β(3) in osteocyte mechanotransduction.

    Science.gov (United States)

    Haugh, Matthew G; Vaughan, Ted J; McNamara, Laoise M

    2015-02-01

    Recent in vivo studies have proposed that integrin αvβ3 attachments between osteocyte cell processes and the extracellular matrix may facilitate mechanosensation in bone. However the role of these attachments in osteocyte biochemical response to mechanical stimulus has yet to be investigated. With this in mind, the objective of this study was to determine the effect of blocking integrin αvβ3 function on the biochemical response of osteocytes to mechanical stimulus. Antagonists specific to integrin subunit β3 were used to block integrin αvβ3 on MLO-Y4 mouse osteocytes. After treatment, cells were subjected to laminar oscillatory fluid flow stimulus (1 Pa, 1 Hz) for one hour. Fluorescent staining was performed to visualise cell morphology. Prostaglandin E2 (PGE2) release was assayed using an enzyme immunoassay and qRT-PCR was used to analyse the relative expression of cyclooxygenase-2 (COX-2), receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). Our results show that blocking integrin αvβ3 disrupts osteocyte morphology, causing a reduction in spread area and process retraction. Integrin αvβ3 blocking also disrupted COX-2 expression and PGE2 release in response to fluid shear stress. Taken together, the results of this study indicate that integrin αvβ3 is essential for the maintenance of osteocyte cell processes and also for mechanosensation and mechanotransduction by osteocytes. A better understanding of this process may lead to the development of novel treatments for bone pathologies where mechanosensitivity is thought to be compromised. PMID:25460927

  1. Dystrophin Dp71f associates with the beta1-integrin adhesion complex to modulate PC12 cell adhesion.

    Science.gov (United States)

    Cerna, Joel; Cerecedo, Doris; Ortega, Arturo; García-Sierra, Francisco; Centeno, Federico; Garrido, Efrain; Mornet, Dominique; Cisneros, Bulmaro

    2006-10-01

    Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of beta1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisense-Dp71 clones to analyze in detail the potential involvement of Dp71f isoform with the beta1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell beta1-integrin adhesion complex is composed of beta1-integrin, talin, paxillin, alpha-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the beta1-integrin complex components (beta1-integrin, FAK, alpha-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the beta1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and beta1-integrin. Our data indicate that Dp71f is a structural component of the beta1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance.

  2. Laminin isoforms differentially regulate adhesion, spreading, proliferation, and ERK activation of β1 integrin-null cells

    International Nuclear Information System (INIS)

    The presence of many laminin receptors of the β1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin α6β4 and dystroglycan. We therefore tested the binding of a β1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin α6Aβ4A variant. GD25 β1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin α6 antibody, but not by a dystroglycan antibody. Hence, integrin α6Aβ4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin α6Aβ4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin α6Aβ4A

  3. Lateral Mobility and Nanoscale Spatial Arrangement of Chemokine-activated α4β1 Integrins on T Cells*

    Science.gov (United States)

    Sosa-Costa, Alberto; Isern de Val, Sol; Sevilla-Movilla, Silvia; Teixidó, Joaquin

    2016-01-01

    Chemokine stimulation of integrin α4β1-dependent T lymphocyte adhesion is a key step during lymphocyte trafficking. A central question regarding α4β1 function is how its lateral mobility and organization influence its affinity and avidity following cell stimulation with chemokines and/or ligands. Using single particle tracking and superresolution imaging approaches, we explored the lateral mobility and spatial arrangement of individual α4β1integrins on T cells exposed to different activating stimuli. We show that CXCL12 stimulation leads to rapid and transient α4β1activation, measured by induction of the activation epitope recognized by the HUTS-21 anti-β1antibody and by increased talin-β1 association. CXCL12-dependent α4β1 activation directly correlated with restricted lateral diffusion and integrin immobilization. Moreover, co-stimulation by CXCL12 together with soluble VCAM-1 potentiated integrin immobilization with a 5-fold increase in immobile integrins compared with unstimulated conditions. Our data indicate that docking by talin of the chemokine-activated α4β1 to the actin cytoskeleton favors integrin immobilization, which likely facilitates ligand interaction and increased adhesiveness. Superresolution imaging showed that the nanoscale organization of high-affinity α4β1 remains unaffected following chemokine and/or ligand addition. Instead, newly activated α4β1 integrins organize on the cell membrane as independent units without joining pre-established integrin sites to contribute to cluster formation. Altogether, our results provide a rationale to understand how the spatiotemporal organization of activated α4β1 integrins regulates T lymphocyte adhesion. PMID:27481944

  4. Endocytosis of Integrin-Binding Human Picornaviruses

    Directory of Open Access Journals (Sweden)

    Pirjo Merilahti

    2012-01-01

    Full Text Available Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9, echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1 has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses.

  5. Endocytosis of integrin-binding human picornaviruses.

    Science.gov (United States)

    Merilahti, Pirjo; Koskinen, Satu; Heikkilä, Outi; Karelehto, Eveliina; Susi, Petri

    2012-01-01

    Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9), echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1) has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses.

  6. Hierarchy of ADAM12 binding to integrins in tumor cells

    DEFF Research Database (Denmark)

    Thodeti, Charles Kumar; Fröhlich, Camilla; Nielsen, Christian Kamp;

    2005-01-01

    ADAMs (a disintegrin and metalloprotease) comprise a family of cell surface proteins with protease and cell-binding activities. Using different forms and fragments of ADAM12 as substrates in cell adhesion and spreading assays, we demonstrated that alpha9beta1 integrin is the main receptor for ADAM......12. However, when alpha9beta1 integrin is not expressed--as in many carcinoma cells--other members of the beta1 integrin family can replace its ligand binding activity. In attachment assays, the recombinant disintegrin domain of ADAM12 only supported alpha9 integrin-dependent tumor cell attachment......, whereas full-length ADAM12 supported attachment via alpha9 integrin and other integrin receptors. Cells that attached to full-length ADAM12 in an alpha9 integrin-dependent manner also attached to ADAM12 in which the putative alpha9beta1 integrin-binding motif in the disintegrin domain had been mutated...

  7. Sulfonamide inhibitors of α2β1 integrin reveal the essential role of collagen receptors in in vivo models of inflammation.

    Science.gov (United States)

    Nissinen, Liisa; Ojala, Marika; Langen, Barbara; Dost, Rita; Pihlavisto, Marjo; Käpylä, Jarmo; Marjamäki, Anne; Heino, Jyrki

    2015-06-01

    Small molecule inhibitors of α2β1 integrin, a major cellular collagen receptor, have been reported to inhibit platelet function, kidney injury, and angiogenesis. Since α2β1 integrin is abundantly expressed on various inflammation-associated cells, we tested whether recently developed α2β1 blocking sulfonamides have anti-inflammatory properties. Integrin α2β1 inhibitors were shown to reduce the signs of inflammation in arachidonic acid-induced ear edema, PAF stimulated air pouch, ovalbumin-induced skin hypersensitivity, adjuvant arthritis, and collagen-induced arthritis. Thus, these sulfonamides are potential drugs for acute and allergic inflammation, hypersensitivity, and arthritis. One sulfonamide with potent anti-inflammatory activity has previously been reported to be selective for activated integrins, but not to inhibit platelet function. Thus, the experiments also revealed fundamental differences in the action of nonactivated and activated α2β1 integrins in inflammation when compared to thrombosis.

  8. ADAM2 interactions with mouse eggs and cell lines expressing α4/α9 (ITGA4/ITGA9 integrins: implications for integrin-based adhesion and fertilization.

    Directory of Open Access Journals (Sweden)

    Ulyana V Desiderio

    Full Text Available BACKGROUND: Integrins are heterodimeric cell adhesion molecules, with 18 α (ITGA and eight β (ITGB subunits forming 24 heterodimers classified into five families. Certain integrins, especially the α(4/α(9 (ITGA4/ITGA9 family, interact with members of the ADAM (a disintegrin and metalloprotease family. ADAM2 is among the better characterized and also of interest because of its role in sperm function. Having shown that ITGA9 on mouse eggs participates in mouse sperm-egg interactions, we sought to characterize ITGA4/ITGA9-ADAM2 interactions. METHODOLOGY/PRINCIPAL FINDINGS: An anti-β(1/ITGB1 function-blocking antibody that reduces sperm-egg binding significantly inhibited ADAM2 binding to mouse eggs. Analysis of integrin subunit expression indicates that mouse eggs could express at least ten different integrins, five in the RGD-binding family, two in the laminin-binding family, two in the collagen-binding family, and ITGA9-ITGB1. Adhesion assays to characterize ADAM2 interactions with ITGA4/ITGA9 family members produced the surprising result that RPMI 8866 cell adhesion to ADAM2 was inhibited by an anti-ITGA9 antibody, noteworthy because ITGA9 has only been reported to dimerize with ITGB1, and RPMI 8866 cells lack detectable ITGB1. Antibody and siRNA studies demonstrate that ITGB7 is the β subunit contributing to RPMI 8866 adhesion to ADAM2. CONCLUSIONS/SIGNIFICANCE: These data indicate that a novel integrin α-β combination, ITGA9-ITGB7 (α(9β(7, in RPMI 8866 cells functions as a binding partner for ADAM2. ITGA9 had previously only been reported to dimerize with ITGB1. Although ITGA9-ITGB7 is unlikely to be a widely expressed integrin and appears to be the result of "compensatory dimerization" occurring in the context of little/no ITGB1 expression, the data indicate that ITGA9-ITGB7 functions as an ADAM binding partner in certain cellular contexts, with implications for mammalian fertilization and integrin function.

  9. Thymosin beta4 targeting impairs tumorigenic activity of colon cancer stem cells.

    Science.gov (United States)

    Ricci-Vitiani, Lucia; Mollinari, Cristiana; di Martino, Simona; Biffoni, Mauro; Pilozzi, Emanuela; Pagliuca, Alfredo; de Stefano, Maria Chiara; Circo, Rita; Merlo, Daniela; De Maria, Ruggero; Garaci, Enrico

    2010-11-01

    Thymosin β4 (Tβ4) is an actin-binding peptide overexpressed in several tumors, including colon carcinomas. The aim of this study was to investigate the role of Tβ4 in promoting the tumorigenic properties of colorectal cancer stem cells (CR-CSCs), which are responsible for tumor initiation and growth. We first found that CR-CSCs from different patients have higher Tβ4 levels than normal epithelial cells. Then, we used a lentiviral strategy to down-regulate Tβ4 expression in CR-CSCs and analyzed the effects of such modulation on proliferation, survival, and tumorigenic activity of CR-CSCs. Empty vector-transduced CR-CSCs were used as a control. Targeting of the Tβ4 produced CR-CSCs with a lower capacity to grow and migrate in culture and, interestingly, reduced tumor size and aggressiveness of CR-CSC-based xenografts in mice. Moreover, such loss in tumorigenic activity was accompanied by a significant increase of phosphatase and tensin homologue (PTEN) and a concomitant reduction of the integrin-linked kinase (ILK) expression, which resulted in a decreased activation of protein kinase B (Akt). Accordingly, exogenous expression of an active form of Akt rescued all the protumoral features lost after Tβ4 targeting in CR-CSCs. In conclusion, Tβ4 may have important implications for therapeutic intervention for treatment of human colon carcinoma. PMID:20566622

  10. Localized LoxL3-Dependent Fibronectin Oxidation Regulates Myofiber Stretch and Integrin-Mediated Adhesion.

    Science.gov (United States)

    Kraft-Sheleg, Ortal; Zaffryar-Eilot, Shelly; Genin, Olga; Yaseen, Wesal; Soueid-Baumgarten, Sharon; Kessler, Ofra; Smolkin, Tatyana; Akiri, Gal; Neufeld, Gera; Cinnamon, Yuval; Hasson, Peleg

    2016-03-01

    For muscles to function, myofibers have to stretch and anchor at the myotendinous junction (MTJ), a region rich in extracellular matrix (ECM). Integrin signaling is required for MTJ formation, and mutations affecting the cascade lead to muscular dystrophies in mice and humans. Underlying mechanisms for integrin activation at the MTJ and ECM modifications regulating its signaling are unclear. We show that lysyl oxidase-like 3 (LoxL3) is a key regulator of integrin signaling that ensures localized control of the cascade. In LoxL3 mutants, myofibers anchor prematurely or overshoot to adjacent somites, and are loose and lack tension. We find that LoxL3 complexes with and directly oxidizes Fibronectin (FN), an ECM scaffold protein and integrin ligand enriched at the MTJ. We identify a mechanism whereby localized LoxL3 secretion from myofiber termini oxidizes FN, enabling enhanced integrin activation at the tips of myofibers and ensuring correct positioning and anchoring of myofibers along the MTJ. PMID:26954549

  11. Changes in membrane sphingolipid composition modulate dynamics and adhesion of integrin nanoclusters.

    Science.gov (United States)

    Eich, Christina; Manzo, Carlo; de Keijzer, Sandra; Bakker, Gert-Jan; Reinieren-Beeren, Inge; García-Parajo, Maria F; Cambi, Alessandra

    2016-01-01

    Sphingolipids are essential constituents of the plasma membrane (PM) and play an important role in signal transduction by modulating clustering and dynamics of membrane receptors. Changes in lipid composition are therefore likely to influence receptor organisation and function, but how this precisely occurs is difficult to address given the intricacy of the PM lipid-network. Here, we combined biochemical assays and single molecule dynamic approaches to demonstrate that the local lipid environment regulates adhesion of integrin receptors by impacting on their lateral mobility. Induction of sphingomyelinase (SMase) activity reduced sphingomyelin (SM) levels by conversion to ceramide (Cer), resulting in impaired integrin adhesion and reduced integrin mobility. Dual-colour imaging of cortical actin in combination with single molecule tracking of integrins showed that this reduced mobility results from increased coupling to the actin cytoskeleton brought about by Cer formation. As such, our data emphasizes a critical role for the PM local lipid composition in regulating the lateral mobility of integrins and their ability to dynamically increase receptor density for efficient ligand binding in the process of cell adhesion. PMID:26869100

  12. Inhibiting Vimentin or beta 1-integrin Reverts Prostate Tumor Cells in IrECM and Reduces Tumor Growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xueping; Fournier, Marcia V.; Ware, Joy L.; Bissell, Mina J.; Zehner, Zendra E.

    2009-07-27

    Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphological changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional (3D) lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the parental prostate epithelial P69 cell line by selection in nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to {beta}-catenin, E-cadherin or {alpha}6-, {beta}4- and {beta}1-integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via siRNA interference or {beta}1-integrin expression by the addition of the blocking antibody, AIIB2, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by subcutaneous injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in 3D lrECM gels. These studies suggest that the levels of vimentin and {beta}1-integrin play a key role in the homeostasis of the normal acini in prostate and that their dysregulation may lead to tumorigenesis.

  13. A novel dimeric thymosin beta 4 with enhanced activities accelerates the rate of wound healing

    Directory of Open Access Journals (Sweden)

    Xu TJ

    2013-10-01

    Full Text Available Tian-Jiao Xu,1,2,* Qi Wang,1,* Xiao-Wen Ma,1 Zhen Zhang,3 Wei Zhang,1 Xiao-Chang Xue,1 Cun Zhang,1 Qiang Hao,1 Wei-Na Li,1 Ying-Qi Zhang,1 Meng Li11State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China; 2The Institute of Medicine, Qiqihar Medical University, Qiqihar, People’s Republic of China; 3Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA*These authors contributed equally to this workObjective: Thymosin beta 4 (Tβ4 is a peptide with 43 amino acids that is critical for repair and remodeling tissues on the skin, eye, heart, and neural system following injury. To fully realize its utility as a treatment for disease caused by injury, the authors constructed a cost-effective novel Tβ4 dimer and demonstrated that it was better able to accelerate tissue repair than native Tβ4.Methods: A prokaryotic vector harboring two complete Tβ4 genes with a short linker was constructed and expressed in Escherichia coli. A pilot-scale fermentation (10 L was performed to produce engineered bacteria and the Tβ4 dimer was purified by one-step hydrophobic interaction chromatography. The activities of the Tβ4 dimer to promote endothelial cell proliferation, migration, and sprouting were assessed by tetramethylbenzidine (methylthiazol tetrazolium, trans-well, scratch, and tube formation assays. The ability to accelerate dermal healing was assessed on rats.Results: After fermentation, the Tβ4 dimer accounted for about 30% of all the bacteria proteins. The purity of the Tβ4 dimer reached 98% after hydrophobic interaction chromatography purification. An average of 562.4 mg/L Tβ4 dimer was acquired using a 10 L fermenter. In each assay, the dimeric Tβ4 exhibited enhanced activities compared with native Tβ4. Notably, the ability of the dimeric Tβ4 to promote cell migration was almost two times higher

  14. Thymosin beta 4 and thymosin beta 10 expression in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    W. Theunissen

    2014-03-01

    Full Text Available Thymosin beta 4 (Tβ4 and thymosin beta 10 (Tβ10 are two members of the beta-thymosin family involved in many cellular processes such as cellular motility, angiogenesis, inflammation, cell survival and wound healing. Recently, a role for beta-thymosins has been proposed in the process of carcinogenesis as both peptides were detected in several types of cancer. The aim of the present study was to investigate the expression pattern of Tβ4 and Tβ10 in hepatocellular carcinoma (HCC. To this end, the expression pattern of both peptides was analyzed in liver samples obtained from 23 subjects diagnosed with HCC. Routinely formalin-fixed and paraffin-embedded liver samples were immunostained by indirect immunohistochemistry with polyclonal antibodies to Tβ4 and Tβ10. Immunoreactivity for Tβ4 and Tβ10 was detected in the liver parenchyma of the surrounding tumor area. Both peptides showed an increase in granular reactivity from the periportal to the periterminal hepatocytes. Regarding HCC, Tβ4 reactivity was detected in 7/23 cases (30% and Tβ10 reactivity in 22/23 (97% cases analyzed, adding HCC to human cancers that express these beta-thymosins. Intriguing finding was seen looking at the reactivity of both peptides in tumor cells infiltrating the surrounding liver. Where Tβ10 showed a strong homogeneous expression, was Tβ4 completely absent in cells undergoing stromal invasion. The current study shows expression of both beta-thymosins in HCC with marked differences in their degree of expression and frequency of immunoreactivity. The higher incidence of Tβ10 expression and its higher reactivity in tumor cells involved in stromal invasion indicate a possible major role for Tβ10 in HCC progression.

  15. IGF-IR promotes prostate cancer growth by stabilizing α5β1 integrin protein levels.

    Directory of Open Access Journals (Sweden)

    Aejaz Sayeed

    Full Text Available Dynamic crosstalk between growth factor receptors, cell adhesion molecules and extracellular matrix is essential for cancer cell migration and invasion. Integrins are transmembrane receptors that bind extracellular matrix proteins and enable cell adhesion and cytoskeletal organization. They also mediate signal transduction to regulate cell proliferation and survival. The type 1 insulin-like growth factor receptor (IGF-IR mediates tumor cell growth, adhesion and inhibition of apoptosis in several types of cancer. We have previously demonstrated that β1 integrins regulate anchorage-independent growth of prostate cancer (PrCa cells by regulating IGF-IR expression and androgen receptor-mediated transcriptional functions. Furthermore, we have recently reported that IGF-IR regulates the expression of β1 integrins in PrCa cells. We have dissected the mechanism through which IGF-IR regulates β1 integrin expression in PrCa. Here we report that IGF-IR is crucial for PrCa cell growth and that β1 integrins contribute to the regulation of proliferation by IGF-IR. We demonstrate that β1 integrin regulation by IGF-IR does not occur at the mRNA level. Exogenous expression of a CD4 - β1 integrin cytoplasmic domain chimera does not interfere with such regulation and fails to stabilize β1 integrin expression in the absence of IGF-IR. This appears to be due to the lack of interaction between the β1 cytoplasmic domain and IGF-IR. We demonstrate that IGF-IR stabilizes the β1 subunit by protecting it from proteasomal degradation. The α5 subunit, one of the binding partners of β1, is also downregulated along with β1 upon IGF-IR knockdown while no change is observed in the expression of the α2, α3, α4, α6 and α7 subunits. Our results reveal a crucial mechanistic role for the α5β1 integrin, downstream of IGF-IR, in regulating cancer growth.

  16. Human epidermal keratinocyte cell response on integrin-specific artificial extracellular matrix proteins.

    Science.gov (United States)

    Tjin, Monica Suryana; Chua, Alvin Wen Choong; Ma, Dong Rui; Lee, Seng Teik; Fong, Eileen

    2014-08-01

    Cell-matrix interactions play critical roles in regulating cellular behavior in wound repair and regeneration of the human skin. In particular, human skin keratinocytes express several key integrins such as alpha5beta1, alpha3beta1, and alpha2beta1 for binding to the extracellular matrix (ECM) present in the basement membrane in uninjured skin. To mimic these key integrin-ECM interactions, artificial ECM (aECM) proteins containing functional domains derived from laminin 5, type IV collagen, fibronectin, and elastin are prepared. Human skin keratinocyte cell responses on the aECM proteins are specific to the cell-binding domain present in each construct. Keratinocyte attachment to the aECM protein substrates is also mediated by specific integrin-material interactions. In addition, the aECM proteins are able to support the proliferation of keratinocyte stem cells, demonstrating their promise for use in skin tissue engineering.

  17. Integrin αIIb (CD41 plays a role in the maintenance of hematopoietic stem cell activity in the mouse embryonic aorta

    Directory of Open Access Journals (Sweden)

    Jean-Charles Boisset

    2013-04-01

    Integrins are transmembrane receptors that play important roles as modulators of cell behaviour through their adhesion properties and the initiation of signaling cascades. The αIIb integrin subunit (CD41 is one of the first cell surface markers indicative of hematopoietic commitment. αIIb pairs exclusively with β3 to form the αIIbβ3 integrin. β3 (CD61 also pairs with αv (CD51 to form the αvβ3 integrin. The expression and putative role of these integrins during mouse hematopoietic development is as yet unknown. We show here that hematopoietic stem cells (HSCs differentially express αIIbβ3 and αvβ3 integrins throughout development. Whereas the first HSCs generated in the aorta at mid-gestation express both integrins, HSCs from the placenta only express αvβ3, and most fetal liver HSCs do not express either integrin. By using αIIb deficient embryos, we show that αIIb is not only a reliable HSC marker but it also plays an important and specific function in maintaining the HSC activity in the mouse embryonic aorta.

  18. Thymosin Beta-4 Suppresses Osteoclastic Differentiation and Inflammatory Responses in Human Periodontal Ligament Cells.

    Directory of Open Access Journals (Sweden)

    Sang-Im Lee

    Full Text Available Recent reports suggest that thymosin beta-4 (Tβ4 is a key regulator for wound healing and anti-inflammation. However, the role of Tβ4 in osteoclast differentiation remains unclear.The purpose of this study was to evaluate Tβ4 expression in H2O2-stimulated human periodontal ligament cells (PDLCs, the effects of Tβ4 activation on inflammatory response in PDLCs and osteoclastic differentiation in mouse bone marrow-derived macrophages (BMMs, and identify the underlying mechanism.Reverse transcription-polymerase chain reactions and Western blot analyses were used to measure mRNA and protein levels, respectively. Osteoclastic differentiation was assessed in mouse bone marrow-derived macrophages (BMMs using conditioned medium (CM from H2O2-treated PDLCs.Tβ4 was down-regulated in H2O2-exposed PDLCs in dose- and time-dependent manners. Tβ4 activation with a Tβ4 peptide attenuated the H2O2-induced production of NO and PGE2 and up-regulated iNOS, COX-2, and osteoclastogenic cytokines (TNF-α, IL-1β, IL-6, IL-8, and IL-17 as well as reversed the effect on RANKL and OPG in PDLCs. Tβ4 peptide inhibited the effects of H2O2 on the activation of ERK and JNK MAPK, and NF-κB in PDLCs. Furthermore, Tβ4 peptide inhibited osteoclast differentiation, osteoclast-specific gene expression, and p38, ERK, and JNK phosphorylation and NF-κB activation in RANKL-stimulated BMMs. In addition, H2O2 up-regulated Wnt5a and its cell surface receptors, Frizzled and Ror2 in PDLCs. Wnt5a inhibition by Wnt5a siRNA enhanced the effects of Tβ4 on H2O2-mediated induction of pro-inflammatory cytokines and osteoclastogenic cytokines as well as helping osteoclastic differentiation whereas Wnt5a activation by Wnt5a peptide reversed it.In conclusion, this study demonstrated, for the first time, that Tβ4 was down-regulated in ROS-stimulated PDLCs as well as Tβ4 activation exhibited anti-inflammatory effects and anti-osteoclastogenesis in vitro. Thus, Tβ4 activation might be a

  19. Alterated integrin expression in lichen planopilaris

    Directory of Open Access Journals (Sweden)

    Erriquez Roberta

    2007-02-01

    Full Text Available Abstract Background Lichen planopilaris (LPP is an inflammatory disease characterized by a lymphomononuclear infiltrate surrounding the isthmus and infundibulum of the hair follicle of the scalp, that evolves into atrophic/scarring alopecia. In the active phase of the disease hairs are easily plucked with anagen-like hair-roots. In this study we focused on the expression of integrins and basement membrane components of the hair follicle in active LPP lesions. Methods Scalp biopsies were taken in 10 patients with LPP and in 5 normal controls. Using monoclonal antibodies against α3β1 and α6β4 integrins we showed the expression of these integrins and of the basement membrane components of the hair follicle in active LPP lesions and in healthy scalp skin. Results In the LPP involved areas, α3β1 was distributed in a pericellular pattern, the α6 subunit was present with a basolateral distribution while the β4 subunit showed discontinuous expression at the basal pole and occasionally, basolateral staining of the hair follicle. Conclusion: An altered distribution of the integrins in active LPP lesions can explain the phenomenon of easy pulling-out of the hair with a "gelatinous" root-sheath.

  20. Discovery of platyhelminth-specific α/β-integrin families and evidence for their role in reproduction in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Svenja Beckmann

    functions of integrins in a trematode model parasite, revealing the complexity of molecular processes involved in its reproductive biology, which may be representative for other platyhelminths.

  1. Integrin-mediated cell migration is blocked by inhibitors of human neuraminidase.

    Science.gov (United States)

    Jia, Feng; Howlader, Md Amran; Cairo, Christopher W

    2016-09-01

    Integrins are critical receptors in cell migration and adhesion. A number of mechanisms are known to regulate the function of integrins, including phosphorylation, conformational change, and cytoskeletal anchoring. We investigated whether native neuraminidase (Neu, or sialidase) enzymes which modify glycolipids could play a role in regulating integrin-mediated cell migration. Using a scratch assay, we found that exogenously added Neu3 and Neu4 activity altered rates of cell migration. We observed that Neu4 increased the rate of migration in two cell lines (HeLa, A549); while Neu3 only increased migration in HeLa cells. A bacterial neuraminidase was able to increase the rate of migration in HeLa, but not in A549 cells. Treatment of cells with complex gangliosides (GM1, GD1a, GD1b, and GT1b) resulted in decreased cell migration rates, while LacCer was able to increase rates of migration in both lines. Importantly, our results show that treatment of cells with inhibitors of native Neu enzymes had a dramatic effect on the rates of cell migration. The most potent compound tested targeted the human Neu4 isoenzyme, and was able to substantially reduce the rate of cell migration. We found that the lateral mobility of integrins was reduced by treatment of cells with Neu3, suggesting that Neu3 enzyme activity resulted in changes to integrin-co-receptor or integrin-cytoskeleton interactions. Finally, our results support the hypothesis that inhibitors of human Neu can be used to investigate mechanisms of cell migration and for the development of anti-adhesive therapies. PMID:27344026

  2. Integrin alphaVbeta6 is a high-affinity receptor for coxsackievirus A9.

    Science.gov (United States)

    Heikkilä, Outi; Susi, Petri; Stanway, Glyn; Hyypiä, Timo

    2009-01-01

    Coxsackievirus A9 (CAV9), a member of the genus Enterovirus in the family Picornaviridae, possesses an integrin-binding arginine-glycine-aspartic acid (RGD) motif in the C terminus of VP1 capsid protein. CAV9 has been shown to utilize integrins alphaVbeta3 and alphaVbeta6 as primary receptors for cell attachment. While CAV9 RGD-mutants (RGE and RGDdel) are capable of infecting rhabdomyosarcoma (RD) cell line, they grow very poorly in an epithelial lung carcinoma cell line (A549). In this study, the relationships between CAV9 infectivity in A549 and RD cells, receptor expression and integrin binding were analysed. A549 cells were shown to express both integrins alphaVbeta3 and alphaVbeta6, whereas alphaVbeta6 expression was not detected on the RD cells. Native CAV9 but not RGE and RGDdel mutants bound efficiently to immobilized alphaVbeta3 and alphaVbeta6. Adhesion of CAV9 but not RGE/RGDdel to A549 cells was also significantly higher than to RD cells. In contrast, no affinity or adhesion of bacterially produced VP1 proteins to the integrins or to the cells was detected. Function-blocking antibodies against alphaV-integrins blocked CAV9 but not CAV9-RGDdel infectivity, indicating that the viruses use different internalization routes; this may explain the differential infection kinetics of CAV9 and RGDdel. In an affinity assay, soluble alphaVbeta6, but not alphaVbeta3, bound to immobilized CAV9. Similarly, only soluble alphaVbeta6 blocked virus infectivity. These data suggest that CAV9 binding to alphaVbeta6 is a high-affinity interaction, which may indicate its importance in clinical infections; this remains to be determined.

  3. Integrins, muscle agrin and sarcoglycans during muscular inactivity conditions: an immunohistochemical study

    Directory of Open Access Journals (Sweden)

    G Anastasi

    2009-06-01

    Full Text Available Sarcoglycans are transmembrane proteins that seem to be functionally and pathologically as important as dystrophin. Sarcoglycans cluster together to form a complex, which is localized in the cell membrane of skeletal, cardiac, and smooth muscle. It has been proposed that the dystrophin-glycoprotein complex (DGC links the actin cytoskeleton with the extracellular matrix and the proper maintenance of this connection is thought to be crucial to the mechanical stability of the sarcolemma. The integrins are a family of heterodimeric cell surface receptors which play a crucial role in cell adhesion including cell-matrix and intracellular interactions and therefore are involved in various biological phenomena, including cell migration, and differentiation tissue repair. Sarcoglycans and integrins play a mechanical and signaling role stabilizing the systems during cycles of contraction and relaxation.Several studies suggested the possibility that integrins might play a role in muscle agrin signalling. On these basis, we performed an immunohistochemical analyzing sarcoglycans, integrins and agrin, on human skeletal muscle affected by sensitive-motor polyneuropathy, in order to better define the correlation between these proteins and neurogenic atrophy due to peripheral neuropathy. Our results showed the existence of a cascade mechanism which provoke a loss of regulatory effects of muscle activity on costameres, due to loss of muscle and neural agrin.This cascade mechanism could determine a quantitative modification of transmembrane receptors and loss of ?7B could be replaced and reinforced by enhanced expression of the ?7A integrin to restore muscle fiber viability. Second, it is possible that the reduced cycles of contraction and relaxation of muscle fibers, during muscular atrophy, provoke a loss of mechanical stresses transmitted over cell surface receptors that physically couple the cytoskeleton to extracellular matrix. Consequently, these mechanical

  4. Integrin-mediated cell migration is blocked by inhibitors of human neuraminidase.

    Science.gov (United States)

    Jia, Feng; Howlader, Md Amran; Cairo, Christopher W

    2016-09-01

    Integrins are critical receptors in cell migration and adhesion. A number of mechanisms are known to regulate the function of integrins, including phosphorylation, conformational change, and cytoskeletal anchoring. We investigated whether native neuraminidase (Neu, or sialidase) enzymes which modify glycolipids could play a role in regulating integrin-mediated cell migration. Using a scratch assay, we found that exogenously added Neu3 and Neu4 activity altered rates of cell migration. We observed that Neu4 increased the rate of migration in two cell lines (HeLa, A549); while Neu3 only increased migration in HeLa cells. A bacterial neuraminidase was able to increase the rate of migration in HeLa, but not in A549 cells. Treatment of cells with complex gangliosides (GM1, GD1a, GD1b, and GT1b) resulted in decreased cell migration rates, while LacCer was able to increase rates of migration in both lines. Importantly, our results show that treatment of cells with inhibitors of native Neu enzymes had a dramatic effect on the rates of cell migration. The most potent compound tested targeted the human Neu4 isoenzyme, and was able to substantially reduce the rate of cell migration. We found that the lateral mobility of integrins was reduced by treatment of cells with Neu3, suggesting that Neu3 enzyme activity resulted in changes to integrin-co-receptor or integrin-cytoskeleton interactions. Finally, our results support the hypothesis that inhibitors of human Neu can be used to investigate mechanisms of cell migration and for the development of anti-adhesive therapies.

  5. Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration.

    Science.gov (United States)

    García-Melero, Ana; Reverter, Meritxell; Hoque, Monira; Meneses-Salas, Elsa; Koese, Meryem; Conway, James R W; Johnsen, Camilla H; Alvarez-Guaita, Anna; Morales-Paytuvi, Frederic; Elmaghrabi, Yasmin A; Pol, Albert; Tebar, Francesc; Murray, Rachael Z; Timpson, Paul; Enrich, Carlos; Grewal, Thomas; Rentero, Carles

    2016-01-15

    Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN). Because FN is directly linked to the ability of cells to migrate, this prompted us to investigate the role of AnxA6 in cell migration. Up-regulation of AnxA6 in several cell models was associated with reduced cell migration in wound healing, individual cell tracking and three-dimensional migration/invasion assays. The reduced ability of AnxA6-expressing cells to migrate was associated with decreased cell surface expression of αVβ3 and α5β1 integrins, both FN receptors. Mechanistically, we found that elevated AnxA6 levels interfered with syntaxin-6 (Stx6)-dependent recycling of integrins to the cell surface. AnxA6 overexpression caused mislocalization and accumulation of Stx6 and integrins in recycling endosomes, whereas siRNA-mediated AnxA6 knockdown did not modify the trafficking of integrins. Given our recent findings that inhibition of cholesterol export from late endosomes (LEs) inhibits Stx6-dependent integrin recycling and that elevated AnxA6 levels cause LE cholesterol accumulation, we propose that AnxA6 and blockage of LE cholesterol transport are critical for endosomal function required for Stx6-mediated recycling of integrins in cell migration.

  6. Down-regulation of integrin β1 and focal adhesion kinase in renal glomeruli under various hemodynamic conditions.

    Directory of Open Access Journals (Sweden)

    Xiaoli Yuan

    Full Text Available Given that integrin β1 is an important component of the connection to maintain glomerular structural integrity, by binding with multiple extracellular matrix proteins and mediating intracellular signaling. Focal adhesion kinase (FAK is the most essential intracellular integrator in the integrin β1-FAK signalling pathway. Here, we investigated the changes of the two molecules and visualized the possible interaction between them under various hemodynamic conditions in podocytes. Mice kidney tissues were prepared using in vivo cryotechnique (IVCT and then were stained and observed using light microscopy, confocal laser scanning microscopy and immunoelectron microscopy. The expression of these molecules were examined by western blot. Under the normal condition, integrin β1 stained continually and evenly at the membrane, and FAK was located in the cytoplasm and nuclei of the podocytes. There were significant colocalized plaques of two molecules. But under acute hypertensive and cardiac arrest conditions, integrin β1 decreased and stained intermittently. Similarly, FAK decreased and appeared uneven. Additionally, FAK translocated to the nuclei of the podocytes. As a result, the colocalization of integrin β1 and FAK reduced obviously under these conditions. Western blot assay showed a consistent result with the immunostaining. Collectively, the abnormal redistribution and decreased expressions of integrin β1 and FAK are important molecular events in regulating the functions of podocytes under abnormal hemodynamic conditions. IVCT could offer considerable advantages for morphological analysis when researching renal diseases.

  7. Myristoylated Alanine Rich C Kinase Substrate (MARCKS) is essential to β2-integrin dependent responses of equine neutrophils.

    Science.gov (United States)

    Sheats, Mary K; Pescosolido, Kimberly C; Hefner, Ethan M; Sung, Eui Jae; Adler, Kenneth B; Jones, Samuel L

    2014-08-15

    Neutrophil infiltration is a prominent feature in a number of pathologic conditions affecting horses including recurrent airway obstruction, ischemia-reperfusion injury, and laminitis. Cell signaling components involved in neutrophil migration represent targets for novel anti-inflammatory therapies. In order to migrate into tissue, neutrophils must respond to chemoattractant signals in their external environment through activation of adhesion receptors (i.e. integrins) and reorganization of the actin cytoskeleton. Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS), a highly conserved actin-binding protein, has a well demonstrated role in cytoskeletal dependent cellular functions (i.e. adhesion, spreading, and migration), but the details of MARCKS involvement in these processes remain vague. We hypothesized that MARCKS serves as a link between the actin cytoskeleton and integrin function in neutrophils. Using a MARCKS-specific inhibitor peptide known as MANS on equine neutrophils in vitro, we demonstrate that inhibition of MARCKS function significantly attenuates β2-integrin-dependent neutrophil functions including migration, adhesion, and immune complex-mediated respiratory burst. The MANS peptide did not, however, inhibit the β2-integrin-independent PMA mediated respiratory burst. These results attest to the essential role of MARCKS function in regulating neutrophil responses, and strongly implicate MARCKS as a potential regulator of β2-integrins in neutrophils. PMID:24857637

  8. Integrin-linked kinase regulates interphase and mitotic microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Simin Lim

    Full Text Available Integrin-linked kinase (ILK localizes to both focal adhesions and centrosomes in distinct multiprotein complexes. Its dual function as a kinase and scaffolding protein has been well characterized at focal adhesions, where it regulates integrin-mediated cell adhesion, spreading, migration and signaling. At the centrosomes, ILK regulates mitotic spindle organization and centrosome clustering. Our previous study showed various spindle defects after ILK knockdown or inhibition that suggested alteration in microtubule dynamics. Since ILK expression is frequently elevated in many cancer types, we investigated the effects of ILK overexpression on microtubule dynamics. We show here that overexpressing ILK in HeLa cells was associated with a shorter duration of mitosis and decreased sensitivity to paclitaxel, a chemotherapeutic agent that suppresses microtubule dynamics. Measurement of interphase microtubule dynamics revealed that ILK overexpression favored microtubule depolymerization, suggesting that microtubule destabilization could be the mechanism behind the decreased sensitivity to paclitaxel, which is known to stabilize microtubules. Conversely, the use of a small molecule inhibitor selective against ILK, QLT-0267, resulted in suppressed microtubule dynamics, demonstrating a new mechanism of action for this compound. We further show that treatment of HeLa cells with QLT-0267 resulted in higher inter-centromere tension in aligned chromosomes during mitosis, slower microtubule regrowth after cold depolymerization and the presence of a more stable population of spindle microtubules. These results demonstrate that ILK regulates microtubule dynamics in both interphase and mitotic cells.

  9. TM4SF5 suppression disturbs integrin α5-related signalling and muscle development in zebrafish.

    Science.gov (United States)

    Choi, Yoon-Ju; Kim, Hyun Ho; Kim, Jeong-Gyun; Kim, Hye-Jin; Kang, Minkyung; Lee, Mi-Sook; Ryu, Jihye; Song, Haeng Eun; Nam, Seo Hee; Lee, Doohyung; Kim, Kyu-Won; Lee, Jung Weon

    2014-08-15

    TM4SF5 (transmembrane 4 L six family member 5) is involved in EMT (epithelial-mesenchymal transition) for liver fibrosis and cancer metastasis; however, the function(s) of TM4SF5 during embryogenesis remains unknown. In the present study the effects of TM4SF5 on embryogenesis of zebrafish were investigated. tm4sf5 mRNA was expressed in the posterior somites during somitogenesis and in whole myotome 1 dpf (day post-fertilization). tm4sf5 suppression impaired development of the trunk with aberrant morphology of muscle fibres and altered expression of integrin α5. The arrangement and adhesion of muscle cells were abnormally disorganized in tm4sf5 morphants with reduced muscle fibre masses, where integrin α5-related signalling molecules, including fibronectin, FAK (focal adhesion kinase), vinculin and actin were aberrantly localized, compared with those in control fish. Aberrant muscle developments in tm4sf5 morphants were recovered by additional tm4sf5 or integrin α5 mRNA injection. Such a role for TM4SF5 was observed in the differentiation of C2C12 mouse myoblast cells to multinuclear muscle cells. Taken together, the results show that TM4SF5 controls muscle differentiation via co-operation with integrin α5-related signalling. PMID:24897542

  10. Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary

    Directory of Open Access Journals (Sweden)

    Tracy L. Meehan

    2015-12-01

    Full Text Available Inefficient clearance of dead cells or debris by epithelial cells can lead to or exacerbate debilitating conditions such as retinitis pigmentosa, macular degeneration, chronic obstructive pulmonary disease and asthma. Despite the importance of engulfment by epithelial cells, little is known about the molecular changes that are required within these cells. The misregulation of integrins has previously been associated with disease states, suggesting that a better understanding of the regulation of receptor trafficking could be key to treating diseases caused by defects in phagocytosis. Here, we demonstrate that the integrin heterodimer αPS3/βPS becomes apically enriched and is required for engulfment by the epithelial follicle cells of the Drosophila ovary. We found that integrin heterodimer localization and function is largely directed by the α-subunit. Moreover, proper cell polarity promotes asymmetric integrin enrichment, suggesting that αPS3/βPS trafficking occurs in a polarized fashion. We show that several genes previously known for their roles in trafficking and cell migration are also required for engulfment. Moreover, as in mammals, the same α-integrin subunit is required by professional and non-professional phagocytes and migrating cells in Drosophila. Our findings suggest that migrating and engulfing cells use common machinery, and demonstrate a crucial role for integrin function and polarized trafficking of integrin subunits during engulfment. This study also establishes the epithelial follicle cells of the Drosophila ovary as a powerful model for understanding the molecular changes required for engulfment by a polarized epithelium.

  11. β1 Integrins Mediate Mechanosensitive Signaling Pathways in Osteocytes

    OpenAIRE

    Litzenberger, Julie B.; Tummala, Padmaja; Kim, Jae-Beom; Jacobs, Christopher R.

    2010-01-01

    Integrins are cell-substrate adhesion proteins that initiate intracellular signaling and may serve as mechanosensors in bone. MLO-Y4 cells were stably transfected with a dominant negative form of the β1 integrin subunit (β1DN) containing the transmembrane domain and cytoplasmic tail of β1 integrin. Cells expressing β1DN had reduced vinculin localization to focal contacts but no change in intracellular actin organization. When exposed to oscillatory fluid flow, β1DN cells exhibited a significa...

  12. The role of alpha3beta1 integrin in determining the supramolecular organization of laminin-5 in the extracellular matrix of keratinocytes.

    Science.gov (United States)

    deHart, Gregory W; Healy, Kevin E; Jones, Jonathan C R

    2003-02-01

    Analyses of mice with targeted deletions in the genes for alpha3 and beta1 integrin suggest that the alpha3beta1 integrin heterodimer likely determines the organization of the extracellular matrix within the basement membrane of skin. Here we tested this hypothesis using keratinocytes derived from alpha3 integrin-null mice. We have compared the organizational state of laminin-5, a ligand of alpha3beta1 integrin, in the matrix of wild-type keratinocytes with that of laminin-5 in the matrix of alpha3 integrin-null cells. Laminin-5 distributes diffusely in arc structures in the matrix of wild-type mouse keratinocytes, whereas laminin-5 is organized into linear, spike-like arrays by the alpha3 integrin-null cells. The fact that alpha3 integrin-null cells are deficient in their ability to assemble a proper laminin-5 matrix is also shown by their failure to remodel laminin-5 when plated onto surfaces coated with purified laminin-5 protein. In sharp contrast, wild-type keratinocytes organize exogenously added laminin-5 into discrete ring-like organizations. These findings led us next to assess whether differences in laminin-5 organization in the matrix of the wild-type and alpha3 integrin-null cells impact cell behavior. Our results indicate that alpha3 integrin-null cells are more motile than their wild-type counterparts and leave extensive trails of laminin-5 over the surface on which they move. Moreover, HEK 293 cells migrate significantly more on the laminin-5-rich matrix derived from the alpha3 integrin-null cells than on the wild-type keratinocyte laminin-5 matrix. In addition, alpha3 integrin-null cells show low strength of adhesion to surfaces coated with purified laminin-5 compared to wild-type cells although both the wild type and the alpha3 integrin-null keratinocytes adhere equally strongly to laminin-5 that has been organized into arrays by other epithelial cells. These data suggest: (1) that alpha3beta1 integrin plays an important role in determining the

  13. Vedolizumab: A novel anti-integrin drug for treatment of inflammatory bowel disease.

    Science.gov (United States)

    Singh, Harmanjit; Grewal, Nipunjot; Arora, Ekta; Kumar, Harish; Kakkar, Ashish Kumar

    2016-01-01

    Inflammatory bowel disease (IBD) is the chronic inflammatory disorder of gastrointestinal tract consisting of two subtypes: Ulcerative colitis and Crohn's disease. IBD occurs due to infiltration of leukocytes in intestinal mucosa and derangements in intestinal barrier function. One of the most important steps in pathogenesis of IBD is the interactions between integrins on the surface of leukocyte. The α4β7 integrin expressing T-cell is an important leukocyte involved in pathogenesis and represents a new drug target for the treatment of IBD. Vedolizumab is a humanized monoclonal antibody, which acts against α4β7 integrin heterodimer and blocks the interaction of α4β7 integrin with MAdCAM-1. It prevents leukocyte binding to endothelial surface and its extravasation into affected tissue. The efficacy and safety of the vedolizumab have been established in many clinical studies. It has shown promising results in various clinical studies where a greater percentage of patients as compared to a placebo achieved and maintained clinical response, clinical remission, and corticosteroid-free clinical remission. Vedolizumab has been shown to be well tolerated with slightly higher risk of infections, headache, naspharyngitis as compared to placebo. This review focuses on the potential role of vedolizumab for the treatment of IBD. PMID:27003961

  14. DNA-based digital tension probes reveal integrin forces during early cell adhesion

    Science.gov (United States)

    Zhang, Yun; Ge, Chenghao; Zhu, Cheng; Salaita, Khalid

    2014-10-01

    Mechanical stimuli profoundly alter cell fate, yet the mechanisms underlying mechanotransduction remain obscure because of a lack of methods for molecular force imaging. Here to address this need, we develop a new class of molecular tension probes that function as a switch to generate a 20- to 30-fold increase in fluorescence upon experiencing a threshold piconewton force. The probes employ immobilized DNA hairpins with tunable force response thresholds, ligands and fluorescence reporters. Quantitative imaging reveals that integrin tension is highly dynamic and increases with an increasing integrin density during adhesion formation. Mixtures of fluorophore-encoded probes show integrin mechanical preference for cyclized RGD over linear RGD peptides. Multiplexed probes with variable guanine-cytosine content within their hairpins reveal integrin preference for the more stable probes at the leading tip of growing adhesions near the cell edge. DNA-based tension probes are among the most sensitive optical force reporters to date, overcoming the force and spatial resolution limitations of traction force microscopy.

  15. Cordycepin suppresses integrin/FAK signaling and epithelial-mesenchymal transition in hepatocellular carcinoma.

    Science.gov (United States)

    Yao, Wen-Ling; Ko, Bor-Sheng; Liu, Tzu-An; Liang, Shu-Man; Liu, Chia-Chia; Lu, Yi-Jhu; Tzean, Shean-Shong; Shen, Tang-Long; Liou, Jun-Yang

    2014-01-01

    Cordycepin, also known as 3-deoxyadenosine, is an analogue of adenosine extracted from the traditional Chinese medicine "Dong Chong Xia Cao". Cordycepin is an active small molecular weight compound and is implicated in modulating multiple physiological functions including immune activation, anti-aging and anti-tumor effects. Several studies have indicated that cordycepin suppresses tumor progression. However, the signaling pathways involved in cordycepin regulating cancer cell motility, invasiveness and epithelial-mesenchymal transition (EMT) remain unclear. In this study, we found that cordycepin inhibits hepatocellular carcinoma (HCC) cell proliferation and migration/invasion. Treatment of cordycepin results in the increasing expression of epithelial marker, Ecadherin while no significant effect was found on N-cadherin α-catenin and β-catenin. Furthermore, although the expression of focal adhesion kinase (FAK) was slightly reduced, the level of phosphorylated FAK was significantly reduced by the treatment of cordycepin. In addition, cordycepin significantly suppresses the expression of integrin α3, integrin α6 and integrin β1 which are crucial interacting partners of FAK in regulating the focal adhesion complex. These results suggest cordycepin may contribute to EMT, antimigration/ invasion and growth inhibitory effects of HCC by suppressing E-cadherin and integrin/FAK signaling. Thus, cordycepin is a potential therapeutic or supplementary agent for preventing HCC tumor progression. PMID:23855336

  16. Expression of VLA-integrins and their related basement membrane ligands in gingiva from patients of various periodontitis categories

    DEFF Research Database (Denmark)

    Gürses, N.; Thorup, Alis Karabulut; Reibel, J.;

    1999-01-01

    integrins, basement membrane, gingiva, periodontitis, periodontal disease activity immunofluorescence......integrins, basement membrane, gingiva, periodontitis, periodontal disease activity immunofluorescence...

  17. N-Cadherin and Integrins: Two Receptor Systems That Mediate Neuronal Process Outgrowth on Astrocyte Surfaces

    OpenAIRE

    Tomaselli, Kevin J.; Neugebauer, Karla M; Bixby, John L.; Lilien, Jack; Reichardt, Louis F.

    2008-01-01

    Receptor-mediated interactions between neurons and astroglia are likely to play a crucial role in the growth and guidance of CNS axons. Using antibodies to neuronal cell surface proteins, we identified two receptor systems mediating neurite outgrowth on cultured astrocytes. N-cadherin, a Ca2+-dependent cell adhesion molecule, functions prominently in the outgrowth of neurites on astrocytes by E8 and E14 chick ciliary ganglion (CC) neurons. β1-class integrin ECM receptor heterodimers function ...

  18. α-Spectrin and integrins act together to regulate actomyosin and columnarization, and to maintain a monolayered follicular epithelium.

    Science.gov (United States)

    Ng, Bing Fu; Selvaraj, Gokul Kannan; Santa-Cruz Mateos, Carmen; Grosheva, Inna; Alvarez-Garcia, Ines; Martín-Bermudo, María Dolores; Palacios, Isabel M

    2016-04-15

    The spectrin cytoskeleton crosslinks actin to the membrane, and although it has been greatly studied in erythrocytes, much is unknown about its function in epithelia. We have studied the role of spectrins during epithelia morphogenesis using theDrosophilafollicular epithelium (FE). As previously described, we show that α-Spectrin and β-Spectrin are essential to maintain a monolayered FE, but, contrary to previous work, spectrins are not required to control proliferation. Furthermore, spectrin mutant cells show differentiation and polarity defects only in the ectopic layers of stratified epithelia, similar to integrin mutants. Our results identify α-Spectrin and integrins as novel regulators of apical constriction-independent cell elongation, asα-Spectrinand integrin mutant cells fail to columnarize. Finally, we show that increasing and reducing the activity of the Rho1-Myosin II pathway enhances and decreases multilayering ofα-Spectrincells, respectively. Similarly, higher Myosin II activity enhances the integrin multilayering phenotype. This work identifies a primary role for α-Spectrin in controlling cell shape, perhaps by modulating actomyosin. In summary, we suggest that a functional spectrin-integrin complex is essential to balance adequate forces, in order to maintain a monolayered epithelium. PMID:26952981

  19. Tumor cell adhesion to endothelial cells is increased by endotoxin via an upregulation of beta-1 integrin expression.

    LENUS (Irish Health Repository)

    Andrews, E J

    2012-02-03

    BACKGROUND: Recent studies have demonstrated that metastatic disease develops from tumor cells that adhere to endothelial cells and proliferate intravascularly. The beta-1 integrin family and its ligand laminin have been shown to be important in tumor-to-endothelial cell adhesion. Lipopolysaccharide (LPS) has been implicated in the increased metastatic tumor growth that is seen postoperatively. We postulated that LPS increases tumor cell expression of beta-1 integrins and that this leads to increased adhesion. METHODS: The human metastatic colon cancer cell line LS174T was labeled with an enhanced green fluorescent protein (eGFP) using retroviral transfection. Cell cultures were treated with LPS for 1, 2, and 4 h (n = 6 each) and were subsequently cocultured for 30 or 120 min with confluent human umbilical vein endothelial cells (HUVECs), to allow adherence. Adherent tumor cells were counted using fluorescence microscopy. These experiments were carried out in the presence or absence of a functional blocking beta-1 integrin monoclonal antibody (4B4). Expression of beta-1 integrin and laminin on tumor and HUVECs was assessed using flow cytometric analysis. Tumor cell NF-kappaB activation after incubation with LPS was measured. RESULTS: Tumor cell and HUVEC beta-1 integrin expression and HUVEC expression of laminin were significantly (P < 0.05) enhanced after incubation with LPS. Tumor cell adhesion to HUVECs was significantly increased. Addition of the beta-1 integrin blocking antibody reduced tumor cell adhesion to control levels. LPS increased tumor cell NF-kappaB activation. CONCLUSIONS: Exposure to LPS increases tumor cell adhesion to the endothelium through a beta-1 integrin-mediated pathway that is NF-kappaB dependent. This may provide a target for immunotherapy directed at reducing postoperative metastatic tumor growth.

  20. Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Carrion, Bita; Kong, Yen P. [Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Kaigler, Darnell [Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109 (United States); Putnam, Andrew J., E-mail: putnam@umich.edu [Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-11-15

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. Highlights: • BMSCs stimulate angiogenesis, but the mechanisms remain unclear. • We silenced the expression of the α6 integrin subunit in BMSCs. • Silencing this receptor subunit significantly inhibited angiogenic sprouting. • Knocking down α6 integrin affected laminin and αSMA expression. • Silencing α6 integrin expression also reduced BMSC proliferation.

  1. Can alterations in integrin and laminin-5 expression be used as markers of malignancy?

    DEFF Research Database (Denmark)

    Thorup, Alis Karabulut; Reibel, J.; Schjødt, Morten;

    1998-01-01

    Integrins, laminin-5, cell adhesion molecules, oral, leukoplakia, premalignant, squamous cell carcinomas......Integrins, laminin-5, cell adhesion molecules, oral, leukoplakia, premalignant, squamous cell carcinomas...

  2. The NLRP3 Inflammasome Is a Pathogen Sensor for Invasive Entamoeba histolytica via Activation of α5β1 Integrin at the Macrophage-Amebae Intercellular Junction.

    Directory of Open Access Journals (Sweden)

    Leanne Mortimer

    2015-05-01

    Full Text Available Entamoeba histolytica (Eh is an extracellular protozoan parasite of humans that invades the colon to cause life-threatening intestinal and extra-intestinal amebiasis. Colonized Eh is asymptomatic, however, when trophozoites adhere to host cells there is a considerable inflammatory response that is critical in the pathogenesis of amebiasis. The host and/or parasite factors that trigger the inflammatory response to invading Eh are not well understood. We recently identified that Eh adherence to macrophages induces inflammasome activation and in the present study we sought to determine the molecular events upon contact that coordinates this response. Here we report that Eh contact-dependent activation of α5β1 integrin is critical for activation of the NLRP3 inflammasome. Eh-macrophage contact triggered recruitment of α5β1 integrin and NLRP3 into the intercellular junction, where α5β1 integrin underwent activation by an integrin-binding cysteine protease on the parasite surface, termed EhCP5. As a result of its activation, α5β1 integrin induced ATP release into the extracellular space through opening of pannexin-1 channels that signalled through P2X7 receptors to deliver a critical co-stimulatory signal that activated the NLRP3 inflammasome. Both the cysteine protease activity and integrin-binding domain of EhCP5 were required to trigger α5β1 integrin that led to ATP release and NLRP3 inflammasome activation. These findings reveal engagement of α5β1 integrin across the parasite-host junction is a key regulatory step that initiates robust inflammatory responses to Eh. We propose that α5β1 integrin distinguishes Eh direct contact and functions with NLRP3 as pathogenicity sensor for invasive Eh infection.

  3. Crosstalk between Fibroblast Growth Factor (FGF Receptor and Integrin through Direct Integrin Binding to FGF and Resulting Integrin-FGF-FGFR Ternary Complex Formation

    Directory of Open Access Journals (Sweden)

    Seiji Mori

    2013-08-01

    Full Text Available Fibroblast growth factors (FGFs play a critical role in diverse physiological processes and the pathogenesis of diseases. Integrins are involved in FGF signaling, since integrin antagonists suppress FGF signaling. This is called integrin-FGF crosstalk, while the specifics of the crosstalk are unclear. This review highlights recent findings that FGF1 directly interacts with integrin αvβ3, and the resulting integrin-FGF-fibroblast growth factor receptor (FGFR ternary complex formation is essential for FGF1-induced cell proliferation, migration and angiogenesis. An integrin-binding defective FGF1 mutant (Arg-50 to Glu, R50E is defective in ternary complex formation and in inducing cell proliferation, migration and angiogenesis, while R50E still binds to the FGF receptor and heparin. In addition, R50E suppressed tumorigenesis in vivo, while wild-type (WT FGF1 enhanced it. Thus, the direct interaction between FGF1 and integrin αvβ3 is a potential therapeutic target, and R50E is a potential therapeutic agent.

  4. Distinct roles for dystroglycan, beta1 integrin and perlecan in cell surface laminin organization

    DEFF Research Database (Denmark)

    Henry, M D; Satz, J S; Brakebusch, C;

    2001-01-01

    integrin-deficient ES cells, laminin-1 binds to the cell surface, but fails to organize into more morphologically complex structures. This result indicates that beta1 integrin function is required after DG function in the cell surface-mediated laminin assembly process. In perlecan-deficient ES cells......, the formation of complex laminin-1 structures is defective, implicating perlecan in the laminin matrix assembly process. Moreover, laminin and perlecan reciprocally modulate the organization of the other on the cell surface. Taken together, the data support a model whereby DG serves as a receptor essential......Dystroglycan (DG) is a cell surface receptor for several extracellular matrix (ECM) molecules including laminins, agrin and perlecan. Recent data indicate that DG function is required for the formation of basement membranes in early development and the organization of laminin on the cell surface...

  5. The crucial role of collagen-binding integrins in maintaining the mechanical properties of human scleral fibroblasts-seeded collagen matrix

    OpenAIRE

    Hu, Shoulong; Cui, Dongmei; Yang, Xiao; Hu, Jianmin; Wan, Wenjuan; Zeng, Junwen

    2011-01-01

    Purpose The aim of this study was to identify the presence of collagen-binding integrin subunits in human scleral fibroblasts (HSFs) and investigate their actual functions in maintaining the mechanical creep properties of the HSFs-seeded collagen matrix. Methods Primary HSFs were cultured in vitro. Reverse- transcription PCR was used to detect mRNA expression of integrin α1, α2, and β1 subunits in HSFs. In addition, western blot analysis and immunofluorescence were used to detect their protei...

