WorldWideScience

Sample records for beta-hydroxysteroid nadp oxidoreductase

  1. Inactivation of corticosteroids in intestinal mucosa by 11 beta-hydroxysteroid: NADP oxidoreductase (EC 1. 1. 1. 146)

    Energy Technology Data Exchange (ETDEWEB)

    Burton, A.F.; Anderson, F.H.

    1983-10-01

    Activity of the enzyme 11 beta-hydroxysteroid:NADP oxidoreductase (EC 1.1.1.146) in human intestinal mucosa was determined by incubating scraped mucosa with /sup 3/H-cortisone and /sup 14/C-cortisol; these steroids were then extracted, separated chromatographically, and the radioactivity assayed to determine simultaneously both reductase and dehydrogenase activities. This was the only significant metabolic alteration which the substrate underwent. Only two cases had slight (5 and 13%) reductase activity. In 35 patients, 16 male and 19 female, including seven cases of Crohn's disease, three ulcerative colitis, five diverticulitis, two undergoing surgery for repair of injuries and 18 for carcinoma of colon or rectum, cortisol was converted to cortisone in 15 min with a wide range of values distributed uniformly up to 85% dehydrogenation, with a mean of 42%. When tissue homogenates were fortified with coenzymes, excess NADPH lowered dehydrogenase activity 81%; excess NADP increased dehydrogenase activity 2-fold in three cases. It is possible that a value is characteristic of an individual but perhaps more likely enzyme activity varies with metabolic events involving changes in the coenzyme levels in mucosa, and a random sampling might be expected to yield such a distribution of values. In any event, where activity is high most of the cortisol is inactivated within minutes. It is suggested that synthetic corticoids which escape such metabolic alteration might, except during pregnancy, prove superior in the treatment of conditions such as inflammatory bowel disease.

  2. Ferredoxin:NADP+ Oxidoreductase Association with Phycocyanin Modulates Its Properties*

    Science.gov (United States)

    Korn, Anja; Ajlani, Ghada; Lagoutte, Bernard; Gall, Andrew; Sétif, Pierre

    2009-01-01

    In photosynthetic organisms, ferredoxin:NADP+ oxidoreductase (FNR) is known to provide NADPH for CO2 assimilation, but it also utilizes NADPH to provide reduced ferredoxin. The cyanobacterium Synechocystis sp. strain PCC6803 produces two FNR isoforms, a small one (FNRS) similar to the one found in plant plastids and a large one (FNRL) that is associated with the phycobilisome, a light-harvesting complex. Here we show that a mutant lacking FNRL exhibits a higher NADP+/NADPH ratio. We also purified to homogeneity a phycobilisome subcomplex comprising FNRL, named FNRL-PC. The enzymatic activities of FNRL-PC were compared with those of FNRS. During NADPH oxidation, FNRL-PC exhibits a 30% decrease in the Michaelis constant Km(NADPH), and a 70% increase in Km(ferredoxin), which is in agreement with its predicted lower activity of ferredoxin reduction. During NADP+ reduction, the FNRL-PC shows a 29/43% decrease in the rate of single electron transfer from reduced ferredoxin in the presence/absence of NADP+. The increase in Km(ferredoxin) and the rate decrease of single reduction are attributed to steric hindrance by the phycocyanin moiety of FNRL-PC. Both isoforms are capable of catalyzing the NADP+ reduction under multiple turnover conditions. Furthermore, we obtained evidence that, under high ionic strength conditions, electron transfer from reduced ferredoxin is rate limiting during this process. The differences that we observe might not fully explain the in vivo properties of the Synechocystis mutants expressing only one of the isoforms. Therefore, we advocate that FNR localization and/or substrates availability are essential in vivo. PMID:19759024

  3. Arabidopsis FNRL protein is an NADPH-dependent chloroplast oxidoreductase resembling bacterial ferredoxin-NADP(+) reductases.

    Science.gov (United States)

    Koskela, Minna M; Dahlström, Käthe M; Goñi, Guillermina; Lehtimäki, Nina; Nurmi, Markus; Velazquez-Campoy, Adrian; Hanke, Guy; Bölter, Bettina; Salminen, Tiina A; Medina, Milagros; Mulo, Paula

    2017-08-18

    Plastidic ferredoxin-NADP(+) oxidoreductases (FNRs; EC:1.18.1.2) together with bacterial type FNRs (FPRs) form the plant-type FNR family. Members of this group contain a two-domain scaffold that forms the basis of an extended superfamily of FAD dependent oxidoreductases. In the present study, we show that the Arabidopsis thaliana At1g15140 (FERREDOXIN-NADP(+) OXIDOREDUCTASE -LIKE, FNRL) is an FAD-containing NADPH dependent oxidoreductase present in the chloroplast stroma. Determination of the kinetic parameters using the DCPIP NADPH-dependent diaphorase assay revealed that the reaction catalysed by a recombinant FNRL protein followed a saturation Michaelis-Menten profile on the NADPH concentration with kcat = 3.24 ± 0.17 s(-1) , Km(NADPH) = 1.6 ± 0.3 μM and kcat / Km(NADPH) = 2.0 ± 0.4 μM(-1) s(-1) . Biochemical assays suggested that FNRL is not likely to interact with Arabidopsis ferredoxin 1 (AtFd1), which is supported by the sequence analysis implying that the known Fd-binding residues in plastidic FNRs differ from those of FNRL. Additionally, based on structural modelling FNRL has an FAD-binding N-terminal domain built from a six-stranded β-sheet and one α-helix, and a C-terminal NADP(+) -binding α/β domain with a five-stranded β-sheet with a pair of α-helices on each side. The FAD-binding site is highly hydrophobic and predicted to bind FAD in a bent conformation typically seen in bacterial FPRs. This article is protected by copyright. All rights reserved.

  4. Schistosoma mansoni ferredoxin NADP(H) oxidoreductase and its role in detoxification.

    Science.gov (United States)

    Girardini, Javier E; Dissous, Colette; Serra, Esteban

    2002-01-01

    Ferredoxin NADP(H) oxidoreductases (FNR) are flavoenzymes that catalyze the electron transfer between NADP(H) and a wide range of compounds including ferredoxins and bacterial flavodoxins. FNRs are classified into two major groups: plant- and vertebrate-type. Plant-type FNRs are implicated in photosynthesis and nitrogen fixation in plastids and photosynthetic bacteria, and were recently implicated in cell protection against reactive oxygen species (ROS). Vertebrate-type FNRs are mitochondrial enzymes implicated in steroid hormone biosynthesis in mammals and in Fe(+) uptake and metabolism in yeasts. We have cloned and sequenced a cDNA coding for the vertebrate-type Schistosoma mansoni FNR. Gel diaphorase activity and western blot assays demonstrated that SmFNR represented the major diaphorase activity of adult worms. An active recombinant SmFNR was expressed in Escherichia coli that made the bacteria tolerant to oxygen peroxide, cumene hydroperoxide and the superoxide-generating herbicide, methyl viologen (MV).

  5. Pre-steady-state kinetic studies of redox reactions catalysed by Bacillus subtilis ferredoxin-NADP(+) oxidoreductase with NADP(+)/NADPH and ferredoxin.

    Science.gov (United States)

    Seo, Daisuke; Soeta, Takahiro; Sakurai, Hidehiro; Sétif, Pierre; Sakurai, Takeshi

    2016-06-01

    Ferredoxin-NADP(+) oxidoreductase ([EC1.18.1.2], FNR) from Bacillus subtilis (BsFNR) is a homodimeric flavoprotein sharing structural homology with bacterial NADPH-thioredoxin reductase. Pre-steady-state kinetics of the reactions of BsFNR with NADP(+), NADPH, NADPD (deuterated form) and B. subtilis ferredoxin (BsFd) using stopped-flow spectrophotometry were studied. Mixing BsFNR with NADP(+) and NADPH yielded two types of charge-transfer (CT) complexes, oxidized FNR (FNR(ox))-NADPH and reduced FNR (FNR(red))-NADP(+), both having CT absorption bands centered at approximately 600n m. After mixing BsFNR(ox) with about a 10-fold molar excess of NADPH (forward reaction), BsFNR was almost completely reduced at equilibrium. When BsFNR(red) was mixed with NADP(+), the amount of BsFNR(ox) increased with increasing NADP(+) concentration, but BsFNR(red) remained as the major species at equilibrium even with about 50-fold molar excess NADP(+). In both directions, the hydride-transfer was the rate-determining step, where the forward direction rate constant (~500 s(-1)) was much higher than the reverse one (FNRs. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Subcellular localization of ferredoxin-NADP(+) oxidoreductase in phycobilisome retaining oxygenic photosysnthetic organisms.

    Science.gov (United States)

    Morsy, Fatthy Mohamed; Nakajima, Masato; Yoshida, Takayuki; Fujiwara, Tatsuki; Sakamoto, Toshio; Wada, Keishiro

    2008-01-01

    Ferredoxin-NADP(+) oxidoreductase (FNR) catalyzing the terminal step of the linear photosynthetic electron transport was purified from the cyanobacterium Spirulina platensis and the red alga Cyanidium caldarium. FNR of Spirulina consisted of three domains (CpcD-like domain, FAD-binding domain, and NADP(+)-binding domain) with a molecular mass of 46 kDa and was localized in either phycobilisomes or thylakoid membranes. The membrane-bound FNR with 46 kDa was solublized by NaCl and the solublized FNR had an apparent molecular mass of 90 kDa. FNR of Cyanidium consisted of two domains (FAD-binding domain and NADP(+)-binding domain) with a molecular mass of 33 kDa. In Cyanidium, FNR was found on thylakoid membranes, but there was no FNR on phycobilisomes. The membrane-bound FNR of Cyanidium was not solublized by NaCl, suggesting the enzyme is tightly bound in the membrane. Although both cyanobacteria and red algae are photoautotrophic organisms bearing phycobilisomes as light harvesting complexes, FNR localization and membrane-binding characteristics were different. These results suggest that FNR binding to phycobilisomes is not characteristic for all phycobilisome retaining oxygenic photosynthetic organisms, and that the rhodoplast of red algae had possibly originated from a cyanobacterium ancestor, whose FNR lacked the CpcD-like domain.

  7. A new concept for ferredoxin-NADP(H) oxidoreductase binding to plant thylakoids.

    Science.gov (United States)

    Benz, J Philipp; Lintala, Minna; Soll, Jürgen; Mulo, Paula; Bölter, Bettina

    2010-11-01

    During the evolution of photosynthesis, regulatory circuits were established that allow the precise coupling of light-driven electron transfer chains with downstream processes such as carbon fixation. The ferredoxin (Fd):ferredoxin-NADP(+) oxidoreductase (FNR) couple is an important mediator for these processes because it provides the transition from exclusively membrane-bound light reactions to the mostly stromal metabolic pathways. Recent progress has allowed us to revisit how FNR is bound to thylakoids and to revaluate the current view that only membrane-bound FNR is active in photosynthetic reactions. We argue that the vast majority of thylakoid-bound FNR of higher plants is not necessary for photosynthesis. We furthermore propose that the correct distribution of FNR between stroma and thylakoids is used to efficiently regulate Fd-dependent electron partitioning in the chloroplast. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Characterization of cyanobacterial ferredoxin-NADP+ oxidoreductase molecular heterogeneity using chromatofocusing.

    Science.gov (United States)

    Serrano, A

    1986-05-01

    Chromatofocusing has been used as an analytical tool to check preparations of the enzyme ferredoxin-NADP+ oxidoreductase (EC 1.18.1.2) purified in either the presence or absence of the serine protease inhibitor phenylmethylsulfonyl fluoride from the cyanobacterium Anabaena sp. strain 7119. Only one isoelectric species was found when the crude extract was processed in the presence of the protease inhibitor. Nevertheless, when the inhibitor was omitted, four ionic forms of the enzyme--showing apparent pI's in the range 4.3-4.6--were separated after chromatofocusing of the purified preparation. These forms were found to differ in their specific activities, exhibiting, on the other hand, lower values than the single one obtained in the presence of the protease inhibitor. Analysis by acrylamide gel electrophoresis revealed virtually a single main protein band except for the ionic form of pI 4.39, which was clearly resolved into two active components. Except for the more basic form, which seems to be an homodimer of Mr 80,000, all the protein components were found to be monomeric species in the range Mr 33,000-38,000. These results indicate that the molecular heterogeneity of the ferredoxin-NADP+ oxidoreductase purified from the cyanobacterium Anabaena sp. strain 7119 may result from the activity of a protease present in the whole cell homogenates. On the other hand, these data also point out that chromatofocusing should be considered as an effective technique in the isolation and characterization of the different molecular forms of this enzyme.

  9. Association of Ferredoxin:NADP(+) oxidoreductase with the photosynthetic apparatus modulates electron transfer in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Mosebach, Laura; Heilmann, Claudia; Mutoh, Risa; Gäbelein, Philipp; Steinbeck, Janina; Happe, Thomas; Ikegami, Takahisa; Hanke, Guy; Kurisu, Genji; Hippler, Michael

    2017-06-07

    Ferredoxins (FDX) and the FDX:NADP(+) oxidoreductase (FNR) represent a key junction of electron transport downstream of photosystem I (PSI). Dynamic recruitment of FNR to the thylakoid membrane has been considered as a potential mechanism to define the fate of photosynthetically derived electrons. In this study, we investigated the functional importance of the association of FNR with the photosynthetic apparatus in Chlamydomonas reinhardtii. In vitro assays based on NADP(+) photoreduction measurements as well as NMR chemical shift perturbation analyses showed that FNR preferentially interacts with FDX1 compared to FDX2. Notably, binding of FNR to a PSI supercomplex further enhanced this preference for FDX1 over FDX2, suggesting that FNR is potentially capable of channelling electrons towards distinct routes. NADP(+) photoreduction assays and immunoblotting revealed that the association of FNR with the thylakoid membrane including the PSI supercomplex is impaired in the absence of Proton Gradient Regulation 5 (PGR5) and/or Proton Gradient Regulation 5-Like photosynthetic phenotype 1 (PGRL1), implying that both proteins, directly or indirectly, contribute to the recruitment of FNR to the thylakoid membrane. As assessed via in vivo absorption spectroscopy and immunoblotting, PSI was the primary target of photodamage in response to high-light stress in the absence of PGR5 and/or PGRL1. Anoxia preserved the activity of PSI, pointing to enhanced electron donation to O2 as the source of the observed PSI inactivation and degradation. These findings establish another perspective on PGR5/PGRL1 knockout-related phenotypes and potentially interconnect FNR with the regulation of photosynthetic electron transport and PSI photoprotection in C. reinhardtii.

  10. Two isoforms of ferredoxin:NADP(+) oxidoreductase from wheat leaves: purification and initial biochemical characterization.

