WorldWideScience

Sample records for beta-site app-cleaving enzyme

  1. The Golgi-Localized γ-Ear-Containing ARF-Binding (GGA Proteins Alter Amyloid-β Precursor Protein (APP Processing through Interaction of Their GAE Domain with the Beta-Site APP Cleaving Enzyme 1 (BACE1.

    Directory of Open Access Journals (Sweden)

    Bjoern von Einem

    Full Text Available Proteolytic processing of amyloid-β precursor protein (APP by beta-site APP cleaving enzyme 1 (BACE1 is the initial step in the production of amyloid beta (Aβ, which accumulates in senile plaques in Alzheimer's disease (AD. Essential for this cleavage is the transport and sorting of both proteins through endosomal/Golgi compartments. Golgi-localized γ-ear-containing ARF-binding (GGA proteins have striking cargo-sorting functions in these pathways. Recently, GGA1 and GGA3 were shown to interact with BACE1, to be expressed in neurons, and to be decreased in AD brain, whereas little is known about GGA2. Since GGA1 impacts Aβ generation by confining APP to the Golgi and perinuclear compartments, we tested whether all GGAs modulate BACE1 and APP transport and processing. We observed decreased levels of secreted APP alpha (sAPPα, sAPPβ, and Aβ upon GGA overexpression, which could be reverted by knockdown. GGA-BACE1 co-immunoprecipitation was impaired upon GGA-GAE but not VHS domain deletion. Autoinhibition of the GGA1-VHS domain was irrelevant for BACE1 interaction. Our data suggest that all three GGAs affect APP processing via the GGA-GAE domain.

  2. First demonstration of cerebrospinal fluid and plasma A beta lowering with oral administration of a beta-site amyloid precursor protein-cleaving enzyme 1 inhibitor in nonhuman primates.

    Science.gov (United States)

    Sankaranarayanan, Sethu; Holahan, Marie A; Colussi, Dennis; Crouthamel, Ming-Chih; Devanarayan, Viswanath; Ellis, Joan; Espeseth, Amy; Gates, Adam T; Graham, Samuel L; Gregro, Allison R; Hazuda, Daria; Hochman, Jerome H; Holloway, Katharine; Jin, Lixia; Kahana, Jason; Lai, Ming-tain; Lineberger, Janet; McGaughey, Georgia; Moore, Keith P; Nantermet, Philippe; Pietrak, Beth; Price, Eric A; Rajapakse, Hemaka; Stauffer, Shaun; Steinbeiser, Melissa A; Seabrook, Guy; Selnick, Harold G; Shi, Xiao-Ping; Stanton, Matthew G; Swestock, John; Tugusheva, Katherine; Tyler, Keala X; Vacca, Joseph P; Wong, Jacky; Wu, Guoxin; Xu, Min; Cook, Jacquelynn J; Simon, Adam J

    2009-01-01

    beta-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic A beta 42 peptides in Alzheimer's disease. Although previous mouse studies have shown brain A beta lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of A beta in cerebrospinal fluid (CSF) and plasma could be evaluated. TC-1, a potent inhibitor (IC(50) approximately 0.4 nM), has excellent passive membrane permeability, low susceptibility to P-glycoprotein transport, and lowered brain A beta levels in a mouse model. Intravenous infusion of TC-1 led to a significant but transient lowering of CSF and plasma A beta levels in conscious rhesus monkeys because it underwent CYP3A4-mediated metabolism. Oral codosing of TC-1 with ritonavir, a potent CYP3A4 inhibitor, twice daily over 3.5 days in rhesus monkeys led to sustained plasma TC-1 exposure and a significant and sustained reduction in CSF sAPP beta, A beta 40, A beta 42, and plasma A beta 40 levels. CSF A beta 42 lowering showed an EC(50) of approximately 20 nM with respect to the CSF [TC-1] levels, demonstrating excellent concordance with its potency in a cell-based assay. These results demonstrate the first in vivo proof of concept of CSF A beta lowering after oral administration of a BACE1 inhibitor in a nonhuman primate.

  3. Fetzima (levomilnacipran), a drug for major depressive disorder as a dual inhibitor for human serotonin transporters and beta-site amyloid precursor protein cleaving enzyme-1.

    Science.gov (United States)

    Rizvi, Syed Mohd Danish; Shaikh, Sibhghatulla; Khan, Mahiuddin; Biswas, Deboshree; Hameed, Nida; Shakil, Shazi

    2014-01-01

    Pharmacological management of Major Depressive Disorder includes the use of serotonin reuptake inhibitors which targets serotonin transporters (SERT) to increase the synaptic concentrations of serotonin. Beta-site amyloid precursor protein cleaving enzyme-1 (BACE-1) is responsible for amyloid β plaque formation. Hence it is an interesting target for Alzheimer's disease (AD) therapy. This study describes molecular interactions of a new Food and Drug Administration approved antidepressant drug named 'Fetzima' with BACE-1 and SERT. Fetzima is chemically known as levomilnacipran. The study has explored a possible link between the treatment of Depression and AD. 'Autodock 4.2' was used for docking study. The free energy of binding (ΔG) values for 'levomilnacipran-SERT' interaction and 'levomilnacipran-BACE1' interaction were found to be -7.47 and -8.25 kcal/mol, respectively. Levomilnacipran was found to interact with S438, known to be the most important amino acid residue of serotonin binding site of SERT during 'levomilnacipran-SERT' interaction. In the case of 'levomilnacipran-BACE1' interaction, levomilnacipran interacted with two very crucial aspartic acid residues of BACE-1, namely, D32 and D228. These residues are accountable for the cleavage of amyloid precursor protein and the subsequent formation of amyloid β plaques in AD brain. Hence, Fetzima (levomilnacipran) might act as a potent dual inhibitor of SERT and BACE-1 and expected to form the basis of a future dual therapy against depression and AD. It is an established fact that development of AD is associated with Major Depressive Disorder. Therefore, the design of new BACE-1 inhibitors based on antidepressant drug scaffolds would be particularly beneficial.

  4. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  5. Astrocytic expression of the Alzheimer's disease beta-secretase (BACE1) is stimulus-dependent

    DEFF Research Database (Denmark)

    Hartlage-Rübsamen, Maike; Zeitschel, Ulrike; Apelt, Jenny

    2003-01-01

    The beta-site APP-cleaving enzyme (BACE1) is a prerequisite for the generation of beta-amyloid peptides, which give rise to cerebrovascular and parenchymal beta-amyloid deposits in the brain of Alzheimer's disease patients. BACE1 is neuronally expressed in the brains of humans and experimental...... paradigms studied. In contrast, BACE1 expression by reactive astrocytes was evident in chronic but not in acute models of gliosis. Additionally, we observed BACE1-immunoreactive astrocytes in proximity to beta-amyloid plaques in the brains of aged Tg2576 mice and Alzheimer's disease patients....

  6. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  7. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  8. Bace1 activity impairs neuronal glucose metabolism: rescue by beta-hydroxybutyrate and lipoic acid

    Directory of Open Access Journals (Sweden)

    John A Findlay

    2015-10-01

    Full Text Available Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer’s disease (AD pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP cleaving enzyme 1 (BACE1, responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD.

  9. Intracellular trafficking of the β-secretase and processing of amyloid precursor protein.

    Science.gov (United States)

    Zhi, Pei; Chia, Pei Zhi Cheryl; Chia, Cheryl; Gleeson, Paul A

    2011-09-01

    The main component of the amyloid plaques found in the brains of those with Alzheimer's disease (AD) is a polymerized form of the β-amyloid peptide (Aβ) and is considered to play a central role in the pathogenesis of this neurodegenerative disorder. Aβ is derived from the proteolytic processing of the amyloid precursor protein (APP). Beta site APP-cleaving enzyme, BACE1 (also known as β-secretase) is a membrane-bound aspartyl protease responsible for the initial step in the generation of Aβ peptide and is thus a prime target for therapeutic intervention. Substantive evidence now indicates that the processing of APP by BACE1 is regulated by the intracellular sorting of the enzyme and, moreover, perturbations in these intracellular trafficking pathways have been linked to late-onset AD. In this review, we highlight the recent advances in the understanding of the regulation of the intracellular sorting of BACE1 and APP and illustrate why the trafficking of these cargos represent a key issue for understanding the membrane-mediated events associated with the generation of the neurotoxic Aβ products in AD. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  10. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  11. Depletion of GGA3 stabilizes BACE and enhances β-secretase activity

    Science.gov (United States)

    Tesco, Giuseppina; Koh, Young Ho; Kang, Eugene; Cameron, Andrew; Das, Shinjita; Sena-Esteves, Miguel; Hiltunen, Mikko; Yang, Shao-Hua; Zhong, Zhenyu; Shen, Yong; Simpkins, James; Tanzi, Rudolph E.

    2007-01-01

    Summary Beta-site APP-cleaving enzyme (BACE) is required for production of the Alzheimer's disease (AD)-associated Aβ protein. BACE levels are elevated in AD brain, and increasing evidence reveals BACE as a stress-related protease that is upregulated following cerebral ischemia. However, the molecular mechanism responsible is unknown. We show that increases in BACE and β-secretase activity are due to post-translational stabilization following caspase activation. We also found that during cerebral ischemia, levels of GGA3, an adaptor protein involved in BACE trafficking, are reduced, while BACE levels are increased. RNAi silencing of GGA3 also elevated levels of BACE and Aβ. Finally, in AD brain samples, GGA3 protein levels were significantly decreased and inversely correlated with increased levels of BACE. In summary, we have elucidated a novel GGA3-dependent mechanism regulating BACE levels and β-secretase activity. This mechanism may explain increased cerebral levels of BACE and Aβ following cerebral ischemia and in AD. PMID:17553422

  12. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2012-02-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  13. Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity.

    Science.gov (United States)

    Tesco, Giuseppina; Koh, Young Ho; Kang, Eugene L; Cameron, Andrew N; Das, Shinjita; Sena-Esteves, Miguel; Hiltunen, Mikko; Yang, Shao-Hua; Zhong, Zhenyu; Shen, Yong; Simpkins, James W; Tanzi, Rudolph E

    2007-06-07

    Beta-site APP-cleaving enzyme (BACE) is required for production of the Alzheimer's disease (AD)-associated Abeta protein. BACE levels are elevated in AD brain, and increasing evidence reveals BACE as a stress-related protease that is upregulated following cerebral ischemia. However, the molecular mechanism responsible is unknown. We show that increases in BACE and beta-secretase activity are due to posttranslational stabilization following caspase activation. We also found that during cerebral ischemia, levels of GGA3, an adaptor protein involved in BACE trafficking, are reduced, while BACE levels are increased. RNAi silencing of GGA3 also elevated levels of BACE and Abeta. Finally, in AD brain samples, GGA3 protein levels were significantly decreased and inversely correlated with increased levels of BACE. In summary, we have elucidated a GGA3-dependent mechanism regulating BACE levels and beta-secretase activity. This mechanism may explain increased cerebral levels of BACE and Abeta following cerebral ischemia and existing in AD.

  14. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2010-06-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  15. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  16. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  17. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  18. Immobilized enzymes and cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucke, C; Wiseman, A

    1981-04-04

    This article reviews the current state of the art of enzyme and cell immobilization and suggests advances which might be made during the 1980's. Current uses of immobilized enzymes include the use of glucoamylase in the production of glucose syrups from starch and glucose isomerase in the production of high fructose corn syrup. Possibilities for future uses of immobilized enzymes and cells include the utilization of whey and the production of ethanol.

  19. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  20. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  1. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  2. Targeted enzyme prodrug therapies.

    Science.gov (United States)

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  3. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  4. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J J; Brand, J C

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  5. Indicators: Sediment Enzymes

    Science.gov (United States)

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  6. Enzyme Vs. Extremozyme -32 ...

    Indian Academy of Sciences (India)

    Enzymes are biocatalytic protein molecules that enhance the rates of ... to physical forces (hydrogen bonds, hydrophobic 1, electrostatic and Van der ... conformation. In 1995 ... surface against 14.7% in Klenow poll (some of the hydrophobic.

  7. Overproduction of ligninolytic enzymes

    Science.gov (United States)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  8. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  9. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  10. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  11. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  12. Magnetically responsive enzyme powders

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 380, APR 2015 (2015), s. 197-200 ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 2.357, year: 2015

  13. Enzyme with rhamnogalacturonase activity.

    NARCIS (Netherlands)

    Kofod, L.V.; Andersen, L.N.; Dalboge, H.; Kauppinen, M.S.; Christgau, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A.G.J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet

  14. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Advances in enzyme bioelectrochemistry

    Directory of Open Access Journals (Sweden)

    ANDRESSA R. PEREIRA

    Full Text Available ABSTRACT Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilization of the enzymes at electrode surfaces, the electron transfer, the bioelectrocatalysis, and new techniques conjugated with electrochemistry vising understand the kinetics and thermodynamics of redox proteins. Furthermore, examples of recent approaches in designing biosensors and biofuel developed are presented.

  16. Cold-Adapted Enzymes

    Science.gov (United States)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  17. Embedded enzymes catalyse capture

    Science.gov (United States)

    Kentish, Sandra

    2018-05-01

    Membrane technologies for carbon capture can offer economic and environmental advantages over conventional amine-based absorption, but can suffer from limited gas flux and selectivity to CO2. Now, a membrane based on enzymes embedded in hydrophilic pores is shown to exhibit combined flux and selectivity that challenges the state of the art.

  18. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  19. ISFET based enzyme sensors

    NARCIS (Netherlands)

    van der Schoot, Bart H.; Bergveld, Piet

    1987-01-01

    This paper reviews the results that have been reported on ISFET based enzyme sensors. The most important improvement that results from the application of ISFETs instead of glass membrane electrodes is in the method of fabrication. Problems with regard to the pH dependence of the response and the

  20. Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1.

    Science.gov (United States)

    Jiang, Da-Peng; Li, Jin-Hui; Zhang, Jie; Xu, Sheng-Long; Kuang, Fang; Lang, Hai-Yang; Wang, Ya-Feng; An, Guang-Zhou; Li, Jing; Guo, Guo-Zhen

    2016-07-01

    A progressively expanded literature has been devoted in the past years to the noxious or beneficial effects of electromagnetic field (EMF) to Alzheimer׳s disease (AD). This study concerns the relationship between electromagnetic pulse (EMP) exposure and the occurrence of AD in rats and the underlying mechanisms, focusing on the role of oxidative stress (OS). 55 healthy male Sprague Dawley (SD) rats were used and received continuous exposure for 8 months. Morris water maze (MWM) test was conducted to test the ability of cognitive and memory. The level of OS was detected by superoxide dismutase (SOD) activity and glutathione (GSH) content. We found that long-term EMP exposure induced cognitive damage in rats. The content of β-amyloid (Aβ) protein in hippocampus was increased after long-term EMP exposure. OS of hippocampal neuron was detected. Western blotting and immunohistochemistry (IHC) assay showed that the content of Aβ protein and its oligomers in EMP-exposed rats were higher than that of sham-exposed rats. The content of Beta Site App Cleaving Enzyme (BACE1) and microtubule-associated protein 1 light chain 3-II (LC3-II) in EMP-exposed rats hippocampus were also higher than that of sham-exposed rats. SOD activity and GSH content in EMP-exposed rats were lower than sham-exposed rats (p<0.05). Several mechanisms were proposed based on EMP exposure-induced OS, including increased amyloid precursor protein (APP) aberrant cleavage. Although further study is needed, the present results suggest that long-term EMP exposure is harmful to cognitive ability in rats and could induce AD-like pathological manifestation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. BACE is degraded via the lysosomal pathway.

    Science.gov (United States)

    Koh, Young Ho; von Arnim, Christine A F; Hyman, Bradley T; Tanzi, Rudolph E; Tesco, Giuseppina

    2005-09-16

    Amyloid plaques are formed by aggregates of amyloid-beta-peptide, a 37-43-amino acid fragment (primarily Abeta(40) and Abeta(42)) generated by proteolytic processing of the amyloid precursor protein (APP) by beta- and gamma-secretases. A type I transmembrane aspartyl protease, BACE (beta-site APP cleaving enzyme), has been identified to be the beta-secretase. BACE is targeted through the secretory pathway to the plasma membrane where it can be internalized to endosomes. The carboxyl terminus of BACE contains a di-leucine-based signal for sorting of transmembrane proteins to endosomes and lysosomes. In this study, we set out to determine whether BACE is degraded by the lysosomal pathway and whether the di-leucine motif is necessary for targeting BACE to the lysosomes. Here we show that lysosomal inhibitors, chloroquine and NH(4)Cl, lead to accumulation of endogenous and ectopically expressed BACE in a variety of cell types, including primary neurons. Furthermore, the inhibition of lysosomal hydrolases results in the redistribution and accumulation of BACE in the late endosomal/lysosomal compartments (lysosome-associated membrane protein 2 (LAMP2)-positive). In contrast, the BACE-LL/AA mutant, in which Leu(499) and Leu(500) in the COOH-terminal sequence (DDISLLK) were replaced by alanines, only partially co-localized with LAMP2-positive compartments following inhibition of lysosomal hydrolases. Collectively, our data indicate that BACE is transported to the late endosomal/lysosomal compartments where it is degraded via the lysosomal pathway and that the di-leucine motif plays a role in sorting BACE to lysosomes.

  2. Genetic Deletion of the Clathrin Adaptor GGA3 Reduces Anxiety and Alters GABAergic Transmission.

    Directory of Open Access Journals (Sweden)

    Kendall R Walker

    Full Text Available Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3 is a monomeric clathrin adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving enzyme (BACE1, which is required for production of the Alzheimer's disease (AD-associated amyloid βpeptide. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that depletion of GGA3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking and degradation. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in novelty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of anxiety-like behaviors, we performed electrophysiological recordings in hippocampal slices and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells (DGGC. Moreover, we found that the number of inhibitory synapses is increased in the dentate gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a consequence of increased processing of BACE1 substrates.

  3. Genetic Deletion of the Clathrin Adaptor GGA3 Reduces Anxiety and Alters GABAergic Transmission.

    Science.gov (United States)

    Walker, Kendall R; Modgil, Amit; Albrecht, David; Lomoio, Selene; Haydon, Philip G; Moss, Stephen J; Tesco, Giuseppina

    2016-01-01

    Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) is a monomeric clathrin adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving enzyme (BACE1), which is required for production of the Alzheimer's disease (AD)-associated amyloid βpeptide. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that depletion of GGA3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking and degradation. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in novelty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of anxiety-like behaviors, we performed electrophysiological recordings in hippocampal slices and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells (DGGC). Moreover, we found that the number of inhibitory synapses is increased in the dentate gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a consequence of increased processing of BACE1 substrates.

  4. The Enzyme Function Initiative†

    Science.gov (United States)

    Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.

    2011-01-01

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID

  5. The Enzyme Function Initiative.

    Science.gov (United States)

    Gerlt, John A; Allen, Karen N; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C; Cronan, John E; Dunaway-Mariano, Debra; Imker, Heidi J; Jacobson, Matthew P; Minor, Wladek; Poulter, C Dale; Raushel, Frank M; Sali, Andrej; Shoichet, Brian K; Sweedler, Jonathan V

    2011-11-22

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI's Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts.

  6. NRSA enzyme decomposition model data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme activities measured at more than 2000 US streams and rivers. These enzyme data were then used to predict organic matter decomposition and microbial...

  7. Cellulase enzyme and biomass utilization

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... human population grows and economic development. However, the current .... conditions and the production cost of the related enzyme system. Therefore ... Given the importance of this enzyme to these so many industries,.

  8. Beta Site Testing of the SRI Stereolithography Machine

    National Research Council Canada - National Science Library

    Lange, F. F

    1999-01-01

    ...) formulation that might require a different particle packing density relative to that used to form the shell, and thus avoid problems that might be encountered due to differential shrinkage either during densification...

  9. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... for several batches of hydrolysis, and thereby reduces the overall cost associated with the hydrolysis. Research on this subject has been ongoing for many years and several promising technologies and methods have been developed and demonstrated. But only in a very few cases have these technologies been...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...

  10. Characterising Complex Enzyme Reaction Data.

    Directory of Open Access Journals (Sweden)

    Handan Melike Dönertaş

    Full Text Available The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG. Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution.

  11. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  12. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  13. DGAT enzymes and triacylglycerol biosynthesis

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  14. Enzyme stabilization for pesticide degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, D.B.; Frazer, F.R. III; Mason, D.W.; Tice, T.R.

    1988-01-01

    Enzymes offer inherent advantages and limitations as active components of formulations used to decontaminate soil and equipment contaminated with toxic materials such as pesticides. Because of the catalytic nature of enzymes, each molecule of enzyme has the potential to destroy countless molecules of a contaminating toxic compound. This degradation takes place under mild environmental conditions of pH, temperature, pressure, and solvent. The basic limitation of enzymes is their degree of stability during storage and application conditions. Stabilizing methods such as the use of additives, covalent crosslinking, covalent attachment, gel entrapment, and microencapsulation have been directed developing an enzyme preparation that is stable under extremes of pH, temperature, and exposure to organic solvents. Initial studies were conducted using the model enzymes subtilisin and horseradish peroxidase.

  15. Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme

    NARCIS (Netherlands)

    van Noorden, Cornelis J. F.

    2002-01-01

    Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is

  16. Enzyme Mimics: Advances and Applications.

    Science.gov (United States)

    Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang

    2016-06-13

    Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Phage lytic enzymes: a history.

    Science.gov (United States)

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  18. [The rise of enzyme engineering in China].

    Science.gov (United States)

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  19. Enzyme structure, enzyme function and allozyme diversity in ...

    African Journals Online (AJOL)

    In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be ...

  20. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  1. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  2. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care....... However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered detergent formulations, these issues can be partly overcome by physically isolating the enzymes in separate...... particles. However, enzymes may loose a significant part of their activity over a time period of several weeks. Possible causes of inactivation of enzymes in a granule may be related to the release of hydrogen peroxide from the bleaching chemicals in a moisture-containing atmosphere, humidity, autolysis...

  3. Enzymes in Human Milk.

    Science.gov (United States)

    Dallas, David C; German, J Bruce

    2017-01-01

    Milk proteins are a complex and diverse source of biological activities. Beyond their function, intact milk proteins also act as carriers of encrypted functional sequences that, when released as peptides, exert biological functions, including antimicrobial and immunomodulatory activity, which could contribute to the infant's competitive success. Research has now revealed that the release of these functional peptides begins within the mammary gland itself. A complex array of proteases produced in mother's milk has been shown to be active in the milk, releasing these peptides. Moreover, our recent research demonstrates that these milk proteases continue to digest milk proteins within the infant's stomach, possibly even to a larger extent than the infant's own proteases. As the neonate has relatively low digestive capacity, the activity of milk proteases in the infant may provide important assistance to digesting milk proteins. The coordinated release of these encrypted sequences is accomplished by selective proteolytic action provided by an array of native milk proteases and infant-produced enzymes. The task for scientists is now to discover the selective advantages of this protein-protease-based peptide release system. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  4. Digestive enzymes of some earthworms.

    Science.gov (United States)

    Mishra, P C; Dash, M C

    1980-10-15

    4 species of tropical earthworms differed with regard to enzyme activity. The maximum activity of protease and of cellulase occurred in the posterior region of the gut of the earthworms. On the average Octochaetona surensis shows maximum activity and Drawida calebi shows minimum activity for all the enzymes studied.

  5. Photoreactivating enzyme from Escherichia coli

    International Nuclear Information System (INIS)

    Snapka, R.M.; Fuselier, C.O.

    1977-01-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm. (author)

  6. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  7. Photoreactivating enzyme from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Snapka, R M; Fuselier, C O [California Univ., Irvine (USA)

    1977-05-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm.

  8. BAKERY ENZYMES IN CEREAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Václav Koman

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Bread is the most common and traditional food in the world. For years, enzymes such as malt and fungal alpha-amylase have been used in bread making. Due to the changes in the baking industry and the ever-increasing demand for more natural products, enzymes have gained real importance in bread-making. If an enzyme is added, it is often destroyed by the heat during the baking process. For generations, enzymes have been used for the improvement of texture and appearance, enhancement of nutritional values and generation of appealing flavours and aromas. Enzymes used in bakery industry constitute nearly one third of the market. The bakery products have undergone radical improvements in quality over the past years in terms of flavour, texture and shelf-life. The the biggest contributor for these improvementsis the usage of enzymes. Present work seeks to systematically describe bakery enzymes, their classification, benefits, usage and chemical reactions in the bread making process.doi:10.5219/193

  9. [Automated analyzer of enzyme immunoassay].

    Science.gov (United States)

    Osawa, S

    1995-09-01

    Automated analyzers for enzyme immunoassay can be classified by several points of view: the kind of labeled antibodies or enzymes, detection methods, the number of tests per unit time, analytical time and speed per run. In practice, it is important for us consider the several points such as detection limits, the number of tests per unit time, analytical range, and precision. Most of the automated analyzers on the market can randomly access and measure samples. I will describe the recent advance of automated analyzers reviewing their labeling antibodies and enzymes, the detection methods, the number of test per unit time and analytical time and speed per test.

  10. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    are affected (in a positive or negative way) by the presence of the other enzymes and compounds in the media. In this thesis the concept of multi-enzyme in-pot term is adopted for processes that are carried out by the combination of enzymes in a single reactor and implemented at pilot or industrial scale...... features of the process and provides the information required to structure the process model by using a step-by-step procedure with the required tools and methods. In this way, this framework increases efficiency of the model development process with respect to time and resources needed (fast and effective....... In this way the model parameters that drives the main dynamic behavior can be identified and thus a better understanding of this type of processes. In order to develop, test and verify the methodology, three case studies were selected, specifically the bi-enzyme process for the production of lactobionic acid...

  11. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  12. GRE Enzymes for Vector Analysis

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme data that were collected during the 2004-2006 EMAP-GRE program. These data were then used by Moorhead et al (2016) in their ecoenzyme vector...

  13. Watching Individual Enzymes at Work

    Science.gov (United States)

    Blank, Kerstin; Rocha, Susana; De Cremer, Gert; Roeffaers, Maarten B. J.; Uji-i, Hiroshi; Hofkens, Johan

    Single-molecule fluorescence experiments are a powerful tool to analyze reaction mechanisms of enzymes. Because of their unique potential to detect heterogeneities in space and time, they have provided unprecedented insights into the nature and mechanisms of conformational changes related to the catalytic reaction. The most important finding from experiments with single enzymes is the generally observed phenomenon that the catalytic rate constants fluctuate over time (dynamic disorder). These fluctuations originate from conformational changes occurring on time scales, which are similar to or slower than that of the catalytic reaction. Here, we summarize experiments with enzymes that show dynamic disorder and introduce new experimental strategies showing how single-molecule fluorescence experiments can be applied to address other open questions in medical and industrial enzymology, such as enzyme inactivation processes, reactant transfer in cascade reactions, and the mechanisms of interfacial catalysis.

  14. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  15. DGAT enzymes and triacylglycerol biosynthesis

    OpenAIRE

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, ...

  16. Enzymes: principles and biotechnological applications

    Science.gov (United States)

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  17. de novo computational enzyme design.

    Science.gov (United States)

    Zanghellini, Alexandre

    2014-10-01

    Recent advances in systems and synthetic biology as well as metabolic engineering are poised to transform industrial biotechnology by allowing us to design cell factories for the sustainable production of valuable fuels and chemicals. To deliver on their promises, such cell factories, as much as their brick-and-mortar counterparts, will require appropriate catalysts, especially for classes of reactions that are not known to be catalyzed by enzymes in natural organisms. A recently developed methodology, de novo computational enzyme design can be used to create enzymes catalyzing novel reactions. Here we review the different classes of chemical reactions for which active protein catalysts have been designed as well as the results of detailed biochemical and structural characterization studies. We also discuss how combining de novo computational enzyme design with more traditional protein engineering techniques can alleviate the shortcomings of state-of-the-art computational design techniques and create novel enzymes with catalytic proficiencies on par with natural enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  19. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  20. Rethinking fundamentals of enzyme action.

    Science.gov (United States)

    Northrop, D B

    1999-01-01

    Despite certain limitations, investigators continue to gainfully employ concepts rooted in steady-state kinetics in efforts to draw mechanistically relevant inferences about enzyme catalysis. By reconsidering steady-state enzyme kinetic behavior, this review develops ideas that allow one to arrive at the following new definitions: (a) V/K, the ratio of the maximal initial velocity divided by the Michaelis-Menten constant, is the apparent rate constant for the capture of substrate into enzyme complexes that are destined to yield product(s) at some later point in time; (b) the maximal velocity V is the apparent rate constant for the release of substrate from captured complexes in the form of free product(s); and (c) the Michaelis-Menten constant K is the ratio of the apparent rate constants for release and capture. The physiologic significance of V/K is also explored to illuminate aspects of antibiotic resistance, the concept of "perfection" in enzyme catalysis, and catalytic proficiency. The conceptual basis of congruent thermodynamic cycles is also considered in an attempt to achieve an unambiguous way for comparing an enzyme-catalyzed reaction with its uncatalyzed reference reaction. Such efforts promise a deeper understanding of the origins of catalytic power, as it relates to stabilization of the reactant ground state, stabilization of the transition state, and reciprocal stabilizations of ground and transition states.

  1. Subcellular localization of pituitary enzymes

    Science.gov (United States)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  2. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  3. Substrate mediated enzyme prodrug therapy

    DEFF Research Database (Denmark)

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  4. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  5. Curious Cases of the Enzymes.

    Science.gov (United States)

    Ulusu, Nuriye Nuray

    2015-07-01

    Life as we know it heavily relies on biological catalysis, in fact, in a very nonromantic version of it, life could be considered as a series of chemical reactions, regulated by the guarding principles of thermodynamics. In ancient times, a beating heart was a good sign of vitality, however, to me, it is actually the presence of active enzymes that counts… Though we do not usually pay attention, the history of enzymology is as old as humanity itself, and dates back to the ancient times. This paper is dedicated to these early moments of this remarkable science that touched our lives in the past and will make life a lot more efficient for humanity in the future. There was almost always a delicate, fundamentally essential relationship between mankind and the enzymes. Challenged by a very alien and hostile Nature full of predators, prehistoric men soon discovered the medicinal properties of the plants, through trial and error. In fact, they accidently discovered the enzyme inhibitors and thus, in crude terms, kindled a sparkling area of research. These plant-derivatives that acted as enzyme inhibitors helped prehistoric men in their pursuit of survival and protection from predators; in hunting and fishing… Later in history, while the underlying purposes of survival and increasing the quality of life stayed intact, the ways and means of enzymology experienced a massive transformation, as the 'trial and error' methodology of the ancients is now replaced with rational scientific theories.

  6. Enzymes with activity toward Xyloglucan

    NARCIS (Netherlands)

    Vincken, J.P.

    2003-01-01

    Xyloglucans are plant cell wall polysaccharides, which belong to the hemicellulose class. Here the structural variations of xyloglucans will be reviewed. Subsequently, the anchoring of xyloglucan in the plant cell wall will be discussed. Enzymes involved in degradation or modification of xyloglucan

  7. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be safe...

  8. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A novel blood-brain barrier co-culture system for drug targeting of Alzheimer's disease: establishment by using acitretin as a model drug.

    Science.gov (United States)

    Freese, Christian; Reinhardt, Sven; Hefner, Gudrun; Unger, Ronald E; Kirkpatrick, C James; Endres, Kristina

    2014-01-01

    In the pathogenesis of Alzheimer's disease (AD) the homeostasis of amyloid precursor protein (APP) processing in the brain is impaired. The expression of the competing proteases ADAM10 (a disintegrin and metalloproteinase 10) and BACE-1 (beta site APP cleaving enzyme 1) is shifted in favor of the A-beta generating enzyme BACE-1. Acitretin--a synthetic retinoid-e.g., has been shown to increase ADAM10 gene expression, resulting in a decreased level of A-beta peptides within the brain of AD model mice and thus is of possible value for AD therapy. A striking challenge in evaluating novel therapeutically applicable drugs is the analysis of their potential to overcome the blood-brain barrier (BBB) for central nervous system targeting. In this study, we established a novel cell-based bio-assay model to test ADAM10-inducing drugs for their ability to cross the BBB. We therefore used primary porcine brain endothelial cells (PBECs) and human neuroblastoma cells (SH-SY5Y) transfected with an ADAM10-promoter luciferase reporter vector in an indirect co-culture system. Acitretin served as a model substance that crosses the BBB and induces ADAM10 expression. We ensured that ADAM10-dependent constitutive APP metabolism in the neuronal cells was unaffected under co-cultivation conditions. Barrier properties established by PBECs were augmented by co-cultivation with SH-SY5Y cells and they remained stable during the treatment with acitretin as demonstrated by electrical resistance measurement and permeability-coefficient determination. As a consequence of transcellular acitretin transport measured by HPLC, the activity of the ADAM10-promoter reporter gene was significantly increased in co-cultured neuronal cells as compared to vehicle-treated controls. In the present study, we provide a new bio-assay system relevant for the study of drug targeting of AD. This bio-assay can easily be adapted to analyze other Alzheimer- or CNS disease-relevant targets in neuronal cells, as their

  10. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  11. Study of DNA reconstruction enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, M [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1976-12-01

    Description was made of the characteristics and mechanism of 3 reconstructive enzymes which received from M. luteus or E. coli or T4, and of which natures were clarified as reconstructive enzymes of DNA irradiated with ultraviolet rays. As characteristics, the site of breaking, reaction, molecular weight, electric charge in the neutrality and a specific adhesion to DNA irradiated with ultraviolet rays were mentioned. As to mutant of ultraviolet ray sensitivity, hereditary control mechanism of removal and reconstruction by endo-nuclease activation was described, and suggestion was referred to removal and reconstruction of cells of xedoderma pigmentosum which is a hereditary disease of human. Description was also made as to the mechanism of exonuclease activation which separates dimer selectively from irradiated DNA.

  12. Metrological aspects of enzyme production

    International Nuclear Information System (INIS)

    Kerber, T M; Pereira-Meirelles, F V; Dellamora-Ortiz, G M

    2010-01-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies

  13. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim

    2005-01-01

    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...... to technological progress are the socio-political attitudes that have the highest predictive value regarding attitudes to enzyme production methods....

  14. Research progress of nanoparticles as enzyme mimetics

    Science.gov (United States)

    Hu, XiaoNa; Liu, JianBo; Hou, Shuai; Wen, Tao; Liu, WenQi; Zhang, Ke; He, WeiWei; Ji, YingLu; Ren, HongXuan; Wang, Qi; Wu, XiaoChun

    2011-10-01

    Natural enzymes as biological catalysts possess remarkable advantages, especially their highly efficient and selective catalysis under mild conditions. However, most natural enzymes are proteins, thus exhibiting an inherent low durability to harsh reaction conditions. Artificial enzyme mimetics have been pursued extensively to avoid this drawback. Quite recently, some inorganic nanoparticles (NPs) have been found to exhibit unique enzyme mimetics. In addition, their much higher stability overcomes the inherent disadvantage of natural enzymes. Furthermore, easy mass-production and low cost endow them more benefits. As a new member of artificial enzyme mimetics, they have received intense attention. In this review article, major progress in this field is summarized and future perspectives are highlighted.

  15. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  17. Immobilised enzymes in biorenewable production

    OpenAIRE

    Franssen, M.C.R.; Steunenberg, P.; Scott, E.L.; Zuilhof, H.; Sanders, J.P.M.

    2013-01-01

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, ...

  18. Immobilization of enzymes by radiation

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Yoshida, M.; Asano, M.; Himei, M.; Tamura, M.; Hayashi, K.

    1979-01-01

    Immobilization of various enzymes was performed by radiation-induced polymerization of glass-forming monomers at low temperatures. Alpha-amylase and glucoamylase were effectively immobilized in hydrophilic polymer carrier such as poly(2-hydroxyethyl methacrylate) and also in rather hydrophobic carrier such as poly(tetraethylene-glycol diacrylate). Immobilized human hemoglobin underwent the reversible oxygenation concomitantly with change of oxygen concentration outside of the matrices. (author)

  19. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  20. Immobilised enzymes in biorenewables production.

    Science.gov (United States)

    Franssen, Maurice C R; Steunenberg, Peter; Scott, Elinor L; Zuilhof, Han; Sanders, Johan P M

    2013-08-07

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, such as the production of High-Fructose Corn Syrup, but these are still rather rare. Fortunately, there is a rapid expansion in the research efforts that try to improve this, driven by a combination of economic and ecological reasons. This review focusses on those efforts, by looking at attempts to use fatty acids, carbohydrates, proteins and lignin (and their building blocks), as substrates in the synthesis of biorenewables using immobilised enzymes. Therefore, many examples (390 references) from the recent literature are discussed, in which we look both at the specific reactions as well as to the methods of immobilisation of the enzymes, as the latter are shown to be a crucial factor with respect to stability and reuse. The applications of the renewables produced in this way range from building blocks for the pharmaceutical and polymer industry, transport fuels, to additives for the food industry. A critical evaluation of the relevant factors that need to be improved for large-scale use of these examples is presented in the outlook of this review.