  6. Claudin-7 indirectly regulates the integrin/FAK signaling pathway in human colon cancer tissue.

    Science.gov (United States)

    Ding, Lei; Wang, Liyong; Sui, Leiming; Zhao, Huanying; Xu, Xiaoxue; Li, Tengyan; Wang, Xiaonan; Li, Wenjing; Zhou, Ping; Kong, Lu

    2016-08-01

    The claudin family of proteins is integral to the structure and function of tight junctions. The role of claudin-7 (Cldn-7, CLDN7) in regulating the integrin/focal adhesion kinase (FAK)/ERK signaling pathway remains poorly understood. Therefore, we investigated differences in gene expression, primarily focusing on CLDN7 and integrin/FAK/ERK signaling pathway genes, between colon cancer and adjacent normal tissues. Quantitative real-time reverse transcription-PCR and immunohistochemistry were utilized to verify the results of mRNA and protein expression, respectively. In silico analysis was used to predict co-regulation between Cldn-7 and integrin/FAK/ERK signaling pathway components, and the STRING database was used to analyze protein-protein interaction pairs among these proteins. Meta-analysis of expression microarrays in The Cancer Genome Atlas (TCGA) database was used to identify significant correlations between Cldn-7 and components of predicted genes in the integrin/FAK/ERK signaling pathway. Our results showed marked cancer stage-specific decreases in the protein expression of Cldn-7, Gelsolin, MAPK1 and MAPK3 in colon cancer samples, and the observed changes for all proteins except Cldn-7 were in agreement with changes in the corresponding mRNA levels. Cldn-7 might indirectly regulate MAPK3 via KRT8 due to KRT8 co-expression with MAPK3 or CLDN7. Our bioinformatics methods supported the hypothesis that Cldn-7 does not directly regulate any genes in the integrin/FAK/ERK signaling pathway. These factors may participate in a common network that regulates cancer progression in which the MAPK pathway serves as the central node.

  7. Effects of β4 integrin expression on microRNA patterns in breast cancer

    Directory of Open Access Journals (Sweden)

    Kristin D. Gerson

    2012-05-01

    The integrin α6β4 is defined as an adhesion receptor for laminins. Referred to as ‘β4’, this integrin plays a key role in the progression of various carcinomas through its ability to orchestrate key signal transduction events and promote cell motility. To identify novel downstream effectors of β4 function in breast cancer, microRNAs (miRNAs were examined because of their extensive links to tumorigenesis and their ability to regulate gene expression globally. Two breast carcinoma cell lines and a collection of invasive breast carcinomas with varying β4 expression were used to assess the effect of this integrin on miRNA expression. A novel miRNA microarray analysis termed quantitative Nuclease Protection Assay (qNPA revealed that β4 expression can significantly alter miRNA expression and identified two miRNA families, miR-25/32/92abc/363/363-3p/367 and miR-99ab/100, that are consistently downregulated by expression of this integrin. Analysis of published Affymetrix GeneChip data identified 54 common targets of miR-92ab and miR-99ab/100 within the subset of β4-regulated mRNAs, revealing several genes known to be key components of β4-regulated signaling cascades and effectors of cell motility. Gene ontology classification identified an enrichment in genes associated with cell migration within this population. Finally, gene set enrichment analysis of all β4-regulated mRNAs revealed an enrichment in targets belonging to distinct miRNA families, including miR-92ab and others identified by our initial array analyses. The results obtained in this study provide the first example of an integrin globally impacting miRNA expression and provide evidence that select miRNA families collectively target genes important in executing β4-mediated cell motility.

  8. Peptide-directed binding of quantum dots to integrins in human fibroblast.

    Science.gov (United States)

    Shi, Peng; Chen, Hongfeng; Cho, Michael R; Stroscio, Michael A

    2006-03-01

    There is currently a major international effort aimed at integrating semiconductor nanostructures with biological structures. This paper reports the use of peptide sequences with certain motifs like artinine-glycine-aspartic acid (RGD) and leucine-aspartic acid-valine (LDV) to functionalize zinc sulfide (ZnS)-capped cadmiun selenide (CdSe) quantum dots, so that the quantum dot-peptide complexes selectively bind to integrins on HT1080 human fibrosarcoma cells membrane. In this way, an interface between semiconductor nanocrystals and subcellular components was achieved, and the distribution pattern of RGD and LDV receptors on HT1080 cell membranes is revealed. These findings point the way to using a wide class of peptide-functionalized semiconductor quantum dots for the study of cellular processes involving integrins.

  9. How Osteoblasts Sense their Environment: Integrin-Extracellular Matrix Interactions and Mechanical Loading of Bone

    Science.gov (United States)

    Globus, Ruth K.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Osteoblasts are the cells responsible for forming and replacing bone throughout life. We know that mechanical stimulation through weight-bearing at I gravity on Earth is needed to maintain healthy bone, and that osteoblasts play a critical role in that process. Over the last 9 years in my laboratory at NASA ARC, we have studied the regulation of osteoblast function by interactions between the extracellular matrix and die cell. Using a cell culture approach, we defined the repertoire of adhesion receptors, called integrins, which are expressed on the osteoblast surface, as well as specific extracellular matrix proteins, which are needed for cellular differentiation and survival. We are now extending these observations to determine if integrin signaling is involved in the skeletal responses to disuse and recovery from disuse using the rodent model of hindlimb unloading by tail suspension. Together, our cell culture and animal studies are providing new insight into the regulation of osteoblast function in bone.

  10. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry.

    Science.gov (United States)

    Traister, Alexandra; Lu, Mingliang; Coles, John G; Maynes, Jason T

    2016-06-01

    Using hearts from mice overexpressing integrin linked kinase (ILK) behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: PXD001053). The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes. PMID:27408918

  11. Lamellipodial tension, not integrin/ligand binding, is the crucial factor to realise integrin activation and cell migration.

    Science.gov (United States)

    Schulte, Carsten; Ferraris, Gian Maria Sarra; Oldani, Amanda; Galluzzi, Massimiliano; Podestà, Alessandro; Puricelli, Luca; de Lorenzi, Valentina; Lenardi, Cristina; Milani, Paolo; Sidenius, Nicolai

    2016-01-01

    The molecular clutch (MC) model proposes that actomyosin-driven force transmission permits integrin-dependent cell migration. To investigate the MC, we introduced diverse talin (TLN) and integrin variants into Flp-In™ T-Rex™ HEK293 cells stably expressing uPAR. Vitronectin variants served as substrate providing uPAR-mediated cell adhesion and optionally integrin binding. This particular system allowed us to selectively analyse key MC proteins and interactions, effectively from the extracellular matrix substrate to intracellular f-actin, and to therewith study mechanobiological aspects of MC engagement also uncoupled from integrin/ligand binding. With this experimental approach, we found that for the initial PIP2-dependent membrane/TLN/f-actin linkage and persistent lamellipodia formation the C-terminal TLN actin binding site (ABS) is dispensable. The establishment of an adequate MC-mediated lamellipodial tension instead depends predominantly on the coupling of this C-terminal TLN ABS to the actomyosin-driven retrograde actin flow force. This lamellipodial tension is crucial for full integrin activation eventually determining integrin-dependent cell migration. In the integrin/ligand-independent condition the frictional membrane resistance participates to these processes. Integrin/ligand binding can also contribute but is not necessarily required. PMID:26616200

  12. Integrin-linked Kinase is Essential for Environmental Enrichment Enhanced Hippocampal Neurogenesis and Memory

    OpenAIRE

    Xu, Xu-Feng; Li, Ting; Wang, Dong-Dong; Chen, Bing; Wang, Yue; Chen, Zhe-Yu

    2015-01-01

    Environment enrichment (EE) has a variety of effects on brain structure and function. Brain-derived neurotrophic factor (BDNF) is essential for EE-induced hippocampal neurogenesis and memory enhancement. However, the intracellular pathway downstream of BDNF to modulate EE effects is poorly understood. Here we show that integrin-linked kinase (ILK) levels are elevated upon EE stimuli in a BDNF-dependent manner. Using ILK-shRNA (siILK) lentivirus, we demonstrate that knockdown of ILK impairs EE...

  13. Prostate cancer specific integrin αvβ3 modulates bone metastatic growth and tissue remodeling

    OpenAIRE

    McCabe, NP; De, S.; Vasanji, A; Brainard, J; Byzova, TV

    2007-01-01

    The management of pain and morbidity owing to the spreading and growth of cancer within bone remains to be a paramount problem in clinical care. Cancer cells actively transform bone, however, the molecular requirements and mechanisms of this process remain unclear. This study shows that functional modulation of the αvβ3 integrin receptor in prostate cancer cells is required for progression within bone and determines tumor-induced bone tissue transformation. Using histology and quantitative mi...

  14. Dextromethorphan and its metabolite dextrorphan block alpha3beta4 neuronal nicotinic receptors.

    Science.gov (United States)

    Hernandez, S C; Bertolino, M; Xiao, Y; Pringle, K E; Caruso, F S; Kellar, K J

    2000-06-01

    Dextromethorphan (DM), a structural analog of morphine and codeine, has been widely used as a cough suppressant for more than 40 years. DM is not itself a potent analgesic, but it has been reported to enhance analgesia produced by morphine and nonsteroidal anti-inflammatory drugs. Although DM is considered to be nonaddictive, it has been reported to reduce morphine tolerance in rats and to be useful in helping addicted subjects to withdraw from heroin. Here we studied the effects of DM on neuronal nicotinic receptors stably expressed in human embryonic kidney cells. Studies were carried out to examine the effects of DM on nicotine-stimulated whole cell currents and nicotine-stimulated (86)Rb(+) efflux. We found that both DM and its metabolite dextrorphan block nicotinic receptor function in a noncompetitive but reversible manner, suggesting that both drugs block the receptor channel. Consistent with blockade of the receptor channel, neither drug competed for the nicotinic agonist binding sites labeled by [(3)H]epibatidine. Although DM is approximately 9-fold less potent than the widely used noncompetitive nicotinic antagonist mecamylamine in blocking nicotinic receptor function, the block by DM appears to reverse more slowly than that by mecamylamine. These data indicate that DM is a useful antagonist for studying nicotinic receptor function and suggest that it might prove to be a clinically useful neuronal nicotinic receptor antagonist, possibly helpful as an aid for helping people addicted to nicotine to refrain from smoking, as well as in other conditions where blockade of neuronal nicotinic receptors would be helpful. PMID:10869398

  15. Epitope mapping for monoclonal antibody reveals the activation mechanism for αVβ3 integrin.

    Directory of Open Access Journals (Sweden)

    Tetsuji Kamata

    Full Text Available Epitopes for a panel of anti-αVβ3 monoclonal antibodies (mAbs were investigated to explore the activation mechanism of αVβ3 integrin. Experiments utilizing αV/αIIb domain-swapping chimeras revealed that among the nine mAbs tested, five recognized the ligand-binding β-propeller domain and four recognized the thigh domain, which is the upper leg of the αV chain. Interestingly, the four mAbs included function-blocking as well as non-functional mAbs, although they bound at a distance from the ligand-binding site. The epitopes for these four mAbs were further determined using human-to-mouse αV chimeras. Among the four, P3G8 recognized an amino acid residue, Ser-528, located on the side of the thigh domain, while AMF-7, M9, and P2W7 all recognized a common epitope, Ser-462, that was located close to the α-genu, where integrin makes a sharp bend in the crystal structure. Fibrinogen binding studies for cells expressing wild-type αVβ3 confirmed that AMF-7, M9, and P2W7 were inhibitory, while P3G8 was non-functional. However, these mAbs were all unable to block binding when αVβ3 was constrained in its extended conformation. These results suggest that AMF-7, M9, and P2W7 block ligand binding allosterically by stabilizing the angle of the bend in the bent conformation. Thus, a switchblade-like movement of the integrin leg is indispensable for the affinity regulation of αVβ3 integrin.

  16. alpha 11beta 1 integrin recognizes the GFOGER sequence in interstitial collagens.

    Science.gov (United States)

    Zhang, Wan-Ming; Kapyla, Jarmo; Puranen, J Santeri; Knight, C Graham; Tiger, Carl-Fredrik; Pentikainen, Olli T; Johnson, Mark S; Farndale, Richard W; Heino, Jyrki; Gullberg, Donald

    2003-02-28

    ) integrins also show overlapping biological functions. PMID:12496264

  17. Optimized multimodal nanoplatforms for targeting α(v)β3 integrins.

    Science.gov (United States)

    Bolley, Julie; Lalatonne, Yoann; Haddad, Oualid; Letourneur, Didier; Soussan, Michael; Pérard-Viret, Joelle; Motte, Laurence

    2013-12-01

    Magnetic Resonance Imaging (MRI) using contrast agents is a very powerful technique for diagnosis in clinical medicine and biomedical research. The synthesis of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles targeting αvβ3 integrins and acting as new MRI contrast agents seems to be a promising way for cancer diagnosis. Indeed, it is well established that αvβ3 integrin plays a key role in tumor angiogenesis acting like a receptor for the extracellular matrix proteins like vitronectin, fibronectin through the arginine-glycine-aspartic acid (RGD) sequence. Up-regulation of αvβ3 has been found to be associated with a wide range of cancers, making it a broad-spectrum tumor-marker. In this study, USPIO nanocrystals were synthesized and surface passivated with caffeic acid. The large number of the carboxylic acid functions at the outer surface of the nanoplatforms was used for the covalent coupling of Rhodamine123, polyethylene glycol (PEG) and cyclic RGD. Soluble carbodiimide (EDC) and N-hydroxysuccinimide (NHS) were used to crosslink carboxylic acid with the amino group of the ligands. We examined the design of the nanoplatforms with each individual entity and then the combination of two and three of them. Several methods were used to characterize the nanoparticle surface functionalization and the magnetic properties of these contrast agents were studied using a 1.5 T clinical MRI scanner. The affinity towards integrins was evidenced by surface plasmon resonance and solid-phase receptor-binding assay. PMID:24154564

  18. Regulation of Ligand and Shear Stress-induced Insulin-like Growth Factor 1 (IGF1) Signaling by the Integrin Pathway.

    Science.gov (United States)

    Tahimic, Candice G T; Long, Roger K; Kubota, Takuo; Sun, Maggie Yige; Elalieh, Hashem; Fong, Chak; Menendez, Alicia T; Wang, Yongmei; Vilardaga, Jean-Pierre; Bikle, Daniel D

    2016-04-01

    Mechanical loading of the skeleton, as achieved during daily movement and exercise, preserves bone mass and stimulates bone formation, whereas skeletal unloading from prolonged immobilization leads to bone loss. A functional interplay between the insulin-like growth factor 1 receptor (IGF1R), a major player in skeletal development, and integrins, mechanosensors, is thought to regulate the anabolic response of osteogenic cells to mechanical load. The mechanistic basis for this cross-talk is unclear. Here we report that integrin signaling regulates activation of IGF1R and downstream targets in response to both IGF1 and a mechanical stimulus. In addition, integrins potentiate responsiveness of IGF1R to IGF1 and mechanical forces. We demonstrate that integrin-associated kinases, Rous sarcoma oncogene (SRC) and focal adhesion kinase (FAK), display distinct actions on IGF1 signaling; FAK regulates IGF1R activation and its downstream effectors, AKT and ERK, whereas SRC controls signaling downstream of IGF1R. These findings linked to our observation that IGF1 assembles the formation of a heterocomplex between IGF1R and integrin β3 subunit indicate that the regulation of IGF1 signaling by integrins proceeds by direct receptor-receptor interaction as a possible means to translate biomechanical forces into osteoanabolic signals. PMID:26865633

  19. The crucial role of collagen-binding integrins in maintaining the mechanical properties of human scleral fibroblasts-seeded collagen matrix

    Science.gov (United States)

    Hu, Shoulong; Cui, Dongmei; Yang, Xiao; Hu, Jianmin; Wan, Wenjuan

    2011-01-01

    Purpose The aim of this study was to identify the presence of collagen-binding integrin subunits in human scleral fibroblasts (HSFs) and investigate their actual functions in maintaining the mechanical creep properties of the HSFs-seeded collagen matrix. Methods Primary HSFs were cultured in vitro. Reverse- transcription PCR was used to detect mRNA expression of integrin α1, α2, and β1 subunits in HSFs. In addition, western blot analysis and immunofluorescence were used to detect their protein in HSFs. Monoclonal antibodies were applied directly against the extracellular domains of integrin subunits in HSFs cultured in the three-dimensional collagen gels to block the interaction between HSFs and the extracellular collagen matrix. The effects of anti-integrin antibodies on HSFs morphology in collagen gel were observed. The effects of the added antibodies on fibroblast-mediated collagen gels’ contraction were evaluated. Furthermore, the changes in mechanical creep properties of collagen gel were measured by a biomechanics test instrument. Results The mRNA and protein expressions of collagen-binding integrin α1, α2, and β1 subunits were present in HSFs. The elongated bipolar cells converted to spherical shapes after 6 h after the addition of integrin α1β1 and α2β1 antibody. The blocking of integrin α1β1 and α2β1 subunits noticeably decreased the contraction in the collagen gels. In addition, all samples were subjected to a constantly applied load of 0.03 N for 600 s. The blocking of integrin α1β1 and α2β1 subunits also induced increases in the values of final extension, creep extension, and creep rate, compared to those of the controls (p0.05). Conclusions Our findings suggested that HSF integrin α1β1 and α2β1 participated in maintaining the mechanical creep properties of the HSFs-seeded collagen matrix. Furthermore, integrin α2β1 might play a more crucial role in maintaining the mechanical creep properties of the collagen matrix than does

  20. Microglia use multiple mechanisms to mediate interactions with vitronectin; non-essential roles for the highly-expressed αvβ3 and αvβ5 integrins

    Directory of Open Access Journals (Sweden)

    Welser-Alves Jennifer V

    2011-11-01

    Full Text Available Abstract Background As the primary resident immune cells, microglia play a central role in regulating inflammatory processes in the CNS. The extracellular matrix (ECM protein vitronectin promotes microglial activation, switching microglia into an activated phenotype. We have shown previously that microglia express two vitronectin receptors, αvβ3 and αvβ5 integrins. As these integrins have well-defined roles in activation and phagocytic processes in other cell types, the purpose of the current study was to investigate the contribution of these two integrins in microglial activation. Methods Microglial cells were prepared from wild-type, β3 integrin knockout (KO, β5 integrin KO or β3/β5 integrin DKO mice, and their interactions and activation responses to vitronectin examined in a battery of assays, including adhesion, expression of activation markers, MMP-9 expression, and phagocytosis. Expression of other αv integrins was examined by flow cytometry and immunoprecipitation. Results Surprisingly, when cultured on vitronectin, microglia from the different knockout strains showed no obvious defects in adhesion, activation marker expression, MMP-9 induction, or phagocytosis of vitronectin-coated beads. To investigate the reason for this lack of effect, we examined the expression of other αv integrins. Flow cytometry showed that β3/β5 integrin DKO microglia expressed residual αv integrin at the cell surface, and immunoprecipitation confirmed this finding by revealing the presence of low levels of the αvβ1 and αvβ8 integrins. β1 integrin blockade had no impact on adhesion of β3/β5 integrin DKO microglia to vitronectin, suggesting that in addition to αvβ1, αvβ3, and αvβ5, αvβ8 also serves as a functional vitronectin receptor on microglia. Conclusions Taken together, this demonstrates that the αvβ3 and αvβ5 integrins are not essential for mediating microglial activation responses to vitronectin, but that microglia use

  1. Interleukin-8 upregulates integrin β3 expression and promotes estrogen receptor-negative breast cancer cell invasion by activating the PI3K/Akt/NF-κB pathway.

    Science.gov (United States)

    Shao, Nan; Lu, Zhenhai; Zhang, Yunjian; Wang, Mian; Li, Wen; Hu, Ziye; Wang, Shenming; Lin, Ying

    2015-08-10

    Interleukin-8 (IL-8) possesses tumorigenic and proangiogenic properties and is overexpressed in many human cancers. The integrin family regulates a diverse array of cellular functions crucial to the initiation, progression and metastasis of solid tumors. However, the mechanisms of action of IL-8 and integrin in estrogen receptor-negative breast cancer are largely unknown. In this study, IL-8 and integrin β3 expression in human breast cancer cells and tissues was examined by real-time PCR, Western blot and immunochemistry analysis. Integrin β3 expression, invasive ability and the activation of PI3K/Akt and NF-κB pathways in IL-8 knockdown breast cancer cells were evaluated. In addition, reporter assay and ChIP were performed to assess integrin β3 promoter activity in IL-8 knockdown cells. We observed a positive correlation between integrin β3 and IL-8 expression, which was inversely correlated with ER status in breast cancer cell lines and tissues. IL-8 siRNA decreased the invasion and integrin β3 expression in human breast cancer cells. Moreover, IL-8 siRNA attenuated the phosphorylation of PI3K and Akt and inhibited NF-κB activity and binding on integrin β3 promoter. IL-8 siRNA diminished NF-κB nuclear translocation via blocking IκB phosphorylation in the cytoplasm. In conclusion, IL-8 activates the PI3K/Akt pathway, which in turn activates NF-κB, resulting in the upregulation of integrin β3 expression and increased invasion of estrogen receptor-negative breast cancer cells. IL-8/PI3K/Akt/NF-κB/integrin β3 axis may be exploited for therapeutic intervention to breast cancer metastasis.

  2. Osteopontin binding to the alpha 4 integrin requires highest affinity integrin conformation, but is independent of post-translational modifications of osteopontin

    DEFF Research Database (Denmark)

    Hui, Tommy; Sørensen, Esben Skipper; Rittling, Susan R.

    2015-01-01

    Osteopontin (OPN) is a ligand for the α4 integrin, but the physiological importance of this binding is not well understood. Here, we have assessed the effect of posttranslational modifications on OPN binding to the α4 integrin on cultured human leukocyte cell lines, and compared OPN interaction...... affinity forms of this integrin. Together, the results suggest OPN has very low affinity for the α4 integrin on human leukocytes under physiological conditions....

  3. Pulmonary administration of integrin-nanoparticles regenerates collapsed alveoli.

    Science.gov (United States)

    Horiguchi, Michiko; Kojima, Hisako; Sakai, Hitomi; Kubo, Hiroshi; Yamashita, Chikamasa

    2014-08-10

    Chronic obstructive pulmonary disease (COPD) is an intractable pulmonary disease, causes widespread and irreversible alveoli collapse. In search of a treatment target molecule, which is able to regenerate collapsed alveoli, we sought to identify a factor that induces differentiation in human alveolar epithelial stem cells using all-trans retinoic acid (ATRA), whose alveolar repair capacity has been reported in animal experiments. When human alveolar epithelial stem cells were exposed to ATRA at a concentration of 10μM for over seven days, approximately 20% of the cells differentiated into each of the type-I and type-II alveolar epithelial cells that constitute the alveoli. In a microarray analysis, integrin-α1 and integrin-β3 showed the largest variation in the ATRA-treated group compared with the controls. Furthermore, the effect of the induction of differentiation in human alveolar epithelial stem cells using ATRA was suppressed by approximately one-fourth by siRNA treatments with integrin α1 and integrin β3. These results suggested that integrin α1 and β3 are factors responsible for the induction of differentiation in human alveolar epithelial stem cells. We accordingly investigated whether integrin nanoparticles also had a regenerative effect in vivo. Elastase-induced COPD model mouse was produced, and the alveolar repair effect of pulmonary administration using nanoparticles of integrin protein was evaluated by X-ray CT scanning. Improvement in the CT value in comparison with an untreated group indicated that there was an alveolar repair effect. In this study, it was shown that the differentiation-inducing effect on human alveolar epithelial stem cells by ATRA was induced by increased expression of integrin, and that the induced integrin enhanced phosphorylation signaling of AKT, resulting in inducing differentiations. Furthermore, the study demonstrated that lung administration of nanoparticles with increased solubility and stability of integrin

  4. Adenylate cyclase toxin promotes internalisation of integrins and raft components and decreases macrophage adhesion capacity.

    Directory of Open Access Journals (Sweden)

    César Martín

    Full Text Available Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

  5. The RGD finger of Del-1 is a unique structural feature critical for integrin binding

    Energy Technology Data Exchange (ETDEWEB)

    Schürpf, Thomas; Chen, Qiang; Liu, Jin-huan; Wang, Rui; Springer, Timothy A.; Wang, Jia-huai (Harvard-Med)

    2012-11-13

    Developmental endothelial cell locus-1 (Del-1) glycoprotein is secreted by endothelial cells and a subset of macrophages. Del-1 plays a regulatory role in vascular remodeling and functions in innate immunity through interaction with integrin {alpha}{sub V}{beta}{sub 3}. Del-1 contains 3 epidermal growth factor (EGF)-like repeats and 2 discoidin-like domains. An Arg-Gly-Asp (RGD) motif in the second EGF domain (EGF2) mediates adhesion by endothelial cells and phagocytes. We report the crystal structure of its 3 EGF domains. The RGD motif of EGF2 forms a type II' {beta} turn at the tip of a long protruding loop, dubbed the RGD finger. Whereas EGF2 and EGF3 constitute a rigid rod via an interdomain calcium ion binding site, the long linker between EGF1 and EGF2 lends considerable flexibility to EGF1. Two unique O-linked glycans and 1 N-linked glycan locate to the opposite side of EGF2 from the RGD motif. These structural features favor integrin binding of the RGD finger. Mutagenesis data confirm the importance of having the RGD motif at the tip of the RGD finger. A database search for EGF domain sequences shows that this RGD finger is likely an evolutionary insertion and unique to the EGF domain of Del-1 and its homologue milk fat globule-EGF 8. The RGD finger of Del-1 is a unique structural feature critical for integrin binding.

  6. Canine chondrodysplasia caused by a truncating mutation in collagen-binding integrin alpha subunit 10.

    Directory of Open Access Journals (Sweden)

    Kaisa Kyöstilä

    Full Text Available The skeletal dysplasias are disorders of the bone and cartilage tissues. Similarly to humans, several dog breeds have been reported to suffer from different types of genetic skeletal disorders. We have studied the molecular genetic background of an autosomal recessive chondrodysplasia that affects the Norwegian Elkhound and Karelian Bear Dog breeds. The affected dogs suffer from disproportionate short stature dwarfism of varying severity. Through a genome-wide approach, we mapped the chondrodysplasia locus to a 2-Mb region on canine chromosome 17 in nine affected and nine healthy Elkhounds (praw = 7.42×10(-6, pgenome-wide = 0.013. The associated locus contained a promising candidate gene, cartilage specific integrin alpha 10 (ITGA10, and mutation screening of its 30 exons revealed a nonsense mutation in exon 16 (c.2083C>T; p.Arg695* that segregated fully with the disease in both breeds (p = 2.5×10(-23. A 24% mutation carrier frequency was indicated in NEs and an 8% frequency in KBDs. The ITGA10 gene product, integrin receptor α10-subunit combines into a collagen-binding α10β1 integrin receptor, which is expressed in cartilage chondrocytes and mediates chondrocyte-matrix interactions during endochondral ossification. As a consequence of the nonsense mutation, the α10-protein was not detected in the affected cartilage tissue. The canine phenotype highlights the importance of the α10β1 integrin in bone growth, and the large animal model could be utilized to further delineate its specific functions. Finally, this study revealed a candidate gene for human chondrodysplasias and enabled the development of a genetic test for breeding purposes to eradicate the disease from the two dog breeds.

  7. Binding of PAI-1 to endothelial cells stimulated by thymosin beta4 and modulation of their fibrinolytic potential.

    Science.gov (United States)

    Boncela, Joanna; Smolarczyk, Katarzyna; Wyroba, Elzbieta; Cierniewski, Czeslaw S

    2006-01-13

    Our previous studies showed that thymosin beta4 (Tbeta4) induced the synthesis of plasminogen activator inhibitor-1 (PAI-1) in cultured human umbilical vein endothelial cells (HUVECs) via the AP-1 dependent mechanism and its enhanced secretion. In this work we provide evidence that the released PAI-1 is accumulated on the surface of HUVECs, exclusively in its active form, in a complex with alpha1-acid glycoprotein (AGP) that is also up-regulated and released from the cells. This mechanism is supported by several lines of experiments, in which expression of both proteins was analyzed by flow cytometry and their colocalization supported by confocal microscopy. PAI-1 did not bind to quiescent cells but only to the Tbeta4-activated endothelial cells. In contrast, significant amounts of AGP were found to be associated with the cells overexpressing enhanced green fluorescent protein (EGFP)-alpha1-acid glycoprotein (AGP) without Tbeta4 treatment. The AGP.PAI-1 complex was accumulated essentially at the basal surface of endothelial cells, and such cells showed (a) morphology characteristic for strongly adhered and spread cells and (b) significantly reduced plasmin formation. Taken together, these results provide the evidence supporting a novel mechanism by which active PAI-1 can be bound to the Tbeta4-activated endothelial cells, thus influencing their adhesive properties as well as their ability to generate plasmin.

  8. Immunoreactivity for thymosin beta 4 and thymosin beta 10 in the adult rat oro-gastro-intestinal tract

    Directory of Open Access Journals (Sweden)

    S. Nemolato

    2013-05-01

    Full Text Available Thymosin beta 4 (Tβ4 and thymosin beta 10 (Tβ10 are two members of the β-thymosin family, involved in multiple cellular activities in different organs in multiple animal species. Here we report the expression pattern of Tβ4 and Tβ10 in rat tissues, in the gut and in annexed glands. The two peptide were differently expressed: Tβ4 was absent in salivary glands whereas Tβ10 was expressed in parotid and in submandibular glands. Tβ4 was mildly expressed in the tongue and in the oesophagus, where Tβ10 was absent. A similar expression was found in the stomach, ileum and colon mucosa. In pancreas Tβ4 reactivity was restricted to the Langerhans islet cells; Tβ4 was also detected in the exocrine cells. Both peptide were not expressed in liver cells. When the rat expression pattern in rat organs was compared to reactivity for Tβ4 and Tβ10 in humans, marked differences were found. Our data clearly indicate a species-specific expression of Tβ4 and Tβ10, characterized by the actual unpredictability of the expression of these peptides in different cells and tissues. The common high expression of Tβ4 in mast cells, both in humans and in rats, represents one of the few similarities between these two species.

  9. Immunoreactivity for Thymosin Beta 4 and Thymosin Beta 10 in the Adult Rat Oro-Gastro-Intestinal tract

    Science.gov (United States)

    Nemolato, S; Ekstrom, J.; Cabras, T.; Gerosa, C.; Fanni, D.; Di Felice, E.; Locci, A.; Messana, I.; Castagnola, M.; Faa, G.

    2013-01-01

    Thymosin beta 4 (Tβ4) and thymosin beta 10 (Tβ10) are two members of the β-thymosin family, involved in multiple cellular activities in different organs in multiple animal species. Here we report the expression pattern of Tβ4 and Tβ10 in rat tissues, in the gut and in annexed glands. The two peptide were differently expressed: Tβ4 was absent in salivary glands whereas Tβ10 was expressed in parotid and in submandibular glands. Tβ4 was mildly expressed in the tongue and in the esophagus, where Tβ10 was absent. A similar expression was found in the stomach, ileum and colon mucosa. In pancreas Tβ4 reactivity was restricted to the Langerhans islet cells; Tβ4 was also detected in the exocrine cells. Both peptide were not expressed in liver cells. When the rat expression pattern in rat organs was compared to reactivity for Tβ4 and Tβ10 in humans, marked differences were found. Our data clearly indicate a species-specific expression of Tβ4 and Tβ10, characterized by the actual unpredictability of the expression of these peptides in different cells and tissues. The common high expression of Tβ4 in mast cells, both in humans and in rats, represents one of the few similarities between these two species. PMID:23807296

  10. Human macrophage differentiation involves an interaction between integrins and fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Laouar, A.; Chubb, C.B.H.; Collart, F.; Huberman, E.

    1997-03-14

    The authors have examined the role of integrins and extracellular matrix (ECM) proteins in macrophage differentiation of (1) human HL-60 myeloid leukemia cells induced by phorbol 12-myristate 13-acetate (PMA) and (2) human peripheral blood monocytes induced by either PMA or macrophage-colony stimulating factor (M-CSF). Increased {beta}{sub 1} integrin and fibronectin (FN) gene expression was observed in PMA-treated HL-60 cells and PMA- or M-CSF-treated monocytes, even at a time preceding the manifestation of macrophage markers. Treated HL-60 cells and monocytes also released and deposited FN on the culture dishes. An HL-60 cell variant, HL-525, which is deficient in protein kinase C {beta} (PKC{beta}) and resistant to PMA-induced differentiation, failed to express FN after PMA treatment. Restoration of PKC{beta} resulted in PMA-induced FN gene expression and macrophage differentiation. The macrophage phenotype induced in HL-60 cells or monocytes was attenuated by anti-{beta}{sub 1} integrin or anti-FN MAbs. The authors suggest that macrophage differentiation involves activation of PKC and expression of specific integrins and ECM proteins. The stimulated cells, through their integrins, attach and spread on these substrates by binding to the deposited ECM proteins. This attachment and spreading in turn, through integrin signaling, leads to the macrophage phenotype.

  11. Molecular physiology of the tensin brotherhood of integrin adaptor proteins.

    Science.gov (United States)

    Haynie, Donald T

    2014-07-01

    Numerous proteins have been identified as constituents of the adhesome, the totality of molecular components in the supramolecular assemblies known as focal adhesions, fibrillar adhesions and other kinds of adhesive contact. The transmembrane receptor proteins called integrins are pivotal adhesome members, providing a physical link between the extracellular matrix (ECM) and the actin cytoskeleton. Tensins are ever more widely investigated intracellular adhesome constituents. Involved in cell attachment and migration, cytoskeleton reorganization, signal transduction and other processes relevant to cancer research, tensins have recently been linked to functional properties of deleted in liver cancer 1 (DLC1) and a mitogen-activated protein kinases (MAPK), to cell migration in breast cancer, and to metastasis suppression in the kidney. Tensins are close relatives of phosphatase homolog/tensin homolog (PTEN), an extensively studied tumor suppressor. Such findings are recasting the earlier vision of tensin (TNS) as an actin-filament (F-actin) capping protein in a different light. This critical review aims to summarize current knowledge on tensins and thus to highlight key points concerning the expression, structure, function, and evolution of the various members of the TNS brotherhood. Insight is sought by comparisons with homologous proteins. Some historical points are added for perspective. PMID:24634006

  12. Thymosin Beta 4 May Translocate from the Cytoplasm in to the Nucleus in HepG2 Cells following Serum Starvation. An Ultrastructural Study

    Science.gov (United States)

    Piludu, Marco; Piras, Monica; Pichiri, Giuseppina; Coni, Pierpaolo; Orrù, Germano; Cabras, Tiziana; Messana, Irene; Faa, Gavino; Castagnola, Massimo

    2015-01-01

    Due to its actin-sequestering properties, thymosin beta-4 (Tβ4) is considered to play a significant role in the cellular metabolism. Several physiological properties of Tβ4 have been reported;, however, many questions concerning its cellular function remain to be ascertained. To better understand the role of this small peptide we have analyzed by means of transmission immunoelectron microscopy techniques the ultrastructural localization of Tβ4 in HepG2 cells. Samples of HepG2 cells were fixed in a mixture of 3% formaldehyde and 0.1% glutaraldehyde in 0.1 M cacodylate buffer and processed for standard electron microscopic techniques. The samples were dehydrated in a cold graded methanol series and embedded in LR gold resin. Ultrathin sections were labeled with rabbit antibodies to Tβ4, followed by gold-labeled goat anti-rabbit, stained with uranyl acetate and bismuth subnitrate, observed and photographed in a JEOL 100S transmission electron microscope. High-resolution electron microscopy showed that Tβ4 was mainly restricted to the cytoplasm of HepG2 growing in complete medium. A strong Tβ4 reactivity was detected in the perinuclear region of the cytoplasmic compartment where gold particles appeared strictly associated to the nuclear membrane. In the nucleus specific Tβ4 labeling was observed in the nucleolus. The above electron microscopic results confirm and extend previous observations at light microscopic level, highlighting the subcellular distribution of Tβ4 in both cytoplasmic and nuclear compartments of HepG2 cells. The meaning of Tβ4 presence in the nucleolus is not on the best of our knowledge clarified yet. It could account for the interaction of Tβ4 with nucleolar actin and according with this hypothesis, Tβ4 could contribute together with the other nucleolar acting binding proteins to modulate the transcription activity of the RNA polymerases. PMID:25835495

  13. Integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} effectors p130Cas, Src and talin regulate carcinoma invasion and chemoresistance

    Energy Technology Data Exchange (ETDEWEB)

    Sansing, Hope A. [Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center-New Orleans, School of Dentistry, New Orleans, LA (United States); Sarkeshik, Ali; Yates, John R. [Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA (United States); Patel, Vyomesh; Gutkind, J. Silvio [Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Yamada, Kenneth M. [Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Berrier, Allison L., E-mail: allison.berrier@gmail.com [Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center-New Orleans, School of Dentistry, New Orleans, LA (United States)

    2011-03-11

    Research highlights: {yields} Proteomics of clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} receptors in oral carcinoma. {yields} p130Cas, Dek, Src and talin regulate oral carcinoma invasion. {yields} p130Cas, talin, Src and zyxin regulate oral carcinoma resistance to cisplatin. -- Abstract: Ligand engagement by integrins induces receptor clustering and formation of complexes at the integrin cytoplasmic face that controls cell signaling and cytoskeletal dynamics critical for adhesion-dependent processes. This study searches for a subset of integrin effectors that coordinates both tumor cell invasion and resistance to the chemotherapeutic drug cisplatin in oral carcinomas. Candidate integrin effectors were identified in a proteomics screen of proteins recruited to clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta} or {alpha}{sub 6}{beta} receptors in oral carcinomas. Proteins with diverse functions including microtubule and actin binding proteins, and factors involved in trafficking, transcription and translation were identified in oral carcinoma integrin complexes. Knockdown of effectors in the oral carcinoma HN12 cells revealed that p130Cas, Dek, Src and talin were required for invasion through Matrigel. Disruption of talin or p130Cas by RNA interference increased resistance to cisplatin, whereas targeting Dek, Src or zyxin reduced HN12 resistance to cisplatin. Analysis of the spreading of HN12 cells on collagen I and laminin I revealed that a decrease in p130Cas or talin expression inhibited spreading on both matrices. Interestingly, a reduction in zyxin expression enhanced spreading on laminin I and inhibited spreading on collagen I. Reduction of Dek, Src, talin or zyxin expression reduced HN12 proliferation by 30%. Proliferation was not affected by a reduction in p130Cas expression. We conclude that p130Cas, Src and talin function in both oral carcinoma invasion and resistance to cisplatin.

  14. Insulin-like growth factor-binding protein 2-driven glioma progression is prevented by blocking a clinically significant integrin, integrin-linked kinase, and NF-κB network

    Science.gov (United States)

    Holmes, Kristen M.; Annala, Matti; Chua, Corrine Y. X.; Dunlap, Sarah M.; Liu, Yuexin; Hugen, Niek; Moore, Lynette M.; Cogdell, David; Hu, Limei; Nykter, Matti; Hess, Kenneth; Fuller, Gregory N.; Zhang, Wei

    2012-01-01

    Insulin-like growth factor-binding protein 2 (IGFBP2) is increasingly recognized as a glioma oncogene, emerging as a target for therapeutic intervention. In this study, we used an integrative approach to characterizing the IGFBP2 network, combining transcriptional profiling of human glioma with validation in glial cells and the replication-competent ASLV long terminal repeat with a splice acceptor/tv-a glioma mouse system. We demonstrated that IGFBP2 expression is closely linked to genes in the integrin and integrin-linked kinase (ILK) pathways and that these genes are associated with prognosis. We further showed that IGFBP2 activates integrin β1 and downstream invasion pathways, requires ILK to induce cell motility, and activates NF-κB. Most significantly, the IGFBP2/integrin/ILK/NF-κB network functions as a physiologically active signaling pathway in vivo by driving glioma progression; interfering with any point in the pathway markedly inhibits progression. The results of this study reveal a signaling pathway that is both targetable and highly relevant to improving the survival of glioma patients. PMID:22345562

  15. TGFβ Signaling Intersects with CD103 Integrin Signaling to Promote T-Lymphocyte Accumulation and Antitumor Activity in the Lung Tumor Microenvironment.

    Science.gov (United States)

    Boutet, Marie; Gauthier, Ludiane; Leclerc, Marine; Gros, Gwendoline; de Montpreville, Vincent; Théret, Nathalie; Donnadieu, Emmanuel; Mami-Chouaib, Fathia

    2016-04-01

    Homing of CD8(+) T lymphocytes to the tumor microenvironment is an important step for mounting a robust antitumor immune response. TGFβ is responsible for CD103 (αEβ7) integrin induction in activated intraepithelial CD8(+) T lymphocytes. However, the interplay between TGFβ and CD103 and their contribution to T-cell infiltration and antitumor activity remain unknown. Here, we used viable human lung tumor slices and autologous tumor antigen-specific T-lymphocyte clones to provide evidence that CD103 is directly involved in T-lymphocyte recruitment within epithelial tumor islets and intratumoral early T-cell signaling. Moreover, TGFβ enhanced CD103-dependent T-cell adhesion and signaling, whereas it inhibited leukocyte function-associated antigen (LFA)-1 (αLβ2) integrin expression and LFA-1-mediated T-lymphocyte functions. Mechanistic investigations revealed that TGFβ bound to its receptors (TGFBR), which promoted the recruitment and phosphorylation of integrin-linked kinase (ILK) by TGFBR1. We further show that ILK interacted with the CD103 intracellular domain, resulting in protein kinase B (PKB)/AKT activation, thereby initiating integrin inside-out signaling. Collectively, our findings suggest that the abundance of TGFβ in the tumor microenvironment may in fact engage with integrin signaling pathways to promote T-lymphocyte antitumor functions, with potential implications for T-cell-based immunotherapies for cancer. Cancer Res; 76(7); 1757-69. ©2016 AACR. PMID:26921343

  16. Heat shock protein 70 regulates platelet integrin activation, granule secretion and aggregation.

    Science.gov (United States)

    Rigg, Rachel A; Healy, Laura D; Nowak, Marie S; Mallet, Jérémy; Thierheimer, Marisa L D; Pang, Jiaqing; McCarty, Owen J T; Aslan, Joseph E

    2016-04-01

    Molecular chaperones that support protein quality control, including heat shock protein 70 (Hsp70), participate in diverse aspects of cellular and physiological function. Recent studies have reported roles for specific chaperone activities in blood platelets in maintaining hemostasis; however, the functions of Hsp70 in platelet physiology remain uninvestigated. Here we characterize roles for Hsp70 activity in platelet activation and function. In vitro biochemical, microscopy, flow cytometry, and aggregometry assays of platelet function, as well as ex vivo analyses of platelet aggregate formation in whole blood under shear, were carried out under Hsp70-inhibited conditions. Inhibition of platelet Hsp70 blocked platelet aggregation and granule secretion in response to collagen-related peptide (CRP), which engages the immunoreceptor tyrosine-based activation motif-bearing collagen receptor glycoprotein VI (GPVI)-Fc receptor-γ chain complex. Hsp70 inhibition also reduced platelet integrin-αIIbβ3 activation downstream of GPVI, as Hsp70-inhibited platelets showed reduced PAC-1 and fibrinogen binding. Ex vivo, pharmacological inhibition of Hsp70 in human whole blood prevented the formation of platelet aggregates on collagen under shear. Biochemical studies supported a role for Hsp70 in maintaining the assembly of the linker for activation of T cells signalosome, which couples GPVI-initiated signaling to integrin activation, secretion, and platelet function. Together, our results suggest that Hsp70 regulates platelet activation and function by supporting linker for activation of T cells-associated signaling events downstream of platelet GPVI engagement, suggesting a role for Hsp70 in the intracellular organization of signaling systems that mediate platelet secretion, "inside-out" activation of platelet integrin-αIIbβ3, platelet-platelet aggregation, and, ultimately, hemostatic plug and thrombus formation.

  17. Gracilaria lemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy.

    Science.gov (United States)

    Jiang, Wenting; Fu, Yuanting; Yang, Fang; Yang, Yufeng; Liu, Ting; Zheng, Wenjie; Zeng, Lilan; Chen, Tianfeng

    2014-08-27

    The poor permeability of glioma parenchyma represents a major limit for antiglioblastoma drug delivery. Gracilaria lemaneiformis polysaccharide (GLP), which has a high binding affinity to αvβ3 integrin overexpressed in glioma cells, was employed in the present study to functionalize selenium nanoparticles (SeNPs) to achieve antiglioblastoma efficacy. GLP-SeNPs showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. In U87 glioma cell membrane, which has a high integrin expression level, GLP-SeNPs exhibited significantly higher cellular uptake than unmodified SeNPs. As expected, U87 cells exhibited a greater uptake of GLP-SeNPs than C6 cells with low integrin expression level. Furthermore, the internalization of GLP-SeNPs was inhibited by cyclo-(Arg-Gly-Asp-Phe-Lys) peptides, suggesting that cellular uptake into U87 cells and C6 cells occurred via αvβ3 integrin-mediated endocytosis. For U87 cells, the cytotoxicity of SeNPs decorated by GLP was enhanced significantly because of the induction of various apoptosis signaling pathways. Internalized GLP-SeNPs triggered intracellular reactive oxygen species downregulation. Therefore, p53, MAPKs, and AKT pathways were activated to advance cell apoptosis. These findings suggest that surface decoration of nanomaterials with GLP could be an efficient strategy for design and preparation of glioblastoma targeting nanodrugs.

  18. Gracilaria lemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy.

    Science.gov (United States)

    Jiang, Wenting; Fu, Yuanting; Yang, Fang; Yang, Yufeng; Liu, Ting; Zheng, Wenjie; Zeng, Lilan; Chen, Tianfeng

    2014-08-27

    The poor permeability of glioma parenchyma represents a major limit for antiglioblastoma drug delivery. Gracilaria lemaneiformis polysaccharide (GLP), which has a high binding affinity to αvβ3 integrin overexpressed in glioma cells, was employed in the present study to functionalize selenium nanoparticles (SeNPs) to achieve antiglioblastoma efficacy. GLP-SeNPs showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. In U87 glioma cell membrane, which has a high integrin expression level, GLP-SeNPs exhibited significantly higher cellular uptake than unmodified SeNPs. As expected, U87 cells exhibited a greater uptake of GLP-SeNPs than C6 cells with low integrin expression level. Furthermore, the internalization of GLP-SeNPs was inhibited by cyclo-(Arg-Gly-Asp-Phe-Lys) peptides, suggesting that cellular uptake into U87 cells and C6 cells occurred via αvβ3 integrin-mediated endocytosis. For U87 cells, the cytotoxicity of SeNPs decorated by GLP was enhanced significantly because of the induction of various apoptosis signaling pathways. Internalized GLP-SeNPs triggered intracellular reactive oxygen species downregulation. Therefore, p53, MAPKs, and AKT pathways were activated to advance cell apoptosis. These findings suggest that surface decoration of nanomaterials with GLP could be an efficient strategy for design and preparation of glioblastoma targeting nanodrugs. PMID:25073123

  19. Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available BACKGROUND: Thymosin beta-4 (Tβ4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H(2O(2 induced cardiac damage. METHODS: Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H(2O(2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H(2O(2-induced cardiac damage was evaluated. RESULTS: Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2O(2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl(2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4. CONCLUSION: This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the

  20. Expression of β2-integrin on leukocytes in liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Anatol Panasiuk; Janusz Zak; Elzbieta Maciorkowska; Bozena Panasiuk; Danuta Prokopowicz

    2006-01-01

    AIM: To analyze β2-integrin expression on blood leukocytes in liver cirrhosis.METHODS: In 40 patients with liver cirrhosis and 20healthy individuals, the evaluation of expression of CD11a (LFA-1α), CD11b (Mac-1α), CD11c (αX) and CD49d (VLA-4α) on peripheral blood leukocytes was performed using flow cytometry. The analysis was carried out in groups of patients divided into B and C according to Child-Pugh's classification.RESULTS: An increased CD11a, CD11b, CD11c and CD49d integrin expression was observed on peripheral blood leukocytes in liver cirrhosis. The integrin levels were elevated as the advancement of liver failure progressed. The highest expression of integrins occurred predominantly on monocytes. A slight expression of VLA-4 was found on lymphocytes and granulocytes and it increased together with liver failure. A positive correlation was noted between median intensity of fluorescence (MIF) expression on polymorphonuclear cells of CD11a and CD11c and CD49d (r = 0.42, P < 0.01; r = 053, P < 0.01, respectively) in liver cirrhosis stage C. However,no correlation was observed between integrin expression on leukocytes. The concentrations of sICAM-1, sVCAM-1,and TNFα, were significantly elevated in liver cirrhosis.CONCLUSION: β2-integrin expression on leukocytes increases in liver cirrhosis decompensated as the stage of liver failure increases, which is a result of permanent activation of leukocytes circulating through the inflamed liver environment. β2-integrin expression on circulating leukocytes can intensify liver cirrhosis.

  1. Estrogen Enhances the Cell Viability and Motility of Breast Cancer Cells through the ERα-ΔNp63-Integrin β4 Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Jar-Yi Ho

    Full Text Available Estrogen induces ERα-positive breast cancer aggressiveness via the promotion of cell proliferation and survival, the epithelial-mesenchymal transition, and stem-like properties. Integrin β4 signaling has been implicated in estrogen/ERα-induced tumorigenicity and anti-apoptosis; however, this signaling cascade poorly understood. ΔNp63, an N-terminally truncated isoform of the p63 transcription factor, functions as a transcription factor of integrinβ4 and therefore regulates cellular adhesion and survival. Therefore, the aim of the present study was to investigate the estrogen-induced interaction between ERα, ΔNp63 and integrin β4 in breast cancer cells. In ERα-positive MCF-7 cells, estrogen activated ERα transcription, which induced ΔNp63 expression. And ΔNp63 subsequently induced integrin β4 expression, which resulted in AKT phosphorylation and enhanced cell viability and motility. Conversely, there was no inductive effect of estrogen on ΔNp63-integrinβ4-AKT signaling or on cell viability and motility in ERα-negative MDA-MB-231 cells. ΔNp63 knockdown abolishes these estrogen-induced effects and reduces cell viability and motility in MCF-7 cells. Nevertheless, ΔNp63 knockdown also inhibited cell migration in MDA-MB-231 cells through reducing integrin β4 expression and AKT phosphorylation. In conclusion, estrogen enhances ERα-positive breast cancer cell viability and motility through activating the ERα-ΔNp63-integrin β4 signaling pathway to induce AKT phosphorylated activation. Those findings should be useful to elucidate the crosstalk between estrogen/ER signaling and ΔNp63 signaling and provide novel insights into the effects of estrogen on breast cancer progression.

  2. Integrin activation by a cold atmospheric plasma jet

    International Nuclear Information System (INIS)

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. In this paper, we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. We focus on the study of CAP interaction with fibroblasts and corneal epithelial cells. The data show that fibroblasts and corneal epithelial cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration. Both cell types reduced their migration rates by ∼30-40% after CAP compared to control cells. Also, the impact of CAP treatment on cell migration and persistence of fibroblasts after integrin activation by MnCl2, serum starvation or replating cells onto surfaces coated with integrin ligands is assessed; the results show that activation by MnCl2 or starvation attenuates cells’ responses to plasma. Studies carried out to assess the impact of CAP treatment on the activation state of β1 integrin and focal adhesion size by using immunofluorescence show that fibroblasts have more active β1 integrin on their surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly. (paper)

  3. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  4. Roles of integrin β3 cytoplasmic tail in bidirectional signal transduction in a trans-dominant inhibition model.

    Science.gov (United States)

    Huang, Jiansong; Zhou, Yulan; Su, Xiaoyu; Lyu, Yuanjing; Tao, Lanlan; Shi, Xiaofeng; Liu, Ping; Long, Zhangbiao; Ruan, Zheng; Xiao, Bing; Xi, Wenda; Zhou, Quansheng; Mao, Jianhua; Xi, Xiaodong

    2016-09-01

    We evaluated the roles of calpain cleavage-related mutations of the integrin β3 cytoplasmic tail in integrin αIIbβ3 bidirectional signaling using a trans-dominant inhibition model. Chimeric Tac-β3 proteins (i.e., Tac-β3, Tac-β3Δ741, Tac-β3Δ747, Tac-β3Δ754, Tac-β3Δ759, and Tac-β3ΔNITY) consisting of the extracellular and transmembrane domains of human IL-2 receptor (Tac) and the human integrin β3 cytoplasmic domain were stably expressed in the 123 CHO cells harboring human glycoprotein Ib-IX and wild-type integrin αIIbβ3. The different cells were assayed for stable adhesion and spreading on immobilized fibrinogen, and for binding soluble fibrinogen representing outside-in and inside-out signaling events, respectively. The chimeric protein Tac-β3 inhibited, and Tac-β3ΔNITY partially attenuated stable adhesion and spreading. Tac-β3, Tac-β3Δ759, Tac-β3ΔNITY, and Tac-β3Δ754, but not Tac-β3Δ747 or Tac-β3Δ741, impaired the soluble fibrinogen binding. Results indicated that the bidirectional signaling was significantly inhibited by Tac-β3 and Tac-β3ΔNITY, albeit to a much lesser extent. Moreover, only inside-out signaling was impaired in the 123/Tac-β3Δ759 and 123/Tac-β3Δ754 cells in contrast to an intact bidirectional signaling in the 123/Tac-β3Δ747 and 123/Tac-β3Δ741 cells. In conclusion, the calpain cleavage of integrin β3 resulted in the regulatory effects on signaling by interrupting its interaction with cytoplasmic proteins rather than altering its conformation, and may thus regulate platelet function.

  5. Force via integrins but not E-cadherin decreases Oct3/4 expression in embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Uda, Yuhei [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01, Aramaki-aoba, Aoba-ward, Sendai City (Japan); Poh, Yeh-Chuin; Chowdhury, Farhan; Wu, Douglas C. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Tanaka, Tetsuya S. [Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Sato, Masaaki [Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01, Aramaki-aoba, Aoba-ward, Sendai City (Japan); Wang, Ning, E-mail: nwangrw@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Force via integrins or cadherins induces similar cell stiffening responses. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces cell spreading. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces differentiation of embryonic stem cells. -- Abstract: Increasing evidence suggests that mechanical factors play a critical role in fate decisions of stem cells. Recently we have demonstrated that a local force applied via Arg-Gly-Asp (RGD) peptides coated magnetic beads to mouse embryonic stem (ES) cells increases cell spreading and cell stiffness and decreases Oct3/4 (Pou5f1) gene expression. However, it is not clear whether the effects of the applied stress on these functions of ES cells can be extended to natural extracellular matrix proteins or cell-cell adhesion molecules. Here we show that a local cyclic shear force applied via fibronectin or laminin to integrin receptors increased cell spreading and stiffness, downregulated Oct3/4 gene expression, and decreased cell proliferation rate. In contrast, the same cyclic force applied via cell-cell adhesion molecule E-cadherin (Cdh1) had no effects on cell spreading, Oct3/4 gene expression, and the self-renewal of mouse ES cells, but induced significant cell stiffening. Our findings demonstrate that biological responses of ES cells to force applied via integrins are different from those to force via E-cadherin, suggesting that mechanical forces might play different roles in different force transduction pathways to shape early embryogenesis.

  6. Entamoeba histolytica cysteine proteinase 5 binds integrin on colonic cells and stimulates NFkappaB-mediated pro-inflammatory responses.

    Science.gov (United States)

    Hou, Yongzhong; Mortimer, Leanne; Chadee, Kris

    2010-11-12

    Integrins are important mammalian receptors involved in normal cellular functions and the pathogenesis of inflammation and disease. Entamoeba histolytica is a protozoan parasite that colonizes the gut, and in 10% of infected individuals, causes amebic colitis and liver abscess resulting in 10(5) deaths/year. E. histolytica-induced host inflammatory responses are critical in the pathogenesis of the disease, yet the host and parasite factors involved in disease are poorly defined. Here we show that pro-mature cysteine proteinase 5 (PCP5), a major virulent factor that is abundantly secreted and/or present on the surface of ameba, binds via its RGD motif to α(V)β(3) integrin on Caco-2 colonic cells and stimulates NFκB-mediated pro-inflammatory responses. PCP5 RGD binding to α(V)β(3) integrin triggered integrin-linked kinase(ILK)-mediated phosphorylation of Akt-473 that bound and induced the ubiquitination of NF-κB essential modulator (NEMO). As NEMO is required for activation of the IKKα-IKKβ complex and NFκB signaling, these events markedly up-regulated pro-inflammatory mediator expressions in vitro in Caco-2 cells and in vivo in colonic loop studies in wild-type and Muc2(-/-) mice lacking an intact protective mucus barrier. These results have revealed that EhPCP5 RGD motif is a ligand for α(V)β(3) integrin-mediated adhesion on colonic cells and represents a novel mechanism that E. histolytica trophozoites use to trigger an inflammatory response in the pathogenesis of intestinal amebiasis.

  7. Changes in heparan sulfate are associated with delayed wound repair, altered cell migration, adhesion and contractility in the galactosyltransferase I (beta4GalT-7) deficient form of Ehlers-Danlos syndrome.

    NARCIS (Netherlands)

    Gotte, M.; Spillmann, D.; Yip, G.W.; Versteeg, E.M.M.; Echtermeyer, F.G.; Kuppevelt, A.H.M.S.M. van; Kiesel, L.

    2008-01-01

    Reduced activity of beta4-galactosyltransferase 7 (beta4GalT-7), an enzyme involved in synthesizing the glycosaminoglycan linkage region of proteoglycans, is associated with the progeroid form of Ehlers-Danlos syndrome (EDS). In the invertebrates Drosophila melanogaster and Caenorhabditis elegans, m

  8. Ku80 as a novel receptor for thymosin beta4 that mediates its intracellular activity different from G-actin sequestering.