    Science.gov (United States)

    Grzyb, Joanna; Malec, Przemysław; Rumak, Izabela; Garstka, Maciej; Strzałka, Kazimierz

    2008-04-01

    Ferredoxin:NADP(+) oxidoreductase is an enzyme associated with the stromal side of the thylakoid membrane in the chloroplast. It is involved in photosynthetic linear electron transport to produce NADPH and is supposed to play a role in cyclic electron transfer, generating a transmembrane pH gradient allowing ATP production, if photosystem II is non-functional or no NADP(+) is available for reduction. Different FNR isoforms have been described in non-photosynthetic tissues, where the enzyme catalyses the NADPH-dependent reduction of ferredoxin (Fd), necessary for some biosynthetic pathways. Here, we report the isolation and purification of two FNR isoproteins from wheat leaves, called FNR-A and FNR-B. These forms of the enzyme were identified as products of two different genes, as confirmed by mass spectrometry. The molecular masses of FNR-A and FNR-B were 34.3 kDa and 35.5 kDa, respectively. The isoelectric point of both FNR-A and FNR-B was about 5, but FNR-B appeared more acidic (of about 0.2 pH unit) than FNR-A. Both isoenzymes were able to catalyse a NADPH-dependent reduction of dibromothymoquinone and the mixture of isoforms catalysed reduction of cytochrome c in the presence of Fd. For the first time, the pH- and ionic strength dependent oligomerization of FNRs is observed. No other protein was necessary for complex formation. The putative role of the two FNR isoforms in photosynthesis is discussed based on current knowledge of electron transport in chloroplasts.

  11. Pyruvate:NADP+ oxidoreductase is stabilized by its cofactor, thiamin pyrophosphate, in mitochondria of Euglena gracilis.

    Science.gov (United States)

    Nakazawa, Masami; Takenaka, Shigeo; Ueda, Mitsuhiro; Inui, Hiroshi; Nakano, Yoshihisa; Miyatake, Kazutaka

    2003-03-15

    Pyruvate:NADP(+) oxidoreductase (PNO) is a thiamin pyrophosphate (TPP)-dependent enzyme that plays a central role in the respiratory metabolism of Euglena gracilis, which requires thiamin for growth. When thiamin was depleted in Euglena cells, PNO protein level was greatly reduced, but its mRNA level was barely changed. In addition, a large part of PNO occurred as an apoenzyme lacking TPP in the deficient cells. The PNO protein level increased rapidly, without changes in the mRNA level, after supplementation of thiamin into its deficient cells. In the deficient cells, in contrast to the sufficient ones, a steep decrease in the PNO protein level was induced when the cells were incubated with cycloheximide. Immunofluorescence microscopy indicated that most of the PNO localized in the mitochondria in either the sufficient or the deficient cells. These findings suggest that PNO is readily degraded when TPP is not provided in mitochondria, and consequently the PNO protein level is greatly reduced by thiamin deficiency in E. gracilis.

  12. Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene from Gluconobacter oxydans.

    Science.gov (United States)

    Klasen, R; Bringer-Meyer, S; Sahm, H

    1995-01-01

    Gluconate:NADP 5-oxidoreductase (GNO) from the acetic acid bacterium Gluconobacter oxydans subsp. oxydans DSM3503 was purified to homogeneity. This enzyme is involved in the nonphosphorylative, ketogenic oxidation of glucose and oxidizes gluconate to 5-ketogluconate. GNO was localized in the cytoplasm, had an isoelectric point of 4.3, and showed an apparent molecular weight of 75,000. In sodium dodecyl sulfate gel electrophoresis, a single band appeared corresponding to a molecular weight of 33,000, which indicated that the enzyme was composed of two identical subunits. The pH optimum of gluconate oxidation was pH 10, and apparent Km values were 20.6 mM for the substrate gluconate and 73 microM for the cosubstrate NADP. The enzyme was almost inactive with NAD as a cofactor and was very specific for the substrates gluconate and 5-ketogluconate. D-Glucose, D-sorbitol, and D-mannitol were not oxidized, and 2-ketogluconate and L-sorbose were not reduced. Only D-fructose was accepted, with a rate that was 10% of the rate of 5-ketogluconate reduction. The gno gene encoding GNO was identified by hybridization with a gene probe complementary to the DNA sequence encoding the first 20 N-terminal amino acids of the enzyme. The gno gene was cloned on a 3.4-kb DNA fragment and expressed in Escherichia coli. Sequencing of the gene revealed an open reading frame of 771 bp, encoding a protein of 257 amino acids with a predicted relative molecular mass of 27.3 kDa. Plasmid-encoded gno was functionally expressed, with 6.04 U/mg of cell-free protein in E. coli and with 6.80 U/mg of cell-free protein in G. oxydans, which corresponded to 85-fold overexpression of the G. oxydans wild-type GNO activity. Multiple sequence alignments showed that GNO was affiliated with the group II alcohol dehydrogenases, or short-chain dehydrogenases, which display a typical pattern of six strictly conserved amino acid residues. PMID:7751271

  13. A second isoform of the ferredoxin:NADP oxidoreductase generated by an in-frame initiation of translation.

    Science.gov (United States)

    Thomas, Jean-Claude; Ughy, Bettina; Lagoutte, Bernard; Ajlani, Ghada

    2006-11-28

    Ferredoxin:NADP oxidoreductases (FNRs) constitute a family of flavoenzymes that catalyze the exchange of reducing equivalents between one-electron carriers and the two-electron-carrying NADP(H). The main role of FNRs in cyanobacteria and leaf plastids is to provide the NADPH for photoautotrophic metabolism. In root plastids, a distinct FNR isoform is found that has been postulated to function in the opposite direction, providing electrons for nitrogen assimilation at the expense of NADPH generated by heterotrophic metabolism. A multiple gene family encodes FNR isoenzymes in plants, whereas there is only one FNR gene (petH) in cyanobacteria. Nevertheless, we detected two FNR isoforms in the cyanobacterium Synechocystis sp. strain PCC6803. One of them (FNR(S) approximately 34 kDa) is similar in size to the plastid FNR and specifically accumulates under heterotrophic conditions, whereas the other one (FNR(L) approximately 46 kDa) contains an extra N-terminal domain that allows its association with the phycobilisome. Site-directed mutants allowed us to conclude that the smaller isoform, FNR(S), is produced from an internal ribosome entry site within the petH ORF. Thus we have uncovered a mechanism by which two isoforms are produced from a single gene, which is, to our knowledge, novel in photosynthetic bacteria. Our results strongly suggest that FNR(L) is an NADP(+) reductase, whereas FNR(S) is an NADPH oxidase.

  14. Coenzyme binding and hydride transfer in Rhodobacter capsulatus ferredoxin/flavodoxin NADP(H) oxidoreductase.

    Science.gov (United States)

    Bortolotti, Ana; Pérez-Dorado, Inmaculada; Goñi, Guillermina; Medina, Milagros; Hermoso, Juan A; Carrillo, Néstor; Cortez, Néstor

    2009-02-01

    Ferredoxin-NADP(H) reductases catalyse the reversible hydride/electron exchange between NADP(H) and ferredoxin/flavodoxin, comprising a structurally defined family of flavoenzymes with two distinct subclasses. Those present in Gram-negative bacteria (FPRs) display turnover numbers of 1-5 s(-1) while the homologues of cyanobacteria and plants (FNRs) developed a 100-fold activity increase. We investigated nucleotide interactions and hydride transfer in Rhodobacter capsulatus FPR comparing them to those reported for FNRs. NADP(H) binding proceeds as in FNRs with stacking of the nicotinamide on the flavin, which resulted in formation of charge-transfer complexes prior to hydride exchange. The affinity of FPR for both NADP(H) and 2'-P-AMP was 100-fold lower than that of FNRs. The crystal structure of FPR in complex with 2'-P-AMP and NADP(+) allowed modelling of the adenosine ring system bound to the protein, whereas the nicotinamide portion was either not visible or protruding toward solvent in different obtained crystals. Stabilising contacts with the active site residues are different in the two reductase classes. We conclude that evolution to higher activities in FNRs was partially favoured by modification of NADP(H) binding in the initial complexes through changes in the active site residues involved in stabilisation of the adenosine portion of the nucleotide and in the mobile C-terminus of FPR.

  15. Crystal structure analysis of Bacillus subtilis ferredoxin-NADP(+) oxidoreductase and the structural basis for its substrate selectivity.

    Science.gov (United States)

    Komori, Hirofumi; Seo, Daisuke; Sakurai, Takeshi; Higuchi, Yoshiki

    2010-12-01

    Bacillus subtilis yumC encodes a novel type of ferredoxin-NADP+ oxidoreductase (FNR) with a primary sequence and oligomeric conformation distinct from those of previously known FNRs. In this study, the crystal structure of B. subtilis FNR (BsFNR) complexed with NADP+ has been determined. BsFNR features two distinct binding domains for FAD and NADPH in accordance with its structural similarity to Escherichia coli NADPH-thioredoxin reductase (TdR) and TdR-like protein from Thermus thermophilus HB8 (PDB code: 2ZBW). The deduced mode of NADP+ binding to the BsFNR molecule is nonproductive in that the nicotinamide and isoalloxazine rings are over 15 Å apart. A unique C-terminal extension, not found in E. coli TdR but in TdR-like protein from T. thermophilus HB8, covers the re-face of the isoalloxazine moiety of FAD. In particular, Tyr50 in the FAD-binding region and His324 in the C-terminal extension stack on the si- and re-faces of the isoalloxazine ring of FAD, respectively. Aromatic residues corresponding to Tyr50 and His324 are also found in the plastid-type FNR superfamily of enzymes, and the residue corresponding to His324 has been reported to be responsible for nucleotide specificity. In contrast to the plastid-type FNRs, replacement of His324 with Phe or Ser had little effect on the specificity or reactivity of BsFNR with NAD(P)H, whereas replacement of Arg190, which interacts with the 2'-phosphate of NADP+, drastically decreased its affinity toward NADPH. This implies that BsFNR adopts the same nucleotide binding mode as the TdR enzyme family and that aromatic residue on the re-face of FAD is hardly relevant to the nucleotide selectivity. Copyright © 2010 The Protein Society.

  16. A larger transcript is required for the synthesis of the smaller isoform of ferredoxin:NADP oxidoreductase.

    Science.gov (United States)

    Omairi-Nasser, Amin; de Gracia, Adrienne Gomez; Ajlani, Ghada

    2011-09-01

    Ferredoxin:NADP oxidoreductases (FNRs) constitute a family of flavoenzymes that catalyse the exchange of electrons between ferredoxin and NADP(H). In cyanobacteria FNR provides NADPH for photoautotrophic metabolism, but the enzyme is also capable of oxidizing NADPH providing reduced ferredoxin. In the cyanobacterium Synechocystis sp. strain PCC6803, the unique petH gene has two translation products depending on growth conditions. As a consequence two isoforms of the FNR accumulate - FNR(L) and FNR(S) . In the present work, analysis of petH expression reveals that different transcriptional start points (tsp) are responsible for this differential translation initiation. Under standard conditions (where FNR(L) accumulates), two tsps were found at -52 and -34 relative to the first translation start site. Under nitrogen-starvation conditions (where FNR(S) accumulates) a tsp was mapped at -126 relative to the first translation start site. Therefore, the transcript responsible for FNR(S) translation is longer than that producing FNR(L) . In addition, expression of the short or long transcript in E. coli resulted in the accumulation of FNR(L) or FNR(S) respectively. This result demonstrates that translation can initiate at two different sites, 336-bases apart (ATG-1 to ATG-113), depending only on the 5'UTR structure. © 2011 Blackwell Publishing Ltd.

  17. A General Tool for Engineering the NAD/NADP Cofactor Preference of Oxidoreductases.

    Science.gov (United States)

    Cahn, Jackson K B; Werlang, Caroline A; Baumschlager, Armin; Brinkmann-Chen, Sabine; Mayo, Stephen L; Arnold, Frances H

    2017-02-17

    The ability to control enzymatic nicotinamide cofactor utilization is critical for engineering efficient metabolic pathways. However, the complex interactions that determine cofactor-binding preference render this engineering particularly challenging. Physics-based models have been insufficiently accurate and blind directed evolution methods too inefficient to be widely adopted. Building on a comprehensive survey of previous studies and our own prior engineering successes, we present a structure-guided, semirational strategy for reversing enzymatic nicotinamide cofactor specificity. This heuristic-based approach leverages the diversity and sensitivity of catalytically productive cofactor binding geometries to limit the problem to an experimentally tractable scale. We demonstrate the efficacy of this strategy by inverting the cofactor specificity of four structurally diverse NADP-dependent enzymes: glyoxylate reductase, cinnamyl alcohol dehydrogenase, xylose reductase, and iron-containing alcohol dehydrogenase. The analytical components of this approach have been fully automated and are available in the form of an easy-to-use web tool: Cofactor Specificity Reversal-Structural Analysis and Library Design (CSR-SALAD).

  18. Evolution of the acceptor side of photosystem I: ferredoxin, flavodoxin, and ferredoxin-NADP(+) oxidoreductase.

    Science.gov (United States)

    Pierella Karlusich, Juan José; Carrillo, Néstor

    2017-02-01

    The development of oxygenic photosynthesis by primordial cyanobacteria ~2.7 billion years ago led to major changes in the components and organization of photosynthetic electron transport to cope with the challenges of an oxygen-enriched atmosphere. We review herein, following the seminal contributions as reported by Jaganathan et al. (Functional genomics and evolution of photosynthetic systems, vol 33, advances in photosynthesis and respiration, Springer, Dordrecht, 2012), how these changes affected carriers and enzymes at the acceptor side of photosystem I (PSI): the electron shuttle ferredoxin (Fd), its isofunctional counterpart flavodoxin (Fld), their redox partner ferredoxin-NADP(+) reductase (FNR), and the primary PSI acceptors F x and F A/F B. Protection of the [4Fe-4S] centers of these proteins from oxidative damage was achieved by strengthening binding between the F A/F B polypeptide and the reaction center core containing F x, therefore impairing O2 access to the clusters. Immobilization of F A/F B in the PSI complex led in turn to the recruitment of new soluble electron shuttles. This function was fulfilled by oxygen-insensitive [2Fe-2S] Fd, in which the reactive sulfide atoms of the cluster are shielded from solvent by the polypeptide backbone, and in some algae and cyanobacteria by Fld, which employs a flavin as prosthetic group and is tolerant to oxidants and iron limitation. Tight membrane binding of FNR allowed solid-state electron transfer from PSI bridged by Fd/Fld. Fine tuning of FNR catalytic mechanism led to formidable increases in turnover rates compared with FNRs acting in heterotrophic pathways, favoring Fd/Fld reduction instead of oxygen reduction.

  19. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of a ferredoxin/flavodoxin-NADP(H) oxidoreductase (Bc0385) from Bacillus cereus.

    Science.gov (United States)

    Skråmo, Silje; Hersleth, Hans Petter; Hammerstad, Marta; Andersson, K Kristoffer; Røhr, Åsmund K

    2014-06-01

    Ferredoxin/flavodoxin-NADP(H) oxidoreductases (FNRs) are key enzymes involved in catalysing electron transfer between ferredoxins/flavodoxins and NAD(P)H/NAD(P)+. In Bacillus cereus there are three genes that may encode FNRs, and the Bc0385 FNR has been cloned, overexpressed, purified and successfully crystallized in its NADPH/NADP+-free form. Diffraction data have been collected to 2.5 Å resolution from crystals belonging to the orthorhombic space group P2₁2₁2, with unit-cell parameters a=57.2, b=164.3, c=95.0 Å, containing two FNR molecules in the asymmetric unit. The structure of the Bc0385 FNR has been solved by molecular replacement, and is a member of the homodimeric thioredoxin reductase-like class of FNRs.