  1. Self-powered enzyme micropumps

    Science.gov (United States)

    Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman

    2014-05-01

    Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.

  2. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  3. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...

  4. Biochemical characterization of thermostable cellulase enzyme from ...

    African Journals Online (AJOL)

    user

    2012-05-29

    May 29, 2012 ... tested for their ability to produce cellulase complex enzyme by growing on a defined substrates as well ... In the current industrial processes, cellulolytic enzymes ... energy sources such as glucose, ethanol, hydrogen and.

  5. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    dimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity. [Trehan K S ... The present study has been carried on acid phosphatase .... enzyme activity over mid parent value (table 3, col. 13),.

  6. Castor Oil Transesterification Catalysed by Liquid Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    In the present work, biodiesel production by reaction of non-edible castor oil with methanol under enzymatic catalysis is investigated. Two liquid enzymes were tested: Eversa Transform and Resinase HT. Reactions were performed at 35 °C and with a molar ratio of methanol to oil of 6:1. The reaction...... time was 8 hours. Stepwise addition of methanol was necessary to avoid enzyme inhibition by methanol. In order to minimize the enzyme costs, the influence of enzyme activity loss during reuse of both enzymes was evaluated under two distinct conditions. In the former, the enzymes were recovered...... and fully reused; in the latter, a mixture of 50 % reused and 50 % fresh enzymes was tested. In the case of total reuse after three cycles, both enzymes achieved only low conversions. The biodiesel content in the oil-phase using Eversa Transform was 94.21 % for the first cycle, 68.39 % in the second, and 33...

  7. Zymography methods for visualizing hydrolytic enzymes

    OpenAIRE

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E.; Opdenakker, Ghislain

    2013-01-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful., but often misinterpreted, tool. yielding information on potential. hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tis...

  8. Biomedical Applications of Enzymes From Marine Actinobacteria.

    Science.gov (United States)

    Kamala, K; Sivaperumal, P

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.

  9. Cellulolytic enzyme compositions and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Prashant; Gaspar, Armindo Ribiero; Croonenberghs, James; Binder, Thomas P.

    2017-07-25

    The present invention relates enzyme composition comprising a cellulolytic preparation and an acetylxylan esterase (AXE); and the used of cellulolytic enzyme compositions for hydrolyzing acetylated cellulosic material. Finally the invention also relates to processes of producing fermentation products from acetylated cellulosic materials using a cellulolytic enzyme composition of the invention.

  10. Immobilization of Enzymes in Polymer Supports.

    Science.gov (United States)

    Conlon, Hugh D.; Walt, David R.

    1986-01-01

    Two experiments in which an enzyme is immobilized onto a polymeric support are described. The experiments (which also demonstrate two different polymer preparations) involve: (1) entrapping an enzyme in an acrylamide polymer; and (2) reacting the amino groups on the enzyme's (esterase) lysine residues with an activated polymer. (JN)

  11. Purification and characterization of extracellular amylolytic enzyme ...

    African Journals Online (AJOL)

    In the present study, the amylase enzyme producing potential of four different Aspergillus species was analyzed. The extracted amylase enzyme was purified by diethyl amino ethyl (DEAE) cellulose and Sephadex G-50 column chromatography and the enzyme activity was measured by using synthetic substrate starch.

  12. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  13. PROCESS FOR DUST-FREE ENZYME MANUFACTURE

    NARCIS (Netherlands)

    Andela, C.; Feijen, Jan; Dillissen, Marc

    1994-01-01

    New enzyme granules are provided with improved properties. The granules are based on core particles having a good pore size and pore size distribution to allow an enzyme solution to enter into the particle. Accordingly, the core material comprises the enzyme in liquid form, thus eliminating the

  14. Enzyme structure and interaction with inhibitors

    International Nuclear Information System (INIS)

    London, R.E.

    1983-01-01

    This article reviews some of the results of studies on the 13 C-labeled enzyme dihydrofolate reductase (DHFR). Nuclear magnetic resonance (NMR) techniques are used in combination with isotopic labeling to learn about the structure and dynamics of this enzyme. 13 C-labeling is used for the purpose of studying enzyme/substrate and enzyme/inhibitor interactions. A second set of studies with DHFR was designed to investigate the basis for the high affinity between the inhibitor methotrexate and DHFR. The label was placed on the inhibitor, rather than the enzyme

  15. Applications of Microbial Enzymes in Food Industry

    Directory of Open Access Journals (Sweden)

    Binod Parameswaran

    2018-01-01

    Full Text Available The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  16. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  17. Ethanologenic Enzymes of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O' Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  18. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  19. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  20. Toward mechanistic classification of enzyme functions.

    Science.gov (United States)

    Almonacid, Daniel E; Babbitt, Patricia C

    2011-06-01

    Classification of enzyme function should be quantitative, computationally accessible, and informed by sequences and structures to enable use of genomic information for functional inference and other applications. Large-scale studies have established that divergently evolved enzymes share conserved elements of structure and common mechanistic steps and that convergently evolved enzymes often converge to similar mechanisms too, suggesting that reaction mechanisms could be used to develop finer-grained functional descriptions than provided by the Enzyme Commission (EC) system currently in use. Here we describe how evolution informs these structure-function mappings and review the databases that store mechanisms of enzyme reactions along with recent developments to measure ligand and mechanistic similarities. Together, these provide a foundation for new classifications of enzyme function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Production of Enzymes from Marine Actinobacteria.

    Science.gov (United States)

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies. © 2016 Elsevier Inc. All rights reserved.

  3. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...... (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel waste. It was found that pressure level, type and concentration of enzyme significantly influenced pectin yield and degree of esterification (DE...

  4. Enzyme Enzyme activities in relation to sugar accumulation in tomato

    International Nuclear Information System (INIS)

    Alam, M.J.; Rahman, M.H.; Mamun, M.A.; Islam, K.

    2006-01-01

    Enzyme activities in tomato juice of five different varieties viz. Ratan, Marglove, BARI-1, BARI-5 and BARI-6, in relation to sugar accumulation were investigated at different maturity stages. The highest amount of invertase and beta-galactosidase was found in Marglove and the lowest in BARI- 6 at all maturity stages. Total soluble sugar and sucrose contents were highest in BARI-1 and lowest in BARI-6. The activity of amylase was maximum in Ratan and minimum in Marglove. Protease activity was highest in Ratan and lowest in BARI-6. BARI-1 contained the highest cellulase activity and the lowest in BARI-5. The amount of total soluble sugar and sucrose increased moderately from premature to ripe stage. The activities of amylase and cellulase increased up to the mature stage and then decreased drastically in the ripe stage. The activities of invertase and protease increased sharply from the premature to the ripe stage while the beta-galactosidase activity decreased remarkably. No detectable amount of reducing sugar was present in the premature stage in all cultivars of tomato but increased thereafter upto the ripe stage. The highest reducing sugar was present in BARI-5 in all of the maturity stages. (author)

  5. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  6. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  7. Zymography methods for visualizing hydrolytic enzymes.

    Science.gov (United States)

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E; Opdenakker, Ghislain

    2013-03-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful, but often misinterpreted, tool yielding information on potential hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tissue sections with in situ zymography. In vivo zymography can pinpoint proteolytic activity to sites in an intact organism. Future development of novel substrate probes and improvement in detection and imaging methods will increase the applicability of zymography for (reverse) degradomics studies.

  8. Detoxification enzymes activities in deltamethrin and bendiocarb ...

    African Journals Online (AJOL)

    Detoxification enzymes activities in deltamethrin and bendiocarb resistant and susceptible malarial vectors ( Anopheles gambiae ) breeding in Bichi agricultural and residential sites, Kano state, Nigeria.

  9. Escherichia coli photoreactivating enzyme: purification and properties

    International Nuclear Information System (INIS)

    Snapka, R.M.; Sutherland, B.M.

    1980-01-01

    Researchers have purified large quantities of Escherichia coli photoreactivating enzyme to apparent homogeneity and have studied its physical and chemical properties. The enzyme has a molecular weight of 36,800 and a S/sub 20,w/ 0 of 3.72 S. Amino acid analysis revealed an apparent absence of tryptophan, a low content of aromatic residues, and the presence of no unusual amino acids. The N terminus is arginine. The purified enzyme contained up to 13% carbohydrate by weight. The carbohydrate was composed of mannose, galactose, glucose, and N-acetylglucosamine. The enzyme is also associated with RNA containing uracil, adenine, guanine, and cytosine with no unusual bases detected

  10. Thermometric enzyme linked immunosorbent assay: TELISA.

    Science.gov (United States)

    Mattiasson, B; Borrebaeck, C; Sanfridson, B; Mosbach, K

    1977-08-11

    A new method, thermometric enzyme linked immunosorbent assay (TELISA), for the assay of endogenous and exogenous compounds in biological fluids is described. It is based on the previously described enzyme linked immunosorbent assay technique, ELISA, but utilizes enzymic heat formation which is measured in an enzyme thermistor unit. In the model system studied determination of human serum albumin down to a concentration of 10(-10) M (5 ng/ml) was achieved, with both normal and catalase labelled human serum albumin competing for the binding sites on the immunosorbent, which was rabbit antihuman serum albumin immobilized onto Sepharose CL-4B.

  11. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  12. Spectroscopic studies of copper enzymes

    International Nuclear Information System (INIS)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-01-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present

  13. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  15. The use of enzymes for beer brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process.

  16. Lignocellulose biotechnology: issues of bioconversion and enzyme ...

    African Journals Online (AJOL)

    Lignocellulose biotechnology: issues of bioconversion and enzyme production. ... and secondly to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost, to speed-up the extensive commercialisation of the lignocellulose bioprocessing.

  17. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles

    Science.gov (United States)

    Bearne, Stephen L.

    2012-01-01

    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  18. Enzyme Catalysis and the Gibbs Energy

    Science.gov (United States)

    Ault, Addison

    2009-01-01

    Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)

  19. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  20. Utilization of enzyme supplemented Telfairia occidentalis stalk ...

    African Journals Online (AJOL)

    An eight (8) week feeding trial was carried out to assess the use of enzyme natuzyme supplemented Telfairia occidentalis stalk extract as growth inducer in the practical diet for Oreochromis niloticus fingerlings. Five isonitrogenous (35% crude protein) diets at 0 ml of stalk extract and enzyme (TRT 1), 15 ml (TRT 2) and 30 ...

  1. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  2. Application of radiopolymerization for immobilization of enzymes

    International Nuclear Information System (INIS)

    Higa, O.Z.; Mastro, N.L. del; Castagnet, A.C.G.

    1986-01-01

    Hydrophilic glass-forming monomers were used in an application of irradiation technology for the immobilization of cellulase and cellobiase. Experiments to observe the effect of additives such as silicates and polyethylene glycol in the enzyme entrapment are reported on. In all cases, enzymatic activity was maintained for more than fifteen batch enzyme reactions. (Author) [pt

  3. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  4. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  5. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  6. 21 CFR 864.4400 - Enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme preparations. 864.4400 Section 864.4400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4400 Enzyme...

  7. Loop 7 of E2 enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Casiraghi, Nicola; Arrigoni, Alberto

    2012-01-01

    The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3...

  8. Enzyme adsorption at solid-liquid interfaces

    NARCIS (Netherlands)

    Duinhoven, S.

    1992-01-01

    Enzymes are proteins with the capacity of catalysing various reactions. Nowadays two types of enzymes, proteases and lipases, are available for use in detergent formulations for household and industrial laundry washing. Proteases are capable of catalysing the hydrolysis of proteins while

  9. [Potentialization of antibiotics by lytic enzymes].

    Science.gov (United States)

    Brisou, J; Babin, P; Babin, R

    1975-01-01

    Few lytic enzymes, specially papaine and lysozyme, acting on the membrane and cell wall structures facilitate effects of bacitracine, streptomycine and other antibiotics. Streptomycino resistant strains became sensibles to this antibiotic after contact with papaine and lysozyme. The results of tests in physiological suspensions concern only the lytic activity of enzymes. The results on nutrient medium concern together lytic, and antibiotic activities.

  10. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  11. Enzymic oxidation of carbon monoxide. II

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, T

    1959-01-01

    An enzyme which catalyzes the oxidation of carbon monoxide into carbon dioxide was obtained in a cell free state from Desulfovibrio desulfuricans. The enzyme activity was assayed manometrically by measuring the rate of gas uptake under the atmosphere of carbon monoxide in the presence of benzyl-viologen as an oxidant. The optimum pH range was 7 to 8. The activity was slightly suppressed by illumination. The enzyme was more stable than hydrogenase or formate dehydrogenase against the heat treatment, suggesting that it is a different entity from these enzymes. In the absence of an added oxidant, the enzyme preparation produced hydrogen gas under the atmosphere of carbon monoxide. The phenomenon can be explained assuming the reductive decomposition of water. 17 references, 4 figures, 2 tables.

  12. Enzymes - important players in green chemistry

    Directory of Open Access Journals (Sweden)

    Agata Tarczykowska

    2017-09-01

    Full Text Available Green chemistry has become a worldwide approach that leads to sustainable growth through application and development of its principles. A lot of work has to be put into designing new processes comprising of materials which do not emit pollutants to the atmosphere. Inventing new safer methods and finding less harmful products can be challenging. Enzymes are a great hope of scientists in the field of green chemistry. Enzymes as catalysts require mild conditions therefore it is a great way of saving resources such as energy or water. Processes with the use of enzymes have become more feasible by being more cost effective and eco friendly. Taking into account the benefits of green chemistry, enzyme biocatalysis has quickly replaced traditional chemical processes in several fields, and this substitution is going to reach even more areas because of new emerging technologies in enzyme engineering.

  13. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  14. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  15. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day...... were recovered in the field applications. The following mechanisms were claimed to be responsible for the enhancement of the oil production due to enzymes: wettability improvement of the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high molecular weight paraffins....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...

  16. Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    the more basal attine genera use substrates such as flowers, plant debris, small twigs, insect feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide...... or different efficiencies of enzyme function. Fungal enzymes that degrade plant cell walls may have functionally co-evolved with the ants in this scenario. We explore this hypothesis with direct measurements of enzyme activity in fungus gardens in 12 species across 8 genera spanning the entire phylogeny...... and diversity of life-styles within the attine clade. We find significant differences in enzyme activity between different genera and life-styles of the ants. How these findings relate to attine ant coevolution and crop optimization are discussed....

  17. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  18. Enzymes of industrial purpose - review of the market of enzyme preparations and prospects for its development

    Directory of Open Access Journals (Sweden)

    A. A. Tolkacheva

    2017-01-01

    Full Text Available Microbial enzyme preparations are increasingly replacing conventional chemical catalysts in a number of industrial processes. Such drugs, in addition to environmental friendliness and high activity, have a number of advantages over enzyme preparations of vegetable and animal origin, namely: the production of microbial enzymes in bioreactors is easily controlled and predictable; excreted microbiological enzymes are more stable than intracellular animals and plant enzymes; the genetic diversity of microorganisms makes it possible to produce enzyme preparations with a wide range of specificity; microbiological enzymes can be synthesized year-round, in contrast to the production of plant enzymes, which is often seasonal. The leaders of the world market of enzymes are proteases and amylases, which account for 25% and 15%, respectively. Over the past five years, the world market for carbohydrases, including mainly amylases, cellulases and xylanases, has been the fastest growing segment of the enzyme market with an aggregate annual growth rate of more than 7.0%. Another major product of the industrial enzyme market, which has a great potential for growth, is lipases. From the point of view of designation, the main part is represented by food and food enzymes. The Russian market continues to be unsaturated - the current supply is not able to meet the needs of the Russian feed and food industry in enzyme preparations. Enzyme preparations of domestic producers are in demand in forage production, while food industrial enterprises prefer imported products. The most significant enterprises in the enzymatic industry in Russia at the moment are Sibbiofarm, AgroSistema, Agroferment. In the light of the Russian policy of increasing food security, the development of the domestic enzyme industry is an extremely topical task.

  19. Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining.

    Science.gov (United States)

    Schallmey, Marcus; Koopmeiners, Julia; Wells, Elizabeth; Wardenga, Rainer; Schallmey, Anett

    2014-12-01

    Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

    Science.gov (United States)

    Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul

    2015-01-01

    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635

  1. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  2. Expression of lignocellulolytic enzymes in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mellitzer Andrea

    2012-05-01

    Full Text Available Abstract Background Sustainable utilization of plant biomass as renewable source for fuels and chemical building blocks requires a complex mixture of diverse enzymes, including hydrolases which comprise the largest class of lignocellulolytic enzymes. These enzymes need to be available in large amounts at a low price to allow sustainable and economic biotechnological processes. Over the past years Pichia pastoris has become an attractive host for the cost-efficient production and engineering of heterologous (eukaryotic proteins due to several advantages. Results In this paper codon optimized genes and synthetic alcohol oxidase 1 promoter variants were used to generate Pichia pastoris strains which individually expressed cellobiohydrolase 1, cellobiohydrolase 2 and beta-mannanase from Trichoderma reesei and xylanase A from Thermomyces lanuginosus. For three of these enzymes we could develop strains capable of secreting gram quantities of enzyme per liter in fed-batch cultivations. Additionally, we compared our achieved yields of secreted enzymes and the corresponding activities to literature data. Conclusion In our experiments we could clearly show the importance of gene optimization and strain characterization for successfully improving secretion levels. We also present a basic guideline how to correctly interpret the interplay of promoter strength and gene dosage for a successful improvement of the secretory production of lignocellulolytic enzymes in Pichia pastoris.

  3. Immobilized enzyme studies in a microscale bioreactor.

    Science.gov (United States)

    Jones, Francis; Forrest, Scott; Palmer, Jim; Lu, Zonghuan; Elmore, John; Elmore, Bill B

    2004-01-01

    Novel microreactors with immobilized enzymes were fabricated using both silicon and polymer-based microfabrication techniques. The effectiveness of these reactors was examined along with their behavior over time. Urease enzyme was successfully incorporated into microchannels of a polymeric matrix of polydimethylsiloxane and through layer-bylayer self-assembly techniques onto silicon. The fabricated microchannels had cross-sectional dimensions ranging from tens to hundreds of micrometers in width and height. The experimental results for continuous-flow microreactors are reported for the conversion of urea to ammonia by urease enzyme. Urea conversions of >90% were observed.

  4. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.

    2007-01-01

    A systematic overview is presented of the literature that reports the antifouling (AF) protection of underwater structures via the action of enzymes. The overall aim of this review is to assess the state of the art of enzymatic AF technology, and to highlight the obstacles that have to be overcome...... for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers...

  5. Enzymic hydrolysis of cellulosic wastes to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Spano, L A; Medeiros, J; Mandels, M

    1976-01-01

    An enzymic process for the conversion of cellulose to glucose is based on the use of a specific enzyme derived from mutant strains of the fungus trichoderma viride which is capable of reacting with the crystalline fraction of the cellulose molecule. The production and mode of action of the cellulase complex produced during the growth of trichoderma viride is discussed as well as the application of such enzymes for the conversion of cellulosic wastes to crude glucose syrup for use in production of chemical feedstocks, single-cell proteins, fuels, solvents, etc.

  6. Dibromine radical anion reactions with heme enzymes

    International Nuclear Information System (INIS)

    Gebicka, L.; Gebicki, J.L.

    1996-01-01

    Reactions of Br 2 radical anion with heme enzymes, catalase horseradish peroxidase, have been studied by pulse radiolysis. It has been found that Br 2 - does not react with the heme centre of investigated enzymes. Dibromine radical anion reacts with tryptophan residues of catalase without any influence on the activity of catalase. It is suggested that in pulse radiolysis studies, where horseradish peroxidase is at about tenfold excess toward Br 2 - , the enzyme is modified rather by Br 2 , than by Br 2 - . (author). 26 refs., 3 figs

  7. Dimeric assembly of enterocyte brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M

    1994-01-01

    The noncovalent, dimeric assembly of small intestinal brush border enzymes was studied by sedimentation analysis in density gradients of extracts of pulse-labeled pig jejunal mucosal explants. Like aminopeptidase N (EC 3.4.11.2), sucrase-isomaltase (EC 3.2.1.48-10), aminopeptidase A (EC 3...... appearance of the liposome-reconstituted enzyme [Norén et al. (1986) J. Biol. Chem. 261, 12306-12309], showing only the inner, membrane-anchored domains of the monomers to be in close contact with one another while the outer domains are far apart. In contrast to the other brush border enzymes studied...

  8. Process for preparing multilayer enzyme coating on a fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  9. Dietary modulation of thymic enzymes.

    Science.gov (United States)

    Susana, Feliu María; Paula, Perris; Slobodianik, Nora

    2014-01-01

    Malnutrition is a complex syndrome caused by an inadequate intake of energy, protein, minerals and vitamins which affects the immune system. Nutritional imbalances, present in children with energy-protein malnutrition and infections, make defining the specific effects of each of them on the thymus difficult. For this reason, it is necessary to design an experimental model in animals that could define a single variable. As the thymus atrophy described in humans is similar to that observed in murines, a rat experimental model makes the extrapolation to man possible. Some authors suggest that the activity of Adenosine Deaminase (ADA) and Purine Nucleoside Phosphorylase (PNP)--involved in purine metabolism--have an influence on T lymphocyte development and the immune system, due to intracellular accumulation of toxic levels of deoxynucleotides. Studies in our group, performed in an experimental model on Wistar growing rats, have demonstrated that protein deficiency or imbalance in the profile of essential amino acids in the diet, produce loss of thymus weight, reduction in the number of thymocytes, a diminished proportion of T cells presenting the W3/13 antigenic determinant and DNA content with concomitant increase in cell size, and the proportion of immature T cells and activity of ADA and PNP, without modifying the activity of 5´Nucleotidase in the thymus. It is important to point out that there were neither differences in energy intake between experimental groups and their controls, nor clinical symptoms of deficiency of other nutrients. The increase in these thymic enzyme activities was an alternative mechanism to avoid the accumulation of high levels of deoxynucleotides, which would be toxic for T lymphocytes. On the other hand, the administration of a recovery diet, with a high amount of high quality protein, was able to reverse the mentioned effects. The quick reply of Adenosine Deaminase to nutritional disorders and the following nutritional recovery, points

  10. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  11. Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles.

    Science.gov (United States)

    Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W

    2015-03-01

    Cellulase and β-glucosidase were adsorbed on a polyacrylic acid polymer brush grafted on silica nanoparticles to produce enzymogels as a form of enzyme immobilization. Enzyme loading on the enzymogels was increased to a saturation level of approximately 110 μg (protein) mg(-1) (particle) for each enzyme. Enzymogels with varied enzyme loadings were then used to determine the impact on hydrolysis rate and enzyme recovery. Soluble sugar concentrations during the hydrolysis of filter paper and Solka-Floc with the enzymogels were 45 and 53%, respectively, of concentrations when using free cellulase. β-Glucosidase enzymogels showed lower performance; hydrolyzate glucose concentrations were just 38% of those using free enzymes. Increasing enzyme loading on the enzymogels did not reduce net efficacy for cellulase and improved efficacy for β-glucosidase. The use of free cellulases and cellulase enzymogels resulted in hydrolyzates with different proportions of cellobiose and glucose, suggesting differential attachment or efficacy of endoglucanases, exoglucanases, and β-glucosidases present in cellulase mixtures. When loading β-glucosidase individually, higher enzyme loadings on the enzymogels produced higher hydrolyzate glucose concentrations. Approximately 96% of cellulase and 66 % of β-glucosidase were recovered on the enzymogels, while enzyme loading level did not impact recovery for either enzyme.

  12. Role of antioxidant scavenging enzymes and extracellular ...

    African Journals Online (AJOL)

    ChithrashreeGS

    2012-08-23

    Aug 23, 2012 ... peroxidase are two important antioxidant scavenging enzymes involved in ... Catalase was assayed using the method of Beers and Sizer. (1951) with .... yeast dextrose calcium carbonate agar (YDC) medium. Catalase and ...

  13. Involvement of methyltransferases enzymes during the energy

    African Journals Online (AJOL)

    Mgina

    INVOLVEMENT OF METHYLTRANSFERASES ENZYMES DURING THE. ENERGY METABOLISM OF ..... cell extract still exhibited relatively high methanogenesis with methanol (Fig ... product CH3-CoM into methane (see Fig. 1). The HS-CoM ...

  14. Enzymes: The possibility of production and applications

    Directory of Open Access Journals (Sweden)

    Petronijević Živomir B.

    2003-01-01

    Full Text Available Enzymes are biological catalysts with increasing application in the food pharmaceutical, cosmetic, textile and chemical industry. They are also important as reagents in chemical analysis, leather fabrications and as targets for the design of new drugs. Keeping in mind the growing need to replace classical chemical processes by alternative ones, because of ever growing environmental pollution, it is important that enzyme and other biotechnological processes are economical. Therefore, price decrease and stability and enzyme preparation efficiency increase are required more and more. This paper presents a short review of methods for yield increase and the improvement of the quality of enzyme products as commercial products, as well as a review of the possibilities of their application.

  15. Optimizing culture medium for debittering constitutive enzyme ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-08-02

    Aug 2, 2010 ... enzyme naringinase production by Aspergillus oryzae. JMU316. Dong-xiao .... even though industrial applications of naringinase are becoming more and ... guidance for industry. MATERIALS AND ..... For economic reasons,.

  16. distribution, abundance and properties of restriction enzymes

    African Journals Online (AJOL)

    DNA of granule-bound starch synthase (GBSS) I and II with a view to ... properties for manipulation of the genes for production of modified starch. .... procurement, storage and handling of the ..... been made on restriction enzymes of potato,.

  17. Novel enzymes for the degradation of cellulose

    Directory of Open Access Journals (Sweden)

    Horn Svein

    2012-07-01

    Full Text Available Abstract The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix.

  18. Enzymes in Poultry and Swine Nutrition

    International Development Research Centre (IDRC) Digital Library (Canada)

    Poultry production in China and the potential for using enzyme preparations .... The feed manufacturers produce about 310 × 106t of high-quality feed, saving about 30%, ...... Chickens and experimental designs used in the three experiments.

  19. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    Science.gov (United States)

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  20. Polyphenol Oxidase Enzyme and Inactivation Methods

    Directory of Open Access Journals (Sweden)

    Leman Yılmaz

    2018-03-01

    Full Text Available Polyphenol oxidase enzyme is found in vegetables and fruits, as well as in some animal organs and microorganisms. Polyphenol oxidase enzyme responsible for enzymatic browning is a group of copper proteins that catalyses the oxidation of phenolic compounds to quinones, which produce brown pigments, commonly found in fruits and vegetables. During the industrial preparation of fruits and vegetables, results of catalytic effect of polyphenol oxidase causes enzymatic browning. Enzymatic browning impairs the appearance of products containing phenolic compounds along with undesirable colour, odor and taste formation and significant loss of nutritional value of the products. This affects the acceptability of the products by the consumers and causes economic losses. In this review, some characteristics of polyphenol oxidase enzyme in different fruits and vegetables have been reviewed and information about chemical antibrowning agents, thermal applications, irradiation applications and alternative methods such as high pressure processing, pulse electric field, supercritical carbon dioxide and ultrasound applications to inactivate this enzyme has been presented.

  1. Radioimmunoassay of polypeptide hormones and enzymes

    International Nuclear Information System (INIS)

    Felber, J.P.

    1974-01-01

    General principles of radioimmunoassay are reviewed. Detailed procedures are reviewed for the following hormones: insulin, pituitary hormones, gonadotropins, parathyroid hormone, ACTH, glucagon, gastrin, and peptide hormones. Radioimmunoassay of enzymes is also discussed. (U.S.)

  2. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  3. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    The enzyme was active in pH range 5 to11 and temperature of 30 to 80°C. The optimum pH and the temperature for protease activity were recorded to be pH 8 and 50°C, respectively. The enzyme was stable up to 40°C and pH 9. The protease activity was inhibited by Zn2+, Ni2+ and Sn2+ and increased by Ca2+, Mg2+ ...

  4. Enzyme-driven mechanisms in biocorrosion

    OpenAIRE

    Basséguy, Régine

    2007-01-01

    Objectives (abstract of presentation): Recent works carried out in our team concerning enzymes and biocorrosion are presented at the meeting. For aerobic conditions, the direct catalysis of the reduction of oxygen on steel by enzymes or porphyrin was proved and a local electrochemical analysis technique (SVET) was developed to visualize the localization of the catalysis. On anaerobic conditions, the influence of phosphate species and other weak acids on the water reduction on steel was shown....

  5. A stochastic model of enzyme kinetics

    Science.gov (United States)

    Stefanini, Marianne; Newman, Timothy; McKane, Alan

    2003-10-01

    Enzyme kinetics is generally modeled by deterministic rate equations, and in the simplest case leads to the well-known Michaelis-Menten equation. It is plausible that stochastic effects will play an important role at low enzyme concentrations. We have addressed this by constructing a simple stochastic model which can be exactly solved in the steady-state. Throughout a wide range of parameter values Michaelis-Menten dynamics is replaced by a new and simple theoretical result.

  6. Enzyme Technology for Shipboard Waste Management

    Science.gov (United States)

    1976-12-01

    sucrose to the sweeter invert sugar by the enzyme invertase is a well established process, as is the conversion of starch to glucose by the enzyme...aspects of our health and daily lives. Recent advances in fundamental and applied enzymology indicate that we have already started in that direction. At a...Chemtech, p. 677 (Nov 1973) 11 - Bungay, H. P., "Applied Enzymology ," Worthington, Biochemical Corp., Notes for an AIChE Lecture, Washington, D. C. (Dec

  7. Visualization of enzyme activities inside earthworm pores

    Science.gov (United States)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  8. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay Rojas

    2016-01-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly a ims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes ef ficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/in activation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultr asonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  9. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay

    2016-06-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly aims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes efficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/inactivation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultrasonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  10. Directed evolution of enzymes using microfluidic chips

    Science.gov (United States)

    Pilát, Zdeněk.; Ježek, Jan; Šmatlo, Filip; Kaůka, Jan; Zemánek, Pavel

    2016-12-01

    Enzymes are highly versatile and ubiquitous biological catalysts. They can greatly accelerate large variety of reactions, while ensuring appropriate catalytic activity and high selectivity. These properties make enzymes attractive biocatalysts for a wide range of industrial and biomedical applications. Over the last two decades, directed evolution of enzymes has transformed the field of protein engineering. We have devised microfluidic systems for directed evolution of haloalkane dehalogenases in emulsion droplets. In such a device, individual bacterial cells producing mutated variants of the same enzyme are encapsulated in microdroplets and supplied with a substrate. The conversion of a substrate by the enzyme produced by a single bacterium changes the pH in the droplet which is signalized by pH dependent fluorescence probe. The droplets with the highest enzymatic activity can be separated directly on the chip by dielectrophoresis and the resultant cell lineage can be used for enzyme production or for further rounds of directed evolution. This platform is applicable for fast screening of large libraries in directed evolution experiments requiring mutagenesis at multiple sites of a protein structure.

  11. Lysosomal enzyme activation in irradiated mammary tumors

    International Nuclear Information System (INIS)

    Clarke, C.; Wills, E.D.

    1976-01-01

    Lysosomal enzyme activity of C3H mouse mammary tumors was measured quantitatively by a histochemical method. Following whole-body doses of 3600 rad or less no changes were observed in the lysosomal enzyme activity for 12 hr after the irradiation, but very large increases in acid phosphatase and β-naphthylamidase activity were, however, observed 24 hr after irradiation. Significant increases in enzyme activity were detected 72 hr after a dose of 300 rad and the increases of enzyme activity were dose dependent over the range 300 to 900 rad. Testosterone (80 mg/kg) injected into mice 2 hr before irradiation (850 rad) caused a significant increase of lysosomal enzyme activity over and above that of the same dose of irradiation alone. If the tumor-bearing mice were given 95 percent oxygen/5 percent carbon dioxide to breathe for 8 min before irradiation the effect of 850 rad on lysosomal acid phosphatase was increased to 160 percent/that of the irradiation given alone. Activitation of lysosomal enzymes in mammary tumors is an important primary or secondary consequence of radiation

  12. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR methods depends on their influence on fluid/rock interactions related to wettability and fluid/fluid interactions reflected in IFT. If the method has the potential to change the interactions favorably, it may be considered for further investigation, i.e. core flooding experiment, pilot and reservoir implementation. Enzyme-proteins can be introduced as an enhanced oil recovery method to improve waterflood performance by affecting interactions at the oil-water-rock interfaces. An important part of this thesis was to investigate how selected enzymes may influence wettability and capillary forces in a crude oil-brine-rock system, and thus possibly contribute to enhanced oil recovery. To investigate further by which mechanisms selected enzyme-proteins may contribute to enhance oil recovery, groups of enzymes with different properties and catalytic functions, known to be interfacially active, were chosen to cover a wide range of possible effects. These groups include (1) Greenzyme (GZ) which is a commercial EOR enzyme and consists of enzymes and stabilizers (surfactants), (2) The Zonase group consists of two types of pure enzyme, Zonase1 and Zonase2 which are protease enzymes and whose catalytic functions are to hydrolyze (breakdown) peptide bonds, (3) The Novozyme (NZ) group consists of three types of pure enzyme, NZ2, NZ3 and NZ6 which are esterase enzymes and whose catalytic functions are to hydrolyze ester bonds, and (4) Alpha-Lactalbumin ( -La) which is an important whey protein. The effect of

  13. Computational Biochemistry-Enzyme Mechanisms Explored.

    Science.gov (United States)

    Culka, Martin; Gisdon, Florian J; Ullmann, G Matthias

    2017-01-01

    Understanding enzyme mechanisms is a major task to achieve in order to comprehend how living cells work. Recent advances in biomolecular research provide huge amount of data on enzyme kinetics and structure. The analysis of diverse experimental results and their combination into an overall picture is, however, often challenging. Microscopic details of the enzymatic processes are often anticipated based on several hints from macroscopic experimental data. Computational biochemistry aims at creation of a computational model of an enzyme in order to explain microscopic details of the catalytic process and reproduce or predict macroscopic experimental findings. Results of such computations are in part complementary to experimental data and provide an explanation of a biochemical process at the microscopic level. In order to evaluate the mechanism of an enzyme, a structural model is constructed which can be analyzed by several theoretical approaches. Several simulation methods can and should be combined to get a reliable picture of the process of interest. Furthermore, abstract models of biological systems can be constructed combining computational and experimental data. In this review, we discuss structural computational models of enzymatic systems. We first discuss various models to simulate enzyme catalysis. Furthermore, we review various approaches how to characterize the enzyme mechanism both qualitatively and quantitatively using different modeling approaches. © 2017 Elsevier Inc. All rights reserved.

  14. Activity assessment of microbial fibrinolytic enzymes.

    Science.gov (United States)

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  15. Enzyme-MOF (metal-organic framework) composites.

    Science.gov (United States)

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  16. Kinetics of enzyme action: essential principles for drug hunters

    National Research Council Canada - National Science Library

    Stein, Ross L

    2011-01-01

    ... field. Beginning with the most basic principles pertaining to simple, one-substrate enzyme reactions and their inhibitors, and progressing to a thorough treatment of two-substrate enzymes, Kinetics of Enzyme Action...

  17. Continuous enzyme reactions with immobilized enzyme tubes prepared by radiation cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1986-01-01

    Immobilized glucose oxidase tubes were prepared by radiation cast-polymerization of 2-hydroxyethyl methacrylate and tetraethyleneglycol diacrylate monomer at low temperatures. The immobilized enzyme tubes which were spirally set in a water bath were used as reactor, in which the enzyme activity varied with tube size and flow rate of the substrate. The conversion yield of the substrate in continuous enzyme reaction was about 80%. (author)

  18. Stabilization of enzymes in ionic liquids via modification of enzyme charge.

    Science.gov (United States)

    Nordwald, Erik M; Kaar, Joel L

    2013-09-01

    Due to the propensity of ionic liquids (ILs) to inactivate enzymes, the development of strategies to improve enzyme utility in these solvents is critical to fully exploit ILs for biocatalysis. We have developed a strategy to broadly improve enzyme utility in ILs based on elucidating the effect of charge modifications on the function of enzymes in IL environments. Results of stability studies in aqueous-IL mixtures indicated a clear connection between the ratio of enzyme-containing positive-to-negative sites and enzyme stability in ILs. Stability studies of the effect of [BMIM][Cl] and [EMIM][EtSO4 ] on chymotrypsin specifically found an optimum ratio of positively-charged amine-to-negatively-charged acid groups (0.39). At this ratio, the half-life of chymotrypsin was increased 1.6- and 4.3-fold relative to wild-type chymotrypsin in [BMIM][Cl] and [EMIM][EtSO4 ], respectively. The half-lives of lipase and papain were similarly increased as much as 4.0 and 2.4-fold, respectively, in [BMIM][Cl] by modifying the ratio of positive-to-negative sites of each enzyme. More generally, the results of stability studies found that modifications that reduce the ratio of enzyme-containing positive-to-negative sites improve enzyme stability in ILs. Understanding the impact of charge modification on enzyme stability in ILs may ultimately be exploited to rationally engineer enzymes for improved function in IL environments. Copyright © 2013 Wiley Periodicals, Inc.