    Science.gov (United States)

    Bednarek, Radoslaw; Boncela, Joanna; Smolarczyk, Katarzyna; Cierniewska-Cieslak, Aleksandra; Wyroba, Elzbieta; Cierniewski, Czeslaw S

    2008-01-18

    Our data demonstrate that increased intracellular expression of thymosin beta4(Tbeta4) is necessary and sufficient to induce plasminogen activator inhibitor type 1 (PAI-1) gene expression in endothelial cells. To describe the mechanism of this effect, we produced Tbeta4 mutants with impaired functional motifs and tested their intracellular location and activity. Cytoplasmic distributions of Tbeta4((AcSDKPT/4A)), Tbeta4((KLKKTET/7A)), and Tbeta4((K16A)) mutants fused with green fluorescent protein did not differ significantly from those of wild-type Tbeta4. Overexpression of Tbeta4, Tbeta4((AcSDKPT/4A)), and Tbeta4((K16A)) affected intracellular formation of actin filaments. As expected, Tbeta4((K16A)) uptake by nuclei was impaired. On the other hand, overexpression of Tbeta4((KLKKTET/7A)) resulted in developing the actin filament network typical of adhering cells, indicating that the mutant lacked the actin binding site. The mechanism by which intracellular Tbeta4 induced the PAI-1 gene did not depend upon the N-terminal tetrapeptide AcSDKP and depended only partially on its ability to bind G-actin or enter the nucleus. Both Tbeta4 and Tbeta4((AcSDKPT/4A)) induced the PAI-1 gene to the same extent, whereas mutants Tbeta4((KLKKTET/7A)) and Tbeta4((K16A)) retained about 60% of the original activity. By proteomic analysis, the Ku80 subunit of ATP-dependent DNA helicase II was found to be associated with Tbeta4. Ku80 and Tbeta4 consistently co-immunoprecipitated in a complex from endothelial cells. Co-transfection of endothelial cells with the Ku80 deletion mutants and Tbeta4 showed that the C-terminal arm domain of Ku80 is directly involved in this interaction. Furthermore, down-regulation of Ku80 by specific short interference RNA resulted in dramatic reduction in PAI-1 expression at the level of both mRNA and protein synthesis. These data suggest that Ku80 functions as a novel receptor for Tbeta4 and mediates its intracellular activity.

  9. Structural Requirements for Activation in αIIbβ3 Integrin*

    OpenAIRE

    Kamata, Tetsuji; Handa, Makoto; Ito, Sonomi; Sato, Yukiko; Ohtani, Toshimitsu; Kawai, Yohko; Ikeda, Yasuo; Aiso, Sadakazu

    2010-01-01

    Integrins are postulated to undergo structural rearrangement from a low affinity bent conformer to a high affinity extended conformer upon activation. However, some reports have shown that a bent conformer is capable of binding a ligand, whereas another report has shown that integrin extension does not absolutely lead to activation. To clarify whether integrin affinity is indeed regulated by the so-called switchblade-like movement, we have engineered a series of mutant αIIbβ3 integrins that a...

  10. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection.

    Science.gov (United States)

    Yun, Bing-Ling; Guan, Xiao-Lu; Liu, Yong-Zhen; Zhang, Yao; Wang, Yong-Qiang; Qi, Xiao-Le; Cui, Hong-Yu; Liu, Chang-Jun; Zhang, Yan-Ping; Gao, Hong-Lei; Gao, Li; Li, Kai; Gao, Yu-Long; Wang, Xiao-Mei

    2016-07-01

    Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV. PMID:27226547

  11. A Combined NMR and Computational Approach to Determine the RGDechi-hCit-αv β3 Integrin Recognition Mode in Isolated Cell Membranes.

    Science.gov (United States)

    Farina, Biancamaria; de Paola, Ivan; Russo, Luigi; Capasso, Domenica; Liguoro, Annamaria; Gatto, Annarita Del; Saviano, Michele; Pedone, Paolo V; Di Gaetano, Sonia; Malgieri, Gaetano; Zaccaro, Laura; Fattorusso, Roberto

    2016-01-11

    The critical role of integrins in tumor progression and metastasis has stimulated intense efforts to identify pharmacological agents that can modulate integrin function. In recent years, αv β3 and αv β5 integrin antagonists were demonstrated to be effective in blocking tumor progression. RGDechi-hCit, a chimeric peptide containing a cyclic RGD motif linked to an echistatin C-terminal fragment, is able to recognize selectively αv β3 integrin both in vitro and in vivo. High-resolution molecular details of the selective αv β3 recognition of the peptide are certainly required, nonetheless RGDechi-hCit internalization limited the use of classical in cell NMR experiments. To overcome such limitations, we used WM266 isolated cellular membranes to accomplish a detailed NMR interaction study that, combined with a computational analysis, provides significant structural insights into αv β3 molecular recognition by RGDechi-hCit. Remarkably, on the basis of the identified molecular determinants, we design a RGDechi-hCit mutant that is selective for αv β5 integrin. PMID:26548575

  12. Inability of FMDV replication in equine kidney epithelial cells is independent of integrin αvβ3 and αvβ6.

    Science.gov (United States)

    Wang, Yanqin; Mao, Qingfu; Chang, Huiyun; Wu, Yongyan; Pan, Shaohui; Li, Yanhe; Zhang, Yong

    2016-05-01

    Integrins can function as receptors for foot-and-mouth disease virus (FMDV) in epithelium. Horses are believed to be insusceptible to this disease, but the mechanism of resistance remains unclear. To detect whether FMDV can use integrin to attach to equine epithelial, we compared the utilities of αvβ3 and αvβ6 between bovine and equine kidney epithelial cells (KECs). Equine KECs showed almost equal efficiency to those of bovine. Further, the integrin αv, β3, and β6 subunits from bovine and equine were cloned and vectors were transfected into SW480 cells and COS-1 cells alone or together, and virus titers were used to determine the viral replication. In all cases, the virus reproduced successfully. Overall, FMDV can replicate in SW480 cells transfected with equine β3/β6 subunits and COS-1 cells transfected with equine αvβ3/αvβ6 integrins, but not in EKECs. These results indicated that failure of FMDV replication in EKECs was not attributed to integrin receptors. PMID:27011223

  13. Thymosin beta 4 is associated with RUNX2 expression through the Smad and Akt signaling pathways in mouse dental epithelial cells

    OpenAIRE

    Someya, Hirotaka; FUJIWARA, HIROAKI; Nagata, Kengo; WADA, HIROKO; Hasegawa, Kana; MIKAMI, YURIE; JINNO, AKIKO; SAKAI, HIDETAKA; Koyano, Kiyoshi; KIYOSHIMA, TAMOTSU

    2015-01-01

    In previous studies by our group, we reported that thymosin beta 4 (Tb4) is closely associated with the initiation and development of the tooth germ, and can induce the expression of runt-related transcription factor 2 (RUNX2) during the development of the tooth germ. RUNX2 regulates the expression of odontogenesis-related genes, such as amelogenin, X-linked (Amelx), ameloblastin (Ambn) and enamelin (Enam), as well as the differentiation of osteoblasts during bone formation. However, the mech...

  14. Synthesis and biological evaluation of potent alphavbeta3-integrin receptor antagonists.

    NARCIS (Netherlands)

    Dijkgraaf, I.; Kruijtzer, J.A.; Frielink, C.; Soede, A.C.; Hilbers, H.W.; Oyen, W.J.G.; Corstens, F.H.M.; Liskamp, R.M.; Boerman, O.C.

    2006-01-01

    INTRODUCTION: alpha(v)beta(3) Integrin is expressed in sprouting endothelial cells in growing tumors, whereas it is absent in quiescent blood vessels. In addition, various tumor cell types express alpha(v)beta(3) integrin. alpha(v)beta(3) Integrin, a transmembrane heterodimeric protein, binds to the

  15. Optimized multimodal nanoplatforms for targeting αvβ3 integrins

    Science.gov (United States)

    Bolley, Julie; Lalatonne, Yoann; Haddad, Oualid; Letourneur, Didier; Soussan, Michael; Pérard-Viret, Joelle; Motte, Laurence

    2013-11-01

    Magnetic Resonance Imaging (MRI) using contrast agents is a very powerful technique for diagnosis in clinical medicine and biomedical research. The synthesis of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles targeting αvβ3 integrins and acting as new MRI contrast agents seems to be a promising way for cancer diagnosis. Indeed, it is well established that αvβ3 integrin plays a key role in tumor angiogenesis acting like a receptor for the extracellular matrix proteins like vitronectin, fibronectin through the arginine-glycine-aspartic acid (RGD) sequence. Up-regulation of αvβ3 has been found to be associated with a wide range of cancers, making it a broad-spectrum tumor-marker. In this study, USPIO nanocrystals were synthesized and surface passivated with caffeic acid. The large number of the carboxylic acid functions at the outer surface of the nanoplatforms was used for the covalent coupling of Rhodamine123, polyethylene glycol (PEG) and cyclic RGD. Soluble carbodiimide (EDC) and N-hydroxysuccinimide (NHS) were used to crosslink carboxylic acid with the amino group of the ligands. We examined the design of the nanoplatforms with each individual entity and then the combination of two and three of them. Several methods were used to characterize the nanoparticle surface functionalization and the magnetic properties of these contrast agents were studied using a 1.5 T clinical MRI scanner. The affinity towards integrins was evidenced by surface plasmon resonance and solid-phase receptor-binding assay.Magnetic Resonance Imaging (MRI) using contrast agents is a very powerful technique for diagnosis in clinical medicine and biomedical research. The synthesis of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles targeting αvβ3 integrins and acting as new MRI contrast agents seems to be a promising way for cancer diagnosis. Indeed, it is well established that αvβ3 integrin plays a key role in tumor angiogenesis acting like a receptor for

  16. α2 integrin as regulator of metastatic potential

    Institute of Scientific and Technical Information of China (English)

    Miroslav BARANCIK; Albert BREIER

    2011-01-01

    @@ Regulation of cellular events is a complex process that involves several factors in their specific interactions and interplays.However, this complexity signs also exist specificity and changes in single protein, and could significantly influence the properties and responses of cells. Recently, Ramirez and colleagues[1]provided innovative results that emphasize the important and selective role of one specific protein, α2 integrin, in the complex process of tumor metastasis.This protein, as a part of heterodimeric 2β1 integrin, was identified as a metastasis suppressor in both breast and prostate cancer.

  17. Integrin engagement by the helical RGD motif of the Helicobacter pylori CagL protein is regulated by pH-induced displacement of a neighboring helix.

    Science.gov (United States)

    Bonsor, Daniel A; Pham, Kieu T; Beadenkopf, Robert; Diederichs, Kay; Haas, Rainer; Beckett, Dorothy; Fischer, Wolfgang; Sundberg, Eric J

    2015-05-15

    Arginine-aspartate-glycine (RGD) motifs are recognized by integrins to bridge cells to one another and the extracellular matrix. RGD motifs typically reside in exposed loop conformations. X-ray crystal structures of the Helicobacter pylori protein CagL revealed that RGD motifs can also exist in helical regions of proteins. Interactions between CagL and host gastric epithelial cell via integrins are required for the translocation of the bacterial oncoprotein CagA. Here, we have investigated the molecular basis of the CagL-host cell interactions using structural, biophysical, and functional analyses. We solved an x-ray crystal structure of CagL that revealed conformational changes induced by low pH not present in previous structures. Using analytical ultracentrifugation, we found that pH-induced conformational changes in CagL occur in solution and not just in the crystalline environment. By designing numerous CagL mutants based on all available crystal structures, we probed the functional roles of CagL conformational changes on cell surface integrin engagement. Together, our data indicate that the helical RGD motif in CagL is buried by a neighboring helix at low pH to inhibit CagL binding to integrin, whereas at neutral pH the neighboring helix is displaced to allow integrin access to the CagL RGD motif. This novel molecular mechanism of regulating integrin-RGD motif interactions by changes in the chemical environment provides new insight to H. pylori-mediated oncogenesis.

  18. Intravenous Administration of Endothelial Colony-Forming Cells Overexpressing Integrin β1 Augments Angiogenesis in Ischemic Legs.

    Science.gov (United States)

    Goto, Kazuko; Takemura, Genzou; Takahashi, Tomoyuki; Okada, Hideshi; Kanamori, Hiromitsu; Kawamura, Itta; Watanabe, Takatomo; Morishita, Kentaro; Tsujimoto, Akiko; Miyazaki, Nagisa; Ushikoshi, Hiroaki; Kawasaki, Masanori; Mikami, Atsushi; Kosai, Ken-ichiro; Minatoguchi, Shinya

    2016-02-01

    When injected directly into ischemic tissue in patients with peripheral artery disease, the reparative capacity of endothelial progenitor cells (EPCs) appears to be limited by their poor survival. We, therefore, attempted to improve the survival of transplanted EPCs through intravenous injection and gene modification. We anticipated that overexpression of integrin β1 will enable injected EPCs to home to ischemic tissue, which abundantly express extracellular matrix proteins, the ligands for integrins. In addition, integrin β1 has an independent angiogenesis-stimulating function. Human endothelial colony-forming cells (ECFCs; late-outgrowth EPCs) were transduced using a lentiviral vector encoding integrin β1 (ITGB1) or enhanced green fluorescent protein (GFP). We then locally or systemically injected phosphate-buffered saline or the genetically modified ECFCs (GFP-ECFCs or ITGB1-ECFCs; 1 × 10(5) cells each) into NOD/Shi-scid, IL-2Rγnull mice whose right femoral arteries had been occluded 24 hours earlier. Upregulation of extracellular matrix proteins, including fibronectin, was apparent in the ischemic legs. Four weeks later, blood perfusion of the ischemic limb was significantly augmented only in the ITGB1-ECFC group. Scanning electron microscopy of vascular casts revealed increases in the perfused blood vessels in the ischemic legs of mice in the ITGB1-ECFC group and significant increases in the density of both capillaries and arterioles. Transplanted ECFC-derived vessels accounted for 28% ± 4.2% of the vessels in the ITGB1-ECFC group, with no cell fusion. Intravenous administration of ECFCs engineered to home to ischemic tissue appears to efficiently mediate therapeutic angiogenesis in a mouse model of peripheral artery disease. Significance: The intravenous administration of endothelial colony-forming cells (ECFCs) genetically modified to overexpress integrin β1 effectively stimulated angiogenesis in ischemic mouse hindlimbs. Transplanted ECFCs were

  19. Molecular cloning and phylogenetic analysis of integrins alpha v beta 1 and alpha v beta 6 of one-humped camel (Camelus dromedarius)

    DEFF Research Database (Denmark)

    Du, Junzheng; Larska, Magdalena Larska; Chang, Huiyun;

    2010-01-01

    , and 787 amino acids, respectively. The dromedary camel integrin alpha v, beta 1, and beta 6 subunit shares common structural and functional elements with their counterparts from the other species. Phylogenetic trees showed that the dromedary camel alpha v, beta 1, and beta 6 were clustered...

  20. Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, Florence; Ray, Anne Marie; Dontenwill, Monique, E-mail: monique.dontenwill@unistra.fr [UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Tumoral signaling and therapeutic targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch (France)

    2013-01-15

    Integrins are transmembrane heterodimeric proteins sensing the cell microenvironment and modulating numerous signalling pathways. Changes in integrin expression between normal and tumoral cells support involvement of specific integrins in tumor progression and aggressiveness. This review highlights the current knowledge about α5β1 integrin, also called the fibronectin receptor, in solid tumors. We summarize data showing that α5β1 integrin is a pertinent therapeutic target expressed by tumoral neovessels and tumoral cells. Although mainly evaluated in preclinical models, α5β1 integrin merits interest in particular in colon, breast, ovarian, lung and brain tumors where its overexpression is associated with a poor prognosis for patients. Specific α5β1 integrin antagonists will be listed that may represent new potential therapeutic agents to fight defined subpopulations of particularly aggressive tumors.

  1. PET Imaging of Integrin αVβ3 Expression

    Directory of Open Access Journals (Sweden)

    Ambros J. Beer, Horst Kessler, Hans-Jürgen Wester, Markus Schwaiger

    2011-01-01

    Full Text Available PET imaging of integrin αvβ3 expression has been studied intensely by the academia and recently also by the industry. Imaging of integrin αvβ3 expression is of great potential value, as the integrin αvβ3 is a key player in tumor metastasis and angiogenesis. Therefore PET imaging of this target might be a suitable in-vivo biomarker of angiogenesis and metastatic potential of tumors. In this manuscript, the various strategies for PET imaging of the integrin αvβ3 will be summarized, including monomeric and multimeric radiolabelled RGD peptides and nanoparticles. While most experiments have been performed using preclinical tumor models, more and more clinical results on PET imaging of αvβ3 expression are available and will be discussed in detail. However, while a multitude of radiotracer strategies have been successfully evaluated for PET imaging of αvβ3, the ultimate clinical value of this new imaging biomarker still has to be evaluated in large clinical trials.

  2. Multimodality Imaging of Integrin αvβ3 Expression

    Directory of Open Access Journals (Sweden)

    Yin Zhang, Yunan Yang, Weibo Cai

    2011-01-01

    Full Text Available Over the last decade, integrin αvβ3 has been studied with every single molecular imaging modality. Since no single modality is perfect and sufficient to obtain all the necessary information for a particular question, combination of certain molecular imaging modalities can offer synergistic advantages over any modality alone. This review will focus on multimodality imaging of integrin αvβ3 expression, where the contrast agent used can be detected by two or more imaging modalities, such as combinations of PET and optical, SPECT and fluorescence, PET and MRI, SPECT and MRI, and lastly, MRI and fluorescence. Most of these agents are based on certain type(s of nanoparticles. Contrast agents that can be detected by more than two imaging modalities are expected to emerge in the future and a PET/MRI/fluorescence agent will likely find the most future biomedical/clinical applications. Big strides have been made over the last decade for imaging integrin αvβ3 expression and several PET/SPECT probes have been tested in human studies. For dualmodality and multimodality imaging applications, a number of proof-of-principle studies have been reported which opened up many new avenues for future research. The next decade will likely witness further growth and continued prosperity of molecular imaging studies focusing on integrin αvβ3, which can eventually impact patient management.

  3. Integrin activation as an alternative treatment approach for inflammatory diseases

    Institute of Scientific and Technical Information of China (English)

    Vincent Kam Wai WONG; Liang LIU

    2011-01-01

    Regulation of immune responses is a complex process that involves many signaling molecules in their specific interactions and interplays.For instance,the leukocytic integrin CD11b/CD18 plays a crucial role in leukocyte infiltration,which is commonly found in most inflammatory diseases.

  4. Reorganization of cytoskeletal proteins of mouse oocytes mediated by integrins

    Institute of Scientific and Technical Information of China (English)

    YUE; Limin; ZHANG; Lei; HE; Yaping; ZHANG; Jinhu; ZHENG; Ji

    2004-01-01

    To study whether integrins on cell membrane ligate with intracellular cytoskeletal proteins and mediate their reorganization in egg activation, female mice were used for superovulation. The zona-free oocytes were incubated separately with specific ligand of integrins,an active RGD peptide, in vitro for certain period of time. RGE peptide and mouse capacitated sperm were used as controls. Freshly ovulated oocytes and those treated with different factors were immunostained with FITC-labeled anti-actin antibody, then detected with confocal microscope. The results demonstrated that freshly ovulated mouse oocytes, oocytes incubated for 2 h in vitro and those treated with control RGE peptide for 15 min showed hardly visible fluorescene or only thin fluorescence in plasma membrane region. Oocytes coincubated with sperms for 15 min and those treated with active RGD peptide for 10 min, 30 min and 2 hours respectively had strong and thick fluorescence in the plasma membrane and cortical region of oocytes, and some of them showed asymmetrically fluorescent distribution. It is proved that integrins on membrane are ligated directly with cytoskeletal protein. Integrins binding with their ligands regulate reorganization of cytoskelal protein, which may be involved in transmembrane signaling in egg activation.

  5. Integrins : therapeutic targets in airway hyperresponsiveness and remodelling?

    NARCIS (Netherlands)

    Wright, David B.; Meurs, Herman; Dekkers, Bart G.J.

    2014-01-01

    lntegrins are a group of transmembrane heterodimeric proteins that mediate cell-cell and cell-extracellular matrix (ECM) interactions. lntegrins have been under intense investigation for their role in inflammation in asthma. Clinical trials investigating integrin antagonists, however, have shown tha

  6. 汉坦病毒感染与β3整合素%Hantavirus infection and β3 integrin

    Institute of Scientific and Technical Information of China (English)

    王伟; 白雪帆

    2010-01-01

    β3 integrin is one of a large family in cell-surface adhesion receptors, which can mediate cell-cell,cell-extracellular matrix interactions, and plays a key role in many virus infections. In this paper, the biological functions of the β3 integrin family are reviewed and the role in hantavirus infection is delineated.%β3整合素是分布于细胞膜表面的一类黏附分子,介导细胞与细胞、细胞与胞外基质的相互作用,并且参与了若干种病毒的感染过程.此文就近年来β3整合素研究的进展及其在汉坦病毒感染发病中的作用及机制作了综述.

  7. Stromal cells and integrins: conforming to the needs of the tumor microenvironment.

    Science.gov (United States)

    Alphonso, Aimee; Alahari, Suresh K

    2009-12-01

    The microenvironment of a tumor is constituted of a heterogenous population of stromal cells, extracellular matrix components, and secreted factors, all of which make the tumor microenvironment distinct from that of normal tissue. Unlike healthy cells, tumor cells require these unique surroundings to metastasize, spread, and form a secondary tumor at a distant site. In this review, we discuss that stromal cells such as fibroblasts and immune cells including macrophages, their secreted factors, such as vascular endothelial growth factor, transforming growth factor beta, and various chemokines, and the integrins that connect the various cell types play a particularly vital role in the survival of a growing tumor mass. Macrophages and fibroblasts are uniquely plastic cells because they are not only able to switch from tumor suppressing to tumor supporting phenotypes but also able to adopt various tumor-supporting functions based on their location within the microenvironment. Integrins serve as the backbone for all of these prometastatic operations because their function as cell-cell and cell-matrix signal transducers are important for the heterogenous components of the microenvironment to communicate.

  8. PRL-3 promotes the motility, invasion, and metastasis of LoVo colon cancer cells through PRL-3-integrin β1-ERK1/2 and-MMP2 signaling

    Directory of Open Access Journals (Sweden)

    Wu Jian

    2009-11-01

    Full Text Available Abstract Background Phosphatase of regenerating liver-3 (PRL-3 plays a causative role in tumor metastasis, but the underlying mechanisms are not well understood. In our previous study, we observed that PRL-3 could decrease tyrosine phosphorylation of integrin β1 and enhance activation of ERK1/2 in HEK293 cells. Herein we aim to explore the association of PRL-3 with integrin β1 signaling and its functional implications in motility, invasion, and metastasis of colon cancer cell LoVo. Methods Transwell chamber assay and nude mouse model were used to study motility and invasion, and metastsis of LoVo colon cancer cells, respectively. Knockdown of integrin β1 by siRNA or lentivirus were detected with Western blot and RT-PCR. The effect of PRL-3 on integrin β1, ERK1/2, and MMPs that mediate motility, invasion, and metastasis were measured by Western blot, immunofluorencence, co-immunoprecipitation and zymographic assays. Results We demonstrated that PRL-3 associated with integrin β1 and its expression was positively correlated with ERK1/2 phosphorylation in colon cancer tissues. Depletion of integrin β1 with siRNA, not only abrogated the activation of ERK1/2 stimulated by PRL-3, but also abolished PRL-3-induced motility and invasion of LoVo cells in vitro. Similarly, inhibition of ERK1/2 phosphorylation with U0126 or MMP activity with GM6001 also impaired PRL-3-induced invasion. In addition, PRL-3 promoted gelatinolytic activity of MMP2, and this stimulation correlated with decreased TIMP2 expression. Moreover, PRL-3-stimulated lung metastasis of LoVo cells in a nude mouse model was inhibited when integrin β1 expression was interfered with shRNA. Conclusion Our results suggest that PRL-3's roles in motility, invasion, and metastasis in colon cancer are critically controlled by the integrin β1-ERK1/2-MMP2 signaling.

  9. Knockdown of HMGN2 increases the internalization of Klebsiella pneumoniae by respiratory epithelial cells through the regulation of α5β1 integrin expression.

    Science.gov (United States)

    Wang, Xinyuan; Li, Jingyu; Chen, Shanze; Shen, Xiaofei; Yang, Xiaolong; Teng, Yan; Deng, Luxia; Wang, Yi; Chen, Junli; Wang, Xiaoying; Huang, Ning

    2016-09-01

    Integrin receptors, a large family of adhesion receptors, are involved in the attachment of Klebsiella pneumoniae to respiratory epithelial cells, and subsequently cause the internalization of K. pneumoniae by host cells. Although a number of molecules have been reported to regulate the expression and activity of integrin receptors in respiratory epithelial cells, the specific underlying molecular mechanisms remain largely unknown. High mobility group nucleosomal binding domain 2 (HMGN2), a non-histone nuclear protein, is present in eukaryotic cells as a ubiquitous nuclear protein. Our previous studies have demonstrated that HMGN2 affects chromatin function and modulates the expression of antibacterial peptide in A549 cells exposed to lipopolysaccharide, which indicates the critical role of HMGN2 in innate immune responses. In addition, our cDNA microarray analysis suggested that HMGN2 knockdown induced the enhanced expression of α5β1 integrin in A549 cells. Therefore, we hypothesized that intercellular HMGN2 may mediate the internalization of K. pneumoniae by altering the expression of α5β1 integrin. Using the A549 cell line, we demonstrated that HMGN2 knockdown induced the increased expression of α5β1 integrin on cell membranes, which resulted in a significant increase in K. pneumoniae internalization. Further results revealed that HMGN2 silencing induced the expression of talin and the activation of α5β1 integrin, which led to actin polymerization following the phosphorylation of FAK and Src. This study suggests a possible therapeutic application for bacterial internalization by targeting HMGN2 in order to treat K. pneumoniae infection. PMID:27460641

  10. Alpha4beta1 integrin and erythropoietin mediate temporally distinct steps in erythropoiesis: integrins in red cell development.

    Science.gov (United States)

    Eshghi, Shawdee; Vogelezang, Mariette G; Hynes, Richard O; Griffith, Linda G; Lodish, Harvey F

    2007-06-01

    Erythropoietin (Epo) is essential for the terminal proliferation and differentiation of erythroid progenitor cells. Fibronectin is an important part of the erythroid niche, but its precise role in erythropoiesis is unknown. By culturing fetal liver erythroid progenitors, we show that fibronectin and Epo regulate erythroid proliferation in temporally distinct steps: an early Epo-dependent phase is followed by a fibronectin-dependent phase. In each phase, Epo and fibronectin promote expansion by preventing apoptosis partly through bcl-xL. We show that alpha(4), alpha(5), and beta(1) are the principal integrins expressed on erythroid progenitors; their down-regulation during erythropoiesis parallels the loss of cell adhesion to fibronectin. Culturing erythroid progenitors on recombinant fibronectin fragments revealed that only substrates that engage alpha(4)beta(1)-integrin support normal proliferation. Collectively, these data suggest a two-phase model for growth factor and extracellular matrix regulation of erythropoiesis, with an early Epo-dependent, integrin-independent phase followed by an Epo-independent, alpha(4)beta(1)-integrin-dependent phase.

  11. Skeletal Phenotype of Transgenic Mice Expressing the Beta1 Integrin Cytoplasmic Tail In Osteoblasts

    Science.gov (United States)

    Globus, R. K.; vanderMeulen, M. C. H.; Damsky, D.; Kim, J.-B.; Amblard, D.; Amblard, D.; Nishimura, Y.; Almeida, E.; Iwaniec, U. T.; Wronski, T. J.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    To define the physiologic role of beta1 integrin in bone formation and mechanical loading, transgenic mice were generated by expressing the cytoplasmic tall and transmembrane domain of Beta1 integrin under the control of the osteocalcin promoter. In cultured cells, this truncated fragment of Beta1 can act as a dominant negative. Previously, the matrix of calvariae was shown to be abnormal in transgenic (TG) compared to wildtype (WT) mice. In this study, we analyzed appendicular bone in TG and WT, male and female mice at 14, 35, 63, 90 and 365 days old (n=8-12/gp). To assess beta1 integrin function in mechanical loading, a pilot study using hindlimb unloading by tail suspension was performed. 35d old TG and WT females were hindlimb unloaded for 4 wks (n=3-5). Body mass, bone mineral content, histomorphometric (distal femur) and biomechanical parameters were analyzed. Statistical significance (P less than.05) was defined by ANOVA using the Tukey-Kramer post-hoc test. We confirmed transgene expression by immunoprecipitating then immunoblotting bone lysates using an antibody against the beta1 tail. Body masses of TG mice at 63, 90 and 365d old were greater (16-25%) than WT. Some TG female mice at 365d appeared obese; mean abdominal fat mass was 415% greater in TG than WT mice. Tibiae were longer (5-7%) in TG than WT mice at 63 and 90d. Tibial mineral mass of 35d males was 7% lower in TG than WT mice, but at 63d was 21% higher. The % osteoblast surface in 35d TG mice was 20% higher than WT, and at 63d was 17% lower, while % osteoclast surface did not differ. In 365d mice, cancellous bone volume (125%) and endocortical mineral apposition rate (40%) were greater in TG than WT males but not females. In WT mice, hindlimb unloading caused a reduction in mineral mass of tibiae (-20%) and lumbar vertebrae (-22%) relative to normally loaded controls. Surprisingly, hindlimb unloading also caused a relative reduction (-13%) in humerus mass. The effects of hindlimb unloading on

  12. Adhesive and migratory effects of phosphophoryn are modulated by flanking peptides of the integrin binding motif.

    Directory of Open Access Journals (Sweden)

    Shigeki Suzuki

    Full Text Available Phosphophoryn (PP is generated from the proteolytic cleavage of dentin sialophosphoprotein (DSPP. Gene duplications in the ancestor dentin matrix protein-1 (DMP-1 genomic sequence created the DSPP gene in toothed animals. PP and DMP-1 are phosphorylated extracellular matrix proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs. Many SIBLING members have been shown to evoke various cell responses through the integrin-binding Arg-Gly-Asp (RGD domain; however, the RGD-dependent function of PP is not yet fully understood. We demonstrated that recombinant PP did not exhibit any obvious cell adhesion ability, whereas the simultaneously purified recombinant DMP-1 did. A cell adhesion inhibitory analysis was performed by pre-incubating human osteosarcoma MG63 cells with various PP peptides before seeding onto vitronectin. The results obtained revealed that the incorporation of more than one amino acid on both sides of the PP-RGD domain was unable to inhibit the adhesion of MG63 cells onto vitronectin. Furthermore, the inhibitory activity of a peptide containing the PP-RGD domain with an open carboxyl-terminal side (H-463SDESDTNSESANESGSRGDA482-OH was more potent than that of a peptide containing the RGD domain with an open amino-terminal side (H-478SRGDASYTSDESSDDDNDSDSH499-OH. This phenomenon was supported by the potent cell adhesion and migration abilities of the recombinant truncated PP, which terminated with Ala482. Furthermore, various point mutations in Ala482 and/or Ser483 converted recombinant PP into cell-adhesive proteins. Therefore, we concluded that the Ala482-Ser483 flanking sequence, which was detected in primates and mice, was the key peptide bond that allowed the PP-RGD domain to be sequestered. The differential abilities of PP and DMP-1 to act on integrin imply that DSPP was duplicated from DMP-1 to serve as a crucial extracellular protein for tooth development rather than as an integrin

  13. An ab initio cluster study of atomic oxygen chemisorption on Ga-rich GaAs(100) (2x1) and beta(4x2) surfaces

    OpenAIRE

    Mayo, Michael L.; Ray, Asok K.

    2003-01-01

    Ab initio self-consistent total energy calculations using second order Moller-Plesset perturbation theory and Hay-Wadt effective core potentials for gallium and arsenic have been used to investigate the chemisorption of atomic oxygen on the Ga-rich GaAs (100) (2 x 1) and beta(4 x 2) surfaces. Finite sized hydrogen saturated clusters with the experimental zinc-blende lattice constant of 5.654 angstroms and the energy optimized surface Ga dimer bond length of 2.758 angstroms have been used to m...

  14. Assessing activation of hepatic stellate cells by 99mTc-3PRGD2 scintigraphy targeting integrin αvβ3: a feasibility study

    International Nuclear Information System (INIS)

    Objective: Hepatic stellate cell (HSC) activation, which is accompanied by increased expression of integrin αvβ3, is an important factor in liver fibrogenesis. Molecular imaging targeting the integrin αvβ3 could provide a non-invasive method for evaluating the expression and the function of the integrin αvβ3 on the activated HSCs (aHSCs) in the injured liver, and then provide important prognostic information. 99mTc-3PRGD2 is such a radiotracer specific for integrin αvβ3. In this study, we aimed to compare the differences in liver uptake and retention of the 99mTc-3PRGD2 between normal liver and injured liver to evaluate the feasibility of 99mTc-3PRGD2 scintigraphy for this purpose. Methods: We used planar scintigraphy to assess changes in integrin αvβ3 binding of intravenously-administered 99mTc-3PRGD2 in the livers of rats with thioacetamide (TAA)-induced liver fibrosis compared with the controls. We co-injected cold c(RGDyK) with 99mTc-3PRGD2 to assess the specific binding of the radiotracer. We performed Sirius red staining to assess liver fibrosis, immunofluorescent colocalization to identify the location of integrin αvβ3 expressed in the fibrotic liver, and we measured protein and messenger RNA expression of integrin αvβ3 and alpha smooth muscle actin (α-SMA) in the control and fibrotic livers. Results: The fibrotic livers showed enhanced 99mTc-3PRGD2 uptake and retention. The radiotracer was demonstrated to bind specifically with the integrin αvβ3 mainly expressed on the aHSCs. The liver-to-heart ratio at 30 min post-injection was higher in the fibrotic livers than in the control livers (TAA, 1.98 ± 0.08 vs. control, 1.50 ± 0.12, p < 0.01). The liver t1/2 was longer than in the controls (TAA, 27.07 ± 10.69 min vs. control, 12.67 ± 4.10 min, p < 0.01). The difference of heart t1/2 between the two groups was not statistically significant (TAA, 3.13 ± 0.63 min vs. control, 3.41 ± 0.77 min, p = 0.94). Conclusions: 99mTc-3PRGD2 molecular

  15. Mutually Exclusive Roles of SHARPIN in Integrin Inactivation and NF-κB Signaling

    Science.gov (United States)

    De Franceschi, Nicola; Peuhu, Emilia; Parsons, Maddy; Rissanen, Sami; Vattulainen, Ilpo; Salmi, Marko

    2015-01-01

    SHANK-associated RH domain interactor (SHARPIN) inhibits integrins through interaction with the integrin α-subunit. In addition, SHARPIN enhances nuclear factor-kappaB (NF-κB) activity as a component of the linear ubiquitin chain assembly complex (LUBAC). However, it is currently unclear how regulation of these seemingly different roles is coordinated. Here, we show that SHARPIN binds integrin and LUBAC in a mutually exclusive manner. We map the integrin binding site on SHARPIN to the ubiquitin-like (UBL) domain, the same domain implicated in SHARPIN interaction with LUBAC component RNF31 (ring finger protein 31), and identify two SHARPIN residues (V267, L276) required for both integrin and RNF31 regulation. Accordingly, the integrin α-tail is capable of competing with RNF31 for SHARPIN binding in vitro. Importantly, the full SHARPIN RNF31-binding site contains residues (F263A/I272A) that are dispensable for SHARPIN-integrin interaction. Importantly, disrupting SHARPIN interaction with integrin or RNF31 abolishes SHARPIN-mediated regulation of integrin or NF-κB activity, respectively. Altogether these data suggest that the roles of SHARPIN in inhibiting integrin activity and supporting linear ubiquitination are (molecularly) distinct. PMID:26600301

  16. Integrin expression profiling identifies integrin alpha5 and beta1 as prognostic factors in early stage non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    van Suylen Robert-Jan

    2010-06-01

    Full Text Available Abstract Background Selection of early stage non-small cell lung cancer patients with a high risk of recurrence is warranted in order to select patients who will benefit from adjuvant treatment strategies. We evaluated the prognostic value of integrin expression profiles in a retrospective study on frozen primary tumors of 68 patients with early stage non-small cell lung cancer. Methods A retrospective study was performed on frozen primary tumors of 68 early stage non-small cell lung cancer patients with a follow up of at least 10 years. From all tumor tissues, RNA was isolated and reverse transcribed into cDNA. qPCR was used to generate mRNA expression profiles including integrins alpha1, 2, 3, 4, 5, 6, 7, 11, and V as well as integrins beta1, 3, 4, 5, 6, and 8. Results The expression levels of integrins alpha5, beta1 and beta3 predicted overall survival and disease free survival in early stage NSCLC patients. There was no association between integrin expression and lymph node metastases. Comparison between the histological subtypes revealed a distinct integrin signature for squamous cell carcinoma while the profiles of adenocarcinoma and large cell carcinoma were largely the same. Conclusion Integrin expression in NSCLC is important for the development and behavior of the tumor and influences the survival of the patient. Determining the integrin expression profile might serve as a tool in predicting the prognosis of individual patients.

  17. CXCR4 Chemokine Receptor Mediates Prostate Tumor Cell Adhesion through α5 and β3 Integrins

    Directory of Open Access Journals (Sweden)

    Tobias Engl

    2006-04-01

    Full Text Available The mechanisms leading to prostate cancer metastasis are not understood completely. Although there is evidence that the CXC chemokine receptor (CXCR 4 and its ligand CXCL12 may regulate tumor dissemination, their role in prostate cancer is controversial. We examined CXCR4 expression and functionality, and explored CXCL12-triggered adhesion of prostate tumor cells to human endothelium or to extracellular matrix proteins laminin, collagen, and fibronectin. Although little CXCR4 was expressed on LNCaP and DU-145 prostate tumor cells, CXCR4 was still active, enabling the cells to migrate toward a CXCL12 gradient. CXCL12 induced elevated adhesion to the endothelial cell monolayer and to immobilized fibronectin, laminin, and collagen. Anti-CXCR4 antibodies or CXCR4 knock out significantly impaired CXCL 12-triggered tumor cell binding. The effects observed did not depend on CXCR4 surface expression level. Rather, CXCR4-mediated adhesion was established by α5 and β3 integrin subunits and took place in the presence of reduced p38 and p38 phosphorylation. These data show that chemoattractive mechanisms are involved in adhesion processes of prostate cancer cells, and that binding of CXCL12 to its receptor leads to enhanced expression of α5 and β3. The findings provide a link between chemokine receptor expression and integrin-triggered tumor dissemination.

  18. A β-integrin from sea cucumber Apostichopus japonicus exhibits LPS binding activity and negatively regulates coelomocyte apoptosis.

    Science.gov (United States)

    Wang, Zhenhui; Shao, Yina; Li, Chenghua; Lv, Zhimeng; Wang, Haihong; Zhang, Weiwei; Zhao, Xuelin

    2016-05-01

    Integrins are a family of membrane glycoproteins, which are the major receptors for extracellular matrix and cell-cell adhesion molecules. In this study, a 1038 bp sequence representing the full-length cDNA of a novel β-integrin subunit (designated as AjITGB) was cloned from Apostichopus japonicusby using combined transcriptome sequencing and RACE approaches. The deduced amino acid sequence of AjITGB shared a conserved tripeptide Arg-Gly-Asp (RGD) binding domain with an S-diglyceridecysteine or N-Palm cysteine residue (C(31)), a transmembrane domain, and a β-integrin cytoplasmic domain. Spatial distribution analysis showed that AjITGB was constitutively expressed in all tested tissues with dominant expression in the muscles and weak expression in the respiratory tree. The pathogen Vibrio splendidus challenge and LPS stimulation could both significantly down-regulate the mRNA expression of AjITGB. Functional investigation revealed that recombinant AjITGB displayed higher LPS binding activity but lower binding activity to PGN and MAN. More importantly, knockdown of AjITGB by specific siRNA resulted in the significant promotion of coelomocyte apoptosis in vitro. Results indicated that AjITGB may serve as an apoptosis inhibitor with LPS binding activity during host-pathogen interaction in sea cucumber. PMID:26994670

  19. Hydrogen Sulfide Recruits Macrophage Migration by Integrin β1-Src-FAK/Pyk2-Rac Pathway in Myocardial Infarction

    Science.gov (United States)

    Miao, Lei; Xin, Xiaoming; Xin, Hong; Shen, Xiaoyan; Zhu, Yi-Zhun

    2016-03-01

    Myocardial infarction (MI) triggers an inflammatory reaction, in which macrophages are of key importance for tissue repairing. Infiltration and/or migration of macrophages into the infarct area early after MI is critical for infarct healing, vascularization, and cardiac function. Hydrogen sulfide (H2S) has been demonstrated to possess cardioprotective effects post MI and during the progress of cardiac remodeling. However, the specific molecular and cellular mechanisms involved in macrophage recruitment by H2S remain to be identified. In this study, the NaHS (exogenous sources of H2S) treatment exerted an increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in both wild type (WT) and cystathionine-γ-lyase-knockout (CSE-KO) mice. And NaHS accelerated the migration of macrophage cells in vitro. While, the inhibitors not only significantly diminished the migratory ability in response to NaHS, but also blocked the activation of phospho-Src, -Pyk2, -FAK397, and -FAK925. Furthermore, NaHS induced the internalization of integrin β1 on macrophage surface, but, integrin β1 silencing inhibited macrophage migration and Src signaling activation. These results indicate that H2S may have the potential as an anti-infarct of MI by governing macrophage migration, which was achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway.

  20. Solution structure of the N-terminal A domain of the human voltage-gated Ca2+channel beta4a subunit.

    Science.gov (United States)

    Vendel, Andrew C; Rithner, Christopher D; Lyons, Barbara A; Horne, William A

    2006-02-01

    Ca2+ channel beta subunits regulate trafficking and gating (opening and closing) of voltage-dependent Ca2+ channel alpha1 subunits. Based on primary sequence comparisons, they are thought to be modular structures composed of five domains (A-E) that are related to the large family of membrane associated guanylate-kinase (MAGUK) proteins. The crystal structures of the beta subunit core, B-D, domains have recently been reported; however, very little is known about the structures of the A and E domains. The N-terminal A domain is a hypervariable region that differs among the four subtypes of Ca2+ channel beta subunits (beta1-beta4). Furthermore, this domain undergoes alternative splicing to create multiple N-terminal structures within a given gene class that have distinct effects on gating. We have solved the solution structure of the A domain of the human beta4a subunit, a splice variant that we have shown previously to have alpha1 subunit subtype-specific effects on Ca2+ channel trafficking and gating. PMID:16385006

  1. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    International Nuclear Information System (INIS)

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced ανβ3 and ανβ5 integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration on both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.

  2. β1 integrins as therapeutic targets to disrupt hallmarks of cancer

    Directory of Open Access Journals (Sweden)

    Anne-Florence eBlandin

    2015-11-01

    Full Text Available Integrins belong to a large family of αβ heterodimeric transmembrane proteins first recognized as adhesion molecules that bind to dedicated elements of the extracellular matrix and also to other surrounding cells. As important sensors of the cell microenvironment, they regulate numerous signaling pathways in response to structural variations of the extracellular matrix. Biochemical and biomechanical cues provided by this matrix and transmitted to cells via integrins are critically modified in tumoral settings. Integrins repertoire are subjected to expression level modifications, in tumor cells and in surrounding cancer-associated cells, implicated in tumor initiation and progression as well. As critical players in numerous cancer hallmarks, defined by Hanahan and Weinberg in 2011, integrins represent pertinent therapeutic targets. We will briefly summarize here our current knowledge about integrin implications in those different hallmarks focusing primarily on β1 integrins.

  3. β1 Integrin Is Essential for Teratoma Growth and Angiogenesis

    OpenAIRE

    Bloch, Wilhelm; Forsberg, Erik; Lentini, Sylvia; Brakebusch, Cord; Martin, Karl; Krell, Hans W.; Weidle, Ulrich H.; Addicks, Klaus; Fässler, Reinhard

    1997-01-01

    Teratomas are benign tumors that form after ectopic injection of embryonic stem (ES) cells into mice and contain derivatives of all primitive germ layers. To study the role of β1 integrin during teratoma formation, we compared teratomas induced by normal and β1-null ES cells. Injection of normal ES cells gave rise to large teratomas. In contrast, β1-null ES cells either did not grow or formed small teratomas with an average weight of

  4. Integrin-dependent Neutrophil Migration in the Injured Mouse Cornea

    OpenAIRE

    Hanlon, Samuel D.; Smith, C. Wayne; Sauter, Marika N; Burns, Alan R.

    2014-01-01

    As an early responder to an inflammatory stimulus, neutrophils (PMNs) must exit the vasculature and migrate through the extravascular tissue to the site of insult, which is often remote from the point of extravasation. Following a central epithelial corneal abrasion, PMNs recruited from the peripheral limbal vasculature migrate into the avascular corneal stroma. In vitro studies suggest PMN locomotion over 2-D surfaces is dependent on integrin binding while migration within 3-D matrices can b...

  5. Extracellular matrix stiffness dictates Wnt expression through integrin pathway.

    Science.gov (United States)

    Du, Jing; Zu, Yan; Li, Jing; Du, Shuyuan; Xu, Yipu; Zhang, Lang; Jiang, Li; Wang, Zhao; Chien, Shu; Yang, Chun

    2016-01-01

    It is well established that extracellular matrix (ECM) stiffness plays a significant role in regulating the phenotypes and behaviors of many cell types. However, the mechanism underlying the sensing of mechanical cues and subsequent elasticity-triggered pathways remains largely unknown. We observed that stiff ECM significantly enhanced the expression level of several members of the Wnt/β-catenin pathway in both bone marrow mesenchymal stem cells and primary chondrocytes. The activation of β-catenin by stiff ECM is not dependent on Wnt signals but is elevated by the activation of integrin/ focal adhesion kinase (FAK) pathway. The accumulated β-catenin then bound to the wnt1 promoter region to up-regulate the gene transcription, thus constituting a positive feedback of the Wnt/β-catenin pathway. With the amplifying effect of positive feedback, this integrin-activated β-catenin/Wnt pathway plays significant roles in mediating the enhancement of Wnt signal on stiff ECM and contributes to the regulation of mesenchymal stem cell differentiation and primary chondrocyte phenotype maintenance. The present integrin-regulated Wnt1 expression and signaling contributes to the understanding of the molecular mechanisms underlying the regulation of cell behaviors by ECM elasticity. PMID:26854061

  6. Extracellular matrix stiffness dictates Wnt expression through integrin pathway.

    Science.gov (United States)

    Du, Jing; Zu, Yan; Li, Jing; Du, Shuyuan; Xu, Yipu; Zhang, Lang; Jiang, Li; Wang, Zhao; Chien, Shu; Yang, Chun

    2016-02-08

    It is well established that extracellular matrix (ECM) stiffness plays a significant role in regulating the phenotypes and behaviors of many cell types. However, the mechanism underlying the sensing of mechanical cues and subsequent elasticity-triggered pathways remains largely unknown. We observed that stiff ECM significantly enhanced the expression level of several members of the Wnt/β-catenin pathway in both bone marrow mesenchymal stem cells and primary chondrocytes. The activation of β-catenin by stiff ECM is not dependent on Wnt signals but is elevated by the activation of integrin/ focal adhesion kinase (FAK) pathway. The accumulated β-catenin then bound to the wnt1 promoter region to up-regulate the gene transcription, thus constituting a positive feedback of the Wnt/β-catenin pathway. With the amplifying effect of positive feedback, this integrin-activated β-catenin/Wnt pathway plays significant roles in mediating the enhancement of Wnt signal on stiff ECM and contributes to the regulation of mesenchymal stem cell differentiation and primary chondrocyte phenotype maintenance. The present integrin-regulated Wnt1 expression and signaling contributes to the understanding of the molecular mechanisms underlying the regulation of cell behaviors by ECM elasticity.

  7. Integrin αβ3-Targeted Imaging of Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Chen

    2005-03-01

    Full Text Available A series of radiolabeled cyclic arginine-glycineaspartic acid (RGD peptide ligands for cell adhesion molecule integrin αβ3-targeted tumor angiogenesis targeting are being developed in our laboratory. In this study, this effort continues by applying a positron emitter 64Cu-labeled PEGylated dimeric RGD peptide radiotracer 64Cu-DOTA-PEG-E[c(RGDyK]2 for lung cancer imaging. The PEGylated RGD peptide indicated integrin αβ3 avidity, but the PEGylation reduced the receptor binding affinity of this ligand compared to the unmodified RGD dimer. The radiotracer revealed rapid blood clearance and predominant renal clearance route. The minimum nonspecific activity accumulation in normal lung tissue and heart rendered high-quality orthotopic lung cancer tumor images, enabling clear demarcation of both the primary tumor at the upper lobe of the left lung, as well as metastases in the mediastinum, contralateral lung, diaphragm. As a comparison, fluorodeoxyglucose (FDG scans on the same mice were only able to identify the primary tumor, with the metastatic lesions masked by intense cardiac uptake and high lung background. 64Cu-DOTA-PEGE[c(RGDyK]2 is an excellent positron emission tomography (PET tracer for integrin-positive tumor imaging. Further studies to improve the receptor binding affinity of the tracer and subsequently to increase the magnitude of tumor uptake without comprising the favorable in vivo kinetics are currently in progress.

  8. Generation and characterization of a tetraspanin CD151/integrin α6β1-binding domain competitively binding monoclonal antibody for inhibition of tumor progression in HCC

    Science.gov (United States)

    Cai, Jia-Bin; Huang, Xiao-Yong; Wu, Chao; Zhang, Lu; Kang, Qiang; Liu, Li-Xin; Xie, Nan; Shen, Zao-Zhuo; Hu, Mei-Yu; Cao, Ya; Qiu, Shuang-Jian; Sun, Hui-Chuan; Zhou, Jian; Fan, Jia; Shi, Guo-Ming

    2016-01-01

    Our previous studies revealed that tetraspanin CD151 plays multiple roles in the progression of hepatocellular carcinoma (HCC) by forming a functional complex with integrin α6β1. Herein, we generated a monoclonal antibody (mAb) that dissociates the CD151/integrin α6β1 complex, and we evaluated its bioactivity in HCCs. A murine mAb, tetraspanin CD151 (IgG1, called CD151 mAb 9B), was successfully generated against the CD151-integrin α6β1 binding site of CD151 extracellular domains. Co-immunoprecipitation using CD151 mAb 9B followed by Western blotting detected a 28 kDa protein. Both immunofluorescent and immunohistochemical staining showed a good reactivity of CD151 mAb 9B in the plasma membrane and cytoplasm of HCC cells, as well as in liver cells. In vitro assays demonstrated that CD151 mAb 9B could inhibit neoangiogenesis and both the mobility and the invasiveness of HCC cells. An in vivo assay showed that CD151 mAb 9B inhibited tumor growth potential and HCC cells metastasis. We successfully produced a CD151 mAb 9B targeting the CD151/integrin α6β1-binding domain, which not only can displayed good reactivity to the CD151 antigen but also prevented tumor progression in HCC. PMID:26756217

  9. Human U87 astrocytoma cell invasion induced by interaction of βig-h3 with integrin α5β1 involves calpain-2.

    Directory of Open Access Journals (Sweden)

    Jie Ma

    Full Text Available It is known that βig-h3 is involved in the invasive process of many types of tumors, but its mechanism in glioma cells has not been fully clarified. Using immunofluorescent double-staining and confocal imaging analysis, and co-immunoprecipitation assays, we found that βig-h3 co-localized with integrin α5β1 in U87 cells. We sought to elucidate the function of this interaction by performing cell invasion assays and gelatin zymography experiments. We found that siRNA knockdowns of βig-h3 and calpain-2 impaired cell invasion and MMP secretion. Moreover, βig-h3, integrins and calpain-2 are known to be regulated by Ca(2+, and they are also involved in tumor cell invasion. Therefore, we further investigated if calpain-2 was relevant to βig-h3-integrin α5β1 interaction to affect U87 cell invasion. Our data showed that βig-h3 co-localized with integrin α5β1 to enhance the invasion of U87 cells, and that calpain-2, is involved in this process, acting as a downstream molecule.

  10. Identification of multiple integrin β1 homologs in zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Boot-Handford Raymond P

    2006-06-01

    Full Text Available Abstract Background Integrins comprise a large family of α,β heterodimeric, transmembrane cell adhesion receptors that mediate diverse essential biological functions. Higher vertebrates possess a single β1 gene, and the β1 subunit associates with a large number of α subunits to form the major class of extracellular matrix (ECM receptors. Despite the fact that the zebrafish (Danio rerio is a rapidly emerging model organism of choice for developmental biology and for models of human disease, little is currently known about β1 integrin sequences and functions in this organism. Results Using RT-PCR, complete coding sequences of zebrafish β1 paralogs were obtained from zebrafish embryos or adult tissues. The results show that zebrafish possess two β1 paralogs (β1–1 and β1–2 that have a high degree of identity to other vertebrate β1 subunits. In addition, a third, more divergent, β1 paralog is present (β1–3, which may have altered ligand-binding properties. Zebrafish also have other divergent β1-like transcripts, which are C-terminally truncated forms lacking the transmembrane and cytoplasmic domains. Together with β1–3 these truncated forms comprise a novel group of β1 paralogs, all of which have a mutation in the ADMIDAS cation-binding site. Phylogenetic and genomic analyses indicate that the duplication that gave rise to β1–1 and β1–2 occurred after the divergence of the tetrapod and fish lineages, while a subsequent duplication of the ancestor of β1–2 may have given rise to β1–3 and an ancestral truncated paralog. A very recent tandem duplication of the truncated β1 paralogs appears to have taken place. The different zebrafish β1 paralogs have varied patterns of temporal expression during development. β1–1 and β1–2 are ubiquitously expressed in adult tissues, whereas the other β1 paralogs generally show more restricted patterns of expression. Conclusion Zebrafish have a large set of integrin β1

  11. β1 integrin-mediated signals are required for platelet granule secretion and hemostasis in mouse.

    Science.gov (United States)

    Petzold, Tobias; Ruppert, Raphael; Pandey, Dharmendra; Barocke, Verena; Meyer, Hannelore; Lorenz, Michael; Zhang, Lin; Siess, Wolfgang; Massberg, Steffen; Moser, Markus

    2013-10-10

    Integrins are critical for platelet adhesion and aggregation during arterial thrombosis and hemostasis. Although the platelet-specific αIIbβ3 integrin is known to be crucial for these processes, the in vivo role of β1 integrins is a matter of debate. Here we demonstrate that mice expressing reduced levels of β1 integrins or an activation-deficient β1 integrin show strongly reduced platelet adhesion to collagen in vitro and in a carotis ligation model in vivo. Interestingly, hypomorphic mice expressing only 3% of β1 integrins on platelets show normal bleeding times despite reduced platelet adhesion. The residual 3% of β1 integrins are able to trigger intracellular signals driving Rac-1-dependent granule release required for platelet aggregation and hemostasis. Our findings support a model, in which platelet β1 integrins serve as an important signaling receptor rather than an adhesion receptor in vivo and therefore promote β1 integrins as a promising and so far clinically unemployed antithrombotic target.

  12. The modulation of MiR-155 and MiR-23a manipulates Klebsiella pneumoniae Adhesion on Human pulmonary Epithelial cells via Integrin α5β1 Signaling.

    Science.gov (United States)

    Teng, Yan; Miao, Junming; Shen, Xiaofei; Yang, Xiaolong; Wang, Xinyuan; Ren, Laibin; Wang, Xiaoying; Chen, Junli; Li, Jingyu; Chen, Shanze; Wang, Yi; Huang, Ning

    2016-01-01

    Micro-RNAs (miRNAs) critically regulate several host defense mechanisms, but their roles in the bacteria-epithelium interplay remain unclear. Our results displayed that the expression of miR-155 and miR-23a were down-regulated in K. pneumoniae-infected pulmonary epithelial cells. The elevated bacterial adhesion on A549 cells followed the enhancement of the cellular levels of these two miRNAs. Meanwhile, a mechanistic study demonstrated that miR-155 promoted integrin α5β1 function and resulted in the increased actin polymerization. Moreover, a non-histone nuclear protein, high mobility group nucleosomal-binding domain 2 (HMGN2) served as the potential target of miR-155 and miR-23a to regulate the integrin α5β1 expression and K. pneumoniae adhesion. Furthermore, the expression of a known integrin transcription suppressor-Nuclear Factor-I (NFI) was also repressed by miR-155, which paralleled with its chromatin location in the promoter regions of integrin α5 and β1. These results uncover novel links between miRNAs and integrin function to regulate bacterial adhesion, indicating a potential mechanism of host cell autonomous immune response to K. pneumoniae infection. PMID:27534887

  13. Structural basis for distinctive recognition of fibrinogen [gamma]C peptide by the platelet integrin [alpha][subscript IIb][beta]3

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Timothy A.; Zhu, Jianghai; Xiao, Tsan (Harvard-Med)

    2009-01-12

    Hemostasis and thrombosis (blood clotting) involve fibrinogen binding to integrin {alpha}{sub IIb}{beta}{sub 3} on platelets, resulting in platelet aggregation. {alpha}{sub v}{beta}{sub 3} binding fibrinogen via an Arg-Asp-Gly (RGD) motif in fibrinogen's {alpha} subunit. {alpha}{sub IIb}{beta}{sub 3} also binds to fibrinogen; however, it does so via an unstructured RGD-lacking C-terminal region of the {gamma} subunit ({gamma}C peptide). These distinct modes of fibrinogen binding enable {alpha}{sub IIb}{beta}{sub 3} and {alpha}{sub v}{beta}{sub 3} to function cooperatively in hemostasis. In this study, crystal structures reveal the integrin {alpha}{sub IIb}{beta}{sub 3}-{gamma}C peptide interface, and, for comparison, integrin {alpha}{sub IIb}{beta}{sub 3} bound to a lamprey {gamma}C primordial RGD motif. Compared with RGD, the GAKQAGDV motif in {gamma}C adopts a different backbone configuration and binds over a more extended region. The integrin metal ion-dependent adhesion site (MIDAS) Mg{sup 2+} ion binds the {gamma}C Asp side chain. The adjacent to MIDAS (ADMIDAS) Ca{sup 2+} ion binds the {gamma}C C terminus, revealing a contribution for ADMIDAS in ligand binding. Structural data from this natively disordered {gamma}C peptide enhances our understanding of the involvement of {gamma}C peptide and integrin {alpha}{sub IIb}{beta}{sub 3} in hemostasis and thrombosis.

  14. Integrin β1 Participates in Atrial Remodeling in Rapid Atrial Pacing Induced Canine Atrial Fibrillation Model

    Institute of Scientific and Technical Information of China (English)

    Zhang wei; Yang guirong; Zheng zhaotong; Wang sujia; Zhang yun

    2004-01-01

    @@ Objective Integrin β1 regulates cell to cell and cell to extracellualr matrix interaction in heart. however, its pathop hysiological role in atrial fibrillation is unclear. The purpose of t his study was to determine whether atrial structural remodeling during atrial fibrillation is associated with altered integrinβ1.