  20. Inhibition of 3(17)beta-hydroxysteroid dehydrogenase from Pseudomonas testosteroni by steroidal A ring fused pyrazoles.

    Science.gov (United States)

    Levy, M A; Holt, D A; Brandt, M; Metcalf, B W

    1987-04-21

    Several 2,3- and 3,4-steroidal fused pyrazoles have been investigated as potential inhibitors of NAD(P)H-dependent steroid oxidoreductases. These compounds are proven to be potent, specific inhibitors for 3(17) beta-hydroxysteroid dehydrogenase from Pseudomonas testosteroni with Ki values of 6-100 nM. In contrast, the activities of 3 alpha,20 beta-hydroxysteroid dehydrogenase from Streptomyces hydrogenans, steroid 5 alpha-reductase from rat prostate, and 3 alpha-hydroxysteroid dehydrogenase from rat liver were unaffected by micromolar concentrations of these compounds. Product and dead-end inhibition studies indicate an ordered association to the beta-dehydrogenase with the cofactor binding prior to substrate or inhibitor. From the results of double inhibition experiments, it is proposed that inhibition occurs through formation of an enzyme-NAD+-inhibitor ternate. On the basis of pH profiles of Vm/Km, Vm, and 1/Ki and of absorbance difference spectra, a hypothetical mechanism of inhibition by the steroidal pyrazoles, drawn by analogy from the inhibition of liver alcohol dehydrogenase by alkylpyrazoles [Theorell, H., & Yonetani, T. (1963) Biochem. Z. 338, 537-553; Andersson, P., Kvassman, J. K., Lindström, A., Oldén, B., & Pettersson, G. (1981) Eur. J. Biochem. 113, 549-554], is reconsidered. The pH studies and enzyme modification experiments by diethyl pyrocarbonate suggest the involvement of histidine in binding of the inhibitor. A modified proposal for the structure of the enzyme-NAD+-steroidal pyrazole complex is proposed.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Human kidney 11 beta-hydroxysteroid dehydrogenase: regulation by adrenocorticotropin?

    Science.gov (United States)

    Diederich, S; Quinkler, M; Miller, K; Heilmann, P; Schoneshofer, M; Oelkers, W

    1996-03-01

    In ectopic adrenocorticotropin (ACTH) syndrome (EAS) with higher ACTH levels than in pituitary Cushing's syndrome and during ACTH infusion, the ratio of cortisol to cortisone in plasma and urine is increased, suggesting inhibition of renal 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) by ACTH or by ACTH-dependent steroids. Measuring the conversion of cortisol to cortisone by human kidney slices under different conditions, we tested the possibility of 11 beta-HSD regulation by ACTH and corticosteroids. Slices prepared from unaffected parts of kidneys removed because of renal cell carcinoma were incubated with unlabeled or labeled cortisol, and cortisol and cortisone were quantitated after HPLC separation by UV or radioactive detection. The 11 beta HSD activity was not influenced by incubation with increasing concentrations (10(-12)-10(-9) mol/l) of ACTH (1-24 or 1-39) for 1 h. Among 12 ACTH-dependent steroids tested (10(-9)-10(-6) mol/l), only corticosterone (IC50 = 2 x 10(-7) mol/l), 18-OH-corticosterone and 11 beta-OH-androstenedione showed a significant dose-dependent inhibition of 11 beta-HSD activity. The percentage conversion rate of cortisol to cortisone was concentration dependent over the whole range of cortisol concentrations tested (10(-8) - 10(-5) mol/l. A direct inhibitory effect of ACTH on 11 beta-HSD is, therefore, unlikely. The only steroids inhibiting the conversion of cortisol to cortisone are natural substrates for 11 beta-HSD. Kinetic studies show a saturation of the enzyme at high cortisol concentrations. Thus, the reduced percentage renal cortisol inactivation in EAS seems to be due mainly to overload of the enzyme with endogenous substrates (cortisol, corticosterone and others) rather than to direct inhibition of 11 beta-HSD by ACTH or ACTH-dependent steroids, not being substrates of 11 beta-HSD.

  2. Optimization of Expression and Purification of Recombinant Archeoglobus fulgidus F420H2:NADP+ Oxidoreductase, an F420 Cofactor Dependent Enzyme.

    Science.gov (United States)

    Le, Cuong Quang; Joseph, Ebenezer; Nguyen, Toan; Johnson-Winters, Kayunta

    2015-12-01

    Methanogens play a critical role in carbon cycling and contain a number of intriguing biosynthetic pathways. One unusual cofactor found in methanogenic and sulfate reducing archaea is Factor 420 (F420), which can be interconverted between its reduced and oxidized forms by the F420H2:NADP(+) oxidoreductase (Fno) through hydride transfer mechanisms. Here, we report an optimized expression and purification method for recombinant Fno derived from the extreme thermophile Archeoglobus fulgidus. An expression vector that is codon-optimized for heterologous expression in Escherichia coli, modified growth conditions, and a modified purification protocol involving a key polyethyleneimine precipitation step results in a highly purified, homogeneous preparation of Fno that displays high catalytic activity with a truncated F420 analog. This method should accelerate studies on how Fno uses the unusual F420 cofactor during catalysis.

  3. 11beta-hydroxysteroid dehydrogenase type 1 and obesity.

    Science.gov (United States)

    Morton, Nicholas M; Seckl, Jonathan R

    2008-01-01

    The metabolic syndrome consists of a constellation of co-associated metabolic abnormalities such as insulin resistance, type 2 diabetes, dyslipidaemia, hypertension and visceral obesity. For many years endocrinologists have noted the striking resemblance between this disease state and that associated with Cushing's syndrome. However, in the metabolic syndrome plasma cortisol levels tend to be normal or lower than in normal individuals. Nevertheless there is strong evidence that glucocorticoid action underlies metabolic disease, largely from rodent obesity models where removing glucocorticoids reverses obesity and its metabolic abnormalities. The apparent paradox of similar metabolic defects - despite the opposing plasma glucocorticoid profiles of Cushing's and idiopathic metabolic syndrome - remained intriguing until the discovery that intracellular glucocorticoid reactivation was elevated in adipose tissue of obese rodents and humans. The enzyme that mediates this activation, conversion of cortisone (11-dehydrocorticosterone in rodents) to cortisol (corticosterone in rodents), locally within tissues is 11beta -hydroxysteroid dehydrogenase type 1 (11beta -HSD1). In order to determine whether elevated tissue 11beta -HSD1 contributed to obesity and metabolic disease, transgenic mice overexpressing 11beta -HSD1 in adipose tissue or liver were made. Adipose-selective 11beta -HSD1 transgenic mice exhibited elevated intra-adipose and portal, but not systemic corticosterone levels, abdominal obesity, hyperglycaemia, insulin resistance, dyslipidaemia and hypertension. In contrast, transgenic overexpression of 11beta -HSD1 in liver yielded an attenuated metabolic syndrome with mild insulin resistance, dyslipidaemia, hypertension and fatty liver, but not obesity or glucose intolerance. Together with early data using non-selective 11beta -HSD1 inhibitors to insulin sensitise humans, this corroborated the notion that the enzyme may be a good therapeutic target in the treatment

  4. Functional analysis of two isoforms of leaf-type ferredoxin-NADP(+)-oxidoreductase in rice using the heterologous expression system of Arabidopsis.

    Science.gov (United States)

    Higuchi-Takeuchi, Mieko; Ichikawa, Takanari; Kondou, Youichi; Matsui, Keiko; Hasegawa, Yukako; Kawashima, Mika; Sonoike, Kintake; Mori, Masaki; Hirochika, Hirohiko; Matsui, Minami

    2011-09-01

    Ferredoxin-NADP(+)-oxidoreductase (FNR) mediates electron transfer between ferredoxin (Fd) and NADP(+); therefore, it is a key enzyme that provides the reducing power used in the Calvin cycle. Other than FNR, nitrite reductase, sulfite reductase, glutamate synthase, and Fd-thioredoxin reductase also accept electrons from Fd, an electron carrier protein in the stroma. Therefore, the regulation of electron partitioning in the chloroplast is important for photosynthesis and other metabolic pathways. The regulatory mechanism of electron partitioning, however, remains to be elucidated. We found, by taking advantage of a gain-of-function approach, that expression of two rice (Oryza sativa) full-length cDNAs of leaf-type FNRs (OsLFNR1 and OsLFNR2) led to altered chlorophyll fluorescence and growth in Arabidopsis (Arabidopsis thaliana) and rice. We revealed that overexpression of the OsLFNR1 and OsLFNR2 full-length cDNAs resulted in distinct phenotypes despite the high sequence similarity between them. Expression of OsLFNR1 affected the nitrogen assimilation pathway without inhibition of photosynthesis under normal conditions. On the other hand, OsLFNR2 expression led to the impairment of photosynthetic linear electron transport as well as Fd-dependent cyclic electron flow around photosystem I. The endogenous protein level of OsLFNR was found to be suppressed in both OsLFNR1- and OsLFNR2-overexpressing rice plants, leading to changes in the stoichiometry of the two LFNR isoforms within the thylakoid and soluble fractions. Thus, we propose that the stoichiometry of two LFNR isoforms plays an important role in electron partitioning between carbon fixation and nitrogen assimilation.

  5. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    LENUS (Irish Health Repository)

    Morgan, Stuart A

    2009-11-01

    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  6. Compounds from the Fruits of the Popular European Medicinal Plant Vitex agnus-castus in Chemoprevention via NADP(H:Quinone Oxidoreductase Type 1 Induction

    Directory of Open Access Journals (Sweden)

    Shenghong Li

    2013-01-01

    Full Text Available As part of our continuing efforts in the search for potential biologically active compounds from medicinal plants, we have isolated 18 compounds including two novel nitrogen containing diterpenes from extracts of the fruits of Vitex agnus-castus. These isolates, along with our previously obtained novel compound vitexlactam A (1, were evaluated for potential biological effects, including cancer chemoprevention. Chemically, the nitrogenous isolates were found to be two labdane diterpene alkaloids, each containing an α, β-unsaturated γ-lactam moiety. Structurally, they were elucidated to be 9α-hydroxy-13(14-labden-16,15-amide (2 and 6β-acetoxy-9α-hydroxy-13(14-labden-15,16-amide (3, which were named vitexlactams B and C, respectively. The 15 known isolates were identified as vitexilactone (4, rotundifuran (5, 8-epi-manoyl oxide (6, vitetrifolin D (7, spathulenol (8, cis-dihydro-dehydro-diconiferylalcohol-9-O-β-D-glucoside (9, luteolin-7-O-glucoside (10, 5-hydroxy-3,6,7,4′-tetramethoxyflavone (11, casticin (12, artemetin (13, aucubin (14, agnuside (15, β-sitosterol (16, p-hydroxybenzoic acid (17, and p-hydroxybenzoic acid glucose ester (18. All compound structures were determined/identified on the basis of 1D and/or 2D NMR and mass spectrometry techniques. Compounds 6, 8, 9, and 18 were reported from a Vitex spieces for the first time. The cancer chemopreventive potentials of these isolates were evaluated for NADP(H:quinone oxidoreductase type 1 (QR1 induction activity. Compound 7 demonstrated promising QR1 induction effect, while the new compound vitexlactam (3 was only slightly active.

  7. 11-Beta hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity.

    Science.gov (United States)

    Milagro, Fermin I; Campión, Javier; Martínez, J Alfredo

    2007-04-01

    Glucocorticoid action within the cells is regulated by the levels of glucocorticoid receptor (GR) expression and two enzymes, 11-beta hydroxysteroid dehydrogenase type 1 (11betaHSD1), which converts inactive to active glucocorticoids, and 11-beta hydroxysteroid dehydrogenase type 2 (11betaHSD2), which regulates the access of active glucocorticoids to the receptor by converting cortisol/corticosterone to the glucocorticoid-inactive form cortisone/dehydrocorticosterone. Male Wistar rats developed obesity by being fed a high-fat diet for 56 days, and GR, 11betaHSD1 and 11betaHSD2 gene expression were compared with control-diet fed animals. Gene expression analysis of 11betaHSD1, 11betaHSD2 and GR were performed by RT-PCR in subcutaneous and retroperitoneal adipose tissue. High-fat fed animals overexpressed 11betaHSD2 in subcutaneous but not in retroperitoneal fat. Interestingly, mRNA levels strongly correlated in both tissues with different parameters related to obesity, such as body weight, adiposity and insulin resistance, suggesting that this gene is a reliable marker of adiposity in this rat model of obesity. Thus, 11betaHSD2 is expressed in adipose tissue by both adipocytes and stromal-vascular cells, which suggests that this enzyme may play an important role in preventing fat accumulation in adipose tissue.

  8. Novel inhibitors of 17beta-hydroxysteroid dehydrogenase type 1: templates for design.

    Science.gov (United States)

    Allan, Gillian M; Vicker, Nigel; Lawrence, Harshani R; Tutill, Helena J; Day, Joanna M; Huchet, Marion; Ferrandis, Eric; Reed, Michael J; Purohit, Atul; Potter, Barry V L

    2008-04-15

    The 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyze the interconversion between the oxidized and reduced forms of androgens and estrogens at the 17 position. The 17beta-HSD type 1 enzyme (17beta-HSD1) catalyzes the reduction of estrone (E1) to estradiol and is expressed in malignant breast cells. Inhibitors of this enzyme thus have potential as treatments for hormone dependent breast cancer. Syntheses and biological evaluation of novel non-steroidal inhibitors designed to mimic the E1 template are reported using information from potent steroidal inhibitors. Of the templates investigated biphenyl ethanone was promising and led to inhibitors with IC(50) values in the low micromolar range.

  9. 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue and prospective changes in body weight and insulin resistance

    DEFF Research Database (Denmark)

    Koska, Juraj; de Courten, Barbora; Wake, Deborah J

    2006-01-01

    Increased mRNA and activity levels of 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) in human adipose tissue (AT) are associated with obesity and insulin resistance. The aim of our study was to investigate whether 11betaHSD1 expression or activity in abdominal subcutaneous AT of non......-diabetic subjects are associated with subsequent changes in body weight and insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)]....

  10. 11beta-hydroxysteroid dehydrogenase type 1 inhibitors for metabolic syndrome.

    Science.gov (United States)

    Schnackenberg, Christine G

    2008-03-01

    The metabolic syndrome is a constellation of interrelated metabolic risk factors that appear to promote the development of diabetes and cardiovascular disease. These risk factors include abdominal obesity, insulin resistance, hypertension and dyslipidemia. 11beta-Hydroxysteroid dehydrogenase (11beta-HSD) catalyzes the interconversion of glucocorticoids through the activity of two isozymes: type 1 (11beta-HSD1) and type 2 (11beta-HSD2). 11beta-HSD1 converts inactive glucocorticoid to the active form, whereas 11beta-HSD2 converts active glucocorticoid to the inactive form. It is well established that reduced 11beta-HSD2 activity causes hypertension and electrolyte abnormalities. More recently, the pathophysiological role of 11beta-HSD1 has been explored and studies suggest that increased 11beta-HSD1 activity within target tissues may promote insulin resistance, obesity, hypertension and dyslipidemia. This review will discuss the evidence that inhibition of 11beta-HSD1 may be therapeutic in the treatment of the metabolic syndrome.