  19. Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices

    OpenAIRE

    Munteanu, Cristian Robert

    2014-01-01

    Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices, German Conference on Bioinformatics (GCB), Potsdam, Germany (September, 2007)

  20. Enzymic conversion of starch to glucose

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-19

    Corn is steeped in a SO/sub 2/ solution for 30 to 40 hours, coarsely ground, separated from the germ, and filtered. A 35% suspension of the germ-free corn, still containing fibers, hull, and gluten, is treated with Ca(OH)/sub 2/ to raise the pH to 6.5 to 7.0. A starch-liquifying enzyme is added and after a 2 hours treatment at 85/sup 0/ the liquefied starch is cooled to 60/sup 0/ and the pH is adjusted to 4.5 to 5.0 with H/sub 2/SO/sub 4/. A saccharifying enzyme is now added. After 40 to 81 hours, a raw glucose solution is obtained and is freed from fibers and gluten by filtration. The commercial starch-liquifying enzymes are designated HT-1000 and Neozyme 3 LC (liquid). The saccharifying enzymes are Diazyme or Diazyme L 30 (liquid). The solid enzymes are used at a level up to 0.1% by weight of the starch. Up to 100% conversion of starch into glucose is achieved.

  1. Thermophilic archaeal enzymes and applications in biocatalysis.

    Science.gov (United States)

    Littlechild, Jennifer A

    2011-01-01

    Thermophilic enzymes have advantages for their use in commercial applications and particularly for the production of chiral compounds to produce optically pure pharmaceuticals. They can be used as biocatalysts in the application of 'green chemistry'. The thermophilic archaea contain enzymes that have already been used in commercial applications such as the L-aminoacylase from Thermococcus litoralis for the resolution of amino acids and amino acid analogues. This enzyme differs from bacterial L-aminoacylases and has similarities to carboxypeptidases from other archaeal species. An amidase/γ-lactamase from Sulfolobus solfataricus has been used for the production of optically pure γ-lactam, the building block for antiviral carbocyclic nucleotides. This enzyme has similarities to the bacterial signature amidase family. An alcohol dehydrogenase from Aeropyrum pernix has been used for the production of optically pure alcohols and is related to the zinc-containing eukaryotic alcohol dehydrogenases. A transaminase and a dehalogenase from Sulfolobus species have also been studied. The archaeal transaminase is found in a pathway for serine synthesis which is found only in eukaryotes and not in bacteria. It can be used for the asymmetric synthesis of homochiral amines of high enantioselective purity. The L-2-haloacid dehalogenase has applications both in biocatalysis and in bioremediation. All of these enzymes have increased thermostability over their mesophilic counterparts.

  2. Concentration profiles near an activated enzyme.

    Science.gov (United States)

    Park, Soohyung; Agmon, Noam

    2008-09-25

    When a resting enzyme is activated, substrate concentration profile evolves in its vicinity, ultimately tending to steady state. We use modern theories for many-body effects on diffusion-influenced reactions to derive approximate analytical expressions for the steady-state profile and the Laplace transform of the transient concentration profiles. These show excellent agreement with accurate many-particle Brownian-dynamics simulations for the Michaelis-Menten kinetics. The steady-state profile has a hyperbolic dependence on the distance of the substrate from the enzyme, albeit with a prefactor containing the complexity of the many-body effects. These are most conspicuous for the substrate concentration at the surface of the enzyme. It shows an interesting transition as a function of the enzyme turnover rate. When it is high, the contact concentration decays monotonically to steady state. However, for slow turnover it is nonmonotonic, showing a minimum due to reversible substrate binding, then a maximum due to diffusion of new substrate toward the enzyme, and finally decay to steady state. Under certain conditions one can obtain a good estimate for the critical value of the turnover rate constant at the transition.

  3. Development of enzymes and enzyme systems by genetic engineering to convert biomass to sugars

    Science.gov (United States)

    TITLE Development of Enzymes and Enzyme Systems by Genetic Engineering to Convert Biomass to Sugars ABSTRACT Plant cellulosic material is one of the most viable renewable resources for the world’s fuel and chemical feedstock needs. Currently ethanol derived from corn starch is the most common li...

  4. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    Science.gov (United States)

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  5. Microbial genetic engineering and enzyme technology

    Energy Technology Data Exchange (ETDEWEB)

    Hollenberg, C.P.; Sahm, H.

    1987-01-01

    In a series of up-to-date contributions BIOTEC 1 has experts discussing the current topics in microbial gene technology and enzyme technology and speculating on future developments. Bacterial and yeast systems for the production of interferons, growth hormone or viral antigenes are described as well as the impact of gene technology on plants. Exciting is the prospect of degrading toxic compounds in our environment by microorganisms tuned in the laboratory. Enzymes are the most effective catalysts we know. They exhibit a very high substrate- and stereospecificity. These properties make enzymes extremely attractive as industrial catalysts, leading to new production processes that are non-polluting and save both energy and raw materials. (orig.) With 135 figs., 36 tabs.

  6. Ultrasound in Enzyme Activation and Inactivation

    Science.gov (United States)

    Mawson, Raymond; Gamage, Mala; Terefe, Netsanet Shiferaw; Knoerzer, Kai

    As discussed in previous chapters, most effects due to ultrasound arise from cavitation events, in particular, collapsing cavitation bubbles. These collapsing bubbles generate very high localized temperatures and pressure shockwaves along with micro-streaming that is associated with high shear forces. These effects can be used to accelerate the transport of substrates and reaction products to and from enzymes, and to enhance mass transfer in enzyme reactor systems, and thus improve efficiency. However, the high velocity streaming, together with the formation of hydroxy radicals and heat generation during collapsing of bubbles, may also potentially affect the biocatalyst stability, and this can be a limiting factor in combined ultrasound/enzymatic applications. Typically, enzymes can be readily denatured by slight changes in environmental conditions, including temperature, pressure, shear stress, pH and ionic strength.

  7. Enzyme Histochemistry for Functional Histology in Invertebrates.

    Science.gov (United States)

    Cima, Francesca

    2017-01-01

    In invertebrates, enzyme histochemistry has recently found a renaissance regarding its applications in morphology and ecology. Many enzyme activities are useful for the morphofunctional characterization of cells, as biomarkers of biological and pathologic processes, and as markers of the response to environmental stressors. Here, the adjustments to classic techniques, including the most common enzymes used for digestion, absorption, transport, and oxidation, as well as techniques for azo-coupling, metal salt substitution and oxidative coupling polymerization, are presented in detail for various terrestrial and aquatic invertebrates. This chapter also provides strategies to solve the problems regarding anesthesia, small body size, the presence of an exo- or endoskeleton and the search for the best fixative in relation to the internal fluid osmolarity. These techniques have the aim of obtaining good results for both the pre- and post-embedding labeling of specimens, tissue blocks, sections, and hemolymph smears using both light and transmission electron microscopy.

  8. Intestinal enzyme distribution after supralethal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Becciolini, A; Gerber, G B; Buracchi, A; Deroo, J [Florence Univ. (Italy). Istituto di Radiologia; Centre d' Etude de l' Energie Nucleaire, Mol (Belgium). Dept. de Radiobiologie)

    1977-07-01

    The activity of some intestinal enzymes has been studied after 2 kR irradiation. Brush border enzymes, maltase and leucineaminopeptidase (LAP) show an increase 20 hours after irradiation, while after 72 hours their activities are reduced to very low levels. Lysosomal enzymes show a completely different behaviour: acid phosphatase activity increases only 72 hours after irradiation, whereas ..beta.. glucuronidase increases significantly after 20 hours and reaches values two or three times higher than controls after 72 hours. The histologic picture at the first interval after irradiation shows gross alterations in the crypt region, but the villi appear nearly normal. Seventy-two hours after irradiation the whole epithelium is affected and very numerous leukocytes are present in the stroma.

  9. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  10. Radiation and enzyme degradation of cellulose materials

    International Nuclear Information System (INIS)

    Duchacek, V.

    1983-01-01

    The results are summed up of a study of the effect of gamma radiation on pure cellulose and on wheat straw. The irradiation of cellulose yields acid substances - formic acid and polyhydroxy acids, toxic malondialdehyde and the most substantial fraction - the saccharides xylose, arabinose, glucose and certain oligosaccharides. A ten-fold reduction of the level of cellulose polymerization can be caused by relatively small doses - (up to 250 kGy). A qualitative analysis was made of the straw before and after irradiation and it was shown that irradiation had no significant effect on the qualitative composition of the straw. A 48 hour enzyme hydrolysis of the cellulose and straw were made after irradiation and an economic evaluation of the process was made. Radiation pretreatment is technically and economically advantageous; the production of fodder using enzyme hydrolysis of irradiated straw is not economically feasible due to the high cost of the enzyme. (M.D.)

  11. Engineering of pectinolytic enzymes for enhanced thermostability

    DEFF Research Database (Denmark)

    Larsen, Dorte Møller

    Conversion of waste materials into valuable compounds is promising concerning transformation of byproduct streams such as sugar beet and potato pulp. In order to obtain those compounds with reduced energy consumption, carbohydrate active enzymes can be used as catalysts. Sugar beet and potato pulp...... consist of pectin that can be converted into beneficial polymeric and oligomeric carbohydrates requiring enzymes such as pectin lyases, rhamnogalacturonan I (RGI) lyases, polygalacturonases and galactanases. Enzymatic conversion of such pectinaceous biomasses at high temperatures is advantageous...... as it gives rise to lower substrate viscosity, easier mixing, higher substrate solubility and lowers the risk of contamination. The overall objective of this thesis was to discover enzymes for degradation of RGI structures in pectin and further engineer for enhanced thermostability. The hypotheses were...

  12. Translational control of an intestinal microvillar enzyme

    DEFF Research Database (Denmark)

    Danielsen, E M; Cowell, G M; Sjöström, H

    1986-01-01

    The rates of biosynthesis of adult and foetal pig small-intestinal aminopeptidase N (EC 3.4.11.2) were compared to determine at which level the expression of the microvillar enzyme is developmentally controlled. In organ-cultured explants, the rate of biosynthesis of foetal aminopeptidase N is only...... about 3% of the adult rate. The small amount synthesized occurs in a high-mannose-glycosylated, membrane-bound, form that is processed to the mature, complex-glycosylated, form at a markedly slower rate than that of the adult enzyme. Extracts of total RNA from adult and foetal intestine contained...

  13. Enhanced Oil Recovery with Application of Enzymes

    OpenAIRE

    Khusainova, Alsu; Shapiro, Alexander; Woodley, John

    2016-01-01

    Enzymer er for nylig blevet rapporteret, som effektive stoffer for forbedret olieindvinding(EOR). Både laboratorie undersøgelser og felttest viste en markant stigning af olieproduktion. Op til ekstra 16 % af olien blev produceret i laboratorie eksperimenter og op til ekstra 269 tønder olie per dag blev fremstillet under feltforsøg. Det var foreslået, at følgende mekanismer har medvirket tiløget olieproduktionen på grund af enzymer: forbedringer af bjergartsoverfladens befugtningsevne;dannelse...

  14. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    International Nuclear Information System (INIS)

    Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.

    2006-01-01

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography

  15. 21 CFR 862.2500 - Enzyme analyzer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme analyzer for clinical use. 862.2500 Section... Instruments § 862.2500 Enzyme analyzer for clinical use. (a) Identification. An enzyme analyzer for clinical use is a device intended to measure enzymes in plasma or serum by nonkinetic or kinetic measurement of...

  16. 21 CFR 864.9400 - Stabilized enzyme solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stabilized enzyme solution. 864.9400 Section 864... and Blood Products § 864.9400 Stabilized enzyme solution. (a) Identification. A stabilized enzyme... enzyme solutions include papain, bromelin, ficin, and trypsin. (b) Classification. Class II (performance...

  17. Review of the biochemical basis of enzyme immunoassays

    International Nuclear Information System (INIS)

    Klingler, W.

    1982-01-01

    The ever increasing number of radioimmunological determination poses problems allied with the handling of radioactive substances. In recent years various non-radioactive methods have been developed, among which the enzyme immunoassay is already in routine use. Homogeneous and heterogeneous enzyme immunoassays are described. Criteria for enzymes, substrates and enzyme-substrate reactions are listed. (orig.) [de

  18. Seeing & Feeling How Enzymes Work Using Tangible Models

    Science.gov (United States)

    Lau, Kwok-chi

    2013-01-01

    This article presents a tangible model used to help students tackle some misconceptions about enzyme actions, particularly the induced-fit model, enzyme-substrate complementarity, and enzyme inhibition. The model can simulate how substrates induce a change in the shape of the active site and the role of attraction force during enzyme-substrate…

  19. Purification, characterization of phytase enzyme from Lactobacillus ...

    African Journals Online (AJOL)

    Purification, characterization of phytase enzyme from Lactobacillus plantarum bacteria and determination of its kinetic properties. ... Many of the cereal grains, legumes and oilseeds store phosphorus in phytate form. Phytases can be produced by plants, animals and microorganisms. However, the ones with microbial origin ...

  20. Enzyme Replacement Therapy for Fabry Disease

    Directory of Open Access Journals (Sweden)

    Maria Dolores Sanchez-Niño PhD

    2016-11-01

    Full Text Available Fabry disease is a rare X-linked disease caused by the deficiency of α-galactosidase that leads to the accumulation of abnormal glycolipid. Untreated patients develop potentially lethal complications by age 30 to 50 years. Enzyme replacement therapy is the current standard of therapy for Fabry disease. Two formulations of recombinant human α-galactosidase A (agalsidase are available in most markets: agalsidase-α and agalsidase-β, allowing a choice of therapy. However, the US Food and Drug Administration rejected the application for commercialization of agalsidase-α. The main difference between the 2 enzymes is the dose. The label dose for agalsidase-α is 0.2 mg/kg/2 weeks, while the dose for agalsidase-β is 1.0 mg/kg/2 weeks. Recent evidence suggests a dose-dependent effect of enzyme replacement therapy and agalsidase-β is 1.0 mg/kg/2 weeks, which has been shown to reduce the occurrence of hard end points (severe renal and cardiac events, stroke, and death. In addition, patients with Fabry disease who have developed tissue injury should receive coadjuvant tissue protective therapy, together with enzyme replacement therapy, to limit nonspecific progression of the tissue injury. It is likely that in the near future, additional oral drugs become available to treat Fabry disease, such as chaperones or substrate reduction therapy.

  1. Enzyme catalysis by entropy without Circe effect.

    Science.gov (United States)

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan

    2016-03-01

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution.

  2. Biochemical assessement of liver enzymes in immunocompromised ...

    African Journals Online (AJOL)

    Aim: This study aims at the estimation of serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), Aspartate aminotransferase (AST), and glutmyltransferase GGT (Liver enzymes) in Human immunodeficiency virus(HIV) and/or Acquired immune deficiency syndrome(AIDS) patients in parts of Edo State, Nigeria.

  3. Enzyme specific activity in functionalized nanoporous supports

    International Nuclear Information System (INIS)

    Lei Chenghong; Soares, Thereza A; Shin, Yongsoon; Liu Jun; Ackerman, Eric J

    2008-01-01

    Here we reveal that enzyme specific activity can be increased substantially by changing the protein loading density (P LD ) in functionalized nanoporous supports so that the enzyme immobilization efficiency (I e , defined as the ratio of the specific activity of the immobilized enzyme to the specific activity of the free enzyme in solution) can be much higher than 100%. A net negatively charged glucose oxidase (GOX) and a net positively charged organophosphorus hydrolase (OPH) were entrapped spontaneously in NH 2 - and HOOC-functionalized mesoporous silica (300 A, FMS) respectively. The specific activity of GOX entrapped in FMS increased with decreasing P LD . With decreasing P LD , I e of GOX in FMS increased from 150%. Unlike GOX, OPH in HOOC-FMS showed increased specific activity with increasing P LD . With increasing P LD , the corresponding I e of OPH in FMS increased from 100% to>200%. A protein structure-based analysis of the protein surface charges directing the electrostatic interaction-based orientation of the protein molecules in FMS demonstrates that substrate access to GOX molecules in FMS is limited at high P LD , consequently lowering the GOX specific activity. In contrast, substrate access to OPH molecules in FMS remains open at high P LD and may promote a more favorable confinement environment that enhances the OPH activity

  4. Exogenous fibrolytic enzymes to unlock nutrients: Histological ...

    African Journals Online (AJOL)

    There is a need for a better understanding of the mode-of-action of exogenous fibrolytic enzymes (EFE) used as additives in ruminant feeds. Four forages, treated with EFE, were evaluated in vitro and histologically, in an attempt to determine the effect of EFE on tissue degradation. Weeping love grass, kikuyu leaf material, ...

  5. Microbial nitrilases: versatile, spiral forming, industrial enzymes

    CSIR Research Space (South Africa)

    Thuku, RN

    2009-03-01

    Full Text Available such case is the NAD+ synthetase from Mycobacterium tuberculosis (Bellinzoni et al., 2005). This enzyme relies on an associated amino-terminal amidase domain in order to utilize glutamine as a source of nitrogen and liberate ammonia which is required...

  6. A Comprehensive Enzyme Kinetic Exercise for Biochemistry

    Science.gov (United States)

    Barton, Janice S.

    2011-01-01

    This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…

  7. A Qualitative Approach to Enzyme Inhibition

    Science.gov (United States)

    Waldrop, Grover L.

    2009-01-01

    Most general biochemistry textbooks present enzyme inhibition by showing how the basic Michaelis-Menten parameters K[subscript m] and V[subscript max] are affected mathematically by a particular type of inhibitor. This approach, while mathematically rigorous, does not lend itself to understanding how inhibition patterns are used to determine the…

  8. Enzyme Kinetics? Elementary, my dear 3 -8 ...

    Indian Academy of Sciences (India)

    research interests are in the areas of protein- ... rate constant for the formation of products, k3 is significantly of some enzymes. ... tissue at different stages of development. .... represent the only values of Km and V max that satisfy all of the sets.

  9. Angiotensin Converting Enzyme Insertion/Deletion Gene ...

    African Journals Online (AJOL)

    Angiotensin Converting Enzyme Insertion/Deletion Gene Polymorphism: An Observational Study among Diabetic Hypertensive Subjects in Malaysia. ... Methods: The pharmacological effect of ACE inhibition on mean arterial pressure (MAP) and glomerular filtration rate (GFR) were observed among a total of 62 subjects for ...

  10. Protein engineering of enzymes for process applications

    DEFF Research Database (Denmark)

    Woodley, John M

    2013-01-01

    opportunities will be targeted on modification to enable process application. This article discusses the challenges involved in enzyme modification focused on process requirements, such as the need to fulfill reaction thermodynamics, specific activity under the required conditions, kinetics at required...... concentrations, and stability. Finally, future research directions are discussed, including the integration of biocatalysis with neighboring chemical steps....

  11. Enzyme activity of a Phanerochaete chrysosporium cellobiohydrolase

    African Journals Online (AJOL)

    The aim of this study was to produce a secreted, heterologously expressed Phanerochaete chrysosporium cellobiohydrolase (CBHI.1) protein that required no in vitro chemical refolding and to investigate the cellulolytic activity of the clone expressing the glutathione S-transferase (GST) fused CBHI.1 protein. Plate enzyme ...

  12. Detergents - Zeolites and Enzymes Excel Cleaning Power

    Indian Academy of Sciences (India)

    Presently used detergent formulations generally consist of surfactants, builder and cobuilder, bleaching agents, addi- tives for secondary benefits and enzymes. Zeolites are basically hydrated crystalline aluminium silicates which function as ion exchangers and make the water soft by removing calcium, magnesium and ...

  13. Peroxidase enzymes regulate collagen extracellular matrix biosynthesis.

    Science.gov (United States)

    DeNichilo, Mark O; Panagopoulos, Vasilios; Rayner, Timothy E; Borowicz, Romana A; Greenwood, John E; Evdokiou, Andreas

    2015-05-01

    Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Furin is a chemokine-modifying enzyme

    DEFF Research Database (Denmark)

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A

    2004-01-01

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the tota...

  15. Ligninolytic enzyme complex of Armillaria spp

    Czech Academy of Sciences Publication Activity Database

    Stoychev, I.; Nerud, František

    2000-01-01

    Roč. 45, č. 3 (2000), s. 248-250 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z5020903 Keywords : lignin olytic enzyme * lignin peroxidase Subject RIV: EE - Microbiology, Virology Impact factor: 0.752, year: 2000

  16. Involvement of methyltransferases enzymes during the energy ...

    African Journals Online (AJOL)

    The methyl group transfer from dimethylsulfide (DMS), trimethylamine and methanol to 2-mercaptoethanesulfonic acid (coenzyme M) were investigated from cell extracts of Methanosarcina semesiae sp. nov. to evaluate whether the enzyme systems involved were constitutive or inductive. The extracts from cells grown on ...

  17. Computationally designed libraries for rapid enzyme stabilization

    NARCIS (Netherlands)

    Wijma, Hein J.; Floor, Robert J.; Jekel, Peter A.; Baker, David; Marrink, Siewert J.; Janssen, Dick B.

    The ability to engineer enzymes and other proteins to any desired stability would have wide-ranging applications. Here, we demonstrate that computational design of a library with chemically diverse stabilizing mutations allows the engineering of drastically stabilized and fully functional variants

  18. Role of antioxidant scavenging enzymes and extracellular ...

    African Journals Online (AJOL)

    In the present work, we studied the role of antioxidant scavenging enzymes of plant pathogenic bacteria: catalase, ascorbate peroxidase and a virulence factor; extracelluar polysaccharide production in determining the virulence of Xanthomonas oryzae pv. oryzae (Xoo) isolates and its differential reaction to rice cultivars.

  19. Novel Industrial Enzymes from Uncultured Arctic Microorganisms

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede

    , and reduce the risk of contaminations. Cold- and alkaline-active enzymes can be found in microorganisms adapted to living in natural environments with these conditions, which are extremely rare but found in the unique ikaite columns from SW Greenland (4-6 °C, pH >10). It is estimated that less than 1...

  20. Microbial nitrilases: versatile, spiral forming, industrial enzymes.

    Science.gov (United States)

    Thuku, R N; Brady, D; Benedik, M J; Sewell, B T

    2009-03-01

    The nitrilases are enzymes that convert nitriles to the corresponding acid and ammonia. They are members of a superfamily, which includes amidases and occur in both prokaryotes and eukaryotes. The superfamily is characterized by having a homodimeric building block with a alpha beta beta alpha-alpha beta beta alpha sandwich fold and an active site containing four positionally conserved residues: cys, glu, glu and lys. Their high chemical specificity and frequent enantioselectivity makes them attractive biocatalysts for the production of fine chemicals and pharmaceutical intermediates. Nitrilases are also used in the treatment of toxic industrial effluent and cyanide remediation. The superfamily enzymes have been visualized as dimers, tetramers, hexamers, octamers, tetradecamers, octadecamers and variable length helices, but all nitrilase oligomers have the same basic dimer interface. Moreover, in the case of the octamers, tetradecamers, octadecamers and the helices, common principles of subunit association apply. While the range of industrially interesting reactions catalysed by this enzyme class continues to increase, research efforts are still hampered by the lack of a high resolution microbial nitrilase structure which can provide insights into their specificity, enantioselectivity and the mechanism of catalysis. This review provides an overview of the current progress in elucidation of structure and function in this enzyme class and emphasizes insights that may lead to further biotechnological applications.

  1. Enzymes and Ecosystems -- Where Do They Overlap?

    Science.gov (United States)

    Richard E. Dickson

    1996-01-01

    The whole plant is not the sum of its enzyme systems. This book demonstrates the importance of whole-plant physiology by examining carbon-nitrogen interactions and how these interactions are influenced by demands of the whole plant. In some aspects it is a timely response to the current, strong reductionist trends in plant physiology associated with advances in...

  2. Transition state theory for enzyme kinetics

    Science.gov (United States)

    Truhlar, Donald G.

    2015-01-01

    This article is an essay that discusses the concepts underlying the application of modern transition state theory to reactions in enzymes. Issues covered include the potential of mean force, the quantization of vibrations, the free energy of activation, and transmission coefficients to account for nonequilibrium effect, recrossing, and tunneling. PMID:26008760

  3. Synthetic Applications of Nitrile-Converting Enzymes

    Czech Academy of Sciences Publication Activity Database

    Martínková, Ludmila; Mylerová, Veronika

    2003-01-01

    Roč. 7, - (2003), s. 1279-1295 ISSN 1385-2728 R&D Projects: GA AV ČR IAA4020213 Institutional research plan: CEZ:AV0Z5020903 Keywords : nitrile * converting * enzymes Subject RIV: EE - Microbiology, Virology Impact factor: 2.521, year: 2003

  4. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  5. Chitinolytic enzymes produces by ovine rumen bacteria

    Czech Academy of Sciences Publication Activity Database

    Kopečný, Jan; Hodrová, Blanka

    2000-01-01

    Roč. 45, č. 5 (2000), s. 465-468 ISSN 0015-5632 R&D Projects: GA ČR GA524/97/1221 Institutional research plan: CEZ:AV0Z5045916 Keywords : chitinolytic enzymes Subject RIV: ED - Physiology Impact factor: 0.752, year: 2000

  6. growth and extracellular enzyme production by microorganisms

    African Journals Online (AJOL)

    Okorie

    2013-06-26

    Jun 26, 2013 ... 1Federal Institute of Industrial Research Oshodi, Lagos, Nigeria. 2Department of ... of Bacillus subtilis (Bs2) were able to produce lipase enzyme. The study ... However, most commercial starter cultures originated from those ... The traditional method of preparing Ugba was employed in the laboratory to ...

  7. Laccase Enzymes in Inocula Pleurotus spp

    Directory of Open Access Journals (Sweden)

    Nora García-Oduardo

    2017-01-01

    Full Text Available The cultivation of edible and medicinal mushrooms Pleurotus has been aimed at promoting alternative management for agricultural products. This basidiomicete has been the subject of numerous studies because of its fruiting body constitutes a food, being a producer of enzymes with industrial interest and for its ability of biotransformation of lignocellulosic substrates. Pleurotus inocula in the established technology for growing edible and medicinal mushrooms in the CEBI Research- Production Plant were performed using sorghum or wheat. However, it is possible to expand the possibilities with other substrates. In this paper, the results of laccase enzymes production in inocula prepared with sorghum, corn and coffee pulp with two strains Pleurotus ostreatus CCEBI 3021 and Pleurotus ostreatus CCEBI 3024 are presented. The period of preparation of seed reaches 15-21 days, the measurements of laccase activity were performed in periods of seven days. Extraction of crude enzyme was performed in aqueous phase, the determination of the laccase enzyme activity, using guaiacol as substrate. The results obtained in this work with studies in previous work using sorghum as inocula are compared. It is found that higher yields are obtained laccase in coffee pulp. This study contributes to the theoretical knowledge and to provide alternatives for securing the production process of the plant.

  8. Lignocellulose degradation, enzyme production and protein ...

    African Journals Online (AJOL)

    Microbial conversion of corn stover by white rot fungi has the potential to increase its ligninolysis and nutritional value, thereby transforming it into protein-enriched animal feed. Response surface methodology was applied to optimize conditions for the production of lignocellulolytic enzymes by Trametes versicolor during ...

  9. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wösten-van Asperen, Roelie M.; Bos, Albert P.; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, René

    2013-01-01

    Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts angiotensin

  10. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wosten-van Asperen, Roelie M.; Bos, Albert; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, Rene

    2013-01-01

    Objective: Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts

  11. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  12. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.

    Science.gov (United States)

    Várnai, Anikó; Viikari, Liisa; Marjamaa, Kaisa; Siika-aho, Matti

    2011-01-01

    The adsorption of purified Trichoderma reesei cellulases (TrCel7A, TrCel6A and TrCel5A) and xylanase TrXyn11 and Aspergillus niger β-glucosidase AnCel3A was studied in enzyme mixture during hydrolysis of two pretreated lignocellulosic materials, steam pretreated and catalytically delignified spruce, along with microcrystalline cellulose (Avicel). The enzyme mixture was compiled to resemble the composition of commercial cellulase preparations. The hydrolysis was carried out at 35 °C to mimic the temperature of the simultaneous saccharification and fermentation (SSF). Enzyme adsorption was followed by analyzing the activity and the protein amount of the individual free enzymes in the hydrolysis supernatant. Most enzymes adsorbed quickly at early stages of the hydrolysis and remained bound throughout the hydrolysis, although the conversion reached was fairly high. Only with the catalytically oxidized spruce samples, the bound enzymes started to be released as the hydrolysis degree reached 80%. The results based on enzyme activities and protein assay were in good accordance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Effect of irradiation on immobilized enzymes compared with that on enzymes in solution

    International Nuclear Information System (INIS)

    Schachinger, L.; Schippel, C.; Altmann, E.; Diepold, B.; Yang, C.; Jaenike, M.; Hochhaeuser, E.

    1985-01-01

    Glucose oxidase and catalase were immobilized by attaching them to nylon fibers that had been treated with triethyloxonium-tetrafluoroborate, diaminohexane and glutaraldialdehyde according to Morris, Campell and Hornby (1975). This method assures that the enzymes are bound to a side chain of the polyamide structure. Enzyme activity (as measured by the O 2 -uptake and by microcalorimetry) was found to be unchanged after 2 years. The apparent Ksub(m)-constants of the immobilized enzymes with glucose were the same as those for enzymes in solution. GOD and catalase immobilized in poly(acrylamide) gel had the same Ksub(m)-value. Despite the high stability during storage, the radiation induced inactivation of enzymes immobilized on gel or chromosorb, an inorganic carrier, was of the same order of magnitude as that of the dissolved enzymes. The enzymes bound to nylon fibers showed a higher radiation sensitivity. This might have been caused by an additional attack on the binding site of the carrier. (orig.)

  14. Nanoarmored Enzymes for Organic Enzymology: Synthesis and Characterization of Poly(2-Alkyloxazoline)-Enzyme Conjugates.

    Science.gov (United States)

    Leurs, Melanie; Tiller, Joerg C

    2017-01-01

    The properties of enzymes can be altered significantly by modification with polymers. Numerous different methods are known to obtain such polymer-enzyme conjugates (PECs). However, there is no universal method to render enzymes into PECs that are fully soluble in organic solvents. Here, we present a method, which achieves such high degree of modification of proteins that the majority of modified enzymes will be soluble in organic solvents. This is achieved by preparing poly(2-alkyloxazoline)s (POx) with an NH 2 end group and coupling this functional polymer via pyromellitic acid dianhydride onto the amino groups of the respective protein. The resulting PECs are capable of serving as surfactants for unmodified proteins, rendering the whole mixture organosoluble. Depending on the nature of the POx and the molecular weight and the nature of the enzyme, the PECs are soluble in chloroform or even toluene. Another advantage of this method is that the poly(2-alkyloxazoline) can be activated with the coupling agent and used for the enzyme conjugation without further purification. The POx-enzyme conjugates generated by this modification strategy show modulated catalytic activity in both, aqueous and organic, systems. © 2017 Elsevier Inc. All rights reserved.

  15. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

  16. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution.

    Science.gov (United States)

    Omelchenko, Marina V; Galperin, Michael Y; Wolf, Yuri I; Koonin, Eugene V

    2010-04-30

    Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity.

  17. Therapeutic Enzymes: Applications and Approaches to Pharmacological Improvement.

    Science.gov (United States)

    Yari, Maryam; Ghoshoon, Mohammad B; Vakili, Bahareh; Ghasemi, Younes

    2017-01-01

    Among therapeutic proteins, enzymes represent small and of course profitable market. They can be used to treat important, rare, and deadly diseases. Enzyme therapy is the only available treatment for certain disorders. Here, pharmaceutical enzymes are reviewed. They are categorized in four main groups, enzymes in replacement therapy, enzymes in cancer treatment, enzymes for fibrinolysis, and finally enzymes that are used topically for various treatments. Furthermore, enzyme gene therapy and future perspective of therapeutic enzymes are mentioned in brief. There are many important approved enzymes in pharmaceutical market. Several approaches such as point mutation, fusion protein designing, glycoengineering, and PEGylation were used to achieve improved enzymes. Although sometimes enzymes were engineered to facilitate production and purification process, appropriate delivery to target sites, extending half-life, and reducing immunogenicity are among the main goals of engineering approaches. Overall, enzymes play a critical role in treatment of common and rare diseases. Evaluation of new enzymes as well as improvement of approved enzymes are of the most important challenges in biotechnology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. HuD Regulates Coding and Noncoding RNA to Induce APP→Aβ Processing

    Directory of Open Access Journals (Sweden)

    Min-Ju Kang

    2014-06-01

    Full Text Available The primarily neuronal RNA-binding protein HuD is implicated in learning and memory. Here, we report the identification of several HuD target transcripts linked to Alzheimer’s disease (AD pathogenesis. HuD interacted with the 3′ UTRs of APP mRNA (encoding amyloid precursor protein and BACE1 mRNA (encoding β-site APP-cleaving enzyme 1 and increased the half-lives of these mRNAs. HuD also associated with and stabilized the long noncoding (lncRNA BACE1AS, which partly complements BACE1 mRNA and enhances BACE1 expression. Consistent with HuD promoting production of APP and APP-cleaving enzyme, the levels of APP, BACE1, BACE1AS, and Aβ were higher in the brain of HuD-overexpressing mice. Importantly, cortex (superior temporal gyrus from patients with AD displayed significantly higher levels of HuD and, accordingly, elevated APP, BACE1, BACE1AS, and Aβ than did cortical tissue from healthy age-matched individuals. We propose that HuD jointly promotes the production of APP and the cleavage of its amyloidogenic fragment, Aβ.

  19. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.

    Science.gov (United States)

    Ward, Keeran; Xi, Jingshu; Stuckey, David C

    2015-12-01

    The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes.

    Science.gov (United States)

    Sirisha, V L; Jain, Ankita; Jain, Amita

    Immobilized enzymes can be used in a wide range of processes. In recent years, a variety of new approaches have emerged for the immobilization of enzymes that have greater efficiency and wider usage. During the course of the last two decades, this area has rapidly expanded into a multidisciplinary field. This current study is a comprehensive review of a variety of literature produced on the different enzymes that have been immobilized on various supporting materials. These immobilized enzymes have a wide range of applications. These include applications in the sugar, fish, and wine industries, where they are used for removing organic compounds from waste water. This study also reviews their use in sophisticated biosensors for metabolite control and in situ measurements of environmental pollutants. Immobilized enzymes also find significant application in drug metabolism, biodiesel and antibiotic production, bioremediation, and the food industry. The widespread usage of immobilized enzymes is largely due to the fact that they are cheaper, environment friendly, and much easier to use when compared to equivalent technologies. © 2016 Elsevier Inc. All rights reserved.

  1. Coccolithophores: Functional Biodiversity, Enzymes and Bioprospecting

    Directory of Open Access Journals (Sweden)

    Michael J. Allen

    2011-04-01

    Full Text Available Emiliania huxleyi is a single celled, marine phytoplankton with global distribution. As a key species for global biogeochemical cycling, a variety of strains have been amassed in various culture collections. Using a library consisting of 52 strains of E. huxleyi and an ‘in house‘ enzyme screening program, we have assessed the functional biodiversity within this species of fundamental importance to global biogeochemical cycling, whilst at the same time determining their potential for exploitation in biocatalytic applications. Here, we describe the screening of E. huxleyi strains, as well as a coccolithovirus infected strain, for commercially relevant biocatalytic enzymes such as acid/alkali phosphodiesterase, acid/alkali phosphomonoesterase, EC1.1.1-type dehydrogenase, EC1.3.1-type dehydrogenase and carboxylesterase.

  2. Enzymic saccharification of some pretreated agricultural wastes

    Energy Technology Data Exchange (ETDEWEB)

    El-Gammal, S.M.A.; Sadek, M.A.

    1988-01-01

    Cellulosie wastes, artichoke leaves and stalks, sugar-cane bagasse and fennel seeds after extraction of essential oils were treated with various concentrations of peracetic acid at 100/sup 0/C, 60/sup 0/C and room temperature several times, washed with water and ethanol and air dried. The degree of enzymatic solubilization of each treated cellulosic waste was measured with Aspergillus niger cellulase (Endo-1,4-B-Glucanase; 1,4-(1,3; 1,4)-..beta..-D-glucan 4-glucanohydrolase; EC 3. 2.1.4). Artichoke waste and sugar-cane bagasse were solubilized more efectively by the enzymethan fennel waste. Data are presented describing the effect of time, enzyme and substrate concentration on the rate of enzymic hydrolysis. Infrared spectra of the treated and untreated cellulosic materials were recorded.