  15. Ligand-Occupied Integrin Internalization Links Nutrient Signaling to Invasive Migration

    Directory of Open Access Journals (Sweden)

    Elena Rainero

    2015-01-01

    Full Text Available Integrin trafficking is key to cell migration, but little is known about the spatiotemporal organization of integrin endocytosis. Here, we show that α5β1 integrin undergoes tensin-dependent centripetal movement from the cell periphery to populate adhesions located under the nucleus. From here, ligand-engaged α5β1 integrins are internalized under control of the Arf subfamily GTPase, Arf4, and are trafficked to nearby late endosomes/lysosomes. Suppression of centripetal movement or Arf4-dependent endocytosis disrupts flow of ligand-bound integrins to late endosomes/lysosomes and their degradation within this compartment. Arf4-dependent integrin internalization is required for proper lysosome positioning and for recruitment and activation of mTOR at this cellular subcompartment. Furthermore, nutrient depletion promotes subnuclear accumulation and endocytosis of ligand-engaged α5β1 integrins via inhibition of mTORC1. This two-way regulatory interaction between mTORC1 and integrin trafficking in combination with data describing a role for tensin in invasive cell migration indicate interesting links between nutrient signaling and metastasis.

  16. Integrin αv in the mechanical response of osteoblast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Keiko [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Ito, Masako [Medical Work-Life-Balance Center, Nagasaki University Hospital, Nagasaki 852-8501 (Japan); Naoe, Yoshinori [Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Lacy-Hulbert, Adam [Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114 (United States); Ikeda, Kyoji, E-mail: kikeda@ncgg.go.jp [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan)

    2014-05-02

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation.

  17. Targeting of Alpha-V Integrins Reduces Malignancy of Bladder Carcinoma

    Science.gov (United States)

    van der Horst, Geertje; Bos, Lieke; van der Mark, Maaike; Cheung, Henry; Heckmann, Bertrand; Clément-Lacroix, Philippe; Lorenzon, Giocondo; Pelger, Rob C. M.; Bevers, Rob F. M.; van der Pluijm, Gabri

    2014-01-01

    Low survival rates of metastatic cancers emphasize the need for a drug that can prevent and/or treat metastatic cancer. αv integrins are involved in essential processes for tumor growth and metastasis and targeting of αv integrins has been shown to decrease angiogenesis, tumor growth and metastasis. In this study, the role of αv integrin and its potential as a drug target in bladder cancer was investigated. Treatment with an αv integrin antagonist as well as knockdown of αv integrin in the bladder carcinoma cell lines, resulted in reduced malignancy invitro, as illustrated by decreased proliferative, migratory and clonogenic capacity. The CDH1/CDH2 ratio increased, indicating a shift towards a more epithelial phenotype. This shift appeared to be associated with downregulation of EMT-inducing transcription factors including SNAI2. The expression levels of the self-renewal genes NANOG and BMI1 decreased as well as the number of cells with high Aldehyde Dehydrogenase activity. In addition, self-renewal ability decreased as measured with the urosphere assay. In line with these observations, knockdown or treatment of αv integrins resulted in decreased metastatic growth in preclinical invivo models as assessed by bioluminescence imaging. In conclusion, we show that αv integrins are involved in migration, EMT and maintenance of Aldehyde Dehydrogenase activity in bladder cancer cells. Targeting of αv integrins might be a promising approach for treatment and/or prevention of metastatic bladder cancer. PMID:25247809

  18. Interaction of the α2A domain of integrin with small collagen fragments

    NARCIS (Netherlands)

    Siebert, H.-C.; Burg-Roderfeld, M.; Eckert, T.; Stötzel, S.; Kirch, U.; Diercks, T.; Humphries, M.J.; Frank, M.; Wechselberger, R.W.; Tajkhorshid, E.; Oesser, S.

    2010-01-01

    We here present a detailed study of the ligand-receptor interactions between single and triple-helical strands of collagen and the α2A domain of integrin (α2A), providing valuable new insights into the mechanisms and dynamics of collagen-integrin binding at a sub-molecular level. The occurrence of s

  19. The cell-binding domain of intimin from enteropathogenic Escherichia coli binds to beta1 integrins.

    Science.gov (United States)

    Frankel, G; Lider, O; Hershkoviz, R; Mould, A P; Kachalsky, S G; Candy, D C; Cahalon, L; Humphries, M J; Dougan, G

    1996-08-23

    Bacteria interact with mammalian cells surface molecules, such as integrins, to colonize tissues and evade immunological detection. Herein, the ability of intimin, an outer membrane protein from enteropathogenic Escherichia coli, to bind beta1 integrins was investigated. Solid-phase binding assays revealed binding of the carboxyl-terminal 280 amino acids of intimin (Int280) to alpha4beta1 and alpha5beta1 integrins. The binding required divalent ions (in particular, it was enhanced by Mn2+) and was inhibited by an RGD-containing peptide. Nonderivatized Int280, but not Int280CS (like Int280 but with Cys-937 replaced by Ser) blocked the binding of biotinylated Int280 to integrins. Int280 did not efficiently inhibit beta1 integrin binding of invasin from Yersinia pseudotuberculosis. Both intimin and invasin, immobilized on plastic surfaces, mediated adherence of resting or phorbol 12-myristate 13-acetate-activated human CD4(+) T cells, whereas fibronectin mediated the adherence of only activated T cells. T cell binding to intimin and invasin was integrin mediated because it was specifically blocked by an RGD-containing peptide and by antibodies directed against the integrin subunits beta1, alpha4, and alpha5. These results demonstrate a specific integrin binding activity for intimin that is related to, but distinct from, that of invasin. PMID:8702771

  20. Absence of alphavbeta6 integrin is linked to initiation and progression of periodontal disease.

    Science.gov (United States)

    Ghannad, Farzin; Nica, Daniela; Fulle, Maria I Garcia; Grenier, Daniel; Putnins, Edward E; Johnston, Sarah; Eslami, Ameneh; Koivisto, Leeni; Jiang, Guoqiao; McKee, Marc D; Häkkinen, Lari; Larjava, Hannu

    2008-05-01

    Integrin alphavbeta6 is generally not expressed in adult epithelia but is induced in wound healing, cancer, and certain fibrotic disorders. Despite this generalized absence, we observed that alphavbeta6 integrin is constitutively expressed in the healthy junctional epithelium linking the gingiva to tooth enamel. Moreover, expression of alphavbeta6 integrin was down-regulated in human periodontal disease, a common medical condition causing tooth loss and also contributing to the development of cardiovascular diseases by increasing the total systemic inflammatory burden. Remarkably, integrin beta6 knockout mice developed classic signs of spontaneous, chronic periodontal disease with characteristic inflammation, epithelial down-growth, pocket formation, and bone loss around the teeth. Integrin alphavbeta6 acts as a major activator of transforming growth factor-beta1 (TGF-beta1), a key anti-inflammatory regulator in the immune system. Co-expression of TGF-beta1 and alphavbeta6 integrin was observed in the healthy junctional epithelium. Moreover, an antibody that blocks alphavbeta6 integrin-mediated activation of TGF-beta1 initiated inflammatory periodontal disease in a rat model of gingival inflammation. Thus, alphavbeta6 integrin is constitutively expressed in the epithelium sealing the gingiva to the tooth and plays a central role in protection against inflammatory periodontal disease through activation of TGF-beta1. PMID:18385522

  1. Role of aVb3 integrin in embryo implantation in the mouse

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Integrin, a heterodimeric adhesive molecule composed of a and b subunits, can regulate cell adhesion and trafficking. Recent data have documented that, at the "implantation window" stage, aVb3 integrin participates in the maternal-fetal interaction and becomes a potential marker of uterine receptivity. Furthermore, it can affect invasiveness of embryo. This work made a further study about its action mechanism. Results of indirect immunofluorescence and laser scanning confocal microscopy showed that aVb3 integrin was clearly expressed in the mouse blastocyst. Injection of aVb3 integrin antiserum into a uterine horn of a pregnant mouse on day 3 markedly decreased the number of embryos implanted (P < 0.001). In a co-culture model, aVb3 integrin antisera at 1:100 and 1:200 dilutions significantly depressed the attachment and outgrowth reactions of blastocysts on monolayer of uterine epithelial cells. Analysis of correlation manifested that the inhibitory effect of aVb3 integrin antiserum was dosage/dilution-dependent. Thus, aVb3 integrin is an essential factor in the uterine endometrium for embryo implantation in the mouse. This integrin distinctly expressed in the mouse blastocyst at "implantation" stage affected the process of embryo implantation by route of mediating both the attachment and the outgrowth processes of blastocyst on uterine epithelial cells.

  2. Anti-microRNA-378a Enhances Wound Healing Process by Upregulating Integrin Beta-3 and Vimentin

    OpenAIRE

    Li, Haoran; Chang, Leslie; Du, William W.; Gupta, Shaan; Khorshidi, Azam; Sefton, Michael; Yang, Burton B.

    2014-01-01

    Delayed or impaired wound healing is a major public health issue worldwide, especially in patients with diabetes mellitus and vascular atherosclerosis. MicroRNAs have been identified as key regulators of wound healing. Here, we show that miR-Pirate378a transgenic mice (and thus have inhibited miR-378a-5p function) display enhanced wound healing. Expression of vimentin and β3 integrin, two important modulators of wound healing, is markedly elevated in the transgenic mice. MiR-Pirate378a-transf...

  3. beta1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury

    DEFF Research Database (Denmark)

    Cordes, N; Seidler, J; Durzok, R;

    2006-01-01

    Integrin-mediated adhesion to extracellular matrix proteins confers resistance to radiation- or drug-induced genotoxic injury. To analyse the underlying mechanisms specific for beta1-integrins, wild-type beta1A-integrin-expressing GD25beta1A cells were compared to GD25beta1B cells, which express...

  4. DMPD: Immunoreceptor-like signaling by beta 2 and beta 3 integrins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17913496 Immunoreceptor-like signaling by beta 2 and beta 3 integrins. Jakus Z, Fod...) Show Immunoreceptor-like signaling by beta 2 and beta 3 integrins. PubmedID 17913496 Title Immunoreceptor-like signaling by beta... 2 and beta 3 integrins. Authors Jakus Z, Fodor S, Abram CL

  5. Guiding plant virus particles to integrin-displaying cells

    Science.gov (United States)

    Hovlid, Marisa L.; Steinmetz, Nicole F.; Laufer, Burkhardt; Lau, Jolene L.; Kuzelka, Jane; Wang, Qian; Hyypiä, Timo; Nemerow, Glen R.; Kessler, Horst; Manchester, Marianne; Finn, M. G.

    2012-05-01

    Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors.Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity

  6. Identification of integrin-like in guard cells of Vicia faba

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We addressed the existence and localization of integrin-like in guard cells of Vicia faba by using a probe of polyclonal antibody against the human integrin (avb3/b5). Western blot results showed that three integrins-like of about 47.3, 43.7 and 41.1 ku were detected from the preparation of membrane fragments of purified guard cell protoplasts. Further research with immunofluorescent scanning micro-scopy indicated that those integrins-like were localized on plasma membrane of guard cells, most nearing the dorsal wall, which is consistent with the reception of signals from epidermal cells to guard cells. Thus our results indicate, for the first time, that integrins-like are present at guard cell plasma membrane of Vicia faba.

  7. Integrin dynamics produce a delayed stage of long-term potentiation and memory consolidation.

    Science.gov (United States)

    Babayan, Alex H; Kramár, Enikö A; Barrett, Ruth M; Jafari, Matiar; Häettig, Jakob; Chen, Lulu Y; Rex, Christopher S; Lauterborn, Julie C; Wood, Marcelo A; Gall, Christine M; Lynch, Gary

    2012-09-12

    Memory consolidation theory posits that newly acquired information passes through a series of stabilization steps before being firmly encoded. We report here that in rat and mouse, hippocampus cell adhesion receptors belonging to the β1-integrin family exhibit dynamic properties in adult synapses and that these contribute importantly to a previously unidentified stage of consolidation. Quantitative dual immunofluorescence microscopy showed that induction of long-term potentiation (LTP) by theta burst stimulation (TBS) activates β1 integrins, and integrin-signaling kinases, at spine synapses in adult hippocampal slices. Neutralizing antisera selective for β1 integrins blocked these effects. TBS-induced integrin activation was brief (consolidation for both LTP and memory. PMID:22973009

  8. Crystal structure of isoflurane bound to integrin LFA-1 supports a unified mechanism of volatile anesthetic action in the immune and central nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongmin; Astrof, Nathan S.; Liu, Jin-Huan; Wang, Jia-huai; Shimaoka, Motomu; (Harvard-Med); (DFCI)

    2009-09-15

    Volatile anesthetics (VAs), such as isoflurane, induce a general anesthetic state by binding to specific targets (i.e., ion channels) in the central nervous system (CNS). Simultaneously, VAs modulate immune functions, possibly via direct interaction with alternative targets on leukocytes. One such target, the integrin lymphocyte function-associated antigen-1 (LFA-1), has been shown previously to be inhibited by isoflurane. A better understanding of the mechanism by which isoflurane alters protein function requires the detailed information about the drug-protein interaction at an atomic level. Here, we describe the crystal structure of the LFA-1 ligand-binding domain (I domain) in complex with isoflurane at 1.6 {angstrom}. We discovered that isoflurane binds to an allosteric cavity previously implicated as critical for the transition of LFA-1 from the low- to the high-affinity state. The isoflurane binding site in the I domain involves an array of amphiphilic interactions, thereby resembling a 'common anesthetic binding motif' previously predicted for authentic VA binding sites. These results suggest that the allosteric modulation of protein function by isoflurane, as demonstrated for the integrin LFA-1, might represent a unified mechanism shared by the interactions of volatile anesthetics with targets in the CNS. Crystal structure of isoflurane bound to integrin LFA-1 supports a unified mechanism of volatile anesthetic action in the immune and central nervous systems.

  9. Human Parechovirus 1 Infection Occurs via αVβ1 Integrin.

    Science.gov (United States)

    Merilahti, Pirjo; Tauriainen, Sisko; Susi, Petri

    2016-01-01

    Human parechovirus 1 (HPeV-1) (family Picornaviridae) is a global cause of pediatric respiratory and CNS infections for which there is no treatment. Although biochemical and in vitro studies have suggested that HPeV-1 binds to αVβ1, αVβ3 and αVβ6 integrin receptor(s), the actual cellular receptors required for infectious entry of HPeV-1 remain unknown. In this paper we analyzed the expression profiles of αVβ1, αVβ3, αVβ6 and α5β1 in susceptible cell lines (A549, HeLa and SW480) to identify which integrin receptors support HPeV-1 internalization and/or replication cycle. We demonstrate by antibody blocking assay, immunofluorescence microscopy and RT-qPCR that HPeV-1 internalizes and replicates in cell lines that express αVβ1 integrin but not αVβ3 or αVβ6 integrins. To further study the role of β1 integrin, we used a mouse cell line, GE11-KO, which is deficient in β1 expression, and its derivate GE11-β1 in which human integrin β1 subunit is overexpressed. HPeV-1 (Harris strain) and three clinical HPeV-1 isolates did not internalize into GE11-KO whereas GE11-β1 supported the internalization process. An integrin β1-activating antibody, TS2/16, enhanced HPeV-1 infectivity, but infection occurred in the absence of visible receptor clustering. HPeV-1 also co-localized with β1 integrin on the cell surface, and HPeV-1 and β1 integrin co-endocytosed into the cells. In conclusion, our results demonstrate that in some cell lines the cellular entry of HPeV-1 is primarily mediated by the active form of αVβ1 integrin without visible receptor clustering.

  10. Binding of integrin α1 to bone morphogenetic protein receptor IA suggests a novel role of integrin α1β1 in bone morphogenetic protein 2 signalling.

    Science.gov (United States)

    Zu, Yan; Liang, Xudong; Du, Jing; Zhou, Shuai; Yang, Chun

    2015-11-01

    Here, we observed that integrin α1β1 and bone morphogenetic protein receptor (BMPR) IA formed a complex and co-localised in several cell types. However, the molecular interaction between these two molecules was not studied in detail to date and the role of the interaction in BMPR signalling remains unknown; thus, these were investigated here. In a steered molecular dynamics (SMD) simulation, the observed development of the rupture force related to the displacement between the A-domain of integrin α1 and the extracellular domain of BMPR IA indicated a strong molecular interaction within the integrin-BMPR complex. Analysis of the intermolecular forces revealed that hydrogen bonds, rather than salt bridges, are the major contributors to these intermolecular interactions. By using Enzyme-linked immunosorbent assay (ELISA) and co-immunoprecipitation (co-IP) experiments with site-directed mutants, we found that residues 85-89 in BMPR IA play the most important role for BMPR IA binding to integrin α1β1. These residues are the same as those responsible for bone morphogenetic protein 2 (BMP-2)/BMPR IA binding. In our experiments, we also found that the interference of integrin α1β1 up regulated the level of phosphorylated Smad1, 5, 8, which is the downstream of BMP/BMPR signalling. Therefore, our results suggest that integrin α1β1/BMPR IA may block BMP-2/BMPR IA complex information and interfere with the BMP-2 signalling pathway in cells.

  11. Knockdown of Rab5a expression decreases cancer cell motility and invasion through integrin-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    Shi Shu-liang

    2011-08-01

    Full Text Available Abstract Background Rab GTPases function as modulators in intracellular transport. Rab5a, a member of the Rab subfamily of small GTPases, is an important regulator of vesicle traffic from the plasma membrane to early endosomes. Recent findings have reported that Rab5a gene was involved in the progression of cancer. In the present study, we investigated the effect of Rab5a on cervical cancer invasion and metastasis and the molecular mechanism underlying the involvement of Rab5a. Methods Rab5a expression was assessed by immunohistochemical analysis on a cervical cancer tissue microarray. RNA interference (RNAi was performed to knock down the endogenous expression of Rab5a gene in HeLa and SiHa cells. Cell motility was evaluated using invasion assay and wound migration assay in vitro. The expression levels of integrin-associated molecules were detected by Western blot and immunofluorescence. Results We found that Rab5a was expressed at a high level in cervical cancer tissues. Silencing of Rab5a expression significantly decreased cancer cell motility and invasiveness. The down-regulation of integrin-associated focal adhesion signaling molecules was further detected in Rab5a knockdown cells. Meanwhile, active GTP-bound Rac1, Cdc42, and RhoA were also down-regulated, accompanied with the reduction in the number and size of filopodia and lamellipodia. Conclusions Taken together, these data suggest that Rab5a functions in regulating the invasion phenotype, and we propose that this regulation may be via integrin-mediated signaling pathway in cervical cancer cells.

  12. The Integrin-Mediated ILK-Parvin-αPix Signaling Axis Controls Differentiation in Mammary Epithelial Cells.

    Science.gov (United States)

    Rooney, Nicholas; Wang, Pengbo; Brennan, Keith; Gilmore, Andrew P; Streuli, Charles H

    2016-11-01

    Epithelial cell adhesion to the surrounding extracellular matrix is necessary for their proper behavior and function. During pregnancy and lactation, mammary epithelial cells (MECs) receive signals from their interaction with laminin via β1-integrin (β1-itg) to establish apico-basal polarity and to differentiate in response to prolactin. Downstream of β1-itg, the scaffold protein Integrin Linked Kinase (ILK) has been identified as the key signal transducer that is required for both lactational differentiation and the establishment of apico-basal polarity. ILK is an adaptor protein that forms the IPP complex with PINCH and Parvins, which are central to its adaptor functions. However, it is not known how ILK and its interacting partners control tissue-specific gene expression. Expression of ILK mutants, which weaken the interaction between ILK and Parvin, revealed that Parvins have a role in mammary epithelial differentiation. This conclusion was supported by shRNA-mediated knockdown of the Parvins. In addition, shRNA knockdown of the Parvin-binding guanine nucleotide exchange factor αPix prevented prolactin-induced differentiation. αPix depletion did not disrupt focal adhesions, MEC proliferation, or polarity. This suggests that αPix represents a differentiation-specific bifurcation point in β1-itg-ILK adhesive signaling. In summary, this study has identified a new role for Parvin and αPix downstream of the integrin-ILK signaling axis for MEC differentiation. J. Cell. Physiol. 231: 2408-2417, 2016. © 2016 Wiley Periodicals, Inc. PMID:27019299

  13. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J. [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); Bridges, Lance C., E-mail: bridgesl@ecu.edu [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); East Carolina Diabetes and Obesity Institute, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States)

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  14. Platelets may inhibit leucotriene biosynthesis by human neutrophils at the integrin level.

    Science.gov (United States)

    Chabannes, Bernard; Moliere, Patrick; Merhi-Soussi, Faten; Poubelle, Patrice E; Lagarde, Michel

    2003-04-01

    Polymorphonuclear leucocytes and blood platelets co-operate in several pathophysiological processes, and arachidonic acid (AA) metabolites produced in response to the activation of these cells are potent mediators of their functions. We studied the role of platelets in the formation of 5-lipoxygenase products from AA by autologous neutrophils, especially the chemotactic agent leucotriene (LT) B4. The formation of all products, namely 5-hydroxy-eicosatetraenoic acid (5-HETE), LTB4 and the other LTA4-derived metabolites, in response to the calcium ionophore A23187 was evaluated by high-performance liquid chromatography. All the 5-lipoxygenase products were significantly diminished by physiological concentrations of platelets. This inhibitory effect was lost when platelets were previously degranulated by thrombin in non-aggregating conditions. Peptides containing the Arg-Gly-Asp-Ser or His-His-Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val sequence, which prevent the adhesion of platelets to neutrophils via the fibrinogen released from platelet granules and the integrin glycoprotein IIb/IIIa, markedly decreased the inhibitory effect of non-degranulated platelets. The production of transcellular metabolites of AA such as LTC4, the dual 5- and 12-lipoxygenase product 5,12-diHETE and lipoxins could not account for the decreased formation of 5-HETE and LTA4-derived metabolites. It is concluded that platelets may inhibit the neutrophil 5-lipoxygenase activity at the integrin level and in turn may play a role in slowing down the production of LTB4 in the course of inflammation.

  15. Treatment of marrow stroma with interferon-alpha restores normal beta 1 integrin-dependent adhesion of chronic myelogenous leukemia hematopoietic progenitors. Role of MIP-1 alpha.

    OpenAIRE

    R Bhatia; McGlave, P B; Verfaillie, C M

    1995-01-01

    The mechanisms by which interferon-alpha (IFN-alpha) restores normal hematopoiesis in chronic myelogenous leukemia (CML) are not well understood. We have recently demonstrated that IFN-alpha acts directly on CML hematopoietic progenitors to restore their adhesion to marrow stroma by modulating beta 1 integrin receptor function. In the present study we examined the effect of IFN-alpha treatment of marrow stroma on subsequent adhesion of CML progenitors. Stromal layers were preincubated with IF...

  16. Integrin activation and focal complex formation in cardiac hypertrophy

    Science.gov (United States)

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  17. Cellular apoptosis susceptibility (CAS) is linked to integrin β1 and required for tumor cell migration and invasion in hepatocellular carcinoma (HCC)

    Science.gov (United States)

    Winkler, Juliane; Roessler, Stephanie; Sticht, Carsten; DiGuilio, Amanda L.; Drucker, Elisabeth; Holzer, Kerstin; Eiteneuer, Eva; Herpel, Esther; Breuhahn, Kai; Gretz, Norbert; Schirmacher, Peter; Ori, Alessandro; Singer, Stephan

    2016-01-01

    Importins and exportins represent an integral part of the nucleocytoplasmic transport machinery with fundamental importance for eukaryotic cell function. A variety of malignancies including hepatocellular carcinoma (HCC) show de-regulation of nuclear transport factors such as overexpression of the exportin Cellular Apoptosis Susceptibility (CAS). The functional implications of CAS in hepatocarcinogenesis remain, however, poorly understood. Here we integrated proteomics, transcriptomics and functional assays with patient data to further characterize the role of CAS in HCC. By analyzing ∼ 1700 proteins using quantitative mass spectrometry in HCC cells we found that CAS depletion by RNAi leads to de-regulation of integrins, particularly down-regulation of integrin β1. Consistent with this finding, CAS knockdown resulted in substantially reduced migration and invasion of HCC cell lines as analyzed by 2D ‘scratch’ and invasion chamber assays, respectively. Supporting the potential in vivo relevance, high expression levels of CAS in HCC tissue samples were associated with macroangioinvasion and poorer patient outcome. Our data suggest a previously unanticipated link between CAS and integrin signaling which correlates with an aggressive HCC phenotype. PMID:27015362

  18. Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle

    Directory of Open Access Journals (Sweden)

    Zong-Heng Wang

    2015-07-01

    Full Text Available Drosophila Clueless (Clu and its conserved orthologs are known for their role in the prevention of mitochondrial clustering. Here, we uncover a new role for Clu in the delivery of integrin subunits in muscle tissue. In clu mutants, αPS2 integrin, but not βPS integrin, abnormally accumulates in a perinuclear endoplasmic reticulum (ER subdomain, a site that mirrors the endogenous localization of Clu. Loss of components essential for mitochondrial distribution do not phenocopy the clu mutant αPS2 phenotype. Conversely, RNAi knockdown of the Drosophila Golgi reassembly and stacking protein GRASP55/65 (dGRASP recapitulates clu defects, including the abnormal accumulation of αPS2 and larval locomotor activity. Both Clu and dGRASP proteins physically interact and loss of Clu displaces dGRASP from ER exit sites, suggesting that Clu cooperates with dGRASP for the exit of αPS2 from a perinuclear subdomain in the ER. We also found that Clu and dGRASP loss of function leads to ER stress and that the stability of the ER exit site protein Sec16 is severely compromised in the clu mutants, thus explaining the ER accumulation of αPS2. Remarkably, exposure of clu RNAi larvae to chemical chaperones restores both αPS2 delivery and functional ER exit sites. We propose that Clu together with dGRASP prevents ER stress and therefore maintains Sec16 stability essential for the functional organization of perinuclear early secretory pathway. This, in turn, is essential for integrin subunit αPS2 ER exit in Drosophila larval myofibers.

  19. Use of an Immobilized Monoclonal Antibody to Examine Integrin &agr;5&bgr;1 Signaling Independent of Cell Spreading

    Directory of Open Access Journals (Sweden)

    Bao Wenjie

    2002-01-01

    Full Text Available Cell attachment to the extracellular matrix (ECM engages integrin signaling into the cell, but part of the signaling response also stem from cell spreading (3. To analyze specific integrin signaling-mediated responses independent of cell spreading, we developed a method engaging integrin signaling by use of an immobilized anti-integrin monoclonal antibody (mab directed against the fibronectin (FN receptor integrin &agr;5&bgr;1. ECV 304 cells were plated onto FN or immobilized mab JBS5 (anti-integrin &agr;5&bgr;1 or onto poly-L-lysin (P-L-L, which mediates integrin-independent attachment. Cells attached and spread on FN, while cells on JBS5 or P-L-L attached but did not spread. Importantly, plating onto FN or mab JBS5 gave rise to identical integrin-induced responses, including a down-regulation of the cyclin-dependent kinase (Cdk2 inhibitors p21CIP1 and p27KIP1, while attachment to P-L-L did not. We conclude that engagement of the FN-receptor integrin &agr;5&bgr;1 induces integrin signaling regulating the Cdk2-inhibitors independent of cell spreading and present a method for how integrin signaling can be analyzed separate from the effects of cell spreading.

  20. Engagement of PSGL-1 enhances β2-integrin-involved adhesion of neutrophils to recombinant ICAM-1

    Institute of Scientific and Technical Information of China (English)

    Xiao-guang WANG; Yan-ping CHENG; Xue-qing BA

    2006-01-01

    Aim: The interactions of selectins and their ligands initiate the process of leukocyte migrating into inflamed tissue. P-selectin glycoprotein ligand 1 (PSGL-1) is the best characterized ligand of selectins, and has been demonstrated to mediate the adhesion of leukocytes to all three selectins in vivo. PSGL-1 not only functions as an anchor molecule to capture the leukocytes to the activated endothelial cells by its interaction with selectins, but also transduces the signals to activate leukocytes. Our present work aimed to investigate the mechanism by which PSGL-1-mediated signal activates neutrophils and enhances the adhesion to the endothelial cells. Methods: We detected the effects of the engagement of PSGL-1 with monoclonal antibodies (mAb) or P-selectin on the adhesion of neutrophils to the recombinant intercellular adhesion molecule-1 (ICAM-1), and on the expression of β2-integrin. Additionally, the role of cytoskeleton in these process was studied by using inhibitor cytochalasin B. Results: The engagement of PSGL-1 increased the expression of β2-integrin on the surface of neutrophils and enhanced the adhesion of neutrophils to the recombinant ICAM-1. mAb against CD 18 impaired the adhesion of PSGL-1 -engaged neutrophils to ICAM-1. Moreover, the inhibitor cytochalasin B largely blocked the increase of CD 18 expression as well as the adhesion of PSGL-1-engaged neutrophils to ICAM-1. Conclusion: The PSGL-1-transduced signals can enhance β2-integrin-involved adhesion of neutrophils to the recombinant ICAM-1, and this process depends on the dynamics of cytoskeleton.

  1. Induction of dental epithelial cell differentiation marker gene expression in non-odontogenic human keratinocytes by transfection with thymosin beta 4

    Directory of Open Access Journals (Sweden)

    Tamotsu Kiyoshima

    2014-01-01

    Full Text Available Previous studies have shown that the recombination of cells liberated from developing tooth germs develop into teeth. However, it is difficult to use human developing tooth germ as a source of cells because of ethical issues. Previous studies have reported that thymosin beta 4 (Tmsb4x is closely related to the initiation and development of the tooth germ. We herein attempted to establish odontogenic epithelial cells from non-odontogenic HaCaT cells by transfection with TMSB4X. TMSB4X-transfected cells formed nodules that were positive for Alizarin-red S (ALZ and von Kossa staining (calcium phosphate deposits when cultured in calcification-inducing medium. Three selected clones showing larger amounts of calcium deposits than the other clones, expressed PITX2, Cytokeratin 14, and Sonic Hedgehog. The upregulation of odontogenesis-related genes, such as runt-related transcription factor 2 (RUNX2, Amelogenin (AMELX, Ameloblastin (AMBN and Enamelin (ENAM was also detected. These proteins were immunohistochemically observed in nodules positive for the ALZ and von Kossa staining. RUNX2-positive selected TMSB4X-transfected cells implanted into the dorsal subcutaneous tissue of nude mice formed matrix deposits. Immunohistochemically, AMELX, AMBN and ENAM were observed in the matrix deposits. This study demonstrated the possibility of induction of dental epithelial cell differentiation marker gene expression in non-odontogenic HaCaT cells by TMSB4X.

  2. Different Phenotypes in Human Prostate Cancer: α6 or α3 Integrin in Cell-extracellular Adhesion Sites

    Directory of Open Access Journals (Sweden)

    Monika Schmelz

    2002-01-01

    Full Text Available The distribution of α6/α3 integrin in adhesion complexes at the basal membrane in human normal and cancer prostate glands was analyzed in 135 biopsies from 61 patients. The levels of the polarized α6/α3 integrin expression at the basal membrane of prostate tumor glands were determined by quantitative immunohistochemistry. The α6/α3 integrin expression was compared with Gleason sum score, pathological stage, and preoperative serum prostate-specific antigen (PSA. The associations were assessed by statistical methods. Eighty percent of the tumors expressed the α6 or α3 integrin and 20% was integrin-negative. Gleason sum score, but not serum PSA, was associated with the integrin expression. Low Gleason sum score correlated with increased integrin expression, high Gleason sum score with low and negative integrin expression. Three prostate tumor phenotypes were distinguished based on differential integrin expression. Type I coexpressed both α6 and α3 subunits, type II exclusively expressed a6 integrin, and type III expressed α3 integrin only. Fifteen cases were further examined for the codistribution of vinculin, paxillin, and CD 151 on frozen serial sections using confocal laser scanning microscopy. The α6/α3 integrins, CD151, paxillin, and vinculin were present within normal glands. In prostate carcinoma, α6 integrin was colocalized with CD 151, but not with vinculin or paxillin. In tumor phenotype I, the α6 subunit did not colocalize with the α3 subunit indicating the existence of two different adhesion complexes. Human prostate tumors display on their cell surface the α6β1 and/or α3β1 integrins. Three tumor phenotypes associated with two different adhesion complexes were identified, suggesting a reorganization of cell adhesion structures in prostate cancer.

  3. Enhanced Expression of Integrin αvβ3 Induced by TGF-β Is Required for the Enhancing Effect of Fibroblast Growth Factor 1 (FGF1 in TGF-β-Induced Epithelial-Mesenchymal Transition (EMT in Mammary Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Seiji Mori

    Full Text Available Epithelial-to-mesenchymal transition (EMT plays a critical role in cancer metastasis, and is regulated by growth factors such as transforming growth factor β (TGF-β and fibroblast growth factors (FGF secreted from the stromal and tumor cells. However, the role of growth factors in EMT has not been fully established. Several integrins are upregulated by TGF-β1 during EMT. Integrins are involved in growth factor signaling through integrin-growth factor receptor crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and the interaction was required for FGF1 functions such as cell proliferation and migration. We studied the role of αvβ3 induced by TGF-β on TGF-β-induced EMT. Here, we describe that FGF1 augmented EMT induced by TGF-β1 in MCF10A and MCF12A mammary epithelial cells. TGF-β1 markedly amplified integrin αvβ3 and FGFR1 (but not FGFR2. We studied if the enhancing effect of FGF1 on TGF-β1-induced EMT requires enhanced levels of both integrin αvβ3 expression and FGFR1. Knockdown of β3 suppressed the enhancement by FGF1 of TGF-β1-induced EMT in MCF10A cells. Antagonists to FGFR suppressed the enhancing effect of FGF1 on EMT. Integrin-binding defective FGF1 mutant did not augment TGF-β1-induced EMT in MCF10A cells. These findings suggest that enhanced integrin αvβ3 expression in addition to enhanced FGFR1 expression is critical for FGF1 to augment TGF-β1-induced EMT in mammary epithelial cells.

  4. Loss of β1-integrin from urothelium results in overactive bladder and incontinence in mice: a mechanosensory rather than structural phenotype

    OpenAIRE

    Kanasaki, Keizo; Yu, Weiqun; von Bodungen, Maximilian; Larigakis, John D.; Kanasaki, Megumi; Ayala de la Pena, Francisco; Kalluri, Raghu; Hill, Warren G.

    2013-01-01

    Bladder urothelium senses and communicates information about bladder fullness. However, the mechanoreceptors that respond to tissue stretch are poorly defined. Integrins are mechanotransducers in other tissues. Therefore, we eliminated β1-integrin selectively in urothelium of mice using Cre-LoxP targeted gene deletion. β1-Integrin localized to basal/intermediate urothelial cells by confocal microscopy. β1-Integrin conditional-knockout (β1-cKO) mice lacking urothelial β1-integrin exhibited dow...

  5. Integrin β1, Osmosensing, and Chemoresistance in Mouse Ehrlich Carcinoma Cells

    DEFF Research Database (Denmark)

    Sørensen, Belinda Halling; Rasmussen, Line Jee Hartmann; Broberg, Bjørn Sindballe;

    2015-01-01

    RNA was used to silence integrin β1 expression. Regulatory volume decrease (RVD) after cell swelling was studied with calcein-fluorescence-self-quenching and Coulter counter analysis. Taurine efflux was estimated with tracer technique. Caspase assay was used to determine apoptosis. RESULTS: We show...... that adherent cells have stronger fibronectin binding and a significantly increased expression of integrin α5, αv, and β1 at mRNA and protein level, compared to non-adherent cells. Knockdown of integrin β1 reduced RVD of the adherent but not of the non-adherent cells. Efflux of taurine was unaffected...

  6. Talin1 phosphorylation activates β1 integrins: a novel mechanism to promote prostate cancer bone metastasis.

    Science.gov (United States)

    Jin, J-K; Tien, P-C; Cheng, C-J; Song, J H; Huang, C; Lin, S-H; Gallick, G E

    2015-04-01

    Talins are adaptor proteins that regulate focal adhesion signaling by conjugating integrins to the cytoskeleton. Talins directly bind integrins and are essential for integrin activation. We previously showed that β1 integrins are activated in metastatic prostate cancer (PCa) cells, increasing PCa metastasis to lymph nodes and bone. However, how β1 integrins are activated in PCa cells is unknown. In this study, we identified a novel mechanism of β1 integrin activation. Using knockdown experiments, we first demonstrated that talin1, but not talin2, is important in β1 integrin activation. We next showed that talin1 S425 phosphorylation, but not total talin1 expression, correlates with metastatic potential of PCa cells. Expressing a non-phosphorylatable mutant, talin1(S425A), in talin1-silenced PC3-MM2 and C4-2B4 PCa cells, decreased activation of β1 integrins, integrin-mediated adhesion, motility and increased the sensitivity of the cells to anoikis. In contrast, reexpression of the phosphorylation-mimicking mutant talin1(S425D) led to increased β1 integrin activation and generated biologic effects opposite to talin1(S425A) expression. In the highly metastatic PC3-MM2 cells, expression of a non-phosphorylatable mutant, talin1(S425A), in talin1-silenced PC3-MM2 cells, abolished their ability to colonize in the bone following intracardiac injection, while reexpression of phosphorylation-mimicking mutant talin1(S425D) restored their ability to metastasize to bone. Immunohistochemical staining demonstrated that talin S425 phosphorylation is significantly increased in human bone metastases when compared with normal tissues, primary tumors or lymph node metastases. We further showed that p35 expression, an activator of Cdk5, and Cdk5 activity were increased in metastatic tumor cells, and that Cdk5 kinase activity is responsible for talin1 phosphorylation and subsequent β1 integrin activation. Together, our study reveals Cdk5-mediated phosphorylation of talin1 leading

  7. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Huang, Wei [Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 1000191 (China); Liu, Yu-Xiang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Yuan, Ye [Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States)

    2013-02-15

    Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (12–48 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 μg/ml), disturbs the interaction between β1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg{sup 2+}. Intracellular reactive oxygen species (ROS) significantly increases in a time-dependent manner after exposure to ofloxacin for 12–48 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg{sup 2+} inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between β1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg{sup 2+}. These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the β1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 12–48 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ► Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 12–48 h. ► Ofloxacin stimulates ROS production via

  8. The Interaction of CD154 with the α5β1 Integrin Inhibits Fas-Induced T Cell Death.

    Science.gov (United States)

    Bachsais, Meriem; Naddaf, Nadim; Yacoub, Daniel; Salti, Suzanne; Alaaeddine, Nada; Aoudjit, Fawzi; Hassan, Ghada S; Mourad, Walid

    2016-01-01

    CD154, a critical regulator of the immune response, is usually associated with chronic inflammatory, autoimmune diseases as well as malignant disorders. In addition to its classical receptor CD40, CD154 is capable of binding other receptors, members of the integrin family, the αIIbβ3, αMβ2 and α5β1. Given the role attributed to integrins and particularly the β1 integrins in inhibiting apoptotic events in normal as well as malignant T cells, we were highly interested in investigating the role of the CD154/α5β1 interaction in promoting survival of malignant T cells contributing as such to tumor development and/or propagation. To support our hypothesis, we first show that soluble CD154 binds to the T-cell acute lymphoblastic leukemia cell line, Jurkat E6.1 in a α5β1-dependent manner. Binding of soluble CD154 to α5β1 integrin of Jurkat cells leads to the activation of key survival proteins, including the p38 and ERK1/2 mitogen-activated protein kinases (MAPKs), phosphoinositide 3 kinase (PI-3K), and Akt. Interestingly, soluble CD154 significantly inhibits Fas-mediated apoptosis in T cell leukemia-lymphoma cell lines, Jurkat E6.1 and HUT78 cells, an important hallmark of T cell survival during malignancy progression. These anti-apoptotic effects were mainly mediated by the activation of the PI-3K/Akt pathway but also involved the p38 and the ERK1/2 MAPKs cascades. Our data also demonstrated that the CD154-triggered inhibition of the Fas-mediated cell death response was dependent on a suppression of caspase-8 cleavage, but independent of de novo protein synthesis or alterations in Fas expression on cell surface. Together, our results highlight the impact of the CD154/α5β1 interaction in T cell function/survival and identify novel targets for the treatment of malignant disorders, particularly of T cell origin. PMID:27391025

  9. Loss of the TGFβ-activating integrin αvβ8 on dendritic cells protects mice from chronic intestinal parasitic infection via control of type 2 immunity.

    Directory of Open Access Journals (Sweden)

    John J Worthington

    Full Text Available Chronic intestinal parasite infection is a major global health problem, but mechanisms that promote chronicity are poorly understood. Here we describe a novel cellular and molecular pathway involved in the development of chronic intestinal parasite infection. We show that, early during development of chronic infection with the murine intestinal parasite Trichuris muris, TGFβ signalling in CD4+ T-cells is induced and that antibody-mediated inhibition of TGFβ function results in protection from infection. Mechanistically, we find that enhanced TGFβ signalling in CD4+ T-cells during infection involves expression of the TGFβ-activating integrin αvβ8 by dendritic cells (DCs, which we have previously shown is highly expressed by a subset of DCs in the intestine. Importantly, mice lacking integrin αvβ8 on DCs were completely resistant to chronic infection with T. muris, indicating an important functional role for integrin αvβ8-mediated TGFβ activation in promoting chronic infection. Protection from infection was dependent on CD4+ T-cells, but appeared independent of Foxp3+ Tregs. Instead, mice lacking integrin αvβ8 expression on DCs displayed an early increase in production of the protective type 2 cytokine IL-13 by CD4+ T-cells, and inhibition of this increase by crossing mice to IL-4 knockout mice restored parasite infection. Our results therefore provide novel insights into how type 2 immunity is controlled in the intestine, and may help contribute to development of new therapies aimed at promoting expulsion of gut helminths.

  10. Intravital Imaging of Vascular Transmigration by the Lyme Spirochete: Requirement for the Integrin Binding Residues of the B. burgdorferi P66 Protein.

    Directory of Open Access Journals (Sweden)

    Devender Kumar

    2015-12-01

    Full Text Available Vascular extravasation, a key step in systemic infection by hematogenous microbial pathogens, is poorly understood, but has been postulated to encompass features similar to vascular transmigration by leukocytes. The Lyme disease spirochete can cause a variety of clinical manifestations, including arthritis, upon hematogenous dissemination. This pathogen encodes numerous surface adhesive proteins (adhesins that may promote extravasation, but none have yet been implicated in this process. In this work we report the novel use of intravital microscopy of the peripheral knee vasculature to study transmigration of the Lyme spirochete in living Cd1d-/-mice. In the absence of iNKT cells, major immune modulators in the mouse joint, spirochetes that have extravasated into joint-proximal tissue remain in the local milieu and can be enumerated accurately. We show that BBK32, a fibronectin and glycosaminoglycan adhesin of B. burgdorferi involved in early steps of endothelial adhesion, is not required for extravasation from the peripheral knee vasculature. In contrast, almost no transmigration occurs in the absence of P66, an outer membrane protein that has porin and integrin adhesin functions. Importantly, P66 mutants specifically defective in integrin binding were incapable of promoting extravasation. P66 itself does not promote detectable microvascular interactions, suggesting that vascular adhesion of B. burgdorferi mediated by other adhesins, sets the stage for P66-integrin interactions leading to transmigration. Although integrin-binding proteins with diverse functions are encoded by a variety of bacterial pathogens, P66 is the first to have a documented and direct role in vascular transmigration. The emerging picture of vascular escape by the Lyme spirochete shows similarities, but distinct differences from leukocyte transmigration.

  11. Beta 1 integrin is essential for teratoma growth and angiogenesis

    DEFF Research Database (Denmark)

    Bloch, W; Forsberg, E; Lentini, S;

    1997-01-01

    Teratomas are benign tumors that form after ectopic injection of embryonic stem (ES) cells into mice and contain derivatives of all primitive germ layers. To study the role of beta 1 integrin during teratoma formation, we compared teratomas induced by normal and beta1-null ES cells. Injection...... of normal ES cells gave rise to large teratomas. In contrast, beta 1-null ES cells either did not grow or formed small teratomas with an average weight of beta 1-null teratomas revealed the presence of various differentiated cells, however, a much...... lower number of host-derived stromal cells than in normal teratomas. Fibronectin, collagen I, and nidogen were expressed but, in contrast to normal teratomas, diffusely deposited in beta1-null teratomas. Basement membranes were present but with irregular shape and detached from the cell surface. Normal...

  12. Generation and characterization of a diabody targeting the αvβ6 integrin.

    Directory of Open Access Journals (Sweden)

    Heide Kogelberg

    Full Text Available The αvβ6 integrin is up-regulated in cancer and wound healing but it is not generally expressed in healthy adult tissue. There is increasing evidence that it has a role in cancer progression and will be a useful target for antibody-directed cancer therapies. We report a novel recombinant diabody antibody fragment that targets specifically αvβ6 and blocks its function. The diabody was engineered with a C-terminal hexahistidine tag (His tag, expressed in Pichia pastoris and purified by IMAC. Surface plasmon resonance (SPR analysis of the purified diabody showed affinity in the nanomolar range. Pre-treatment of αvβ6-expressing cells with the diabody resulted in a reduction of cell migration and adhesion to LAP, demonstrating biological function-blocking activity. After radio-labeling, using the His-tag for site-specific attachment of (99mTc, the diabody retained affinity and targeted specifically to αvβ6-expressing tumors in mice bearing isogenic αvβ6 +/- xenografts. Furthermore, the diabody was specifically internalized into αvβ6-expressing cells, indicating warhead targeting potential. Our results indicate that the new αvβ6 diabody has a range of potential applications in imaging, function blocking or targeted delivery/internalization of therapeutic agents.

  13. Phosphatase of regenerating liver-3 directly interacts with integrin β1 and regulates its phosphorylation at tyrosine 783

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2012-10-01

    Full Text Available Abstract Background Phosphatase of regenerating liver-3 (PRL-3 or PTP4A3 has been implicated in controlling cancer cell proliferation, motility, metastasis, and angiogenesis. Deregulated expression of PRL-3 is highly correlated with cancer progression and predicts poor survival. Although PRL-3 was categorized as a tyrosine phosphatase, its cellular substrates remain largely unknown. Results We demonstrated that PRL-3 interacts with integrin β1 in cancer cells. Recombinant PRL-3 associates with the intracellular domain of integrin β1 in vitro. Silencing of integrin α1 enhances PRL-3-integrin β1 interaction. Furthermore, PRL-3 diminishes tyrosine phosphorylation of integrin β1 in vitro and in vivo. With site-specific anti-phosphotyrosine antibodies against residues in the intracellular domain of integrin β1, tyrosine-783, but not tyrosine-795, is shown to be dephosphorylated by PRL-3 in a catalytic activity-dependant manner. Phosphorylation of Y783 is potentiated by ablation of PRL-3 or by treatment with a chemical inhibitor of PRL-3. Conversely, depletion of integrin α1 decreases the phosphorylation of this site. Conclusions Our results revealed a direct interaction between PRL-3 and integrin β1 and characterized Y783 of integrin β1 as a bona fide substrate of PRL-3, which is negatively regulated by integrin α1.

  14. Effect of Thymosin beta4 on the Differentiation and Mineralization of MC3T3-E1 Cell on a Titanium Surface.

    Science.gov (United States)

    Jeong, Soon-Jeong; Jeong, Moon-Jin

    2016-02-01

    Osteoblasts are responsible for the synthesis of bone matrix through the secretion of collagenous and non-collagenous proteins with mineralization. Thymosin beta4 (Tbeta4) is an actin-sequestering peptide that is involved in the regulation of cell proliferation, differentiation and motility. A recent study reported that the inhibition of Tbeta4 mRNA synthesis strongly decreases the level of gene expression of bone sialoprotein (BSP), dentin sialophosphoprotein (DSPP), osteocalcin (OCN), osteonectin (ON) and collagen type I (Col I) with mineralization during differentiation in odontoblasts. Titanium (Ti) is used commonly as an implant material for dental implants, which have strong mechanical potential and good biocompatibility with bone. This study examined whether Tbeta4 can be a potential molecule for promoting the differentiation and mineralization of MC3T3-E1 cells on a Ti surface. Tbeta4 increased the viability of MC3T3-E1 cells during differentiation on Ti discs compared to that of the control. The expression of Tbeta4 mRNA and protein in the Tbeta4-treated MC3T3-E1 cells was higher than the control during differentiation on the Ti discs. In addition, Tbeta4 increased the formation of mineralization nodules and the mRNA expression of alkaline phosphatase (ALP), DSPP, dentin matrix protein1 (DMP1), BSP and Col I compared to that of the control in MC3T3-E1 cells during differentiation on Ti discs. From the results, Tbeta4 increased the viability and promoted the differentiation and mineralization of MC3T3-E1 cells on Ti discs. This highlights the potential use of Tbeta4 for increasing osseointegration through osteoblast differentiation and mineralization on Ti discs.

  15. The Adenovirus Type 3 Dodecahedron's RGD Loop Comprises an HSPG Binding Site That Influences Integrin Binding

    Directory of Open Access Journals (Sweden)

    E. Gout

    2010-01-01

    Full Text Available Human type 3 adenovirus dodecahedron (a virus like particle made of twelve penton bases features the ability to enter cells through Heparan Sulphate Proteoglycans (HSPGs and integrins interaction and is used as a versatile vector to deliver DNA or proteins. Cryo-EM reconstruction of the pseudoviral particle with Heparan Sulphate (HS oligosaccharide shows an extradensity on the RGD loop. A set of mutants was designed to study the respective roles of the RGD sequence (RGE mutant and of a basic sequence located just downstream. Results showed that the RGE mutant binding to the HS deficient CHO-2241 cells was abolished and unexpectedly, mutation of the basic sequence (KQKR to AQAS dramatically decreased integrin recognition by the viral pseudoparticle. This basic sequence is thus involved in integrin docking, showing a close interplay between HSPGs and integrin receptors.

  16. Differences in integrin expression and signaling within human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Yongqing

    2011-07-01

    Full Text Available Abstract Background Integrins are used as prognostic indicators in breast cancer. Following engagement with extracellular matrix proteins, their signaling influences numerous cellular processes including migration, proliferation, and death. Integrin signaling varies between cell types through differential expression of integrin subunits, and changes within a given cell upon exposure to a cell agonist or through changes in its surroundings. These variations in signaling can profoundly affect the phenotypic, tumorogenecity and metastatic properties of cancer cells. In the present study, we investigated if there were differences in the expression of integrins, integrin structures, and integrin co-receptors within three breast cancer cells and if these differences effected integrin signaling. Methods Expression of integrins, urokinase receptor and vascular endothelial cell growth factor receptor (VEGFR in metastatic MDA-MB-435 and MDA-MB-231, non-metastatic MCF7 and non-breast cancer Hek-293 cells was measured by flow cytometry. Cell adhesion was assessed using collagen, fibrinogen, fibronectin and vitronectin coated plates. Changes in kinase levels following PMA stimulation, and cell adhesion-induced activation of kinases were determined by western blot analysis. Distribution of actin stress fibers and focal adhesions was assessed by immunocytochemistry. Results All cells expressed αv integrins, while high β5 and αvβ5 expression was restricted to the cancer cells and high β3 and αvβ3 expression was restricted to MDA-MB-435 cells. The two metastatic cells were the least adhesive, but all cells adhered well to most proteins in the absence of PMA. All proliferating cells expressed activated pSrc, but only proliferating metastatic cells expressed high pMEK levels. PMA treatment resulted in time-dependent changes in activated kinase levels, and only MDA-MB-231 cells constitutively expressed high levels of activated pMEK. MDA-MB-435 cells formed

  17. Laminin and integrin expression in the ventral ectodermal ridge of the mouse embryo: implications for regulation of BMP signalling

    Science.gov (United States)

    Lopez-Escobar, Beatriz; de Felipe, Beatriz; Sanchez-Alcazar, Jose Antonio; Sasaki, Takako; Copp, Andrew J.; Ybot-Gonzalez, Patricia

    2013-01-01

    Background The ventral ectodermal ridge (VER) is an important signalling centre in the mouse tail-bud following completion of gastrulation. BMP regulation is essential for VER function, but how these signals are transmitted between adjacent tissues is unclear. Results We investigated the idea that extracellular matrix components might be involved, using immunohistochemistry and in situ hybridisation to detect all known α, β and γ laminin chains and their mRNAs in the early tail bud. We identified an apparently novel laminin variant, comprising α5, β3 and γ2 chains, as a major component of the VER basement membrane at E9.5. Strikingly, only the mRNAs for these chains were co-expressed in VER cells, suggesting that lamin532 may be the sole basement membrane laminin at this stage. Since α6 integrin was also expressed in VER cells, this raises the possibility of cell-matrix interactions regulating BMP signalling at this site of caudal morphogenesis. Conclusions Laminin532 could interact with α6-containing integrin to direct differentiation of the specialised VER cells from surface ectoderm. PMID:22911573

  18. The integrin-collagen connection--a glue for tissue repair?

    Science.gov (United States)

    Zeltz, Cédric; Gullberg, Donald

    2016-02-15

    The α1β1, α2β1, α10β1 and α11β1 integrins constitute a subset of the integrin family with affinity for GFOGER-like sequences in collagens. Integrins α1β1 and α2β1 were originally identified on a subset of activated T-cells, and have since been found to be expressed on a number of cell types including platelets (α2β1), vascular cells (α1β1, α2β1), epithelial cells (α1β1, α2β1) and fibroblasts (α1β1, α2β1). Integrin α10β1 shows a distribution that is restricted to mesenchymal stem cells and chondrocytes, whereas integrin α11β1 appears restricted to mesenchymal stem cells and subsets of fibroblasts. The bulk of the current literature suggests that collagen-binding integrins only have a limited role in adult connective tissue homeostasis, partly due to a limited availability of cell-binding sites in the mature fibrillar collagen matrices. However, some recent data suggest that, instead, they are more crucial for dynamic connective tissue remodeling events--such as wound healing--where they might act specifically to remodel and restore the tissue architecture. This Commentary discusses the recent development in the field of collagen-binding integrins, their roles in physiological and pathological settings with special emphasis on wound healing, fibrosis and tumor-stroma interactions, and include a discussion of the most recently identified newcomers to this subfamily--integrins α10β1 and α11β1. PMID:26857815

  19. Structure and binding interface of the cytosolic tails of αXβ2 integrin.

    Directory of Open Access Journals (Sweden)

    Geok-Lin Chua

    Full Text Available BACKGROUND: Integrins are signal transducer proteins involved in a number of vital physiological processes including cell adhesion, proliferation and migration. Integrin molecules are hetero-dimers composed of two distinct subunits, α and β. In humans, 18 α and 8 β subunits are combined into 24 different integrin molecules. Each of the subunit comprises a large extracellular domain, a single pass transmembrane segment and a cytosolic tail (CT. The CTs of integrins are vital for bidirectional signal transduction and in maintaining the resting state of the receptors. A large number of intracellular proteins have been found to interact with the CTs of integrins linking integrins to the cytoskeleton. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we have investigated structure and interactions of CTs of the leukocyte specific integrin αXβ2. We determined the atomic resolution structure of a myristoylated CT of αX in perdeuterated dodecylphosphocholine (DPC by NMR spectroscopy. Our results reveal that the 35-residue long CT of αX adopts an α-helical conformation for residues F4-N17 at the N-terminal region. The remaining residues located at the C-terminal segment of αX delineate a long loop of irregular conformations. A segment of the loop maintains packing interactions with the helical structure by an extended non-polar surface of the αX CT. Interactions between αX and β2 CTs are demonstrated by (15N-(1H HSQC NMR experiments. We find that residues constituting the polar face of the helical conformation of αX are involved in interactions with the N-terminal residues of β2 CT. A docked structure of the CT complex indicates that a network of polar and/or salt-bridge interactions may sustain the heteromeric interactions. CONCLUSIONS/SIGNIFICANCE: The current study provides important insights into the conservation of interactions and structures among different CTs of integrins.

  20. Therapeutic Targeting of Integrin αvβ6 in Breast Cancer

    OpenAIRE

    Moore, Kate M.; Thomas, Gareth J; Duffy, Stephen W; Warwick, Jane; Gabe, Rhian; Chou, Patrick; Ellis, Ian O.; Green, Andrew R.; Haider, Syed; Brouilette, Kellie; Saha, Antonio; Vallath, Sabari; Bowen, Rebecca; Chelala, Claude; Eccles, Diana

    2014-01-01

    Background Integrin αvβ6 promotes migration, invasion, and survival of cancer cells; however, the relevance and role of αvβ6 has yet to be elucidated in breast cancer. Methods Protein expression of integrin subunit beta6 (β6) was measured in breast cancers by immunohistochemistry (n > 2000) and ITGB6 mRNA expression measured in the Molecular Taxonomy of Breast Cancer International Consortium dataset. Overall survival was assessed using Kaplan Meier curves, and bioinformatics statistical analy...

  1. Transendothelial migration of neutrophils involves integrin-associated protein (CD47).

    OpenAIRE

    Cooper, D; Lindberg, F P; Gamble, J R; Brown, E J; Vadas, M A

    1995-01-01

    Inflammation is a primary pathological process. The development of an inflammatory reaction involves the movement of white blood cells through the endothelial lining of blood vessels into tissues. This process of transendothelial cell migration of neutrophils has been shown to involve neutrophil beta 2 integrins (CD18) and endothelial cell platelet-endothelium cell adhesion molecules (PECAM-1; CD31). We now show that F(ab')2 fragments of the monoclonal antibody B6H12 against integrin-associat...

  2. Coalition of Oct4A and β1 integrins in facilitating metastasis in ovarian cancer

    OpenAIRE

    Samardzija, Chantel; Luwor, Rodney B.; Quinn, Michael A; Kannourakis, George; Jock K Findlay; Ahmed, Nuzhat

    2016-01-01

    Background Ovarian cancer is a metastatic disease and one of the leading causes of gynaecology malignancy-related deaths in women. Cancer stem cells (CSCs) are key contributors of cancer metastasis and relapse. Integrins are a family of cell surface receptors which allow interactions between cells and their surrounding microenvironment and play a fundamental role in promoting metastasis. This study investigates the molecular mechanism which associates CSCs and integrins in ovarian cancer meta...

  3. Expression of {beta}{sub 1} integrins in human endometrial stromal and decidual cells

    Energy Technology Data Exchange (ETDEWEB)

    Shiokawa, Shigetatsu; Yoshimura, Yasunori; Nakamura, Yukio [Kyorin Univ. School of Medicine, Tokyo (Japan)] [and others

    1996-04-01

    The present study was undertaken to investigate the expression of {beta}{sub 1} integrins in human endometrium and decidua using flow cytometry, immunohistochemistry, and immunoprecipitation. Fluorescence-activated flow cytometry demonstrated the greater expression of the {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, and {alpha}{sub 5} subunits of the {beta}{sub 1} integrin family in cultured stromal cells from the midsecretory phase, than in those of the early proliferative phase. The addition of estradiol (E{sub 2}) and progesterone (P) to cultured stromal cells in the early proliferative phase increased the expression of {beta}{sub 1} integrins in vitro. Flow cytometry also demonstrated the expression of the {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}, {alpha}{sub 5}, and {alpha}{sub 6} subunits of {beta}{sub 1} integrin family in cultured decidual cells, and the enriched-fraction of prolactin (PRL)-producing decidual cells isolated by Percoll gradients showed high levels of {beta}{sub 1} integrins expression. Immunohistochemistry confirmed the {beta}{sub 1} integrin cell surface phenotypes in cultured decidual cells observed by flow cytometry. In summary, the present study demonstrated that endometrial stromal and decidual cells expressed {beta}{sub 1} integrin subunits at their surfaces. The expression exhibited a variability throughout the menstrual cycles, being predominantly detected in the secretory phase, and was maintained highly in the decidua. Thus, {beta}{sub 1} integrins in human endometrium and decidua may be important in mediating the organization of extracellular matrix proteins derived from embryos during the early stage of implantation. 43 refs., 7 figs., 2 tabs.