  11. Reduced 11beta-hydroxysteroid dehydrogenase activity in patients with the nephrotic syndrome.

    Science.gov (United States)

    Vogt, B; Dick, B; N'Gankam, V; Frey, F J; Frey, B M

    1999-02-01

    Patients with the nephrotic syndrome (NS) exhibit abnormal renal sodium retention which cannot completely explained by a secondary hyperaldosteronism due to reduced renal perfusion. As an alternative mechanism to explain this phenomenon we postulate a cortisol-mediated mineralocorticoid effect as a consequence of a reduced activity of 11beta-hydroxysteroid dehydrogenase (11beta-HSD). A down-regulation of 11beta-HSD, i.e. of the shuttle of active to inactive glucocorticosteroids, has been shown to cause mineralocorticoid effects. Therefore we investigated the activity of 11beta-HSD by measuring the urinary ratio of (tetrahydrocortisol + 5alpha-tetrahydrocortisol)/tetrahydrocortisone [(THF+5alpha-THF)/THE] by gas-chromatography in 29 NS patients with biopsy-proven glomerulonephritis and 29 healthy control subjects. The ratio of (THF+5alpha-THF)/THE was higher in NS patients (median 1.49, range 0.45-4.07) than in the control subjects (0.98, 0.60-1.36; pnew mechanism contributing to the exaggerated sodium retention in patients with the NS.

  12. 11 beta-hydroxysteroid dehydrogenase type 1 promotes differentiation of 3T3-L1 preadipocyte

    Institute of Scientific and Technical Information of China (English)

    Yun LIU; Yan SUN; Ting ZHU; Yu XIE; Jing YU; Wen-lan SUN; Guo-xian DING; Gang HU

    2007-01-01

    Aim: To investigate the relationship between 11 beta-hydroxysteroid dehydroge-nase type 1 (1 lbeta-HSD1), a potential link between obesity and type 2 diabetes,and preadipocyte differentiation. Methods: Mouse 11beta-HSD1 siRNA plasmids were transfected into 3T3-L1 preadipocytes (a cell line derived from mouse Swiss3T3 cells that were isolated from mouse embryo), for examination of the effect of targeted 11 beta-HSD1 inhibition on differentiation of 3T3-L1 cells. Dif-ferentiation was stimulated with 3-isobutyl-1-methyxanthine, insulin, and dexamethasone. The transcription level of the genes was detected by real-time PCR. Results: Lipid accumulation was significantly inhibited in cells transfected with mouse 11beta-HSD1 siRNA compared with non-transfected 3T3-L1 cells.Fewer lipid droplets were detected in the transfected cells both prior to stimulation and after stimulation with differentiation-inducing reagents. The expression of adipocyte differentiation-associated markers such as lipoprotein lipase and fatty acid synthetase were downregulated in the transfected cells. Similarly, the expres-sion of preadipocyte factor-1, an inhibitor of adipocyte differentiation, was downregulated upon stimulation of differentiation and had no changes in the transfected cells. Conclusion: 11 beta-HSD1 can promote preadipocyte differentiation. Based on this, we propose that 11 beta-HSD1 may be an important candidate mediator of obesity and obesity-induced insulin resistance.

  13. Novel non-steroidal inhibitors of human 11beta-hydroxysteroid dehydrogenase type 1.

    Science.gov (United States)

    Vicker, Nigel; Su, Xiangdong; Ganeshapillai, Dharshini; Smith, Andrew; Purohit, Atul; Reed, Michael J; Potter, Barry V L

    2007-05-01

    11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) regulates glucocorticoid action at the pre-receptor stage by converting cortisone to cortisol. 11beta-HSD1 is selectively expressed in many tissues including the liver and adipose tissue where metabolic events are important. Metabolic syndrome relates to a number of metabolic abnormalities and currently has a prevalence of >20% in adult Americans. 11beta-HSD1 inhibitors are being investigated by many major pharmaceutical companies for type 2 diabetes and other abnormalities associated with metabolic syndrome. In this area of intense interest a number of structural types of 11beta-HSD1 inhibitor have been identified. It is important to have an array of structural types as the physicochemical properties of the compounds will determine tissue distribution, HPA effects, and ultimately clinical utility. Here we report the discovery and synthesis of three structurally different series of novel 11beta-HSD1 inhibitors that inhibit human 11beta-HSD1 in the low micromolar range. Docking studies with 1-3 into the crystal structure of human 11beta-HSD1 reveal how the molecules may interact with the enzyme and cofactor and give further scope for structure based drug design in the optimisation of these series.

  14. The design of novel 17beta-hydroxysteroid dehydrogenase type 3 inhibitors.

    Science.gov (United States)

    Vicker, Nigel; Sharland, Christopher M; Heaton, Wesley B; Gonzalez, Ana M Ramos; Bailey, Helen V; Smith, Andrew; Springall, Jeremy S; Day, Joanna M; Tutill, Helena J; Reed, Michael J; Purohit, Atul; Potter, Barry V L

    2009-03-25

    17beta-Hydroxysteroid dehydrogenase type 3 (17beta-HSD3) is expressed at high levels in the testes and seminal vesicles but has also been shown to be present in prostate tissue, suggesting its potential involvement in both gonadal and non-gonadal testosterone biosynthesis. The role of 17beta-HSD3 in testosterone biosynthesis makes this enzyme an attractive molecular target for small molecule inhibitors for the treatment of prostate cancer. Here we report the design of selective inhibitors of 17beta-HSD3 as potential anti-cancer agents. Due to 17beta-HSD3 being a membrane-bound protein a crystal structure is not yet available. A homology model of 17beta-HSD3 has been built to aid structure-based drug design. This model has been used with docking studies to identify a series of lead compounds that may give an insight as to how inhibitors interact with the active site. Compound 1 was identified as a potent selective inhibitor of 17beta-HSD3 with an IC(50)=700nM resulting in the discovery of a novel lead series for further optimisation. Using our homology model as a tool for inhibitor design compound 5 was discovered as a novel potent and selective inhibitor of 17beta-HSD3 with an IC(50) approximately 200nM.

  15. Discovery of novel inhibitors of human 11beta-hydroxysteroid dehydrogenase type 1.

    Science.gov (United States)

    Su, Xiangdong; Vicker, Nigel; Trusselle, Melanie; Halem, Heather; Culler, Michael D; Potter, Barry V L

    2009-03-25

    11beta-Hydroxysteroid dehydrogenases (11beta-HSDs) are key enzymes regulating the pre-receptor metabolism of glucocorticoid hormones, which play essential roles in various vital physiological processes. The modulation of 11beta-HSD type 1 activity with selective inhibitors has beneficial effects on various conditions including insulin resistance, dyslipidemia and obesity. Therefore, inhibition of tissue-specific glucocorticoid action by regulating 11beta-HSD1 constitutes a promising treatment for metabolic and cardiovascular diseases. Here we report the discovery of a series of novel adamantyl carboxamides as selective inhibitors of human 11beta-HSD1 in HEK-293 cells transfected with the HSD11B1 gene. Compounds 9 and 14 show inhibitory activity against 11beta-HSD1 with IC(50) values in 100nM range. Docking studies with the potent compound 8 into the crystal structure of human 11beta-HSD1 (1XU9) reveals how the molecule may interact with the enzyme and cofactor.

  16. Rosiglitazone decreases 11beta-hydroxysteroid dehydrogenase type 1 in subcutaneous adipose tissue.

    Science.gov (United States)

    Mai, Knut; Andres, Janin; Bobbert, Thomas; Maser-Gluth, Christiane; Möhlig, Matthias; Bähr, Volker; Pfeiffer, Andreas F H; Spranger, Joachim; Diederich, Sven

    2007-09-01

    The peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist rosiglitazone increases insulin sensitivity, which, in animal models, is comparable to the effect of a reduction in 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activity. We therefore investigated whether rosiglitazone-induced insulin sensitivity is associated with changes in 11beta-HSD1 activity in different tissues. An oral glucose tolerance test (OGTT) and a euglycaemic hyperinsulinaemic clamp were performed in seven male volunteers [age 59.3 +/- 3.0 years, body mass index (BMI) 29.3 +/- 4.1 kg/m(2)] with impaired glucose tolerance before and after 8 weeks of rosiglitazone treatment. To assess hepatic 11beta-HSD1 activity, serum cortisol levels were measured after oral administration of cortisone acetate. 11beta-HSD1 activity and mRNA expression were assessed in abdominal subcutaneous fat biopsies. Total-body 11beta-HSD activities were estimated by calculating the urinary ratios of glucocorticoid metabolites. As expected, rosiglitazone improved insulin resistance and postprandial hyperglycaemia. In parallel, 11beta-HSD1 mRNA expression [100 +/- 0% (reference) vs. 68.5 +/- 9.3%, P < 0.01] and activity [0.18 +/- 0.02 vs. 0.13 +/- 0.02 pmol/min/mg, P < 0.05] decreased in abdominal subcutaneous fat, while an increase in hepatic 11beta-HSD1 activity was detected [the area under the curve (AUC) for the cortisol/cortisone ratio was 1319 +/- 76 vs. 955 +/- 59; P < 0.05]. No changes in BMI, waist-to-hip ratio (WHR) and whole-body 11beta-HSD1 activity were found. Part of the beneficial effects of rosiglitazone may be mediated by a reduction in the 11beta-HSD1 mRNA expression and activity in subcutaneous abdominal fat.

  17. Delayed diagnosis of congenital adrenal hyperplasia with salt wasting due to type II 3beta-hydroxysteroid dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Johannsen, Trine H; Mallet, Delphine; Dige-Petersen, Harriet

    2005-01-01

    Classical 3beta-hydroxysteroid dehydrogenase (3beta-HSD) deficiency is a rare cause of congenital adrenal hyperplasia. We report two sisters presenting with delayed diagnoses of classical 3beta-HSD, despite salt wasting (SW) episodes in infancy. Sibling 1 was referred for premature pubarche, slight....... There is no previous report of the combination of SW and premature pubarche due to mutations in the type II 3beta-HSD gene. Because neonatal diagnosis could have prevented life-threatening crises in these girls, this report further supports the benefits for neonatal screening for congenital adrenal hyperplasia...

  18. Weight loss after gastric bypass surgery in women is followed by a metabolically favorable decrease in 11beta-hydroxysteroid dehydrogenase 1 expression in subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Simonyte, Kotryna; Olsson, Tommy; Näslund, Ingmar;

    2010-01-01

    The role of 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) in the pathogenesis of obesity has been elucidated in humans and in various rodent models. Obesity is accompanied by disturbances in glucocorticoid metabolism, circulating adipokine levels, and fatty acid (FA) reesterification. This ...

  19. 31. Antioxidant and hypoxia induce the human antioxidant response element-mediated expression of NAD(P) H: quinone oxidoreductase1 gene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Background: NAD(P)H: quinone oxidoreductase 1 (NQO1) is an obligate two-electron reductase that is involved in protection of cells against redox cycling, oxidative stress, and neoplasia. and can also bioactivate certain antitumor quinones. Many antioxidants are cancer chemopreventive agents, and tumour hypoxia are now being exploited in cancer treatment which shows considerable promise to overcome the resistance to cancer chemotherapy. Antioxidant response element (ARE) is sensitive to perturbations of cellular redox states. Our previous studies have shown that β-tyrosol (β-TY), as a phenolic antioxidant, can protects cells against DNA damage resulting from toxic H2O2. Aim: We take the present study with the goal of whether antioxidants such as β-tyrosol, butylated hydroxyanisole(BHA) and β-Naphthooflavone(β-NF) and hypoxia (pO2 0.1% -0.5%) can induce gene expression of NQO1, inhibit proliferation of human hepatoma cells SMMC-7721 and the relationship between them; whether ARE can mediate gene expression in response to antioxidans and hypoxia. Methods: SMMC-7721 human hepatoma cells are planted in plates, grown for 24h. and exposed to antioxidants and hypoxia, each alone or in combination for another 24h. The enzyme activity was determinied by spectrophotometric assay using direct measurement of NQO1 from cells cultured in Microtiter wells. Semi-quantitative reverse transcription-PCR (RT-PCR) technique was used to measure NQO1 mRNA levets. Proliferation was estimated using the crystal violet staining technique. Electrophoretic mobility shift assay (EMSA) was employed to assess protein binding to the ARE under all of These conditions. Hypoxia cells were harvested in an anaerobic chamber at the end of the incubation period. Results: Antioxidant (90ug/ml β-TY、60μmol/L BHA、80μmol/L β-NF) potently induce an increase in the activity of NQO1. From 60μg/ml to 90μg/ml, β-TY caused NQO1 activity enhancement in a dose-dependent manner The NQO1 activity induced

  20. Age-related changes in the expression of 11beta-hydroxysteroid dehydrogenase type 2 in rat Leydig cells.

    Directory of Open Access Journals (Sweden)

    Katerina Georgieva

    2009-12-01

    Full Text Available Previous studies in rats have shown that the ability of Leydig cells (LCs to produce testosterone significantly declines with age. To address the possible mechanisms by which aging LCs lose their steroidogenic function, we determined the effect of aging on the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD type 2. The enzyme plays a protective role in blunting the suppressive effects of glucocorticoids on LCs steroidogenesis. Our immunohistochemical analysis revealed progressive decline in 11beta-HDS type 2 expression in LCs of the 18 months of age rats and the most significant reduction in 11beta-HSD2 immunoreactivity was evident in the testicular interstitium of 24- month-old rats. The decrease in the 11beta-HDS type 2 immunostaining in LCs during aging coincided with decline in insulin-like 3/relaxin-like factor (INSL3/RLF expression, an independent marker for LCs differentiation status. Concomitant with the age-related decrease of 11beta-HDS type 2 immunoreactivity in the LCs population, the immunoexpression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD, marker for LCs steroidogenic activity, was greatly reduced at 24 months compared to 3-month-old control. Similar pattern of expression exhibited also androgen receptor (AR which is localized in the nuclei of Sertoli cells (SCs, LCs, and peritubular cells. During ages we observed progressive decrease in the immunoreactivity for AR in the testicular types and there was a loss of stage specificity in SCs at age of 24 months. It now seems evident that a variety of factors are likely to be involved in age-related decreases in LCs steroidogenesis, including 11beta-HSD type 2. The observed reduction in 11beta-HSD type 2 expression in aging LCs reflects the decline in their protection ability, opposing the suppressive effect of glucocorticoids on testosterone production.