  3. Hydrolytic enzyme activity enhanced by Barium supplementation

    Directory of Open Access Journals (Sweden)

    Camilo Muñoz

    2016-10-01

    Full Text Available Hydrolysis of polymers is a first and often limiting step during the degradation of plant residues. Plant biomass is generally a major component of waste residues and a major renewable resource to obtain a variety of secondary products including biofuels. Improving the performance of enzymatic hydrolysis of plant material with minimum costs and limiting the use of additional microbial biomass or hydrolytic enzymes directly influences competitiveness of these green biotechnological processes. In this study, we cloned and expressed a cellulase and two esterases recovered from environmental thermophilic soil bacterial communities and characterize their optimum activity conditions including the effect of several metal ions. Results showed that supplementing these hydrolytic reactions with Barium increases the activity of these extracellular hydrolytic enzymes. This observation represents a simple but major improvement to enhance the efficiency and competitiveness of this process within an increasingly important biotechnological sector.

  4. (Hyper)thermophilic enzymes: production and purification.

    Science.gov (United States)

    Falcicchio, Pierpaolo; Levisson, Mark; Kengen, Servé W M; Koutsopoulos, Sotirios

    2014-01-01

    The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our understanding and presented new opportunities for solving one of the most challenging problems in biophysics: how is structural stability and biological function maintained at high temperatures where "normal" proteins undergo dramatic structural changes? In our laboratory we have purified and studied many thermostable and hyperthermostable proteins in an attempt to determine the molecular basis of heat stability. Here, we present methods to express such proteins and enzymes in E. coli and provide a general protocol for overproduction and purification. The ability to produce enzymes that retain their stability and activity at elevated temperatures creates exciting opportunities for a wide range of biocatalytic applications.

  5. A thermodynamic and theoretical view for enzyme regulation.

    Science.gov (United States)

    Zhao, Qinyi

    2015-01-01

    Precise regulation is fundamental to the proper functioning of enzymes in a cell. Current opinions about this, such as allosteric regulation and dynamic contribution to enzyme regulation, are experimental models and substantially empirical. Here we proposed a theoretical and thermodynamic model of enzyme regulation. The main idea is that enzyme regulation is processed via the regulation of abundance of active conformation in the reaction buffer. The theoretical foundation, experimental evidence, and experimental criteria to test our model are discussed and reviewed. We conclude that basic principles of enzyme regulation are laws of protein thermodynamics and it can be analyzed using the concept of distribution curve of active conformations of enzymes.

  6. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  7. Substrates and method for determining enzymes

    Science.gov (United States)

    Smith, R.E.; Bissell, E.R.

    1981-10-13

    A method is disclosed for determining the presence of an enzyme in a biological fluid, which includes the steps of contacting the fluid with a synthetic chromogenic substrate, which is an amino acid derivative of 7-amino-4-trifluoromethylcoumarin; incubating the substrate-containing fluid to effect enzymatic hydrolysis; and fluorometrically determining the presence of the free 7-amino-4-trifluoromethylcoumarin chromophore in the hydrolyzate. No Drawings

  8. Nedd8 processing enzymes in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    O'Donoghue, Jean; Bech-Otschir, Dawadschargal; Larsen, Ida

    2013-01-01

    Conjugation of the ubiquitin-like modifier Nedd8 to cullins is critical for the function of SCF-type ubiquitin ligases and thus facilitates ubiquitin conjugation and ultimately degradation of SCF substrates, including several cell cycle regulators. Like ubiquitin, Nedd8 is produced as a precursor...... that must first be processed before it becomes active. In Saccharomyces cerevisiae this is carried out exclusively by the enzyme Yuh1....

  9. Radioisotope-enzymes and cancer study

    International Nuclear Information System (INIS)

    Luyen, T. van

    2008-01-01

    Cancer is a pathological sign, when the abnormal cells appear in certain human tissues or organs. These cells can reproduce beyond the control of normal biological protection mechanism. Because they reproduce very fast, the metabolic process is accelerated, which causes the extreme need for more energy, substrate and catalyzing enzymes. Based on these needs, we can control the metabolic process by: Stopping supplying the energy. Stopping supplying the substrate and the materials to build up the cell's structure. Stopping operating catalysis by breaking out the enzyme's structure. Destroying the tumor cell by extra agents such as radiations and chemicals. All of these methods have been studied for a long time, which costs too much money, time and labor. Although we succeeded in some ways, the results are still not satisfactory. There are many reasons for this situation but the main one is the lack of information to understand all the processes taking place in the cell and our body. However, as far as we studied, we would like to propose the method to break the structure of the enzyme by nuclear decay process. (author)

  10. Effect of turmeric on xenobiotic metabolising enzymes.

    Science.gov (United States)

    Goud, V K; Polasa, K; Krishnaswamy, K

    1993-07-01

    Diet contains several substances capable of inhibiting chemical carcinogenesis. It is known that such inhibitors may either act directly by scavenging the reactive substances or indirectly by promoting mechanisms which enhance detoxification. Turmeric which contains curcumin both in vitro and in vivo is an active antimutagen. Studies were therefore conducted to evaluate the effects of turmeric on xenobiotic metabolising enzymes in hepatic tissue of rats fed turmeric ranging from 0.5-10% in the diet. Enzymes such as aryl hydrocarbon hydroxylase, UDP glucuronyl transferase and glutathione-S-transferase were assayed after four weeks of turmeric fed diets. No significant differences were seen in the activating enzyme AHH. However, UDPGT was significantly elevated in rats fed 10% turmeric while GSHT registered a significant increase in 5 and 10% turmeric fed diet as compared to controls and 0.5-1.0% turmeric fed animals. The results suggest that turmeric may increase detoxification systems in addition to its anti-oxidant properties. Curcumin perhaps is the active principle in turmeric. Turmeric used widely as a spice would probably mitigate the effects of several dietary carcinogens.

  11. Enzyme-Gelatin Electrochemical Biosensors: Scaling Down

    Directory of Open Access Journals (Sweden)

    Hendrik A. Heering

    2012-03-01

    Full Text Available In this article we investigate the possibility of scaling down enzyme-gelatin modified electrodes by spin coating the enzyme-gelatin layer. Special attention is given to the electrochemical behavior of the selected enzymes inside the gelatin matrix. A glassy carbon electrode was used as a substrate to immobilize, in the first instance, horse heart cytochrome c (HHC in a gelatin matrix. Both a drop dried and a spin coated layer was prepared. On scaling down, a transition from diffusion controlled reactions towards adsorption controlled reactions is observed. Compared to a drop dried electrode, a spin coated electrode showed a more stable electrochemical behavior. Next to HHC, we also incorporated catalase in a spin coated gelatin matrix immobilized on a glassy carbon electrode. By spincoating, highly uniform sub micrometer layers of biocompatible matrices can be constructed. A full electrochemical study and characterization of the modified surfaces has been carried out. It was clear that in the case of catalase, gluteraldehyde addition was needed to prevent leaking of the catalase from the gelatin matrix.

  12. Ionizing radiation effect on enzymes. III

    International Nuclear Information System (INIS)

    Libicky, A.; Chottova, O.; Fidlerova, J.; Urban, J.; Kubankova, V.

    1980-01-01

    A decrease in the efficacy of trypsin (determination according to PhBs 3 with the use of L-lysine ethyl ester chloride) was investigated in pancreatin obtained by enzyme precipitation from a pancreas extraction after autolysis, in the identical sample with an additionally increased content of lipids, in pancreatin containing parts of the pancreatic tissue, in crystalline trypsin, and in crystalline salt-free and lyophilized trypsine after irradiation with gamma rays from 60 Co, doses ranging from 1x10 4 Gy to 12x10 4 Gy. The results were statistically evaluated and after the conversion to dried or lipid-free substance expressed in graphs. The dependence of the efficacy on the radiation dose has a linear course in semi-logarithmic arrangement, similarly as it occurred in chymotrypsin and in the total proteolytic efficacy. The decrease in the efficacy of trypsin in the samples of pancreatin in percentage maintains the same sequence in the samples under study as it was in the decrease in the efficacy of chymotrypsin and the total proteolytic efficacy, but it is smaller. The decrease in the efficacy of pure enzyme is, similarly to chymotrypsin, greater than the decrease in the efficacy of the enzyme in pancreatin. The present ballast substances thus significantly influence stability. (author)

  13. High-Throughput Analysis of Enzyme Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Guoxin [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  14. Enzymes in biogenesis of plant cell wall polysaccharides. Enzyme characterization using tracer techniques

    International Nuclear Information System (INIS)

    Dickinson, D.B.

    1975-01-01

    Enzymes and metabolic pathways, by which starch and cell wall polysaccharides are formed, were investigated in order to learn how these processes are regulated and to identify the enzymatic regulatory mechanisms involved. Germinating lily pollen was used for studies of cell wall formation, and pollen and maize endosperm for studies of starch biosynthesis. Hexokinase being the first step in conversion of hexoses to starch, wall polysaccharides and respiratory substrates, maize endosperm enzyme was assayed by its conversion of 14 C-hexose to 14 C-hexose-6-P, and rapid separation of the two labelled compounds on anion-exchange paper. This enzyme did not appear to be under tight regulation by feed-back inhibition or activation, nor to be severely inhibited by glucose-6-P or activated by citrate. ADP-glucose pyrophosphorylase and other pyrophosphorylases were assayed radiochemically with 14 C-glucose-1-P (forward direction) or 32-PPsub(i) (reverse direction). They showed that the maize endosperm enzyme was activated by the glycolytic intermediates fructose-6-P and 3-phosphoglycerate, and that low levels of the enzyme were present in the high sucrose-low starch mutant named shrunken-2. Under optimal in-vitro assay conditions, the pollen enzyme reacted four times faster than the observed in-vivo rate of starch accumulation. Biogenesis of plant cell wall polysaccharides requires the conversion of hexose phosphates to various sugar nucleotides and utilization of the latter by the appropriate polysaccharide synthetases. Lily pollen possesses a β-1,3-glucan synthetase which is activated up to six-fold by β-linked oligosaccharides. Hence, the in-vivo activity of this enzyme may be modulated by such effector molecules

  15. Multi-enzyme catalyzed processes: Next generation biocatalysis

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia; Sin, Gürkan; Gernaey, Krist

    2011-01-01

    Biocatalysis has been attracting increasing interest in recent years. Nevertheless, most studies concerning biocatalysis have been carried out using single enzymes (soluble or immobilized). Currently, multiple enzyme mixtures are attractive for the production of many compounds at an industrial...

  16. Catabolite repression of enzyme synthesis does not prevent sporulation.

    OpenAIRE

    Lopez, J M; Uratani-Wong, B; Freese, E

    1980-01-01

    In the presence of excess glucose, a decrease of guanine nucleotides in Bacillus subtilis initiated sporulation but did not prevent catabolite repression of three enzymes. Therefore, the ultimate mechanism(s) repressing enzyme synthesis differs from that suppressing sporulation.

  17. Pathogenicity and cell wall-degrading enzyme activities of some ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    2005-12-17

    Dec 17, 2005 ... be attributed to the activities of these cell wall degrading enzymes. Keywords: Cowpea ... bacteria have long been known to produce enzymes capable of ... Inoculated seeds were sown in small plastic pots filled with steam- ...

  18. Directing filtration to optimize enzyme immobilization in reactive membranes

    DEFF Research Database (Denmark)

    Luo, Jianquan; Marpani, Fauziah; Brites, Rita

    2014-01-01

    enzymatic reaction efficiency were evaluated in terms of enzyme loading, conversion rate and biocatalytic stability. Alcohol dehydrogenase (ADH) was selected as a model enzyme. Lower pressure, higher enzyme concentration and lower pH resulted in higher irreversible fouling resistance and lower permeate flux....... High pH during immobilization produced increased permeate flux but declines in conversion rates, likely because of the weak immobilization resulting from strong electrostatic repulsion between enzymes and membrane. The results showed that pore blocking as a fouling mechanism permitted a higher enzyme...... loading but generated more permeability loss, while cake layer formation increased enzyme stability but resulted in low loading rate. Low pH (near isoelectric point) favored hydrophobic and electrostatic adsorption of enzymes on the membrane, which reduced the enzyme stability. Neutral pH, however...

  19. Transcriptional regulation of the xylanolytic enzyme system of Aspergillus

    NARCIS (Netherlands)

    Peij, van N.N.M.E.

    1999-01-01

    Filamentous fungi, such as Aspergillus niger , produce high levels of polysaccharide degrading enzymes and are frequently used as production organisms for industrial enzyme preparations. The application of these polysaccharidases as xylanases and cellulases comprises

  20. Production and optimization of ligninolytic enzymes by white rot ...

    African Journals Online (AJOL)

    Production and optimization of ligninolytic enzymes by white rot fungus Schizophyllum ... size and nutritional factors (carbon and nitrogen ratio, mediators and metal ions). ... scale production of these enzymes for diverse industrial applications.

  1. Selected soil enzymes: Examples of their potential roles in the ...

    African Journals Online (AJOL)

    SERVER

    2008-02-05

    Feb 5, 2008 ... Soil enzymes regulate ecosystem functioning and in particular play a key role in nutrient cycling. In ... A better understanding of the role of these soil enzyme- es activity ..... measure of any disruption caused by pesticides, trace.

  2. ligninolytic enzymes of the fungus isolated from soil contaminated

    African Journals Online (AJOL)

    FUTE

    aimed at isolating lignin degrading fungi from soil contaminated with cow dung ... strain was screened for production of ligninolytic enzymes using Rhemazol Brilliant blue R ... put in airtight plastic bag and carried out to ..... Enzyme Microbial.

  3. Structure and function of α-glucan debranching enzymes

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Henriksen, Anette; Svensson, Birte

    2016-01-01

    α-Glucan debranching enzymes hydrolyse α-1,6-linkages in starch/glycogen, thereby, playing a central role in energy metabolism in all living organisms. They belong to glycoside hydrolase families GH13 and GH57 and several of these enzymes are industrially important. Nine GH13 subfamilies include α......-glucan debranching enzymes; isoamylase and glycogen debranching enzymes (GH13_11); pullulanase type I/limit dextrinase (GH13_12–14); pullulan hydrolase (GH13_20); bifunctional glycogen debranching enzyme (GH13_25); oligo-1 and glucan-1,6-α-glucosidases (GH13_31); pullulanase type II (GH13_39); and α-amylase domains......_39 enzymes could represent a “missing link” between the strictly α-1,6-specific debranching enzymes and the enzymes with dual specificity and α-1,4-linkage preference....

  4. Discovery of enzymes for toluene synthesis from anoxic microbial communities

    DEFF Research Database (Denmark)

    Beller, Harry R.; Rodrigues, Andria V.; Zargar, Kamrun

    2018-01-01

    Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes...... phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from...... a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic...

  5. Preparation of immobilized enzyme membrane by radiation-cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1989-01-01

    The preparation of immobilized enzyme membranes was studied by radiation cast-polymerization at low temperatures using cellulase enzyme, hydrophilic and hydrophobic monomers. The enzyme activity of the membranes was affected by monomer concentration, membrane thickness, and hydrophilicity of monomer, in which the membranes with 100 μm thickness from high monomer concentration (80%) had high enzyme activity, which was similar to that of the membranes with 1.0 mm thickness from low monomer concentration (20%). (author)

  6. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    Science.gov (United States)

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  7. Studies on the enzymes produced by Basidiomycetes. Part 1. The production of crude enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J. S.; Kim, D.H.

    1981-01-01

    Cellulase, protease, and xylanase, formation by the basidiomycetes, Pleurotus ostreatus 301 and Lentinus edodes 3-1 in growth on rice straw medium were studied. Cultural conditions adequate for enzyme production and effects of various materials and inorganic salts added to the rice straw media were investigated. Lentinus edodes 3-1 was an excellent producer of cellulase and xylanase, and Pleurotus ostreatus 301 of protease. The optimum conditions for enzyme production were 30 degrees for cellulase production and at 25 degrees for xylanase and protease production, with 75% moisture content and initial pH of 5.0-6.0. The appropriate incubation times for enzyme production were 30 days and 35 days for Pleurotus ostreatus 301 and Lentinus edodes 3-1, respectively. Among the various materials added, defatted soybean, defatted rape seed, or defatted sesame were all effective in enzyme production but reduced mycelial growth. Rice bran was also effective, particularly at a 30% concentration. The addition of inorganic salts enhanced enzyme production. Among inorganic salts, the optimum concentration of CaCO3 was 5%, and that of CaSO4 was 2%.

  8. Mycelial growth interactions and mannan-degrading enzyme ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... enzymes (Frost and Moss, 1987). However, microbial enzymes are more in use due to cheaper substrates and ease of process modification. In microbial enzyme and biomass production, defined mixed culture method in which more than one organism grows simultaneously can result in increased biomass ...

  9. Microbial production of raw starch digesting enzymes | Sun | African ...

    African Journals Online (AJOL)

    Raw starch digesting enzymes refer to enzymes that can act directly on raw starch granules below the gelatinization temperature of starch. With the view of energy-saving, a worldwide interest has been focused on raw starch digesting enzymes in recent years, especially since the oil crisis of 1973. Raw starch digesting ...

  10. Development of the Enzyme-Substrate Interactions Concept Inventory

    Science.gov (United States)

    Bretz, Stacey Lowery; Linenberger, Kimberly J.

    2012-01-01

    Enzyme function is central to student understanding of multiple topics within the biochemistry curriculum. In particular, students must understand how enzymes and substrates interact with one another. This manuscript describes the development of a 15-item Enzyme-Substrate Interactions Concept Inventory (ESICI) that measures student understanding…

  11. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid (DNA...

  12. Production of cell wall enzymes in pepper seedlings, inoculated with ...

    African Journals Online (AJOL)

    Pepper seedlings inoculated with arbuscular mycorrhizal AM fungus, Glomus etunicatum, produced cellulase, polygal-acturonase and pectin methylestrase enzymes. The activities of the enzymes increased as the pepper seedlings matured in age, showing that the activity of the enzymes in the seedlings was age mediated.

  13. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Mørkeberg, Astrid; Frisvad, Jens Christian

    2004-01-01

    For enzymatic hydrolysis of lignocellulosic material, cellulolytic enzymes from Trichoderma reesei are most commenly used, but, there is a need for more efficient enzyme cocktails. In this study, the production of cellulolytic and xylanolytic enzymes was investigated in 12 filamentous fungi from ...

  14. A virus-based single-enzyme nanoreactor

    NARCIS (Netherlands)

    Comellas Aragones, M.; Engelkamp, H.; Claessen, V.I.; Sommerdijk, N.A.J.M.; Rowan, A.E.; Christianen, P.C.M.; Maan, J.C.; Verduin, B.J.M.; Cornelissen, J.J.L.M.; Nolte, R.J.M.

    2007-01-01

    Most enzyme studies are carried out in bulk aqueous solution, at the so-called ensemble level, but more recently studies have appeared in which enzyme activity is measured at the level of a single molecule, revealing previously unseen properties. To this end, enzymes have been chemically or

  15. Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins

    International Nuclear Information System (INIS)

    Korecka, Lucie; Jezova, Jana; Bilkova, Zuzana; Benes, Milan; Horak, Daniel; Hradcova, Olga; Slovakova, Marcela; Viovy, Jean-Louis

    2005-01-01

    The newly developed magnetic micro- and nanoparticles with defined hydrophobicity and porosity were used for the preparation of magnetic enzyme reactors. Magnetic particles with immobilized proteolytic enzymes trypsin, chymotrypsin and papain and with enzyme neuraminidase were used to study the structure of heterogeneous glycoproteins. Factors such as the type of carrier, immobilization procedure, operational and storage stability, and experimental conditions were optimized

  16. F-box only protein 2 (Fbxo2) regulates amyloid precursor protein levels and processing.

    Science.gov (United States)

    Atkin, Graham; Hunt, Jack; Minakawa, Eiko; Sharkey, Lisa; Tipper, Nathan; Tennant, William; Paulson, Henry L

    2014-03-07

    The amyloid precursor protein (APP) is an integral membrane glycoprotein whose cleavage products, particularly amyloid-β, accumulate in Alzheimer disease (AD). APP is present at synapses and is thought to play a role in both the formation and plasticity of these critical neuronal structures. Despite the central role suggested for APP in AD pathogenesis, the mechanisms regulating APP in neurons and its processing into cleavage products remain incompletely understood. F-box only protein 2 (Fbxo2), a neuron-enriched ubiquitin ligase substrate adaptor that preferentially binds high-mannose glycans on glycoproteins, was previously implicated in APP processing by facilitating the degradation of the APP-cleaving β-secretase, β-site APP-cleaving enzyme. Here, we sought to determine whether Fbxo2 plays a similar role for other glycoproteins in the amyloid processing pathway. We present in vitro and in vivo evidence that APP is itself a substrate for Fbxo2. APP levels were decreased in the presence of Fbxo2 in non-neuronal cells, and increased in both cultured hippocampal neurons and brain tissue from Fbxo2 knock-out mice. The processing of APP into its cleavage products was also increased in hippocampi and cultured hippocampal neurons lacking Fbxo2. In hippocampal slices, this increase in cleavage products was accompanied by a significant reduction in APP at the cell surface. Taken together, these results suggest that Fbxo2 regulates APP levels and processing in the brain and may play a role in modulating AD pathogenesis.

  17. Kininase enzymes of cat eye tissues

    International Nuclear Information System (INIS)

    Ryan, J.W.; Anderson, D.R.

    1986-01-01

    Eye tissues contain kininase activities, including an angiotensin converting enzyme (ACE)-like activity. The authors have begun further to characterize the ACE-like activity and to examine for another reputed kininase, carboxypeptidase N (CPN). Homogenates of tissues of 6 cat eyes and paired plasmas were assayed for ACE using 3 acyl-tripeptide substrates, 3 H-benzoylated F-A-P, F-G-P and A-G-P (respectively, BFAP, BFGP and BAGP). CPN was assayed using 3 H-benzoyl-A-R. All eye tissues and fluids contained ACE- and CPN-like activities. The ACE activity was clearly owing to ACE: relative values of Kc/Km for BFAP, BFGP and BAGP were those for pure ACE (2.213, 1.751 and 1.0); reactivities with inhibitors were as expected (Ki for captopril, MK 422 and RAC-X-65: 2.7, 0.62 and 0.31 nM). EDTA inhibited both ACE and CPN (I 50 's: 43 and 47 μM). CPN activity was inhibited by 2-mercaptomethyl-3-guanidinoethylthiopropionate (Ki 2.4 nM). However, distributions of the two enzymes differed markedly. Virtually all tissues contained ACE at specific activities higher than that of plasma. Specific activities appeared to be a function of tissue vascularity (for choroid, ciliary body, iris, retina and plasma: 7.31, 2.57, 1.98, 1.53 and 0.21 pmol/mg protein). Only iris contained more CPN that did plasma (23.0 v. 7.21 pmol/mg protein). The tissue distribution of ACE is that expected for an endothelial-associated enzyme. Plasma may be the major source of CPN in eye tissues other than iris

  18. Enzyme-potentiated desensitization in otolaryngic allergy.

    Science.gov (United States)

    Pulec, Jack L

    2002-03-01

    This is a preliminary report of a new method of treating otolaryngic allergy with enzyme-potentiated desensitization (EPD). The nature of EPD and its use in otolaryngology are described. Thirty-six patients have been treated and followed in a private medical practice since February 1997. This article reviews the clinical features of EPD and provides six cases as examples; the clinical features described include allergic rhinitis, serous otitis media, asthma, dermatitis, fixed food allergy, and Ménière's disease. EPD is an effective technique for the treatment of otolaryngic allergy and offers advantages over conventional techniques.

  19. NADPH oxidase: an enzyme for multicellularity?

    Science.gov (United States)

    Lalucque, Hervé; Silar, Philippe

    2003-01-01

    Multicellularity has evolved several times during the evolution of eukaryotes. One evolutionary pressure that permits multicellularity relates to the division of work, where one group of cells functions as nutrient providers and the other in specialized roles such as defence or reproduction. This requires signalling systems to ensure harmonious development of multicellular structures. Here, we show that NADPH oxidases are specifically present in organisms that differentiate multicellular structures during their life cycle and are absent from unicellular life forms. The biochemical properties of these enzymes make them ideal candidates for a role in intercellular signalling.

  20. Expression of Enzymes that Metabolize Medications

    Science.gov (United States)

    Wotring, Virginia E.; Peters, C. P.

    2012-01-01

    Most pharmaceuticals are metabolized by the liver. Clinically-used medication doses are given with normal liver function in mind. A drug overdose can result if the liver is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism we want to understand the effects of spaceflight on the enzymes of the liver.

  1. The enzymes of bacterial census and censorship.

    Science.gov (United States)

    Fast, Walter; Tipton, Peter A

    2012-01-01

    N-Acyl-L-homoserine lactones (AHLs) are a major class of quorum-sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small-molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide a detailed insight into the chemistry and enzymology of bacterial communication. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Analysis of serum angiotensin-converting enzyme.

    Science.gov (United States)

    Muller, B R

    2002-09-01

    Serum angiotensin-converting enzyme (SACE) levels are influenced by genetic polymorphism. Interpretation of serum levels with the appropriate genotypic reference range improves the diagnostic sensitivity of the assay for sarcoidosis. SACE assays are performed by a large number of routine clinical laboratories. However, there is no external quality assessment (EQA) for SACE other than an informal regional scheme. This showed analytical performance of SACE assays to be poor, with a diversity of reference ranges, leading to widely disparate clinical classification of EQA samples. Genetic polymorphism combined with poor analytical performance suggest that perhaps SACE assays should revert to being the province of specialized laboratories.

  3. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme based decomposition models

    Directory of Open Access Journals (Sweden)

    Daryl L Moorhead

    2013-08-01

    Full Text Available We re-examined data from a recent litter decay study to determine if additional insights could be gained to inform decomposition modeling. Rinkes et al. (2013 conducted 14-day laboratory incubations of sugar maple (Acer saccharum or white oak (Quercus alba leaves, mixed with sand (0.4% organic C content or loam (4.1% organic C. They measured microbial biomass C, carbon dioxide efflux, soil ammonium, nitrate, and phosphate concentrations, and β-glucosidase (BG, β-N-acetyl-glucosaminidase (NAG, and acid phosphatase (AP activities on days 1, 3, and 14. Analyses of relationships among variables yielded different insights than original analyses of individual variables. For example, although respiration rates per g soil were higher for loam than sand, rates per g soil C were actually higher for sand than loam, and rates per g microbial C showed little difference between treatments. Microbial biomass C peaked on day 3 when biomass-specific activities of enzymes were lowest, suggesting uptake of litter C without extracellular hydrolysis. This result refuted a common model assumption that all enzyme production is constitutive and thus proportional to biomass, and/or indicated that part of litter decay is independent of enzyme activity. The length and angle of vectors defined by ratios of enzyme activities (BG/NAG versus BG/AP represent relative microbial investments in C (length, and N and P (angle acquiring enzymes. Shorter lengths on day 3 suggested low C limitation, whereas greater lengths on day 14 suggested an increase in C limitation with decay. The soils and litter in this study generally had stronger P limitation (angles > 45˚. Reductions in vector angles to < 45˚ for sand by day 14 suggested a shift to N limitation. These relational variables inform enzyme-based models, and are usually much less ambiguous when obtained from a single study in which measurements were made on the same samples than when extrapolated from separate studies.

  4. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  5. Progress of Mimetic Enzymes and Their Applications in Chemical Sensors.

    Science.gov (United States)

    Yang, Bin; Li, Jianping; Deng, Huan; Zhang, Lianming

    2016-11-01

    The need to develop innovative and reformative approaches to synthesize chemical sensors has increased in recent years because of demands for selectivity, stability, and reproducibility. Mimetic enzymes provide an efficient and convenient method for chemical sensors. This review summarizes the application of mimetic enzymes in chemical sensors. Mimetic enzymes can be classified into five categories: hydrolases, oxidoreductases, transferases, isomerases, and induced enzymes. Potential and recent applications of mimetic enzymes in chemical sensors are reviewed in detail, and the outlook of profound development has been illustrated.

  6. Detection of enzyme activity in decontaminated spices of industrial use

    International Nuclear Information System (INIS)

    Müller, R.; Theobald, R.

    1995-01-01

    A range of decontaminated spices of industrial use have been examinated for their enzymes (catalase, peroxidase, amylase, lipase activity). The genuine enzymes remain fully active in irradiated spices, whereas the microbial load is clearly reduced. In contrast steam treated spices no longer demonstrate enzyme activities. Steam treatment offers e.g. black pepper without lipase activity, which can no longer cause fat deterioration. Low microbial load in combination with clearly detectable enzyme activity in spices is an indication for irradiation, whereas, reduced microbial contamination combined with enzyme inactivation indicate steam treatment of raw material [de

  7. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2012-01-01

    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  8. Biotechnological production of vanillin using immobilized enzymes.

    Science.gov (United States)

    Furuya, Toshiki; Kuroiwa, Mari; Kino, Kuniki

    2017-02-10

    Vanillin is an important and popular plant flavor, but the amount of this compound available from plant sources is very limited. Biotechnological methods have high potential for vanillin production as an alternative to extraction from plant sources. Here, we report a new approach using immobilized enzymes for the production of vanillin. The recently discovered oxygenase Cso2 has coenzyme-independent catalytic activity for the conversion of isoeugenol and 4-vinylguaiacol to vanillin. Immobilization of Cso2 on Sepabeads EC-EA anion-exchange carrier conferred enhanced operational stability enabling repetitive use. This immobilized Cso2 catalyst allowed 6.8mg yield of vanillin from isoeugenol through ten reaction cycles at a 1mL scale. The coenzyme-independent decarboxylase Fdc, which has catalytic activity for the conversion of ferulic acid to 4-vinylguaiacol, was also immobilized on Sepabeads EC-EA. We demonstrated that the immobilized Fdc and Cso2 enabled the cascade synthesis of vanillin from ferulic acid via 4-vinylguaiacol with repetitive use of the catalysts. This study is the first example of biotechnological production of vanillin using immobilized enzymes, a process that provides new possibilities for vanillin production. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Enzymes and Inhibitors in Neonicotinoid Insecticide Metabolism

    Science.gov (United States)

    Shi, Xueyan; Dick, Ryan A.; Ford, Kevin A.; Casida, John E.

    2009-01-01

    Neonicotinoid insecticide metabolism involves considerable substrate specificity and regioselectivity of the relevant CYP450, aldehyde oxidase, and phase II enzymes. Human CYP450 recombinant enzymes carry out the following conversions: CYP3A4, 2C19 and 2B6 for thiamethoxam (TMX) to clothianidin (CLO); 3A4, 2C19 and 2A6 for CLO to desmethyl-CLO; 2C19 for TMX to desmethyl-TMX. Human liver aldehyde oxidase reduces the nitro substituent of CLO to nitroso much more rapidly than that of TMX. Imidacloprid (IMI), CLO and several of their metabolites do not give detectable N-glucuronides but 5-hydroxy-IMI, 4,5-diol-IMI and 4-hydroxy-thiacloprid are converted to O-glucuronides in vitro with mouse liver microsomes and UDP-glucuronic acid or in vivo in mice. Mouse liver cytosol with S-adenosylmethionine converts desmethyl-CLO to CLO but not desmethyl-TMX to TMX. Two organophosphorus CYP450 inhibitors partially block IMI, thiacloprid and CLO metabolism in vivo in mice, elevating the brain and liver levels of the parent compounds while reducing amounts of the hydroxylated metabolites. PMID:19391582

  10. Flavin-Dependent Enzymes in Cancer Prevention

    Directory of Open Access Journals (Sweden)

    Danuta Wojcieszyńska

    2012-12-01

    Full Text Available Statistical studies have demonstrated that various agents may reduce the risk of cancer’s development. One of them is activity of flavin-dependent enzymes such as flavin-containing monooxygenase (FMOGS-OX1, FAD-dependent 5,10-methylenetetrahydrofolate reductase and flavin-dependent monoamine oxidase. In the last decade, many papers concerning their structure, reaction mechanism and role in the cancer prevention were published. In our work, we provide a more in-depth analysis of flavin-dependent enzymes and their contribution to the cancer prevention. We present the actual knowledge about the glucosinolate synthesized by flavin-containing monooxygenase (FMOGS-OX1 and its role in cancer prevention, discuss the influence of mutations in FAD-dependent 5,10-methylenetetrahydrofolate reductase on the cancer risk, and describe FAD as an important cofactor for the demethylation of histons. We also present our views on the role of riboflavin supplements in the prevention against cancer.

  11. Potential enzyme toxicity of oxytetracycline to catalase

    International Nuclear Information System (INIS)

    Chi Zhenxing; Liu Rutao; Zhang Hao

    2010-01-01

    Oxytetracycline (OTC) is a kind of widely used veterinary drugs. The residue of OTC in the environment is potentially harmful. In the present work, the non-covalent toxic interaction of OTC with catalase was investigated by the fluorescence spectroscopy, UV-vis absorption and circular dichroism (CD) spectroscopy at physiological pH 7.4. OTC can interact with catalase to form a complex mainly by van der Waals' interactions and hydrogen bonds with one binding site. The association constants K were determined to be K 293K = 7.09 x 10 4 L mol -1 and K 311K = 3.31 x 10 4 L mol -1 . The thermodynamic parameters (ΔH o , ΔG o and ΔS o ) of the interaction were calculated. Based on the Foerster theory of non-radiative energy transfer, the distance between bound OTC and the tryptophan residues of catalase was determined to be 6.48 nm. The binding of OTC can result in change of the micro-environment of the tryptophan residues and the secondary structure of catalase. The activity of catalase was also inhibited for the bound OTC. This work establishes a new strategy to probe the enzyme toxicity of veterinary drug residues and is helpful for clarifying the molecular toxic mechanism of OTC in vivo. The established strategy can be used to investigate the potential enzyme toxicity of other small organic pollutants and drugs.

  12. Enzymes improve ECF bleaching of pulp

    Directory of Open Access Journals (Sweden)

    Lachenal, D.

    2006-07-01

    Full Text Available The delignification efficiency of different laccase enzymes was examined on the eucalyptus Kraft pulp. The laccase enzyme from Trametes versicolor showing the highest delignification efficiency was selected and used in the elemental chlorine-free bleaching sequence for improving the pulp bleachability. An appreciable reduction in chlorine dioxide consumption was also obtained. Further reduction in chlorine dioxide consumption was obtained when the same laccase treated pulp was subjected to an acid treatment after the extraction stage followed by the DEPD sequence. Elemental-chlorine free bleaching was also performed using the xylanase-laccase treated pulp. Xylanase treatment was incorporated to the laccase mediator system in the elemental-chlorine free bleaching both sequentially and simultaneously. The bleaching sequence DEPD followed and in both the cases, the reduction in chlorine dioxide consumption was greater in comparison to the control. The chlorine dioxide consumption was reduced further when xylanase-laccase treated pulp was given an additional acid treatment. The final pulp properties of the treated pulps were comparable to the control pulp.

  13. RELATION BETWEEN PREECLAMPSIA AND CARDIAC ENZYMES

    Directory of Open Access Journals (Sweden)

    Rubina Aziz

    2010-12-01

    Full Text Available Abstract    INTRODUCTION: Preeclampsia affects about 5-10% of all pregnancies and is a major cause of maternal, fetal and neonatal mortality and morbidity. The cardiovascular system undergoes a host of changes in association with development of preeclampsia. LDH is a useful biochemical marker that reflects the severity of the occurrence of preeclampsia.    METHOD AND MATERIALS: One hundred pregnant women were selected for this study, 50 normal pregnant women as controls and 50 preeclamptic women as the study group.  Cardiac enzymes (serum LDH, serum AST, serum CK and serum CKMB of these women were analyzed.    RESULTS: Mean Serum LDH and mean serum AST concentrations were significantly higher in preeclamptic patients compared to normal pregnant women (348.34 ± 59.17 vs. 255.92 ± 43.26, P < 0.01 and (34.32 ± 10.37 vs. 22.06 ± 5.10, P < 0.01 respectively.     CONCLUSION: LDH and AST may be increased due to liver damage. This endothelial vascular damage is the main cause in the occurrence of preeclampsia. Higher levels of LDH and AST are very useful markers to identify the occurrence of preeclampsia.      Keywords: LDH, Preeclampsia, AST, Cardiac Enzymes.