  4. The integrin-collagen connection--a glue for tissue repair?

    Science.gov (United States)

    Zeltz, Cédric; Gullberg, Donald

    2016-02-15

    The α1β1, α2β1, α10β1 and α11β1 integrins constitute a subset of the integrin family with affinity for GFOGER-like sequences in collagens. Integrins α1β1 and α2β1 were originally identified on a subset of activated T-cells, and have since been found to be expressed on a number of cell types including platelets (α2β1), vascular cells (α1β1, α2β1), epithelial cells (α1β1, α2β1) and fibroblasts (α1β1, α2β1). Integrin α10β1 shows a distribution that is restricted to mesenchymal stem cells and chondrocytes, whereas integrin α11β1 appears restricted to mesenchymal stem cells and subsets of fibroblasts. The bulk of the current literature suggests that collagen-binding integrins only have a limited role in adult connective tissue homeostasis, partly due to a limited availability of cell-binding sites in the mature fibrillar collagen matrices. However, some recent data suggest that, instead, they are more crucial for dynamic connective tissue remodeling events--such as wound healing--where they might act specifically to remodel and restore the tissue architecture. This Commentary discusses the recent development in the field of collagen-binding integrins, their roles in physiological and pathological settings with special emphasis on wound healing, fibrosis and tumor-stroma interactions, and include a discussion of the most recently identified newcomers to this subfamily--integrins α10β1 and α11β1.

  5. Integrin β3 Is Required in Infection and Proliferation of Classical Swine Fever Virus

    OpenAIRE

    Weiwei Li; Gang Wang; Wulong Liang; Kai Kang; Kangkang Guo; Yanming Zhang

    2014-01-01

    Classical Swine Fever (CSF) is a highly infectious fatal pig disease, resulting in huge economic loss to the swine industry. Integrins are membrane-bound signal mediators, expressed on a variety of cell surfaces and are known as receptors or co-receptors for many viruses. However, the role of integrin β3 in CSFV infection is unknown. Here, through quantitive PCR, immunofluorescence (IFC) and immunocytohistochemistry (ICC), we revealed that ST (swine testicles epithelial) cells have a prominen...

  6. Targeting of alpha-v integrins reduces malignancy of bladder carcinoma.

    Directory of Open Access Journals (Sweden)

    Geertje van der Horst

    Full Text Available Low survival rates of metastatic cancers emphasize the need for a drug that can prevent and/or treat metastatic cancer. αv integrins are involved in essential processes for tumor growth and metastasis and targeting of αv integrins has been shown to decrease angiogenesis, tumor growth and metastasis. In this study, the role of αv integrin and its potential as a drug target in bladder cancer was investigated. Treatment with an αv integrin antagonist as well as knockdown of αv integrin in the bladder carcinoma cell lines, resulted in reduced malignancy in vitro, as illustrated by decreased proliferative, migratory and clonogenic capacity. The CDH1/CDH2 ratio increased, indicating a shift towards a more epithelial phenotype. This shift appeared to be associated with downregulation of EMT-inducing transcription factors including SNAI2. The expression levels of the self-renewal genes NANOG and BMI1 decreased as well as the number of cells with high Aldehyde Dehydrogenase activity. In addition, self-renewal ability decreased as measured with the urosphere assay. In line with these observations, knockdown or treatment of αv integrins resulted in decreased metastatic growth in preclinical in vivo models as assessed by bioluminescence imaging. In conclusion, we show that αv integrins are involved in migration, EMT and maintenance of Aldehyde Dehydrogenase activity in bladder cancer cells. Targeting of αv integrins might be a promising approach for treatment and/or prevention of metastatic bladder cancer.

  7. Targeting of αv-Integrins in Stem/Progenitor Cells and Supportive Microenvironment Impairs Bone Metastasis in Human Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Geertje van der Horst

    2011-06-01

    Full Text Available Acquisition of an invasive phenotype by cancer cells is a requirement for bone metastasis. Transformed epithelial cells can switch to a motile, mesenchymal phenotype by epithelial-mesenchymal transition (EMT. Recently, it has been shown that EMT is functionally linked to prostate cancer stem cells, which are not only critically involved in prostate cancer maintenance but also in bone metastasis. We showed that treatment with the non-peptide αv-integrin antagonist GLPG0187 dose-dependently increased the E-cadherin/vimentin ratio, rendering the cells a more epithelial, sessile phenotype. In addition, GLPG0187 dose-dependently diminished the size of the aldehyde dehydrogenase high subpopulation of prostate cancer cells, suggesting that αv-integrin plays an important role in maintaining the prostate cancer stem/progenitor pool. Our data show that GLPG0187 is a potent inhibitor of osteoclastic bone resorption and angiogenesis in vitro and in vivo. Real-time bioluminescent imaging in preclinical models of prostate cancer demonstrated that blocking αv-integrins by GLPG0187 markedly reduced their metastatic tumor growth according to preventive and curative protocols. Bone tumor burden was significantly lower in the preventive protocol. In addition, the number of bone metastases/mouse was significantly inhibited. In the curative protocol, the progression of bone metastases and the formation of new bone metastases during the treatment period was significantly inhibited. In conclusion, we demonstrate that targeting of integrins by GLPG0187 can inhibit the de novo formation and progression of bone metastases in prostate cancer by antitumor (including inhibition of EMT and the size of the prostate cancer stem cell population, antiresorptive, and antiangiogenic mechanisms.

  8. Reciprocal interactions between Beta1-integrin and epidermal growth factor in three-dimensional basement membrane breast cultures: A different perspective in epithelial biology

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F.; Weaver, V.M.; Petersen, O.W.; Larabell, C.A.; Dedhar, S.; Briand, P.; Lupu, R.; Bissell, M.J.

    1998-09-30

    Anchorage and growth factor independence are cardinal features of the transformed phenotype. Although it is logical that the two pathways must be coregulated in normal tissues to maintain homeostasis, this has not been demonstrated directly. We showed previously that down-modulation of {beta}1-integrin signaling reverted the malignant behavior of a human breast tumor cell line (T4-2) derived from phenotypically normal cells (HMT-3522) and led to growth arrest in a threedimensional (3D) basement membrane assay in which the cells formed tissue-like acini (14). Here, we show that there is a bidirectional cross-modulation of {beta}1-integrin and epidermal growth factor receptor (EGFR) signaling via the mitogenactivated protein kinase (MAPK) pathway. The reciprocal modulation does not occur in monolayer (2D) cultures. Antibodymediated inhibition of either of these receptors in the tumor cells, or inhibition of MAPK kinase, induced a concomitant downregulation of both receptors, followed by growth-arrest and restoration of normal breast tissue morphogenesis. Crossmodulation and tissue morphogenesis were associated with attenuation of EGF-induced transient MAPK activation. To specifically test EGFR and {beta}1-integrin interdependency, EGFR was overexpressed in nonmalignant cells, leading to disruption of morphogenesis and a compensatory up-regulation of {beta}1-integrin expression, again only in 3D. Our results indicate that when breast cells are spatially organized as a result of contact with basement membrane, the signaling pathways become coupled and bidirectional. They further explain why breast cells fail to differentiate in monolayer cultures in which these events are mostly uncoupled. Moreover, in a subset of tumor cells in which these pathways are misregulated but functional, the cells could be 'normalized' by manipulating either pathway.

  9. Integrins Regulate Apical Constriction via Microtubule Stabilization in the Drosophila Eye Disc Epithelium

    Directory of Open Access Journals (Sweden)

    Vilaiwan M. Fernandes

    2014-12-01

    Full Text Available During morphogenesis, extracellular signals trigger actomyosin contractility in subpopulations of cells to coordinate changes in cell shape. To illuminate the link between signaling-mediated tissue patterning and cytoskeletal remodeling, we study the progression of the morphogenetic furrow (MF, the wave of apical constriction that traverses the Drosophila eye imaginal disc preceding photoreceptor neurogenesis. Apical constriction depends on actomyosin contractility downstream of the Hedgehog (Hh and bone morphogenetic protein (BMP pathways. We identify a role for integrin adhesion receptors in MF progression. We show that Hh and BMP regulate integrin expression, the loss of which disrupts apical constriction and slows furrow progression; conversely, elevated integrins accelerate furrow progression. We present evidence that integrins regulate MF progression by promoting microtubule stabilization, since reducing microtubule stability rescues integrin-mediated furrow acceleration. Thus, integrins act as a genetic link between tissue-level signaling events and morphological change at the cellular level, leading to morphogenesis and neurogenesis in the eye.

  10. Cyclic isoDGR and RGD peptidomimetics containing bifunctional diketopiperazine scaffolds are integrin antagonists.

    Science.gov (United States)

    Panzeri, Silvia; Zanella, Simone; Arosio, Daniela; Vahdati, Leila; Dal Corso, Alberto; Pignataro, Luca; Paolillo, Mayra; Schinelli, Sergio; Belvisi, Laura; Gennari, Cesare; Piarulli, Umberto

    2015-04-13

    The cyclo[DKP-isoDGR] peptidomimetics 2-5, containing bifunctional diketopiperazine (DKP) scaffolds that differ in the configuration of the two DKP stereocenters and in the substitution at the DKP nitrogen atoms, were prepared and examined in vitro in competitive binding assays with purified αv β3 and αv β5 integrin receptors. IC50 values ranged from low nanomolar (ligand 3) to submicromolar with αv β3 integrin. The biological activities of ligands cyclo[DKP3-RGD] 1 and cyclo[DKP3-isoDGR] 3, bearing the same bifunctional DKP scaffold and showing similar αV β3 integrin binding values, were compared in terms of their cellular effects in human U373 glioblastoma cells. Compounds 1 and 3 displayed overlapping inhibitory effects on the FAK/Akt integrin activated transduction pathway and on integrin-mediated cell infiltration processes, and qualify therefore, despite the different RGD and isoDGR sequences, as integrin antagonists. Both compounds induced apoptosis in glioma cells after 72 hour treatment.

  11. PINCH proteins regulate cardiac contractility by modulating integrin-linked kinase-protein kinase B signaling.

    Science.gov (United States)

    Meder, Benjamin; Huttner, Inken G; Sedaghat-Hamedani, Farbod; Just, Steffen; Dahme, Tillman; Frese, Karen S; Vogel, Britta; Köhler, Doreen; Kloos, Wanda; Rudloff, Jessica; Marquart, Sabine; Katus, Hugo A; Rottbauer, Wolfgang

    2011-08-01

    Integrin-linked kinase (ILK) is an essential component of the cardiac mechanical stretch sensor and is bound in a protein complex with parvin and PINCH proteins, the so-called ILK-PINCH-parvin (IPP) complex. We have recently shown that inactivation of ILK or β-parvin activity leads to heart failure in zebrafish via reduced protein kinase B (PKB/Akt) activation. Here, we show that PINCH proteins localize at sarcomeric Z disks and costameres in the zebrafish heart and skeletal muscle. To investigate the in vivo role of PINCH proteins for IPP complex stability and PKB signaling within the vertebrate heart, we inactivated PINCH1 and PINCH2 in zebrafish. Inactivation of either PINCH isoform independently leads to instability of ILK, loss of stretch-responsive anf and vegf expression, and progressive heart failure. The predominant cause of heart failure in PINCH morphants seems to be loss of PKB activity, since PKB phosphorylation at serine 473 is significantly reduced in PINCH-deficient hearts and overexpression of constitutively active PKB reconstitutes cardiac function in PINCH morphants. These findings highlight the essential function of PINCH proteins in controlling cardiac contractility by granting IPP/PKB-mediated signaling.

  12. Rational design of a protein that binds integrin αvβ3 outside the ligand binding site

    Science.gov (United States)

    Turaga, Ravi Chakra; Yin, Lu; Yang, Jenny J.; Lee, Hsiauwei; Ivanov, Ivaylo; Yan, Chunli; Yang, Hua; Grossniklaus, Hans E.; Wang, Siming; Ma, Cheng; Sun, Li; Liu, Zhi-Ren

    2016-01-01

    Integrin αvβ3 expression is altered in various diseases and has been proposed as a drug target. Here we use a rational design approach to develop a therapeutic protein, which we call ProAgio, that binds to integrin αvβ3 outside the classical ligand-binding site. We show ProAgio induces apoptosis of integrin αvβ3-expressing cells by recruiting and activating caspase 8 to the cytoplasmic domain of integrin αvβ3. ProAgio also has anti-angiogenic activity and strongly inhibits growth of tumour xenografts, but does not affect the established vasculature. Toxicity analyses demonstrate that ProAgio is not toxic to mice. Our study reports a new integrin-targeting agent with a unique mechanism of action, and provides a template for the development of integrin-targeting therapeutics. PMID:27241473

  13. Rational design of a protein that binds integrin αvβ3 outside the ligand binding site.

    Science.gov (United States)

    Turaga, Ravi Chakra; Yin, Lu; Yang, Jenny J; Lee, Hsiauwei; Ivanov, Ivaylo; Yan, Chunli; Yang, Hua; Grossniklaus, Hans E; Wang, Siming; Ma, Cheng; Sun, Li; Liu, Zhi-Ren

    2016-05-31

    Integrin αvβ3 expression is altered in various diseases and has been proposed as a drug target. Here we use a rational design approach to develop a therapeutic protein, which we call ProAgio, that binds to integrin αvβ3 outside the classical ligand-binding site. We show ProAgio induces apoptosis of integrin αvβ3-expressing cells by recruiting and activating caspase 8 to the cytoplasmic domain of integrin αvβ3. ProAgio also has anti-angiogenic activity and strongly inhibits growth of tumour xenografts, but does not affect the established vasculature. Toxicity analyses demonstrate that ProAgio is not toxic to mice. Our study reports a new integrin-targeting agent with a unique mechanism of action, and provides a template for the development of integrin-targeting therapeutics.

  14. Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth

    Directory of Open Access Journals (Sweden)

    Carlstrom Lucas P

    2011-11-01

    Full Text Available Abstract Background Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the growth cone located at the tip of extending axons. Growth cone extension requires the coordination of cytoskeleton-dependent membrane protrusion and dynamic adhesion to the extracellular matrix, yet how chemotropic factors regulate these events remains an outstanding question. We demonstrated previously that the inhibitory factor myelin-associated glycoprotein (MAG triggers endocytic removal of the adhesion receptor β1-integrin from the growth cone surface membrane to negatively remodel substrate adhesions during chemorepulsion. Here, we tested how a neurotrophin might affect integrin adhesions. Results We report that brain-derived neurotropic factor (BDNF positively regulates the formation of substrate adhesions in axonal growth cones during stimulated outgrowth and prevents removal of β1-integrin adhesions by MAG. Treatment of Xenopus spinal neurons with BDNF rapidly triggered β1-integrin clustering and induced the dynamic formation of nascent vinculin-containing adhesion complexes in the growth cone periphery. Both the formation of nascent β1-integrin adhesions and the stimulation of axon extension by BDNF required cytoplasmic calcium ion signaling and integrin activation at the cell surface. Exposure to MAG decreased the number of β1-integrin adhesions in the growth cone during inhibition of axon extension. In contrast, the BDNF-induced adhesions were resistant to negative remodeling by MAG, correlating with the ability of BDNF pretreatment to counteract MAG-inhibition of axon extension. Pre-exposure to MAG prevented the BDNF-induced formation of β1-integrin adhesions and blocked the stimulation of axon extension by BDNF. Conclusions Altogether, these findings demonstrate the neurotrophin-dependent formation of integrin-based adhesions in the growth cone and reveal how a positive regulator of substrate adhesions can block

  15. Pregnancy-specific glycoproteins bind integrin αIIbβ3 and inhibit the platelet-fibrinogen interaction.

    Directory of Open Access Journals (Sweden)

    Daniel K Shanley

    Full Text Available Pregnancy-specific glycoproteins (PSGs are immunoglobulin superfamily members encoded by multigene families in rodents and primates. In human pregnancy, PSGs are secreted by the syncytiotrophoblast, a fetal tissue, and reach a concentration of up to 400 ug/ml in the maternal bloodstream at term. Human and mouse PSGs induce release of anti-inflammatory cytokines such as IL-10 and TGFβ1 from monocytes, macrophages, and other cell types, suggesting an immunoregulatory function. RGD tri-peptide motifs in the majority of human PSGs suggest that they may function like snake venom disintegrins, which bind integrins and inhibit interactions with ligands. We noted that human PSG1 has a KGD, rather than an RGD motif. The presence of a KGD in barbourin, a platelet integrin αIIbβ3 antagonist found in snake venom, suggested that PSG1 may be a selective αIIbβ3 ligand. Here we show that human PSG1 binds αIIbβ3 and inhibits the platelet - fibrinogen interaction. Unexpectedly, however, the KGD is not critical as multiple PSG1 domains independently bind and inhibit αIIbβ3 function. Human PSG9 and mouse Psg23 are also inhibitory suggesting conservation of this function across primate and rodent PSG families. Our results suggest that in species with haemochorial placentation, in which maternal blood is in direct contact with fetal trophoblast, the high expression level of PSGs reflects a requirement to antagonise abundant (3 mg/ml fibrinogen in the maternal circulation, which may be necessary to prevent platelet aggregation and thrombosis in the prothrombotic maternal environment of pregnancy.

  16. Albumin overload down-regulates integrin-β1 through reactive oxygen species-endoplasmic reticulum stress pathway in podocytes.

    Science.gov (United States)

    Cheng, Yu-Chi; Chen, Chien-An; Chang, Jer-Ming; Chen, Hung-Chun

    2015-08-01

    Proteinuria is a major hallmark of glomerular nephropathy and endoplasmic reticulum (ER) stress plays an important role in glomerular nephropathy. The protein levels of integrin-β1 in podocytes are found to be negative correlation with amount of proteinuria. This study investigated whether urinary protein, particularly albumin, induced ER stress that consequently reduced integrin-β1 expression. All experiments were performed using primary cultured rat podocyte. Protein and mRNA expression were measured by western blotting and semiquantified reverse transcriptase polymerase chain reaction. Albumin uptake was found at 1 h after albumin addition. Albumin reduced precursor and mature forms of integrin-β1, but did not change mRNA levels of integrin-β1. Albumin induced reactive oxygen species (ROS) generation and ER stress. Antioxidant (N-acetylcysteine) suppressed albumin-induced ER stress and decrements in precursor and mature forms of integrin-β1. Then, ER stress inhibitors (4-phenylbutyrate and salubrinal) also inhibited albumin-induced decrements in precursor and mature forms of integrin-β1. The potent ER stress inducers (thapsigargin and tunicamycin) directly decreased precursor and mature forms of integrin-β1 and led appearance of unglycosylated core protein of integrin-β1. Our results show that in proteinuric disease, albumin decreases precursor and mature forms of integrin-β1 through ROS-ER stress pathway in podocytes. PMID:25713411

  17. Mechanical strain promotes osteoblastic differentiation through integrin-β1-mediated β-catenin signaling.

    Science.gov (United States)

    Yan, Yuxian; Sun, Haoyang; Gong, Yuanwei; Yan, Zhixiong; Zhang, Xizheng; Guo, Yong; Wang, Yang

    2016-08-01

    As integrins are mechanoresponsive, there exists an intimate relationship between integrins and mechanical strain. Integrin-β1 mediates the impact of mechanical strain on bone. Mechanical strain induces bone formation through the activation of β-catenin pathways, which suggests that integrin-β1 mediates β-catenin signaling in osteoblasts in response to mechanical strain. In the present study, we examined the role of integrin-β1 in Wnt/β-catenin signal transduction in mechanically strained osteoblasts. MC3T3-E1 osteoblastic cells were transfected with integrin-β1 small interfering RNA (si-Itgβ1), and exposed to mechanical tensile strain of 2,500 microstrain (µε) using a four-point bending device. The mechanical strain enhanced the mRNA expression of integrin-β1, the protein levels of phosphorylated (p-) glycogen synthase kinase-3β (GSK‑3β) and β-catenin, simultaneously increased the mRNA levels of runt-related transcriptional factor 2 (Runx2) and osteocalcin (OCN), the protein levels of bone morphogenetic protein (BMP)-2 and -4 and enhanced the alkaline phosphatase (ALP) activity of the ME3T3-E1 cells. The elevations were inhibited by si-Itgβ1. Additionally, the mechanical strain induced the nuclear translocation of β-catenin into the nucleus, which was also inhibited by si-Itgβ1. These findings indicated that mechanical strain promoted osteoblastic differentiation through integrin‑β1‑mediated β-catenin signaling.

  18. Tumor angiogenesis in the absence of fibronectin or its cognate integrin receptors.

    Directory of Open Access Journals (Sweden)

    Patrick A Murphy

    Full Text Available Binding of α5β1 and αvβ3/β5 integrin receptors on the endothelium to their fibronectin substrate in the extracellular matrix has been targeted as a possible means of blocking tumor angiogenesis and tumor growth. However, clinical trials of blocking antibodies and peptides have been disappointing despite promising preclinical results, leading to questions about the mechanism of the inhibitors and the reasons for their failure. Here, using tissue-specific and inducible genetics to delete the α5 and αv receptors in the endothelium or their fibronectin substrate, either in the endothelium or globally, we show that both are dispensable for tumor growth, in transplanted tumors as well as spontaneous and angiogenesis-dependent RIP-Tag-driven pancreatic adenocarcinomas. In the nearly complete absence of fibronectin, no differences in vascular density or the deposition of basement membrane laminins, ColIV, Nid1, Nid2, or the TGFβ binding matrix proteins, fibrillin-1 and -2, could be observed. Our results reveal that fibronectin and the endothelial fibronectin receptor subunits, α5 and αv, are dispensable for tumor angiogenesis, suggesting that the inhibition of angiogenesis induced by antibodies or small molecules may occur through a dominant negative effect, rather than a simple functional block.

  19. Structural basis of substrate discrimination and integrin binding by autotaxin

    Energy Technology Data Exchange (ETDEWEB)

    Hausmann, Jens; Kamtekar, Satwik; Christodoulou, Evangelos; Day, Jacqueline E.; Wu, Tao; Fulkerson, Zachary; Albers, Harald M.H.G.; van Meeteren, Laurens A.; Houben, Anna J.S.; van Zeijl, Leonie; Jansen, Silvia; Andries, Maria; Hall, Troii; Pegg, Lyle E.; Benson, Timothy E.; Kasiem, Mobien; Harlos, Karl; Vander Kooi, Craig W.; Smyth, Susan S.; Ovaa, Huib; Bollen, Mathieu; Morris, Andrew J.; Moolenaar, Wouter H.; Perrakis, Anastassis (Pfizer); (Leuven); (Oxford); (NCI-Netherlands); (Kentucky)

    2013-09-25

    Autotaxin (ATX, also known as ectonucleotide pyrophosphatase/phosphodiesterase-2, ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX-LPA signaling is involved in various pathologies including tumor progression and inflammation. However, the molecular basis of substrate recognition and catalysis by ATX and the mechanism by which it interacts with target cells are unclear. Here, we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We have identified a hydrophobic lipid-binding pocket and mapped key residues for catalysis and selection between nucleotide and phospholipid substrates. We have shown that ATX interacts with cell-surface integrins through its N-terminal somatomedin B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling and suggest new approaches for targeting ATX with small-molecule therapeutic agents.

  20. Integrin α PAT-2/CDC-42 signaling is required for muscle-mediated clearance of apoptotic cells in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hsiao-Han Hsieh

    Full Text Available Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integrin α subunit PAT-2 in Caenorhabditis elegans and show that it specifically functions in muscle-mediated engulfment during embryogenesis. Inactivation of pat-2 results in a defect in apoptotic cell internalization. The PAT-2 extracellular region binds to the surface of apoptotic cells in vivo, and the intracellular region may mediate signaling for engulfment. We identify essential roles of small GTPase CDC-42 and its activator UIG-1, a guanine-nucleotide exchange factor, in PAT-2-mediated cell corpse removal. PAT-2 and CDC-42 both function in muscle cells for apoptotic cell removal and are co-localized in growing muscle pseudopods around apoptotic cells. Our data suggest that PAT-2 functions through UIG-1 for CDC-42 activation, which in turn leads to cytoskeletal rearrangement and apoptotic cell internalization by muscle cells. Moreover, in contrast to PAT-2, the other integrin α subunit INA-1 and the engulfment receptor CED-1, which signal through the conserved signaling molecules CED-5 (DOCK180/CED-12 (ELMO or CED-6 (GULP respectively, preferentially act in epithelial cells to mediate cell corpse removal during mid-embryogenesis. Our results show that different engulfing cells utilize distinct repertoires of receptors for engulfment at the whole organism level.

  1. α2β1 integrin, GPVI receptor, and common FcRγ chain on mouse platelets mediate distinct responses to collagen in models of thrombosis.

    Directory of Open Access Journals (Sweden)

    Robin J Marjoram

    Full Text Available Platelets express the α2β1 integrin and the glycoprotein VI (GPVI/FcRγ complex, both collagen receptors. Understanding platelet-collagen receptor function has been enhanced through use of genetically modified mouse models. Previous studies of GPVI/FcRγ-mediated collagen-induced platelet activation were perfomed with mice in which the FcRγ subunit was genetically deleted (FcRγ-/- or the complex was depleted. The development of α2β1-/- and GPVI-/- mice permits side-by-side comparison to address contributions of these collagen receptors in vivo and in vitro.To understand the different roles played by the α2β1 integrin, the GPVI receptor or FcRγ subunit in collagen-stimulated hemostasis and thrombosis, we compared α2β1-/-, FcRγ-/-, and GPVI-/- mice in models of endothelial injury and intravascular thrombosis in vivo and their platelets in collagen-stimulated activation in vitro. We demonstrate that both the α2β1 integrin and the GPVI receptor, but not the FcRγ subunit influence carotid artery occlusion in vivo. In contrast, the GPVI receptor and the FcRγ chain, but not the α2β1 integrin, play similar roles in intravascular thrombosis in response to soluble Type I collagen. FcRγ-/- platelets showed less attenuation of tyrosine phosphorylation of several proteins including RhoGDI when compared to GPVI-/- and wild type platelets. The difference between FcRγ-/- and GPVI-/- platelet phosphotyrosine levels correlated with the in vivo thrombosis findings.Our data demonstrate that genetic deletion of GPVI receptor, FcRγ chain, or the α2β1 integrin changes the thrombotic potentials of these platelets to collagen dependent on the stimulus mechanism. The data suggest that the FcRγ chain may provide a dominant negative effect through modulating signaling pathways in platelets involving several tyrosine phosphorylated proteins such as RhoGDI. In addition, these findings suggest a more complex signaling network downstream of the platelet

  2. Metastatic dissemination of human ovarian epithelial carcinoma is promoted by alpha2beta1-integrin-mediated interaction with type I collagen.

    Science.gov (United States)

    Fishman, D A; Kearns, A; Chilukuri, K; Bafetti, L M; O'Toole, E A; Georgacopoulos, J; Ravosa, M J; Stack, M S

    1998-01-01

    Metastatic dissemination of epithelial ovarian carcinoma is thought to be mediated via tumor cell exfoliation into the peritoneal cavity, followed by adhesion to and invasion through the mesothelium which overlies the contents of the peritoneal cavity. In this study, we have utilized short-term primary cultures to analyze the effect of specific extracellular matrix proteins on properties of human ovarian epithelial carcinoma cells which contribute to the invasive phenotype. Analysis of cell:matrix adhesive profiles indicated that ovarian carcinoma cells adhere preferentially to type I collagen. Immunoprecipitation analyses demonstrated the presence of the collagen-binding alpha2beta1 integrin in biotin-labeled ovarian carcinoma cell membranes, and cellular adhesion was inhibited by blocking antibodies directed against the alpha2 and beta1 integrin subunits. The alpha2beta1-binding peptide Asp-Gly-Glu-Ala (DGEA) was also moderately effective at blocking adhesion to collagen relative to the control peptide Ala-Gly-Glu-Ala (AGEA). Analysis of cell motility on protein-coated colloidal gold coverslips demonstrated that ovarian carcinoma cells migrate preferentially on type I collagen coated surfaces. Type I collagen promoted migration in a concentration-dependent, saturable manner, with maximal migration observed at a collagen-coating concentration of 50 microg/ml. Migration on collagen was inhibited by antibodies directed against the alpha2 and beta1 integrin subunits and by DGEA peptide, providing evidence for the role of the alpha2beta1 integrin in ovarian carcinoma cell motility. Culturing ovarian carcinoma cells on type I collagen gels led to a significant increase in conversion of the matrix metalloproteinase 2 zymogen to the 66-kD form, suggesting that adhesion to collagen also influences matrix-degrading proteinases. These data suggest that alpha2beta1-integrin-mediated interaction of ovarian carcinoma cells with type I collagen, a protein prevalent both in the

  3. Correlation study of integrin genes and bronchial asthma%整合素基因与支气管哮喘相关性的研究

    Institute of Scientific and Technical Information of China (English)

    甄丽华; 邵玉霞

    2014-01-01

    支气管哮喘(简称哮喘)是一种气道的慢性炎症性疾病,许多类型的细胞起到了重要作用,特别是肥大细胞、嗜酸粒细胞和T淋巴细胞.气道高反应性、炎症和重塑是哮喘的主要特征.气道重塑的特点包括上皮下纤维化,成纤维细胞增生,肌细胞增生和肥大,连同上皮细胞损伤杯状细胞化生、水肿和血管增加.气道高反应性与气道重塑和气道炎症密切相关.整合素作为一类黏附分子的受体是多功能蛋白质,把细胞连接到细胞外基质和组织细胞边缘的整合素黏附复合物.它还控制着细胞的命运和功能,通过影响细胞的增殖、凋亡和分化.各种各样的整合素异二聚体是从9种β亚基和24种a亚基组合形成的.他们是异二聚体,作用是细胞外基质和肌动蛋白骨架的横跨膜的连接器.整合素还作为信号转换器,当矩阵绑定激活时激活各种细胞内信号转导通路.整合素和常规的信号受体经常合作,促进细胞生长,细胞存活,细胞增殖.而近年来对不同整合素与哮喘相关性的研究越来越多,以下就对不同整合素进行阐述.%Bronchial asthma (asthma) is a chronic inflammatory disease of the airways in which many cell types play a role,in particular mast cells,eosinophils and Tlymphocytes.Airway hyperresponsiveness,inflammation and remodeling are the key feature of asthma.The characteristics of airway remodelling include subepithelial fibrosis,myofibroblast hyperplasia,myocyte hyperplasia and hypertrophy,together with epithelial damage,goblet cell metaplasia,oedema and increased vascularity.Airway hyperresponsiveness is associated with features of both remodelling and airway inflammation.Integrins,which constitute one class of cell-adhesion receptor,are multifunctional proteins that link cells to the extracellular matrix and organise integrin adhesion complexes at the cell periphery.Integrins also control the fate and function of cells by influencing

  4. Fibronectin-integrin mediated signaling in human cervical cancer cells (SiHa).

    Science.gov (United States)

    Maity, Gargi; Fahreen, Shabana; Banerji, Aniruddha; Roy Choudhury, Paromita; Sen, Triparna; Dutta, Anindita; Chatterjee, Amitava

    2010-03-01

    Interaction between cell surface integrin receptors and extracellular matrix (ECM) components plays an important role in cell survival, proliferation, and migration, including tumor development and invasion of tumor cells. Matrix metalloproteinases (MMPs) are a family of metalloproteinases capable of digesting ECM components and are important molecules for cell migration. Binding of ECM to integrins initiates cascades of cell signaling events modulating expression and activity of different MMPs. The aim of this study is to investigate fibronectin-integrin-mediated signaling and modulation of MMPs. Our findings indicated that culture of human cervical cancer cell (SiHa) on fibronectin-coated surface perhaps sends signals via fibronectin-integrin-mediated signaling pathways recruiting focal adhesion kinase (FAK) extracellular signal regulated kinase (ERK), phosphatidyl inositol 3 kinase (PI-3K), integrin-linked kinase (ILK), nuclear factor-kappa B (NF-kappaB), and modulates expression and activation of mainly pro-MMP-9, and moderately pro-MMP-2 in serum-free culture medium.

  5. Maternal anti-platelet β3 integrins impair angiogenesis and cause intracranial hemorrhage.

    Science.gov (United States)

    Yougbaré, Issaka; Lang, Sean; Yang, Hong; Chen, Pingguo; Zhao, Xu; Tai, Wei-She; Zdravic, Darko; Vadasz, Brian; Li, Conglei; Piran, Siavash; Marshall, Alexandra; Zhu, Guangheng; Tiller, Heidi; Killie, Mette Kjaer; Boyd, Shelley; Leong-Poi, Howard; Wen, Xiao-Yan; Skogen, Bjorn; Adamson, S Lee; Freedman, John; Ni, Heyu

    2015-04-01

    Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a life-threatening disease in which intracranial hemorrhage (ICH) is the major risk. Although thrombocytopenia, which is caused by maternal antibodies against β3 integrin and occasionally by maternal antibodies against other platelet antigens, such as glycoprotein GPIbα, has long been assumed to be the cause of bleeding, the mechanism of ICH has not been adequately explored. Utilizing murine models of FNAIT and a high-frequency ultrasound imaging system, we found that ICH only occurred in fetuses and neonates with anti-β3 integrin-mediated, but not anti-GPIbα-mediated, FNAIT, despite similar thrombocytopenia in both groups. Only anti-β3 integrin-mediated FNAIT reduced brain and retina vessel density, impaired angiogenic signaling, and increased endothelial cell apoptosis, all of which were abrogated by maternal administration of intravenous immunoglobulin (IVIG). ICH and impairment of retinal angiogenesis were further reproduced in neonates by injection of anti-β3 integrin, but not anti-GPIbα antisera. Utilizing cultured human endothelial cells, we found that cell proliferation, network formation, and AKT phosphorylation were inhibited only by murine anti-β3 integrin antisera and human anti-HPA-1a IgG purified from mothers with FNAIT children. Our data suggest that fetal hemostasis is distinct and that impairment of angiogenesis rather than thrombocytopenia likely causes FNAIT-associated ICH. Additionally, our results indicate that maternal IVIG therapy can effectively prevent this devastating disorder.

  6. Modulation of radiation-induced oral mucositis (mouse) by selective inhibition of β1 integrin

    International Nuclear Information System (INIS)

    Introduction: Oral mucositis is a severe side effect of radio(chemo)therapy for head and neck tumors, for which β1 integrins have been proposed as potential therapeutic targets. The present study was initiated to determine the effect of selective inhibition of β1 integrin on the oral epithelial radiation response. Materials and methods: Daily fractionated irradiation was given with 5 × 3 Gy/week over 1 or 2 weeks with/without the β1 integrin-inhibiting monoclonal antibody AIIB2 or an IgG control. Each protocol was terminated by graded test doses to generate full dose–effect curves for mucosal ulceration. The same technique was used for single dose irradiation. Results: Combined single dose irradiation plus AIIB2 resulted in a significant decrease of the ED50 compared to irradiation alone or control IgG. No effect of AIIB2 was found with fractionated irradiation over 1 week. With 2 weeks of fractionation, AIIB2 induced a significant increase in the ED50 for the terminating test irradiation when administered in week 2. The time course of the response was largely unaffected by β1 integrin inhibition. Conclusions: A reduction of mucosal reactions by β1 integrin inhibition later in a course of fractionation was observed, i.e. when epithelial repopulation processes were active. Further mechanistic studies are required.

  7. The cytoplasmic extension of the integrin β6 subunit regulates epithelial-to-mesenchymal transition.

    Science.gov (United States)

    Lee, Carlin; Lee, Casey; Lee, Stacey; Siu, Amanda; Ramos, Daniel M

    2014-02-01

    Prognosis for oral cancer patients has not improved in over 60 years due to invasion and recurrence. To understand the invasive behavior of this tumor, we evaluated the role of the αvβ6 integrin. Invasive oral SCC cells express the αvβ6 integrin, which contains an 11-amino-acid extension on its β-subunit unique to the integrin family. We determined that this β6 cytoplasmic extension regulates the composition of the intermediate filament network and the organization of signaling structures called focal contacts. The auto-phosphorylation of FAK, which is localized to focal contacts, was also regulated by the β6-cytoplasmic tail, as were the transcription factors Notch and STAT3. Lastly, we also determined that activation of MAPK required the full-length β6 integrin. Together these results indicate that the signaling critical to epithelial-to-mesenchymal transition (EMT) is regulated by the β6 integrin cytoplasmic domain. PMID:24510996

  8. Guanine Nucleotide-Binding Proteins of the G(12) Family Shape Immune Functions by Controlling CD4(+) T Cell Adhesiveness and Motility

    NARCIS (Netherlands)

    S. Herroeder; P. Reichardt; A. Sassmann; B. Zimmermann; D. Jaeneke; J. Hoeckner; M.W. Hollmann; K.D. Fischer; S. Vogt; R. Grosse; N. Hogg; M. Gunzer; S. Offermanns; N. Wettschureck

    2009-01-01

    Integrin-mediated adhesion plays a central role in T cell trafficking and activation. Genetic inactivation of the guanine nucleotide-binding (G) protein alpha-subunits G alpha(12) and G alpha(13) resulted in an increased activity of integrin leukocyte-function-antigen-1 in murine CD4(+) T cells. The

  9. RPTP-alpha acts as a transducer of mechanical force on alphav/beta3-integrin-cytoskeleton linkages

    DEFF Research Database (Denmark)

    von Wichert, Gotz; Jiang, Guoying; Kostic, Ana;

    2003-01-01

    -integrins at the leading edge during early spreading, and coimmunoprecipitates with alphav-integrins during spreading on fibronectin and vitronectin. RPTPalpha-dependent activation of Src family kinases, in particular activation of Fyn, is required for the force-dependent formation of focal complexes and...

  10. Intestinal epithelial restitution. Involvement of specific laminin isoforms and integrin laminin receptors in wound closure of a transformed model epithelium

    DEFF Research Database (Denmark)

    Lotz, M M; Nusrat, A; Madara, J L;

    1997-01-01

    cells adjoining wounds. Because T84 cells stained faintly with MAbs 4C7 (laminin alpha 1 subunit) and with MAbs 4F11 and 1B4 (laminin alpha 2 subunit), we suggest that expression of laminins 6 and 7 is enhanced in response to wounding. The alpha 3 beta 1 integrin and the alpha 6-containing integrins...

  11. Conditional beta1-integrin gene deletion in neural crest cells causes severe developmental alterations of the peripheral nervous system

    DEFF Research Database (Denmark)

    Pietri, Thomas; Eder, Olivier; Breau, Marie Anne;

    2004-01-01

    Integrins are transmembrane receptors that are known to interact with the extracellular matrix and to be required for migration, proliferation, differentiation and apoptosis. We have generated mice with a neural crest cell-specific deletion of the beta1-integrin gene to analyse the role of beta1-...

  12. Differential Influence of Components Resulting from Atmospheric-Pressure Plasma on Integrin Expression of Human HaCaT Keratinocytes

    Directory of Open Access Journals (Sweden)

    Beate Haertel

    2013-01-01

    Full Text Available Adequate chronic wound healing is a major problem in medicine. A new solution might be non-thermal atmospheric-pressure plasma effectively inactivating microorganisms and influencing cells in wound healing. Plasma components as, for example, radicals can affect cells differently. HaCaT keratinocytes were treated with Dielectric Barrier Discharge plasma (DBD/air, DBD/argon, ozone or hydrogen peroxide to find the components responsible for changes in integrin expression, intracellular ROS formation or apoptosis induction. Dependent on plasma treatment time reduction of recovered cells was observed with no increase of apoptotic cells, but breakdown of mitochondrial membrane potential. DBD/air plasma increased integrins and intracellular ROS. DBD/argon caused minor changes. About 100 ppm ozone did not influence integrins. Hydrogen peroxide caused similar effects compared to DBD/air plasma. In conclusion, effects depended on working gas and exposure time to plasma. Short treatment cycles did neither change integrins nor induce apoptosis or ROS. Longer treatments changed integrins as important for influencing wound healing. Plasma effects on integrins are rather attributed to induction of other ROS than to generation of ozone. Changes of integrins by plasma may provide new solutions of improving wound healing, however, conditions are needed which allow initiating the relevant influence on integrins without being cytotoxic to cells.

  13. A ligand-independent integrin β1 mechanosensory complex guides spindle orientation.

    Science.gov (United States)

    Petridou, Nicoletta I; Skourides, Paris A

    2016-01-01

    Control of spindle orientation is a fundamental process for embryonic development, morphogenesis and tissue homeostasis, while defects are associated with tumorigenesis and other diseases. Force sensing is one of the mechanisms through which division orientation is determined. Here we show that integrin β1 plays a critical role in this process, becoming activated at the lateral regions of the cell cortex in a ligand-independent manner. This activation is force dependent and polar, correlating with the spindle capture sites. Inhibition of integrin β1 activation on the cortex and disruption of its asymmetric distribution leads to spindle misorientation, even when cell adhesion is β1 independent. Examining downstream targets reveals that a cortical mechanosensory complex forms on active β1, and regulates spindle orientation irrespective of cell context. We propose that ligand-independent integrin β1 activation is a conserved mechanism that allows cell responses to external stimuli. PMID:26952307

  14. Beta1 integrins differentially control extravasation of inflammatory cell subsets into the CNS during autoimmunity

    DEFF Research Database (Denmark)

    Bauer, Martina; Brakebusch, Cord; Coisne, Caroline;

    2009-01-01

    Inhibiting the alpha(4) subunit of the integrin heterodimers alpha(4)beta(1) and alpha(4)beta(7) with the monoclonal antibody natalizumab is an effective treatment for multiple sclerosis (MS). However, the pharmacological action of natalizumab is not understood conclusively. Previous studies...... suggested that natalizumab inhibits activation, proliferation, or extravasation of inflammatory cells. To specify which mechanisms, cell types, and alpha(4) heterodimers are affected by the antibody treatment, we studied MS-like experimental autoimmune encephalomyelitis (EAE) in mice lacking the beta(1......)-integrin gene either in all hematopoietic cells or selectively in T lymphocytes. Our results show that T cells critically rely on beta(1) integrins to accumulate in the central nervous system (CNS) during EAE, whereas CNS infiltration of beta(1)-deficient myeloid cells remains unaffected, suggesting that T...

  15. ADAM12 and alpha9beta1 integrin are instrumental in human myogenic cell differentiation

    DEFF Research Database (Denmark)

    Lafuste, Peggy; Sonnet, Corinne; Chazaud, Bénédicte;

    2005-01-01

    Knowledge on molecular systems involved in myogenic precursor cell (mpc) fusion into myotubes is fragmentary. Previous studies have implicated the a disintegrin and metalloproteinase (ADAM) family in most mammalian cell fusion processes. ADAM12 is likely involved in fusion of murine mpc and human...... rhabdomyosarcoma cells, but it requires yet unknown molecular partners to launch myogenic cell fusion. ADAM12 was shown able to mediate cell-to-cell attachment through binding alpha9beta1 integrin. We report that normal human mpc express both ADAM12 and alpha9beta1 integrin during their differentiation. Expression...... of alpha9 parallels that of ADAM12 and culminates at time of fusion. alpha9 and ADAM12 coimmunoprecipitate and participate to mpc adhesion. Inhibition of ADAM12/alpha9beta1 integrin interplay, by either ADAM12 antisense oligonucleotides or blocking antibody to alpha9beta1, inhibited overall mpc fusion...

  16. Induction of Partial Protection against Foot and Mouth Disease Virus in Guinea Pigs by Neutralization with the Integrin β6-1 Subunit

    Directory of Open Access Journals (Sweden)

    Zhidong Zhang

    2013-04-01

    Full Text Available The mechanism by which the foot-and-mouth disease virus (FMDV initiates infection of cells is thought to involve the attachment of the viral capsid to host integrins on the surface of target cells. However, the role of integrins in FMDV infection still needs to be fully understood, although it has been demonstrated that integrin αvβ6 interferes with FMDV in vitro and results in neutralization of its infectivity. In the present study, we describe the cloning and sequencing of suckling mouse integrin β6 and the subsequent expression of two segments of integrin β6 extracellular domains: β6-1 (which contains the ligand-binding domain and β6-2. Sequencing of the mouse integrin β6 subunit revealed close homology (~90% with its human counterpart. When recombinant integrin extracellular domains β6-1 and β6-2 formulated with adjuvant were inoculated into guinea pigs, anti-integrin antibody expression was high before FMDV challenge. Interestingly, guinea pigs (50% inoculated with integrin β6-1 were protected from FMDV infection; in contrast, none of the animals inoculated with integrin β6-2 were protected. This result indicates that an integrin blockade may be able to interfere with FMDV infection in vivo, which raises the possibility that targeting integrin in vivo may be the basis for a new strategy to control FMDV infection.

  17. Integrin beta3 Leu33Pro polymorphism and risk of hip fracture: 25 years follow-up of 9233 adults from the general population

    DEFF Research Database (Denmark)

    Tofteng, Charlotte L; Bach-Mortensen, Pernille; Bojesen, Stig E;

    2007-01-01

    integrin beta3 Leu33Pro polymorphism have a two-fold risk of hip fracture, mainly confined to postmenopausal women. Integrin beta3 Leu33Pro homozygosity could prove a useful marker for risk of future hip fracture and may contribute to pharmacogenetic variation in effects of integrin alphavbeta3 antagonists....

  18. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells.

    Science.gov (United States)

    Ryan, M C; Lee, K; Miyashita, Y; Carter, W G

    1999-06-14

    Laminin 5 regulates anchorage and motility of epithelial cells through integrins alpha6beta4 and alpha3beta1, respectively. We used targeted disruption of the LAMA3 gene, which encodes the alpha3 subunit of laminin 5 and other isoforms, to examine developmental functions that are regulated by adhesion to the basement membrane (BM). In homozygous null animals, profound epithelial abnormalities were detected that resulted in neonatal lethality, consistent with removal of all alpha3-laminin isoforms from epithelial BMs. Alterations in three different cellular functions were identified. First, using a novel tissue adhesion assay, we found that the mutant BM could not induce stable adhesion by integrin alpha6beta4, consistent with the presence of junctional blisters and abnormal hemidesmosomes. In the absence of laminin 5 function, we were able to detect a new ligand for integrin alpha3beta1 in the epidermal BM, suggesting that basal keratinocytes can utilize integrin alpha3beta1 to interact with an alternative ligand. Second, we identified a survival defect in mutant epithelial cells that could be rescued by exogenous laminin 5, collagen, or an antibody against integrin alpha6beta4, suggesting that signaling through beta1 or beta4 integrins is sufficient for survival. Third, we detected abnormalities in ameloblast differentiation in developing mutant incisors indicating that events downstream of adhesion are affected in mutant animals. These results indicate that laminin 5 has an important role in regulating tissue organization, gene expression, and survival of epithelium. PMID:10366601

  19. NMR structure of integrin α4 cytosolic tail and its interactions with paxillin.

    Directory of Open Access Journals (Sweden)

    Geok-Lin Chua

    Full Text Available BACKGROUND: Integrins are a group of transmembrane signaling proteins that are important in biological processes such as cell adhesion, proliferation and migration. Integrins are α/β hetero-dimers and there are 24 different integrins formed by specific combinations of 18 α and 8 β subunits in humans. Generally, each of these subunits has a large extracellular domain, a single pass transmembrane segment and a cytosolic tail (CT. CTs of integrins are important in bidirectional signal transduction and they associate with a large number of intracellular proteins. PRINCIPAL FINDINGS: Using NMR spectroscopy, we determined the 3-D structure of the full-length α4 CT (Lys968-Asp999 and characterize its interactions with the adaptor protein paxillin. The α4 CT assumes an overall helical structure with a kink in its membrane proximal region. Residues Gln981-Asn997 formed a continuous helical conformation that may be sustained by potential ionic and/or hydrogen bond interactions and packing of aromatic-aliphatic side-chains. ¹⁵N-¹H HSQC NMR experiments reveal interactions of the α4 CT C-terminal region with a fragment of paxillin (residues G139-K277 that encompassed LD2-LD4 repeats. Residues of these LD repeats including their adjoining linkers showed α4 CT binding-induced chemical shift changes. Furthermore, NMR studies using LD-containing peptides showed predominant interactions between LD3 and LD4 of paxillin and α4 CT. Docked structures of the α4 CT with these LD repeats suggest possible polar and/or salt-bridge and non-polar packing interactions. SIGNIFICANCE: The current study provides molecular insights into the structural diversity of α CTs of integrins and interactions of integrin α4 CT with the adaptor protein paxillin.

  20. Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells.

    Science.gov (United States)

    Alon, Ronen; Ley, Klaus

    2008-10-01

    The arrest of rolling leukocytes on various target vascular beds is mediated by specialized leukocyte integrins and their endothelial immunoglobulin superfamily (IgSF) ligands. These integrins are kept in largely inactive states and undergo in situ activation upon leukocyte-endothelial contact by both biochemical and mechanical signals from flow-derived shear forces. In vivo and in vitro studies suggest that leukocyte integrin activation involves conformational alterations through inside-out signaling followed by ligand-induced rearrangements accelerated by external forces. This activation process takes place within fractions of seconds by in situ signals transduced to the rolling leukocyte as it encounters specialized endothelial-displayed chemoattractants, collectively termed arrest chemokines. In neutrophils, selectin rolling engagements trigger intermediate affinity integrins to support reversible adhesions before chemokine-triggered arrest. Different leukocyte subsets appear to use different modalities of integrin activation during rolling and arrest at distinct endothelial sites.

  1. Alpha9beta1 integrin in melanoma cells can signal different adhesion states for migration and anchorage

    DEFF Research Database (Denmark)

    Lydolph, Magnus C; Morgan-Fisher, Marie; Høye, Anette M;

    2009-01-01

    of endosomal vesicle recycling, but not inhibitors of protein kinase C or the small GTPase Rho. Our results demonstrated that although alpha9beta1 integrin can induce and localise to focal adhesions in a high activation state, its intermediate activity state normally supports cell adhesion consistent......Cell surface integrins are the primary receptors for cell migration on extracellular matrix, and exist in several activation states regulated in part by ectodomain conformation. The alpha9 integrin subunit, which pairs only with beta1, has specific roles in the immune system and may regulate cell...... migration. Melanoma cells express abundant alpha9beta1 integrin, and its role in cell migration was assessed. Ligands derived from Tenascin-C and ADAM12 supported alpha9beta1 integrin-mediated cell attachment and GTP-Rac dependent migration, but not focal adhesion formation. Manganese ions induced alpha9...

  2. Discoidin domain receptor 1 is activated independently of beta(1) integrin

    DEFF Research Database (Denmark)

    Vogel, W; Brakebusch, C; Fässler, R;

    2000-01-01

    Various types of collagen have been identified as potential ligands for the two mammalian discoidin domain receptor (DDR) tyrosine kinases, DDR1 and DDR2. It is presently unclear whether collagen-induced DDR receptor activation, which occurs with very slow kinetics, involves additional proteins...... blocking antibodies for alpha(2)beta(1) integrin or in cells with a targeted deletion of the beta(1) integrin gene. Finally, we show that overexpression of dominant negative DDR1 in the myoblast cell line C2C12 blocks cellular differentiation and the formation of myofibers....

  3. Interaction of the α2A domain of integrin with small collagen fragments

    OpenAIRE

    Siebert, Hans-Christian; Burg-Roderfeld, Monika; Eckert, Thomas; Stötzel, Sabine; Kirch, Ulrike; Diercks, Tammo; Humphries, Martin J.; Frank, Martin; Wechselberger, Rainer; Tajkhorshid, Emad; Oesser, Steffen

    2010-01-01

    We here present a detailed study of the ligand-receptor interactions between single and triple-helical strands of collagen and the α2A domain of integrin (α2A), providing valuable new insights into the mechanisms and dynamics of collagen-integrin binding at a sub-molecular level. The occurrence of single and triple-helical strands of the collagen fragments was scrutinized with atom force microscopy (AFM) techniques. Strong interactions of the triple-stranded fragments comparable to those of c...

  4. α6β4 integrin and dystroglycan cooperate to stabilize the myelin sheath

    OpenAIRE

    Nodari, A.; Previtali, S.C.; Dati, G.; Occhi, S.; Court, FA.; Colombelli, C.; Zambroni, D.; Dina, G.; Del Carro, U.; Campbell, K. P.; Quattrini, A; Wrabetz, L.; Feltri, ML.

    2008-01-01

    Schwann cells integrate signals deriving from the axon and the basal lamina to myelinate peripheral nerves. Integrin α6β4 is a laminin receptor synthesized by Schwann cells and displayed apposed to the basal lamina. α6β4 integrin expression in Schwann cells is induced by axons at the onset of myelination, and rise in adulthood. The β4 chain has a uniquely long cytoplasmic domain that interacts with intermediate filaments such as dystonin, important in peripheral myelination. Furthermore, α6β4...

  5. Muscle-specific integrins in masseter muscle fibers of chimpanzees: an immunohistochemical study.

    Directory of Open Access Journals (Sweden)

    Gianluigi Vaccarino

    2010-05-01

    Full Text Available Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern human and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes. The most peculiar aspect of hominoid karyotypes is that human have 46 chromosomes whereas gorillas and chimpanzees have 48. Interestingly, human and chimpanzees do share identical inversions on chromosome 7 and 9 that are not evident in the gorilla karyotype. Thus, the general phylogeny suggests that humans and chimpanzees are sister taxa; based on this, it seems that human-chimpanzee sequence similarity is an astonishing 99%. At this purpose, of particular interest is the inactivation of the myosin heavy chain 16 (MYH16 gene, most prominently expressed in the masticatory muscle of mammals. It has been showed that the loss of this gene in humans may have resulted in smaller masticatory muscle and consequential changes to cranio-facial morphology and expansion of the human brain case. Powerful masticatory muscles are found in most primates; contrarily, in both modern and fossil member Homo, these muscles are considerably smaller. The evolving hominid masticatory apparatus shifted towards a pattern of gracilization nearly simultaneously with accelerated encephalization in early Homo. To better comprehend the real role of the MYH16 gene, we studied the primary proteins present in the muscle fibers of humans and non-humans, in order to understand if they really can be influenced by MYH16 gene. At this aim we examined the muscle-specific integrins, alpha 7B and beta 1D-integrins, and their relative fetal isoforms, alpha 7A and beta 1A-integrins, analyzing, by immunohistochemistry, muscle biopsies of two components of a chimpanzee's group in captivity, an alpha male and a non-alpha male subjects; all these integrins participate in vital biological processes such as maintenance of tissue integrity, embryonic development, cell

  6. Angiomodulin, a marker of cancer vasculature, is upregulated by vascular endothelial growth factor and increases vascular permeability as a ligand of integrin αvβ3

    International Nuclear Information System (INIS)

    Angiomodulin (AGM) is a member of insulin-like growth factor binding protein (IGFBP) superfamily and often called IGFBP-rP1 or IGFBP-7. AGM was originally identified as a tumor-derived cell adhesion factor, which was highly accumulated in blood vessels of human cancer tissues. AGM is also overexpressed in cancer-associated fibroblasts (CAFs) and activates fibroblasts. However, some studies have shown tumor-suppressing activity of AGM. To understand the roles of AGM in cancer progression, we here investigated the expression of AGM in benign and invasive breast cancers and its functions in cancer vasculature. Immunohistochemical analysis showed that AGM was highly expressed in cancer vasculature even in ductal carcinoma in situ (DCIS) as compared to normal vasculature, while its expression in CAFs was more prominent in invasive carcinomas than DCIS. In vitro analyses showed that AGM was strongly induced by vascular endothelial cell growth factor (VEGF) in vascular endothelial cells. Although AGM stimulated neither the growth nor migration of endothelial cells, it supported efficient adhesion of endothelial cells. Integrin αvβ3 was identified as a novel major receptor for AGM in vascular endothelial cells. AGM retracted endothelial cells by inducing actin stress fibers and loosened their VE-cadherin-mediated intercellular junction. Consequently, AGM increased vascular permeability both in vitro and in vivo. Furthermore, AGM and integrin αvβ3 were highly expressed and colocalized in cancer vasculature. These results suggest that AGM cooperates with VEGF to induce the aberrant functions of cancer vasculature as a ligand of integrin αvβ3

  7. Integrin-linked kinase (ILK) modulates wound healing through regulation of hepatocyte growth factor (HGF)

    International Nuclear Information System (INIS)

    Integrin-linked kinase (ILK) is an intracellular effector of cell–matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The present work analyzes the role of ILK in wound healing in adult animals using a conditional knock-out of the ILK gene generated with the tamoxifen-inducible Cre-lox system (CRE-LOX mice). Results show that ILK deficiency leads to retarded wound closure in skin. Intracellular mechanisms involved in this process were analyzed in cultured mouse embryonic fibroblast (MEF) isolated from CRE-LOX mice and revealed that wounding promotes rapid activation of phosphatidylinositol 3-kinase (PI3K) and ILK. Knockdown of ILK resulted in a retarded wound closure due to a decrease in cellular proliferation and loss of HGF protein expression during the healing process, in vitro and in vivo. Alterations in cell proliferation and wound closure in ILK-deficient MEF or mice could be rescued by exogenous administration of human HGF. These data demonstrate, for the first time, that the activation of PI3K and ILK after skin wounding are critical for HGF-dependent tissue repair and wound healing. -- Highlights: ► ILK deletion results in decreased HGF expression and delayed scratch wound repair. ► PI3K/ILK/AKT pathway signals through HGF to regulate wound healing. ► An ILK-dependent increase in HGF expression is responsible for wound healing in vivo. ► ILK-KO mice are used to confirm the requirement for ILK function in wound healing. ► Human HGF treatment restores delayed wound closure in vitro and in vivo.

  8. PKD2 and RSK1 Regulate Integrin β4 Phosphorylation at Threonine 1736.

    Directory of Open Access Journals (Sweden)

    Lisa Te Molder

    Full Text Available The integrin α6β4, a major component of hemidesmosomes (HDs, stabilizes keratinocyte cell adhesion to the epidermal basement membrane through binding to the cytoskeletal linker protein plectin and association with keratin filaments. Disruption of the α6β4-plectin interaction through phosphorylation of the β4 subunit results in a reduction in adhesive strength of keratinocytes to laminin-332 and the dissolution of HDs. Previously, we have demonstrated that phosphorylation of T1736 in the C-terminal end of the β4 cytoplasmic domain disrupts the interaction of β4 with the plakin domain of plectin. Furthermore, we showed that β4-T1736 can be phosphorylated by PKD1 in vitro, and although both PMA and EGF induced T1736 phosphorylation, only PMA was able to activate PKD1. Here, we show that depletion of [Ca2+]i augments PMA- and EGF-induced phosphorylation of β4-T1736 and that this is caused by inhibition of the calcium-sensitive protein phosphatase calcineurin and augmentation of ERK1/2 activation. We also show that in keratinocytes the PMA-stimulated phosphorylation of β4-T1736 primarily is mediated by PKD2 activation downstream of PKCδ. On the other hand, both the EGF-stimulated phosphorylation of T1736 and the EGF-induced dissolution of HDs are dependent on a functional MAPK signaling pathway, and treatment with the RSK inhibitor BI-D1870 prevented EGF-stimulated phosphorylation of β4-T1736. Moreover, phosphorylation of β4-T1736 is enhanced by overexpression of wild-type RSK1, while it is reduced by the expression of kinase-inactive RSK1 or by siRNA-mediated depletion of RSK1. In summary, our data indicate that different stimuli can lead to the phosphorylation of β4-T1736 by either PKD2 or RSK1.