  1. Class-Specific Histone Deacetylase Inhibitors Promote 11-Beta Hydroxysteroid Dehydrogenase Type 2 Expression in JEG-3 Cells

    Directory of Open Access Journals (Sweden)

    Katie L. Togher

    2017-01-01

    Full Text Available Exposure to maternal cortisol plays a crucial role in fetal organogenesis. However, fetal overexposure to cortisol has been linked to a range of short- and long-term adverse outcomes. Normally, this is prevented by the expression of an enzyme in the placenta called 11-beta hydroxysteroid dehydrogenase type 2 (11β-HSD2 which converts active cortisol to its inactive metabolite cortisone. Placental 11β-HSD2 is known to be reduced in a number of adverse pregnancy complications, possibly through an epigenetic mechanism. As a result, a number of pan-HDAC inhibitors have been examined for their ability to promote 11β-HSD2 expression. However, it is not known if the effects of pan-HDAC inhibition are a general phenomenon or if the effects are dependent upon a specific class of HDACs. Here, we examined the ability of pan- and class-specific HDAC inhibitors to regulate 11β-HSD2 expression in JEG3 cells. We find that pan-, class I, or class IIa HDAC inhibition promoted 11β-HSD2 expression and prevented cortisol or interleukin-1β-induced decrease in its expression. These results demonstrate that targeting a specific class of HDACs can promote 11β-HSD2 expression in JEG3 cells. This adds to the growing body of evidence suggesting that HDACs may be crucial in maintaining normal fetal development.

  2. Evidence for distinct dehydrogenase and isomerase sites within a single 3. beta. -hydroxysteroid dehydrogenase/5-ene-4-ene isomerase protein

    Energy Technology Data Exchange (ETDEWEB)

    Luu-The, V.; Takahashi, Masakazu; de Launoit, Y.; Dumont, M.; Lachance, Y.; Labrie, F. (Laval Univ., Quebec City, Quebec (Canada))

    1991-09-10

    Complementary DNA encoding human 3{beta}-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3-{beta}-HSD) has been expressed in transfected GH{sub 4}C{sub 1} with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of ({sup 3}H)-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3{beta}-HSD, the present study shows that 4MA (N,N-diethyl-4-methyl-3-oxo-4-aza-5{alpha}-androstane-17{beta}-carboxamide) and its analogues of 5-androstenedione to 4-androstenedione with an approximately 1,000-fold higher K{sub i} value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3-{beta}-HSD protein. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration.

  3. Glucocorticoid-mediated effects on metabolism are reversed by targeting 11 beta hydroxysteroid dehydrogenase type 1 in human skeletal muscle.

    Science.gov (United States)

    Salehzadeh, Firoozeh; Al-Khalili, Lubna; Kulkarni, Sameer S; Wang, Minghan; Lönnqvist, Fredrik; Krook, Anna

    2009-03-01

    Adipose tissue and liver play important roles in mediating the metabolic actions of glucocorticoids. However, the effects of glucocorticoids on glucose and lipid metabolism in skeletal muscle are not understood completely. Intracellular glucocorticoid action is dependent on 11 beta-hydroxysteroid dehydrogenase 1 (HSD1), an enzyme that converts cortisone to active cortisol. We investigated the direct role of HSD1 in cultured primary human skeletal muscle cells using siRNA and pharmacological inhibitors of the enzyme. Primary human skeletal muscle cells were cultured in the presence of 0.5 microM cortisone or 0.5 microM cortisol for eight days. siRNA was utilized to reduce expression of either HSD1 or pyruvate dehydrogenase kinase (PDK) 4. Effects of pharmacological inhibitors of HSD1 were also studied. Exposure to cortisone or cortisol decreased basal glucose uptake and glucose incorporation into glycogen, but was without effect on the insulin-stimulated response. Glucocorticoid exposure increased palmitate oxidation, as well as the expression of PDK4. siRNA-mediated reduction or pharmacological inhibition of HSD1 prevented the effects of cortisone, but not cortisol, on metabolic responses. siRNA-mediated reduction of PDK4 prevented the effect of cortisol to attenuate glycogen synthesis. Targeted reduction or pharmacological inhibition of HSD1 in primary human skeletal muscle cells prevents the effects of cortisone, but not cortisol, on glucose metabolism and palmitate oxidation. Furthermore, the glucocorticoid-mediated reductions in glucose metabolism are dependent on PDK4.

  4. Estrogen reduces 11beta-hydroxysteroid dehydrogenase type 1 in liver and visceral, but not subcutaneous, adipose tissue in rats.

    Science.gov (United States)

    Andersson, Therése; Söderström, Ingegerd; Simonyté, Kotryna; Olsson, Tommy

    2010-03-01

    Following menopause, body fat is redistributed from peripheral to central depots. This may be linked to the age related decrease in estrogen levels. We hypothesized that estrogen supplementation could counteract this fat redistribution through tissue-specific modulation of glucocorticoid exposure. We measured fat depot masses and the expression and activity of the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) in fat and liver of ovariectomized female rats treated with or without 17beta-estradiol. 11betaHSD1 converts inert cortisone, or 11-dehydrocorticosterone in rats into active cortisol and corticosterone. Estradiol-treated rats gained less weight and had significantly lower visceral adipose tissue weight than nontreated rats (P adipose weight was unaltered. In addition, 11betaHSD1 activity/expression was downregulated in liver and visceral, but not subcutaneous, fat of estradiol-treated rats (P adipose tissue depots, with higher levels in subcutaneous than visceral adipose tissue of estradiol-treated animals (P effects on tissue-specific glucocorticoid metabolism, suggesting that estrogen replacement therapy could influence obesity related morbidity in postmenopausal women.

  5. Distinct effect of stress on 11beta-hydroxysteroid dehydrogenase type 1 and corticosteroid receptors in dorsal and ventral hippocampus.

    Science.gov (United States)

    Ergang, P; Kuželová, A; Soták, M; Klusoňová, P; Makal, J; Pácha, J

    2014-01-01

    Multiple lines of evidence suggest the participation of the hippocampus in the feedback inhibition of the hypothalamus-pituitary-adrenal axis during stress response. This inhibition is mediated by glucocorticoid feedback due to the sensitivity of the hippocampus to these hormones. The sensitivity is determined by the expression of glucocorticoid (GR) and mineralocorticoid (MR) receptors and 11beta-hydroxysteroid dehydrogenase type 1 (11HSD1), an enzyme that regulates the conversion of glucocorticoids from inactive to active form. The goal of our study was to assess the effect of stress on the expression of 11HSD1, GR and MR in the ventral and dorsal region of the CA1 hippocampus in three different rat strains with diverse responses to stress: Fisher 344, Lewis and Wistar. Stress stimulated 11HSD1 in the ventral but not dorsal CA1 hippocampus of Fisher 344 but not Lewis or Wistar rats. In contrast, GR expression following stress was decreased in the dorsal but not ventral CA1 hippocampus of all three strains. MR expression was not changed in either the dorsal or ventral CA1 region. These results indicate that (1) depending on the strain, stress stimulates 11HSD1 in the ventral hippocampus, which is known to be involved in stress and emotion reactions whereas (2) independent of strain, stress inhibits GR in the dorsal hippocampus, which is predominantly involved in cognitive functions.

  6. Discovery of adamantyl ethanone derivatives as potent 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) inhibitors.

    Science.gov (United States)

    Su, Xiangdong; Pradaux-Caggiano, Fabienne; Thomas, Mark P; Szeto, Michelle W Y; Halem, Heather A; Culler, Michael D; Vicker, Nigel; Potter, Barry V L

    2010-07-05

    11Beta-hydroxysteroid dehydrogenases (11beta-HSDs) are key enzymes regulating the pre-receptor metabolism of glucocorticoid hormones. The modulation of 11beta-HSD type 1 activity with selective inhibitors has beneficial effects on various conditions including insulin resistance, dyslipidemia and obesity. Inhibition of tissue-specific glucocorticoid action by regulating 11beta-HSD1 constitutes a promising treatment for metabolic and cardiovascular diseases. A series of novel adamantyl ethanone compounds was identified as potent inhibitors of human 11beta-HSD1. The most active compounds identified (52, 62, 72, 92, 103 and 104) display potent inhibition of 11beta-HSD1 with IC(50) values in the 50-70 nM range. Compound 72 also proved to be metabolically stable when incubated with human liver microsomes. Furthermore, compound 72 showed very weak inhibitory activity for human cytochrome P450 enzymes and is therefore a candidate for in vivo studies. Comparison of the publicly available X-ray crystal structures of human 11beta-HSD1 led to docking studies of the potent compounds, revealing how these molecules may interact with the enzyme and cofactor.

  7. Intense physical exercise increases systemic 11beta-hydroxysteroid dehydrogenase type 1 activity in healthy adult subjects.

    Science.gov (United States)

    Dovio, Andrea; Roveda, Eliana; Sciolla, Chiara; Montaruli, Angela; Raffaelli, Andrea; Saba, Alessandro; Calogiuri, Giovanna; De Francia, Silvia; Borrione, Paolo; Salvadori, Piero; Carandente, Franca; Angeli, Alberto

    2010-03-01

    Intense physical exercise activates the hypothalamic-pituitary-adrenocortical axis but little is known about changes in glucocorticoid sensitivity at the target cell level. No data are available on the acute effects of exercise on 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 activity, which generates biologically active cortisol from inactive cortisone and is expressed also in skeletal muscle. Fifteen healthy, trained males (age mean +/- SE 28 +/- 1) were assessed on three non-consecutive days: at rest, during an endurance and strength sessions. During each session, between 1000 and 1600 hours, 6-h urine and four salivary samples were collected. Urinary total tetrahydrocortisol (THF) + alloTHF, tetrahydrocortisone (THE), cortisol (F) and cortisone (E) were measured with HPLC-tandem mass spectrometry; urinary-unconjugated F and E were measured by HPLC-UV. Salivary cortisol and interleukin (IL)-6 were measured by RIA and ELISA, respectively. Both endurance and strength exercises caused an increase in (THF + alloTHF)/THE ratio (mean +/- SE 1.90 +/- 0.07 and 1.82 +/- 0.05 vs. 1.63 +/- 0.06, P < 0.01 and P = 0.03, respectively), consistent with increased systemic 11beta-HSD type 1 activity. No relationship was found with age, BMI, VO(2max) maximal power load or perceived exertion. No significant change was apparent in F/E ratio, an index of 11beta-HSD type 2 activity. No effect of exercise on salivary cortisol and IL-6 was observed, whereas a significant effect of sampling time was found. Intense physical exercise acutely increases systemic 11beta-HSD type 1 activity in humans. Such an increase may lead to higher cortisol concentration in target tissues, notably in skeletal muscle where it could contribute to limit exercise-induced muscle inflammatory response.

  8. 11Beta-hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth restriction.

    Science.gov (United States)

    Shams, M; Kilby, M D; Somerset, D A; Howie, A J; Gupta, A; Wood, P J; Afnan, M; Stewart, P M

    1998-04-01

    The type 2 isoform of 11beta-hydroxysteroid dehydrogenase (11beta-HSD2), which inactivates cortisol (F) to cortisone (E), has been suggested to play a role in the ontogeny of the fetal pituitary-adrenal axis and also protect the developing fetus from the deleterious effects of circulating maternal glucocorticoids. The abundance of 11beta-HSD2 in the placenta and other fetal tissues was inferred from the F/E ratio in 17 term deliveries in both umbilical arterial (1.73 +/- 0.24, mean +/- SE) and umbilical venous blood (1.16 +/- 0.14) compared with adult peripheral venous blood (7.76 +/- 0.57, n = 70). Using sensitive assays for 11beta-HSD2 and an in-house human 11beta-HSD2 antibody, the expression and activity of this enzyme in fresh frozen human placenta increased progressively from first (8-12 weeks, n = 16) and second (13-20 weeks, n = 9) to third trimester (term) pregnancies (39-40 weeks, n = 50). Placental 11beta-HSD2 activity was significantly reduced in deliveries complicated by intrauterine growth restriction (IUGR) [25-36 weeks, n = 12, activity 380 pmol/mg/h median (225-671; 95% confidence interval)], compared with the term deliveries [888 (725-1362)] and with appropriately grown pre-term deliveries [27-36 weeks, n = 14, activity 810 (585-1269)], P < 0.05. In human pregnancy placental 11beta-HSD2 activity increases markedly in the third trimester of pregnancy at a time when maternal circulating levels of glucocorticoid are rising. The finding of attenuated placental 11beta-HSD2 activity in IUGR suggests that glucocorticoids may, in part, contribute to impaired fetal growth and that this is closely controlled in normal gestation through placental 11beta-HSD2 expression.

  9. Species used for drug testing reveal different inhibition susceptibility for 17beta-hydroxysteroid dehydrogenase type 1.

    Directory of Open Access Journals (Sweden)

    Gabriele Möller

    Full Text Available Steroid-related cancers can be treated by inhibitors of steroid metabolism. In searching for new inhibitors of human 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD 1 for the treatment of breast cancer or endometriosis, novel substances based on 15-substituted estrone were validated. We checked the specificity for different 17beta-HSD types and species. Compounds were tested for specificity in vitro not only towards recombinant human 17beta-HSD types 1, 2, 4, 5 and 7 but also against 17beta-HSD 1 of several other species including marmoset, pig, mouse, and rat. The latter are used in the processes of pharmacophore screening. We present the quantification of inhibitor preferences between human and animal models. Profound differences in the susceptibility to inhibition of steroid conversion among all 17beta-HSDs analyzed were observed. Especially, the rodent 17beta-HSDs 1 were significantly less sensitive to inhibition compared to the human ortholog, while the most similar inhibition pattern to the human 17beta-HSD 1 was obtained with the marmoset enzyme. Molecular docking experiments predicted estrone as the most potent inhibitor. The best performing compound in enzymatic assays was also highly ranked by docking scoring for the human enzyme. However, species-specific prediction of inhibitor performance by molecular docking was not possible. We show that experiments with good candidate compounds would out-select them in the rodent model during preclinical optimization steps. Potentially active human-relevant drugs, therefore, would no longer be further developed. Activity and efficacy screens in heterologous species systems must be evaluated with caution.

  10. Characterisation of 11beta-hydroxysteroid dehydrogenase 1 in human orbital adipose tissue: a comparison with subcutaneous and omental fat.

    Science.gov (United States)

    Bujalska, Iwona J; Durrani, Omar M; Abbott, Joseph; Onyimba, Claire U; Khosla, Pamela; Moosavi, Areeb H; Reuser, Tristan T Q; Stewart, Paul M; Tomlinson, Jeremy W; Walker, Elizabeth A; Rauz, Saaeha

    2007-02-01

    Glucocorticoids (GCs) have a profound effect on adipose biology increasing tissue mass causing central obesity. The pre-receptor regulation of GCs by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) that activates cortisol from cortisone has been postulated as a fundamental mechanism underlying the metabolic syndrome mediating adipocyte hyperplasia and hypertrophy in the omental (OM) depot. Orbital adipose tissue (OF) is the site of intense inflammation and tissue remodelling in several orbital inflammatory disease states. In this study, we describe features of the GC metabolic pathways in normal human OF depot and compare it with subcutaneous (SC) and OM depots. Using an automated histological characterisation technique, OF adipocytes were found to be significantly smaller (parameters: area, maximum diameter and perimeter) than OM and SC adipocytes (P<0 x 001). Although immunohistochemical analyses demonstrated resident CD68+ cells in all three whole tissue adipose depots, OF CD68 mRNA and protein expression exceeded that of OM and SC (mRNA, P<0 x 05; protein, P<0 x 001). In addition, there was higher expression of glucocorticoid receptor (GR)alpha mRNA in the OF whole tissue depot (P<0 x 05). Conversely, 11beta-HSD1 mRNA together with the markers of late adipocyte differentiation (FABP4 and G3PDH) were significantly lower in OF. Primary cultures of OF preadipocytes demonstrated predominant 11beta-HSD1 oxo-reductase activity with minimal dehydrogenase activity. Orbital adipocytes are smaller, less differentiated, and express low levels of 11beta-HSD1 but abundant GRalpha compared with SC and OM. OF harbours a large CD68+ population. These characteristics define an orbital microenvironment that has the potential to respond to sight-threatening orbital inflammatory disease.