  14. Enzyme Teaching by a Virtual Laboratory

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2010-05-01

    Full Text Available Biochemistry learning demands skills to obtaining and interpreting the experimental data. In a classical model of teaching involve student’s hands-on participation. However this model is expensive, not safe and should be carried out in a short and limited time course. With utilization of educational software these disadvantages are overcome, since the virtual activity could be realized at free full access, and is a tool for individual study. The aim of the present work is to present educational software focused on a virtual for undergraduate student of biochemistry courses. The software development was performed with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program applied on the subject salivary amylase. It was possible to present the basic methodologies for study of the kinetic of enzyme. The substrate (starch consumption was determinate by iodine reaction, while the products (reducing sugars formation was evaluated by cupper-alkaline reaction. The protocols of the virtual experiments are present verbally as well as a subtitle. A set of exercises are disposable, which allowed an auto evaluation and a review of the subject. The experimental treatment involved the presentation of this hypermedia for Nutrition and Dentistry/UFSC undergraduate students as a tool for better comprehension of the theme and promoted the understanding of the kinetic of enzyme.

  15. MurD enzymes: some recent developments.

    Science.gov (United States)

    Šink, Roman; Barreteau, Hélène; Patin, Delphine; Mengin-Lecreulx, Dominique; Gobec, Stanislav; Blanot, Didier

    2013-12-01

    The synthesis of the peptide stem of bacterial peptidoglycan involves four enzymes, the Mur ligases (MurC, D, E and F). Among them, MurD is responsible for the ATP-dependent addition of d-glutamic acid to UDP-MurNAc-l-Ala, a reaction which involves acyl-phosphate and tetrahedral intermediates. Like most enzymes of peptidoglycan biosynthesis, MurD constitutes an attractive target for the design and synthesis of new antibacterial agents. Escherichia coli MurD has been the first Mur ligase for which the tridimensional (3D) structure was solved. Thereafter, several co-crystal structures with different ligands or inhibitors were released. In the present review, we will deal with work performed on substrate specificity, reaction mechanism and 3D structure of E. coli MurD. Then, a part of the review will be devoted to recent work on MurD orthologs from species other than E. coli and to cellular organization of Mur ligases and in vivo regulation of the MurD activity. Finally, we will review the different classes of MurD inhibitors that have been designed and assayed to date with the hope of obtaining new antibacterial compounds.

  16. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes

    Science.gov (United States)

    2017-01-01

    Lanthipeptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) that display a wide variety of biological activities, from antimicrobial to antiallodynic. Lanthipeptides that display antimicrobial activity are called lantibiotics. The post-translational modification reactions of lanthipeptides include dehydration of Ser and Thr residues to dehydroalanine and dehydrobutyrine, a transformation that is carried out in three unique ways in different classes of lanthipeptides. In a cyclization process, Cys residues then attack the dehydrated residues to generate the lanthionine and methyllanthionine thioether cross-linked amino acids from which lanthipeptides derive their name. The resulting polycyclic peptides have constrained conformations that confer their biological activities. After installation of the characteristic thioether cross-links, tailoring enzymes introduce additional post-translational modifications that are unique to each lanthipeptide and that fine-tune their activities and/or stability. This review focuses on studies published over the past decade that have provided much insight into the mechanisms of the enzymes that carry out the post-translational modifications. PMID:28135077

  17. Ionizing radiation effect on enzymes. V

    International Nuclear Information System (INIS)

    Libicky, A.; Fidlerova, J.; Urban, J.

    1981-01-01

    A decrease in proteolytic efficacy of crystalline lyophilized chymotrypsin, crystalline trypsin, and crystalline trypsin free of salts and lyophilized was observed after gamma irradiation, the source being a 60 Co, doses ranging from 1x10 4 to 12x10 4 Gy. Enzyme efficacy was determined with the use of casein as the substrate by the method used in PhBs 3 for the determination of proteolytic efficacy of pancreatin. The results are shown and statistically evaluated in tables and after calculation to the dried substance presented in diagrams. It was shown that after irradiation with a dose of 12x10 4 Gy there was no statistically significant difference between the percentage of residual efficacy of the samples. The comparison of the percentage of residual proteolytic efficacy with the results obtained in the investigation of esterolytic efficacy of the same enzymes indicates that no statistically significant difference can be demonstrated either between the decrease in the proteolytic efficacy and the decrease in the esterolytic efficacy determined with the use of the substrates and methods prescribed for the determination of efficacy of chymotrypsin and trypsin in PhBs 3. (author)

  18. Enzymes- An Existing and Promising Tool of Food Processing Industry.

    Science.gov (United States)

    Ray, Lalitagauri; Pramanik, Sunita; Bera, Debabrata

    2016-01-01

    The enzyme catalyzed process technology has enormous potential in the food sectors as indicated by the recent patents studies. It is very well realized that the adaptation of the enzyme catalyzed process depends on the availability of enzyme in affordable prices. Enzymes may be used in different food sectors like dairy, fruits & vegetable processing, meat tenderization, fish processing, brewery and wine making, starch processing and many other. Commercially only a small number of enzymes are used because of several factors including instability of enzymes during processing and high cost. More and more enzymes for food technology are now derived from specially selected or genetically modified microorganisms grown in industrial scale fermenters. Enzymes with microbial source have commercial advantages of using microbial fermentation rather than animal and plant extraction to produce food enzymes. At present only a relatively small number of enzymes are used commercially in food processing. But the number is increasing day by day and field of application will be expanded more and more in near future. The purpose of this review is to describe the practical applications of enzymes in the field of food processing.

  19. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    , the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore...... lignocellulose is the required high cellulase enzyme dosages that increase the processing costs. One method to decrease the enzyme dosage is to re-use BG, which hydrolyze the soluble substrate cellobiose. Based on the hypothesis that immobilized BG can be re-used, how many times the enzyme could be recycled...... liquid and pretreatment time can be reduced, the influence of substrate concentration, pretreatment time and temperature were investigated and optimized. Pretreatment of barley straw by [EMIM]Ac, correlative models were constructed using 3 different pretreatment parameters (temperature, time...

  20. Induction of drug-metabolizing enzymes: mechanisms and consequences

    Energy Technology Data Exchange (ETDEWEB)

    Okey, A.B.; Roberts, E.A.; Harper, P.A.; Denison, M.S.

    1986-04-01

    The activity of many enzymes that carry out biotransformation of drugs and environmental chemicals can be substantially increased by prior exposure of humans or animals to a wide variety of foreign chemicals. Increased enzyme activity is due to true enzyme induction mediated by increased synthesis of mRNAs which code for specific drug-metabolizing enzymes. Several species of cytochrome P-450 are inducible as are certain conjugating enzymes such as glutathione S-transferases, glucuronosyl transferases, and epoxide hydrolases. Induction of drug-metabolizing enzymes has been shown in several instances to alter the efficacy of some therapeutic agents. Induction of various species of cytochrome P-450 also is known to increase the rate at which potentially toxic reactive metabolic intermediates are formed from drugs or environmental chemicals. Overall, however, induction of drug-metabolizing enzymes appears to be a beneficial adaptive response for organisms living in a ''chemically-hostile'' world.48 references.

  1. Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia; Jørgensen, Henning

    2013-01-01

    the influence of temperature and ethanol on enzyme activity and stability in the distillation step, where most enzymes are inactivated due to high temperatures. Two enzyme mixtures, a mesophilic and a thermostable mixture, were exposed to typical process conditions [temperatures from 55 to 65 °C and up to 5...... % ethanol (w/v)] followed by specific enzyme activity analyses and SDS-PAGE. The thermostable and mesophilic mixture remained active at up to 65 and 55 °C, respectively. When the enzyme mixtures reached their maximum temperature limit, ethanol had a remarkable influence on enzyme activity, e.g., the more...... ethanol, the faster the inactivation. The reason could be the hydrophobic interaction of ethanol on the tertiary structure of the enzyme protein. The thermostable mixture was more tolerant to temperature and ethanol and could therefore be a potential candidate for recycling after distillation....

  2. A Theoretical Approach to Engineering a New Enzyme

    International Nuclear Information System (INIS)

    Anderson, Greg; Gomatam, Ravi; Behera, Raghu N.

    2016-01-01

    Density function theory, a subfield of quantum mechanics (QM), in combination with molecular mechanics (MM) has opened the way to engineer new artificial enzymes. Herein, we report theoretical calculations done using QM/MM to examine whether the regioselectivity and rate of chlorination of the enzyme chloroperoxidase can be improved by replacing the vanadium of this enzyme with niobium through dialysis. Our calculations show that a niobium substituted chloroperoxidase will be able to enter the initial steps of the catalytic cycle for chlorination. Although the protonation state of the niobium substituted enzyme is calculated to be different from than that of the natural vanadium substituted enzyme, our calculations show that the catalytic cycle can still proceed forward. Using natural bond orbitals, we analyse the electronic differences between the niobium substituted enzyme and the natural enzyme. We conclude by briefly examining how good of a model QM/MM provides for understanding the mechanism of catalysis of chloroperoxidase. (paper)

  3. Impact of Bee Venom Enzymes on Diseases and Immune Responses.

    Science.gov (United States)

    Hossen, Md Sakib; Shapla, Ummay Mahfuza; Gan, Siew Hua; Khalil, Md Ibrahim

    2016-12-27

    Bee venom (BV) is used to treat many diseases and exhibits anti-inflammatory, anti-bacterial, antimutagenic, radioprotective, anti-nociceptive immunity promoting, hepatocyte protective and anti-cancer activity. According to the literature, BV contains several enzymes, including phospholipase A2 (PLA2), phospholipase B, hyaluronidase, acid phosphatase and α-glucosidase. Recent studies have also reported the detection of different classes of enzymes in BV, including esterases, proteases and peptidases, protease inhibitors and other important enzymes involved in carbohydrate metabolism. Nevertheless, the physiochemical properties and functions of each enzyme class and their mechanisms remain unclear. Various pharmacotherapeutic effects of some of the BV enzymes have been reported in several studies. At present, ongoing research aims to characterize each enzyme and elucidate their specific biological roles. This review gathers all the current knowledge on BV enzymes and their specific mechanisms in regulating various immune responses and physiological changes to provide a basis for future therapies for various diseases.

  4. Impact of Bee Venom Enzymes on Diseases and Immune Responses

    Directory of Open Access Journals (Sweden)

    Md. Sakib Hossen

    2016-12-01

    Full Text Available Bee venom (BV is used to treat many diseases and exhibits anti-inflammatory, anti-bacterial, antimutagenic, radioprotective, anti-nociceptive immunity promoting, hepatocyte protective and anti-cancer activity. According to the literature, BV contains several enzymes, including phospholipase A2 (PLA2, phospholipase B, hyaluronidase, acid phosphatase and α-glucosidase. Recent studies have also reported the detection of different classes of enzymes in BV, including esterases, proteases and peptidases, protease inhibitors and other important enzymes involved in carbohydrate metabolism. Nevertheless, the physiochemical properties and functions of each enzyme class and their mechanisms remain unclear. Various pharmacotherapeutic effects of some of the BV enzymes have been reported in several studies. At present, ongoing research aims to characterize each enzyme and elucidate their specific biological roles. This review gathers all the current knowledge on BV enzymes and their specific mechanisms in regulating various immune responses and physiological changes to provide a basis for future therapies for various diseases.

  5. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  6. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach.

    Science.gov (United States)

    Glorieux, Christophe; Calderon, Pedro Buc

    2017-09-26

    This review is centered on the antioxidant enzyme catalase and will present different aspects of this particular protein. Among them: historical discovery, biological functions, types of catalases and recent data with regard to molecular mechanisms regulating its expression. The main goal is to understand the biological consequences of chronic exposure of cells to hydrogen peroxide leading to cellular adaptation. Such issues are of the utmost importance with potential therapeutic extrapolation for various pathologies. Catalase is a key enzyme in the metabolism of H2O2 and reactive nitrogen species, and its expression and localization is markedly altered in tumors. The molecular mechanisms regulating the expression of catalase, the oldest known and first discovered antioxidant enzyme, are not completely elucidated. As cancer cells are characterized by an increased production of reactive oxygen species (ROS) and a rather altered expression of antioxidant enzymes, these characteristics represent an advantage in terms of cell proliferation. Meanwhile, they render cancer cells particularly sensitive to an oxidant insult. In this context, targeting the redox status of cancer cells by modulating catalase expression is emerging as a novel approach to potentiate chemotherapy.

  7. Exquisite Enzyme-Fenton Biomimetic Catalysts for Hydroxyl Radical Production by Mimicking an Enzyme Cascade.

    Science.gov (United States)

    Zhang, Qi; Chen, Shuo; Wang, Hua; Yu, Hongtao

    2018-03-14

    Hydrogen peroxide (H 2 O 2 ) is a key reactant in the Fenton process. As a byproduct of enzymatic reaction, H 2 O 2 can be obtained via catalytical oxidation of glucose using glucose oxidase in the presence of O 2 . Another oxidation product (gluconic acid) can suitably adjust the microenvironmental pH contributing to the Fe 3+ /Fe 2+ cycle in the Fenton reaction. Enzymes are extremely efficient at catalyzing a variety of reactions with high catalytic activity, substrate specificity, and yields in living organisms. Inspired by the multiple functions of natural multienzyme systems, an exquisite nanozyme-modified α-FeOOH/porous carbon (PC) biomimetic catalyst constructed by in situ growth of glucose oxidase-mimicking Au nanoparticles and crystallization of adsorbed ferric ions within carboxyl into hierarchically PC is developed as an efficient enzyme-Fenton catalyst. The products (H 2 O 2 , ∼4.07 mmol·L -1 ) of the first enzymatic reaction are immediately used as substrates for the second Fenton-like reaction to generate the valuable • OH (∼96.84 μmol·L -1 ), thus mimicking an enzyme cascade pathway. α-FeOOH nanocrystals, attached by C-O-Fe bondings, are encapsulated into the mesoporous PC frameworks, facilitating the electron transfer between α-FeOOH and the PC support and greatly suppressing iron leaching. This study paves a new avenue for designing biomimetic enzyme-based Fenton catalysts mimicking a natural system for • OH production.

  8. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    Science.gov (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  9. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes: Targeted quantification of functional enzyme dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Qian, Wei-Jun [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Shi, Liang [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nelson, William C. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nicora, Carrie D. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Resch, Charles T. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Thompson, Christopher [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Yan, Sen [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Fredrickson, James K. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055 People' s Republic of China

    2017-07-13

    Microbially mediated biogeochemical processes are catalyzed by enzymes that control the transformation of carbon, nitrogen, and other elements in environment. The dynamic linkage between enzymes and biogeochemical species transformation has, however, rarely been investigated because of the lack of analytical approaches to efficiently and reliably quantify enzymes and their dynamics in soils and sediments. Herein, we developed a signature peptide-based technique for sensitively quantifying dissimilatory and assimilatory enzymes using nitrate-reducing enzymes in a hyporheic zone sediment as an example. Moreover, the measured changes in enzyme concentration were found to correlate with the nitrate reduction rate in a way different from that inferred from biogeochemical models based on biomass or functional genes as surrogates for functional enzymes. This phenomenon has important implications for understanding and modeling the dynamics of microbial community functions and biogeochemical processes in environments. Our results also demonstrate the importance of enzyme quantification for the identification and interrogation of those biogeochemical processes with low metabolite concentrations as a result of faster enzyme-catalyzed consumption of metabolites than their production. The dynamic enzyme behaviors provide a basis for the development of enzyme-based models to describe the relationship between the microbial community and biogeochemical processes.

  10. Descriptive and predictive assessment of enzyme activity and enzyme related processes in biorefinery using IR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Baum, Andreas

    the understanding of the structural properties of the extracted pectin. Secondly, enzyme kinetics of biomass converting enzymes was examined in terms of measuring enzyme activity by spectral evolution profiling utilizing FTIR. Chemometric multiway methods were used to analyze the tensor datasets enabling the second......-order calibration advantage (reference Theory of Analytical chemistry). As PAPER 3 illustrates the method is universally applicable without the need of any external standards and was exemplified by performing quantitative enzyme activity determinations for glucose oxidase, pectin lyase and a cellolytic enzyme blend...... (Celluclast 1.5L). In PAPER 4, the concept is extended to quantify enzyme activity of two simultaneously acting enzymes, namely pectin lyase and pectin methyl esterase. By doing so the multiway methods PARAFAC, TUCKER3 and NPLS were compared and evaluated towards accuracy and precision....

  11. Enzyme based soil stabilization for unpaved road construction

    Directory of Open Access Journals (Sweden)

    Renjith Rintu

    2017-01-01

    Full Text Available Enzymes as soil stabilizers have been successfully used in road construction in several countries for the past 30 years. However, research has shown that the successful application of these enzymes is case specific, emphasizing that enzyme performance is dependent on subgrade soil type, condition and the type of enzyme used as the stabilizer. A universal standard or a tool for road engineers to assess the performance of stabilized unbound pavements using well-established enzymes is not available to date. The research aims to produce a validated assessment tool which can be used to predict strength enhancement within a generalized statistical framework. The objective of the present study is to identify new materials for developing the assessment tool which supports enzyme based stabilization, as well as to identify the correct construction sequence for such new materials. A series of characterization tests were conducted on several soil types obtained from proposed construction sites. Having identified the suitable soil type to mix with the enzyme, a trial road construction has been performed to investigate the efficiency of the enzyme stabilization along with the correct construction sequence. The enzyme stabilization has showed significant improvement of the road performance as was evidenced from the test results which were based on site soil obtained before and after stabilization. The research will substantially benefit the road construction industry by not only replacing traditional construction methods with economical/reliable approaches, but also eliminating site specific tests required in current practice of enzyme based road construction.

  12. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  13. Modelling Fungal Fermentations for Enzyme Production

    DEFF Research Database (Denmark)

    Albæk, Mads Orla; Gernaey, Krist; Hansen, Morten S.

    We have developed a process model of fungal fed-batch fermentations for enzyme production. In these processes, oxygen transfer rate is limiting and controls the substrate feeding rate. The model has been shown to describe cultivations of both Aspergillus oryzae and Trichoderma reesei strains in 550......L stirred tank pilot plant reactors well. For each strain, 8 biological parameters are needed as well as a correlation of viscosity, as viscosity has a major influence on oxygen transfer. The parameters were measured averages of at least 9 batches for each strain. The model is successfully able...... to cover a wide range of process conditions (0.3-2 vvm of aeration, 0.2-10.0 kW/m3 of specific agitation power input, and 0.1-1.3 barg head space pressure). Uncertainty and sensitivity analysis have shown that the uncertainty of the model is mainly due to difficulties surrounding the estimation...

  14. Effect of ionizing radiation on enzymes. VII

    International Nuclear Information System (INIS)

    Libicky, A.; Fidlerova, J.; Pipota, J.

    1992-01-01

    The effect was examined of gamma radiation on the efficacy of cellulase irradiated with doses graded from 10 to 120 kGy. The results were statistically evaluated. The dose dependence of inactivation corresponds to the course of the decrease in efficacy of pancreatic proteolytic enzymes and pepsin investigated in previous communications. In the semilogarithmical arrangement of the graph this dependence is linear. It can be seen from the graph that a dose of 10 kGy, usually sufficient to achieve microbiological indefectibility, produces an approximately 7% loss in efficacy. With a dose of 25 kGy necessary to achieve sterility, cellulase already loses approximately 17% of its efficacy. With 120 kGy, the largest dose used, the efficacy was reduced to only 47.9%. (author) 3 figs., 1 tab., 13 refs

  15. CLINICAL USE OF ENZYMES IN PEDIATRIC GASTROENTEROLOGY

    Directory of Open Access Journals (Sweden)

    А.N. Surkov

    2011-01-01

    Full Text Available High incidence of various pediatric gastroenterologic diseases including congenital still remains an important issue for a Russian healthcare. The latter may be attended by relative or total excretory pancreatic failure with the following symptoms: stool abnormalities, abdominal pain, meteorism, weakness, low appetite and physical exercise, weight reduction and growth retardation. Pancreatic enzymes that contribute to protein, lipids and carbohydrates digestion are often used as a replacement therapy in pediatric care. Nowadays there is a plenty of choice among enzymatic medications. However, not all aforesaid medications can ensure adequate replacement treatment especially in children with chronic pancreatic failure. That is why among agents of choice are modern and highly effective microgranulated encapsulated pancreatines. For example Micrazim.Key words: children, pancreas, pancreatic failure, enzymotherapy.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2011; 10 (3: 114–118

  16. Enzyme-Linked Immunosorbent Assay (ELISA).

    Science.gov (United States)

    Konstantinou, George N

    2017-01-01

    Food allergy is a public health concern especially after recognizing its constantly increased prevalence and severity. Despite careful reading of food ingredient statements, food allergic individuals may experience reactions caused by "hidden", "masked", or "contaminated" proteins that are known major allergens. Many techniques have been developed to detect even small traces of food allergens, for clinical or laboratory purposes. Enzyme-linked immunosorbent assay (ELISA) is one of the best validated and most routinely used immunoassay in allergy research, in allergy diagnosis in allergy-related quality control in various industries. Although as a technique it has been implemented for the last 45 years, the evolution in biochemistry allowed the development of ultrasensitive ELISA variations that are capable of measuring quantities in the scale of picograms, rendering ELISA attractive, robust, and very famous.

  17. Upscaling of enzyme enhanced CO2 capture

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold

    Fossil fuels are the backbone of the energy generation in the coming decades for USA, China, India and Europe, hence high greenhouse gas emissions are expected in future. Carbon capture and storage technology (CCS) is the only technology that can mitigate greenhouse gas emissions from fossil fuel...... the mass transfer of CO2 with slow-capturing but energetically favorable solvents can open up a variety of new process options for this technology. The ubiquitous enzyme carbonic anhydrase (CA), which enhances the mass transfer of CO2 in the lungs by catalyzing the reversible hydration of CO2, is one very...... enhanced CO2 capture technology by identifying the potentials and limitations in lab and in pilot scale and benchmarking the process against proven technologies. The main goal was to derive a realistic process model for technical size absorbers with a wide range of validity incorporating a mechanistic...

  18. Network analysis of metabolic enzyme evolution in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kraulis Per

    2004-02-01

    Full Text Available Abstract Background The two most common models for the evolution of metabolism are the patchwork evolution model, where enzymes are thought to diverge from broad to narrow substrate specificity, and the retrograde evolution model, according to which enzymes evolve in response to substrate depletion. Analysis of the distribution of homologous enzyme pairs in the metabolic network can shed light on the respective importance of the two models. We here investigate the evolution of the metabolism in E. coli viewed as a single network using EcoCyc. Results Sequence comparison between all enzyme pairs was performed and the minimal path length (MPL between all enzyme pairs was determined. We find a strong over-representation of homologous enzymes at MPL 1. We show that the functionally similar and functionally undetermined enzyme pairs are responsible for most of the over-representation of homologous enzyme pairs at MPL 1. Conclusions The retrograde evolution model predicts that homologous enzymes pairs are at short metabolic distances from each other. In general agreement with previous studies we find that homologous enzymes occur close to each other in the network more often than expected by chance, which lends some support to the retrograde evolution model. However, we show that the homologous enzyme pairs which may have evolved through retrograde evolution, namely the pairs that are functionally dissimilar, show a weaker over-representation at MPL 1 than the functionally similar enzyme pairs. Our study indicates that, while the retrograde evolution model may have played a small part, the patchwork evolution model is the predominant process of metabolic enzyme evolution.

  19. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  20. Potential enzyme toxicity of oxytetracycline to catalase

    Energy Technology Data Exchange (ETDEWEB)

    Zhenxing, Chi; Rutao, Liu; Zhang Hao, E-mail: Trutaoliu@sdu.edu.cn [School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment and Health, Shandong Province, 27 Shanda South Road, Jinan 250100 (China)

    2010-10-15

    Oxytetracycline (OTC) is a kind of widely used veterinary drugs. The residue of OTC in the environment is potentially harmful. In the present work, the non-covalent toxic interaction of OTC with catalase was investigated by the fluorescence spectroscopy, UV-vis absorption and circular dichroism (CD) spectroscopy at physiological pH 7.4. OTC can interact with catalase to form a complex mainly by van der Waals' interactions and hydrogen bonds with one binding site. The association constants K were determined to be K{sub 293K} = 7.09 x 10{sup 4} L mol{sup -1} and K{sub 311K} = 3.31 x 10{sup 4} L mol{sup -1}. The thermodynamic parameters ({Delta}H{sup o}, {Delta}G{sup o} and {Delta}S{sup o}) of the interaction were calculated. Based on the Foerster theory of non-radiative energy transfer, the distance between bound OTC and the tryptophan residues of catalase was determined to be 6.48 nm. The binding of OTC can result in change of the micro-environment of the tryptophan residues and the secondary structure of catalase. The activity of catalase was also inhibited for the bound OTC. This work establishes a new strategy to probe the enzyme toxicity of veterinary drug residues and is helpful for clarifying the molecular toxic mechanism of OTC in vivo. The established strategy can be used to investigate the potential enzyme toxicity of other small organic pollutants and drugs.

  1. Fermentation and enzyme treatments for sorghum

    Directory of Open Access Journals (Sweden)

    Patrícia Fernanda Schons

    2012-03-01

    Full Text Available Sorghum (Sorghum bicolor Moench is the fifth most produced cereal worldwide. However, some varieties of this cereal contain antinutritional factors, such as tannins and phytate that may form stable complexes with proteins and minerals which decreases digestibility and nutritional value. The present study sought to diminish antinutritional tannins and phytate present in sorghum grains. Three different treatments were studied for that purpose, using enzymes tannase (945 U/Kg sorghum, phytase (2640 U/Kg sorghum and Paecilomyces variotii (1.6 X 10(7 spores/mL; A Tannase, phytase and Paecilomyces variotii, during 5 and 10 days; B An innovative blend made of tanase and phytase for 5 days followed by a Pv increase for 5 more days; C a third treatment where the reversed order of B was used starting with Pv for 5 days and then the blend of tannase and phytase for 5 more days. The results have shown that on average the three treatments were able to reduce total phenols and both hydrolysable and condensed tannins by 40.6, 38.92 and 58.00 %, respectively. Phytase increased the amount of available inorganic phosphorous, on the average by 78.3 %. The most promising results concerning tannins and phytate decreases were obtained by the enzymes combination of tannase and phytase. The three treatments have shown effective on diminishing tannin and phytate contents in sorghum flour which leads us to affirm that the proposed treatments can be used to increase the nutritive value of sorghum grains destined for either animal feeds or human nutrition.

  2. Fermentation and enzyme treatments for sorghum.

    Science.gov (United States)

    Schons, Patrícia Fernanda; Battestin, Vania; Macedo, Gabriela Alves

    2012-01-01

    Sorghum (Sorghum bicolor Moench) is the fifth most produced cereal worldwide. However, some varieties of this cereal contain antinutritional factors, such as tannins and phytate that may form stable complexes with proteins and minerals which decreases digestibility and nutritional value. The present study sought to diminish antinutritional tannins and phytate present in sorghum grains. Three different treatments were studied for that purpose, using enzymes tannase (945 U/Kg sorghum), phytase (2640 U/Kg sorghum) and Paecilomyces variotii (1.6 X 10(7) spores/mL); A) Tannase, phytase and Paecilomyces variotii, during 5 and 10 days; B) An innovative blend made of tanase and phytase for 5 days followed by a Pv increase for 5 more days; C) a third treatment where the reversed order of B was used starting with Pv for 5 days and then the blend of tannase and phytase for 5 more days. The results have shown that on average the three treatments were able to reduce total phenols and both hydrolysable and condensed tannins by 40.6, 38.92 and 58.00 %, respectively. Phytase increased the amount of available inorganic phosphorous, on the average by 78.3 %. The most promising results concerning tannins and phytate decreases were obtained by the enzymes combination of tannase and phytase. The three treatments have shown effective on diminishing tannin and phytate contents in sorghum flour which leads us to affirm that the proposed treatments can be used to increase the nutritive value of sorghum grains destined for either animal feeds or human nutrition.

  3. Near universal support for covalent immobilisation of enzymes for biotechnology

    International Nuclear Information System (INIS)

    Elnashar, M.M.; Millner, P.A.; Gibson, T.D.

    2005-01-01

    Carrageenan [1], natural polymer, has been modified to be used as a universal/near universal support to immobilise enzymes, where the gel remained stable at 70 degree C for 24 h at a wide range of buffers and ph s and its mechanical strength was 400% greater than the unmodified gel. The new matrix successfully immobilised covalently eight commercially used enzymes including hydrolases, Upases, oxidoreductases, proteases and dehydrogenases. It also acted as a self buffering system in case of hydrolases and stopped enzyme's product inhibition. The apparent Km values of immobilised enzymes were found in many cases to be much less than those of the free enzymes. Another interesting correlation was observed where the great lowering of the apparent Km with immobilised enzymes was directly proportional to the substrate molecular weight. In economic terms, the new matrix is at least two orders of magnitude cheaper than supports such as Eupergit C

  4. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis.

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J; Koliwad, Suneil; Harris, Charles; Farese, Robert V

    2008-11-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases.

  5. Improving Aspergillus carbonarius crude enzymes for lignocellulose hydrolysis

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich

    and single enzyme supplementation. Fungal strains were screened in order to determine crude enzyme extracts that could be supplemented as boosters of A. carbonarius own crude enzyme extract, when applied in lignocellulose hydrolysis. The fungi originated from different environmental niches, which all had...... for their potential in hydrolysis of wheat straw both by application of monocultures and by supplementing to crude enzymes of A. carbonarius. For the crude enzymes from solid cultivations there were eight isolates that showed synergistic interaction resulting in doubling and tripling of the glucose release in wheat...... straw hydrolysis. A completely different profile of synergy was observed for crude enzymes from liquid cultivations, as there were only three isolates that enhanced glucose release. Only one of these three isolates had shown synergistic effects when cultivated in a solid medium. The screening...

  6. Effect of irradiation on lysosomal enzyme activation in cultured macrophages

    International Nuclear Information System (INIS)

    Clarke, C.; Wills, E.D.

    1980-01-01

    The effect of γrays on lysosomal enzyme activity of normal and immune macrophages of DBA/2 mice cultured in vitro has been studied. A dose of 500 rad did not significantly affect lysosomal enzyme activity 3 hours after irradiation but caused the activity to increase to 1.4 times the control value 22.5 hours after irradiation. 22.5 hours after a dose of 3000 rad the enzyme activity increased to 2.5 times the control. Lysosomal enzyme activity of the macrophages was also markedly increased by immunization of the mice with D lymphoma cells, before culture in vitro, but irradiation of these cells with a dose of 500 rad caused a further increase in lysosomal enzyme activity. The results indicate that immunization and irradiation both cause stimulation of lysosomal enzyme activity in macrophages but that the mechanisms of activation are unlikely to be identical. (author)

  7. Substrate-driven chemotactic assembly in an enzyme cascade

    Science.gov (United States)

    Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M.; Gilson, Michael K.; Butler, Peter J.; Hess, Henry; Benkovic, Stephen J.; Sen, Ayusman

    2018-03-01

    Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.

  8. Internal Diffusion-Controlled Enzyme Reaction: The Acetylcholinesterase Kinetics.

    Science.gov (United States)

    Lee, Sangyun; Kim, Ji-Hyun; Lee, Sangyoub

    2012-02-14

    Acetylcholinesterase is an enzyme with a very high turnover rate; it quenches the neurotransmitter, acetylcholine, at the synapse. We have investigated the kinetics of the enzyme reaction by calculating the diffusion rate of the substrate molecule along an active site channel inside the enzyme from atomic-level molecular dynamics simulations. In contrast to the previous works, we have found that the internal substrate diffusion is the determinant of the acetylcholinesterase kinetics in the low substrate concentration limit. Our estimate of the overall bimolecular reaction rate constant for the enzyme is in good agreement with the experimental data. In addition, the present calculation provides a reasonable explanation for the effects of the ionic strength of solution and the mutation of surface residues of the enzyme. The study suggests that internal diffusion of the substrate could be a key factor in understanding the kinetics of enzymes of similar characteristics.

  9. Effect of cadmium on lung lysosomal enzymes in vitro

    International Nuclear Information System (INIS)

    Giri, S.N.; Hollinger, M.A.

    1995-01-01

    Labilization of lysosomal enzymes is often associated with the general process of inflammation. The present study investigated the effect of the pneumotoxin cadmium on the release and activity of two lung lysosomal enzymes. Incubation of rat lung lysosomes with cadmium resulted in the release of β-glucuronidase but not acid phosphatase. The failure to ''release'' acid phosphatase appears to be the result of a direct inhibitory effect of cadmium on this enzyme. The K I for cadmium was determined to be 26.3 μM. The differential effect of cadmium on these two lysosomal enzymes suggests that caution should be exercised in selecting the appropriate enzyme marker for assessing lysosomal fragility in the presence of this toxicant. Furthermore, the differential basal release rate of the two enzymes from lung lysosomes may reflect the cellular heterogeneity of the lung. (orig.)

  10. Enzymes as Biocatalysts for Lipid-based Bioproducts Processing

    DEFF Research Database (Denmark)

    Cheong, Ling-Zhi; Guo, Zheng; Fedosov, Sergey

    2012-01-01

    Bioproducts are materials, chemicals and energy derived from renewable biological resources such as agriculture, forestry, and biologically-derived wastes. To date, the use of enzymes as biocatalysts for lipid-based bioproducts processing has shown marked increase. This is mainly due to the fact...... that cost benefit derived from enzymatic processing such as enzyme specificity, higher product purity and lesser or none toxic waste disposal has surpassed the cost of biocatalysts itself. This chapter provided insights into distinct enzymes characteristics essential in industrial processing especially...... enzymes kinetics. Understanding of enzyme kinetics is important especially in designing efficient reaction set-ups including type of bioreactors, reaction conditions and reusability of biocatalysts to ensure efficient running cost. A brief review of state-of-the-art in industrial applications of enzymes...

  11. Biomass degrading enzymes from Penicillium – cloning and characterization

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer

    2008-01-01

    . Størstedelen af den forskning, der er foregået indenfor cellulosenedbrydende enzymer er med enzymer produceret af svampen Trichoderma reesei. Under mit Ph.D.studium har jeg undersøgt biomassenedbrydende enzymer fra forskellige Penicillium arter. Hovedvægten af forskningen har været indenfor...... cellulosenedbrydende enzymer.Penicillium arter er blandt de hyppigst forekommende mikroorganismer i skovjord, hvori der netop nedbrydes store mængder plantemateriale. Ved en sammenligning af produktionen af biomassenedbrydende enzymer fra forskellige Penicillium arter blev der fundet flere interessante enzymsystemer...... reaktionstid ved den enzymatisk hydrolyse hvor de enkelte sukkermolekyler bliver frigivet, hvorfor enzymstabilitet er særdeles væsentlig, når et rentabelt cellulosenedbrydende enzymsystem skal sammensættes. De nødvendige enzymer for en fuldstændig hydrolyse af cellulose blev oprenset, klonet, produceret...

  12. Modification of polymer surfaces to enhance enzyme activity and stability

    DEFF Research Database (Denmark)

    Hoffmann, Christian

    Enzyme immobilization is an important concept for the development of improved biocatalytic processes, primarily through facilitated separation procedures. However, enzyme immobilization usually comes at a price of reduced biocatalytic activity. For this reason, different immobilization methods have...... already been developed, combining the same goal to improve enzyme activity, stability and selectivity. Polymer materials have shown, due to their easy processibility and versatile properties, high potential as enzyme support. However, in order to achieve improved enzyme performance, the combination...... on their tailored surface modification in order to obtain improved enzyme-support systems. Firstly, an off-stoichiometric thiol-ene (OSTE) thermosetting material was used for the development of a screening platform allowing the investigation of micro-environmental effects and their impact on the activity...

  13. Enzyme study of the separate stages in alcohol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Mar Monux, D

    1968-01-01

    The precise roles of ATP, DNA, and NADP in interaction with enzymes in certain of the 11 phases of fermentation are outlined. Individual enzymes which take part in the 11 phases are: (1) hexose transferase; (2) phosphohexoseisomerase; (3) fructosinase; (4) aldolase; (5) an SH-enzyme; (6) 3-phosphoglycero-1-phosphotransferase; (7) ghosphoglyceromutosase; (8) 2-phosphoglycerohydrolase; (9) pyruvic transferase; (10) pyruvic decarboxylase; (11) alcohol dehydrogenase.

  14. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  15. Enzymes in Poultry and Swine Nutrition | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    L'utilisation d'enzymes comme additifs alimentaires pour animaux a pris une expansion rapide au cours de la dernière décennie. Même si les avantages économiques et sociaux des enzymes sont bien établis, il faut pousser les travaux de recherche et de développement si l'on veut que les enzymes réalisent leur plein ...