  9. Integrin-linked kinase (ILK) modulates wound healing through regulation of hepatocyte growth factor (HGF)

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Isabel; Diez-Marques, Maria L.; Rodriguez-Puyol, Manuel [Department of Physiology, University of Alcala, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain); Herrero-Fresneda, Inmaculada [Nephrology Unit, IDIBELL, Hospital de Bellvitge, Barcelona (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Garcia del Moral, Raimundo [Department of Pathology, University of Granada (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Dedhar, Shoukat [Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC (Canada); Ruiz-Torres, Maria P., E-mail: mpiedad.ruiz@uah.es [Department of Physiology, University of Alcala, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain); Rodriguez-Puyol, Diego [Nephrology Unit, Hospital Universitario Principe de Asturias, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain)

    2012-11-15

    Integrin-linked kinase (ILK) is an intracellular effector of cell-matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The present work analyzes the role of ILK in wound healing in adult animals using a conditional knock-out of the ILK gene generated with the tamoxifen-inducible Cre-lox system (CRE-LOX mice). Results show that ILK deficiency leads to retarded wound closure in skin. Intracellular mechanisms involved in this process were analyzed in cultured mouse embryonic fibroblast (MEF) isolated from CRE-LOX mice and revealed that wounding promotes rapid activation of phosphatidylinositol 3-kinase (PI3K) and ILK. Knockdown of ILK resulted in a retarded wound closure due to a decrease in cellular proliferation and loss of HGF protein expression during the healing process, in vitro and in vivo. Alterations in cell proliferation and wound closure in ILK-deficient MEF or mice could be rescued by exogenous administration of human HGF. These data demonstrate, for the first time, that the activation of PI3K and ILK after skin wounding are critical for HGF-dependent tissue repair and wound healing. -- Highlights: Black-Right-Pointing-Pointer ILK deletion results in decreased HGF expression and delayed scratch wound repair. Black-Right-Pointing-Pointer PI3K/ILK/AKT pathway signals through HGF to regulate wound healing. Black-Right-Pointing-Pointer An ILK-dependent increase in HGF expression is responsible for wound healing in vivo. Black-Right-Pointing-Pointer ILK-KO mice are used to confirm the requirement for ILK function in wound healing. Black-Right-Pointing-Pointer Human HGF treatment restores delayed wound closure in vitro and in vivo.

  10. Role of integrin-linked kinase in drug resistance of lung cancer

    Directory of Open Access Journals (Sweden)

    Jia Z

    2015-06-01

    Full Text Available Zhiyang Jia Department of Imaging and Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, People’s Republic of ChinaObjective: The objective of the present investigation was to investigate the role of integrin-linked kinase (ILK in the gemcitabine-resistant lung cancer cell line A549 and explore the underlying mechanism.Materials and methods: Gemcitabine-resistant A549 (A549/GemR cell line was established by pulse-exposed to moderate concentration of gemcitabine (Gem, and the drug resistant index was measured by MTT assay. Expression of ILK in A549/GemR cell line was detected by Western blot and real-time PCR. An ILK gene-silencing cell line was constructed using lentivirus-coated ILK shRNA. MTT assay was used to detect the drug sensitivity of the A549/GemR cell line to Gem after the ILK gene silencing. Western blot was used to measure the expression of E-cadherin, fibronectin, and MRP1 (multidrug resistance-associated protein 1 after silencing the ILK gene.Result: The drug resistance index of A549/GemR was 13.5, and the messenger RNA and protein level of ILK was increased in A549/GemR. IC50 (half maximal inhibitory concentration decreased from 14.69 to 4.13 mg/L when ILK was knocked down in A549/GemR. The expression of fibronectin and MRP1 was upregulated and E-cadherin expression was downregulated in A549/GemR, and these changes were reversed after ILK was knocked down.Conclusion: ILK was involved in drug resistance to Gem in lung cancer, and this function may be mediated by epithelial–mesenchymal transition and the MRP1 pathway.Keywords: lung cancer, drug resistance, gemcitabine, ILK, EMT

  11. Manganese-induced integrin affinity maturation promotes recruitment of alpha V beta 3 integrin to focal adhesions in endothelial cells: evidence for a role of phosphatidylinositol 3-kinase and Src.

    Science.gov (United States)

    Dormond, Olivier; Ponsonnet, Lionel; Hasmim, Meriem; Foletti, Alessandro; Rüegg, Curzio

    2004-07-01

    Integrin activity is controlled by changes in affinity (i.e. ligand binding) and avidity (i.e. receptor clustering). Little is known, however, about the effect of affinity maturation on integrin avidity and on the associated signaling pathways. To study the effect of affinity maturation on integrin avidity, we stimulated human umbilical vein endothelial cells (HUVEC) with MnCl(2) to increase integrin affinity and monitored clustering of beta 1 and beta 3 integrins. In unstimulated HUVEC, beta 1 integrins were present in fibrillar adhesions, while alpha V beta 3 was detected in peripheral focal adhesions. Clustered beta 1 and beta 3 integrins expressed high affinity/ligand-induced binding site (LIBS) epitopes. MnCl(2)-stimulation promoted focal adhesion and actin stress fiber formation at the basal surface of the cells, and strongly enhanced mAb LM609 staining and expression of beta 3 high affinity/LIBS epitopes at focal adhesions. MnCl(2)-induced alpha V beta 3 clustering was blocked by a soluble RGD peptide, by wortmannin and LY294002, two pharmacological inhibitors of phosphatidylinositol 3-kinase (PI 3-K), and by over-expressing a dominant negative PI 3-K mutant protein. Conversely, over-expression of active PI 3-K and pharmacological inhibiton of Src with PP2 and CGP77675, enhanced basal and manganese-induced alpha V beta 3 clustering. Transient increased phosphorylation of protein kinase B/Akt, a direct target of PI 3K, occurred upon manganese stimulation. MnCl(2) did not alter beta 1 integrin distribution or beta1 high-affinity/LIBS epitope expression. Based on these results, we conclude that MnCl(2)-induced alpha V beta 3 integrin affinity maturation stimulates focal adhesion and actin stress fiber formation, and promotes recruitment of high affinity alpha V beta 3 to focal adhesions. Affinity-modulated alpha V beta 3 clustering requires PI3-K signaling and is negatively regulate by Src.

  12. αvβ6 integrin may be a potential prognostic biomarker in interstitial lung disease.

    Science.gov (United States)

    Saini, Gauri; Porte, Joanne; Weinreb, Paul H; Violette, Shelia M; Wallace, William A; McKeever, Tricia M; Jenkins, Gisli

    2015-08-01

    Idiopathic pulmonary fibrosis (IPF) and fibrotic nonspecific interstitial pneumonitis are progressive interstitial lung diseases (ILDs) with limited treatment options and poor survival. However, the rate of disease progression is variable, implying there may be different endotypes of disease. We hypothesised that immunophenotyping biopsies from ILD patients might reveal distinct endotypes of progressive fibrotic disease, which may facilitate stratification when undertaking clinical trials of novel therapies for IPF.43 paraffin-embedded, formalin-fixed lung tissue sections were immunostained for five molecules implicated in the pathogenesis of the fibrosis: α-smooth muscle actin (αSMA), αvβ6 integrin, pro-surfactant protein C (SP-C), hepatocyte growth factor (HGF) and tenascin-C (TenC). Levels of immunostaining and numbers of fibroblastic foci were quantified using operator-dependent and -independent methods. The relationship of all these markers to overall survival was analysed.Staining revealed high levels of αSMA, αvβ6 integrin, pro-SP-C, HGF and TenC, and fibroblastic foci. Immunostaining varied across samples for all molecules but only the extent of αvβ6 integrin immunostaining was associated with increased mortality. There was no association with the other markers measured.Our data suggest high levels of αvβ6 integrin may identify a specific endotype of progressive fibrotic lung disease.

  13. Improved targeting of the alpha(v)beta (3) integrin by multimerisation of RGD peptides.

    NARCIS (Netherlands)

    Dijkgraaf, I.; Kruijtzer, J.A.; Liu, S.; Soede, A.C.; Oyen, W.J.G.; Corstens, F.H.M.; Liskamp, R.M.; Boerman, O.C.

    2007-01-01

    PURPOSE: The integrin alpha(v)beta(3) is expressed on sprouting endothelial cells and on various tumour cell types. Due to the restricted expression of alpha(v)beta(3) in tumours, alpha(v)beta(3) is considered a suitable receptor for tumour targeting. In this study the alpha(v)beta(3) binding charac

  14. Examination of soluble integrin resistant mutants of foot-and-mouth disease virus (FMDV)

    Science.gov (United States)

    Foot-and-mouth disease virus (FMDV) initiates infection in vitro via recognition of at least four cell-surface integrin molecules avb1, avb3, avb6 or avb8 through the interaction of a highly conserved Arg-Gly-Asp (RGD) amino acid sequence motif located in the GH loop of VP1. In this work, soluble i...

  15. Dual Effects of β3 Integrin Subunit Expression on Human Pancreatic Cancer Models

    Directory of Open Access Journals (Sweden)

    S. Marchán

    2010-01-01

    Full Text Available Background: Pancreatic cancer, the fifth leading cause of adult cancer death in Western countries, lacks early detection, and displays significant dissemination ability. Accumulating evidence shows that integrin-mediated cell attachment to the extracellular matrix induces phenotypes and signaling pathways that regulate tumor cell growth and migration.

  16. ADAM12-mediated focal adhesion formation is differently regulated by beta1 and beta3 integrins

    DEFF Research Database (Denmark)

    Thodeti, Charles Kumar; Frohlich, Camilla; Nielsen, Christian Kamp;

    2005-01-01

    ADAM12, adisintegrin and metalloprotease, has been demonstrated to be upregulated in human malignant tumors and to accelerate the malignant phenotype in a mouse model for breast cancer. ADAM12 is a substrate for beta1 integrins and may affect tumor and stromal cell behavior through its binding to...

  17. A computational analysis of the dynamic roles of talin, Dok1, and PIPKI for integrin activation.

    Directory of Open Access Journals (Sweden)

    Florian Geier

    Full Text Available Integrin signaling regulates cell migration and plays a pivotal role in developmental processes and cancer metastasis. Integrin signaling has been studied extensively and much data is available on pathway components and interactions. Yet the data is fragmented and an integrated model is missing. We use a rule-based modeling approach to integrate available data and test biological hypotheses regarding the role of talin, Dok1 and PIPKI in integrin activation. The detailed biochemical characterization of integrin signaling provides us with measured values for most of the kinetics parameters. However, measurements are not fully accurate and the cellular concentrations of signaling proteins are largely unknown and expected to vary substantially across different cellular conditions. By sampling model behaviors over the physiologically realistic parameter range we find that the model exhibits only two different qualitative behaviors and these depend mainly on the relative protein concentrations, which offers a powerful point of control to the cell. Our study highlights the necessity to characterize model behavior not for a single parameter optimum, but to identify parameter sets that characterize different signaling modes.

  18. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen

    DEFF Research Database (Denmark)

    Nieswandt, B; Brakebusch, C; Bergmeier, W;

    2001-01-01

    subsequent interactions with the activating platelet collagen receptor, glycoprotein VI (GPVI). Here we show that Cre/loxP-mediated loss of beta1 integrin on platelets has no significant effect on the bleeding time in mice. Aggregation of beta1-null platelets to native fibrillar collagen is delayed...

  19. Ancient origin of the integrin-mediated adhesion and signaling machinery.

    Science.gov (United States)

    Sebé-Pedrós, Arnau; Roger, Andrew J; Lang, Franz B; King, Nicole; Ruiz-Trillo, Iñaki

    2010-06-01

    The evolution of animals (metazoans) from their unicellular ancestors required the emergence of novel mechanisms for cell adhesion and cell-cell communication. One of the most important cell adhesion mechanisms for metazoan development is integrin-mediated adhesion and signaling. The integrin adhesion complex mediates critical interactions between cells and the extracellular matrix, modulating several aspects of cell physiology. To date this machinery has been considered strictly metazoan specific. Here we report the results of a comparative genomic analysis of the integrin adhesion machinery, using genomic data from several unicellular relatives of Metazoa and Fungi. Unexpectedly, we found that core components of the integrin adhesion complex are encoded in the genome of the apusozoan protist Amastigomonas sp., and therefore their origins predate the divergence of Opisthokonta, the clade that includes metazoans and fungi. Furthermore, our analyses suggest that key components of this apparatus have been lost independently in fungi and choanoflagellates. Our data highlight the fact that many of the key genes that had formerly been cited as crucial for metazoan origins have a much earlier origin. This underscores the importance of gene cooption in the unicellular-to-multicellular transition that led to the emergence of the Metazoa.

  20. Syndecans promote integrin-mediated adhesion of mesenchymal cells in two distinct pathways

    DEFF Research Database (Denmark)

    Whiteford, James; Behrends, Volker; Kirby, Hishani;

    2007-01-01

    to form focal adhesions in response to fibronectin. Consistent with actin cytoskeleton organization, the process required Rho-GTP and Rho kinase. While syndecan-2 and -4 ectodomains could both promote integrin-mediated adhesion, their pathways were distinct, as shown by competition assays. Evidence...

  1. beta1 integrins are not required for the maintenance of lymphocytes within intestinal epithelia

    DEFF Research Database (Denmark)

    Marsal, Jan; Brakebusch, Cord; Bungartz, Gerd;

    2005-01-01

    beta(1) integrins are thought to play a central role in maintaining lymphocytes within mucosal epithelia via their interactions with extracellular matrix proteins and subepithelial cellular components within and underlying the basement membrane. In the current study type a (CD8alphabeta...

  2. Transmembrane and Juxtamembrane Structure of αL Integrin in Bicelles.

    Directory of Open Access Journals (Sweden)

    Wahyu Surya

    Full Text Available The accepted model for the interaction of α and β integrins in the transmembrane (TM domain is based on the pair αIIbβ3. This involves the so-called outer and inner membrane association clasps (OMC and IMC, respectively. In the α chain, the OMC involves a GxxxG-like motif, whereas in the IMC a conserved juxtamembrane GFFKR motif experiences a backbone reversal that partially fills the void generated by TM separation towards the cytoplasmic half. However, the GFFKR motif of several α integrin cytoplasmic tails in non-bicelle environments has been shown to adopt an α-helical structure that is not membrane-embedded and which was shown to bind a variety of cytoplasmic proteins. Thus it is not known if a membrane-embedded backbone reversal is a conserved structural feature in α integrins. We have studied the system αLβ2 because of its importance in leukocytes, where integrin deactivation is particularly important. Herein we show that the backbone reversal feature is not only present in αIIb but also in αL-TM when reconstituted in bicelles. Additionally, titration with β2 TM showed eight residues clustering along one side of αL-TM, forming a plausible interacting face with β2. The latter orientation is consistent with a previously predicted reported polar interaction between αL Ser-1071 and β2 Thr-686.

  3. Transmembrane and Juxtamembrane Structure of αL Integrin in Bicelles.

    Science.gov (United States)

    Surya, Wahyu; Li, Yan; Millet, Oscar; Diercks, Tammo; Torres, Jaume

    2013-01-01

    The accepted model for the interaction of α and β integrins in the transmembrane (TM) domain is based on the pair αIIbβ3. This involves the so-called outer and inner membrane association clasps (OMC and IMC, respectively). In the α chain, the OMC involves a GxxxG-like motif, whereas in the IMC a conserved juxtamembrane GFFKR motif experiences a backbone reversal that partially fills the void generated by TM separation towards the cytoplasmic half. However, the GFFKR motif of several α integrin cytoplasmic tails in non-bicelle environments has been shown to adopt an α-helical structure that is not membrane-embedded and which was shown to bind a variety of cytoplasmic proteins. Thus it is not known if a membrane-embedded backbone reversal is a conserved structural feature in α integrins. We have studied the system αLβ2 because of its importance in leukocytes, where integrin deactivation is particularly important. Herein we show that the backbone reversal feature is not only present in αIIb but also in αL-TM when reconstituted in bicelles. Additionally, titration with β2 TM showed eight residues clustering along one side of αL-TM, forming a plausible interacting face with β2. The latter orientation is consistent with a previously predicted reported polar interaction between αL Ser-1071 and β2 Thr-686.

  4. Adhesive F-actin waves: a novel integrin-mediated adhesion complex coupled to ventral actin polymerization.

    Directory of Open Access Journals (Sweden)

    Lindsay B Case

    Full Text Available At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in "ventral F-actin waves" that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These "adhesive F-actin waves" require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization.

  5. Polyvalent integrin antagonist-decorated superparamagnetic iron oxide nanoparticles for triggering apoptosis in human leukemia cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Say, R Latin-Small-Letter-Dotless-I dvan, E-mail: rsay@anadolu.edu.tr [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey); Yazar, Suzan [Sanovel Pharmaceutical Company (Turkey); Ugur, Alper; Huer, Deniz [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry (Turkey); Ersoez, Arzu [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey)

    2013-01-15

    Integrin family members are the main mediators of cell adhesion to the extracellular matrix and active as intra- and extracellular signaling molecules in a variety of processes. They bind to their ligands by interacting with short amino acid sequences, that is, RGD (arginine-glycine-aspartic acid) sequence. RGD sequences have been used to enhance cell binding to artificial surfaces, so RGD mimics have been used to block integrin binding to its ligand. Integrin-ligand interactions are dependent on divalent cations, and Mg{sup 2+} provide higher-affinity binding to ligand for many integrins. In this study, we have designed new integrin antagonists using methacryloyl amidoaspartic acid (MAASP) monomer-conjugated silanized super paramagnetic iron oxide nanoparticles (SPIONs, the size of the nanoparticles was verified with an average size of 32.6 nm) and poly(MAASP-co-EDMA) shell-decorated silanized SPIONs. Several mechanisms have been proposed to describe uptake of modified SPIONs into the cells, including receptor-mediated endocytosis. Our aim is to bind these modified SPIONs to the integrin-mediated aspartic acid ends of MAASP monomers and block integrin binding to their ligand.

  6. An essential requirement for β1 integrin in the assembly of extracellular matrix proteins within the vascular wall.

    Science.gov (United States)

    Turlo, Kirsten A; Noel, Onika D V; Vora, Roshni; LaRussa, Marie; Fassler, Reinhard; Hall-Glenn, Faith; Iruela-Arispe, M Luisa

    2012-05-01

    β1 integrin has been shown to contribute to vascular smooth muscle cell differentiation, adhesion and mechanosensation in vitro. Here we showed that deletion of β1 integrin at the onset of smooth muscle differentiation resulted in interrupted aortic arch, aneurysms and failure to assemble extracellular matrix proteins. These defects result in lethality prior to birth. Our data indicates that β1 integrin is not required for the acquisition, but it is essential for the maintenance of the smooth muscle cell phenotype, as levels of critical smooth muscle proteins are gradually reduced in mutant mice. Furthermore, while deposition of extracellular matrix was not affected, its structure was disrupted. Interestingly, defects in extracellular matrix and vascular wall assembly, were restricted to the aortic arch and its branches, compromising the brachiocephalic and carotid arteries and to the exclusion of the descending aorta. Additional analysis of β1 integrin in the pharyngeal arch smooth muscle progenitors was performed using wnt1Cre. Neural crest cells deleted for β1 integrin were able to migrate to the pharyngeal arches and associate with endothelial lined arteries; but exhibited vascular remodeling defects and early lethality. This work demonstrates that β1 integrin is dispensable for migration and initiation of the smooth muscle differentiation program, however, it is essential for remodeling of the pharyngeal arch arteries and for the assembly of the vessel wall of their derivatives. It further establishes a critical role of β1 integrin in the protection against aneurysms that is particularly confined to the ascending aorta and its branches.

  7. Cellular recognition and macropinocytosis-like internalization of nanoparticles targeted to integrin α2β1

    Science.gov (United States)

    Kankaanpää, P.; Tiitta, S.; Bergman, L.; Puranen, A.-B.; von Haartman, E.; Lindén, M.; Heino, J.

    2015-10-01

    Targeting nanoparticles to desired intracellular compartments is a major challenge. Integrin-type adhesion receptors are connected to different endocytosis routes in a receptor-specific manner. According to our previous observations, the internalization of an α2β1-integrin-echovirus-1 complex takes place via a macropinocytosis-like mechanism, suggesting that the receptor could be used to target nanoparticles to this specific entry route. Here, silica-based nanoparticles, carrying monoclonal antibodies against the α2β1 integrin as address labels, were synthesized. Studies with flow cytometry, atomic force microscopy and confocal microscopy showed the particles to attach to the cell surface via the α2β1 integrin. Furthermore, quantitative analysis of nanoparticle trafficking inside the cell performed with the BioImageXD software indicated that the particles enter cells via a macropinocytosis-like process and end up in caveolin-1 positive structures. Thus, we suggest that different integrins can guide particles to distinct endocytosis routes and, subsequently, also to specific intracellular compartments. In addition, we show that with the BioImageXD software it is possible to conduct sensitive and complex analyses of the behavior of small fluorescent particles inside cells, using basic confocal microscopy images.Targeting nanoparticles to desired intracellular compartments is a major challenge. Integrin-type adhesion receptors are connected to different endocytosis routes in a receptor-specific manner. According to our previous observations, the internalization of an α2β1-integrin-echovirus-1 complex takes place via a macropinocytosis-like mechanism, suggesting that the receptor could be used to target nanoparticles to this specific entry route. Here, silica-based nanoparticles, carrying monoclonal antibodies against the α2β1 integrin as address labels, were synthesized. Studies with flow cytometry, atomic force microscopy and confocal microscopy showed the

  8. Investigation of integrin expression on the surface of osteoblast-like cells by atomic force microscopy

    International Nuclear Information System (INIS)

    The transforming growth factor β1 (TGF-β1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-β1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane. AFM probes have been covalently functionalised with monoclonal antibodies specific to the β1 integrin subunit. Force curves have been collected in order to obtain maps of the interaction between the immobilized antibody and the respective cell membrane receptors. Adhesion peaks have been automatically detected by means of an ad hoc developed data analysis software. The specificity of the detected interactions has been assessed by adding free antibody in the solution and monitoring the dramatic decrease in the recorded interactions. In addition, the effect of TGF-β1 treatment on both the fluorescence signal and the adhesion events has been tested. The level of expression of the β1 integrin subunit was enhanced by TGF-β1. As a further analysis, the adhesion force of the single living cells to the substrate was measured by laterally pushing the cell with the AFM tip and measuring the force necessary to displace it. The treatment with TGF-β1 resulted in a decrease of the cell/substrate adhesion force. Results obtained by AFM have been validated by confocal laser scanning microscopy thus demonstrating the high potential of the AFM technique for the investigation of cell surface receptors distribution and trafficking at the nanoscale.

  9. Crosstalk between EGFR and integrin affects invasion and proliferation of gastric cancer cell line, SGC7901

    Directory of Open Access Journals (Sweden)

    Dan L

    2012-10-01

    Full Text Available Li Dan,1,* Ding Jian,2,* Lin Na,1 Wang Xiaozhong,1 1Digestive Department, the Union Hospital of Fujian Medical University, Fujian, People’s Republic of China; 2Digestive Department, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China*These authors contributed equally to this workBackground/objective: To investigate the crosstalk between epidermal growth factor receptor (EGFR and integrin-mediated signal transduction pathways in human gastric adenocarcinoma cells.Methods: EGF was used as a ligand of EGFR to stimulate the gastric adenocarcinoma cell, SGC7901. Signal molecules downstream of the integrin, FAK(Y397 and p130cas(Y410 phosphorylation, were measured by immunoprecipitation and western blot. Fibronectin (Fn was used as a ligand of integrin to stimulate the same cell line. Signal molecules downstream of EGFR and extracellular signal-regulated kinase (ERK general phosphorylation were also measured. Focal adhesion kinase (FAK small-interfering RNA was designed and transfected into SGC7901 cells to decrease the expression of FAK. Modified Boyden chambers and MTT assay were used to examine the effect of FAK inhibition on the invasiveness and proliferation of SGC7901.Results: EGF activated FAK(Y397 and p130cas(Y410 phosphorylation, while Fn activated ERK general phosphorylation. Inhibition of FAK expression decreased p130cas(Y410 phosphorylation activated by EGF and ERK general phosphorylation activated by Fn, also decreased the invasiveness and proliferation of SGC7901 cells activated by EGF or Fn.Conclusion: There is crosstalk between EGFR and integrin signal transduction. FAK may be a key cross point of the two signal pathways and acts as a potential target for human gastric cancer therapy.Keywords: gastric adenocarcinoma, epidermal growth factor receptor, integrin, focal adhesion kinase, crosstalk

  10. Absence of αvβ6 Integrin Is Linked to Initiation and Progression of Periodontal Disease

    OpenAIRE

    Ghannad, Farzin; Nica, Daniela; Garcia Fulle, Maria I.; Grenier, Daniel; Putnins, Edward E.; Johnston, Sarah; Eslami, Ameneh; Koivisto, Leeni; Jiang, Guoqiao; McKee, Marc D.; HÄKKINEN, LARI; Larjava, Hannu

    2008-01-01

    Integrin αvβ6 is generally not expressed in adult epithelia but is induced in wound healing, cancer, and certain fibrotic disorders. Despite this generalized absence, we observed that αvβ6 integrin is constitutively expressed in the healthy junctional epithelium linking the gingiva to tooth enamel. Moreover, expression of αvβ6 integrin was down-regulated in human periodontal disease, a common medical condition causing tooth loss and also contributing to the development of cardiovascular disea...

  11. Mouse-induced pluripotent stem cells differentiate into odontoblast-like cells with induction of altered adhesive and migratory phenotype of integrin.

    Directory of Open Access Journals (Sweden)

    Nobuaki Ozeki

    Full Text Available Methods for differentiating induced pluripotent stem (iPS cells into odontoblasts generally require epithelial-mesenchymal interactions. Here, we sought to characterize the cells produced by a 'hanging drop' technique for differentiating mouse iPS cells into odontoblast-like cells that requires no such interaction. Cells were cultured by the hanging drop method on a collagen type-I (Col-I scaffold (CS combined with bone morphogenetic protein (BMP-4 (CS/BMP-4 without an epithelial-mesenchymal interaction. We evaluated the expression of odontoblast-related mRNA and protein, and the proliferation rate of these cells using reverse-transcription polymerase chain reaction, immunofluorescence staining, and BrdU cell proliferation enzyme-linked immunosorbent assay, respectively. The differentiated cells strongly expressed the mRNA for dentin sialophosphoprotein (DSPP and dentin matrix protein-1 (Dmp-1, which are markers of mature odontoblasts. Osteopontin and osteocalcin were not expressed in the differentiated cells, demonstrating that the differentiated iPS cells bore little resemblance to osteoblasts. Instead, they acquired odontoblast-specific properties, including the adoption of an odontoblastic phenotype, typified by high alkaline phosphatase (ALP activity and calcification capacity. The cell-surface expression of proteins such as integrins α2, α6, αV and αVβ3 was rapidly up-regulated. Interestingly, antibodies and siRNAs against integrin α2 suppressed the expression of DSPP and Dmp-1, reduced the activity of ALP and blocked calcification, suggesting that integrin α2 in iPS cells mediates their differentiation into odontoblast-like cells. The adhesion of these cells to fibronectin and Col-I, and their migration on these substrata, was significantly increased following differentiation into odontoblast-like cells. Thus, we have demonstrated that integrin α2 is involved in the differentiation of mouse iPS cells into odontoblast-like cells

  12. The EDA-containing cellular fibronectin induces epithelial-mesenchymal transition in lung cancer cells through integrin α9β1-mediated activation of PI3-K/AKT and Erk1/2.

    Science.gov (United States)

    Sun, Xiaojuan; Fa, Pingping; Cui, Zhiwen; Xia, Ye; Sun, Liang; Li, Zesong; Tang, Aifa; Gui, Yaoting; Cai, Zhiming

    2014-01-01

    Cellular fibronectin (cFN) is one of the main components of tissue extracellular matrices and is involved in multiple physiologic and pathologic processes such as embryogenesis, wound healing, inflammation and tumor progression. The function of fibronectin in regulating normal cell adhesion and migration is well documented, but its function in cancer progression is only partially unraveled. We have reported previously that fibronectin stimulates the proliferation and survival of non-small lung carcinoma cells through upregulation of pro-oncogenic signals related to cyclooxygenase-2/phosphatidylinositol-3-kinase/protein kinase B (COX-2/PI3-K/AKT)/mammalian target of rapamycin triggered by activation of the integrin α5β1. Here, we extend these studies by showing that fibronectin promotes epithelial-mesenchymal transition (EMT) in lung cancer cells. We found that cFN, but not plasma fibronectin or type 1 collagen, induces lung carcinoma cell scattering in vitro, promotes cell migration and invasion of Matrigel and stimulates the expression of the mesenchymal marker α-smooth muscle actin while decreasing the expression of the epithelial marker E-cadherin through PI3-K and Erk pathways. Interestingly, the extra domain A (EDA) within cFN was found to be crucial for this process, as confirmed by testing cells overexpressing EDA or cells exposed to EDA-containing matrices. We found that the integrin α9, but not α5, mediated cFN-induced EMT as silencing integrin α9 neutralized cFN-induced EMT. Overall, our findings show that the EDA domain within cFN induces EMT in lung carcinoma cells through integrin α9-mediated activation of PI3-K and Erk. PMID:23929437

  13. Folate Receptor β Regulates Integrin CD11b/CD18 Adhesion of a Macrophage Subset to Collagen.

    Science.gov (United States)

    Machacek, Christian; Supper, Verena; Leksa, Vladimir; Mitulovic, Goran; Spittler, Andreas; Drbal, Karel; Suchanek, Miloslav; Ohradanova-Repic, Anna; Stockinger, Hannes

    2016-09-15

    Folate, also known as vitamin B9, is necessary for essential cellular functions such as DNA synthesis, repair, and methylation. It is supplied to the cell via several transporters and receptors, including folate receptor (FR) β, a GPI-anchored protein belonging to the folate receptor family. As FRβ shows a restricted expression to cells of myeloid origin and only a subset of activated macrophages and placental cells have been shown to express functional FRβ, it represents a promising target for future therapeutic strategies. In this study, we performed affinity purification and mass spectrometric analysis of the protein microenvironment of FRβ in the plasma membrane of human FRβ(+) macrophages and FRβ-transduced monocytic THP-1 cells. In this manner, we identified a novel role of FRβ: that is, we report functional interactions of FRβ with receptors mediating cellular adhesion, in particular the CD11b/CD18 β2 integrin heterodimer complement receptor type 3/Mac-1. This interaction results in impeded adhesion of FRβ(+) human primary macrophages and THP-1 cells to collagen in comparison with their FRβ(-) counterparts. We further show that FRβ is only expressed by human macrophages when differentiated with M-CSF. These findings thus identify FRβ as a novel CD11b/CD18 regulator for trafficking and homing of a subset of macrophages on collagen. PMID:27534550

  14. Kruppel-like factor-9 (KLF9) inhibits glioblastoma stemness through global transcription repression and integrin α6 inhibition.

    Science.gov (United States)

    Ying, Mingyao; Tilghman, Jessica; Wei, Yingying; Guerrero-Cazares, Hugo; Quinones-Hinojosa, Alfredo; Ji, Hongkai; Laterra, John

    2014-11-21

    It is increasingly important to understand the molecular basis for the plasticity of neoplastic cells and their capacity to transition between differentiated and stemlike phenotypes. Kruppel-like factor-9 (KLF9), a member of the large KLF transcription factor family, has emerged as a regulator of oncogenesis, cell differentiation, and neural development; however, the molecular basis for the diverse contextual functions of KLF9 remains unclear. This study focused on the functions of KLF9 in human glioblastoma stemlike cells. We established for the first time a genome-wide map of KLF9-regulated targets in human glioblastoma stemlike cells and show that KLF9 functions as a transcriptional repressor and thereby regulates multiple signaling pathways involved in oncogenesis and stem cell regulation. A detailed analysis of one such pathway, integrin signaling, showed that the capacity of KLF9 to inhibit glioblastoma cell stemness and tumorigenicity requires ITGA6 repression. These findings enhance our understanding of the transcriptional networks underlying cancer cell stemness and differentiation and identify KLF9-regulated molecular targets applicable to cancer therapeutics.

  15. Clustered Integrin Ligands as a Novel Approach for the Targeting of Non-Viral Vectors

    Science.gov (United States)

    Ng, Quinn Kwan Tai

    Gene transfer or gene delivery is described as the process in which foreign DNA is introduced into cells. Over the years, gene delivery has gained the attention of many researchers and has been developed as powerful tools for use in biotechnology and medicine. With the completion of the Human Genome Project, such advances in technology allowed for the identification of diseases ranging from hereditary disorders to acquired ones (cancer) which were thought to be incurable. Gene therapy provides the means necessary to treat or eliminate genetic diseases from its origin, unlike traditional medicine which only treat symptoms. With ongoing clinical trials for gene therapy increasing, the greatest difficulty still lies in developing safe systems which can target cells of interest to provide efficient delivery. Nature, over millions of years of evolution, has provided an example of one of the most efficient delivery systems: viruses. Although the use of viruses for gene delivery has been well studied, the safety issues involving immunogenicity, insertional mutagenesis, high cost, and poor reproducibility has provided problems for their clinical application. From understanding viruses, we gain insight to designing new systems for non-viral gene delivery. One of these techniques utilized by adenoviruses is the clustering of ligands on its surface through the use of a protein called a penton base. Through the use of nanotechnology we can mimic this basic concept in non-viral gene delivery systems. This dissertation research is focused on developing and applying a novel system for displaying the integrin binding ligand (RGD) in a constrained manner to form a clustered integrin ligand binding platform to be used to enhance the targeting and efficiency of non-viral gene delivery vectors. Peptide mixed monolayer protected gold nanoparticles provides a suitable surface for ligand clustering. A relationship between the peptide ratios in the reaction solution used to form these

  16. Dynamic expression of alpha 1 beta 1 and alpha 2 beta 1 integrin receptors by human vascular smooth muscle cells. Alpha 2 beta 1 integrin is required for chemotaxis across type I collagen-coated membranes.

    OpenAIRE

    Skinner, M P; Raines, E W; Ross, R.

    1994-01-01

    Vascular smooth muscle cells (SMCs) in the media of normal arteries express alpha 1 beta 1 integrin with no detectable alpha 2 beta 1 as determined by immunocytochemistry. In contrast, immunoprecipitation of integrins expressed by human SMCs cultured from medial explants shows strong expression of alpha 2 beta 1 and no expression of alpha 1 beta 1. The apparent reciprocal expression of these two collagen and laminin receptors was confirmed by flow cytometric analysis of fluorescent labeled ce...

  17. Fluvastatin attenuates the down-regulation of β1 integrin expression in PAN-treated podocytes by inhibiting ROS

    Institute of Scientific and Technical Information of China (English)

    刘佳

    2013-01-01

    Objective To investigate the effect of fluvastatin(FLV) on the expression of β1 integrin in puromycin aminonucleoside(PAN)-treated podocytes and its mechanism. Methods Cultured human podocytes were divided into PAN,different concentrations of

  18. PREPARATION AND IDENTIFICATION OF MONOCLONAL ANTIBODIES AGAINST THE EXTRACELLULAR DOMAIN OF INTEGRIN α6 SUBUNIT-THE SPECIFIC LAMININ RECEPTOR

    Institute of Scientific and Technical Information of China (English)

    吕天敬; 张青云; 周柔丽

    2002-01-01

    Objective: To prepare monoclonal antibody (McAb) against the Integrin α6 extracellular domain and identify its biological activities. Methods: Fusion-protein of integrin α6 extracellular domain (GST-IAGED) was expressed in E.coli. JM109 and used for immunizing BALB/C mice. The spleen cells from immunized mice were fused with SP2/0 cells and selectively cultured with HAT medium. ELISA and immunocytochemistry staining were used to select hybridomas. Results: One strain of hybridoma cells that secreted specific monoclonal antibody against integrin α6 extracellular domain was indentified. The immunoglobulin subclass of the McAb was IgG1. Conclusion: The McAb against the extracellular domain of integrin α6 was successfully prepared by using GST-IA6ED fusion protein expressed by E.Coli. And the McAb had positive reaction with human hepatocarcinoma cells-BEL-7402.

  19. The role of alpha 6 integrin in prostate cancer migration and bone pain in a novel xenograft model.

    Directory of Open Access Journals (Sweden)

    Tamara E King

    Full Text Available Of the estimated 565,650 people in the U.S. who will die of cancer in 2008, almost all will have metastasis. Breast, prostate, kidney, thyroid and lung cancers metastasize to the bone. Tumor cells reside within the bone using integrin type cell adhesion receptors and elicit incapacitating bone pain and fractures. In particular, metastatic human prostate tumors express and cleave the integrin A6, a receptor for extracellular matrix components of the bone, i.e., laminin 332 and laminin 511. More than 50% of all prostate cancer patients develop severe bone pain during their remaining lifetime. One major goal is to prevent or delay cancer induced bone pain. We used a novel xenograft mouse model to directly determine if bone pain could be prevented by blocking the known cleavage of the A6 integrin adhesion receptor. Human tumor cells expressing either the wildtype or mutated A6 integrin were placed within the living bone matrix and 21 days later, integrin expression was confirmed by RT-PCR, radiographs were collected and behavioral measurements of spontaneous and evoked pain performed. All animals independent of integrin status had indistinguishable tumor burden and developed bone loss 21 days after surgery. A comparison of animals containing the wild type or mutated integrin revealed that tumor cells expressing the mutated integrin resulted in a dramatic decrease in bone loss, unicortical or bicortical fractures and a decrease in the ability of tumor cells to reach the epiphyseal plate of the bone. Further, tumor cells within the bone expressing the integrin mutation prevented cancer induced spontaneous flinching, tactile allodynia, and movement evoked pain. Preventing A6 integrin cleavage on the prostate tumor cell surface decreased the migration of tumor cells within the bone and the onset and degree of bone pain and fractures. These results suggest that strategies for blocking the cleavage of the adhesion receptors on the tumor cell surface can

  20. Leukocyte integrin αLβ2 headpiece structures: The αI domain, the pocket for the internal ligand, and concerted movements of its loops.

    Science.gov (United States)

    Sen, Mehmet; Springer, Timothy A

    2016-03-15

    High-resolution crystal structures of the headpiece of lymphocyte function-associated antigen-1 (integrin αLβ2) reveal how the αI domain interacts with its platform formed by the α-subunit β-propeller and β-subunit βI domains. The αLβ2 structures compared with αXβ2 structures show that the αI domain, tethered through its N-linker and a disulfide to a stable β-ribbon pillar near the center of the platform, can undergo remarkable pivoting and tilting motions that appear buffered by N-glycan decorations that differ between αL and αX subunits. Rerefined β2 integrin structures reveal details including pyroglutamic acid at the β2 N terminus and bending within the EGF1 domain. Allostery is relayed to the αI domain by an internal ligand that binds to a pocket at the interface between the β-propeller and βI domains. Marked differences between the αL and αX subunit β-propeller domains concentrate near the binding pocket and αI domain interfaces. Remarkably, movement in allostery in the βI domain of specificity determining loop 1 (SDL1) causes concerted movement of SDL2 and thereby tightens the binding pocket for the internal ligand.

  1. Differential regulation of phosphoinositide metabolism by alphaVbeta3 and alphaVbeta5 integrins upon smooth muscle cell migration.

    Science.gov (United States)

    Paulhe, F; Racaud-Sultan, C; Ragab, A; Albiges-Rizo, C; Chap, H; Iberg, N; Morand, O; Perret, B

    2001-11-01

    Smooth muscle cell migration is a key step of atherosclerosis and angiogenesis. We demonstrate that alpha(V)beta(3) and alpha(V)beta(5) integrins synergistically regulate smooth muscle cell migration onto vitronectin. Using an original haptotactic cell migration assay, we measured a strong stimulation of phosphoinositide metabolism in migrating vascular smooth muscle cells. Phosphatidic acid production and phosphoinositide 3-kinase IA activation were triggered only upon alpha(V)beta(3) engagement. Blockade of alpha(V)beta(3) engagement or phospholipase C activity resulted in a strong inhibition of smooth muscle cell spreading on vitronectin. By contrast, blockade of alpha(V)beta(5) reinforced elongation and polarization of cell shape. Moreover, Pyk2-associated tyrosine kinase and phosphoinositide 4-kinase activities measured in Pyk2 immunoprecipitates were stimulated upon cell migration. Blockade of either alpha(V)beta(3) or alpha(V)beta(5) function, as well as inhibition of phospholipase C activity, decreased both Pyk2-associated activities. We demonstrated that the Pyk2-associated phosphoinositide 4-kinase corresponded to the beta isoform. Our data point to the metabolism of phosphoinositides as a regulatory pathway for the differential roles played by alpha(V)beta(3) and alpha(V)beta(5) upon cell migration and identify the Pyk2-associated phosphoinositide 4-kinase beta as a common target for both integrins.

  2. Effect of Thyrotropin on Osteopontin, Integrin αvβ3, and VCAM-1 in the Endothelium via Activation of Akt

    Science.gov (United States)

    Yan, Yumeng; Jiang, Fengwei; Lai, Yaxin; Wang, Haoyu; Liu, Aihua; Wang, Chuyuan; Zhang, Yuanyuan; Teng, Weiping; Shan, Zhongyan

    2016-01-01

    Numerous epidemiological studies have shown that subclinical hypothyroidism (SCH) can impair endothelial function and cause dyslipidemia. Studies have evaluated the effects of thyroid stimulating hormone (TSH) on endothelial cells, but the mechanism underlying the proatherosclerotic effect of increased TSH levels remains unclear. In the present study, SCH rat models were established in thyroidectomized Wistar rats that were given l-T4 daily. The results showed that in vivo, the expression of osteopontin (OPN) vascular cell adhesion molecule (VCAM-1), and levels of integrin αvβ3 in the aortic tissue in SCH and Hypothyroidism (CH) groups was higher than in the control group. However, the effect in the SCH group was higher than in the CH group. In vitro, results showed that different concentration and time gradients of TSH stimulation could increase the expression of OPN, VCAM-1, and integrin αvβ3, and this was accompanied by extracellular signal regulated kinase 1/2 (Erk1/2) and Akt activation in human umbilical vein endothelial cells (HUVECs). TSH induced elevation of these proatherosclerotic factors was partially suppressed by a specific Akt inhibitor but not by a specific Erk inhibitor. Findings suggested that the endothelial dysfunction caused by SCH was related to increased proatherosclerotic factors induced by TSH via Akt activation. PMID:27657042

  3. α6β4 Integrin Genetic Variations (A380T and R1281W) and Breast Cancer Risk in an Argentinian Population

    Science.gov (United States)

    Acosta, Karina Beatriz; Lorenzini Campos, Melina Noelia; Etcheverry, Susana Beatriz; Zapata, Pedro Dario

    2016-01-01

    The α6β4 integrin is composed of the α6 and β4 subunits that are encoded by the ITGα6 and the ITGβ4 genes, respectively. The α6β4 main function is to intervene in lamination and epithelia integrity maintenance by cell-matrix interactions. This integrin appears to have importance in breast cancer malignancy, as well as other epithelial carcinomas. The aim of this work was to investigate the potential role of ITGα6 (A380T) and ITGβ4 (R1281W) genetic variations in breast cancer susceptibility, in a female population from the northeast region of Argentina (Misiones). We performed a case-control study of 85 breast cancer patients and 113 cancer-free controls. Genotyping was performed by RFLP-PCR. For ITGα6 (A380T) single nucleotide polymorphism, a high frequency of heterozygous genotype GA in cases compared to controls was observed, achieving values of 48% and 49%, respectively. No association between the A380T SNP and breast cancer development was found (Odds Ratio = 0.92; 95% Confidence Interval = 0.52–1.63; p = 0.884). In conclusion, we did not find evidence of an association between A380T (ITGα6) and the risk of developing breast cancer. The results represent the first report of these genetic variations in breast cancer; therefore, they are an important contribution to the literature. PMID:27763564

  4. Genetic variation responsible for mouse strain differences in integrin {alpha}{sub 2} expression is associated with altered platelet responses to collagen

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tong-Tong; Larrucea, Susana; Souza, Shiloe; Leal, Suzanne M.; Lopez, Jose A.; Rubin, Edward M.; Nieswandt, Bernhard; Bray, Paul F.

    2003-11-01

    . We and others have previously studied how genetic changes exert quantitative and qualitative alterations in human platelet adhesive receptors. Polymorphisms of both integrin {alpha}{sub 2} and GPIb have been associated with quantitative differences in receptor levels in healthy individuals. The variation of integrin {alpha}{sub 2} in the normal population is 5-fold, and some portion of this variability has been associated with a C/T polymorphism at nucleotide 807. Individuals homozygous for the 807C or 807T alleles have an average 2-fold difference in platelet {alpha}{sub 2} {beta}{sub 1} levels, and this difference has been linked to increased adhesion to collagen and clinical thrombotic events. Comparable alterations in platelet adhesion receptor expression have not been assessed in different mouse strains. Assessing the functional consequences of subtle genetic variations in humans is challenged by numerous gene-gene and gene environment interactions, and studies in mice can greatly minimize these confounding variables. In addition, comparative sequence analyses between species and between nonhuman primates have proved useful for identifying sequences that affect function and expression. Thus, in the case of platelet adhesion receptors, knowing mouse strain differences in expression levels might be valuable for defining the responsible quantitative trait loci as well as affecting strain choice for particular functional experiments.

  5. In situ validation of VEGFR-2 and α v ß 3 integrin as targets for breast lesion characterization.

    Science.gov (United States)

    Ehling, Josef; Misiewicz, Matthias; von Stillfried, Saskia; Möckel, Diana; Bzyl, Jessica; Pochon, Sibylle; Lederle, Wiltrud; Knuechel, Ruth; Lammers, Twan; Palmowski, Moritz; Kiessling, Fabian

    2016-04-01

    Vascular endothelial growth factor receptor 2 (VEGFR-2) and α v ß 3 integrin are the most frequently addressed targets in molecular imaging of tumor angiogenesis. In preclinical studies, molecular imaging of angiogenesis has shown potential to detect and differentiate benign and malignant lesions of the breast. Thus, in this retrospective clinical study employing patient tissues, the diagnostic value of VEGFR-2, α v ß 3 integrin and vascular area fraction for the diagnosis and differentiation of breast neoplasia was evaluated. To this end, tissue sections of breast cancer (n = 40), pre-invasive ductal carcinoma in situ (DCIS; n = 8), fibroadenoma (n = 40), radial scar (n = 6) and normal breast tissue (n = 40) were used to quantify (1) endothelial VEGFR-2, (2) endothelial α v ß 3 integrin and (3) total α v ß 3 integrin expression, as well as (4) the vascular area fraction. Sensitivity and specificity to differentiate benign from malignant lesions were calculated for each marker by receiver operating characteristics (ROC) analyses. Whereas vessel density, as commonly used, did not significantly differ between benign and malignant lesions (AUROC: 0.54), VEGFR-2 and α v ß 3 integrin levels were gradually up-regulated in carcinoma versus fibroadenoma versus healthy tissue. The highest diagnostic accuracy for differentiating carcinoma from fibroadenoma was found for total α v ß 3 integrin expression (AUROC: 0.76), followed by VEGFR-2 (AUROC: 0.71) and endothelial α v ß 3 integrin expression (AUROC: 0.68). In conclusion, total α v ß 3 integrin expression is the best discriminator between breast cancer, fibroadenoma and normal breast tissue. With respect to vascular targeting and molecular imaging of angiogenesis, endothelial VEGFR-2 appeared to be slightly superior to endothelial α v ß 3 for differentiating benign from cancerous lesions. PMID:26902100

  6. A predominant role of integrin alpha 4 in the spontaneous development of autoimmune diabetes in nonobese diabetic mice.

    OpenAIRE

    Yang, X D; Michie, S A; Tisch, R; Karin, N; Steinman, L; McDevitt, H O

    1994-01-01

    To elucidate the role of cell adhesion molecules in the pathogenesis of insulin-dependent diabetes mellitus and to determine the predominant lymphocytic homing pathway(s) involved in the selective lymphocytic infiltration of pancreatic islets (insulitis), nonobese diabetic mice were treated with monoclonal antibodies specific for the L-selectin and integrin alpha 4 lymphocyte adhesion molecules. Treatment of neonatal mice with either anti-L-selectin or anti-integrin alpha 4 monoclonal antibod...

  7. Regulation of Adherence and Virulence by the Entamoeba histolytica Lectin Cytoplasmic Domain, Which Contains a β2 Integrin Motif

    OpenAIRE

    Vines, Richard R.; Ramakrishnan, Girija; Rogers, Joshua B.; Lockhart, Lauren A.; Mann, Barbara J.; Petri, William A.

    1998-01-01

    Killing of human cells by the parasite Entamoeba histolytica requires adherence via an amebic cell surface lectin. Lectin activity in the parasite is regulated by inside-out signaling. The lectin cytoplasmic domain has sequence identity with a region of the β2 integrin cytoplasmic tail implicated in regulation of integrin-mediated adhesion. Intracellular expression of a fusion protein containing the cytoplasmic domain of the lectin has a dominant negative effect on extracellular lectin-mediat...

  8. Integrin-mediated transactivation of P2X7R via hemichannel-dependent ATP release stimulates astrocyte migration.

    Science.gov (United States)

    Alvarez, Alvaro; Lagos-Cabré, Raúl; Kong, Milene; Cárdenas, Areli; Burgos-Bravo, Francesca; Schneider, Pascal; Quest, Andrew F G; Leyton, Lisette

    2016-09-01

    Our previous reports indicate that ligand-induced αVβ3 integrin and Syndecan-4 engagement increases focal adhesion formation and migration of astrocytes. Additionally, ligated integrins trigger ATP release through unknown mechanisms, activating P2X7 receptors (P2X7R), and the uptake of Ca(2+) to promote cell adhesion. However, whether the activation of P2X7R and ATP release are required for astrocyte migration and whether αVβ3 integrin and Syndecan-4 receptors communicate with P2X7R via ATP remains unknown. Here, cells were stimulated with Thy-1, a reported αVβ3 integrin and Syndecan-4 ligand. Results obtained indicate that ATP was released by Thy-1 upon integrin engagement and required the participation of phosphatidylinositol-3-kinase (PI3K), phospholipase-C gamma (PLCγ) and inositol trisphosphate (IP3) receptors (IP3R). IP3R activation leads to increased intracellular Ca(2+), hemichannel (Connexin-43 and Pannexin-1) opening, and ATP release. Moreover, silencing of the P2X7R or addition of hemichannel blockers precluded Thy-1-induced astrocyte migration. Finally, Thy-1 lacking the integrin-binding site did not stimulate ATP release, whereas Thy-1 mutated in the Syndecan-4-binding domain increased ATP release, albeit to a lesser extent and with delayed kinetics compared to wild-type Thy-1. Thus, hemichannels activated downstream of an αVβ3 integrin-PI3K-PLCγ-IP3R pathway are responsible for Thy-1-induced, hemichannel-mediated and Syndecan-4-modulated ATP release that transactivates P2X7Rs to induce Ca(2+) entry. These findings uncover a hitherto unrecognized role for hemichannels in the regulation of astrocyte migration via P2X7R transactivation induced by integrin-mediated ATP release. PMID:27235833

  9. In situ validation of VEGFR-2 and α v ß 3 integrin as targets for breast lesion characterization.

    Science.gov (United States)

    Ehling, Josef; Misiewicz, Matthias; von Stillfried, Saskia; Möckel, Diana; Bzyl, Jessica; Pochon, Sibylle; Lederle, Wiltrud; Knuechel, Ruth; Lammers, Twan; Palmowski, Moritz; Kiessling, Fabian

    2016-04-01

    Vascular endothelial growth factor receptor 2 (VEGFR-2) and α v ß 3 integrin are the most frequently addressed targets in molecular imaging of tumor angiogenesis. In preclinical studies, molecular imaging of angiogenesis has shown potential to detect and differentiate benign and malignant lesions of the breast. Thus, in this retrospective clinical study employing patient tissues, the diagnostic value of VEGFR-2, α v ß 3 integrin and vascular area fraction for the diagnosis and differentiation of breast neoplasia was evaluated. To this end, tissue sections of breast cancer (n = 40), pre-invasive ductal carcinoma in situ (DCIS; n = 8), fibroadenoma (n = 40), radial scar (n = 6) and normal breast tissue (n = 40) were used to quantify (1) endothelial VEGFR-2, (2) endothelial α v ß 3 integrin and (3) total α v ß 3 integrin expression, as well as (4) the vascular area fraction. Sensitivity and specificity to differentiate benign from malignant lesions were calculated for each marker by receiver operating characteristics (ROC) analyses. Whereas vessel density, as commonly used, did not significantly differ between benign and malignant lesions (AUROC: 0.54), VEGFR-2 and α v ß 3 integrin levels were gradually up-regulated in carcinoma versus fibroadenoma versus healthy tissue. The highest diagnostic accuracy for differentiating carcinoma from fibroadenoma was found for total α v ß 3 integrin expression (AUROC: 0.76), followed by VEGFR-2 (AUROC: 0.71) and endothelial α v ß 3 integrin expression (AUROC: 0.68). In conclusion, total α v ß 3 integrin expression is the best discriminator between breast cancer, fibroadenoma and normal breast tissue. With respect to vascular targeting and molecular imaging of angiogenesis, endothelial VEGFR-2 appeared to be slightly superior to endothelial α v ß 3 for differentiating benign from cancerous lesions.

  10. Integrin-Specific Mechanoresponses to Compression and Extension Probed by Cylindrical Flat-Ended AFM Tips in Lung Cells

    OpenAIRE

    Irene Acerbi; Tomás Luque; Alícia Giménez; Marta Puig; Noemi Reguart; Ramon Farré; Daniel Navajas; Jordi Alcaraz

    2012-01-01

    Cells from lung and other tissues are subjected to forces of opposing directions that are largely transmitted through integrin-mediated adhesions. How cells respond to force bidirectionality remains ill defined. To address this question, we nanofabricated flat-ended cylindrical Atomic Force Microscopy (AFM) tips with ~1 µm(2) cross-section area. Tips were uncoated or coated with either integrin-specific (RGD) or non-specific (RGE/BSA) molecules, brought into contact with lung epithelial cells...

  11. Atomic basis for the species-specific inhibition of αV integrins by monoclonal antibody 17E6 is revealed by the crystal structure of αVβ3 ectodomain-17E6 Fab complex.

    Science.gov (United States)

    Mahalingam, Bhuvaneshwari; Van Agthoven, Johannes F; Xiong, Jian-Ping; Alonso, José Luis; Adair, Brian D; Rui, Xianliang; Anand, Saurabh; Mehrbod, Mehrdad; Mofrad, Mohammad R K; Burger, Christa; Goodman, Simon L; Arnaout, M Amin

    2014-05-16

    The function-blocking, non-RGD-containing, and primate-specific mouse monoclonal antibody 17E6 binds the αV subfamily of integrins. 17E6 is currently in phase II clinical trials for treating cancer. To elucidate the structural basis of recognition and the molecular mechanism of inhibition, we crystallized αVβ3 ectodomain in complex with the Fab fragment of 17E6. Protein crystals grew in presence of the activating cation Mn(2+). The integrin in the complex and in solution assumed the genuflected conformation. 17E6 Fab bound exclusively to the Propeller domain of the αV subunit. At the core of αV-Fab interface were interactions involving Propeller residues Lys-203 and Gln-145, with the latter accounting for primate specificity. The Propeller residue Asp-150, which normally coordinates Arg of the ligand Arg-Gly-Asp motif, formed contacts with Arg-54 of the Fab that were expected to reduce soluble FN10 binding to cellular αVβ3 complexed with 17E6. This was confirmed in direct binding studies, suggesting that 17E6 is an allosteric inhibitor of αV integrins.

  12. Oscillatory fluid flow elicits changes in morphology, cytoskeleton and integrin-associated molecules in MLO-Y4 cells, but not in MC3T3-E1 cells.

    Science.gov (United States)

    Xu, Huiyun; Zhang, Jian; Wu, Jiawei; Guan, Ying; Weng, Yuanyuan; Shang, Peng

    2012-01-01

    Interstitial fluid flow stress is one of the most important mechanical stimulations of bone cells under physiological conditions. Osteocytes and osteoblasts act as primary mechanosensors within bones, and in vitro are able to respond to fluid shear stress, both morphologically and functionally. However, there is little information about the response of integrin-associated molecules using both osteoblasts and osteocytes. In this study, we investigated the changes in response to 2 hours of oscillatory fluid flow stress in the MLO-Y4 osteocyte-like cell line and the MC3T3-E1 osteoblast-like cell line. MLO-Y4 cells exhibited a significant increase in the expression of integrin-associated molecules, including OPN, CD44, vinculin and integrin αvβ3. However, there was no or limited increase observed in MC3T3-E1 osteoblast-like cells. Cell area and fiber stress formation were also markedly promoted by fluid flow only in MLO-Y4 cells. But the numbers of processes per cell remain unaffected in both cell lines. PMID:23096360

  13. The Interaction of Src Kinase with β3 Integrin Tails: A Potential Therapeutic Target in Thrombosis and Cancer

    Directory of Open Access Journals (Sweden)

    Stephan Huveneers

    2010-01-01

    Full Text Available Activation of Src family kinases is an important event downstream of integrin adhesion signaling in many cell types. A particularly intriguing connection between an integrin and a Src family kinase was first discovered in platelets, where the selective direct interaction of αIIbβ3 integrins with c-Src promotes full kinase activation of c-Src through its local clustering by the cytoplasmic tail of the β3 integrin subunit. The same integrin β3-c-Src interaction not only drives platelet aggregation, but it also promotes the oncogenic potential of c-Src and drives tumor growth by αvβ3-expressing tumor cells, which may explain why increased activity of c-Src and elevated levels of integrin αvβ3 are often found in the same tumor types. Moreover, recent evidence from patient material and in vivo studies strongly indicate that this oncogenic signaling complex, consisting of c-Src and αvβ3, underlies tumor progression of human tumors. Here, we give an overview of the β3-c-Src interaction and its implications for signaling in platelets and tumor cells, and we mention the possibilities for therapeutic intervention that is aimed at disrupting the β3-c-Src interaction for antithrombotic and anticancer purposes.