  11. Testosterone stimulates adipose tissue 11beta-hydroxysteroid dehydrogenase type 1 expression in a depot-specific manner in children.

    Science.gov (United States)

    Zhu, Lijun; Hou, Miao; Sun, Bin; Burén, Jonas; Zhang, Li; Yi, Jun; Hernell, Olle; Li, Xiaonan

    2010-07-01

    Activation of the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in adipose tissue results in the production of excess tissue glucocorticoids and the induction of adiposity and visceral obesity in particular. Androgens may affect body fat distribution by regulating the local metabolism of cortisol. Our objective was to study 11beta-HSD1 mRNA expression in abdominal sc and omental (om) adipose tissue in children after in vitro testosterone and cortisol treatment. Paired fat biopsies (sc and om) were obtained from 19 boys (age 6-14 yr, body mass index 14.6-25.3 kg/m(2), BMI sd score SDS -1.6-3.1) undergoing open abdominal surgery. Pieces of adipose tissue were incubated with testosterone, cortisol, or both hormones for 24 h, whereupon mRNA expression of 11beta-HSD1 and hexose-6-phosphate dehydrogenase (H6PDH) were measured by real-time PCR, and 11beta-HSD1 enzyme activity was determined. Testosterone treatment up-regulated 11beta-HSD1 mRNA expression compared with control incubations in the absence of testosterone (P tissue. Testosterone and cortisol both increased 11beta-HSD1 mRNA expression in om but not sc adipose tissue in a depot-specific manner by 2.5- and 2.9-fold, respectively (P effect of the two hormones. 11beta-HSD1 enzyme activity correlated positively to mRNA expression (r = 0.610; P = 0.001). Adipose tissue mRNA expression of H6PDH was affected in a similar fashion to 11beta-HSD1 after hormonal treatment. Testosterone and cortisol stimulated 11beta-HSD1 and H6PDH mRNA expression and 11beta-HSD1 activity in om but not in sc adipose tissue. This suggests that these hormones may contribute to fat distribution and accumulation during childhood.

  12. Acute in vivo regulation of 11beta-hydroxysteroid dehydrogenase type 1 activity by insulin and intralipid infusions in humans.

    Science.gov (United States)

    Wake, Deborah J; Homer, Natalie Z M; Andrew, Ruth; Walker, Brian R

    2006-11-01

    Extraadrenal regeneration of cortisol by 11beta-hydroxysteroid dehydrogenase type 1 (11HSD1) is increased after a mixed meal. It is unknown which tissue is responsible and whether this reflects the complex transcriptional control of 11HSD1 or posttranscriptional control exerted by supply of reduced nicotinamide adenine dinucleotide phosphate from hexose-6-phosphate dehydrogenase. The objective of this study was to test whether hyperinsulinemia and/or increased serum free fatty acids increase whole-body and intraadipose 11HSD1, and whether adipose 11HSD1 switches from dehydrogenase to reductase activity. In nine healthy men, we measured whole-body cortisol regeneration (by iv infusion of 9,11,12,12-[2H]4 -cortisol) and intra-adipose interconversion of cortisol and cortisone (by sc microdialysis infusion of [3H]4 -cortisol and [3H]2 -cortisone in separate cannulae) during: 1) a hyperinsulinemic euglycemic clamp; 2) iv lipid infusion (Intralipid 20% fat emulsion); and 3) saline infusion, each for 3.5 h. Hyperinsulinemia increased rate of appearance of 9,12,12-[2H]3 -cortisol (19.3 +/- 0.8 vs. 16.7 +/- 1.1 nmol/min with saline, P adipose, the predominant reaction was reductase conversion of cortisone to cortisol (after 3.5 h of saline infusion, reaching 11.0 +/- 2.7% per hour reductase vs. 5.2 +/- 1.3 dehydrogenase, P effects on whole-body deuterated cortisol metabolism, but increased both dehydrogenase and reductase (reaching 16.7 +/- 1.8, P adipose. Hyperinsulinemia and increased free fatty acids induce acute increases in 11HSD1 activity in adipose tissue that are not attributable to a switch from dehydrogenase to reductase. Hyperinsulinemia also increases systemic cortisol regeneration. These effects may enhance intracellular cortisol concentrations after a meal.

  13. Tissue-specific increases in 11beta-hydroxysteroid dehydrogenase type 1 in normal weight postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Therése Andersson

    Full Text Available With age and menopause there is a shift in adipose distribution from gluteo-femoral to abdominal depots in women. Associated with this redistribution of fat are increased risks of type 2 diabetes and cardiovascular disease. Glucocorticoids influence body composition, and 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1 which converts inert cortisone to active cortisol is a putative key mediator of metabolic complications in obesity. Increased 11betaHSD1 in adipose tissue may contribute to postmenopausal central obesity. We hypothesized that tissue-specific 11betaHSD1 gene expression and activity are up-regulated in the older, postmenopausal women compared to young, premenopausal women. Twenty-three pre- and 23 postmenopausal, healthy, normal weight women were recruited. The participants underwent a urine collection, a subcutaneous adipose tissue biopsy and the hepatic 11betaHSD1 activity was estimated by the serum cortisol response after an oral dose of cortisone. Urinary (5alpha-tetrahydrocortisol+5beta-tetrahydrocortisol/tetrahydrocortisone ratios were higher in postmenopausal women versus premenopausal women in luteal phase (P<0.05, indicating an increased whole-body 11betaHSD1 activity. Postmenopausal women had higher 11betaHSD1 gene expression in subcutaneous fat (P<0.05. Hepatic first pass conversion of oral cortisone to cortisol was also increased in postmenopausal women versus premenopausal women in follicular phase of the menstrual cycle (P<0.01, at 30 min post cortisone ingestion, suggesting higher hepatic 11betaHSD1 activity. In conclusion, our results indicate that postmenopausal normal weight women have increased 11betaHSD1 activity in adipose tissue and liver. This may contribute to metabolic dysfunctions with menopause and ageing in women.

  14. Inhibition of human and rat 11beta-hydroxysteroid dehydrogenase type 1 by 18beta-glycyrrhetinic acid derivatives.

    Science.gov (United States)

    Su, Xiangdong; Vicker, Nigel; Lawrence, Harshani; Smith, Andrew; Purohit, Atul; Reed, Michael J; Potter, Barry V L

    2007-05-01

    11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) plays an important role in regulating the cortisol availability to bind to corticosteroid receptors within specific tissue. Recent advances in understanding the molecular mechanisms of metabolic syndrome indicate that elevation of cortisol levels within specific tissues through the action of 11beta-HSD1 could contribute to the pathogenesis of this disease. Therefore, selective inhibitors of 11beta-HSD1 have been investigated as potential treatments for metabolic diseases, such as diabetes mellitus type 2 or obesity. Here we report the discovery and synthesis of some 18beta-glycyrrhetinic acid (18beta-GA) derivatives (2-5) and their inhibitory activities against rat hepatic11beta-HSD1 and rat renal 11beta-HSD2. Once the selectivity over the rat type 2 enzyme was established, these compounds' ability to inhibit human 11beta-HSD1 was also evaluated using both radioimmunoassay (RIA) and homogeneous time resolved fluorescence (HTRF) methods. The 11-modified 18beta-GA derivatives 2 and 3 with apparent selectivity for rat 11beta-HSD1 showed a high percentage inhibition for human microsomal 11beta-HSD1 at 10 microM and exhibited IC50 values of 400 and 1100 nM, respectively. The side chain modified 18beta-GA derivatives 4 and 5, although showing selectivity for rat 11beta-HSD1 inhibited human microsomal 11beta-HSD1 with IC50 values in the low micromolar range.

  15. In vivo activity of 11beta-hydroxysteroid dehydrogenase type 1 and free fatty acid-induced insulin resistance.

    Science.gov (United States)

    Mai, K; Kullmann, V; Bobbert, T; Maser-Gluth, C; Möhlig, M; Bähr, V; Pfeiffer, A F H; Spranger, J; Diederich, S

    2005-10-01

    Free fatty acids (FFAs) induce hepatic insulin resistance and enhance hepatic gluconeogenesis. Glucocorticoids (GCs) also stimulate hepatic gluconeogenesis. The aim of this study was to investigate whether the FFA-induced hepatic insulin resistance is mediated by increased activity of hepatic 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), accompanied by elevated hepatic cortisol levels. Following a 10-h overnight fast, six healthy male volunteers were investigated. A euglycaemic hyperinsulinaemic clamp was performed during lipid or saline infusion. To assess hepatic 11beta-HSD1 activity, plasma cortisol levels were measured after oral administration of cortisone acetate during lipid or saline infusion. In addition, 11beta-HSD activities were determined in vivo by calculating the urinary ratios of GC metabolites. Lipid infusion increased FFAs (5.41 +/- 1.00 vs. 0.48 +/- 0.20 mmol/l; P < 0.005) and significantly increased insulin resistance [glucose infusion rate (GIR) 6.02 +/- 2.60 vs. 4.08 +/- 2.15 mg/kg/min; P < 0.005]. After lipid and saline infusions no changes in 11beta-HSD1 activity were found, neither by changes in cortisone acetate to cortisol conversion nor by differences in urinary free cortisol (UFF) or cortisone (UFE), 5beta-tetrahydrocortisol (THF), 5alpha-THF, cortisone (THE), UFF/UFE and (5alpha-THF + THF)/THE ratios. We found no change in hepatic and whole-body 11beta-HSD1 activity during acute FFA-induced insulin resistance. Further studies are necessary to clarify whether 11beta-HSD1 in muscle and adipose tissue is influenced by FFAs and whether 11beta-HSD1 is involved in other conditions of insulin resistance.

  16. Glucocorticoids, feto-placental 11 beta-hydroxysteroid dehydrogenase type 2, and the early life origins of adult disease.

    Science.gov (United States)

    Seckl, J R

    1997-01-01

    Increasing human epidemiological data suggest that events that subtly retard intrauterine growth may determine common disorders, such as hypertension and non-insulin-dependent diabetes, in adult life. The underlying mechanisms are unknown. However, excessive fetal exposure to glucocorticoids retards growth and "programs" adult hypertension in rats. 11 beta-Hydroxysteroid dehydrogenase type 2 (11 beta-HSD2) catalyzes the rapid inactivation of cortisol and corticosterone to inert 11 keto-products. Normally, 11 beta-HSD2 in the placenta and some fetal tissues is thought to protect the fetus from excess maternal glucocorticoids. In both rats and humans there is considerable natural variation in placental 11 beta-HSD2, and enzyme activity correlates with birth weight. Moreover, inhibition of feto-placental 11 beta-HSD2 in the rat reduces birth weight and produces hypertensive and hyperglycaemic adult offspring, many months after prenatal treatment; effects are dependent upon intact maternal adrenals, suggesting a direct action on the fetus or placenta. Maternal protein restriction during pregnancy also produces hypertensive offspring and selectively attenuates placental 11 beta-HSD2 activity. These data suggest that feto-placental 11 beta-HSD2, by regulating fetal exposure to maternal glucocorticoids, crucially determines fetal growth and the programming of later disorders. Deficiency of the barrier to maternal glucocorticoids may represent a common pathway between the maternal environment and feto-placental programming of later disease. These data may, at least in part, explain the human observations linking early life events to the risk of subsequent disease.

  17. Evaluation of hepatic 11 beta-hydroxysteroid dehydrogenase activity by cortisone acetate test in young adults with diabetes mellitus type 1.

    Science.gov (United States)

    Šimůnková, K; Hampl, R; Hill, M; Kříž, L; Vrbíková, J; Kvasničková, H; Vondra, K

    2011-01-01

    Cortisone acetate test was performed in twelve young adult patients with diabetes mellitus type 1, after dexamethasone administration to suppress endogenous cortisol production. Previous screening revealed that all of the subjects had peak cortisol responses in the range from subnormal to normal, as determined by a low-dose Synacthen test. The aim was to find out whether these patients would exhibit different conversion of cortisone to cortisol by 11beta-hydroxysteroid dehydrogenase. Using multifactorial ANOVA the following significant relationships were obtained between cortisol or cortisol/cortisone ratio measured during the test and other parameters examined a) before dexamethasone suppression and b) during the test: a) Cortisol at 120(th) minute negatively correlated with daily insulin dose and positively with basal aldosterone. Cortisol/cortisone ratio at 60(th), 120(th), 180(th), and 240(th) minute negatively correlated with basal aldosterone/plasma renin activity ratio, urinary free cortisol/24 hours and positively with basal dehydroepindrosterone sulphate. b) Cortisol at 120(th) minute negatively correlated with suppressed basal serum glycemia; cortisol/cortisone ratio during the whole test negatively correlated with supressed basal ACTH. The examination of peripheral metabolism of cortisol using cortisone acetate test in patients with diabetes mellitus type 1 showed adaptive changes of 11beta-hydroxysteroid dehydrogenace activity associated with altered cortisol tissue supply.

  18. Lack of relationship between 11 beta-hydroxysteroid dehydrogenase setpoint and insulin sensitivity in the basal state and after 24h of insulin infusion in healthy subjects and type 2 diabetic patients

    NARCIS (Netherlands)

    Kerstens, MN; Riemens, SC; Sluiter, WJ; Pratt, JJ; Wolthers, BG; Dullaart, RPF

    OBJECTIVES To test whether insulin resistance in type 2 diabetes mellitus is associated with an altered overall setpoint of the 11 beta-hydroxysteroid dehydrogenase (11 beta HSD) mediated cortisol to cortisone interconversion towards cortisol, and to evaluate whether changes in insulin sensitivity

  19. Effect of sodium fluoride on adrenal gland of rabbit. I. Studies on ascorbic acid and delta 5-3beta hydroxysteroid dehydrogenase activity

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K.; Susheela, A.K.

    1979-04-01

    Rabbits were given 50 mg sodium fluoride/kg body weight through the intragastric route every 24 hours for a total period of 200 days. The left adrenal gland was removed and its total weight recorded. Adrenal glands from rabbits sacrificed at varying intervals for other investigative purposes were also collected and their weights recorded. The data indicate a significant rise in the total weight of the gland. Both ascorbic acid and steroid dehydrogenase (Delta 5-3Beta hydroxysteroid dehydrogenase) were localized in the adrenal gland by histochemical methods. The results indicate that, in rabbits exposed to NaF, a reduction in ascorbic acid content as well as a depletion of steroid dehydrogenase activity occurs especially at the zona glomerulosa. The significance of the increase in weight of the gland to the reduction of the ascorbic acid content and steroid dehydrogenase activity is discussed. 15 references, 4 figures.

  20. Dehydroepiandrosterone affects the expression of multiple genes in rat liver including 11 beta-hydroxysteroid dehydrogenase type 1: a cDNA array analysis.