  16. Spherezymes: A novel structured self-immobilisation enzyme technology

    Directory of Open Access Journals (Sweden)

    Arumugam Cherise

    2008-01-01

    Full Text Available Abstract Background Enzymes have found extensive and growing application in the field of chemical organic synthesis and resolution of chiral intermediates. In order to stabilise the enzymes and to facilitate their recovery and recycle, they are frequently immobilised. However, immobilisation onto solid supports greatly reduces the volumetric and specific activity of the biocatalysts. An alternative is to form self-immobilised enzyme particles. Results Through addition of protein cross-linking agents to a water-in-oil emulsion of an aqueous enzyme solution, structured self-immobilised spherical enzyme particles of Pseudomonas fluorescens lipase were formed. The particles could be recovered from the emulsion, and activity in aqueous and organic solvents was successfully demonstrated. Preliminary data indicates that the lipase tended to collect at the interface. Conclusion The immobilised particles provide a number of advantages. The individual spherical particles had a diameter of between 0.5–10 μm, but tended to form aggregates with an average particle volume distribution of 100 μm. The size could be controlled through addition of surfactant and variations in protein concentration. The particles were robust enough to be recovered by centrifugation and filtration, and to be recycled for further reactions. They present lipase enzymes with the active sites selectively orientated towards the exterior of the particle. Co-immobilisation with other enzymes, or other proteins such as albumin, was also demonstrated. Moreover, higher activity for small ester molecules could be achieved by the immobilised enzyme particles than for free enzyme, presumably because the lipase conformation required for catalysis had been locked in place during immobilisation. The immobilised enzymes also demonstrated superior activity in organic solvent compared to the original free enzyme. This type of self-immobilised enzyme particle has been named spherezymes.

  17. 21 CFR 184.1063 - Enzyme-modified lecithin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Enzyme-modified lecithin. 184.1063 Section 184.1063... Listing of Specific Substances Affirmed as GRAS § 184.1063 Enzyme-modified lecithin. (a) Enzyme-modified lecithin is prepared by treating lecithin with either phospholipase A2 (EC 3.1.1.4) or pancreatin. (b) The...

  18. Spatial distribution of enzyme activities in the rhizosphere

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  19. Application of enzymes in the textile industry: a review

    OpenAIRE

    Mojsov, Kiro

    2011-01-01

    The use of enzymes in textile industry is one of the most rapidly growing field in industrial enzymology. The enzymes used in the textile field are amylases, catalase, and laccase which are used to removing the starch, degrading excess hydrogen peroxide, bleaching textiles and degrading lignin. The use of enzymes in the textile chemical processing is rapidly gaining globally recognition because of their non-toxic and eco-friendly characteristics with the increasinly important requirements for...

  20. Selection and production of insoluble xylan hydrolyzing enzyme by ...

    African Journals Online (AJOL)

    Jane

    2011-03-07

    Mar 7, 2011 ... The effect of pH and temperature on the enzyme activity and stability of crude enzyme produced by T. lanuginosus THKU 56 were investigated. To study the effect of pH on activity, the reaction mixture of 0.5 ml of enzyme and 0.5 ml of 1% insoluble oat spelt xylan in 50 mM buffers with various pH values ...

  1. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.

    Science.gov (United States)

    Pleiss, Jürgen

    2018-03-01

    Macrokinetic Michaelis-Menten models based on thermodynamic activity provide insights into enzyme kinetics because they separate substrate-enzyme from substrate-solvent interactions. Kinetic parameters are estimated from experimental progress curves of enzyme-catalyzed reactions. Three pitfalls are discussed: deviations between thermodynamic and concentration-based models, product effects on the substrate activity coefficient, and product inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Detection of Extracellular Enzyme Activities in Ganoderma neo-japonicum

    OpenAIRE

    Jo, Woo-Sik; Park, Ha-Na; Cho, Doo-Hyun; Yoo, Young-Bok; Park, Seung-Chun

    2011-01-01

    The ability of Ganoderma to produce extracellular enzymes, including β-glucosidase, cellulase, avicelase, pectinase, xylanase, protease, amylase, and ligninase was tested in chromogenic media. β-glucosidase showed the highest activity, among the eight tested enzymes. In particular, Ganoderma neo-japonicum showed significantly stronger activity for β-glucosidase than that of the other enzymes. Two Ganoderma lucidum isolates showed moderate activity for avicelase; however, Ganoderma neo-japonic...

  3. Research Applications of Proteolytic Enzymes in Molecular Biology

    OpenAIRE

    Mótyán, János András; Tóth, Ferenc; Tőzsér, József

    2013-01-01

    Proteolytic enzymes (also termed peptidases, proteases and proteinases) are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications ...

  4. Optimization of condition for conjugation of enrofloxacin to enzymes in chemiluminescence enzyme immunoassay

    Science.gov (United States)

    Yu, Songcheng; Yu, Fei; Zhang, Hongquan; Qu, Lingbo; Wu, Yongjun

    2014-06-01

    In this study, in order to find out a proper method for conjugation of enrofloxacin to label enzymes, two methods were compared and carbodiimide condensation was proved to be better. The results showed that the binding ratio of enrofloxacin and alkaline phosphatase (ALP) was 8:1 and that of enrofloxacin and horseradish peroxidase (HRP) was 5:1. This indicated that conjugate synthesized by carbodiimide condensation was fit for chemiluminescence enzyme immunoassay (CLEIA). Furthermore, data revealed that dialysis time was an important parameter for conjugation and 6 days was best. Buffer to dilute conjugate had little effect on CLEIA. The storage condition for conjugates was also studied and it was shown that the conjugate was stable at 4 °C with no additive up to 30 days. These data were valuable for establishing CLEIA to quantify enrofloxacin.

  5. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  7. A phylogenetic analysis of normal modes evolution in enzymes and its relationship to enzyme function.

    Science.gov (United States)

    Lai, Jason; Jin, Jing; Kubelka, Jan; Liberles, David A

    2012-09-21

    Since the dynamic nature of protein structures is essential for enzymatic function, it is expected that functional evolution can be inferred from the changes in protein dynamics. However, dynamics can also diverge neutrally with sequence substitution between enzymes without changes of function. In this study, a phylogenetic approach is implemented to explore the relationship between enzyme dynamics and function through evolutionary history. Protein dynamics are described by normal mode analysis based on a simplified harmonic potential force field applied to the reduced C(α) representation of the protein structure while enzymatic function is described by Enzyme Commission numbers. Similarity of the binding pocket dynamics at each branch of the protein family's phylogeny was analyzed in two ways: (1) explicitly by quantifying the normal mode overlap calculated for the reconstructed ancestral proteins at each end and (2) implicitly using a diffusion model to obtain the reconstructed lineage-specific changes in the normal modes. Both explicit and implicit ancestral reconstruction identified generally faster rates of change in dynamics compared with the expected change from neutral evolution at the branches of potential functional divergences for the α-amylase, D-isomer-specific 2-hydroxyacid dehydrogenase, and copper-containing amine oxidase protein families. Normal mode analysis added additional information over just comparing the RMSD of static structures. However, the branch-specific changes were not statistically significant compared to background function-independent neutral rates of change of dynamic properties and blind application of the analysis would not enable prediction of changes in enzyme specificity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Comparison of multiplex reverse transcription-PCR-enzyme ...

    African Journals Online (AJOL)

    Comparison of multiplex reverse transcription-PCR-enzyme hybridization assay with immunofluorescence techniques for the detection of four viral respiratory pathogens in pediatric community acquired pneumonia.

  9. Early evolution of efficient enzymes and genome organization

    Directory of Open Access Journals (Sweden)

    Szilágyi András

    2012-10-01

    Full Text Available Abstract Background Cellular life with complex metabolism probably evolved during the reign of RNA, when it served as both information carrier and enzyme. Jensen proposed that enzymes of primordial cells possessed broad specificities: they were generalist. When and under what conditions could primordial metabolism run by generalist enzymes evolve to contemporary-type metabolism run by specific enzymes? Results Here we show by numerical simulation of an enzyme-catalyzed reaction chain that specialist enzymes spread after the invention of the chromosome because protocells harbouring unlinked genes maintain largely non-specific enzymes to reduce their assortment load. When genes are linked on chromosomes, high enzyme specificity evolves because it increases biomass production, also by reducing taxation by side reactions. Conclusion The constitution of the genetic system has a profound influence on the limits of metabolic efficiency. The major evolutionary transition to chromosomes is thus proven to be a prerequisite for a complex metabolism. Furthermore, the appearance of specific enzymes opens the door for the evolution of their regulation. Reviewers This article was reviewed by Sándor Pongor, Gáspár Jékely, and Rob Knight.

  10. Halophiles and their enzymes: Negativity put to good use

    Science.gov (United States)

    DasSarma, Shiladitya; DasSarma, Priya

    2015-01-01

    Halophilic microorganisms possess stable enzymes that function in very high salinity, an extreme condition that leads to denaturation, aggregation, and precipitation of most other proteins. Genomic and structural analyses have established that the enzymes of halophilic Archaea and many halophilic Bacteria are negatively charged due to an excess of acidic over basic residues, and altered hydrophobicity, which enhance solubility and promote function in low water activity conditions. Here, we provide an update on recent bioinformatic analysis of predicted halophilic proteomes as well as experimental molecular studies on individual halophilic enzymes. On-going efforts on discovery and utilization of halophiles and their enzymes for biotechnology, including biofuel applications are also considered. PMID:26066288

  11. Contemporary enzyme based technologies for bioremediation: A review.

    Science.gov (United States)

    Sharma, Babita; Dangi, Arun Kumar; Shukla, Pratyoosh

    2018-03-15

    The persistent disposal of xenobiotic compounds like insecticides, pesticides, fertilizers, plastics and other hydrocarbon containing substances is the major source of environmental pollution which needs to be eliminated. Many contemporary remediation methods such as physical, chemical and biological are currently being used, but they are not sufficient to clean the environment. The enzyme based bioremediation is an easy, quick, eco-friendly and socially acceptable approach used for the bioremediation of these recalcitrant xenobiotic compounds from the natural environment. Several microbial enzymes with bioremediation capability have been isolated and characterized from different natural sources, but less production of such enzymes is a limiting their further exploitation. The genetic engineering approach has the potential to get large amount of recombinant enzymes. Along with this, enzyme immobilization techniques can boost the half-life, stability and activity of enzymes at a significant level. Recently, nanozymes may offer the potential bioremediation ability towards a broad range of pollutants. In the present review, we have described a brief overview of the microbial enzymes, different enzymes techniques (genetic engineering and immobilization of enzymes) and nanozymes involved in bioremediation of toxic, carcinogenic and hazardous environmental pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Recent advances in rational approaches for enzyme engineering

    Directory of Open Access Journals (Sweden)

    Kerstin Steiner

    2012-09-01

    Full Text Available Enzymes are an attractive alternative in the asymmetric syntheses of chiral building blocks. To meet the requirements of industrial biotechnology and to introduce new functionalities, the enzymes need to be optimized by protein engineering. This article specifically reviews rational approaches for enzyme engineering and de novo enzyme design involving structure-based approaches developed in recent years for improvement of the enzymes’ performance, broadened substrate range, and creation of novel functionalities to obtain products with high added value for industrial applications.

  13. Aβ-degrading enzymes: potential for treatment of Alzheimer disease.

    Science.gov (United States)

    Miners, James Scott; Barua, Neil; Kehoe, Patrick Gavin; Gill, Steven; Love, Seth

    2011-11-01

    There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), insulin-degrading enzyme, and endothelin-converting enzyme reduce Aβ levels and protect against cognitive impairment in mouse models of AD. The activity of several Aβ-degrading enzymes rises with age and increases still further in AD, perhaps as a physiological response to minimize the buildup of Aβ. The age- and disease-related changes in expression of more recently recognized Aβ-degrading enzymes (e.g. NEP-2 and cathepsin B) remain to be investigated, and there is strong evidence that reduced NEP activity contributes to the development of cerebral amyloid angiopathy. Regardless of the role of Aβ-degrading enzymes in the development of AD, experimental data indicate that increasing the activity of these enzymes (NEP in particular) has therapeutic potential in AD, although targeting their delivery to the brain remains a major challenge. The most promising current approaches include the peripheral administration of agents that enhance the activity of Aβ-degrading enzymes and the direct intracerebral delivery of NEP by convection-enhanced delivery. In the longer term, genetic approaches to increasing the intracerebral expression of NEP or other Aβ-degrading enzymes may offer advantages.

  14. Determining the safety of enzymes used in animal feed.

    Science.gov (United States)

    Pariza, Michael W; Cook, Mark

    2010-04-01

    The purpose of this paper is to provide guidance for evaluating the safety of enzyme preparations used in animal feed. Feed enzymes are typically added to animal feed to increase nutrient bioavailability by acting on feed components prior to or after consumption, i.e., within the gastrointestinal tract. In contrast, food processing enzymes are generally used during processing and then inactivated or removed prior to consumption. The enzymes used in both applications are almost always impure mixtures of active enzyme and other metabolites from the production strain, hence similar safety evaluation procedures for both are warranted. We propose that the primary consideration should be the safety of the production strain and that the decision tree mechanism developed previously for food processing enzymes (Pariza and Johnson, 2001) is appropriate for determining the safety of feed enzymes. Thoroughly characterized non-pathogenic, non-toxigenic microbial strains with a history of safe use in enzyme manufacture are also logical candidates for generating safe strain lineages, from which additional strains may be derived via genetic modification by traditional and non-traditional strategies. For new feed enzyme products derived from a safe strain lineage, it is important to ensure a sufficiently high safety margin for the intended use, and that the product complies with appropriate specifications for chemical and microbial contamination. Copyright 2009 Elsevier Inc. All rights reserved.

  15. Prevalence of sensitization to 'improver' enzymes in UK supermarket bakers.

    Science.gov (United States)

    Jones, M; Welch, J; Turvey, J; Cannon, J; Clark, P; Szram, J; Cullinan, P

    2016-07-01

    Supermarket bakers are exposed not only to flour and alpha-amylase but also to other 'improver' enzymes, the nature of which is usually shrouded by commercial sensitivity. We aimed to determine the prevalence of sensitization to 'improver' enzymes in UK supermarket bakers. We examined the prevalence of sensitization to enzymes in 300 bakers, employed by one of two large supermarket bakeries, who had declared work-related respiratory symptoms during routine health surveillance. Sensitization was determined using radioallergosorbent assay to eight individual enzymes contained in the specific 'improver' mix used by each supermarket. The prevalence of sensitization to 'improver' enzymes ranged from 5% to 15%. Sensitization was far more likely if the baker was sensitized also to either flour or alpha-amylase. The prevalence of sensitization to an 'improver' enzyme did not appear to be related to the concentration of that enzyme in the mix. We report substantial rates of sensitization to enzymes other than alpha-amylase in UK supermarket bakers; in only a small proportion of bakers was there evidence of sensitization to 'improver mix' enzymes without sensitization to either alpha-amylase or flour. The clinical significance of these findings needs further investigation, but our findings indicate that specific sensitization in symptomatic bakers may not be identified without consideration of a wide range of workplace antigens. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Production of fructose-containing syrup with enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Helwiig-Nielsen, B

    1981-01-01

    A review on enzymic processes used for production of fructose- high syrup from starch including liquefaction by alpha-amylase, saccharification by amyloglucosidase, and isomerization with glucose isomerase.

  17. Enzymes are a sweet way to do business

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-04

    The use of enzymes in industry is growing steadily. This artic discusses some areas of enzyme research: included are enzyme treatments for the production of high-fructose corn syrup and ethanol for gasohol blends, enzyme research focusing on cellulose breakdown, especially from municipal waste and pulp and paper waste to produce ethanol and the conversion of soybeans into a protein-rich powder. The enzymatic process for nitrogen fixation in the nodules of certain leguminous plants and in medical diagnostics are also mentioned.

  18. Studies on Ganoderma lucidum III. production of pectolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.S.; Tseng, T.C.

    1986-07-01

    Pectolytic enzymes produced by Ganoderma lucidum B in culture and polypropylene bags were investigated. Two pectolytic enzymes, i.e., endo-polygalacturonase (endo-PG) and endo-pectic methyl trans-eliminase (endo-PMTE) were obtained from crude enzymes of G. lucidum B extract from mycelia polypropylene bags. The endo-PMTE has to optimal pH at 4.5 and 8.0. The enzyme stimulated by Ca/sup + +/ ion and preferred only pectin; the enzyme activity decreased at temperature above 50/sup 0/C. The endo-PMTE a and endo-PMTE b, obtained from polypropylene bag with mycelia of G. lucidum B, were purified by 60-80% ammonium sulfate fractionation, Sephadex G-100 gel filtration, DEAE-cellulose ion exchange column chromatography and isoelectric focusing, showing pI at 8.2 and 5.5. Disc gel electrophoresis confirmed two peaks corresponding to endo-PMTE a and b as isoenzymes. Pectolytic enzymes purified by 60-80% ammonium sulfate fraction macerated potato disc and it was more active than the crude enzyme. At pH 4.5, maceration of potato disc by pectolytic enzymes more effective than those at pH 8.0 or 7.0. At pH 8.0, Ca/sup + +/ ion stimulate pectolytic enzyme activities and accelerated maceration.

  19. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.

    Science.gov (United States)

    Sivaperumal, P; Kamala, K; Rajaram, R

    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.

  20. Operating considerations of ultrafiltration in enzyme enhanced carbon capture

    DEFF Research Database (Denmark)

    Deslauriers, Maria Gundersen; Gladis, Arne; Fosbøl, Philip Loldrup

    2017-01-01

    capture capacity of 1 MTonn CO2/year, and is here operated for one year continuously. This publication compares soluble enzymes dissolved in a capture solvent with and without the use of ultrafiltration membranes. The membranes used here have an enzyme retention of 90%, 99% and 99.9%. Enzyme retention......Today, enzyme enhanced carbon capture and storage (CCS) is gaining interest, since it can enable the use of energy efficient solvents, and thus potentially reduce the carbon footprint of CCS. However, a limitation of this technology is the high temperatures encountered in the stripper column, which...

  1. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael

    2013-09-01

    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

  2. Enzyme immobilization and biocatalysis of polysiloxanes

    Science.gov (United States)

    Poojari, Yadagiri

    Lipases have been proven to be versatile and efficient biocatalysts which can be used in a broad variety of esterification, transesterification, and ester hydrolysis reactions. Due to the high chemo-, regio-, and stereo-selectivity and the mild conditions of lipase-catalyzed reactions, the vast potential of these biocatalysts for use in industrial applications has been increasingly recognized. Polysiloxanes (silicones) are well known for their unique physico-chemical properties and can be prepared in the form of fluids, elastomers, gels and resins for a wide variety of applications. However, the enzymatic synthesis of silicone polyesters and copolymers is largely unexplored. In the present investigations, an immobilized Candida antarctica lipase B (CALB) on macroporous acrylic resin beads (Novozym-435 RTM) has been successfully employed as a catalyst to synthesize silicone polyesters and copolymers under mild reaction conditions. The silicone aliphatic polyesters and the poly(dimethylsiloxane)--poly(ethylene glycol) (PDMS-PEG) copolymers were synthesized in the bulk (without using a solvent), while the silicone aromatic polyesters, the silicone aromatic polyamides and the poly(epsilon-caprolactone)--poly(dimethylsiloxane)--poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers were synthesized in toluene. The synthesized silicone polyesters and copolymers were characterized by Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD). This dissertation also describes a methodology for physical immobilization of the enzyme pepsin from Porcine stomach mucosa in silicone elastomers utilizing condensation-cure room temperature vulcanization (RTV) of silanol-terminated poly(dimethylsiloxane) (PDMS). The activity and the stability of free pepsin and pepsin immobilized in silicone elastomers were studied with respect to p

  3. Production of amylolytic enzymes by bacillus spp

    Energy Technology Data Exchange (ETDEWEB)

    Dawood, Elham Shareif [Department of Botany, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    1997-12-01

    Sixty six bacteria and twenty fungi were isolated from various sources. These varied from rotten fruites to local drinks and soil samples from different parts of Sudan. On the basis of index of amylolytic activity, forty one bacteria and twelve fungi were found to hydrolyse strach. The best ten strach hydrolysing isolates were identified all as bacilli (Bacillus licheniformis SUD-K{sub 1}, SUD-K{sub 2}, SUD-K{sub 4}, SUD-O, SUD-SRW, SUD-BRW, SUD-By, Bacillus subtilis SUD-K{sub 3}, and Bacillus circulans SUD-D and SUD-K{sub 7}). Their amylase productivity was studied with respect to temperature and time. Amylolytic activity was measured by spectrophotometer, the highest activity was produced in around 24 hours of growth in all; six of which gave the highest amylase activity at 50 deg C and the rest at 45C. Based on the thermal production six isolates were chosen for further investigation. These were Bacillus licheniformis SUD-K{sub 1}, SUD-K{sub 2}, SUD-K{sub 4}, SUD-O, Bacillus subtilis SUD-K{sub 3} and Bacillus circulans SUD-K{sub 7}. The inclusion of strach and Mg{sup ++} ions in the culture medium gave the highest enzyme yield. The Ph 9.0 was found to be the optimum for amylase production for all isolates except Bacillus subtilis SUD-K{sub 3} which had an optimum at pH 7.0. Three isolates (Bacillus licheniformis SUD-K{sub 1}, SUD-K{sub 4} and SUD-O recorded highestamylase production in a medium supplemented with peptone while the rest (Bacillus licheniformis SUD-K{sub 2}, Bacillus subtilis SUD-K{sub 3} and Bacillus circulans SUD-K{sub 7}) gave highest amylase productivity in a medium supplemented with malt extract. Four isolates (Bacillus licheniformis SUD-K{sub 1} and Bacillus subtilis SUD-K{sub 3} gave maximum amylase production in a medium containing 0.5% soluble strach while the rest (gave maximum amylase production at 2%. Soluble strach was found to be best substrate among the different carbon sources tested. The maximum temperature for amylase activity

  4. Production of amylolytic enzymes by bacillus spp

    International Nuclear Information System (INIS)

    Dawood, Elham Shareif

    1997-12-01

    Sixty six bacteria and twenty fungi were isolated from various sources. These varied from rotten fruites to local drinks and soil samples from different parts of Sudan. On the basis of index of amylolytic activity, forty one bacteria and twelve fungi were found to hydrolyse strach. The best ten strach hydrolysing isolates were identified all as bacilli (Bacillus licheniformis SUD-K 1 , SUD-K 2 , SUD-K 4 , SUD-O, SUD-SRW, SUD-BRW, SUD-By, Bacillus subtilis SUD-K 3 , and Bacillus circulans SUD-D and SUD-K 7 ). Their amylase productivity was studied with respect to temperature and time. Amylolytic activity was measured by spectrophotometer, the highest activity was produced in around 24 hours of growth in all; six of which gave the highest amylase activity at 50 deg C and the rest at 45C. Based on the thermal production six isolates were chosen for further investigation. These were Bacillus licheniformis SUD-K 1 , SUD-K 2 , SUD-K 4 , SUD-O, Bacillus subtilis SUD-K 3 and Bacillus circulans SUD-K 7 . The inclusion of strach and Mg ++ ions in the culture medium gave the highest enzyme yield. The Ph 9.0 was found to be the optimum for amylase production for all isolates except Bacillus subtilis SUD-K 3 which had an optimum at pH 7.0. Three isolates (Bacillus licheniformis SUD-K 1 , SUD-K 4 and SUD-O recorded highestamylase production in a medium supplemented with peptone while the rest (Bacillus licheniformis SUD-K 2 , Bacillus subtilis SUD-K 3 and Bacillus circulans SUD-K 7 ) gave highest amylase productivity in a medium supplemented with malt extract. Four isolates (Bacillus licheniformis SUD-K 1 and Bacillus subtilis SUD-K 3 gave maximum amylase production in a medium containing 0.5% soluble strach while the rest (gave maximum amylase production at 2%. Soluble strach was found to be best substrate among the different carbon sources tested. The maximum temperature for amylase activity ranged from 60-70 deg C and 1% strach concentration was optimum for all isolates

  5. Differentiation between activity of digestive enzymes of Brachionus calyciflorus and extracellular enzymes of its epizooic bacteria

    Directory of Open Access Journals (Sweden)

    Wilko H. AHLRICHS

    2009-08-01

    Full Text Available The rotifer Brachionus calyciflorus was examined by scanning electron microscopy (SEM for surface-attached, i.e. epizootic, bacteria to ascertain their specific localization and thus find out if we could discern between rotifer and bacterial enzyme activity. The lorica of B. calyciflorus was colonized by one distinct type of bacteria, which originated from the algal culture used for rotifer feeding. The corona, posterior epidermis and foot of all inspected individuals were always without attached bacteria. The density of the attached bacteria was higher with the increasing age of B. calyciflorus: while young individuals were colonized by ~ tens of bacterial cells, older ones had on average hundreds to thousands of attached bacteria. We hypothesize that epizooic bacteria may produce the ectoenzymes phosphatases and β-N-acetylhexosaminidases on the lorica, but not on the corona of B. calyciflorus. Since enzyme activities of epizooic bacteria may influence the values and interpretation of bulk rotifer enzyme activities, we should take the bacterial contribution into account.

  6. Antioxidant enzymes, presbycusis, and ethnic variability.

    Science.gov (United States)

    Bared, Anthony; Ouyang, Xiaomei; Angeli, Simon; Du, Li Lin; Hoang, Kimberly; Yan, Denise; Liu, Xue Zhong

    2010-08-01

    A proposed mechanism for presbycusis is a significant increase in oxidative stress in the cochlea. The enzymes glutathione S-transferase (GST) and N-acetyltransferase (NAT) are two classes of antioxidant enzymes active in the cochlea. In this work, we sought to investigate the association of different polymorphisms of GSTM1, GSTT1, and NAT2 and presbycusis and analyze whether ethnicity has an effect in the genotype-phenotype associations. Case-control study of 134 DNA samples. University-based tertiary care center. Clinical, audiometric, and DNA testing of 55 adults with presbycusis and 79 control patients with normal hearing. The GSTM1 null genotype was present in 77 percent of white Hispanics and 51 percent of white non-Hispanics (Fisher's exact test, 2-tail, P = 0.0262). The GSTT1 null genotype was present in 34 percent of control patients and in 60 percent of white presbycusis subjects (P = 0.0067, odds ratio [OR] = 2.843, 95% confidence interval [95% CI] = 1.379-5.860). The GSTM1 null genotype was more frequent in presbycusis subjects, i.e., 48 percent of control patients and 69 percent of white subjects carried this deletion (P = 0.0198, OR = 2.43, 95% CI = 1.163-5.067). The NAT2*6A mutant genotype was more frequent among subjects with presbycusis (60%) than in control patients (34%; P = 0.0086, OR = 2.88, 95% CI = 1.355-6.141). We showed an increased risk of presbycusis among white subjects carrying the GSTM1 and the GSTT1 null genotype and the NAT*6A mutant allele. Subjects with the GSTT1 null genotypes are almost three times more likely to develop presbycusis than those with the wild type. The GSTM1 null genotype was more prevalent in white Hispanics than in white non-Hispanics, but the GSTT1 and NAT2 polymorphisms were equally represented in the two groups. Copyright (c) 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  7. Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy.

    Science.gov (United States)

    Liu, Lin; Lee, Wang-Sik; Doray, Balraj; Kornfeld, Stuart

    2017-06-16

    Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme. This method also results in the production of highly phosphorylated acid β-glucocerebrosidase, a lysosomal enzyme that normally has just trace amounts of this modification.

  8. Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step Purification and Partial Characterization of Eight Enzymes.

    Science.gov (United States)

    Merz, Michael; Eisele, Thomas; Berends, Pieter; Appel, Daniel; Rabe, Swen; Blank, Imre; Stressler, Timo; Fischer, Lutz

    2015-06-17

    Flavourzyme is sold as a peptidase preparation from Aspergillus oryzae. The enzyme preparation is widely and diversely used for protein hydrolysis in industrial and research applications. However, detailed information about the composition of this mixture is still missing due to the complexity. The present study identified eight key enzymes by mass spectrometry and partially by activity staining on native polyacrylamide gels or gel zymography. The eight enzymes identified were two aminopeptidases, two dipeptidyl peptidases, three endopeptidases, and one α-amylase from the A. oryzae strain ATCC 42149/RIB 40 (yellow koji mold). Various specific marker substrates for these Flavourzyme enzymes were ascertained. An automated, time-saving nine-step protocol for the purification of all eight enzymes within 7 h was designed. Finally, the purified Flavourzyme enzymes were biochemically characterized with regard to pH and temperature profiles and molecular sizes.

  9. Bacteriophage enzymes for the prevention and treatment of bacterial infections: Stability and stabilization of the enzyme lysing Streptococcus pyogenes cells

    Energy Technology Data Exchange (ETDEWEB)

    Klyachko, N. L.; Dmitrieva, N. F.; Eshchina, A. S.; Ignatenko, O. V.; Filatova, L. Y.; Rainina, Evguenia I.; Kazarov, A. K.; Levashov, A. V.

    2008-06-01

    Recombinant, phage associated lytic enzyme Ply C capable to lyse streptococci of groups A and C was stabilized in the variety of the micelles containing compositions to improve the stability of the enzyme for further application in medicine. It was shown that, in the micellar polyelectrolyte composition M16, the enzyme retained its activity for 2 months; while in a buffer solution under the same conditions ((pH 6.3, room temperature), it completely lost its activity in 2 days

  10. Effect of Barley and Enzyme on Performance, Carcass, Enzyme Activity and Digestion Parameters of Broilers

    Directory of Open Access Journals (Sweden)

    majid kalantar

    2016-04-01

    Full Text Available Introduction Corn has been recently used for producing ethanol fuel in the major corn-producing countries such as the US and Brazil. Recent diversion of corn for biofuel production along with the increased world's demand for this feedstuff has resulted in unprecedented rise in feed cost for poultry worldwide. Alternative grains such as wheat and barley can be successfully replaced for corn in poultry diets. These cereal grains can locally grow in many parts of the world as they have remarkably lower water requirement than corn. Wheat and barley are generally used as major sources of energy in poultry diets. Though the major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls (Olukosi et al. 2007; Mirzaie et al. 2012. NSPs are generally considered as anti-nutritional factors (Jamroz et al. 2002. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value (Olukosi et al. 2007.Wheat and barley are generally used as major sources of energy in poultry diets. The major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls. NSPs are generally considered as anti-nutritional factors. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value. The major part of NSPs in barley comprises polymers of (1→3 (1→4-β- glucans which could impede growth factors and consequently carcass quality through lowering the rate and amount of available nutrients in the mucosal surface of the intestinal. Materials and Methods This experiment was conducted to evaluate the effect of corn and barley based diets supplemented with multi-enzyme on growth, carcass, pancreas enzyme activity and physiological characteristics of broilers. A total number of 375 one day old

  11. Telomerase – future drug target enzyme?

    Directory of Open Access Journals (Sweden)

    Tomaž Langerholc

    2012-06-01

    Full Text Available Eucaryotic chromosome endings (telomeres replication problem was solved in the 1980’s by discovery of the telomerase enzyme. The Nobel Prize in Physiology or Medicine was awarded in 2009 for the discovery of telomerase. Altered telomerase expression in cancer, and human dream of eternal youth have accelerated the development of pharmacological telomerase inhibitors and activators. However, after 15 years of development they are still not available on the market. In the present article we reviewed pharmacological agents that target telomerase activity, which have entered clinical trials. Current drugs in development are mostly not intended to be used alone, as telomerase inhibitors under clinical trials are used in combination with the existing chemotherapeutics and anti-telomerase vaccines in combination with immuno-stimulants. Apart from cancer and aging, there are other diseases linked to deregulated activity of telomerase/telomeres and we also discuss technical and legal problems that researchers encounter in developing anti-telomerase therapy. Given the pace of development, first anti-telomerase drugs might appear on the market in the next 5 years.

  12. Enzyme reactions and their time resolved measurements

    International Nuclear Information System (INIS)

    Hajdu, Janos

    1990-01-01

    This paper discusses experimental strategies in data collection with the Laue method and summarises recent results using synchrotron radiation. Then, an assessment is made of the progress towards time resolved studies with protein crystals and the problems that remain. The paper consists of three parts which respectively describe some aspects of Laue diffraction, recent examples of structural results from Laue diffraction, and kinetic Laue crystallography. In the first part, characteristics of Laue diffraction is discussed first, focusing on the harmonics problems, spatials problem, wavelength normalization, low resolution hole, data completeness, and uneven coverage of reciprocal space. Then, capture of the symmetry unique reflection set is discussed focusing on the effect of wavelength range on the number of reciprocal lattice points occupying diffracting positions, effect of crystal to film distance and the film area and shape on the number of reflections captured, and effect of crystal symmetry on the number of unique reflections within the number of reflections captured. The second part addresses the determination of the structure of turkey egg white lysozyme, and calcium binding in tomato bushy stunt virus. The third part describes the initiation of reactions in enzyme crystals, picosecond Laue diffraction at high energy storage rings, and detectors. (N.K.)

  13. The Amborella vacuolar processing enzyme family

    Directory of Open Access Journals (Sweden)

    Valérie ePoncet

    2015-08-01

    Full Text Available Most vacuolar proteins are synthesized on rough endoplasmic reticulum as proprotein precursors and then transported to the vacuoles, where they are converted into their respective mature forms by vacuolar processing enzymes (VPEs. In the case of the seed storage proteins, this process is of major importance, as it conditions the establishment of vigorous seedlings. Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type of seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013. In the present study, proteomic and genomic approaches were used to characterize the VPE family in this species. Three genes were found to encode VPEs in the Amborella’s genome. Phylogenetic analyses showed that the Amborella sequences grouped within two major clades of angiosperm VPEs, indicating that the duplication that generated the ancestors of these clades occurred before the most recent common ancestor of living angiosperms. A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella. An analysis of natural genetic variation for each of the three Amborella VPE genes revealed the absence of selective forces acting on intronic and exonic single-nucleotide polymorphisms among several natural Amborella populations of in New Caledonia.

  14. Bioelectronic sniffer for nicotine using enzyme inhibition.

    Science.gov (United States)

    Mitsubayashi, Kohji; Nakayama, Kazumi; Taniguchi, Midori; Saito, Hirokazu; Otsuka, Kimio; Kudo, Hiroyuki

    2006-07-28

    A novel bioelectronic sniffer for nicotine in the gas phase was developed with enzyme inhibition principle to butyrylcholinesterase activity. The bioelectronic devices for nicotine in the gas and liquid phases were constructed using a Clark-type dissolved oxygen electrode and a membrane immobilized butyrylcholinesterase and choline oxidase. After the assessment of the sensor performances to choline and butyrylcholine as pre-examinations, the characteristics of the biosensor and bio-sniffer for nicotine were evaluated in the liquid and gas phases, respectively. The sensor signal of the bio-devices with 300 micromol l(-1) of butyrylcholine decreased quickly following application of nicotine and reached to the steady-state current, thus relating the concentration of nicotine in the liquid and gas phases. The biosensor was used to measure nicotine solution from 10 to 300 micromol l(-1). In the gas-phase experiment, the current signal of the bio-sniffer was also found to be linearly to the nicotine concentration over the range of 10.0-1000 ppb including 75.0 ppb as threshold limit value (TLV) by American Conference of Governmental Industrial Hygienists (ACGIH).

  15. Quantum mechanical design of enzyme active sites.

    Science.gov (United States)

    Zhang, Xiyun; DeChancie, Jason; Gunaydin, Hakan; Chowdry, Arnab B; Clemente, Fernando R; Smith, Adam J T; Handel, T M; Houk, K N

    2008-02-01

    The design of active sites has been carried out using quantum mechanical calculations to predict the rate-determining transition state of a desired reaction in presence of the optimal arrangement of catalytic functional groups (theozyme). Eleven versatile reaction targets were chosen, including hydrolysis, dehydration, isomerization, aldol, and Diels-Alder reactions. For each of the targets, the predicted mechanism and the rate-determining transition state (TS) of the uncatalyzed reaction in water is presented. For the rate-determining TS, a catalytic site was designed using naturalistic catalytic units followed by an estimation of the rate acceleration provided by a reoptimization of the catalytic site. Finally, the geometries of the sites were compared to the X-ray structures of related natural enzymes. Recent advances in computational algorithms and power, coupled with successes in computational protein design, have provided a powerful context for undertaking such an endeavor. We propose that theozymes are excellent candidates to serve as the active site models for design processes.

  16. Ionizing radiation effect on enzymes. I

    International Nuclear Information System (INIS)

    Libicky, A.; Chottova, O.; Fidlerova, J.; Urban, J.