  14. Human fallopian tube epithelium constitutively expresses integrin endometrial receptivity markers: no evidence for a tubal implantation window.

    Science.gov (United States)

    Brown, J K; Shaw, J L V; Critchley, H O D; Horne, A W

    2012-03-01

    Understanding of ectopic implantation within the Fallopian tube (FT) is limited. In the human uterus, the putative 'window of implantation' in the mid-luteal phase of the menstrual cycle is accompanied by increased endometrial epithelial expression of the integrins α(1)β(1), α(4)β(1) and α(v)β(3) and its ligand osteopontin. Similar cyclical changes in FT integrin expression have been proposed to contribute to ectopic implantation, but supporting data are limited. In the current study, we present quantitative data on human FT transcription and translation of the integrin subunits α(1), α(4), α(V), β(1) and β(3) during the follicular and mid-luteal phases of the menstrual cycle, together with a supporting immuocytochemical analysis of their spatial distribution within the FT, and that of osteopontin. In contrast to previous studies, our data indicate that all five integrin receptivity markers are constitutively transcribed and translated in the FT, with no evidence for changes in their expression or distribution during the window of implantation in the mid-luteal phase of the cycle. Furthermore, we could find no evidence for cyclic redistribution of the integrin α(v)β(3) ligand osteopontin within the FT. Although we do not rule out the involvement of integrin endometrial receptivity markers in the establishment of ectopic pregnancy, our findings do not support their differential expression during a tubal implantation window. PMID:22002573

  15. Participation of integrin α5β1 in the fibronectin-mediated adherence of enteroaggregative Escherichia coli to intestinal cells.

    Science.gov (United States)

    Izquierdo, Mariana; Alvestegui, Alejandra; Nataro, James P; Ruiz-Perez, Fernando; Farfan, Mauricio J

    2014-01-01

    Adherence to the intestinal epithelia is a key feature in enteroaggregative Escherichia coli (EAEC) infection. The aggregative adherence fimbriae (AAFs) are involved in EAEC interaction with receptors at the surface of intestinal cells. We and others have demonstrated that fibronectin is a receptor for AAF/II fimbriae. Considering that the major cellular receptor of fibronectin is integrin α5β1, in this study we evaluated the participation of this receptor in the fibronectin-mediated adherence of EAEC strain 042 to intestinal cells. We found that EAEC strain 042 has the ability to bind directly and indirectly to integrin α5β1; direct binding was not mediated by AAF/II fimbriae and indirect binding was mediated by AAF/II and fibronectin. Coimmunoprecipitation assays confirmed the formation of the complex AafA/fibronectin/integrin α5β1. To evaluate EAEC adherence to intestinal cells, T84 cells were incubated with fibronectin and an antibody that blocks the interaction region of integrin α5β1 to fibronectin, the RGD site. Under these conditions, we found the number of adherent bacteria to epithelial cells significantly reduced. Additionally, fibronectin-mediated adherence of EAEC strain 042 was abolished in HEp-2 cells transfected with integrin α5 shRNA. Altogether, our data support the involvement of integrin α5β1 in the fibronectin-mediated EAEC binding to intestinal cells.

  16. Participation of Integrin α5β1 in the Fibronectin-Mediated Adherence of Enteroaggregative Escherichia coli to Intestinal Cells

    Directory of Open Access Journals (Sweden)

    Mariana Izquierdo

    2014-01-01

    Full Text Available Adherence to the intestinal epithelia is a key feature in enteroaggregative Escherichia coli (EAEC infection. The aggregative adherence fimbriae (AAFs are involved in EAEC interaction with receptors at the surface of intestinal cells. We and others have demonstrated that fibronectin is a receptor for AAF/II fimbriae. Considering that the major cellular receptor of fibronectin is integrin α5β1, in this study we evaluated the participation of this receptor in the fibronectin-mediated adherence of EAEC strain 042 to intestinal cells. We found that EAEC strain 042 has the ability to bind directly and indirectly to integrin α5β1; direct binding was not mediated by AAF/II fimbriae and indirect binding was mediated by AAF/II and fibronectin. Coimmunoprecipitation assays confirmed the formation of the complex AafA/fibronectin/integrin α5β1. To evaluate EAEC adherence to intestinal cells, T84 cells were incubated with fibronectin and an antibody that blocks the interaction region of integrin α5β1 to fibronectin, the RGD site. Under these conditions, we found the number of adherent bacteria to epithelial cells significantly reduced. Additionally, fibronectin-mediated adherence of EAEC strain 042 was abolished in HEp-2 cells transfected with integrin α5 shRNA. Altogether, our data support the involvement of integrin α5β1 in the fibronectin-mediated EAEC binding to intestinal cells.

  17. Transcription factor hlh-2/E/Daughterless drives expression of α integrin ina-1 during DTC migration in C. elegans.

    Science.gov (United States)

    Meighan, Christopher M; Kann, Allison P; Egress, Emily R

    2015-09-01

    Integrins are involved in a vast number of cell behaviors due to their roles in adhesion and signaling. The regulation of integrin expression is of particular interest as a mechanism to drive developmental events and for the role of altered integrin expression profiles in cancer. Dynamic regulation of the expression of integrin receptors is required for the migration of the distal tip cell (DTC) during gonadogenesis in Caenorhabditis elegans. α integrin ina-1 is required for DTC motility, yet is up-regulated by an unknown mechanism. Analysis of the promoter for α integrin ina-1 identified two E-box sequences that are required for ina-1 expression in the DTC. Knockdown of transcription factor hlh-2, an established E-box binding partner and ortholog of E/Daughterless, prevented expression of a transcriptional fusion of the ina-1 promoter to RFP and blocked DTC migration. Similarly, knockdown of hlh-2 also prevented expression of a translational fusion of the genomic ina-1 gene to GFP while blocking DTC migration. Knockdown of HLH-2 binding partner MIG-24 also reduced ina-1 expression and DTC migration. Overall, these results show that the transcription factor hlh-2 is required for up-regulation of ina-1 at the onset of DTC migration.

  18. Expression of focal adhesion kinase and α5 and β1 integrins in carcinomas and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    Jian-Min Su; Lu Gui; Yi-Ping Zhou; Xi-Liang Zha

    2002-01-01

    AIM: To detect the expression pattern of FAK (focaladhesion kinase) and integrin α5 and β1 subunits indifferent kinds of cancerous tissues and to study theircorrelation with clinicopathological data includingtumor type, grade and lymph node status. METHODS:Using an immunohistochemical technique, weexamined the expression of FAK and integrin andsubunits in cancerous and noncancerous tissuesobtained from 75 patients with gastric carcinomas, 21colorectal carcinomas, 16 hepatocellular carcinomas,20 uterocervical carcinomas, and 20 breast carcinomas.RESULTS: The staining of FAK was stronger in cancerousthan in noncancerous areas. Enhanced expression ofFAKwas detected in poor-differentiated carcinoma ofthe stomach and colorectum. Tumors with lymph nodemetastases had more FAK protein than those withoutmetastases. In addition, the deeper the extent of tumorinfiltration, the higher the FAK expression. Theexpression of integrin α5 and β1 subunits was lower incancerous areas than in noncancerous areas, but it washigher in well-differentiated cancerous tissues than inpoor differentiated tissues. The relationship betweenthe expression of integrin α5 and β1 subunits andinfiltration or metastasis was not significant. Cancerous tissues with stronger FAK expression (++ or +++) alsohad a higher expression of integrin α5 and β1 subunitsin the tumor and its unaffected margins.CONCLUSION: FAK is a better marker for carcinogenesisand the progression of cancer than integrin α5 or β1subunit, and it may be not only a transformation-linkedenzyme but also a progression-linked enzyme.

  19. The connection between metal ion affinity and ligand affinity in integrin I domains

    DEFF Research Database (Denmark)

    Vorup-Jensen, Thomas; Waldron, TT; Astrof, N;

    2007-01-01

    Integrins are cell-surface heterodimeric proteins that mediate cell-cell, cell-matrix, and cell-pathogen interactions. Half of the known integrin alpha subunits contain inserted domains (I domains) that coordinate ligand through a metal ion. Although the importance of conformational changes within...... isolated I domains in regulating ligand binding has been reported, the relationship between metal ion binding affinity and ligand binding affinity has not been elucidated. Metal and ligand binding by several I domain mutants that are stabilized in different conformations are investigated using isothermal...... titration calorimetry and surface plasmon resonance studies. This work suggests an inverse relationship between metal ion affinity and ligand binding affinity (i.e. constructs with a high affinity for ligand exhibit a low affinity for metal). This trend is discussed in the context of structural studies...

  20. Induction of matrix metalloproteinase-9 and -2 activity in mouse blastocyst by fibronectin-integrin interaction

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Fibronectin, a major extracellular matrix, plays an important role in embryo implantation by mediating embryo adhesion and outgrowth. In this work, mouse blastocysts produced pro-matrix metalloproteinase-9, pro-matrix metalloproteinase-2 and 64 ku matrix metalloproteinase-2 when they were co-cultured with fibronectin. In contrast, mouse blastocysts did not produce these proteinases without fibronectin. Focal adhesion kinase is a fundamental molecule of integrin signaling pathway and its antisense oligodeoxynucleiotide inhibited blastocyst matrix metalloproteinases expression induced by fibronectin. The results indicated that fibronectin triggered matrix metalloproteinase-9 and -2 expression in mouse blastocyst through its integrin receptors and subsequent signaling pathway, which enhanced the synchronization of blastocyst invasiveness and uterine receptivity and ensured the accuracy of events relative to implantation in timing and spatiality.

  1. Interaction between integrin a Ⅱbβ 3 and synthesized cyclic hexapeptide containing RGD

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The RGD sequence generally exists in the extracellular matrix proteins and can be recognized by many integrin proteins. The binding ability of immobilized biotinylated cyclic hexapeptide [cyclo(-Arg-Gly-Asp-D-Phe-Lys-Gly-)] containing RGD to integrin a ab β3 was tested by the methods of ELISA and SPR. Results showed that a spacer of 1.48-2.2 nm between the peptide and the biotin residue was long enough to send the RGD sequence into the binding center embedded within a Ⅱbβ 3, and the equilibrium dissociation constant was 1.1 μm. The work provides an ideal model system for the research of cell adhesion on solid surfaces.

  2. Loss of β1-integrin from urothelium results in overactive bladder and incontinence in mice: a mechanosensory rather than structural phenotype.

    Science.gov (United States)

    Kanasaki, Keizo; Yu, Weiqun; von Bodungen, Maximilian; Larigakis, John D; Kanasaki, Megumi; Ayala de la Pena, Francisco; Kalluri, Raghu; Hill, Warren G

    2013-05-01

    Bladder urothelium senses and communicates information about bladder fullness. However, the mechanoreceptors that respond to tissue stretch are poorly defined. Integrins are mechanotransducers in other tissues. Therefore, we eliminated β1-integrin selectively in urothelium of mice using Cre-LoxP targeted gene deletion. β1-Integrin localized to basal/intermediate urothelial cells by confocal microscopy. β1-Integrin conditional-knockout (β1-cKO) mice lacking urothelial β1-integrin exhibited down-regulation and mislocalization of α3- and α5-integrins by immunohistochemistry but, surprisingly, had normal morphology, permeability, and transepithelial resistance when compared with Cre-negative littermate controls. β1-cKO mice were incontinent, as judged by random urine leakage on filter paper (4-fold higher spotting, Pbladder overfilling with 80% longer intercontractile intervals (Phyperactivity (3-fold more prevoid contractions, Pbladder due to abnormal mechanotransduction; more broadly, our findings indicate that urothelium itself directly modulates voiding. PMID:23395910

  3. Integrin beta 1 enhances the epithelial-mesenchymal transition in association with gefitinib resistance of non-small cell lung cancer.

    Science.gov (United States)

    Ju, Lixia; Zhou, Caicun

    2013-01-01

    We have previously shown that integrinβ1 associates with gefitinib resistance. As epithelial-mesenchymal transition (EMT) also induces gefitinib resistance in vitro, we wished to determine the relation of them in gefitinib resistance. In this study, we show that integrinβ1 induced epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance in xenograft tumors and gefitinib-resistant NSCLC tumors acquired EMT phenotype. Furthermore, inhibition of integrinβ1 reverses EMT, meanwhile overexpression and activation of integrinβ1 aggravates EMT. Lastly, we further identified that integrinβ1 enhanced EMT via FAK-AKT signaling pathway. These findings highlight a novel relation of integrinβ1 and EMT in EGFR TKI resistant NSCLC. PMID:24440972

  4. Integrin β6 Mediates Phospholipid and Collectin Homeostasis by Activation of Latent TGF-β1

    OpenAIRE

    Koth, Laura L.; Alex, Byron; Hawgood, Samuel; Nead, Michael A.; Sheppard, Dean; Erle, David J.; Morris, David G.

    2007-01-01

    Surfactant lines the alveolar surface and prevents alveolar collapse. Derangements of surfactant cause respiratory failure and interstitial lung diseases. The collectins, surfactant proteins A and D, are also important in innate host defense. However, surfactant regulation in the postnatal lung is poorly understood. We found that the epithelial integrin, αvβ6, regulates surfactant homeostasis in vivo by activating latent transforming growth factor (TGF)-β. Adult mice lacking the β-subunit of ...

  5. beta 1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Catherine C.; Park, Catherine C.; Zhang, Hui J.; Yao, Evelyn S.; Park, Chong J.; Bissell, Mina J.

    2008-06-02

    {beta}1 integrin signaling has been shown to mediate cellular resistance to apoptosis after exposure to ionizing radiation (IR). Other signaling molecules that increase resistance include Akt, which promotes cell survival downstream of {beta}1 integrin signaling. We showed previously that {beta}1 integrin inhibitory antibodies, AIIB2, enhance apoptosis and decrease growth in human breast cancer cells in 3 dimensional laminin-rich extracellular matrix (3D lrECM) cultures and in vivo. Here we asked whether AIIB2 could synergize with IR to modify Akt-mediated IR resistance. We used 3D lrECM cultures to test the optimal combination of AIIB2 with IR treatment of two breast cancer cell lines, MCF-7 and HMT3522-T4-2, as well as T4-2 myr-Akt breast cancer colonies or HMT3522-S-1, which form normal organotypic structures in 3D lrECM. Colonies were assayed for apoptosis and {beta}1 integrin/Akt signaling pathways were evaluated using western blot. In addition, mice bearing MCF-7 xenografts were used to validate the findings in 3D lrECM. We report that AIIB2 increased apoptosis optimally post-IR by down regulating Akt in breast cancer colonies in 3D lrECM. In vivo, addition of AIIB2 after IR significantly enhanced tumor growth inhibition and apoptosis compared to either treatment alone. Remarkably, the degree of tumor growth inhibition using AIIB2 plus 2 Gy radiation was similar to that of 8 Gy alone. We showed previously that AIIB2 had no discernible toxicity in mice; here, its addition allowed for a significant reduction in the IR dose that was necessary to achieve comparable growth inhibition and apoptosis in breast cancer xenografts in vivo.

  6. Phorbol ester modulation of integrin-mediated cell adhesion: a postreceptor event

    OpenAIRE

    1989-01-01

    Chinese hamster ovary (CHO) suspension culture cells adhere readily to substrata coated with extracellular matrix proteins such as fibronectin, vitronectin, or laminin. In the case of fibronectin, it is known that adhesion is mediated by an integrin-type, cell surface fibronectin receptor (FnR). We demonstrate here that treatment of CHO cells with submicromolar concentrations of phorbol ester produces a remarkable increase in the ability of these cells to adhere to fibronectin. Both the rate ...

  7. Dab2IP Regulates Neuronal Positioning, Rap1 Activity and Integrin Signaling in the Developing Cortex.

    Science.gov (United States)

    Qiao, Shuhong; Homayouni, Ramin

    2015-01-01

    Dab2IP (DOC-2/DAB2 interacting protein) is a GTPase-activating protein which is involved in various aspects of brain development in addition to its roles in tumor formation and apoptosis in other systems. In this study, we carefully examined the expression profile of Dab2IP and investigated its physiological role during brain development using a Dab2IP-knockdown (KD) mouse model created by retroviral insertion of a LacZ-encoding gene-trapping cassette. LacZ staining revealed that Dab2IP is expressed in the ventricular zone as well as the cortical plate and the intermediate zone. Immunohistochemical analysis showed that Dab2IP protein is localized in the leading process and proximal cytoplasmic regions of migrating neurons in the intermediate zone. Bromodeoxyuridine birth dating experiments in combination with immunohistochemical analysis using layer-specific markers showed that Dab2IP is important for proper positioning of a subset of layer II-IV neurons in the developing cortex. Notably, neuronal migration was not completely disrupted in the cerebral cortex of Dab2IP-KD mice and disruption of migration was not strictly layer specific. Previously, we found that Dab2IP regulates multipolar transition in cortical neurons. Others have shown that Rap1 regulates the transition from multipolar to bipolar morphology in migrating postmitotic neurons through N-cadherin signaling and somal translocation in the superficial layer of the cortical plate through integrin signaling. Therefore, we examined whether Rap1 and integrin signaling were affected in Dab2IP-KD brains. We found that Dab2IP-KD resulted in higher levels of activated Rap1 and integrin in the developing cortex. Taken together, our results suggest that Dab2IP plays an important role in the migration and positioning of a subpopulation of later-born (layers II-IV) neurons, likely through the regulation of Rap1 and integrin signaling. PMID:25721469

  8. New mechanistic insights of integrin β1 in breast cancer bone colonization

    OpenAIRE

    Thibaudeau, Laure; Taubenberger, Anna V.; Theodoropoulos, Christina; Holzapfel, Boris M.; Ramuz, Olivier; Straub, Melanie; Hutmacher, Dietmar W.

    2014-01-01

    Bone metastasis is a frequent and life-threatening complication of breast cancer. The molecular mechanisms supporting the establishment of breast cancer cells in the skeleton are still not fully understood, which may be attributed to the lack of suitable models that interrogate interactions between human breast cancer cells and the bone microenvironment. Although it is well-known that integrins mediate adhesion of malignant cells to bone extracellular matrix, their role during bone colonizati...

  9. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR attenuates the expression of LPS- and Aβ peptide-induced inflammatory mediators in astroglia

    Directory of Open Access Journals (Sweden)

    Giri Shailendra

    2005-09-01

    Full Text Available Abstract Background Alzheimer's disease (AD pathology shows characteristic 'plaques' rich in amyloid beta (Aβ peptide deposits. Inflammatory process-related proteins such as pro-inflammatory cytokines have been detected in AD brain suggesting that an inflammatory immune reaction also plays a role in the pathogenesis of AD. Glial cells in culture respond to LPS and Aβ stimuli by upregulating the expression of cytokines TNF-α, IL-1β, and IL-6, and also the expression of proinflammatory genes iNOS and COX-2. We have earlier reported that LPS/Aβ stimulation-induced ceramide and ROS generation leads to iNOS expression and nitric oxide production in glial cells. The present study was undertaken to investigate the neuroprotective function of AICAR (a potent activator of AMP-activated protein kinase in blocking the pro-oxidant/proinflammatory responses induced in primary glial cultures treated with LPS and Aβ peptide. Methods To test the anti-inflammatory/anti-oxidant functions of AICAR, we tested its inhibitory potential in blocking the expression of pro-inflammatory cytokines and iNOS, expression of COX-2, generation of ROS, and associated signaling following treatment of glial cells with LPS and Aβ peptide. We also investigated the neuroprotective effects of AICAR against the effects of cytokines and inflammatory mediators (released by the glia, in blocking neurite outgrowth inhibition, and in nerve growth factor-(NGF induced neurite extension by PC-12 cells. Results AICAR blocked LPS/Aβ-induced inflammatory processes by blocking the expression of proinflammatory cytokine, iNOS, COX-2 and MnSOD genes, and by inhibition of ROS generation and depletion of glutathione in astroglial cells. AICAR also inhibited down-stream signaling leading to the regulation of transcriptional factors such as NFκB and C/EBP which are critical for the expression of iNOS, COX-2, MnSOD and cytokines (TNF-α/IL-1β and IL-6. AICAR promoted NGF-induced neurite growth

  10. Integrin αvβ3-Targeted Imaging of Lung Cancer1

    Science.gov (United States)

    Chen, Xiaoyuan; Sievers, Eric; Hou, Yingping; Park, Ryan; Tohme, Michel; Bart, Robert; Bremner, Ross; Bading, James R; Conti, Peter S

    2005-01-01

    Abstract A series of radiolabeled cyclic arginine-glycine-aspartic acid (RGD) peptide ligands for cell adhesion molecule integrin αvβ3-targeted tumor angiogenesis targeting are being developed in our laboratory. In this study, this effort continues by applying a positron emitter 64Cu-labeled PEGylated dimeric RGD peptide radiotracer 64Cu-DOTA-PEG-E[c(RGDyK)]2 for lung cancer imaging. The PEGylated RGD peptide indicated integrin αvβ3 avidity, but the PEGylation reduced the receptor binding affinity of this ligand compared to the unmodified RGD dimer. The radiotracer revealed rapid blood clearance and predominant renal clearance route. The minimum nonspecific activity accumulation in normal lung tissue and heart rendered high-quality orthotopic lung cancer tumor images, enabling clear demarcation of both the primary tumor at the upper lobe of the left lung, as well as metastases in the mediastinum, contralateral lung, and diaphragm. As a comparison, fluorodeoxyglucose (FDG) scans on the same mice were only able to identify the primary tumor, with the metastatic lesions masked by intense cardiac uptake and high lung background. 64Cu-DOTA-PEG-E[c(RGDyK)]2 is an excellent positron emission tomography (PET) tracer for integrin-positive tumor imaging. Further studies to improve the receptor binding affinity of the tracer and subsequently to increase the magnitude of tumor uptake without comprising the favorable in vivo kinetics are currently in progress. PMID:15799827

  11. S-phase delay in human hepatocellular carcinoma cells induced by overexpression of integrin β1

    Institute of Scientific and Technical Information of China (English)

    Yu-Long Liang; Ting-Wen Lei; Heng Wu; Jian-Min Sn; Li-Ying Wang; Qun-Ying Lei; Xi-Liang Zha

    2003-01-01

    AIM:To clarify the mechanisms of integrin overexpression in negatively regulating the cell cycle control of hepatocellular carcinoma cells SMMC-7721.METHODS: The cell cycle pattern was determined by flow cytometry. The mRNA and protein expression levels were assayed by RT-PCR and Western blot, respectively. Stable transfection was performed by Lipofectamine 2000 reagent,and cells were screened by G418.RESULTS: Overexpression of α5β1 or β1 integrin induced S-phase delay in SMMC-7721 cells, and this delay was possibly due to the accumulation of cyclin-dependent kinase inhibitors (CKIs) p21cip1 and p27kip1. The decrease of protein kinase B (PKB) phosphorylation was present in this signaling pathway, but focal adhesion kinase (FAK) was not involved.When phosphorylation of PKB was solely blocked by wortmannin, p27kip1 protein level was increased. Moreover,S-phase delay was recurred when attachment of the parental SMMC-7721 cells was inhibited by the preparation of polyHEME, and this cell cycle pattern was similar to that of β1-7721 or α5β1-7721 cells.CONCLUSION: S-phase delay induced by overexpression of integrin β1 subunit is attributed to the decrease of PKB phosphorylation and subsequent increases of p21cip1 and p27kip1 proteins, and may be involved in the unoccupied α5β1because of lack of its ligands.

  12. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens.

    Science.gov (United States)

    Meliopoulos, Victoria A; Van de Velde, Lee-Ann; Van de Velde, Nicholas C; Karlsson, Erik A; Neale, Geoff; Vogel, Peter; Guy, Cliff; Sharma, Shalini; Duan, Susu; Surman, Sherri L; Jones, Bart G; Johnson, Michael D L; Bosio, Catharine; Jolly, Lisa; Jenkins, R Gisli; Hurwitz, Julia L; Rosch, Jason W; Sheppard, Dean; Thomas, Paul G; Murray, Peter J; Schultz-Cherry, Stacey

    2016-08-01

    The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI) through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO) have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM) and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β). Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.

  13. PRG-1 Regulates Synaptic Plasticity via Intracellular PP2A/β1-Integrin Signaling.

    Science.gov (United States)

    Liu, Xingfeng; Huai, Jisen; Endle, Heiko; Schlüter, Leslie; Fan, Wei; Li, Yunbo; Richers, Sebastian; Yurugi, Hajime; Rajalingam, Krishnaraj; Ji, Haichao; Cheng, Hong; Rister, Benjamin; Horta, Guilherme; Baumgart, Jan; Berger, Hendrik; Laube, Gregor; Schmitt, Ulrich; Schmeisser, Michael J; Boeckers, Tobias M; Tenzer, Stefan; Vlachos, Andreas; Deller, Thomas; Nitsch, Robert; Vogt, Johannes

    2016-08-01

    Alterations in dendritic spine numbers are linked to deficits in learning and memory. While we previously revealed that postsynaptic plasticity-related gene 1 (PRG-1) controls lysophosphatidic acid (LPA) signaling at glutamatergic synapses via presynaptic LPA receptors, we now show that PRG-1 also affects spine density and synaptic plasticity in a cell-autonomous fashion via protein phosphatase 2A (PP2A)/β1-integrin activation. PRG-1 deficiency reduces spine numbers and β1-integrin activation, alters long-term potentiation (LTP), and impairs spatial memory. The intracellular PRG-1 C terminus interacts in an LPA-dependent fashion with PP2A, thus modulating its phosphatase activity at the postsynaptic density. This results in recruitment of adhesome components src, paxillin, and talin to lipid rafts and ultimately in activation of β1-integrins. Consistent with these findings, activation of PP2A with FTY720 rescues defects in spine density and LTP of PRG-1-deficient animals. These results disclose a mechanism by which bioactive lipid signaling via PRG-1 could affect synaptic plasticity and memory formation. PMID:27453502

  14. Transmembrane collagen XVII modulates integrin dependent keratinocyte migration via PI3K/Rac1 signaling.

    Directory of Open Access Journals (Sweden)

    Stefanie Löffek

    Full Text Available The hemidesmosomal transmembrane component collagen XVII (ColXVII plays an important role in the anchorage of the epidermis to the underlying basement membrane. However, this adhesion protein seems to be also involved in the regulation of keratinocyte migration, since its expression in these cells is strongly elevated during reepithelialization of acute wounds and in the invasive front of squamous cell carcinoma, while its absence in ColXVII-deficient keratinocytes leads to altered cell motility. Using a genetic model of murine Col17a1⁻/⁻ keratinocytes we elucidated ColXVII mediated signaling pathways in cell adhesion and migration. Col17a1⁻/⁻ keratinocytes exhibited increased spreading on laminin 332 and accelerated, but less directed cell motility. These effects were accompanied by increased expression of the integrin subunits β4 and β1. The migratory phenotype, as evidenced by formation of multiple unstable lamellipodia, was associated with enhanced phosphoinositide 3-kinase (PI3K activity. Dissection of the signaling pathway uncovered enhanced phosphorylation of the β4 integrin subunit and the focal adhesion kinase (FAK as activators of PI3K. This resulted in elevated Rac1 activity as a downstream consequence. These results provide mechanistic evidence that ColXVII coordinates keratinocyte adhesion and directed motility by interfering integrin dependent PI3K activation and by stabilizing lamellipodia at the leading edge of reepithelializing wounds and in invasive squamous cell carcinoma.

  15. Integrin receptors on tumor cells facilitate NK cell-mediated antibody-dependent cytotoxicity.

    Science.gov (United States)

    Anikeeva, Nadia; Steblyanko, Maria; Fayngerts, Svetlana; Kopylova, Natalya; Marshall, Deborah J; Powers, Gordon D; Sato, Takami; Campbell, Kerry S; Sykulev, Yuri

    2014-08-01

    NK cells that mediate ADCC play an important role in tumor-specific immunity. We have examined factors limiting specific lysis of tumor cells by CD16.NK-92 cells induced by CNTO 95LF antibodies recognizing αV integrins that are overexpressed on many tumor cells. Although all tested tumor cells were killed by CD16.NK-92 effectors in the presence of the antibodies, the killing of target cells with a low level of ICAM-1 expression revealed a dramatic decrease in their specific lysis at high antibody concentration, revealing a dose limiting effect. A similar effect was also observed with primary human NK cells. The effect was erased after IFN-γ treatment of tumor cells resulting in upregulation of ICAM-1. Furthermore, killing of the same tumor cells induced by Herceptin antibody was significantly impaired in the presence of CNTO 95Ala-Ala antibody variant that blocks αV integrins but is incapable of binding to CD16. These data suggest that αV integrins on tumor cells could compensate for the loss of ICAM-1 molecules, thereby facilitating ADCC by NK cells. Thus, NK cells could exercise cytolytic activity against ICAM-1 deficient tumor cells in the absence of proinflammatory cytokines, emphasizing the importance of NK cells in tumor-specific immunity at early stages of cancer. PMID:24810893

  16. Changes of β3 Integrins and Extracellular Matrix Proteins in the Endometrium of Unexplained Infertility

    Institute of Scientific and Technical Information of China (English)

    王化丽; 曲陆荣; 何丽霞; 张颐

    1999-01-01

    The purpose of this study was to investigate changes of β3 integrins and extracellular matrix proteins including fibronectin (FN) , laminin (LN) and collagen type Ⅳ (CL type Ⅳ) on the endometrium of secretory phase from 31 fertile women (fertility group)and 34 women with unexplained infertility (infertility group) by a histochemical method. The results were as follows : In glandular epithelium, β3 integrin appeared in the mid secretory phase and continued to late secretory phase in the fertility group, but was not expressed during the secretory phase in the infertility group.Extracellular matrix proteins from the fertility group were expressed more strongly in mid secretory phase than that in the early secretory phase, and were weakest in the late secretory phase. Compared with the fertility group, the levels of extracellular matrix proteins in the infertility group were elevated in the secretory phase. In conclusion: our current study demonstrate that fie integrin and extracellular matrix proteins are expressed at different levels in the endometrium during the menstrual cycle. They are involved in endometrial changes during the menstrual cycle and during the implantation of the blastocyst. Their unusual expression result in the failure of implantation.

  17. Macrolide analog F806 suppresses esophageal squamous cell carcinoma (ESCC) by blocking β1 integrin activation.

    Science.gov (United States)

    Li, Li-Yan; Jiang, Hong; Xie, Yang-Min; Liao, Lian-Di; Cao, Hui-Hui; Xu, Xiu-E; Chen, Bo; Zeng, Fa-Min; Zhang, Ying-Li; Du, Ze-Peng; Chen, Hong; Huang, Wei; Jia, Wei; Zheng, Wei; Xie, Jian-Jun; Li, En-Min; Xu, Li-Yan

    2015-06-30

    The paucity of new drugs for the treatment of esophageal squamous cell carcinoma (ESCC) limits the treatment options. This study characterized the therapeutic efficacy and action mechanism of a novel natural macrolide compound F806 in human ESCC xenograft models and cell lines. F806 inhibited growth of ESCC, most importantly, it displayed fewer undesirable side effects on normal tissues in two human ESCC xenograft models. F806 inhibited proliferation of six ESCC cells lines, with the half maximal inhibitory concentration (IC50) ranging from 9.31 to 16.43 μM. Furthermore, F806 induced apoptosis of ESCC cells, contributing to its growth-inhibitory effect. Also, F806 inhibited cell adhesion resulting in anoikis. Mechanistic studies revealed that F806 inhibited the activation of β1 integrin in part by binding to a novel site Arg610 of β1 integrin, suppressed focal adhesion formation, decreased cell adhesion to extracellular matrix and eventually triggered apoptosis. We concluded that F806 would potentially be a well-tolerated anticancer drug by targeting β1 integrin, resulting in anoikis in ESCC cells.

  18. A role of kindlin-3 in integrin αMβ2 outside-in signaling and the Syk-Vav1-Rac1/Cdc42 signaling axis.

    Directory of Open Access Journals (Sweden)

    Zhi-Hong Xue

    Full Text Available Integrins mediate cell-cell and cell-extracellular matrix attachments. Integrins are signaling receptors because their cytoplasmic tails are docking sites for cytoskeletal and signaling proteins. Kindlins are a family of band 4.1-ezrin-radixin-moesin-containing intracellular proteins. Apart from regulating integrin ligand-binding affinity, recent evidence suggests that kindlins are involved in integrin outside-in signaling. Kindlin-3 is expressed in platelets, hematopoietic cells and endothelial cells. In humans, loss of kindlin-3 expression accounts for the rare autosomal disease leukocyte adhesion deficiency (LAD type III that is characterized by bleeding disorders and defective recruitment of leukocytes into sites of infection. Studies have shown that the loss of kindlin-3 expression leads to poor ligand-binding properties of β1, β2 and β3 integrin subfamilies. The leukocyte-restricted β2 integrin subfamily comprises four members, namely αLβ2, αMβ2, αXβ2 and αDβ2. Integrin αMβ2 mediates leukocyte adhesion, phagocytosis, degranulation and it is involved in the maintenance of immune tolerance. Here we provide further evidence that kindlin-3 is required for integrin αMβ2-mediated cell adhesion and spreading using transfected K562 cells that expressed endogenous kindlin-3 but not β2 integrins. K562 stable cell line expressing si-RNA targeting kindlin-3, but not control-si-RNA, and transfected with constitutively activated integrin αMβ2N329S adhered and spread poorly on iC3b. We also show that kindlin-3 is required for the integrin αMβ2-Syk-Vav1 signaling axis that regulates Rac1 and Cdc42 activities. These findings reinforce a role for kindlin-3 in integrin outside-in signaling.

  19. Cellular partitioning of beta-1 integrins and their phosphorylated forms is altered after transformation by Rous sarcoma virus or treatment with cytochalasin D.

    OpenAIRE

    Haimovich, B; Aneskievich, B J; Boettiger, D

    1991-01-01

    A sequential extraction procedure of 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS) buffer followed by RIPA or Laemmli sample buffer was developed to define two distinct subpopulations of beta-1 integrins in primary chicken embryo fibroblasts. Extraction of cells in culture revealed an association of adhesion plaque-localized integrin with the CHAPS-insoluble fraction. Phosphorylated integrins were found in both fractions, but the specific phosphorylation was 12-fold high...

  20. Expression of integrin alpha 10 is transcriptionally activated by pRb in mouse osteoblasts and is downregulated in multiple solid tumors.

    Science.gov (United States)

    Engel, B E; Welsh, E; Emmons, M F; Santiago-Cardona, P G; Cress, W D

    2013-11-28

    pRb is known as a classic cell cycle regulator whose inactivation is an important initiator of tumorigenesis. However, more recently, it has also been linked to tumor progression. This study defines a role for pRb as a suppressor of the progression to metastasis by upregulating integrin α10. Transcription of this integrin subunit is herein found to be pRb dependent in mouse osteoblasts. Classic pRb partners in cell cycle control, E2F1 and E2F3, do not repress transcription of integrin α10 and phosphorylation of pRb is not necessary for activation of the integrin α10 promoter. Promoter deletion revealed a pRb-responsive region between -108 bp to -55 bp upstream of the start of the site of transcription. pRb activation of transcription also leads to increased levels of integrin α10 protein and a greater concentration of the integrin α10 protein at the cell membrane of mouse osteoblasts. These higher levels of integrin α10 correspond to increased binding to collagen substrate. Consistent with our findings in mouse osteoblasts, we found that integrin α10 is significantly underexpressed in multiple solid tumors that have frequent inactivation of the pRb pathway. Bioinformatically, we identified data consistent with an 'integrin switch' that occurs in multiple solid tumors consisting of underexpression of integrins α7, α8, and α10 with concurrent overexpression of integrin β4. pRb promotes cell adhesion by inducing expression of integrins necessary for cell adhesion to a substrate. We propose that pRb loss in solid tumors exacerbates aggressiveness by debilitating cellular adhesion, which in turn facilitates tumor cell detachment and metastasis.

  1. Integrin β1A Upregulates p27 Protein Amount at the Post-translational Level in Human Hepatocellular Carcinoma Cell Line SMMC-7721

    Institute of Scientific and Technical Information of China (English)

    Yi FU; Li-Ying WANG; Yu-Long LIANG; Jia-Wei JIN; Zheng-Yu FANG; Xi-Liang ZHA

    2006-01-01

    Integrins mediate many fundamental cellular processes by binding to components of the extracellular matrix. We showed previously that integrin β1A could inhibit cell proliferation. Integrin β1A stimulated the promoter activity of p21cip1 and enhanced its transcription in SMMC-7721 cells. In this study,we demonstrated that integrin β1A upregulated p27kip1 at the post-translational level in SMMC-7721 cells. Our results showed that integrin β1A increased the p27 protein amount, both in cytoplasm and nucleus, but did not affect the p27m RNA amount. Cycloheximide treatment experiment revealed that the half-life of p27 protein was prolonged in integrin β1A overexpressing cells, indicating that integrin β1A inhibited the degradation of p27 protein. Our data also provided evidence that both the proteasome and calpain were involved in the degradation of p27 protein in SMMC-7721 cells. Integrin β1A decreased the Skp2 expression and repressed the activity of calpain during G1 phase in SMMC-7721 cells. Taken together, these results indicated that integrin β1A might upregulate the protein amount of p27 through repressing Skp2-dependent proteasome degradation and calpainmediated proteolysis in SMMC-7721 cells.

  2. Covisualization by computational optical-sectioning microscopy of integrin and associated proteins at the cell membrane of living onion protoplasts

    Science.gov (United States)

    Gens, J. S.; Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Using higher-resolution wide-field computational optical-sectioning fluorescence microscopy, the distribution of antigens recognized by antibodies against animal beta 1 integrin, fibronectin, and vitronectin has been visualized at the outer surface of enzymatically protoplasted onion epidermis cells and in depectinated cell wall fragments. On the protoplast all three antigens are colocalized in an array of small spots, as seen in raw images, in Gaussian filtered images, and in images restored by two different algorithms. Fibronectin and vitronectin but not beta 1 integrin antigenicities colocalize as puncta in comparably prepared and processed images of the wall fragments. Several control visualizations suggest considerable specifity of antibody recognition. Affinity purification of onion cell extract with the same anti-integrin used for visualization has yielded protein that separates in SDS-PAGE into two bands of about 105-110 and 115-125 kDa. These bands are again recognized by the visualization antibody, which was raised against the extracellular domain of chicken beta 1 integrin, and are also recognized by an antibody against the intracellular domain of chicken beta 1 integrin. Because beta 1 integrin is a key protein in numerous animal adhesion sites, it appears that the punctate distribution of this protein in the cell membranes of onion epidermis represents the adhesion sites long known to occur in cells of this tissue. Because vitronectin and fibronection are matrix proteins that bind to integrin in animals, the punctate occurrence of antigenically similar proteins both in the wall (matrix) and on enzymatically prepared protoplasts reinforces the concept that onion cells have adhesion sites with some similarity to certain kinds of adhesion sites in animals.

  3. Differential regulation of monocyte cytokine release by αV and β2 integrins that bind CD23

    Science.gov (United States)

    Edkins, Adrienne L; Borland, Gillian; Acharya, Mridu; Cogdell, Richard J; Ozanne, Bradford W; Cushley, William

    2012-01-01

    The human soluble CD23 (sCD23) protein displays highly pleiotropic cytokine-like activity. Monocytic cells express the sCD23-binding integrins αVβ3, αVβ5, αMβ2 and αXβ2, but it is unclear which of these four integrins most acutely regulates sCD23-driven cytokine release. The hypothesis that ligation of different sCD23-binding integrins promoted release of distinct subsets of cytokines was tested. Lipopolysaccharide (LPS) and sCD23 promoted release of distinct groups of cytokines from the THP-1 model cell line. The sCD23-driven cytokine release signature was characterized by elevated amounts of RANTES (CCL5) and a striking increase in interleukin-8 (IL-8; CXCL8) secretion, but little release of macrophage inflammatory protein 1β (MIP-1β; CCL4). Antibodies to αVβ3 or αXβ2 both promoted IL-8 release, consistent with the sCD23-driven pattern, but both also evoked strong MIP-1β secretion; simultaneous ligation of these two integrins further increased cytokine secretion but did not alter the pattern of cytokine output. In both model cell lines and primary tissue, integrin-mediated cytokine release was more pronounced in immature monocyte cells than in mature cells. The capacity of anti-integrin monoclonal antibodies to elicit a cytokine release response is epitope-dependent and also reflects the differentiation state of the cell. Although a pattern of cytokine release identical to that provoked by sCD23 could not be elicited with any individual anti-integrin monoclonal antibody, αXβ2 and αVβ3 appear to regulate IL-8 release, a hallmark feature of sCD23-driven cytokine secretion, more acutely than αMβ2 or αVβ5. PMID:22348662

  4. Chondroitin sulfate proteoglycans regulate the growth, differentiation and migration of multipotent neural precursor cells through the integrin signaling pathway

    Directory of Open Access Journals (Sweden)

    Lü He-Zuo

    2009-10-01

    Full Text Available Abstract Background Neural precursor cells (NPCs are defined by their ability to proliferate, self-renew, and retain the potential to differentiate into neurons and glia. Deciphering the factors that regulate their behaviors will greatly aid in their use as potential therapeutic agents or targets. Chondroitin sulfate proteoglycans (CSPGs are prominent components of the extracellular matrix (ECM in the central nervous system (CNS and are assumed to play important roles in controlling neuronal differentiation and development. Results In the present study, we demonstrated that CSPGs were constitutively expressed on the NPCs isolated from the E16 rat embryonic brain. When chondroitinase ABC was used to abolish the function of endogenous CSPGs on NPCs, it induced a series of biological responses including the proliferation, differentiation and migration of NPCs, indicating that CSPGs may play a critical role in NPC development and differentiation. Finally, we provided evidence suggesting that integrin signaling pathway may be involved in the effects of CSPGs on NPCs. Conclusion The present study investigating the influence and mechanisms of CSPGs on the differentiation and migration of NPCs should help us to understand the basic biology of NPCs during CNS development and provide new insights into developing new strategies for the treatment of the neurological disorders in the CNS.

  5. S100P interacts with integrin α7 and increases cancer cell migration and invasion in lung cancer.

    Science.gov (United States)

    Hsu, Ya-Ling; Hung, Jen-Yu; Liang, Yung-Yu; Lin, Yi-Shiuan; Tsai, Ming-Ju; Chou, Shah-Hwa; Lu, Chi-Yu; Kuo, Po-Lin

    2015-10-01

    S100P, a Ca2+ binding protein, has been shown to be overexpressed in various cancers. However, its functional character in lung cancer remains largely unknown. In this study, we show that S100P increases cancer migration, invasion and metastasis in lung cancer cells. Ectopic expression of S100P increases migration, invasion and EMT in less invasive CL1-0 lung cancer cells. Conversely, knockdown of S100P suppressed migration and invasion, and caused a reversion of EMT in highly invasive lung cancer cells. These effects were transduced by increasing the interaction of S100P with integrin α7, which activated focal adhesion kinase (FAK) and AKT. Blocking FAK significantly decreased S100P-induced migration by decreasing Src and AKT activation, whereas inhibiting AKT reduced S100P upregulation on ZEB1 expression. Further study has indicated that S100P knockdown prevents the spread of highly metastatic human lung cancer in animal models. This study therefore suggests that S100P represents a critical activator of lung cancer metastasis. Detection and targeted treatment of S100P-expressing cancer is an attractive therapeutic strategy in treating lung cancer. PMID:26320193

  6. Mesangial cell integrin αvβ8 provides glomerular endothelial cell cytoprotection by sequestering TGF-β and regulating PECAM-1.

    Science.gov (United States)

    Khan, Shenaz; Lakhe-Reddy, Sujata; McCarty, Joseph H; Sorenson, Christine M; Sheibani, Nader; Reichardt, Louis F; Kim, Jane H; Wang, Bingcheng; Sedor, John R; Schelling, Jeffrey R

    2011-02-01

    Integrins are heterodimeric receptors that regulate cell adhesion, migration, and apoptosis. Integrin αvβ8 is most abundantly expressed in kidney and brain, and its major ligand is latent transforming growth factor-β (TGF-β). Kidney αvβ8 localizes to mesangial cells, which appose glomerular endothelial cells and maintain glomerular capillary structure by mechanical and poorly understood paracrine mechanisms. To establish kidney αvβ8 function, mice with homozygous Itgb8 deletion (Itgb8(-/-)) were generated on outbred and C57BL/6 congenic backgrounds. Most Itgb8(-/-) mice died in utero, and surviving Itgb8(-/-) mice failed to gain weight, and rarely survived beyond 6 weeks. A renal glomerular phenotype included azotemia and albuminuria, as well as increased platelet endothelial cell adhesion molecule-1 (PECAM-1) expression, which was surprisingly not associated with conventional functions, such as endothelial cell hyperplasia, hypertrophy, or perivascular inflammation. Itgb8(-/-) mesangial cells demonstrated reduced latent TGF-β binding, resulting in bioactive TGF-β release, which stimulated glomerular endothelial cell apoptosis. Using PECAM-1 gain and loss of function strategies, we show that PECAM-1 provides endothelial cytoprotection against mesangial cell TGF-β. These results clarify a singular mechanism of mesangial-to-endothelial cell cross-talk, whereby mesangial cell αvβ8 homeostatically arbitrates glomerular microvascular integrity by sequestering TGF-β in its latent conformation. Under pathological conditions associated with decreased mesangial cell αvβ8 expression and TGF-β secretion, compensatory PECAM-1 modulation facilitates glomerular endothelial cell survival.

  7. Cleavage of ST6Gal I by Radiation-Induced BACE1 Inhibits Golgi-Anchored ST6Gal I-Mediated Sialylation of Integrin β1 and Migration in Colon Cancer Cells

    International Nuclear Information System (INIS)

    Previously, we found that β-galactoside α2,6-sialyltransferase (ST6Gal I), an enzyme that adds sialic acids to N-linked oligosaccharides of glycoproteins and is frequently overexpressed in cancer cells, is up-regulated by ionizing radiation (IR) and cleaved to a form possessing catalytic activity comparable to that of the Golgi-localized enzyme. Moreover, this soluble form is secreted into the culture media. Induction of ST6Gal I significantly increased the migration of colon cancer cells via sialylation of integrin β1. Here, we further investigated the mechanisms underlying ST6Gal I cleavage, solubilization and release from cells, and addressed its functions, focusing primarily on cancer cell migration. We performed immunoblotting and lectin affinity assay to analyze the expression of ST6 Gal I and level of sialylated integrin β1. After ionizing radiation, migration of cells was measured by in vitro migration assay. α2, 6 sialylation level of cell surface was analyzed by flow cytometry. Cell culture media were concentrated and then analyzed for soluble ST6Gal I levels using an α2, 6 sialyltransferase sandwich ELISA. We found that ST6Gal I was cleaved by BACE1 (β-site amyloid precursor protein-cleaving enzyme), which was specifically overexpressed in response to IR. The soluble form of ST6Gal I, which also has sialyltransferase enzymatic activity, was cleaved from the Golgi membrane and then released into the culture media. Both non-cleaved and cleaved forms of ST6Gal I significantly increased colon cancer cell migration in a sialylation-dependent manner. The pro-migratory effect of the non-cleaved form of ST6Gal I was dependent on integrin β1 sialylation, whereas that of the cleaved form of ST6Gal I was not, suggesting that other intracellular sialylated molecules apart from cell surface molecules such as integrin β1 might be involved in mediating the pro-migratory effects of the soluble form of ST6Gal I. Moreover, production of soluble form ST6Gal I by

  8. Binding of αvβ1 and αvβ6 integrins to tenascin-C induces epithelial-mesenchymal transition-like change of breast cancer cells.

    Science.gov (United States)

    Katoh, D; Nagaharu, K; Shimojo, N; Hanamura, N; Yamashita, M; Kozuka, Y; Imanaka-Yoshida, K; Yoshida, T

    2013-01-01

    Tenascin-C (TNC), a large hexameric extracellular glycoprotein, is a pleiotropic molecule with multiple domains binding to a variety of receptors mediating a wide range of cellular functions. We earlier reported that TNC induces epithelial-mesenchymal transition (EMT)-like change in breast cancer cells. In the present study, we clarified TNC receptor involvement in this process. Among integrins previously reported as TNC receptors, substantial expression of αv, α2, β1 and β6 subunits was detected by quantitative PCR and immunoblotting in MCF-7 cells. Integrin β6 mRNA was remarkably upregulated by transforming growth factor (TGF)-β1 treatment, and protein expression was prominently increased by additional exposure to TNC. Immunofluorescent labeling demonstrated integrin αvβ6 accumulation in focal adhesions after TNC treatment, especially in combination with TGF-β1. The α2 and β1 subunits were mainly localized at cell-cell contacts, αv being found near cell cluster surfaces. Immunoprecipitation showed increase in αvβ1 heterodimers, but not α2β1, after TNC treatment. Activated β1 subunits detected by an antibody against the Ca(2+)-dependent epitope colocalized with αv in focal adhesion complexes, associated with FAK phosphorylation at tyrosine 925. Neutralizing antibodies against αv and β1 blocked EMT-like change caused by TNC alone. In addition, anti-αv and combined treatment with anti-β1 and anti-αvβ6 inhibited TGF-β1/TNC-induced EMT, whereas either of these alone did not. Integrin subunits αv, β1 and β6, but not α2, bound to TNC immobilized on agarose beads in a divalent cation-dependent manner. Treatments with neutralizing antibodies against β1 and αvβ6 reduced αv subunit bound to the beads. Immunohistochemistry of these receptors in human breast cancer tissues demonstrated frequent expression of β6 subunits in cancer cells forming scattered nests localized in TNC-rich stroma. These findings provide direct evidence that binding of

  9. α4β7 Integrin (LPAM-1 is Upregulated at Atherosclerotic Lesions and is Involved in Atherosclerosis Progression

    Directory of Open Access Journals (Sweden)

    Kangkang Zhi

    2014-06-01

    Full Text Available Background/Aims: Integrin activation and lymphocyte migration to the vascular intima is a key event in early atherosclerosis. α4β7 integrin (LPAM-1 and its ligand, mucosal addressin cell adhesion molecule (MAdCAM-1 are known to play an important role in homing of activated lymphocytes to gut-associated lymphoid tissues. However, it is unclear whether α4β7 integrin is involved in the pathogenesis of atherosclerosis. Methods: The expressions of α4β7 integrin and its ligands in atherosclerosis plaques from 12 week high fat diet (HFD fed ApoE-/- and C57BL/6 mice were examined using immunofluorescent and immunohistochemical assays, respectively. We also generated ApoE/β7 double deficient mice and compared atherosclerotic lesion development in β7+/+ApoE-/- and β7-/-ApoE-/- mice that were fed with HFD for 12 weeks. Results: We found an upregulation of α4β7 integrin and its ligands VCAM-1 and MAdCAM-1 at atherosclerosis plaques in Apolipoprotein E deficient (ApoE-/- mice fed with HFD for 12 weeks. Over the 12 week HFD period, peripheral blood lymphocyte (PBL expression of α4β7 integrin increased in parallel with aortic lesion size. A removal of α4β7 integrin by genetic deletion of the β7 chain in the ApoE-/- mouse resulted in a markedly decreased 12 week-HFD atherosclerotic plaque area. β7-/- ApoE-/- macrophages showed reduced acetylated and native LDL uptake and phagocytic activity, revealing possible roles for α4β7 at two distinct stages of macrophage dysfunction during atherogenesis. Finally, a reduced activity of integrin downstream signalling components focal adhesion kinase (FAK and MAPK/ERK1/2 in macrophage indicates their possible engagement during α4β7 integrin signalling in atherosclerosis. Conclusions: Together our results reveal a critical role of α4β7 in diet-induced atherosclerosis in mouse.

  10. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2015-02-01

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.

  11. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    International Nuclear Information System (INIS)

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated

  12. HGF Accelerates Wound Healing by Promoting the Dedifferentiation of Epidermal Cells through β1-Integrin/ILK Pathway

    Directory of Open Access Journals (Sweden)

    Jin-Feng Li

    2013-01-01

    Full Text Available Skin wound healing is a critical and complex biological process after trauma. This process is activated by signaling pathways of both epithelial and nonepithelial cells, which release a myriad of different cytokines and growth factors. Hepatocyte growth factor (HGF is a cytokine known to play multiple roles during the various stages of wound healing. This study evaluated the benefits of HGF on reepithelialization during wound healing and investigated its mechanisms of action. Gross and histological results showed that HGF significantly accelerated reepithelialization in diabetic (DB rats. HGF increased the expressions of the cell adhesion molecules β1-integrin and the cytoskeleton remodeling protein integrin-linked kinase (ILK in epidermal cells in vivo and in vitro. Silencing of ILK gene expression by RNA interference reduced expression of β1-integrin, ILK, and c-met in epidermal cells, concomitantly decreasing the proliferation and migration ability of epidermal cells. β1-Integrin can be an important maker of poorly differentiated epidermal cells. Therefore, these data demonstrate that epidermal cells become poorly differentiated state and regained some characteristics of epidermal stem cells under the role of HGF after wound. Taken together, the results provide evidence that HGF can accelerate reepithelialization in skin wound healing by dedifferentiation of epidermal cells in a manner related to the β1-integrin/ILK pathway.

  13. Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased alpha 7 integrin, utrophin and associated glycoproteins

    DEFF Research Database (Denmark)

    Moghadaszadeh, Behzad; Albrechtsen, Reidar; Guo, Ling T;

    2003-01-01

    the expression and redistribution of several components of the muscle cell-adhesion complexes. First, we analyzed transgenic mice that overexpress ADAM12 and found mild myopathic changes and accelerated regeneration following acute injury. We then analyzed changes in gene-expression profiles in mdx/ADAM12...... in humans. More specifically ADAM12 appeared to prevent muscle cell necrosis in the mdx mice as evidenced by morphological analysis and by the reduced levels of serum creatine kinase. In the present study we demonstrated that ADAM12 may compensate for the dystrophin deficiency in mdx mice by increasing......, and suggested that significant changes in mdx/ADAM12 muscle might occur post-transcriptionally. Indeed, by immunostaining and immunoblotting we found an approximately 2-fold increase in expression, and distinct extrasynaptic localization, of alpha 7B integrin and utrophin, the functional homolog of dystrophin...

  14. Current research on effect of integrin in diabetic retinopathy%整合素在糖尿病视网膜病变中的作用研究进展

    Institute of Scientific and Technical Information of China (English)

    苗恒

    2012-01-01

    Integrin is a kind of transmembrane protein which mediates the interaction between cells and cells,cells and extracellular matrix.When activated by the ligands,integrins modify and alter the activity and function of many cytoskeleton proteins and signal molecules.Integrins are able to cooperate with growth factor receptors in several steps at both cellular membrane and downstream signaling pathway and co-adjust the adhesion,survival,growth,differentiation,proliferation and migration of the cells,constructing a network of intracellular signaling transduction system.Diabetic retinopathy ( DR ) has a close relationship with proliferation,migration and neovascularization of vascular endothelial cells driven by growth factors.Since the interaction among growth factors,growth factor receptors,cellular migration and integrins,the treatment of DR,in the future,may be shifted from a growth factor inhibition aspect to integrin inhibition pattern.The signaling pathway,relationship of integrin and growth factor,effect of integrin in DR were reviewed.%整合素是一种存在于细胞膜上用以介导细胞与细胞、细胞与细胞外基质间相互作用的跨膜蛋白,其活化并与相应的配体结合后会引起大量细胞骨架蛋白和细胞内信号分子的功能和活性改变,与多种生长因子在受体水平相互作用,并在下游细胞信号转导通路中与其多处相交通,形成网状细胞信号转导体系,共同参与调控细胞的黏附、存活、生长、分化、增生和迁移等行为.糖尿病视网膜病变(DR)与生长因子以及由生长因子介导的血管内皮细胞增生、迁移以及新生血管形成有着密切关系.鉴于生长因子、生长因子受体与整合素间存在多种相互作用,整合素又与细胞迁移有着直接关系,未来整合素拮抗疗法可能会成为DR治疗的研究重点.就整合素的细胞信号转导通路、整合素与生长因子、整合素在DR中作用的研究进展进行综述.

  15. Suppression of ITGB4 Gene Expression in PC-3 Cells with Short Interfering RNA Induces Changes in the Expression of β-Integrins Associated with RGD-Receptors.

    Science.gov (United States)

    Knyazev, E N; Nyushko, K M; Alekseev, B Ya; Samatov, T R; Shkurnikov, M Yu

    2015-08-01

    We studied the effect of transfection of PC-3 prostate cancer cells with a plasmid encoding shRNA complimentary to a fragment of integrin β4 (ITGB4). The results attest to considerable changes in the transcriptome of transfected cells. For instance, compensatory changes in the expression of integrin family genes were found. PMID:26395630

  16. Structural basis for quinine-dependent antibody binding to platelet integrin αIIbβ3.

    Science.gov (United States)

    Zhu, Jianghai; Zhu, Jieqing; Bougie, Daniel W; Aster, Richard H; Springer, Timothy A

    2015-10-29

    Drug-induced immune thrombocytopenia (DITP) is caused by antibodies that react with specific platelet-membrane glycoproteins when the provoking drug is present. More than 100 drugs have been implicated as triggers for this condition, quinine being one of the most common. The cause of DITP in most cases appears to be a drug-induced antibody that binds to a platelet membrane glycoprotein only when the drug is present. How a soluble drug promotes binding of an otherwise nonreactive immunoglobulin to its target, leading to platelet destruction, is uncertain, in part because of the difficulties of working with polyclonal human antibodies usually available only in small quantities. Recently, quinine-dependent murine monoclonal antibodies were developed that recognize a defined epitope on the β-propeller domain of the platelet integrin αIIb subunit (GPIIb) only when the drug is present and closely mimic the behavior of antibodies found in human patients with quinine-induced thrombocytopenia in vitro and in vivo. Here, we demonstrate specific, high-affinity binding of quinine to the complementarity-determining regions (CDRs) of these antibodies and define in crystal structures the changes induced in the CDR by this interaction. Because no detectable binding of quinine to the target integrin could be demonstrated in previous studies, the findings indicate that a hybrid paratope consisting of quinine and reconfigured antibody CDR plays a critical role in recognition of its target epitope by an antibody and suggest that, in this type of drug-induced immunologic injury, the primary reaction involves binding of the drug to antibody CDRs, causing it to acquire specificity for a site on a platelet integrin.