    Science.gov (United States)

    Gu, Shi; Ripp, Sharon L; Prough, Russell A; Geoghegan, Thomas E

    2003-03-01

    Dehydroepiandrosterone (DHEA) is a C-19 adrenal steroid precursor to the gonadal steroids. In humans, circulating levels of DHEA, as its sulfated conjugate, are high at puberty and throughout early adulthood but decline with age. Dietary supplementation to maintain high levels of DHEA purportedly has beneficial effects on cognitive memory, the immune system, and fat and carbohydrate metabolism. In rodents, DHEA is a peroxisome proliferator that induces genes for the classical peroxisomal and microsomal enzymes associated with this response. These effects are mediated through activation of peroxisome proliferator-activated receptor alpha (PPAR alpha). However, DHEA can affect the expression of genes independently of PPAR alpha, including the gene for the major inducible drug and xenobiotic metabolizing enzyme, cytochrome P450 3A23. To elucidate the biochemistry associated with DHEA treatment, we employed a cDNA gene expression array using liver RNA from rats treated with DHEA or the classic peroxisome proliferator nafenopin. Principal components analysis identified 30 to 35 genes whose expression was affected by DHEA and/or nafenopin. Some were genes previously identified as PPAR-responsive genes. Changes in expression of several affected genes were verified by quantitative reverse transcriptase-polymerase chain reaction. These included aquaporin 3, which was induced by DHEA and to a lesser extent nafenopin, nuclear tyrosine phosphatase, which was induced by both agents, and 11 beta-hydroxysteroid dehydrogenase 1, which was decreased by treatment with DHEA in a dose-dependent fashion. Regulation of 11 beta-hydroxysteroid dehydrogenase 1 expression is important since the enzyme is believed to amplify local glucocorticoid signaling, and its repression may cause some of the metabolic effects associated with DHEA.

  1. Replacement of Tyr50 stacked on the si-face of the isoalloxazine ring of the flavin adenine dinucleotide prosthetic group modulates Bacillus subtilis ferredoxin-NADP(+) oxidoreductase activity toward NADPH.

    Science.gov (United States)

    Seo, Daisuke; Naito, Hiroshi; Nishimura, Erika; Sakurai, Takeshi

    2015-08-01

    Ferredoxin-NAD(P)(+) oxidoreductases ([EC 1.18.1.2], [EC 1.18.1.3], FNRs) from green sulfur bacteria, purple non-sulfur bacteria and most of Firmicutes, such as Bacillus subtilis (BsFNR) are homo-dimeric flavoproteins homologous to bacterial NADPH-thioredoxin reductase. These FNRs contain two unique aromatic residues stacked on the si- and re-face of the isoalloxazine ring moiety of the FAD prosthetic group whose configurations are often found among other types of flavoproteins including plant-type FNR and flavodoxin, but not in bacterial NADPH-thioredoxin reductase. To investigate the role of the si-face Tyr50 residue in BsFNR, we replaced Tyr50 with Gly, Ser, and Trp and examined its spectroscopic properties and enzymatic activities in the presence of NADPH and ferredoxin (Fd) from B. subtilis (BsFd). The replacement of Tyr50 to Gly (Y50G), Ser (Y50S), and Trp (Y50W) in BsFNR resulted in a blue shift of the FAD transition bands. The Y50G and Y50S mutations enhanced the FAD fluorescence emission, whereas those of the wild type and Y50W mutant were quenched. All three mutants decreased thermal stabilities compared to wild type. Using a diaphorase assay, the k cat values for the Y50G and Y50S mutants in the presence of NADPH and ferricyanide were decreased to less than 5 % of the wild type activity. The Y50W mutant retained approximately 20 % reactivity in the diaphorase assay and BsFd-dependent cytochrome c reduction assay relative to wild type. The present results suggest that Tyr50 modulates the electronic properties and positioning of the prosthetic group.

  2. Estrogen receptors (alpha and beta) and 17beta-hydroxysteroid dehydrogenase type 1 and 2 in thyroid disorders: possible in situ estrogen synthesis and actions.

    Science.gov (United States)

    Kawabata, Wakako; Suzuki, Takashi; Moriya, Takuya; Fujimori, Keisei; Naganuma, Hiroshi; Inoue, Satoshi; Kinouchi, Yositaka; Kameyama, Kaori; Takami, Hiroshi; Shimosegawa, Tooru; Sasano, Hironobu

    2003-05-01

    Both epidemiological and experimental findings suggest the possible roles of sex steroids in the pathogenesis and/or development of various human thyroid disorders. In this study, we evaluated the expression of estrogen receptors (ER) alpha and beta in normal thyroid glands (N = 25; female: n = 13, male: n = 10, unknown: n = 2) ranging in age from fetus to adult. Furthermore, using immunohistochemistry, we investigated the expression of ERalpha and beta in 206 cases of thyroid disorders, including 24 adenomatous goiters, 23 follicular adenomas, and 159 thyroid carcinomas. In addition, we also studied the mRNA expression of ERalpha and beta and 17beta-hydroxysteroid dehydrogenase Type 1 and 2, enzymes involved in the interconversion between estrone and estradiol, using reverse transcription polymerase chain reaction (RT-PCR), in 48 of these 206 cases (10 adenomatous goiters, 10 follicular adenomas, and 28 papillary thyroid carcinomas) in which fresh frozen tissues were available for examination to further elucidate the possible involvement of intracrine estrogen metabolism and/or actions in thyroid disorders. ERalpha labeling index, or percentage of cells immunopositive for ERalpha, was significantly higher in adenomatous goiter (14.2 +/- 6.4), follicular adenoma (13.4 +/- 5.1), and thyroid carcinoma (16.4 +/- 2.1) than in normal thyroid gland (0; P thyroid glands. In papillary carcinoma, ERalpha labeling index was significantly higher in premenopausal women (28.1 +/- 4.5) than in postmenopausal women (14.2 +/- 2.9) and in men of various ages (7.6 +/- 2.7; P thyroid carcinoma, no significant correlations were detected. ERbeta immunoreactivity was detected in both follicular and C-cells of normal thyroid glands, including those in developing fetal thyroid glands. In addition, ERbeta immunoreactivity was detected in the nuclei of various thyroid lesions. But no significant correlations were detected between ERbeta labeling index and clinicopathological findings

  3. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP⁺-oxidoreductase (FNR) enzymes in vitro

    National Research Council Canada - National Science Library

    Iftach Yacoby; Sergii Pochekailov; Hila Toporik; Maria L. Ghirardi; Paul W. King; Shuguang Zhang

    2011-01-01

    .... To elucidate the basis for competition, we bioengineered a ferredoxin-hydrogenase fusion and characterized hydrogen production kinetics in the presence of Fd, ferredoxin:NADP⁺-oxidoreductase (FNR), and NADP...

  4. Persistent hypokalemia after successful adrenalectomy in a patient with Cushing's syndrome due to ectopic ACTH secretion: possible role of 11beta-hydroxysteroid dehydrogenase inhibition.

    Science.gov (United States)

    Arteaga, E; Fardella, C; Campusano, C; Cárdenas, I; Martinez, P

    1999-12-01

    Ectopic ACTH secretion is characterized by a high incidence of hypokalemia. The pathophysiology of hypokalemia has not been totally clarified, although it has been postulated that excessive amounts of adrenal steroids may play a role, as well as a possible role of the inhibition of the enzyme 11beta-hydroxysteroid dehydrogenase (11beta-OHSD). This enzyme normally converts cortisol to cortisone avoiding the mineralocorticoid action of cortisol. We present a patient with ectopic ACTH secretion due to a metastatic carcinoid tumor. The clinical picture was characterized by maintained hypokalemia (1.4 mmol/l) resistant to potassium, spironolactone and ketoconazole administration. A bilateral adrenalectomy was performed but the hypokalemia persisted while he was receiving a physiological dose of cortisol. Eight days after adrenalectomy cortisol was replaced by an equivalent dose of dexamethasone. This change was followed by a rapid and persistent normalization of hypokalemia suggesting a mineralocorticoid effect of cortisol. In conclusion, the origin of hypokalemia in our patient with ectopic ACTH secretion was secondary to cortisol. We postulate that this peculiar effect of cortisol could have happened if an inhibition of 11beta-OHSD occurred.

  5. Role of 11-beta-hydroxysteroid dehydrogenase type 1 in differentiation of 3T3-L1 cells and in rats with diet-induced obesity

    Institute of Scientific and Technical Information of China (English)

    Yun LIU; Wen-lan SUN; Yan SUN; Gang HU; Guo-xian DING

    2006-01-01

    Aim: To observe the roles of 11-beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in in vitro preadipocyte differentiation and in rats with diet-induced obesity (DIO). Methods: Protein expression of 11β-HSD1 in the process of 3T3-L1 cell differentiation and in various tissues of the rats were detected by Western blot analysis; expression of 11β-HSD1 mRNA and glucocorticoid receptor (GR) and other marker genes of preadipocyte differentiation were detected by using real-time PCR. Results: Lipid droplets in 3T3-L1 cells accumulated and increased after stimulation. A dramatically elevated protein level of 11β-HSD1, especially in the late stages of 3T3-L1 cell differentiation, was detected. The relative mRNA levels of 11β-HSD1, GR and cell differentiation markers LPL, aP2, and FAS were upregulated, and Pref-1 was downregulated during the differentiation. In DIO rats, bodyweight, visceral adipose mass index and the protein expression of 11β-HSD1 increased, especially in adipose tissue, brain and muscles. Serum insulin, triglyceride, total cholesterol and 1oW-density lipoprotein cholesterol were found to be increased in DIO rats, but without any obvious changes in blood glucose or tumor necrosis factor-αlevels. Conclusion: 11β-HSD1 may promote preadipocyte differentiation, and may be involved in the development of obesity.

  6. Divergent effects of retinoic acids on the expression of ERalpha and 17beta-hydroxysteroid dehydrogenase type 2 in endometrial carcinoma cells (RL 95-2).

    Science.gov (United States)

    Li, Xiao-Hong; Li, Hui; Xiao, Zhi-Jie; Piao, Yun-Shang

    2002-02-01

    The effects of E2 are dependent on ERs and local E2 concentration in target cells. Modulation of intracellular E2 concentration involves the action of 17beta-hydroxysteroid dehydrogenase (17HSD) type 2, the enzyme converting E2 to estrone. In the present study, the influence of RAs on the growth of endometrial cancer cell line RL 95-2 as well as the expression of ERs and 17HSD type 2 have been investigated. It was found that RAs repress the growth of RL 95-2 cells, which express all subtypes of RXR and RAR, as examined by RT-PCR. Also, quantitative RT-PCR analysis showed that both ERalpha and ERbeta are present in RL 95-2 cells, and Western blot assay further revealed that ERalpha expression was decreased by all trans-RA treatment. In contrast, RAs induced 17HSD type 2 mRNA expression in a dose- and time-dependent fashion. This stimulatory effect was also detected at the level of in vivo oxidative 17HSD activity in cultured cells. On the other hand, the abundance of 17HSD type 2 mRNA was not altered by RAs in cultured normal epithelial cells isolated from human early- and late-secretory endometrium. The data indicate that RAs have an inhibitory effect on the growth of RL 95-2 cells and a cross-talk with the estrogen pathway in estrogen-responsive endometrial cancer cells.

  7. Growth hormone (GH) substitution in GH-deficient patients inhibits 11beta-hydroxysteroid dehydrogenase type 1 messenger ribonucleic acid expression in adipose tissue.

    Science.gov (United States)

    Paulsen, Søren Kildeberg; Pedersen, Steen Bønløkke; Jørgensen, Jens Otto Lunde; Fisker, Sanne; Christiansen, Jens Sandahl; Flyvbjerg, Allan; Richelsen, Bjørn

    2006-03-01

    Local tissue activity of glucocorticoids is in part determined by the isoenzymes 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) and 11beta-HSD2, interconverting inert cortisone and active cortisol. Increased tissue activity of cortisol may play a central role in the features of GH deficiency and the metabolic syndrome. We investigated the effects of GH treatment on adipose tissue 11beta-HSD mRNA. A randomized placebo-controlled double-blind study design was used. Twenty-three GH-deficient patients (16 males and seven females) were randomized to 4 months of GH treatment (2 IU/m2) (n = 11) or placebo treatment (n = 12). Adipose tissue biopsies and blood samples were obtained before and after treatment. Biopsies were obtained from the abdominal sc depot at the level of the umbilicus and do not necessarily reflect the metabolically more important visceral adipose tissue. Gene expressions were determined by real-time RT-PCR. GH treatment decreased 11beta-HSD1 mRNA 66% [95% confidence interval (CI), 23-107%; P adipose tissue. Serum IGF-I and IGF-I mRNA increased in the GH-treated group by 187% (95% CI, 122-250%; P cortisol in adipose tissue.

  8. Increased in vivo regeneration of cortisol in adipose tissue in human obesity and effects of the 11beta-hydroxysteroid dehydrogenase type 1 inhibitor carbenoxolone.

    Science.gov (United States)

    Sandeep, Thekkepat C; Andrew, Ruth; Homer, Natalie Z M; Andrews, Robert C; Smith, Ken; Walker, Brian R

    2005-03-01

    11beta-Hydroxysteroid dehydrogenase type 1 (11HSD1) regenerates cortisol from cortisone within adipose tissue and liver. 11HSD1 inhibitors may enhance insulin sensitivity in type 2 diabetes and be most efficacious in obesity when 11HSD1 is increased in subcutaneous adipose biopsies. We examined the regeneration of cortisol in vivo in obesity, and the effects of the 11HSD1 inhibitor carbenoxolone. We compared six lean and six obese men and performed a randomized, placebo-controlled crossover study of carbenoxolone in obese men. The obese men had no difference in their whole-body rate of regenerating cortisol (measured with 9,11,12,12-[(2)H(4)]cortisol tracer), but had more rapid conversion of [(3)H]cortisone to [(3)H]cortisol in abdominal subcutaneous adipose tissue (measured with microdialysis). During insulin infusion, adipose 11HSD1 activity fell markedly in lean but not in obese men. Carbenoxolone inhibited whole-body cortisol regeneration, but did not significantly inhibit adipose 11HSD1 and had no effects on insulin sensitivity (measured by [(2)H(2)]glucose infusion with or without hyperinsulinemia). Thus, in vivo cortisol generation is increased selectively within adipose tissue in obesity, perhaps reflecting resistance to insulin-mediated downregulation of 11HSD1. However, obese men are less susceptible than lean men to the insulin-sensitizing effects of carbenoxolone. To be useful in obese patients, 11HSD1 inhibitors will need to inhibit the enzyme more effectively in adipose tissue.

  9. Upregulation of adipose 11-beta-hydroxysteroid dehydrogenase type 1 expression in ovariectomized rats is due to obesity rather than lack of estrogen.