    1980-01-01

    The effect was studied of gamma radiation on the proteolytic activity of pancreatin prepared either by separating enzymes from an activated extract of the pancreas, containing 2.15% of lipids, or by drying the not completely activated ground pancreas, containing 6.14% of lipids. A part of the first sample in which the proportion of lipids was additionally increased to 16.55% was also irradiated. The moisture content was practically the same in all three samples. The source of radiation was 60 Co, the dose rate 1.27 kGy/h. The samples of pancreatin in test-tubes were irradiated at 25 degC, doses ranging from 1x10 4 to 12x10 4 Gy. The results were statistically evaluated and are given in tables, and converted to the dried lipid-free substance they are expressed in graphs. The technological procedure of pancreatin preparation and the content of lipids do not influence the decrease in proteolytic activity (Graph 3). (author)

  17. Marine Enzymes and Microorganisms for Bioethanol Production.

    Science.gov (United States)

    Swain, M R; Natarajan, V; Krishnan, C

    Bioethanol is a potential alternative fuel to fossil fuels. Bioethanol as a fuel has several economic and environmental benefits. Though bioethanol is produced using starch and sugarcane juice, these materials are in conflict with food availability. To avoid food-fuel conflict, the second-generation bioethanol production by utilizing nonfood lignocellulosic materials has been extensively investigated. However, due to the complexity of lignocellulose architecture, the process is complicated and not economically competitive. The cultivation of lignocellulosic energy crops indirectly affects the food supplies by extensive land use. Marine algae have attracted attention to replace the lignocellulosic feedstock for bioethanol production, since the algae grow fast, do not use land, avoid food-fuel conflict and have several varieties to suit the cultivation environment. The composition of algae is not as complex as lignocellulose due to the absence of lignin, which renders easy hydrolysis of polysaccharides to fermentable sugars. Marine organisms also produce cold-active enzymes for hydrolysis of starch, cellulose, and algal polysaccharides, which can be employed in bioethanol process. Marine microoorganisms are also capable of fermenting sugars under high salt environment. Therefore, marine biocatalysts are promising for development of efficient processes for bioethanol production. © 2017 Elsevier Inc. All rights reserved.

  18. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    Science.gov (United States)

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  19. Ionizing radiation effect on enzymes. II

    International Nuclear Information System (INIS)

    Libicky, A.; Fidlerova, J.; Urban, J.; Chottova, O.; Kubankova, V.

    1980-01-01

    The effects of gamma radiation on the efficacy of chymotrypsin in pancreatin prepared by the separation of enzymes from an activated pancreas extract, in the same sample in which the content of lipids was increased to 16.55%, and in pancreatin prepared by drying an incompletely activated ground pancreas were compared with the effect of radiation on crystaline lyophilized chymotrypsin. The working conditions were identical with those described in the previous communication, all samples possessed nearly identical humidity on irradiation. The efficacy of chymotrypsin was determined by the method of PhBs 3, ethyl ester L-tyrosine hydrochloride being used as the substrate. The results were statistically evaluated and after calculation for dried lipid-free substance represented in graphs. The sequence of the loss of efficacy in pancreatin corresponded to the sequence of the loss of the total proteolytic efficacy found in the previous communication. The lowest remaining efficacy was found in crystalline lyophilized chymotrypsin. Percent losses of chymotrypsin efficacy in pancreatin determined by the synthetic substrate were in good agreement with the loss of the total proteolytic efficacy of the same samples determined by casein. (author)

  20. Crosslinked Enzyme Aggregates in Hierarchically-Ordered Mesoporous Silica: A Simple and Effective Method for Enzyme Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon Il; Kim, Jungbae; Lee, Jinwoo; Jia, Hongfei; Na, Hyon Bin; Youn, Jongkyu; Kwak, Ja Hun; Dohnalkova, Alice; Grate, Jay W.; Wang, Ping; Hyeon, Taeghwan; Park, Hyun-Gyu; Chang, Ho Nam

    2007-02-01

    alpha-chymotrypsin (CT) and lipase (LP) were immobilized in hierarchically-ordered mesocellular mesoporous silica (HMMS) in a simple but effective way for the enzyme stabilization, which was achieved by the enzyme adsorption followed by glutaraldehyde (GA) crosslinking. This resulted in the formation of nanometer scale crosslinked enzyme aggregates (CLEAs) entrapped in the mesocellular pores of HMMS (37 nm), which did not leach out of HMMS through narrow mesoporous channels (13 nm). CLEA of alpha-chymotrypsin (CLEA-CT) in HMMS showed a high enzyme loading capacity and significantly increased enzyme stability. No activity decrease of CLEA-CT was observed for two weeks under even rigorously shaking condition, while adsorbed CT in HMMS and free CT showed a rapid inactivation due to the enzyme leaching and presumably autolysis, respectively. With the CLEA-CT in HMMS, however, there was no tryptic digestion observed suggesting that the CLEA-CT is not susceptible to autolysis. Moreover, CLEA of lipase (CLEA-LP) in HMMS retained 30% specific activity of free lipase with greatly enhanced stability. This work demonstrates that HMMS can be efficiently employed as host materials for enzyme immobilization leading to highly enhanced stability of the immobilized enzymes with high enzyme loading and activity.

  1. Restriction enzyme body doubles and PCR cloning: on the general use of type IIs restriction enzymes for cloning.

    Science.gov (United States)

    Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin

    2014-01-01

    The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers.

  2. Application of residual polysaccharide-degrading enzymes in dried shiitake mushrooms as an enzyme preparation in food processing.

    Science.gov (United States)

    Tatsumi, E; Konishi, Y; Tsujiyama, S

    2016-11-01

    To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing. Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C. Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.

  3. Studies on a photoreactivating enzyme from Drosophila melanogaster cultured cells

    International Nuclear Information System (INIS)

    Beck, L.A.

    1982-01-01

    A photoreactivating enzyme was purified from Schneider's Line No. 2 Drosophila melanogaster cultured cells. DEAE cellulose chromatography with high potassium phosphate buffer conditions was used to separate nucleic acids from the protein component of the crude cell extract. The protein pass-through fraction from DEAE cellulose was chromatographed on phosphocellulose followed by hydroxylapatite, using linear potassium phosphate gradients to elute the enzyme. Gel filtration chromatography on Sephacryl S-200 resulted in a 4500-fold purification of the enzyme with a final recovery of 4%. The enzyme has an apparent gel filtration molecular weight of 32,900 (+/- 1350 daltons) and an isoelectric pH of 4.9. Optimum ionic strength for activity is 0.17 at pH 6.5 in potassium phosphate buffer. The action spectrum for photoreactivation in Drosophila has an optimum at 365 nm with a response to wavelengths in the range of 313 to 465 nm. Drosophila photoreactivating enzyme contains an essential RNA that is necessary for activity in vitro. The ability of the enzyme to photoreactivate dimers in vitro is abolished by treatment of the enzyme with ribonucleases, or by disruption of the enzyme-RNA complex by electrophoresis or adsorption to DEAE cellulose. The essential RNA is heterogeneous in size but contains a 10-12 base region that may interact with the active site of the enzyme, and thus is protected from degradation by contaminating RNase activities during purification. The RNA is thought to stabilize the photoreactivating enzyme by maintaining the enzyme in the proper configuration for binding to dimer-containing DNA. It is not known whether this RNA is essential for in vivo photoreactivation

  4. Production of β-Glucanase Enzyme from Penicillium oxalicum and ...

    African Journals Online (AJOL)

    Mr. J.H. Doughari

    2011-08-24

    Aug 24, 2011 ... revealed optimum temperature for enzyme activity from the Penicillium species, ranging from 50 to. 55°C and ... and to determine the effect of pH, temperature and metal .... Optimization of milk-clotting enzyme productivity by.

  5. Sequence specific inhibition of DNA restriction enzyme cleavage by PNA

    DEFF Research Database (Denmark)

    Nielsen, P.E.; Egholm, M.; Berg, R.H.

    1993-01-01

    Plasmids containing double-stranded 10-mer PNA (peptide nucleic acid chimera) targets proximally flanked by two restriction enzyme sites were challenged with the complementary PNA or PNAs having one or two mismatches, and the effect on the restriction enzyme cleavage of the flanking sites was ass...

  6. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme

    International Nuclear Information System (INIS)

    Hinojosa-Leon, M.; Dubourdieu, M.; Sanchez-Crispin, J.A.; Chippaux, M.

    1986-01-01

    Use of radioactive molybdenum demonstrates that the tetrathionate reductase of Salmonella typhimurium is a molydenum containing enzyme. It is proposed that this enzyme shares with other molybdo-proteins, such as nitrate reductase, a common molybdenum containing cofactor the defect of which leads to the loss of the tetrathionate reductase and nitrate reductase activities

  7. 21 CFR 184.1287 - Enzyme-modified fats.

    Science.gov (United States)

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... that are generally recognized as safe (GRAS). Enzyme-modified milk powder may be prepared with GRAS enzymes from reconstituted milk powder, whole milk, condensed or concentrated whole milk, evaporated milk...

  8. Computational design gains momentum in enzyme catalysis engineering

    NARCIS (Netherlands)

    Wijma, Hein J.; Janssen, Dick B.

    Computational protein design is becoming a powerful tool for tailoring enzymes for specific biotechnological applications. When applied to existing enzymes, computational re-design makes it possible to obtain orders of magnitude improvement in catalytic activity towards a new target substrate.

  9. Accessory enzymes from Aspergillus involved in xylan and pectin degradation

    NARCIS (Netherlands)

    Vries, de R.P.

    1999-01-01

    The xylanolytic and pectinolytic enzyme systems from Aspergillus have been the subject of study for many years. Although the main chain cleaving enzymes and their encoding genes have been studied in detail, little information is available about most of the accessory

  10. Subunit topology in the V type ATPase and related enzymes

    NARCIS (Netherlands)

    Chaban, Yuriy

    2005-01-01

    During the last decades impressive progress has been made in understanding of the catalytic mechanism of F-type ATP synthase, which is the key enzyme in the energy metabolism of eukaryotes and most bacteria. This enzyme catalyzes the final step in the process of oxidative phosphorylation in bacteria

  11. Enzyme immobilisation in biocatalysis : Why, what and how

    NARCIS (Netherlands)

    Sheldon, R.A.; Van Pelt, S.

    2013-01-01

    In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling

  12. Selected soil enzymes: Examples of their potential roles in the ...

    African Journals Online (AJOL)

    Soil enzymes regulate ecosystem functioning and in particular play a key role in nutrient cycling. In this review we briefly summarise potential roles of selected enzymes such as amylase, arylsulphatases, -glucosidase, cellulose, chitinase, dehydrogenase, phosphatase, protease and urease in the ecosystem. We also ...

  13. Activity enhancement of ligninolytic enzymes of Trametes versicolor ...

    African Journals Online (AJOL)

    Suspended cultures of white-rot fungus, Trametes versicolor, supplemented with bagasse powder showed a concentration dependent enhancement in the ligninolytic enzymes activity in liquid shake cultures. 2% (w/v) bagasse powder improved greater stability to the enzymes. The optimum pH is 3.5 and the optimum ...

  14. Physicochemical Properties and Enzymes Activity Studies in a ...

    African Journals Online (AJOL)

    Soil Physicochemical properties and enzyme concentration were evaluated in soil from a refined-oil contaminated community in Isiukwuato, Abia State three years after the spill. The soil enzymes examined were urease, lipase, oxidase, alkaline and acid phosphatases. Results show a significant (P< 0.05) decrease in the ...

  15. Enzymes and fungal virulence | Tonukari | Journal of Applied ...

    African Journals Online (AJOL)

    This paper presents a comprehensive literature review of cell wall degrading enzymes (CWDEs). Plant pathogenic fungi secrete extracellular enzymes that are capable of degrading the cell walls of their host plants. These CWDEs may be necessary for penetration of the cell wall barrier, as well as for generation of simple ...

  16. Evaluation of liver marker enzymes and biochemical indices of ...

    African Journals Online (AJOL)

    Liver marker enzymes, total protein, amylase and glucose were evaluated in alloxan-induced diabetic wistar rats treated with aqueous extract of Pennisetum purpureum. The liver marker enzymes evaluated were alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Sixteen wistar rats were grouped into ...

  17. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes

    Directory of Open Access Journals (Sweden)

    José Maria Rodrigues da Luz

    2012-12-01

    Full Text Available The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse. The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase and hydrolytic enzymes (cellulases, xylanases and tanases. Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6. These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes.

  18. Size determination of an equilibrium enzymic system by radiation inactivation

    International Nuclear Information System (INIS)

    Simon, P.; Swillens, S.; Dumont, J.E.

    1982-01-01

    Radiation inactivation of complex enzymic systems is currently used to determine the enzyme size and the molecular organization of the components in the system. An equilibrium model was simulated describing the regulation of enzyme activity by association of the enzyme with a regulatory unit. It is assumed that, after irradiation, the system equilibrates before the enzyme activity is assayed. The theoretical results show that the target-size analysis of these numerical data leads to a bad estimate of the enzyme size. Moreover, some implicit assumptions such as the transfer of radiation energy between non-covalently bound molecules should be verified before interpretation of target-size analysis. It is demonstrated that the apparent target size depends on the parameters of the system, namely the size and the concentration of the components, the equilibrium constant, the relative activities of free enzyme and enzymic complex, the existence of energy transfer, and the distribution of the components between free and bound forms during the irradiation. (author)

  19. Effect Of Enzyme Supplementation On The Utilization Of ...

    African Journals Online (AJOL)

    ... by the dietary treatments. It was concluded that SWM can be employed as an animal protein source in broiler diets. The exogenous enzyme (Roxazyme G) used did not effect any appreciable improvement on the utilization of SWM based diets. Keywords: Enzyme supplementation, utilization, shrimp waste, broiler chicken.

  20. Histone acetyltransferases : challenges in targeting bi-substrate enzymes

    NARCIS (Netherlands)

    Wapenaar, Hannah; Dekker, Frank J

    2016-01-01

    Histone acetyltransferases (HATs) are epigenetic enzymes that install acetyl groups onto lysine residues of cellular proteins such as histones, transcription factors, nuclear receptors, and enzymes. HATs have been shown to play a role in diseases ranging from cancer and inflammatory diseases to

  1. Enzymes in Poultry and Swine Nutrition | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Book cover Enzymes in Poultry and Swine Nutrition. Auteur(s) : Ronald R. ... mechanisms. Such studies will enhance our understanding of the role of dietary enzymes in animal nutrition. ... Six équipes de chercheurs de classe mondiale étudieront comment surmonter la résistance au traitement des cancers les plus mortels.

  2. A competitive enzyme linked immunosorbent assay for the ...

    African Journals Online (AJOL)

    A competitive enzyme linked immunosorbent assay for the determination of diminazene residues in animal tissues. ... After six washes with buffer, enzyme activity was determined by adding tetramethyl-benzidine and hydrogen peroxide as substrate. The assay detection limits for diminazene were 2.4 ng/g in muscle, 2.5 ...

  3. Recent advances in enzyme extraction strategies: A comprehensive review.

    Science.gov (United States)

    Nadar, Shamraja S; Pawar, Rohini G; Rathod, Virendra K

    2017-08-01

    The increasing interest of industrial enzymes demands for development of new downstream strategies for maximizing enzyme recovery. The significant efforts have been focused on the development of newly adapted technologies to purify enzymes in catalytically active form. Recently, an aqueous two phase system (ATPS) is emerged as powerful tools for efficient extraction and purification of enzymes due to their versatility, lower cost, process integration capability and easy scale-up. The present review gives an overview of effect of parameters such as tie line length, pH, neutral salts, properties of polymer and salt involved in traditional polymer/polymer and polymer/salt ATPS for enzyme recovery. Further, advanced ATPS have been developed based on alcohols, surfactants, micellar compounds to avoid tedious recovery steps for getting desired enzyme. In order to improve the selectivity and efficiency of ATPS, recent approaches of conventional ATPS combined with different techniques like affinity ligands, ionic liquids, thermoseparating polymers and microfluidic device based ATPS have been reviewed. Moreover, three phase partitioning is also highlighted for enzymes enrichment as a blooming technology for efficiently integrated bioseparation techniques. At the end, it includes an overview of CLEAs technology and organic-inorganic nanoflowers preparation as novel strategies for simultaneous extraction, purification and immobilization of enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Enzymes used in detergents: Lipases | Hasan | African Journal of ...

    African Journals Online (AJOL)

    This review describes the applications of microbial lipases in detergents. Enzymes can reduce the environmental load of detergent products as the chemicals used in conventional detergents are reduced; they are biodegradable, non-toxic and leave no harmful residues. Besides lipases, other enzymes are widely used in ...

  5. The role of enzymes in fungus-growing ant evolution

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard

    behaviour. Here we report the first large-scale comparative study on fungus garden enzyme profiles and show that various interesting changes can be documented. A more detailed analysis of laccase expression, an enzyme that is believed to oxidize phenols in defensive secondary plant compounds such as tannins...

  6. Production of β-Glucanase Enzyme from Penicillium oxalicum and ...

    African Journals Online (AJOL)

    Mr. J.H. Doughari

    2011-08-24

    Aug 24, 2011 ... inhibited β-glucanase activity. β-Glucanase can be produced from some ... glucanases as industrial enzymes, this study was carried .... has an immense economic advantage as the enzyme ... cost with subsequent low price of the final products to ... fermentation industries whose manufacturing conditions.

  7. Modeling metabolic response to changes of enzyme amount in ...

    African Journals Online (AJOL)

    Based on the work of Hynne et al. (2001), in an in silico model of glycolysis, Saccharomyces cerevisiae is established by introducing an enzyme amount multiple factor (.) into the kinetic equations. The model is aimed to predict the metabolic response to the change of enzyme amount. With the help of .α, the amounts of ...

  8. Acetyl-cholinesterase Enzyme Inhibitory Effect of Calophyllum species

    African Journals Online (AJOL)

    Purpose: To search for new acetylcholinesterase enzyme inhibitors from Calopyllum species. Methods: Six stem bark extracts of Calophyllum inophyllum, C. soulattri, C. teysmannii, C. lowii, C. benjaminum and C. javanicum were subjected to anti-cholinesterase analysis against acetylcholinesterase (AChE) enzyme using ...

  9. Production of amylase enzyme from mangrove fungal isolates ...

    African Journals Online (AJOL)

    The mangrove ecosystem serves as a bioresource for various industrially important microorganisms. The use of fungi as a source of industrially relevant enzymes led to an increased interest in the application of microbial enzymes in various industrial processes. Fungal colonies were isolated from sediments of five different ...

  10. Changes in growth, survival and digestive enzyme activities of Asian ...

    African Journals Online (AJOL)

    A study was conducted to determine the effects of different dietary treatments on the growth, survival and digestive enzyme activities of Mystus nemurus larvae. Newly hatched larvae were reared for 14 days in twelve 15 L glass aquaria (for growth and survival) and eight 300 L fiberglass tanks (for enzyme samples) at a ...

  11. Reexamining Michaelis-Menten Enzyme Kinetics for Xanthine Oxidase

    Science.gov (United States)

    Bassingthwaighte, James B.; Chinn, Tamara M.

    2013-01-01

    Abbreviated expressions for enzyme kinetic expressions, such as the Michaelis-Menten (M-M) equations, are based on the premise that enzyme concentrations are low compared with those of the substrate and product. When one does progress experiments, where the solute is consumed during conversion to form a series of products, the idealized conditions…

  12. Preliminary characterization of digestive enzymes in freshwater mussels

    Science.gov (United States)

    Sauey, Blake W.; Amberg, Jon J.; Cooper, Scott T.; Grunwald, Sandra K.; Newton, Teresa J.; Haro, Roger J.

    2015-01-01

    Resource managers lack an effective chemical tool to control the invasive zebra mussel Dreissena polymorpha. Zebra mussels clog water intakes for hydroelectric companies, harm unionid mussel species, and are believed to be a reservoir of avian botulism. Little is known about the digestive physiology of zebra mussels and unionid mussels. The enzymatic profile of the digestive glands of zebra mussels and native threeridge (Amblema plicata) and plain pocketbook mussels (Lampsilis cardium) are characterized using a commercial enzyme kit, api ZYM, and validated the kit with reagent-grade enzymes. A linear correlation was shown for only one of nineteen enzymes, tested between the api ZYM kit and a specific enzyme kit. Thus, the api ZYM kit should only be used to make general comparisons of enzyme presence and to observe trends in enzyme activities. Enzymatic trends were seen in the unionid mussel species, but not in zebra mussels sampled 32 days apart from the same location. Enzymatic classes, based on substrate, showed different trends, with proteolytic and phospholytic enzymes having the most change in relative enzyme activity.

  13. Isolation of a tyrosine-activating enzyme from baker's yeast

    NARCIS (Netherlands)

    Ven, A.M. van de; Koningsberger, V.V.; Overbeek, J.Th.G.

    1958-01-01

    The extracts of ether-CO2-frozen baker's yeast contain enzymes that catalyze the ATP-linked amino acid activation by way of pyrophosphate elimination. From the extract a tyrosine-activating enzyme could be isolated, which, judging from ultracentrifugation and electrophoretic data, was about 70% pure

  14. Representing Rate Equations for Enzyme-Catalyzed Reactions

    Science.gov (United States)

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  15. A Perspective on Bionanosensor Simulation & Computational Enzyme Engineering

    DEFF Research Database (Denmark)

    Hediger, Martin Robert

    accurate the method is. Finally we use the method to calcualte the rate-limiting step in the reaction profile of around 400 mutants of an enzyme. This is the first time that the barrier of the rate-determining step is alculated in as set of mutants of this size, consisting of the full enzyme structure...

  16. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass.

    Science.gov (United States)

    Kim, Youngmi; Ximenes, Eduardo; Mosier, Nathan S; Ladisch, Michael R

    2011-04-07

    Liquid hot water, steam explosion, and dilute acid pretreatments of lignocellulose generate soluble inhibitors which hamper enzymatic hydrolysis as well as fermentation of sugars to ethanol. Toxic and inhibitory compounds will vary with pretreatment and include soluble sugars, furan derivatives (hydroxymethyl fulfural, furfural), organic acids (acetic, formic and, levulinic acid), and phenolic compounds. Their effect is seen when an increase in the concentration of pretreated biomass in a hydrolysis slurry results in decreased cellulose conversion, even though the ratio of enzyme to cellulose is kept constant. We used lignin-free cellulose, Solka Floc, combined with mixtures of soluble components released during pretreatment of wood, to prove that the decrease in the rate and extent of cellulose hydrolysis is due to a combination of enzyme inhibition and deactivation. The causative agents were extracted from wood pretreatment liquid using PEG surfactant, activated charcoal or ethyl acetate and then desorbed, recovered, and added back to a mixture of enzyme and cellulose. At enzyme loadings of either 1 or 25mg protein/g glucan, the most inhibitory components, later identified as phenolics, decreased the rate and extent of cellulose hydrolysis by half due to both inhibition and precipitation of the enzymes. Full enzyme activity occurred when the phenols were removed. Hence detoxification of pretreated woods through phenol removal is expected to reduce enzyme loadings, and therefore reduce enzyme costs, for a given level of cellulose conversion. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. A Simple and Accurate Method for Measuring Enzyme Activity.

    Science.gov (United States)

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  18. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes.

    Science.gov (United States)

    Moriyama, Takashi; Sato, Naoki

    2014-01-01

    Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  19. Ligninolytic enzyme activities in mycelium of some wild and ...

    African Journals Online (AJOL)

    Lignin is probably one of the most recalcitrant compounds synthesized by plants. This compound is degraded by few microorganisms. White-rot fungi have been extensively studied due to its powerful ligninolytic enzymes. In this study, ligninolytic enzyme activities of different fungal species (six commercial and 13 wild) were ...

  20. Haematological and serum enzymes biomarkers of heavy metals in ...

    African Journals Online (AJOL)

    Haematological and serum enzymes biomarkers of heavy metals in Chrysichthys Nigrodigitatus and Cynoglossus senegalensis. ... Haematological and serum enzymes activities are predilective biomarkers for the detection and monitoring of aquatic ecosystems pollution. The inclusion of Allium sativum at 1.5g/kg is ...

  1. Effect of diffusion on enzyme activity in a microreactor

    NARCIS (Netherlands)

    Swarts, J.W.; Kolfschoten, R.C.; Jansen, M.C.A.A.; Janssen, A.E.M.; Boom, R.M.

    2010-01-01

    To establish general rules for setting up an enzyme microreactor system, we studied the effect of diffusion on enzyme activity in a microreactor. As a model system we used the hydrolysis of ortho-nitrophenyl-ß-d-galactopyranoside by ß-galactosidase from Kluyveromyces lactis. We found that the

  2. NREL Discovers Enzyme Domains that Dramatically Improve Performance | News

    Science.gov (United States)

    of genomics data to find better enzymes, based on their genetic sequence alone. "In 10 years, it on these enzymes that can be targeted via genetic engineering to help break down cellulose faster to Decker, "At the time, tools for genetic engineering in Trichoderma were very limited, but we

  3. Depolymerization of chitosan by enzymes from the digestive tract of ...

    African Journals Online (AJOL)

    A complex of enzymes was isolated in a preparation derived from the digestive tract of sea cucumber, Stichopus japonicus. Hydrolysis of chitosan using this enzyme preparation decreased its molecular weight (Mw), increased its water solubility and produced water-soluble chitosan (WSC). The conditions for hydrolysis were ...

  4. Fluorometric Assessment Of Lysosomal Enzymes In Garlic Oil ...

    African Journals Online (AJOL)

    The effect of Garlic oil on Lysosomal enzymes in streptozotocin-induced diabetic rats were investigated fluorometrically. The serum lysosomal enzymes assayed include β-glucuronidase, N-acetylglucosaminidase (NAG) β-D-galactosidase and α-D-galactosidase. The results of the study in nMole-4Mu/hr/ml show that ...

  5. Angiotensin I-converting enzyme inhibitor derived from cottonseed ...

    African Journals Online (AJOL)

    Six proteolytic enzymes, including alcalase, flavourzyme, trypsin, neutrase, papain and pepsin, were employed to hydrolyze cottonseed protein to produce the hydrolysates of Angiotensin I-converting enzyme (ACE) inhibitory activity. The result indicated that the cottonseed protein hydrolysate (CPH) produced by papain had ...

  6. Digestive enzymes in the alimentary canal of Clarias anguillaris ...

    African Journals Online (AJOL)

    Three groups of digestive enzymes were observed in the alimentary canals of the fingerlings and adults of Clarias anguillaris. The enzymes were carbohydrases including amylase, sucrase, lactase and maltase, proteases including peptase, tryptase and peptidase, and lipase. The activities of the protease were found to be ...

  7. Phytase, a new life for an “old” enzyme

    Science.gov (United States)

    Phytase represents a group of phosphohydrolytic enzymes that initiate stepwise removals of phosphate from phytate. Simple-stomached species such as swine, poultry, and fish require extrinsic phytase to digest phytate: the major form of phosphorus in plant feeds. Consequently, this enzyme is suppleme...

  8. Coproduction of detergent compatible bacterial enzymes and stain removal evaluation.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2015-10-01

    Most of the detergents that are presently produced contain the detergent compatible enzymes to improve and accelerate the washing performance by removing tough stains. The process is environment friendly as the use of enzymes in the detergent formulation reduces the utilization of toxic detergent constituents. The current trend is to use the detergent compatible enzymes that are active at low and ambient temperature in order to save energy and maintain fabric quality. As the detergent compatible bacterial enzymes are used together in the detergent formulation, it is important to co-produce the detergent enzymes in a single fermentation medium as the enzyme stability is assured, and production cost gets reduced enormously. The review reports on the production, purification, characterization and application of detergent compatible amylases, lipases, and proteases are available. However, there is no specific review or minireview on the concomitant production of detergent compatible amylases, lipases, and proteases. In this minireview, the coproduction of detergent compatible enzymes by bacterial species, enzyme stability towards detergents and detergent components, and stain release analysis were discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Angiotensin-Converting Enzymes Play a Dominant Role in Fertility

    Directory of Open Access Journals (Sweden)

    Fan Jin

    2013-10-01

    Full Text Available According to the World Health Organization, infertility, associated with metabolic syndrome, has become a global issue with a 10%–20% incidence worldwide. An accumulating body of evidence has shown that the renin–angiotensin system is involved in the fertility problems observed in some populations. Moreover, alterations in the expression of angiotensin-converting enzyme-1, angiotensin-converting enzyme-2, and angiotensin-converting enzyme-3 might be one of the most important mechanisms underlying both female and male infertility. However, as a pseudogene in humans, further studies are needed to explore whether the abnormal angiotensin-converting enzyme-3 gene could result in the problems of human reproduction. In this review, the relationship between angiotensin-converting enzymes and fertile ability is summarized, and a new procedure for the treatment of infertility is discussed.

  10. Effects of de-icing salt on soil enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Guentner, M; Wilke, B M

    1983-01-01

    Effects of de-icing salt on dehydrogenase, urease, alkalinephosphatase and arylsulfatase activity of O/sub L/- and A/sub h/-horizons of a moder and a mull soil were investigated using a field experiment. Additions of 2.5 kg m/sup -2/ and 5.0 kg m/sup -2/ of de-icing salt reduced activities of most enzymes within four weeks. Eleven months after salt addition there was nearly no reduction of enzyme activity to be measured on salt treated soils. The percentage of reduced enzyme activity was generally higher in the moder soil. It was concluded that reductions of enzyme activity were due to decreases of microbial activity and not to inactivation of enzymes.

  11. Enzyme activity and kinetics in substrate-amended river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Duddridge, J E; Wainwright, M

    1982-01-01

    In determining the effects of heavy metals in microbial activity and litter degradation in river sediments, one approach is to determine the effects of these pollutants on sediment enzyme activity and synthesis. Methods to assay amylase, cellulase and urease activity in diverse river sediments are reported. Enzyme activity was low in non-amended sediments, but increased markedly when the appropriate substrate was added, paralleling both athropogenic and natural amendment. Linear relationships between enzyme activity, length of incubation, sample size and substrate concentration were established. Sediment enzyme activity generally obeyed Michaelis-Menton kinetics, but of the three enzymes, urease gave least significant correlation coefficients when the data for substrate concentration versus activity was applied to the Eadie-Hofstee transformation of the Michaelis-Menten equation. K/sub m/ and V/sub max/ for amylase, cellulase and urease in sediments are reported. (JMT)

  12. Key Building Blocks via Enzyme-Mediated Synthesis

    Science.gov (United States)

    Fischer, Thomas; Pietruszka, Jörg

    Biocatalytic approaches to valuable building blocks in organic synthesis have emerged as an important tool in the last few years. While first applications were mainly based on hydrolases, other enzyme classes such as oxidoreductases or lyases moved into the focus of research. Nowadays, a vast number of biotransformations can be found in the chemical and pharmaceutical industries delivering fine chemicals or drugs. The mild reaction conditions, high stereo-, regio-, and chemoselectivities, and the often shortened reaction pathways lead to economical and ecological advantages of enzymatic conversions. Due to the enormous number of enzyme-mediated syntheses, the present chapter is not meant to be a complete review, but to deliver comprehensive insights into well established enzymatic systems and recent advances in the application of enzymes in natural product synthesis. Furthermore, it is focused on the most frequently used enzymes or enzyme classes not covered elsewhere in the present volume.

  13. Novel Enzymes for Targeted Hydrolysis of Algal Cell Walls

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel

    Seaweeds, also known as macroalgae, constitute a rich source of valuable biomolecules which have a potential industrial application in food and pharma products. The use of enzymes can optimize the extraction and separation of these molecules from the seaweed biomass, but most commercial enzymes...... are incapable of breaking the complex polysaccharides found in seaweed cell walls. Therefore, new enzymes are needed for degradation of seaweed biomass. Bacteria that colonize the surfaces of seaweed secrete enzymes that allow them to degrade and utilize seaweed polysaccharides as energy. In addition, sea...... degradation. In addition, three carrageenases were characterised; one as a GH16 κ-carrageenase whereas the other two belong to a new GH16 subfamily of enzymes that degrade furcellaran (κ/β-carrageenan). From metagenome sequence data three putative GH107 fucanases were identified and characterized...

  14. Enzyme hydration, activity and flexibility : A neutron scattering approach

    International Nuclear Information System (INIS)

    Kurkal-Siebert, V.; Finney, J.L.; Daniel, R.M.; Smith, Jeremy C.

    2006-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function

  15. Enzyme Characterization in Microreactors by UV-Vis Spectroscopy

    DEFF Research Database (Denmark)

    Ringborg, Rolf Hoffmeyer; Krühne, Ulrich; Woodley, John

    for selection can at this point be improved by characterization of the enzyme performance where also inhibition and toxicity effects are taken into account. Enzyme characterization is here defined as the effect on initial rate of reaction with respect to pH, enzyme, substrate, co-substrate, product and co......-product concentration [2]. From this investigation, it will be possible to determine whether the enzyme meets the criteria for process requirements or not. The development of the process will determine the requirements and this can also reach a state of maturity that resolves obstacles, lowers criteria and paves......, as the enzyme resource is scarce at this point of development. In the case where the reaction operates with UV active components, UV can be used to detect compounds with high sensitivity supplemented by multivariate data analysis. The spectra are here decorrelated and regressed to yield concentrations...

  16. Ceramic membrane microfilter as an immobilized enzyme reactor.

    Science.gov (United States)

    Harrington, T J; Gainer, J L; Kirwan, D J

    1992-10-01

    This study investigated the use of a ceramic microfilter as an immobilized enzyme reactor. In this type of reactor, the substrate solution permeates the ceramic membrane and reacts with an enzyme that has been immobilized within its porous interior. The objective of this study was to examine the effect of permeation rate on the observed kinetic parameters for the immobilized enzyme in order to assess possible mass transfer influences or shear effects. Kinetic parameters were found to be independent of flow rate for immobilized penicillinase and lactate dehydrogenase. Therefore, neither mass transfer nor shear effects were observed for enzymes immobilized within the ceramic membrane. Both the residence time and the conversion in the microfilter reactor could be controlled simply by regulating the transmembrane pressure drop. This study suggests that a ceramic microfilter reactor can be a desirable alternative to a packed bed of porous particles, especially when an immobilized enzyme has high activity and a low Michaelis constant.

  17. Modification of enzymes by use of high-pressure homogenization.

    Science.gov (United States)

    Dos Santos Aguilar, Jessika Gonçalves; Cristianini, Marcelo; Sato, Helia Harumi

    2018-07-01

    High-pressure is an emerging and relatively new technology that can modify various molecules. High-pressure homogenization (HPH) has been used in several studies on protein modification, especially in enzymes used or found in food, from animal, plant or microbial resources. According to the literature, the enzymatic activity can be modulated under pressure causing inactivation, stabilization or activation of the enzymes, which, depending on the point of view could be very useful. Homogenization can generate changes in the structure of the enzyme modifying various chemical bonds (mainly weak bonds) causing different denaturation levels and, consequently, affecting the catalytic activity. This review aims to describe the various alterations due to HPH treatment in enzymes, to show the influence of high-pressure on proteins and to report the HPH effects on the enzymatic activity of different enzymes employed in the food industry and research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.

    Science.gov (United States)

    Rempel, Brian P; Price, Eric W; Phenix, Christopher P

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.

  19. Radiation sterilization of enzyme hybrids with biodegradable polymers

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Oka, Masahito; Hayashi, Toshio

    2002-01-01

    Ionizing radiations, which have already been utilized for the sterilization of medical supplies as well as gas fumigation, should be the final candidate to decontaminate 'hybrid' biomaterials containing bio-active materials including enzymes because irradiation induces neither heat nor substances affecting the quality of the materials and our health. In order to check the feasibility of 60 Co-gamma rays on these materials, we selected commercial proteases including papain and bromelain hybridized with commercial activated chitosan beads and demonstrated that these enzyme-hybrids suspended in water showed the significant radiation durability of more than twice as much as free enzyme solution at 25-kGy irradiation. Enhanced thermal and storage stability of the enzyme hybrids were not affected by the same dose level of irradiation, either, indicating that commercial irradiation sterilization method is applicable to enzyme hybrids without modification

  20. Fouling-induced enzyme immobilization for membrane reactors

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2013-01-01

    A simple enzyme immobilization method accomplished by promoting membrane fouling formation is proposed. The immobilization method is based on adsorption and entrapment of the enzymes in/on the membrane. To evaluate the concept, two membrane orientations, skin layer facing feed (normal mode......, but the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in membrane......) and support layer facing feed (reverse mode), were used to immobilize alcohol dehydrogenase (ADH, EC 1.1.1.1) and glutamate dehydrogenase (GDH, EC 1.4.1.3), respectively. The nature of the fouling in each mode was determined by filtration fouling models. The permeate flux was larger in the normal mode...

  1. Marine Enzymes: Production and Applications for Human Health.

    Science.gov (United States)

    Rao, T Eswara; Imchen, M; Kumavath, R

    Marine microbial enzymes have wide applications in bioindustries. Selection of microorganisms for enzyme production at the industrial level requires good yield and high production rate. A number of enzymes such as amylase, caseinase, lipase, gelatinase, and DNases have been discovered from microbes isolated from extreme marine environments. Such enzymes are thermostable, tolerant to a varied range of pH and other harsh conditions required in industrial applications. Novelty in their structure and characteristics has shown promising scope to the researchers in academia and industry. In this chapter, we present a bird's eye view on recent research works in the field of enzyme production from marine origin as well as their potential biological applications relevant to human health. © 2017 Elsevier Inc. All rights reserved.