  17. The Rho-family GTPase Rac1 regulates integrin localization in Drosophila immunosurveillance cells.

    Directory of Open Access Journals (Sweden)

    Miguel J Xavier

    Full Text Available BACKGROUND: When the parasitoid wasp Leptopilina boulardi lays an egg in a Drosophila larva, phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. The Drosophila β-integrin Myospheroid (Mys is necessary for lamellocytes to adhere to the cellular capsule surrounding L. boulardi eggs. Integrins are heterodimeric adhesion receptors consisting of α and β subunits, and similar to other plasma membrane receptors undergo ligand-dependent endocytosis. In mammalian cells it is known that integrin binding to the extracellular matrix induces the activation of Rac GTPases, and we have previously shown that Rac1 and Rac2 are necessary for a proper encapsulation response in Drosophila larvae. We wanted to test the possibility that Myospheroid and Rac GTPases interact during the Drosophila anti-parasitoid immune response. RESULTS: In the current study we demonstrate that Rac1 is required for the proper localization of Myospheroid to the cell periphery of haemocytes after parasitization. Interestingly, the mislocalization of Myospheroid in Rac1 mutants is rescued by hyperthermia, involving the heat shock protein Hsp83. From these results we conclude that Rac1 and Hsp83 are required for the proper localization of Mys after parasitization. SIGNIFICANCE: We show for the first time that the small GTPase Rac1 is required for Mysopheroid localization. Interestingly, the necessity of Rac1 in Mys localization was negated by hyperthermia. This presents a problem, in Drosophila we quite often raise larvae at 29°C when using the GAL4/UAS misexpression system. If hyperthermia rescues receptor endosomal recycling defects, raising larvae in hyperthermic conditions may mask potentially interesting phenotypes.

  18. Photon-induced cell migration and integrin expression promoted by DNA integration of HPV16 genome

    International Nuclear Information System (INIS)

    Persistent human papilloma virus 16 (HPV16) infections are a major cause of cervical cancer. The integration of the viral DNA into the host genome causes E2 gene disruption which prevents apoptosis and increases host cell motility. In cervical cancer patients, survival is limited by local infiltration and systemic dissemination. Surgical control rates are poor in cases of parametrial infiltration. In these patients, radiotherapy (RT) is administered to enhance local control. However, photon irradiation itself has been reported to increase cell motility. In cases of E2-disrupted cervical cancers, this phenomenon would impose an additional risk of enhanced tumor cell motility. Here, we analyze mechanisms underlying photon-increased migration in keratinocytes with differential E2 gene status. Isogenic W12 (intact E2 gene status) and S12 (disrupted E2 gene status) keratinocytes were analyzed in fibronectin-based and serum-stimulated migration experiments following single photon doses of 0, 2, and 10 Gy. Quantitative FACS analyses of integrin expression were performed. Migration and adhesion are increased in E2 gene-disrupted keratinocytes. E2 gene disruption promotes attractability by serum components, therefore, effectuating the risk of local infiltration and systemic dissemination. In S12 cells, migration is further increased by photon RT which leads to enhanced expression of fibronectin receptor integrins. HPV16-associated E2 gene disruption is a main predictor of treatment-refractory cancer virulence. E2 gene disruption promotes cell motility. Following photon RT, E2-disrupted tumors bear the risk of integrin-related infiltration and dissemination. (orig.)

  19. Synthesis and in vivo studies of a selective ligand for the dopamine transporter: 3{beta}-(4-[{sup 125}I]iodophenyl) tropan-2{beta}-carboxylic acid isopropyl ester ([{sup 125}I]RTI-121)

    Energy Technology Data Exchange (ETDEWEB)

    Lever, John R.; Scheffel, Ursula; Stathis, Marigo; Seltzman, Herbert H.; Wyrick, Christopher D.; Abraham, Philip; Parham, Karol; Thomas, Brian F.; Boja, John W.; Kuhar, Michael J.; Carroll, F. Ivy

    1996-04-01

    A selective ligand for the dopamine transporter 3{beta}-(4-iodophenyl)tropan-2{beta}-carboxylic acid isopropyl ester (RTI-121) has been labeled with iodine-125 by electrophilic radioiododestannylation. The [{sup 125}I]RTI-121 was obtained in good yield (86 {+-} 7%, n = 3) with high radiochemical purity (>99%) and specific radioactivity (1210-1950 mCi/{mu}mol). After i.v. administration of [{sup 125}I]RTI-121 to mice, the rank order of regional brain tissue radioactivity (striatum > olfactory tubercles >> cortex, hippocampus, thalamus, hypothalamus, cerebellum) was consistent with dopamine transporter labeling. Specific in vivo binding in striatum and olfactory tubercles was saturable, and was blocked by the dopamine transporter ligands GBR 12,909 and ({+-})-nomifensine. By contrast, binding was not reduced by paroxetine, a serotonin transporter inhibitor, or desipramine, a norepinephrine transporter inhibitor. A variety of additional drugs having high affinities for recognition sites other than the neuronal dopamine transporter also had no effect. The [{sup 125}I]RTI-121 binding in striatum and olfactory tubercles was inhibited by d-amphetamine in dose-dependent fashion. Nonmetabolized radioligand represents 85% of the signal observed in extracts of whole mouse brain. Thus, [{sup 125}I]RTI-121 is readily prepared, and is a useful tracer for dopamine transporter studies in vivo.

  20. Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance

    DEFF Research Database (Denmark)

    Campos, Lia S; Leone, Dino P; Relvas, Joao B;

    2004-01-01

    in the stem-cell containing regions of the embryonic CNS, with associated expression of the laminin alpha2 chain. Expression levels of laminin alpha2 are reduced in the postnatal CNS, but a population of cells expressing high levels of beta1 remains. Using neurospheres - aggregate cultures, derived from......The emerging evidence that stem cells develop in specialised niches highlights the potential role of environmental factors in their regulation. Here we examine the role of beta1 integrin/extracellular matrix interactions in neural stem cells. We find high levels of beta1 integrin expression...... single stem cells, that have a three-dimensional architecture that results in the localisation of the stem cell population around the edge of the sphere - we show directly that beta1 integrins are expressed at high levels on neural stem cells and can be used for their selection. MAPK, but not PI3K...

  1. The Expression of Integrinβ1 and FAK in Pituitary Adenomas and Their Correlation with Invasiveness

    Institute of Scientific and Technical Information of China (English)

    Feng WAN; Kai SHU; Ting LEI; Delin XUE

    2008-01-01

    Summary: The expression and possible role of integrin-focal adhesion kinase signal pathway in invasive pituitary adenomas were explored. Forty-nine human pituitary adenomas were detected for the expression of integrinβ1 (INTβ1) and focal adhesion kinase (FAK) by immunohistochemistry, and their correlation with the invasiveness of pituitary adenomas as well as between themselves was analyzed. The results showed that INTβ1 was expressed in 46 cases (93.9%) and FAK in 36 cases (73.5%), respectively, and their expression levels were highly correlated with tumor invasiveness, but not with the tumor types. It was suggested that the integrin-focal adhesion kinase signal pathway plays a role in the invasiveness of pituitary adenomas.

  2. Regulation of adherence and virulence by the Entamoeba histolytica lectin cytoplasmic domain, which contains a beta2 integrin motif.

    Science.gov (United States)

    Vines, R R; Ramakrishnan, G; Rogers, J B; Lockhart, L A; Mann, B J; Petri, W A

    1998-08-01

    Killing of human cells by the parasite Entamoeba histolytica requires adherence via an amebic cell surface lectin. Lectin activity in the parasite is regulated by inside-out signaling. The lectin cytoplasmic domain has sequence identity with a region of the beta2 integrin cytoplasmic tail implicated in regulation of integrin-mediated adhesion. Intracellular expression of a fusion protein containing the cytoplasmic domain of the lectin has a dominant negative effect on extracellular lectin-mediated cell adherence. Mutation of the integrin-like sequence abrogates the dominant negative effect. Amebae expressing the dominant negative mutant are less virulent in an animal model of amebiasis. These results suggest that inside-out signaling via the lectin cytoplasmic domain may control the extracellular adhesive activity of the amebic lectin and provide in vivo demonstration of the lectin's role in virulence.

  3. β Integrins Mediate FAK Y397 Autophosphorylation of Resistance Arteries during Eutrophic Inward Remodeling in Hypertension

    OpenAIRE

    Heerkens, Egidius H.J; Quinn, Lisa; Withers, Sarah B.; Heagerty, Anthony M

    2014-01-01

    Human essential hypertension is characterized by eutrophic inward remodeling of the resistance arteries with little evidence of hypertrophy. Upregulation of αVβ3 integrin is crucial during this process. In order to investigate the role of focal adhesion kinase (FAK) activation in this process, the level of FAK Y397 autophosphorylation was studied in small blood vessels from young TGR(mRen2)27 animals as blood pressure rose and eutrophic inward remodeling took place. Between weeks 4 and 5, thi...

  4. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes

    DEFF Research Database (Denmark)

    Brakebusch, C; Grose, R; Quondamatteo, F;

    2000-01-01

    developed severe hair loss due to a reduced proliferation of hair matrix cells and severe hair follicle abnormalities. Eventually, the malformed hair follicles were removed by infiltrating macrophages. The epidermis of the back skin became hyperthickened, the basal keratinocytes showed reduced expression......, the integrity of the basement membrane surrounding the beta 1-deficient hair follicle was not affected. Finally, the dermis became fibrotic. These results demonstrate an important role of beta 1 integrins in hair follicle morphogenesis, in the processing of basement membrane components, in the maintenance...

  5. Prophylactic uses of integrin CD18-βA peptide in a murine polymicrobial peritonitis model

    Institute of Scientific and Technical Information of China (English)

    Kwong-Fai; Wong; Jana; Wo; David; Ho; Ronnie; T; Poon; José; M; Casasnovas; John; M; Luk

    2010-01-01

    AIM:To evaluate the prophylactic properties of integrin CD18-βA peptide in a murine model of abdominal polymicrobial peritonitis and sepsis.METHODS:Bacterial sepsis was induced in Institute of Cancer Research(ICR) mice by cecal ligation and puncture(CLP) surgery.Inflicted mice were then injected with either sterile saline or CD18-βA peptide intraperitoneally at 2 h after surgery,and were sacrificed at 12 and 24 h after surgery.Blood samples were immediately collected,and analyzed for endotoxin activity and ...

  6. Integrin Receptors on Tumor Cells Facilitate NK cell-mediated Antibody-dependent Cytotoxicity

    OpenAIRE

    Anikeeva, Nadia; Steblyanko, Maria; Fayngerts, Svetlana; Kopylova, Natalya; Marshall, Deborah J.; Powers, Gordon D.; Sato, Takami; Campbell, Kerry S.; Sykulev, Yuri

    2014-01-01

    NK cells that mediate ADCC play an important role in tumor-specific immunity. We have examined factors limiting specific lysis of tumor cells by CD16.NK-92 cells induced by CNTO 95LF antibodies recognizing αV integrins that are overexpressed on many tumor cells. Although all tested tumor cells were killed by CD16.NK-92 effectors in the presence of the antibodies, the killing of target cells with a low level of ICAM-1 expression revealed a dramatic decrease in their specific lysis at high anti...

  7. Integrin VLA-3: ultrastructural localization at cell-cell contact sites of human cell cultures

    OpenAIRE

    1989-01-01

    The integrin VLA-3 is a cell surface receptor, which binds to fibronectin, laminin, collagen type I and VI (Takada, Y., E. A. Wayner, W. G. Carter, and M. E. Hemler. 1988. J. Cell. Biochem. 37:385-393) and is highly expressed in substrate adherent cultures of almost all human cell types. The ligand specificity of VLA-3 and the inhibition of cell adhesion by anti-VLA-3 monoclonal antibodies suggest its involvement in cell-substrate interaction. In normal tissues, VLA-3 is restricted to few cel...

  8. The Human Laminin Receptor is a Member of the Integrin Family of Cell Adhesion Receptors

    Science.gov (United States)

    Gehlsen, Kurt R.; Dillner, Lena; Engvall, Eva; Ruoslahti, Erkki

    1988-09-01

    A receptor for the adhesive basement membrane protein, laminin, was isolated from human glioblastoma cells by affinity chromatography on laminin. This receptor has a heterodimeric structure similar to that of receptors for other extracellular matrix proteins such as fibronectin and vitronectin. Incorporation of the laminin receptor into liposomal membranes makes it possible for liposomes to attach to surfaces coated with laminin. The receptor liposomes also attached to some extent to surfaces coated with fibronectin, but not with other matrix proteins. These properties identify the laminin receptor as a member of the integrin family of cell adhesion receptors.

  9. Highly Potent, Water Soluble Benzimidazole Antagonist for Activated (alpha)4(beta)1 Integrin

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R D; Andrei, M; Lau, E Y; Lightstone, F C; Liu, R; Lam, K S; Kurth, M J

    2007-08-29

    The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin, activated constitutively in lymphoma, can be targeted with the bisaryl urea peptidomimetic antagonist 1 (LLP2A). However, concerns on its preliminary pharmacokinetic (PK) profile provided an impetus to change the pharmacophore from a bisaryl urea to a 2-arylaminobenzimidazole moiety resulting in improved solubility while maintaining picomolar potency [5 (KLCA4); IC{sub 50} = 305 pM]. With exceptional solubility, this finding has potential for improving PK to help diagnose and treat lymphomas.

  10. The Epithelial Integrin αvβ6 Is a Receptor for Foot-and-Mouth Disease Virus

    OpenAIRE

    Jackson, Terry; Sheppard, Dean; Denyer, Michael; Blakemore, Wendy; King, Andrew M. Q.

    2000-01-01

    Field isolates of foot-and-mouth disease virus (FMDV) have been shown to use the RGD-dependent integrin αvβ3 as a cellular receptor on cultured cells. However, several other RGD-dependent integrins may have the potential to act as receptors for FMDV in vivo. Of these, αvβ6 is a likely candidate for use as a receptor by FMDV as it is expressed on epithelial cells, which correlates with the tissue tropism of the virus. In this report, we show that human colon carcinoma cells (SW480) that are no...

  11. Spermidine/spermine N-1-acetyltransferase specifically binds to the integrin alpha 9 subunit cytoplasmic domain and enhances cell migration

    OpenAIRE

    Chen, C.; Young, B A; Coleman, C S; Pegg, A E; Sheppard, D

    2004-01-01

    T he integrin alpha9beta1 is expressed on migrating cells, such as leukocytes, and binds to multiple ligands that are present at sites of tissue injury and inflammation. alpha9beta1, like the structurally related integrin alpha4beta1, mediates accelerated cell migration, an effect that depends on the beta cytoplasmic domain. alpha4beta1 enhances migration through reversible binding to the adapter protein, paxillin, but alpha9beta1-dependent migration is paxillin independent. Using yeast two-h...

  12. Differential Dynamics of α5 Integrin, Paxillin, and α-Actinin during Formation and Disassembly of Adhesions in Migrating Cells

    OpenAIRE

    Laukaitis, Christina M; Webb, Donna J.; Donais, Karen; Horwitz, Alan F.

    2001-01-01

    To investigate the mechanisms by which adhesions form and disperse in migrating cells, we expressed α5 integrin, α-actinin, and paxillin as green fluorescent protein (GFP) fusions. All localized with their endogenous counterparts and did not perturb migration when expressed at moderate levels. α5-GFP also rescued the adhesive defects in CHO B2 cells, which are α5 integrin deficient. In ruffling cells, α5-GFP and α-actinin–GFP localized prominently at the leading edge in membrane protrusions. ...

  13. Collagen XIII Induced in Vascular Endothelium Mediates α1β1 Integrin-Dependent Transmigration of Monocytes in Renal Fibrosis

    OpenAIRE

    Dennis, Jameel; Meehan, Daniel T; Delimont, Duane; Zallocchi, Marisa; Perry, Greg A.; O'Brien, Stacie; Tu, Hongmin; Pihlajaniemi, Taina; Cosgrove, Dominic

    2010-01-01

    Alport syndrome is a common hereditary basement membrane disorder caused by mutations in the collagen IV α3, α4, or α5 genes that results in progressive glomerular and interstitial renal disease. Interstitial monocytes that accumulate in the renal cortex from Alport mice are immunopositive for integrin α1β1, while only a small fraction of circulating monocytes are immunopositive for this integrin. We surmised that such a disparity might be due to the selective recruitment of α1β1-positive mon...

  14. Synthesis and Biological Evaluation of a Peptide Paclitaxel Conjugate Which Targets the Integrin αvβ6

    OpenAIRE

    Li, Shunzi; Gray, Bethany Powell; McGuire, Michael J.; Brown, Kathlynn C.

    2011-01-01

    The integrin αvβ6 is an emergent biomarker for non-small cell lung cancer (NSCLC) as well as other carcinomas. We previously developed a tetrameric peptide, referred to as H2009.1, which binds αvβ6 and displays minimal affinity for other RGD-binding integrins. Here we report the use of this peptide to actively deliver paclitaxel to αvβ6–positive cells. We synthesized a water soluble paclitaxel-H2009.1 peptide conjugate in which the 2′-position of paclitaxel is attached to the tetrameric pepti...

  15. The epithelial αvβ3-integrin boosts the MYD88-dependent TLR2 signaling in response to viral and bacterial components.

    Directory of Open Access Journals (Sweden)

    Tatiana Gianni

    2014-11-01

    Full Text Available TLR2 is a cell surface receptor which elicits an immediate response to a wide repertoire of bacteria and viruses. Its response is usually thought to be proinflammatory rather than an antiviral. In monocytic cells TLR2 cooperates with coreceptors, e.g. CD14, CD36 and αMβ2-integrin. In an earlier work we showed that αvβ3-integrin acts in concert with TLR2 to elicit an innate response to HSV, and to lipopolysaccharide. This response is characterized by production of IFN-α and -β, a specific set of cytokines, and NF-κB activation. We investigated the basis of the cooperation between αvβ3-integrin and TLR2. We report that β3-integrin participates by signaling through Y residues located in the C-tail, known to be involved in signaling activity. αvβ3-integrin boosts the MYD88-dependent TLR2 signaling and IRAK4 phosphorylation in 293T and in epithelial, keratinocytic and neuronal cell lines. The replication of ICP0minus HSV is greatly enhanced by DN versions of MYD88, of Akt - a hub of this pathway, or by β3integrin-silencing. αvβ3-integrin enables the recruitment of TLR2, MAL, MYD88 at lipid rafts, the platforms from where the signaling starts. The PAMP of the HSV-induced innate response is the gH/gL virion glycoprotein, which interacts with αvβ3-integrin and TLR2 independently one of the other, and cross-links the two receptors. Given the preferential distribution of αvβ3-integrin to epithelial cells, we propose that αvβ3-integrin serves as coreceptor of TLR2 in these cells. The results open the possibility that TLR2 makes use of coreceptors in a variety of cells to broaden its spectrum of activity and tissue specificity.

  16. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity.

    Directory of Open Access Journals (Sweden)

    Joel Raborn

    Full Text Available The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala(252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala(252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.

  17. A Novel Interaction of the Catalytic Subunit of Protein Phosphatase 2A with the Adaptor Protein CIN85 Suppresses Phosphatase Activity and Facilitates Platelet Outside-in αIIbβ3 Integrin Signaling.

    Science.gov (United States)

    Khatlani, Tanvir; Pradhan, Subhashree; Da, Qi; Shaw, Tanner; Buchman, Vladimir L; Cruz, Miguel A; Vijayan, K Vinod

    2016-08-12

    The transduction of signals generated by protein kinases and phosphatases are critical for the ability of integrin αIIbβ3 to support stable platelet adhesion and thrombus formation. Unlike kinases, it remains unclear how serine/threonine phosphatases engage the signaling networks that are initiated following integrin ligation. Because protein-protein interactions form the backbone of signal transduction, we searched for proteins that interact with the catalytic subunit of protein phosphatase 2A (PP2Ac). In a yeast two-hybrid study, we identified a novel interaction between PP2Ac and an adaptor protein CIN85 (Cbl-interacting protein of 85 kDa). Truncation and alanine mutagenesis studies revealed that PP2Ac binds to the P3 block ((396)PAIPPKKPRP(405)) of the proline-rich region in CIN85. The interaction of purified PP2Ac with CIN85 suppressed phosphatase activity. Human embryonal kidney 293 αIIbβ3 cells overexpressing a CIN85 P3 mutant, which cannot support PP2Ac binding, displayed decreased adhesion to immobilized fibrinogen. Platelets contain the ∼85 kDa CIN85 protein along with the PP2Ac-CIN85 complex. A myristylated cell-permeable peptide derived from residues 395-407 of CIN85 protein (P3 peptide) disrupted the platelet PP2Ac-CIN85 complex and decreased αIIbβ3 signaling dependent functions such as platelet spreading on fibrinogen and thrombin-mediated fibrin clot retraction. In a phospho-profiling study P3 peptide treated platelets also displayed decreased phosphorylation of several signaling proteins including Src and GSK3β. Taken together, these data support a role for the novel PP2Ac-CIN85 complex in supporting integrin-dependent platelet function by dampening the phosphatase activity. PMID:27334924

  18. Lentviral-mediated RNAi to inhibit target gene expression of the porcine integrin αv subunit, the FMDV receptor, and against FMDV infection in PK-15 cells

    Directory of Open Access Journals (Sweden)

    Lin Tong

    2011-09-01

    Full Text Available Abstract Background shRNA targeting the integrin αv subunit, which is the foot-and-mouth disease virus (FMDV receptor, plays a key role in virus attachment to susceptible cells. We constructed a RNAi lentiviral vector, iαv pLenti6/BLOCK -iT™, which expressed siRNA targeting the FMDV receptor, the porcine integrin αv subunit, on PK-15 cells. We also produced a lentiviral stock, established an iαv-PK-15 cell line, evaluated the gene silencing efficiency of mRNA using real-time qRT-PCR, integrand αv expression by indirect immunofluorescence assay (IIF and cell enzyme linked immunosorbent assays (cell ELISA, and investigated the in vivo inhibitory effect of shRNA on FMDV replication in PK-15 cells. Results Our results indicated successful establishment of the iαv U6 RNAi entry vector and the iαv pLenti6/BLOCK -iT expression vector. The functional titer of obtained virus was 1.0 × 106 TU/mL. To compare with the control and mock group, the iαv-PK-15 group αv mRNA expression rate in group was reduced by 89.5%, whilst IIF and cell ELISA clearly indicated suppression in the experimental group. Thus, iαv-PK-15 cells could reduce virus growth by more than three-fold and there was a > 99% reduction in virus titer when cells were challenged with 102 TCID50 of FMDV. Conclusions Iαv-PK-15 cells were demonstrated as a cell model for anti-FMDV potency testing, and this study suggests that shRNA could be a viable therapeutic approach for controlling the severity of FMD infection and spread.

  19. Changes in integrin αv, vinculin and connexin43 in the medial prefrontal cortex in rats under single-prolonged stress.

    Science.gov (United States)

    Li, Yana; Han, Fang; Shi, Yuxiu

    2015-04-01

    Post‑traumatic stress disorder (PTSD) is a stress‑accociated mental disorder that occurs as a result of exposure to a traumatic event, with characteristic symptoms, including intrusive memories, hyperarousal and avoidance. The medial prefrontal cortex (mPFC) is known to be significantly involved in emotional adjustment, particularly introspection, inhibition of the amygdala and emotional memory. Previous structural neuroimaging studies have revealed that the mPFC of PTSD patients was significantly smaller when compared with that of controls and their emotional adjustment function was weakened. However, the mechanisms that cause such atrophy remain to be elucidated. The aim of the present study was to elucidate the possible mechanisms involved in apoptosis induced by single‑prolonged stress (SPS) in the mPFC of PTSD rats. SPS is an animal model reflective of PTSD. Of the proposed animal models of PTSD, SPS is one that has been shown to be reliably reproducible in patients with PTSD. Wistar rats were sacrificed at 1, 4, 7 and 14 days after exposure to SPS. Apoptotic cells were assessed using electron microscopy and the TUNEL method. Expression of integrin αv, vinculin and connexin43 were detected using immunohistochemistry, western blotting and reverse transcription polymerase chain reaction. The present results demonstrated that apoptotic cells significantly increased in the mPFC of SPS rats, accompanied with changes in expression of integrin αv, vinculin and connexin43. The present results indicated that SPS‑induced apoptosis in the mPFC of PTSD rats and the mitochondrial pathway were involved in the process of SPS‑induced apoptosis. PMID:25483027

  20. c-Abl is an upstream regulator of acid sphingomyelinase in apoptosis induced by inhibition of integrins αvβ3 and αvβ5.

    Directory of Open Access Journals (Sweden)

    Xiuhai Ren

    Full Text Available Inhibition of integrins αvβ3/αvβ5 by the cyclic function-blocking peptide, RGDfV (Arg-Gly-Asp-Phe-Val can induce apoptosis in both normal cells and tumor cells. We show that RGDfV induced apoptosis in ECV-304 carcinoma cells, increased activity and mRNA expression of acid sphingomyelinase (ASM, and increased ceramides C(16, C(18:0, C(24:0 and C(24:1 while decreasing the corresponding sphingomyelins. siRNA to ASM decreased RGDfV-induced apoptosis as measured by TUNEL, PARP cleavage, mitochondrial depolarization, and caspase-3 and caspase-8 activities, as well as by annexinV in a 3D collagen model. These findings indicate a causal role for ASM in RGDfV-induced apoptosis in ECV-304. We have shown that c-Abl, a non-receptor tyrosine kinase, also mediates RGDfV-induced apoptosis. However, c-Abl, has not been previously linked to ASM in any system. Here we show that STI-571 (imatinib, inhibitor of c-Abl inhibited RGDfV-induced ASM activity. Furthermore, STI-571 and c-Abl-siRNA both inhibited RGDfV-induced increase in ASM mRNA, but ASM-siRNA did not affect c-Abl phosphorylation or expression, supporting that c-Abl regulates the RGDfV-induced increase in ASM expression. These studies implicate ASM as a mediator of apoptosis induced by inhibition of integrins αvβ3/αvβ5, and for the first time place c-Abl as an upstream regulator of ASM expression and activity.

  1. Geometric guidance of integrin mediated traction stress during stem cell differentiation.

    Science.gov (United States)

    Lee, Junmin; Abdeen, Amr A; Tang, Xin; Saif, Taher A; Kilian, Kristopher A

    2015-11-01

    Cells sense and transduce the chemical and mechanical properties of their microenvironment through cell surface integrin receptors. Traction stress exerted by cells on the extracellular matrix mediates focal adhesion stabilization and regulation of the cytoskeleton for directing biological activity. Understanding how stem cells integrate biomaterials properties through focal adhesions during differentiation is important for the design of soft materials for regenerative medicine. In this paper we use micropatterned hydrogels containing fluorescent beads to explore force transmission through integrins from single mesenchymal stem cells (MSCs) during differentiation. When cultured on polyacrylamide gels, MSCs will express markers associated with osteogenesis and myogenesis in a stiffness dependent manner. The shape of single cells and the composition of tethered matrix protein both influence the magnitude of traction stress applied and the resultant differentiation outcome. We show how geometry guides the spatial positioning of focal adhesions to maximize interaction with the matrix, and uncover a relationship between αvβ3, α5β1 and mechanochemical regulation of osteogenesis. PMID:26285084

  2. Purification and SAXS analysis of the integrin linked kinase, PINCH, parvin (IPP heterotrimeric complex.

    Directory of Open Access Journals (Sweden)

    Amy L Stiegler

    Full Text Available The heterotrimeric protein complex containing the integrin linked kinase (ILK, parvin, and PINCH proteins, termed the IPP complex, is an essential component of focal adhesions, where it interacts with many proteins to mediate signaling from integrin adhesion receptors. Here we conduct a biochemical and structural analysis of the minimal IPP complex, comprising full-length human ILK, the LIM1 domain of PINCH1, and the CH2 domain of α-parvin. We provide a detailed purification protocol for IPP and show that the purified IPP complex is stable and monodisperse in solution. Using small-angle X-ray scattering (SAXS, we also conduct the first structural characterization of IPP, which reveals an elongated shape with dimensions 120×60×40 Å. Flexibility analysis using the ensemble optimization method (EOM is consistent with an IPP complex structure with limited flexibility, raising the possibility that inter-domain interactions exist. However, our studies suggest that the inter-domain linker in ILK is accessible and we detect no inter-domain contacts by gel filtration analysis. This study provides a structural foundation to understand the conformational restraints that govern the IPP complex.

  3. RUNX2 promotes breast cancer bone metastasis by increasing integrin α5-mediated colonization.

    Science.gov (United States)

    Li, Xiao-Qing; Lu, Jun-Tao; Tan, Cong-Cong; Wang, Qing-Shan; Feng, Yu-Mei

    2016-09-28

    Runt-related transcription factor 2 (RUNX2) is regarded as an important contributor to breast cancer bone metastasis. However, previous studies did not provide direct clinical evidence for a role of RUNX2 in bone-specific metastasis in breast cancer, and the mechanism of RUNX2 in cancer cell recruitment and adhesion to the bone remains unclear. In this study, we showed that RUNX2 expression is positively correlated with the risk of bone-specific metastasis in lymph node-negative breast cancer patients. Then, we identified ITGA5 as a transcriptional target of RUNX2 from multiple candidate genes encoding adhesion molecules or chemokine receptors. We further provided experimental and clinical evidence that RUNX2, in an integrin α5-dependent manner, promotes the attraction and adhesion of breast cancer cells to the bone and confers cancer cell survival and bone colonization advantages. Overall, our findings clarify an adhesion-dependent mechanism of RUNX2 for the osteotropism and bone colonization of breast cancer cells and implicate RUNX2 and integrin α5 as potential molecular markers for the prediction of bone metastasis and therapeutic targets for the treatment of breast cancer bone metastasis. PMID:27317874

  4. Permeability changes of integrin-containing multivesicular structures triggered by picornavirus entry.

    Directory of Open Access Journals (Sweden)

    Pan Soonsawad

    Full Text Available Cellular uptake of clustered α2β1-integrin induces the formation of membrane compartments that subsequently mature into a multivesicular body (MVB. Enhanced internalization mediated by clustered integrins was observed upon infection by the picornavirus echovirus 1 (EVI. We elucidated the structural features of virus-induced MVBs (vMVBs in comparison to antibody-induced control MVBs (mock infection by means of high-pressure cryo fixation of cells followed by immuno electron tomography during early entry of the virus. Three-dimensional tomograms revealed a marked increase in the size and complexity of these vMVBs and the intraluminal vesicles (ILVs at 2 and 3.5 hours post infection (p.i., in contrast to the control MVBs without virus. Breakages in the membranes of vMVBs were detected from tomograms after 2 and especially after 3.5 h suggesting that these breakages could facilitate the genome release to the cytoplasm. The in situ neutral-red labeling of viral genome showed that virus uncoating starts as early as 30 min p.i., while an increase of permeability was detected in the vMVBs between 1 and 3 hours p.i., based on a confocal microscopy assay. Altogether, the data show marked morphological changes in size and permeability of the endosomes in the infectious entry pathway of this non-enveloped enterovirus and suggest that the formed breakages facilitate the transfer of the genome to the cytoplasm for replication.

  5. Kindlin-2 directly binds actin and regulates integrin outside-in signaling.

    Science.gov (United States)

    Bledzka, Kamila; Bialkowska, Katarzyna; Sossey-Alaoui, Khalid; Vaynberg, Julia; Pluskota, Elzbieta; Qin, Jun; Plow, Edward F

    2016-04-11

    Reduced levels of kindlin-2 (K2) in endothelial cells derived from K2(+/-)mice or C2C12 myoblastoid cells treated with K2 siRNA showed disorganization of their actin cytoskeleton and decreased spreading. These marked changes led us to examine direct binding between K2 and actin. Purified K2 interacts with F-actin in cosedimentation and surface plasmon resonance analyses and induces actin aggregation. We further find that the F0 domain of K2 binds actin. A mutation, LK(47)/AA, within a predicted actin binding site (ABS) of F0 diminishes its interaction with actin by approximately fivefold. Wild-type K2 and K2 bearing the LK(47)/AA mutation were equivalent in their ability to coactivate integrin αIIbβ3 in a CHO cell system when coexpressed with talin. However, K2-LK(47)/AA exhibited a diminished ability to support cell spreading and actin organization compared with wild-type K2. The presence of an ABS in F0 of K2 that influences outside-in signaling across integrins establishes a new foundation for considering how kindlins might regulate cellular responses. PMID:27044892

  6. Tie2-dependent deletion of α6 integrin subunit in mice reduces tumor growth and angiogenesis.

    Science.gov (United States)

    Bouvard, Claire; Segaoula, Zacharie; De Arcangelis, Adèle; Galy-Fauroux, Isabelle; Mauge, Laetitia; Fischer, Anne-Marie; Georges-Labouesse, Elisabeth; Helley, Dominique

    2014-11-01

    The α6 integrin subunit (α6) has been implicated in cancer cell migration and in the progression of several malignancies, but its role in tumor angiogenesis is unclear. In mice, anti-α6 blocking antibodies reduce tumor angiogenesis, whereas Tie1-dependent α6 gene deletion enhances neovessel formation in melanoma and lung carcinoma. To clarify the discrepancy in these results we used the cre-lox system to generate a mouse line, α6fl/fl‑Tie2Cre(+), with α6 gene deletion specifically in Tie2-lineage cells: endothelial cells, pericytes, subsets of hematopoietic stem cells, and Tie2-expressing monocytes/macrophages (TEMs), known for their proangiogenic properties. Loss of α6 expression in α6fl/fl‑Tie2Cre(+) mice reduced tumor growth in a murine B16F10 melanoma model. Immunohistological analysis of the tumors showed that Tie2-dependent α6 gene deletion was associated with reduced tumor vascularization and with reduced infiltration of proangiogenic Tie2-expressing macrophages. These findings demonstrate that α6 integrin subunit plays a major role in tumor angiogenesis and TEM infiltration. Targeting α6 could be used as a strategy to reduce tumor growth. PMID:25176420

  7. Differential gene expression by integrin β7+ and β7- memory T helper cells

    Directory of Open Access Journals (Sweden)

    Yang Yee

    2004-07-01

    Full Text Available Abstract Background The cell adhesion molecule integrin α4β7 helps direct the migration of blood lymphocytes to the intestine and associated lymphoid tissues. We hypothesized that β7+ and β7- blood memory T helper cells differ in their expression of genes that play a role in the adhesion or migration of T cells. Results RNA was prepared from β7+ and β7- CD4+ CD45RA- blood T cells from nine normal human subjects and analyzed using oligonucleotide microarrays. Of 21357 genes represented on the arrays, 16 were more highly expressed in β7+ cells and 18 were more highly expressed in β7- cells (≥1.5 fold difference and adjusted P + memory/effector T cells than on β7- cells. Conclusions Memory/effector T cells that express integrin β7 have a distinct pattern of expression of a set of gene transcripts. Several of these molecules can affect cell adhesion or chemotaxis and are therefore likely to modulate the complex multistep process that regulates trafficking of CD4+ memory T cell subsets with different homing behaviors.

  8. HT-29肠癌细胞中E-selectin、Integrin β1及ICAM-1表达水平%Expression of E-Selectin, Integrin β1 and ICAM-1 in HT-29 Colon Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    刘长宝; 凌志强

    2007-01-01

    目的:探讨HT-29肠癌细胞、正常肠上皮细胞及ECV-304血管内皮细胞中E-selectin、Integrin β1及ICAM-1的表达状态.方法:采用Nothern Blotting方法检测HT-29肠癌细胞、正常肠上皮细胞和ECV-304血管内皮细胞中E-selectin、Integrin β1及ICAM-1 mRNA表达水平,采用ELISA法定量分析其表达含量.结果:HT-29肠癌细胞、正常肠上皮细胞和ECV-304血管内皮细胞均有E-selectin、Integrin β1及ICAM-1基因表达.ELISA定量测定3个粘附分子表达水平,HT-29肠癌细胞均高于正常肠上皮细胞和ECV-304血管内皮细胞,分别存在显著性差异(P<0.05).结论:E-selectin、Integrin β1、ICAM-1可能与肿瘤细胞转移有关.

  9. Structural basis and kinetics of force-induced conformational changes of an αA domain-containing integrin.

    Directory of Open Access Journals (Sweden)

    Xue Xiang

    Full Text Available BACKGROUND: Integrin α(Lβ₂ (lymphocyte function-associated antigen, LFA-1 bears force upon binding to its ligand intercellular adhesion molecule 1 (ICAM-1 when a leukocyte adheres to vascular endothelium or an antigen presenting cell (APC during immune responses. The ligand binding propensity of LFA-1 is related to its conformations, which can be regulated by force. Three conformations of the LFA-1 αA domain, determined by the position of its α₇-helix, have been suggested to correspond to three different affinity states for ligand binding. METHODOLOGY/PRINCIPAL FINDINGS: The kinetics of the force-driven transitions between these conformations has not been defined and dynamically coupled to the force-dependent dissociation from ligand. Here we show, by steered molecular dynamics (SMD simulations, that the αA domain was successively transitioned through three distinct conformations upon pulling the C-terminus of its α₇-helix. Based on these sequential transitions, we have constructed a mathematical model to describe the coupling between the αA domain conformational changes of LFA-1 and its dissociation from ICAM-1 under force. Using this model to analyze the published data on the force-induced dissociation of single LFA-1/ICAM-1 bonds, we estimated the force-dependent kinetic rates of interstate transition from the short-lived to intermediate-lived and from intermediate-lived to long-lived states. Interestingly, force increased these transition rates; hence activation of LFA-1 was accelerated by pulling it via an engaged ICAM-1. CONCLUSIONS/SIGNIFICANCE: Our study defines the structural basis for mechanical regulation of the kinetics of LFA-1 αA domain conformational changes and relates these simulation results to experimental data of force-induced dissociation of single LFA-1/ICAM-1 bonds by a new mathematical model, thus provided detailed structural and kinetic characterizations for force-stabilization of LFA-1/ICAM-1 interaction.

  10. Increased expression of integrin alpha2 and abnormal response to TGF-beta1 in hereditary gingival fibromatosis.

    NARCIS (Netherlands)

    Zhou, J.; Meng, L.; Ye, X.Q.; Hoff, J.W. von den; Bian, Z.

    2009-01-01

    OBJECTIVE: To investigate the possible correlation between integrin alpha1, alpha2, and beta1 expression and excessive collagen synthesis in fibroblasts from 3 unrelated Chinese families with hereditary gingival fibromatosis (HGF). DESIGN: Gingival fibroblasts from three Chinese HGF patients and thr

  11. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts

    DEFF Research Database (Denmark)

    Su, J; Muranjan, M; Sap, J

    1999-01-01

    BACKGROUND: Fyn and c-Src are two of the most widely expressed Src-family kinases. Both are strongly implicated in the control of cytoskeletal organization and in the generation of integrin-dependent signalling responses in fibroblasts. These proteins are representative of a large family of tyros...

  12. The Effect of dcEFs on migration behavior of A549 cells and Integrin beta1 expression

    Directory of Open Access Journals (Sweden)

    Yunjie WANG

    2008-04-01

    Full Text Available Background and objective The effect of direct-current electric fields (dcEFs on cells attracted extensive attention. Moreover the metastasis and its potential are considered to be related to dcEFs. The aim is to study the effect of dcEFs on migration behavior of A549 cells, Integrin ?1 and its signal pathways. Methods According to exposure to 5 V/cm dcEFs or not and the time of exposure, the A549 cells were divided into 4 groups. Images were taken per 5 min within 2 h to recode the migration of the cells. The data of results were analyzed statistically. Results Most of A549cells exposed to the dcEFs aligned and elongated perpendicularly to the electric field lines and migrated to the cathode continually during 2 h. On the contrary, cells unexposed to dcEFs showed slightly random movements. Immunofluorescence showed that Integrin ?1 on plasma membrane polarized to the cathode of the dcEFs. Western blot showed that Integrin beta1 downstream signal pathways p-FAK and p-ERK were overexpressed in the dcEFs. Conclusion A549 cells have a galvanotatic feature of cathodal directed migration while exposed to the dcEFs. The polarization of Integrin beta1 and the promotion of its downstream signal pathways may play an important roles in the galvanotaxis of A549 cells.

  13. Integrin-like Protein Is Involved in the Osmotic Stress-induced Abscisic Acid Biosynthesis in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Bing Lü; Feng Chen; Zhong-Hua Gong; Hong Xie; Jian-Sheng Liang

    2007-01-01

    We studied the perception of plant cells to osmotic stress that leads to the accumulation of abscisic acid (ABA) in stressed Arabidopsis thaliana L. cells. A significant difference was found between protoplasts and cells in terms of their responses to osmotic stress and ABA biosynthesis, implying that cell wall and/or cell wall-plasma membrane interaction are essential in identifying osmotic stress. Western blotting and immunofluorescence localization experiments, using polyclonal antibody against human integrin β1, revealed the existence of a protein similar to the integrin protein of animals in the suspension-cultured cells located in the plasma membrane fraction.Treatment with a synthetic pentapeptide, Gly-Arg-Gly-Asp-Ser (GRGDS), which contains an RGD domain and interacts specifically with integrin protein and thus blocks the cell wall-plasma membrane interaction, significantly inhibited osmotic stress-induced ABA biosynthesis in cells, but not in protoplasts. These results demonstrate that cell wall and/or cell wall-plasma membrane interaction mediated by integrin-like proteins played important roles in osmotic stress-induced ABA biosynthesis in Arabidopsis thaliana.

  14. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype

    DEFF Research Database (Denmark)

    Breau, Marie A; Pietri, Thomas; Eder, Olivier;

    2006-01-01

    The enteric nervous system arises mainly from vagal and sacral neural crest cells that colonise the gut between 9.5 and 14 days of development in mice. Using the Cre-LoxP system, we removed beta1 integrins in the neural crest cells when they emerge from the neural tube. beta1-null enteric neural ...

  15. Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo

    DEFF Research Database (Denmark)

    Grüner, Sabine; Prostredna, Miroslava; Schulte, Valerie;

    2003-01-01

    intravital fluorescence microscopy that platelet adhesion and thrombus growth on the exposed ECM of the injured carotid artery is not significantly altered in alpha2-null mice and even in mice with a Cre/loxP-mediated loss of all beta1 integrins on their platelets. In contrast, inhibition of alphaIIbbeta3...

  16. Selective, α2β1 integrin-dependent secretion of il-6 by connective tissue mast cells.

    Science.gov (United States)

    McCall-Culbreath, Karissa D; Li, Zhengzhi; Zhang, Zhonghua; Lu, Lucy X; Orear, Lynda; Zutter, Mary M

    2011-01-01

    Mast cells, critical mediators of inflammation and anaphylaxis, are poised as one of the first lines of defense against external assault. Mast cells release several classes of preformed and de novo synthesized mediators. Cross-linking of the high-affinity FcεRI results in degranulation and the release of preformed, proinflammatory mediators including histamine and serotonin. We previously demonstrated that mast cell activation by Listeria monocytogenes requires the α2β1 integrin for rapid IL-6 secretion both in vivo and in vitro. However, the mechanism of IL-6 release is unknown. Here, we demonstrate the Listeria- and α2β1 integrin-mediated mast cell release of preformed IL-6 without the concomitant release of histamine or β-hexosaminidase. α2β1 integrin-dependent mast cell activation and IL-6 release is calcium independent. In contrast, IgE cross-linking-mediated degranulation is calcium dependent and does not result in IL-6 release, demonstrating that distinct stimuli result in the release of specific mediator pools. These studies demonstrate that IL-6 is presynthesized and stored in connective tissue mast cells and can be released from mast cells in response to distinct, α2β1 integrin-dependent stimulation, providing the host with a specific innate immune response without stimulating an allergic reaction.

  17. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    Directory of Open Access Journals (Sweden)

    Cordula Klockenbusch

    2010-01-01

    Full Text Available Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively.

  18. Integrin-specific mechanoresponses to compression and extension probed by cylindrical flat-ended AFM tips in lung cells.

    Directory of Open Access Journals (Sweden)

    Irene Acerbi

    Full Text Available Cells from lung and other tissues are subjected to forces of opposing directions that are largely transmitted through integrin-mediated adhesions. How cells respond to force bidirectionality remains ill defined. To address this question, we nanofabricated flat-ended cylindrical Atomic Force Microscopy (AFM tips with ~1 µm(2 cross-section area. Tips were uncoated or coated with either integrin-specific (RGD or non-specific (RGE/BSA molecules, brought into contact with lung epithelial cells or fibroblasts for 30 s to form focal adhesion precursors, and used to probe cell resistance to deformation in compression and extension. We found that cell resistance to compression was globally higher than to extension regardless of the tip coating. In contrast, both tip-cell adhesion strength and resistance to compression and extension were the highest when probed at integrin-specific adhesions. These integrin-specific mechanoresponses required an intact actin cytoskeleton, and were dependent on tyrosine phosphatases and Ca(2+ signaling. Cell asymmetric mechanoresponse to compression and extension remained after 5 minutes of tip-cell adhesion, revealing that asymmetric resistance to force directionality is an intrinsic property of lung cells, as in most soft tissues. Our findings provide new insights on how lung cells probe the mechanochemical properties of the microenvironment, an important process for migration, repair and tissue homeostasis.

  19. Monodisperse and LPS-free Aggregatibacter actinomycetemcomitans leukotoxin: Interactions with human β2 integrins and erythrocytes

    DEFF Research Database (Denmark)

    Reinholdt, Jesper; Poulsen, Knud; Brinkmann, Christel Rothe;

    2013-01-01

    phagocytes. The known receptor for LtxA on leukocytes is integrin αLβ2 (LFA-1 or CD11a/CD18). However, the molecular mechanisms involved in LtxA-mediated cytotoxicity are poorly understood, partly because LtxA has proven difficult to prepare for experiments as free of contaminants and with its native...

  20. Wisp2/CCN5 up-regulated in the central nervous system of GM3-only mice facilitates neurite formation in Neuro2a cells via integrin-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawa, Yuki, E-mail: tomilbio@med.nagoya-u.ac.jp [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Ohmi, Yuhsuke, E-mail: ooumi82@med.nagoya-u.ac.jp [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Tajima, Orie, E-mail: oriet@isc.chubu.ac.jp [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto-cho, Kasugai 487-8501 (Japan); Yamauchi, Yoshio, E-mail: yyoshio@med.nagoya-u.ac.jp [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Furukawa, Keiko, E-mail: keikofu@isc.chubu.ac.jp [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto-cho, Kasugai 487-8501 (Japan); Furukawa, Koichi, E-mail: koichi@med.nagoya-u.ac.jp [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan)

    2011-08-05

    Highlights: {yields} Wisp2/CCN5 was up-regulated in nervous tissues of GM3-only mutant mice. {yields} Wisp2/CCN5 was found in neurons more strongly in the mutant mice. {yields} Wisp2/CCN5 induces Akt phosphorylation via integrins and facilitates neurite formation. {yields} Wisp2/CCN5 conferred resistance to H{sub 2}O{sub 2}-induced apoptosis. {yields} Up-regulation of Wisp2/CCN5 in GM3-only mice seemed for protection of brains from neurodegeneration. -- Abstract: Wisp2/CCN5 belongs to CCN family proteins which are involved in cell proliferation, angiogenesis, tumorigenesis and wound healing. Although a number of studies on the roles of Wisp2/CCN5 in cancers have been reported, no study on the expression and function of Wisp2/CCN5 in the central nervous system has been reported. In this study, we focused on Wisp2/CCN5 that was up-regulated in nervous tissues in GM3-only mice. Over-expression of Wisp2/CCN5 enhanced neurite outgrowth potently after serum withdrawal with increased phosphorylation levels of Akt and ERKs. When cells were cultured with recombinant Wisp2/CCN5 proteins, more and longer neurites were formed than in the controls. Thus, we demonstrated for the first time that Wisp2/CCN5 facilitates neurite formation in a mouse neuroblastoma cell line, Neuro2a. Akt phosphorylation induced by recombinant Wisp2/CCN5 was suppressed after knockdown of integrin {beta}1. Moreover, Wisp2/CCN5-over-expressing cells were resistant to apoptosis induced by H{sub 2}O{sub 2}. These results suggested that secreted Wisp2/CCN5 induces Akt and ERK phosphorylation via integrins, and consequently facilitates neurite formation and conferred resistance to apoptosis. Up-regulation of Wisp2/CCN5 in GM3-only mice should be, therefore, a reaction to protect nervous tissues from neurodegeneration caused by ganglioside deficiency.

  1. Interleukin-2 induces beta2-integrin-dependent signal transduction involving the focal adhesion kinase-related protein B (fakB)

    DEFF Research Database (Denmark)

    Brockdorff, J; Kanner, S B; Nielsen, M;

    1998-01-01

    experiments indicate that the IL-2-induced 125-kDa phosphotyrosine protein is the focal adhesion kinase-related protein B (fakB). Thus, IL-2 induces strong tyrosine phosphorylation of fakB in beta2-integrin-positive but not in beta2-integrin-negative T cells, and CD18 mAb selectively blocks IL-2-induced fakB......-tyrosine phosphorylation in beta2-integrin-positive T cells. In parallel experiments, IL-2 does not induce or augment tyrosine phosphorylation of p125(FAK). In conclusion, our data indicate that IL-2 induces beta2-integrin-dependent signal transduction events involving the tyrosine kinase substrate fakB....... and a leukocyte adhesion deficiency (LAD) patient. We show that IL-2 induces tyrosine phosphorylation of a 125-kDa protein and homotypic adhesion in beta2 integrin (CD18)-positive but not in beta2-integrin-negative T cells. EDTA, an inhibitor of integrin adhesion, blocks IL-2-induced tyrosine phosphorylation...

  2. Interplay of Endosomal pH and Ligand Occupancy in Integrin α5β1 Ubiquitination, Endocytic Sorting, and Cell Migration

    Directory of Open Access Journals (Sweden)

    Dmitri Kharitidi

    2015-10-01

    Full Text Available Membrane trafficking of integrins plays a pivotal role in cell proliferation and migration. How endocytosed integrins are targeted either for recycling or lysosomal delivery is not fully understood. Here, we show that fibronectin (FN binding to α5β1 integrin triggers ubiquitination and internalization of the receptor complex. Acidification facilitates FN dissociation from integrin α5β1 in vitro and in early endosomes, promoting receptor complex deubiquitination by the USP9x and recycling to the cell surface. Depending on residual ligand occupancy of receptors, some α5β1 integrins remain ubiquitinated and are captured by ESCRT-0/I, containing histidine domain-containing protein tyrosine phosphatase (HD-PTP and ubiquitin-associated protein 1 (UBAP1, and are directed for lysosomal proteolysis, limiting receptor downstream signaling and cell migration. Thus, HD-PTP or UBAP1 depletion confers a pro-invasive phenotype. Thus, pH-dependent FN-integrin dissociation and deubiquitination of the activated integrin α5β1 are required for receptor resensitization and cell migration, representing potential targets to modulate tumor invasiveness.

  3. Association between the Hypomethylation of Osteopontin and Integrin β3 Promoters and Vascular Smooth Muscle Cell Phenotype Switching in Great Saphenous Varicose Veins

    Directory of Open Access Journals (Sweden)

    Han Jiang

    2014-10-01

    Full Text Available Lower extremity varicose veins are a common condition in vascular surgery and proliferation of vascular smooth muscle cells (VSMCs in the intima is a significant pathological feature of varicosity. However, the pathogenesis of varicose veins is not fully understood. Osteopontin (OPN could promote the migration and adhesion of VSMCs through the cell surface receptor integrin β3 and the cooperation of OPN and integrin β3 is involved in many vascular diseases. However, the role of OPN and integrin β3 in varicosity remains unclear. In the current study, we found that the methylation levels in the promoter regions of OPN and integrin β3 genes in the VSMCs of varicose veins are reduced and the protein expression of OPN and integrin β3 are increased, compared with normal veins. Furthermore, it was observed that VSMCs in the neointima of varicose veins were transformed into the synthetic phenotype. Collectively, hypomethylation of the promoter regions for OPN and integrin β3 genes may increase the expression of these genes in varicosity, which is closely related to VSMC phenotype switching. Hypomethylation of the promoter regions for OPN and integrin β3 genes may be a key factor in the pathogenesis of varicosity.

  4. Association between the hypomethylation of osteopontin and integrin β3 promoters and vascular smooth muscle cell phenotype switching in great saphenous varicose veins.

    Science.gov (United States)

    Jiang, Han; Lun, Yu; Wu, Xiaoyu; Xia, Qian; Zhang, Xiaoyu; Xin, Shijie; Zhang, Jian

    2014-10-17

    Lower extremity varicose veins are a common condition in vascular surgery and proliferation of vascular smooth muscle cells (VSMCs) in the intima is a significant pathological feature of varicosity. However, the pathogenesis of varicose veins is not fully understood. Osteopontin (OPN) could promote the migration and adhesion of VSMCs through the cell surface receptor integrin β3 and the cooperation of OPN and integrin β3 is involved in many vascular diseases. However, the role of OPN and integrin β3 in varicosity remains unclear. In the current study, we found that the methylation levels in the promoter regions of OPN and integrin β3 genes in the VSMCs of varicose veins are reduced and the protein expression of OPN and integrin β3 are increased, compared with normal veins. Furthermore, it was observed that VSMCs in the neointima of varicose veins were transformed into the synthetic phenotype. Collectively, hypomethylation of the promoter regions for OPN and integrin β3 genes may increase the expression of these genes in varicosity, which is closely related to VSMC phenotype switching. Hypomethylation of the promoter regions for OPN and integrin β3 genes may be a key factor in the pathogenesis of varicosity.

  5. Phenotyping of chondrocytes from human osteoarthritic cartilage: chondrocyte expression of beta integrins and correlation with anatomic injury

    Directory of Open Access Journals (Sweden)

    G. Lapadula

    2011-09-01

    Full Text Available Chondrocyte-ECM (extracellular matrix interactions are believed to play a pivotal role in the development and metabolic homeostasis of articular cartilage. Cell surface adhesion molecules have been reported to modulate chondrocyte binding to ECM (collagen, fibronectin, laminin and they also act as transducers of critical signals in many biological processes such as growth, differentiation, migration and matrix synthesis. Recently, it has been shown that normal human articular chondrocytes strongly express ß1 integrins, which are constituted by a common chain (ß1 and a variable α chain, but the behaviour of these molecules in human osteoarthritic cartilage has not been extensively investigated. We studied the expression of ß integrins (ß1-5, α1-6, av chains, LFA-1, ICAM-1 and CD44, on freshly isolated chondrocytes obtained from 10 osteoarthritic patients undergoing surgical knee replacement. Chondrocytes were isolated by enzymatic digestion from three zones of each articular cartilage with a differing degree of macroscopic and microscopic damage. Integrin expression and cell cycle analysis were carried out by flowcytometry. Chondrocytes from costal cartilages of 5 human fetuses were also studied. Chondrocytes from osteoarthritic cartilage expressed high levels of ß1 integrin and, at different percantages, all the α chains. The α chain most frequentiy expressed was α1, foilowed by α3, α5, α2, αv. Integrin expression decreased from the least to the most damaged zone of articular cartilage and cell cycle analysis showed that proliferating chondrocytes (S phase were prevalent on the latter zone. ß2, ß3, ß2, ß5, CD44, LFA-1/ICAM-1 complex were very low expressed. Fetal chondrocytes strongly expressed ß1 and ß5 chains. These data provide evidence to show that integrin expression on human chondrocytes changes in osteoarthritis and suggest that perturbations of chondrocyte-ECM signalling occur in the development of the disease. The

  6. Loss of the α2β1 integrin alters human papilloma virus-induced squamous carcinoma progression in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Thuy Tran

    Full Text Available Expression of the α2β1 integrin, a receptor for collagens and laminin, is altered during tumor progression. Recent studies have linked polymorphisms in the α2 integrin gene with oral, squamous cell carcinoma (SCC. To determine the α2β1 integrin's role in SCC progression, we crossed α2-null mice with K14-HPV16 transgenic animals. Pathological progression to invasive carcinoma was evaluated in HPV-positive, α2-null (HPV/KO and HPV-positive, wild-type (HPV/WT animals. α2β1 integrin expression stimulated progression from hyperplasia and papillomatosis to dysplasia with concomitant dermal mast cell infiltration. Moreover, lymph node metastasis was decreased by 31.3% in HPV/KO, compared to HPV/WT, animals. To evaluate the integrin-specific impact on the malignant epithelium versus the microenvironment, we developed primary tumor cell lines. Although transition from dysplasia to carcinoma was unaltered during spontaneous tumor development, isolated primary HPV/KO SCC cell lines demonstrated decreased migration and invasion, compared to HPV/WT cells. When HPV/WT and HPV/KO SCC cells were orthotopically injected into WT or KO hosts, tumor α2β1 integrin expression resulted in decreased tumor latency, regardless of host integrin status. HPV/WT SCC lines failed to demonstrate a proliferative advantage in vitro, however, the HPV/WT tumors demonstrated increased growth compared to HPV/KO SCC lines in vivo. Although contributions of the integrin to the microenvironment cannot be excluded, our studies indicate that α2β1 integrin expression by HPV-transformed keratinocytes modulates SCC growth and progression.

  7. Integrin αv promotes proliferation by activating ERK 1/2 in the human lung cancer cell line A549.

    Science.gov (United States)

    Fu, Shijie; Fan, Limin; Pan, Xufeng; Sun, Yifeng; Zhao, Heng

    2015-02-01

    Lung cancer is a leading cause of cancer-related death worldwide, and non-small cell lung cancer (NSCLC) constitutes ~85% of lung cancers. However, the mechanisms underlying the progression of NSCLC remain unclear. In this study, we found the mRNA and protein expression levels of integrin αv are both increased in NSCLC tissues compared to healthy ones, which indicates that integrin αv may play an important role in NSCLC progression. To further investigate the roles of integrin αv in NSCLC, we overexpressed the integrin αv gene in the NSCLC cell line A549, and found that the cell proliferative ability increased. The apoptosis of A549 cells was inhibited with overexpression of integrin αv. To elucidate the molecular mechanism underlying the role of integrin αv in promoting NSCLC progression, we studied the expression of proteins from a number of important pathways associated with tumorigenesis, and found that the extracellular signal regulated protein kinase (ERK)1/2 signaling pathway may be involved in the mediation of the observed integrin αv effects. component of an important pathway for tumorigenesis, the ERK 1/2. Following inhibition of ERK 1/2 signaling, the proliferation of A549 cells induced by integrin αv was reduced, while the inhibition of apoptosis was attenuated. Our findings demonstrate that integrin αv promotes the proliferation of the human lung cancer cell line A549 by activating the ERK 1/2 signaling pathway, which suggests that this pathway may be a promising target for the treatment of human lung cancer.

  8. Interaction between {alpha}5{beta}1 integrin and secreted fibronectin is involved in macrophage differentiation of human HL-60 myeloid leukemia cells.

    Energy Technology Data Exchange (ETDEWEB)

    Laouar, A.; Collart, F. R.; Chubb, C. B. H.; Xie, B.; Huberman, E.; Center for Mechanistic Biology and Biotechnology; anl-cmb

    1999-01-01

    We examined the role of fibronectin (FN) and FN-binding integrins in macrophage differentiation. Increased FN and {alpha}5{beta}1 integrin gene expression was observed in phorbol 12-myristate 1