  2. Structural analysis of enzymes used for bioindustry and bioremediation.

    Science.gov (United States)

    Tanokura, Masaru; Miyakawa, Takuya; Guan, Lijun; Hou, Feng

    2015-01-01

    Microbial enzymes have been widely applied in the large-scale, bioindustrial manufacture of food products and pharmaceuticals due to their high substrate specificity and stereoselectivity, and their effectiveness under mild conditions with low environmental burden. At the same time, bioremedial techniques using microbial enzymes have been developed to solve the problem of industrial waste, particularly with respect to persistent chemicals and toxic substances. And finally, structural studies of these enzymes have revealed the mechanistic basis of enzymatic reactions, including the stereoselectivity and binding specificity of substrates and cofactors. The obtained structural insights are useful not only to deepen our understanding of enzymes with potential bioindustrial and/or bioremedial application, but also for the functional improvement of enzymes through rational protein engineering. This review shows the structural bases for various types of enzymatic reactions, including the substrate specificity accompanying cofactor-controlled and kinetic mechanisms.

  3. Synthesis and Characterization of Magnetic Carriers Based on Immobilized Enzyme

    Science.gov (United States)

    Li, F. H.; Tang, N.; Wang, Y. Q.; Zhang, L.; Du, W.; Xiang, J.; Cheng, P. G.

    2018-05-01

    Several new types of carriers and technologies have been implemented to improve traditional enzyme immobilization in industrial biotechnology. The magnetic immobilized enzyme is a kind of new method of enzyme immobilization developed in recent years. An external magnetic field can be used to control the motion mode and direction of immobilized enzyme, and to improve the catalytic efficiency of immobilized enzyme. In this paper, Fe3O4-CaCO3-PDA complex and CaCO3/Fe3O4 composite modified by PEI were prepared. The results show that the morphology of Fe3O4-CaCO3-PDA complex formation is irregular, while the morphology of CaCO3/Fe3O4 composite modified by PEI is regular and has a porous structure.

  4. Applications of Enzymes in Oil and Oilseed Processing

    DEFF Research Database (Denmark)

    Xu, Xuebing

    Enzymes, through the last 20-30 years research and development, have been widely explored for the uses in oil and oilseed processing. Following the conventional processing technology from oilseeds, the oil can be produced through pressing or solvent extraction. The crude oil is then refined to meet...... edible requirements. The oil can be also modified to meet functional or even nutritional needs. In each of those steps, enzymes have been used in industry successfully. For the oil processing stage, enzymes have been used to destroy the cell structure so that makes the oil release easier, where...... conventionally high temperature conditioning or cooking is necessary. The good story in industry is the fish oil and olive oil processing. Good quality and higher oil yield have been achieved through the use of enzymes in the processing stages. For the refining stage, the use of enzymes for degumming has...

  5. EVOLUTIONARY TRANSITIONS IN ENZYME ACTIVITY OF ANT FUNGUS GARDENS

    DEFF Research Database (Denmark)

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G

    2010-01-01

    an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across...... the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens...... are targeted primarily towards partial degradation of plant cell walls, reflecting a plesiomorphic state of non-domesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major...

  6. Expression of Enzymes that Metabolize Medications

    Science.gov (United States)

    Wotring, V. E.; Peters, C. P.

    2011-01-01

    INTRODUCTION: Increased exposure to radiation is one physiological stressor associated with spaceflight and it is feasible to conduct ground experiments using known radiation exposures. The health of the liver, especially the activity rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. While radiation is known to alter normal physiological function, how radiation affects liver metabolism of administered medications is unclear. Crew health could be affected if the actions of medications used in spaceflight deviated from expectations formed during terrestrial medication use. This study is an effort to identify liver metabolic enzymes whose expression is altered by spaceflight or by radiation exposures that mimic features of the spaceflight environment. METHODS: Using procedures approved by the Animal Care and Use Committee, mice were exposed to either 137Cs (controls, 50 mGy, 6Gy, or 50 mGy + 6Gy separated by 24 hours) or 13 days of spaceflight on STS 135. Animals were anesthetized and sacrificed at several time points (4 hours, 24 hours or 7 days) after their last radiation exposure, or within 6 hours of return to Earth for the STS 135 animals. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted, purified and quality-tested. Complementary DNA was prepared from high-quality RNA samples, and used in RT-qPCR experiments to determine relative expression of a wide variety of genes involved in general metabolism and drug metabolism. RESULTS: Results of the ground radiation exposure experiments indicated 65 genes of the 190 tested were significantly affected by at least one of the radiation doses. Many of the affected genes are involved in the metabolism of drugs with hydrophobic or steroid-like structures, maintenance of redox homeostasis and repair of DNA damage. Most affected genes returned to near control expression levels by 7 days post

  7. Enzyme replacement therapy for murine hypophosphatasia.

    Science.gov (United States)

    Millán, José Luis; Narisawa, Sonoko; Lemire, Isabelle; Loisel, Thomas P; Boileau, Guy; Leonard, Pierre; Gramatikova, Svetlana; Terkeltaub, Robert; Camacho, Nancy Pleshko; McKee, Marc D; Crine, Philippe; Whyte, Michael P

    2008-06-01

    Hypophosphatasia (HPP) is the inborn error of metabolism that features rickets or osteomalacia caused by loss-of-function mutation(s) within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNALP). Consequently, natural substrates for this ectoenzyme accumulate extracellulary including inorganic pyrophosphate (PPi), an inhibitor of mineralization, and pyridoxal 5'-phosphate (PLP), a co-factor form of vitamin B6. Babies with the infantile form of HPP often die with severe rickets and sometimes hypercalcemia and vitamin B6-dependent seizures. There is no established medical treatment. Human TNALP was bioengineered with the C terminus extended by the Fc region of human IgG for one-step purification and a deca-aspartate sequence (D10) for targeting to mineralizing tissue (sALP-FcD10). TNALP-null mice (Akp2-/-), an excellent model for infantile HPP, were treated from birth using sALP-FcD10. Short-term and long-term efficacy studies consisted of once daily subcutaneous injections of 1, 2, or 8.2 mg/kg sALP-FcD10 for 15, 19, and 15 or 52 days, respectively. We assessed survival and growth rates, circulating levels of sALP-FcD10 activity, calcium, PPi, and pyridoxal, as well as skeletal and dental manifestations using radiography, microCT, and histomorphometry. Akp2-/- mice receiving high-dose sALP-FcD10 grew normally and appeared well without skeletal or dental disease or epilepsy. Plasma calcium, PPi, and pyridoxal concentrations remained in their normal ranges. We found no evidence of significant skeletal or dental disease. Enzyme replacement using a bone-targeted, recombinant form of human TNALP prevents infantile HPP in Akp2-/- mice.

  8. Enzyme Replacement Therapy for Murine Hypophosphatasia*

    Science.gov (United States)

    Millán, José Luis; Narisawa, Sonoko; Lemire, Isabelle; Loisel, Thomas P; Boileau, Guy; Leonard, Pierre; Gramatikova, Svetlana; Terkeltaub, Robert; Camacho, Nancy Pleshko; McKee, Marc D; Crine, Philippe; Whyte, Michael P

    2008-01-01

    Introduction Hypophosphatasia (HPP) is the inborn error of metabolism that features rickets or osteomalacia caused by loss-of-function mutation(s) within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNALP). Consequently, natural substrates for this ectoenzyme accumulate extracellulary including inorganic pyrophosphate (PPi), an inhibitor of mineralization, and pyridoxal 5`-phosphate (PLP), a co-factor form of vitamin B6. Babies with the infantile form of HPP often die with severe rickets and sometimes hypercalcemia and vitamin B6-dependent seizures. There is no established medical treatment. Materials and Methods Human TNALP was bioengineered with the C terminus extended by the Fc region of human IgG for one-step purification and a deca-aspartate sequence (D10) for targeting to mineralizing tissue (sALP-FcD10). TNALP-null mice (Akp2−/−), an excellent model for infantile HPP, were treated from birth using sALP-FcD10. Short-term and long-term efficacy studies consisted of once daily subcutaneous injections of 1, 2, or 8.2 mg/kg sALP-FcD10 for 15, 19, and 15 or 52 days, respectively. We assessed survival and growth rates, circulating levels of sALP-FcD10 activity, calcium, PPi, and pyridoxal, as well as skeletal and dental manifestations using radiography, μCT, and histomorphometry. Results Akp2−/− mice receiving high-dose sALP-FcD10 grew normally and appeared well without skeletal or dental disease or epilepsy. Plasma calcium, PPi, and pyridoxal concentrations remained in their normal ranges. We found no evidence of significant skeletal or dental disease. Conclusions Enzyme replacement using a bone-targeted, recombinant form of human TNALP prevents infantile HPP in Akp2−/− mice. PMID:18086009

  9. Audioprofiles and antioxidant enzyme genotypes in presbycusis.

    Science.gov (United States)

    Angeli, Simon I; Bared, Anthony; Ouyang, Xiaomei; Du, Li Lin; Yan, Denise; Zhong Liu, Xue

    2012-11-01

    Audiometric patterns have been shown to indirectly provide information regarding the pathophysiology of presbycusis and be useful in the phenotyping of hereditary deafness. Hospital-based cohort study of adults with presbycusis, comparing the association of audiometric patterns and polymorphisms of antioxidant enzymes that have been linked to presbycusis: GSTT1, GSTM1 and NAT2. All subjects underwent a clinical evaluation and completed questionnaires regarding ototoxicity and noise exposure. Pure-tone threshold audiometry was obtained and subjects' audiograms were classified into specific patterns. DNA was extracted from blood and the polymorphisms of GSTT1, GSTM1, and the NAT2 variants (NAT2* 5A; NAT2* 6A,B) were analyzed by PCR. The audiometric patterns that were more prevalent in our cohort were "High-Frequency Steeply Sloping" or HFSS (33%), "High-Frequency Gently Sloping" or HFGS (31%), and "Flat" (27%), with other patterns being rare. We did not find a statistical significant effect of gender, age, hearing level, and ear side on the audiometric pattern. Subjects with mutant alleles for GSTT1 were more likely to have a HFSS audiogram than subjects with the wild type genotype. In this cohort, there was a similar prevalence for the three audiometric configurations HFSS, HFGS, and Flat, with other configurations being rare. Subjects with mutant alleles for GSTT1 were more likely to have a HFSS audiogram than subjects with the wild type genotype, suggesting that the basal turn of the cochlea is susceptible to GSTT1 regulated oxidative stress. However, further studies of audioprofiles with larger sample sizes may be needed to establish phenotype-genotype correlations in presbycusis. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  10. Structure Biology of Membrane Bound Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Dax [Johns Hopkins Univ., Baltimore, MD (United States). School of Medicine. Dept. of Physiology

    2016-11-30

    The overall goal of the proposed research is to understand the membrane-associated active processes catalyzed by an alkane $\\square$-hydroxylase (AlkB) from eubacterium Pseudomonase oleovorans. AlkB performs oxygenation of unactivated hydrocarbons found in crude oils. The enzymatic reaction involves energy-demanding steps in the membrane with the uses of structurally unknown metal active sites featuring a diiron [FeFe] center. At present, a critical barrier to understanding the membrane-associated reaction mechanism is the lack of structural information. The structural biology efforts have been challenged by technical difficulties commonly encountered in crystallization and structural determination of membrane proteins. The specific aims of the current budget cycle are to crystalize AlkB and initiate X-ray analysis to set the stage for structural determination. The long-term goals of our structural biology efforts are to provide an atomic description of AlkB structure, and to uncover the mechanisms of selective modification of hydrocarbons. The structural information will help elucidating how the unactivated C-H bonds of saturated hydrocarbons are oxidized to initiate biodegradation and biotransformation processes. The knowledge gained will be fundamental to biotechnological applications to biofuel transformation of non-edible oil feedstock. Renewable biodiesel is a promising energy carry that can be used to reduce fossil fuel dependency. The proposed research capitalizes on prior BES-supported efforts on over-expression and purification of AlkB to explore the inner workings of a bioenergy-relevant membrane-bound enzyme.

  11. Hfq stimulates the activity of the CCA-adding enzyme

    Directory of Open Access Journals (Sweden)

    Betat Heike

    2007-10-01

    Full Text Available Abstract Background The bacterial Sm-like protein Hfq is known as an important regulator involved in many reactions of RNA metabolism. A prominent function of Hfq is the stimulation of RNA polyadenylation catalyzed by E. coli poly(A polymerase I (PAP. As a member of the nucleotidyltransferase superfamily, this enzyme shares a high sequence similarity with an other representative of this family, the tRNA nucleotidyltransferase that synthesizes the 3'-terminal sequence C-C-A to all tRNAs (CCA-adding enzyme. Therefore, it was assumed that Hfq might not only influence the poly(A polymerase in its specific activity, but also other, similar enzymes like the CCA-adding enzyme. Results Based on the close evolutionary relation of these two nucleotidyltransferases, it was tested whether Hfq is a specific modulator acting exclusively on PAP or whether it also influences the activity of the CCA-adding enzyme. The obtained data indicate that the reaction catalyzed by this enzyme is substantially accelerated in the presence of Hfq. Furthermore, Hfq binds specifically to tRNA transcripts, which seems to be the prerequisite for the observed effect on CCA-addition. Conclusion The increase of the CCA-addition in the presence of Hfq suggests that this protein acts as a stimulating factor not only for PAP, but also for the CCA-adding enzyme. In both cases, Hfq interacts with RNA substrates, while a direct binding to the corresponding enzymes was not demonstrated up to now (although experimental data indicate a possible interaction of PAP and Hfq. So far, the basic principle of these stimulatory effects is not clear yet. In case of the CCA-adding enzyme, however, the presented data indicate that the complex between Hfq and tRNA substrate might enhance the product release from the enzyme.

  12. Database of ligand-induced domain movements in enzymes

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-03-01

    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do

  13. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies.

    Directory of Open Access Journals (Sweden)

    Ranyee A Chiang

    2008-08-01

    Full Text Available The evolution of enzymes affects how well a species can adapt to new environmental conditions. During enzyme evolution, certain aspects of molecular function are conserved while other aspects can vary. Aspects of function that are more difficult to change or that need to be reused in multiple contexts are often conserved, while those that vary may indicate functions that are more easily changed or that are no longer required. In analogy to the study of conservation patterns in enzyme sequences and structures, we have examined the patterns of conservation and variation in enzyme function by analyzing graph isomorphisms among enzyme substrates of a large number of enzyme superfamilies. This systematic analysis of substrate substructures establishes the conservation patterns that typify individual superfamilies. Specifically, we determined the chemical substructures that are conserved among all known substrates of a superfamily and the substructures that are reacting in these substrates and then examined the relationship between the two. Across the 42 superfamilies that were analyzed, substantial variation was found in how much of the conserved substructure is reacting, suggesting that superfamilies may not be easily grouped into discrete and separable categories. Instead, our results suggest that many superfamilies may need to be treated individually for analyses of evolution, function prediction, and guiding enzyme engineering strategies. Annotating superfamilies with these conserved and reacting substructure patterns provides information that is orthogonal to information provided by studies of conservation in superfamily sequences and structures, thereby improving the precision with which we can predict the functions of enzymes of unknown function and direct studies in enzyme engineering. Because the method is automated, it is suitable for large-scale characterization and comparison of fundamental functional capabilities of both characterized

  14. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies.

    Science.gov (United States)

    Chiang, Ranyee A; Sali, Andrej; Babbitt, Patricia C

    2008-08-01

    The evolution of enzymes affects how well a species can adapt to new environmental conditions. During enzyme evolution, certain aspects of molecular function are conserved while other aspects can vary. Aspects of function that are more difficult to change or that need to be reused in multiple contexts are often conserved, while those that vary may indicate functions that are more easily changed or that are no longer required. In analogy to the study of conservation patterns in enzyme sequences and structures, we have examined the patterns of conservation and variation in enzyme function by analyzing graph isomorphisms among enzyme substrates of a large number of enzyme superfamilies. This systematic analysis of substrate substructures establishes the conservation patterns that typify individual superfamilies. Specifically, we determined the chemical substructures that are conserved among all known substrates of a superfamily and the substructures that are reacting in these substrates and then examined the relationship between the two. Across the 42 superfamilies that were analyzed, substantial variation was found in how much of the conserved substructure is reacting, suggesting that superfamilies may not be easily grouped into discrete and separable categories. Instead, our results suggest that many superfamilies may need to be treated individually for analyses of evolution, function prediction, and guiding enzyme engineering strategies. Annotating superfamilies with these conserved and reacting substructure patterns provides information that is orthogonal to information provided by studies of conservation in superfamily sequences and structures, thereby improving the precision with which we can predict the functions of enzymes of unknown function and direct studies in enzyme engineering. Because the method is automated, it is suitable for large-scale characterization and comparison of fundamental functional capabilities of both characterized and uncharacterized

  15. Mesoscopic dynamics of diffusion-influenced enzyme kinetics.

    Science.gov (United States)

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-28

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t(-1/2) and t(-3/2) power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  16. Enzyme alterations in mediastine during and after radiotherapy. 2

    International Nuclear Information System (INIS)

    Alheit, H.D.; Alheit, C.; Herrmann, T.

    1986-01-01

    Results are presented estimating the serum activity of transaminases (ASAT and ALAT) in 72 patients after mediastinal irradiation. During and after mediastinal irradiation both enzymes showed essentially a parallel reaction. One day after irradiation a decrease of enzymes in patients who were irradiated with high single dosis (5 Gy) was observed, while patients irradiated with low or middle single dosis showed an increase of enzyme activity. A different temporal enzyme reaction is discussed to be the cause for this reaction in dependence on the applied single dose so that in patients with high single doses an initial enzyme increase caused by the radiation insult has changed into a following decrease under the starting level at the first control 24 hours later. Because patients without mediastinal tumors react in the same manner, the normal tissue surrounding the tumor is discussed to be the original place of enzyme secretion. Up to the end of irradiation a decrease of enzymes was observed in patients with high single dose or with high total dose (60 Gy) which is interpreted as an enzyme deficiency in tissue in consequence of destruction in formation places. In patients with middle total and low single doses an enzyme increase is registered with a still sufficient restoration capacity of the tissue discussed to be the cause of it. An enzyme increase, observed from the end of irradiation to the control date 3 to 6 months after irradiation, is mainly caused by a tumor progression (increased rate of liver metastases, especially in bronchial carcinoma) and can still be intensified by occurrence of pulmonal or cardiac radioreactions. (author)

  17. Mesoscopic dynamics of diffusion-influenced enzyme kinetics

    Science.gov (United States)

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-01

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t^{-1/2} and t^{-3/2} power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  18. Enzymes in lipid modification: From classical biocatalysis with commercial enzymes to advanced protein engineering tools

    Directory of Open Access Journals (Sweden)

    Bornscheuer Uwe T.

    2013-01-01

    Full Text Available In this review, the application of enzymes, especially lipases, for the modification of fats and oils is covered. This includes the lipase-catalyzed selective production of structured triglycerides and the isolation or incorporation of specific fatty acids. Protein engineering methods to modify lipases on a molecular level were used to alter the fatty acid chain-length and ‘‘trans over cis’’ selectivity of lipase A from Candida antarctica. Furthermore, an enzymatic cascade reaction to remove 3-monochloropropanediol and the identification of a phospholipase C for degumming are briefly covered.

  19. Understanding drivers of peatland extracellular enzyme activity in the PEATcosm experiment: mixed evidence for enzymic latch hypothesis

    Science.gov (United States)

    Karl J. Romanowicz; Evan S. Kane; Lynette R. Potvin; Aleta L. Daniels; Randy Kolka; Erik A. Lilleskov

    2015-01-01

    Aims. Our objective was to assess the impacts of water table position and plant functional groups on peatland extracellular enzyme activity (EEA) framed within the context of the enzymic latch hypothesis. Methods. We utilized a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional...

  20. Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting.

    Science.gov (United States)

    Badhan, Ajay; Wang, Yu-Xi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim A

    2015-01-01

    Identification of recalcitrant factors that limit digestion of forages and the development of enzymatic approaches that improve hydrolysis could play a key role in improving the efficiency of meat and milk production in ruminants. Enzyme fingerprinting of barley silage fed to heifers and total tract indigestible fibre residue (TIFR) collected from feces was used to identify cell wall components resistant to total tract digestion. Enzyme fingerprinting results identified acetyl xylan esterases as key to the enhanced ruminal digestion. FTIR analysis also suggested cross-link cell wall polymers as principal components of indigested fiber residues in feces. Based on structural information from enzymatic fingerprinting and FTIR, enzyme pretreatment to enhance glucose yield from barley straw and alfalfa hay upon exposure to mixed rumen-enzymes was developed. Prehydrolysis effects of recombinant fungal fibrolytic hydrolases were analyzed using microassay in combination with statistical experimental design. Recombinant hemicellulases and auxiliary enzymes initiated degradation of plant structural polysaccharides upon application and improved the in vitro saccharification of alfalfa and barley straw by mixed rumen enzymes. The validation results showed that microassay in combination with statistical experimental design can be successfully used to predict effective enzyme pretreatments that can enhance plant cell wall digestion by mixed rumen enzymes.

  1. DNA-directed control of enzyme-inhibitor complex formation: a modular approach to reversibly switch enzyme activity

    NARCIS (Netherlands)

    Janssen, B.M.G.; Engelen, W.; Merkx, M.

    2015-01-01

    DNA-templated reversible assembly of an enzyme–inhibitor complex is presented as a new and highly modular approach to control enzyme activity. TEM1-ß-lactamase and its inhibitor protein BLIP were conjugated to different oligonucleotides, resulting in enzyme inhibition in the presence of template

  2. Binding affinity and adhesion force of organophosphate hydrolase enzyme with soil particles related to the isoelectric point of the enzyme.

    Science.gov (United States)

    Islam, Shah Md Asraful; Yeasmin, Shabina; Islam, Md Saiful; Islam, Md Shariful

    2017-07-01

    The binding affinity of organophosphate hydrolase enzyme (OphB) with soil particles in relation to the isoelectric point (pI) was studied. Immobilization of OphB with soil particles was observed by confocal microscopy, Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopy (AFM). The calculated pI of OphB enzyme was increased from 8.69 to 8.89, 9.04 and 9.16 by the single, double and triple mutant of OphB enzyme, respectively through the replacement of negatively charged aspartate with positively charged histidine. Practically, the binding affinity was increased to 5.30%, 11.50%, and 16.80% for single, double and triple mutants, respectively. In contrast, enzyme activity of OphB did not change by the mutation of the enzyme. On the other hand, adhesion forces were gradually increased for wild type OphB enzyme (90 pN) to 96, 100 and 104 pN for single, double and triple mutants of OphB enzyme, respectively. There was an increasing trend of binding affinity and adhesion force by the increase of isoelectric point (pI) of OphB enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Enzyme Immobilization on Inorganic Surfaces for Membrane Reactor Applications: Mass Transfer Challenges, Enzyme Leakage and Reuse of Materials

    DEFF Research Database (Denmark)

    Sigurdardóttir, Sigyn Björk; Lehmann, Jonas; Ovtar, Simona

    2018-01-01

    Enzyme immobilization is an established method for the enhancement of enzyme stability and reusability, two factors that are of great importance for industrial biocatalytic applications. Immobilization can be achieved by different methods and on a variety of carrier materials, both organic and in...

  4. Effect of deletion polymorphism of angiotensin converting enzyme gene on progression of diabetic nephropathy during inhibition of angiotensin converting enzyme

    DEFF Research Database (Denmark)

    Parving, H H; Jacobsen, P; Tarnow, L

    1996-01-01

    OBJECTIVE: To evaluate the concept that an insertion/deletion polymorphism of the angiotensin converting enzyme gene predicts the therapeutic efficacy of inhibition of angiotensin converting enzyme on progression of diabetic nephropathy. DESIGN: Observational follow up study of patients with insu...

  5. The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions.

    Science.gov (United States)

    Daniel, Bastian; Konrad, Barbara; Toplak, Marina; Lahham, Majd; Messenlehner, Julia; Winkler, Andreas; Macheroux, Peter

    2017-10-15

    Biological oxidations form the basis of life on earth by utilizing organic compounds as electron donors to drive the generation of metabolic energy carriers, such as ATP. Oxidative reactions are also important for the biosynthesis of complex compounds, i.e. natural products such as alkaloids that provide vital benefits for organisms in all kingdoms of life. The vitamin B 2 -derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) enable an astonishingly diverse array of oxidative reactions that is based on the versatility of the redox-active isoalloxazine ring. The family of FAD-linked oxidases can be divided into subgroups depending on specific sequence features in an otherwise very similar structural context. The sub-family of berberine bridge enzyme (BBE)-like enzymes has recently attracted a lot of attention due to the challenging chemistry catalyzed by its members and the unique and unusual bi-covalent attachment of the FAD cofactor. This family is the focus of the present review highlighting recent advancements into the structural and functional aspects of members from bacteria, fungi and plants. In view of the unprecedented reaction catalyzed by the family's namesake, BBE from the California poppy, recent studies have provided further insights into nature's treasure chest of oxidative reactions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Evaluation of Myceliopthora thermophila as an Enzyme Factory for the Production of Thermophilic Cellulolytic Enzymes

    Directory of Open Access Journals (Sweden)

    Leonidas Matsakas

    2015-07-01

    Full Text Available Enzymatic hydrolysis is a key step in bioethanol production. Efficient hydrolysis requires a consortium of different enzymes that are able to hydrolyze cellulose and hemicellulose into fermentable sugars. Myceliopthora thermophila is a promising candidate for the production of thermophilic cellulolytic enzymes, the use of which could reduce the cost of ethanol production. The growth conditions of the fungus were optimized in order to achieve increased secretion of extracellular cellulases. Optimal conditions were found to be 7.0% w/v brewer’s spent grain as the carbon source and 0.4% w/v ammonium sulfate as the nitrogen source. The cellulases obtained were characterized for their optimum activity. The optimum temperature and pH for cellulase activity are 65 °C and pH 5.5, respectively. Studies on thermal inactivation of the crude extract showed that the cellulases of M. thermophila are stable for temperatures up to 60 °C. At this temperature the half-life was found to be as high as 27 h. Enzymatic hydrolysis of cellulose resulted in 31.4% hydrolysis yield at 60 °C after 24 h of incubation. Finally, the recalcitrance constant for cellulose and cellulose pretreated with ionic liquids was calculated to be 5.46 and 2.69, respectively.

  7. Parasite enzymes as a tool to investigate immune responses

    Directory of Open Access Journals (Sweden)

    Italo M. Cesari

    1992-01-01

    Full Text Available Previous evidences reported by us and by other authors revealed the presence of IgG in sera of Schistosoma mansoni-infected patients to immunodominant antigens which are enzymes. Besides their immunological interest as possible inductors of protection, several of these enzume antigens might be also intersting markers of infection in antibody-detecting immunocapture assays which use the intrinsic catalytic property of these antigens. It was thus thought important to define some enzymatic and immunological characteristics of these molecules to better exploit their use as antigens. Four different enzymes from adult worms were partially characterized in their biochemical properties and susceptibility to react with antibodies of infected patients, namely alkaline phosphatase (AKP, Mg*+, pH 9.5, type I phosphodiesterase (PDE, pH 9.5, cysteine proteinase (CP, dithiothreitol, pH 5.5 and N-acetyl-ß-D-glucosaminidase (NAG, pH 5.5. The AKP and PDE are distinct tegumental membrane-bound enzymes whereas CP and NAG are soluble acid enzymes. Antibodies in infected human sera differed in their capacity to react with and to inhibit these enzyme antigens. Possibly, the specificity of the antibodies related to the extent of homology between the parasite and the host enzyme might be in part responsible for the above differences. The results are also discussed in view of the possible functional importance of these enzymes.

  8. Primordial-like enzymes from bacteria with reduced genomes.

    Science.gov (United States)

    Ferla, Matteo P; Brewster, Jodi L; Hall, Kelsi R; Evans, Gary B; Patrick, Wayne M

    2017-08-01

    The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  9. Effect of exogenous cellulase enzyme on feed digestibility in lamb

    International Nuclear Information System (INIS)

    Boonek, Lerchat; Shinkoi, Henrry S; Piadang, Nattayana

    2006-09-01

    The aim of this study was to determine the effect of exogenous enzyme on digestibility and N retention in lamb. Eight lambs were randomly allocated to 2 experiment group in group comparison design trial. Experimental treatments were: 1) CTL (No enzyme) and 2 50NZ (Mixed enzyme with high cellulase at 50g/100kg.feed). The digestibility study showed that Exogenous enzyme increased (P<0.05) dry matter and crude protein digestibility of treated lamb compared to those of control. A similar trend (P=0.11) was observed for the NDF digestibility. Mean values for dry matter digestibility were 57.86 and 69.83% and for protein digestibility were 64.76 and 73.38%, for CTL and 50NZ, respectively). The N intake was similar among treatment, averaging 22.57g/head/day. Percent N retained of 50 NZ treated lambs was higher (P<.05) than those of CTL group (mean value were 47.74 and 59.07 for CTC and 50NZ, respectively). Feed efficiency or feed conversion ratio was numerically improved for enzyme-treated groups. Overall, the results of this study provide evidence that mixed cellulase enzyme can be used to improver performance of lambs as compare to non-enzyme diet.

  10. Discovery of a diazo-forming enzyme in cremeomycin biosynthesis.

    Science.gov (United States)

    Waldman, Abraham J; Balskus, Emily P

    2018-05-17

    The molecular architectures and potent bioactivities of diazo-containing natural products have attracted the interest of synthetic and biological chemists. Despite this attention, the biosynthetic enzymes involved in diazo group construction have not been identified. Here, we show the ATP-dependent enzyme CreM installs the diazo group in cremeomycin via late-stage N-N bond formation using nitrite. This finding should inspire efforts to use diazo-forming enzymes in biocatalysis and synthetic biology and enable genome-based discovery of new diazo-containing metabolites.

  11. Little enzyme; Shoryo no tobun ga koso wo kappatsuka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-05

    It was discovered that the enzymatic heat-resistance increased by the addition of the trehalose in which the researcher of Institute of Physical and Chemical Research (it is given) is one of the disaccharides to the enzyme process. By this, it becomes possible that enzyme reaction is more promoted under the high temperature. They obtained this idea, because the yeast formed the trehalose over the room temperature for the protection of self it. In the example of some enzyme reaction, the about 20 times the speed has been obtained under 60 degrees C in comparison with the under ordinary temperature. Too the similar example has mainly been otherwise accepted. (translated by NEDO)

  12. General discussion about enzymes activities of radiation injury

    International Nuclear Information System (INIS)

    Vucicevic, M.; Sukalo, I.

    1989-01-01

    Researching reliable and practical indicators of radiation injury, however, is very interesting and considerable department of scientific studies, practical and theoretical. Enzymes activities are among biochemical indicators which are changed after radiation injury. Activity of these specific proteins is important in regulation of every biochemical reaction in existing beings. Biological macromolecules can be damaged by radiation or the cell permeability can be changed. All of these influence directly on enzymes activities. In this paper we present the review of the all important enzymes, indicators of the radiation injury, which variances on reference to normal values are significant of the functional and the structural changes of essential organs (author)

  13. Cell In Situ Zymography: Imaging Enzyme-Substrate Interactions.

    Science.gov (United States)

    Chhabra, Aastha; Rani, Vibha

    2017-01-01

    Zymography has long been used for the detection of substrate-specific enzyme activity. In situ zymography (ISZ), an adaptation from the conventional substrate zymography, is a widely employed technique useful for the detection, localization, and estimation of enzyme-substrate interactions in tissues. Here, we describe a protocol to detect 'in position' matrix metalloproteinase (MMP) activity in cells utilizing H9c2 cardiomyoblasts as a model. This technique is primarily adopted from the method used for histological sections and is termed as 'Cell in situ Zymography'. It is a simple, sensitive, and quantifiable methodology to assess the functional activity of an enzyme 'on site/in position' in cell culture.

  14. Application of magnetic nanoparticles in smart enzyme immobilization.

    Science.gov (United States)

    Vaghari, Hamideh; Jafarizadeh-Malmiri, Hoda; Mohammadlou, Mojgan; Berenjian, Aydin; Anarjan, Navideh; Jafari, Nahideh; Nasiri, Shahin

    2016-02-01

    Immobilization of enzymes enhances their properties for efficient utilization in industrial processes. Magnetic nanoparticles, due to their high surface area, large surface-to-volume ratio and easy separation under external magnetic fields, are highly valued. Significant progress has been made to develop new catalytic systems that are immobilized onto magnetic nanocarriers. This review provides an overview of recent developments in enzyme immobilization and stabilization protocols using this technology. The current applications of immobilized enzymes based on magnetic nanoparticles are summarized and future growth prospects are discussed. Recommendations are also given for areas of future research.

  15. Influence of 2. 45 GHz microwave radiation on enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Galvin, M J; Parks, D L; McRee, D I

    1981-05-01

    The in vitro activity of acetylcholinesterase and creatine phosphokinase was determined during in vitro exposure to 2.45 GHz microwave radiation. The enzyme activities were examined during exposure to microwave radiation at specific absorption rates (SAR) of 1, 10, 50, and 100 mW/g. These specific absorption rates had no effect on the activity of either enzyme when the temperature of the control and exposed samples were similar. These data demonstrate that the activity of these two enzymes is not affected by microwave radiation at the SARs and frequency employed in this study.

  16. mRNA decapping enzyme from ribosomes of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Stevens, A.

    1980-01-01

    By use of [ 3 H]methyl-5'-capped [ 14 C]mRNA from yeast as a substrate, a decapping enzyme activity has been detected in enzyme fractions derived from a high salt wash of ribosomes of Saccharomyces cerevisiae. The product of the decapping reaction is [ 3 H]m 7 GDP. That the enzyme is not a non-specific pyrophosphatase is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed

  17. Study on immobilization enzyme using radiation grafting and condensation covalent

    International Nuclear Information System (INIS)

    Cao Jin; Su Zongxian; Gao Jianfeng

    1989-01-01

    The immobilization of gluecose oxidase (GOD) on polyethylene and F 46 is described by radiation grafting and condensation covalent. The GOD on polyethylene film is characterized with IR-spectrum. The results show that the enzyme activity on F 46 film is high when dose rate and covalent yield are low. When covalent yield is 4.3% the enzyme relative activity achieves the greatest value for F 46 film. The experiment also demonstrates that acrylic acid affects the relative activity of enzyme and the method of IR-pectrum character is convenient and efficient for GOD on polyethylene film

  18. Action of ionizing radiation on the carbohydrate metabolism enzymes

    International Nuclear Information System (INIS)

    Cherkasova, L.S.; Mironova, T.M.

    1976-01-01

    It follows from data reported in literature and those obtained in our laboratory that ionizing radiation does not drastically change the activity of enzymes of the carbohydrate metabolism in tissues of an animal organism. The data are reported on the effect of a whole-body single, fractionated or continuous irradiation of the enzymes of carbohydrate metabolism and the accompanying interrelated co-operative redistributions within the processes of aerobic and anaerobic glycolysis, and the pentose route of their conversion. The dependence of the postirradiation changes in the activity of enzymes on the neuroendocrine system response to irradiation has been demonstrated

  19. Starch-degrading enzymes from anaerobic non-clostridial bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Weber, H; Schepers, H J; Troesch, W [Fraunhofer-Institut fuer Grenzflaechen- und Bioverfahrenstechnik (IGB), Stuttgart (Germany, F.R.)

    1990-08-01

    A number of meso- and thermophilic anaerobic starch-degrading non-spore-forming bacteria have been isolated. All the isolates belonging to different genera are strictly anaerobic, as indicated by a catalase-negative reaction, and produce soluble starch-degrading enzymes. Compared to enzymes of aerobic bacteria, those of anaerobic origin mainly show low molecular mass of about 25 000 daltons. Some of the enzymes may have useful applications in the starch industry because of their unusual product pattern, yielding maltotetraose as the main hydrolysis product. (orig.).

  20. Extremely thermophilic microorganisms and their polymer-hidrolytic enzymes

    Directory of Open Access Journals (Sweden)

    Andrade Carolina M.M.C.

    1999-01-01

    Full Text Available Thermophilic and hyperthermophilic microorganisms are found as normal inhabitants of continental and submarine volcanic areas, geothermally heated sea-sediments and hydrothermal vents and thus are considered extremophiles. Several present or potential applications of extremophilic enzymes are reviewed, especially polymer-hydrolysing enzymes, such as amylolytic and hemicellulolytic enzymes. The purpose of this review is to present the range of morphological and metabolic features among those microorganisms growing from 70oC to 100°C and to indicate potential opportunities for useful applications derived from these features.