    Science.gov (United States)

    Paulsen, Søren K; Nielsen, Maria P; Richelsen, Bjørn; Bruun, Jens M; Flyvbjerg, Allan; Pedersen, Steen B

    2008-04-01

    Increased tissue activity of cortisol induced by the activation of inert cortisone to active cortisol through 11-beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) may play a role in the metabolic syndrome. We recently found that 11beta-HSD1 in subcutaneous adipose tissue (AT) was lower in lean women compared with lean men. Estrogen suppresses hepatic and renal 11beta-HSD1 in rats; hence we investigated the in vitro effect of estrogen on human and rat AT, and the in vivo effects on rat AT 11beta-HSD1 expression. Wistar rats were divided into four groups of eight animals. One group was sham-operated (controls) and others were ovariectomized (OVX). One OVX group was left untreated (OVX-E), another (OVX+E) received estrogen treatment, and one received a hypo-caloric diet (OVX-E+D), matching the weight gain of the control group. AT from women undergoing liposuction or surgery and from killed male and female rats were incubated with estrogen alone or in the presence of IL-1beta. Gene expressions were determined by real-time reverse transcriptase PCR. Ovariectomy resulted in a 280% increase in adipose 11beta-HSD1 expression P effect of estrogen on adipose 11beta-HSD1 was found. The upregulation of 11beta-HSD1 in ovariectomized rats was most likely due to changes in body composition rather than lack of estrogen.

  10. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome.

    Science.gov (United States)

    Svendsen, P F; Madsbad, S; Nilas, L; Paulsen, S K; Pedersen, S B

    2009-11-01

    To investigate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 and hexose-6-phosphate dehydrogenase (H6PDH) mRNA in subcutaneous abdominal tissue from lean and obese women with and without polycystic ovary syndrome (PCOS), and to investigate the association between these enzymes and different measures of insulin sensitivity. Cross-sectional study. A total of 60 women, 36 women with PCOS, 17 lean (lean PCOS, LP) and 19 obese (obese PCOS, OP) and 24 age- and weight-matched control women, 8 lean (lean controls, LC) and 16 obese (obese controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. Polycystic ovary syndrome (Peffects of PCOS or obesity on11beta-HSD2 or H6PDH mRNA expression. Decreased peripheral insulin sensitivity (Pcortisol in the peripheral adipose tissue and subsequently increased glucocorticoid activity. Decreased peripheral insulin sensitivity and central obesity was associated with increased expression of 11beta-HSD1.

  11. Lack of renal 11 beta-hydroxysteroid dehydrogenase type 2 at birth, a targeted temporal window for neonatal glucocorticoid action in human and mice.

    Directory of Open Access Journals (Sweden)

    Laetitia Martinerie

    Full Text Available BACKGROUND: Glucocorticoid hormones play a major role in fetal organ maturation. Yet, excessive glucocorticoid exposure in utero can result in a variety of detrimental effects, such as growth retardation and increased susceptibility to the development of hypertension. To protect the fetus, maternal glucocorticoids are metabolized into inactive compounds by placental 11beta-hydroxysteroid dehydrogenase type2 (11βHSD2. This enzyme is also expressed in the kidney, where it prevents illicit occupation of the mineralocorticoid receptor by glucocorticoids. We investigated the role of renal 11βHSD2 in the control of neonatal glucocorticoid metabolism in the human and mouse. METHODS: Cortisol (F and cortisone (E concentrations were measured in maternal plasma, umbilical cord blood and human newborn urine using HPLC. 11βHSD2 activity was indirectly assessed by comparing the F/E ratio between maternal and neonatal plasma (placental activity and between plasma and urine in newborns (renal activity. Direct measurement of renal 11βHSD2 activity was subsequently evaluated in mice at various developmental stages. Renal 11βHSD2 mRNA and protein expression were analyzed by quantitative RT-PCR and immunohistochemistry during the perinatal period in both species. RESULTS: We demonstrate that, at variance with placental 11βHSD2 activity, renal 11βHSD2 activity is weak in newborn human and mouse and correlates with low renal mRNA levels and absence of detectable 11βHSD2 protein. CONCLUSIONS: We provide evidence for a weak or absent expression of neonatal renal 11βHSD2 that is conserved among species. This temporal and tissue-specific 11βHSD2 expression could represent a physiological window for glucocorticoid action yet may constitute an important predictive factor for adverse outcomes of glucocorticoid excess through fetal programming.

  12. Lack of regulation of 11beta-hydroxysteroid dehydrogenase type 1 during short-term manipulation of GH in patients with hypopituitarism.

    Science.gov (United States)

    Sigurjonsdottir, Helga A; Andrew, Ruth; Stimson, Roland H; Johannsson, Gudmundur; Walker, Brian R

    2009-09-01

    Evidence from long-term clinical studies measuring urinary steroid ratios, and from in vitro studies, suggests that GH administered for longer than 2 months down-regulates 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), thereby reducing cortisol regeneration in liver and adipose tissue. We aimed to measure acute effects of GH on 11beta-HSD1 in liver and adipose tissue in vivo, including using a stable isotope tracer. Observational studies of GH withdrawal and reintroduction in patients with hypopituitarism. Twelve men with benign pituitary disease causing GH and ACTH deficiency on stable replacement therapy for >6 months were studied after GH withdrawal for 3 weeks, and after either placebo or GH injections were reintroduced for another 3 weeks. We measured cortisol kinetics during 9,11,12,12-(2)H(4)-cortisol (d4-cortisol) infusion, urinary cortisol/cortisone metabolite ratios, liver 11beta-HSD1 by appearance of plasma cortisol after oral cortisone, and 11beta-HSD1 mRNA levels in subcutaneous adipose biopsies. GH withdrawal and reintroduction had no effect on 9,12,12-[(2)H](3)-cortisol (d3-cortisol) appearance, urinary cortisol/cortisone metabolite ratios, initial appearance of cortisol after oral cortisone, or adipose 11beta-HSD1 mRNA. GH withdrawal increased plasma cortisol 30-180 min after oral cortisone, increased d4-cortisol clearance, and decreased relative excretion of 5alpha-reduced cortisol metabolites. In this setting, GH did not regulate 11beta-HSD1 rapidly in vivo in humans. Altered cortisol metabolism with longer term changes in GH may reflect indirect effects on 11beta-HSD1. These data do not suggest that glucocorticoid replacement doses need to be increased immediately after introducing GH therapy to compensate for reduced 11beta-HSD1 activity, although dose adjustment may be required in the longer term.

  13. 11beta-Hydroxysteroid dehydrogenase type 1-driven cortisone reactivation regulates plasminogen activator inhibitor type 1 in adipose tissue of obese women.

    Science.gov (United States)

    Ayachi, S Ei; Paulmyer-Lacroix, O; Verdier, M; Alessi, M-C; Dutour, A; Grino, M

    2006-03-01

    Plasminogen activator inhibitor type 1 (PAI-1) is the main inhibitor of the fibrinolytic system and contributes to an increased risk of atherothrombosis in insulin-resistant obese patients. In adipose tissue, we have shown that PAI-1 is synthesized mainly in the visceral stromal compartment and is positively regulated by glucocorticoids. We have demonstrated that adipose tissue expression of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1), an enzyme that catalyzes the conversion of inactive cortisone to active cortisol, is exaggerated in obese patients. We hypothesized that increased action of 11beta-HSD-1 in adipose tissue of obese subjects may contribute to PAI-1 overproduction. Using in situ hybridization, we studied the expression of the mRNAs coding for PAI-1 and 11beta-HSD-1 in the stromal compartment of visceral adipose tissue obtained from obese women. The regulation of PAI-1 secretion from in vitro incubated tissue explants was also investigated. Regression analysis showed a significant positive linear relationship between PAI-1 and 11beta-HSD-1 mRNAs expression. In vitro incubation of adipose tissue explants demonstrated that cortisone stimulated PAI-1 gene expression and secretion, and that these effects were inhibited by co-incubation with the 11beta-HSD inhibitor, glycyrrhetinic acid. Our data demonstrate that 11beta-HSD-1-driven cortisone reactivation regulates adipose PAI-1 synthesis and secretion. They suggest that the increased PAI-1 synthesis and secretion observed in obese patients can be also related, at least in part, to an increased local conversion of cortisone to cortisol. Therefore, local cortisol metabolism in adipose tissue may be involved in increasing the risk of cardiovascular disease in obese subjects.

  14. Effects of peroxisome proliferator-activated receptor-alpha and -gamma agonists on 11beta-hydroxysteroid dehydrogenase type 1 in subcutaneous adipose tissue in men.

    Science.gov (United States)

    Wake, Deborah J; Stimson, Roland H; Tan, Garry D; Homer, Natalie Z M; Andrew, Ruth; Karpe, Fredrik; Walker, Brian R

    2007-05-01

    In animals, peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARgamma agonists down-regulate 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) mRNA and activity in liver and adipose tissue, respectively, and PPARgamma agonists reduce ACTH secretion from corticotrope cells. Our objective was to test whether PPAR agonists alter cortisol secretion and peripheral regeneration by 11beta-HSD1 in humans and whether reduced cortisol action contributes to metabolic effects of PPARgamma agonists. Three randomized placebo-controlled crossover studies were conducted at a clinical research facility. Healthy men and patients with type 2 diabetes participated. INTERVENTIONS, OUTCOME MEASURES, AND RESULTS: In nine healthy men, 7 d of PPARalpha agonist (fenofibrate) or PPARgamma agonist (rosiglitazone) had no effect on cortisol secretion, hepatic cortisol generation after oral cortisone administration, or tracer kinetics during 9,11,12,12-[(2)H](4)-cortisol infusion, although rosiglitazone marginally reduced cortisol generation in sc adipose tissue measured by in vivo microdialysis. In 12 healthy men, 4-5 wk of rosiglitazone increased insulin sensitivity during insulin infusion but did not change 11beta-HSD1 mRNA or activity in sc adipose tissue, and insulin sensitization was unaffected by glucocorticoid blockade with a combination of metyrapone and RU38486. In 12 men with type 2 diabetes 12 wk of rosiglitazone reduced arteriovenous cortisone extraction across abdominal sc adipose tissue and reduced 11beta-HSD1 mRNA in sc adipose tissue but increased plasma cortisol concentrations. Neither PPARalpha nor PPARgamma agonists down-regulate 11beta-HSD1 or cortisol secretion acutely in humans. The early insulin-sensitizing effect of rosiglitazone is not dependent on reducing intracellular glucocorticoid concentrations. Reduced adipose 11beta-HSD1 expression and increased plasma cortisol during longer therapy with rosiglitazone probably reflect indirect effects, e

  15. Repeated maternal dexamethasone treatments in late gestation increases 11beta-hydroxysteroid dehydrogenase type 1 expression in the hippocampus of the newborn rat.

    Science.gov (United States)

    Wan, Shunlun; Hao, Rusong; Sun, Kang

    This study was designed to investigate the effect of repeated maternal injections of dexamethasone in late gestation on the expression of newborn hippocampal 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), the enzyme amplifying glucocorticoids' action by converting biologically inactive 11-ketone metabolites into active glucocorticoids. Daily dexamethasone treatments (0.10 mg/kg body weight) in the last week of gestation were carried out in the pregnant rat. The expression of 11beta-HSD1 in the newborn hippocampal tissue was analyzed with Western blot and real-time polymerase chain reaction (PCR). The effect of corticosterone on the expression of 11beta-HSD1 was studied in cultured hippocampal neurons derived from newborn offspring received prenatal dexamethasone treatments. Both body and brain weights of the offspring were reduced significantly by repeated dexamethasone treatments in the last week of gestation. Western blot and real-time PCR analysis showed that both 11beta-HSD1 protein and mRNA expressions were increased significantly in the hippocampus of the newborn offspring on the first and seventh days after birth. Corticosterone could induce 11beta-HSD1 expression in cultured hippocampal neurons prepared from newborns received prenatal dexamethasone treatments, which was blocked by glucocorticoid receptor antagonist RU38486. The above findings suggest that repeated prenatal dexamethasone treatments at the end of gestation increase 11beta-HSD1 expression in the hippocampal tissue of the offspring, which may trigger a positive feedback pathway for the generation of biologically active glucocorticoids in the hippocampal tissue of the newborns.

  16. 11beta-hydroxysteroid dehydrogenase type 2 expression in the newly formed Leydig cells after ethane dimethanesulphonate treatment of adult rats.

    Directory of Open Access Journals (Sweden)

    Katerina Georgieva

    2008-01-01

    Full Text Available The enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD catalyzes the reversible conversion of physiologically active corticosterone to the biologically inert 11beta-dehydrocorticosterone in rat testis and protect the Leydig cells (LCs against the suppressive effect of glucocorticoids. The developmental pathway of the adult LCs population is accompanied with an increase in the 11beta-HDS activity. Thus, 11beta-HDS together with its role in controlling the toxicological effect of glucocorticoids on LCs can be used as a marker for their functional maturity. Ethane 1,2-dimethanesulphonate (EDS treatment of adult rats become unique appropriate model, which enable to answer many questions related to the differentiation of adult LCs in the prepubertal rat testis. The aim of the present study was to investigate the specific changes in the 11beta-HDS type 2 immunoreactivity in tandem with the expression of androgen receptor (AR during renewal of LCs population after EDS treatment. In the present study, we observed the first appearance of immunostaining for 11beta-HSD2 in new LCs population on day 14 after EDS administration when the progenitor LCs were detected. Our immunohistochemical analysis revealed progressive increases in the 11beta-HSD2 reaction intensity on 21 days after EDS treatment and reached a maximum on day 35. AR immunoexpression was found in new LCs on day 14 and 21 after EDS injection with an increasing curve of intensity. The most prominent AR immunostaining in new population LCs was evident by 35 days after EDS and that coincided with the increased number of LCs and restoration of adult LCs population. Our results demonstrated similar pattern of immunoreactivity for 11beta-HSD2 and AR in new LCs population after EDS treatment and suggested that the changes in 11beta-HSD2 expression can be used for evaluation of adult LCs differentiation in rat testis.

  17. Hexose-6-phosphate dehydrogenase modulates 11beta-hydroxysteroid dehydrogenase type 1-dependent metabolism of 7-keto- and 7beta-hydroxy-neurosteroids.

    Directory of Open Access Journals (Sweden)

    Lyubomir G Nashev

    Full Text Available BACKGROUND: The role of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1 in the regulation of energy metabolism and immune system by locally reactivating glucocorticoids has been extensively studied. Experiments determining initial rates of enzyme activity revealed that 11beta-HSD1 can catalyze both the reductase and the dehydrogenase reaction in cell lysates, whereas it predominantly catalyzes the reduction of cortisone to cortisol in intact cells that also express hexose-6-phosphate dehydrogenase (H6PDH, which provides cofactor NADPH. Besides its role in glucocorticoid metabolism, there is evidence that 11beta-HSD1 is involved in the metabolism of 7-keto- and 7-hydroxy-steroids; however the impact of H6PDH on this alternative function of 11beta-HSD1 has not been assessed. METHODOLOGY: We investigated the 11beta-HSD1-dependent metabolism of the neurosteroids 7-keto-, 7alpha-hydroxy- and 7beta-hydroxy-dehydroepiandrosterone (DHEA and 7-keto- and 7beta-hydroxy-pregnenolone, respectively, in the absence or presence of H6PDH in intact cells. 3D-structural modeling was applied to study the binding of ligands in 11beta-HSD1. PRINCIPAL FINDINGS: We demonstrated that 11beta-HSD1 functions in a reversible way and efficiently catalyzed the interconversion of these 7-keto- and 7-hydroxy-neurosteroids in intact cells. In the presence of H6PDH, 11beta-HSD1 predominantly converted 7-keto-DHEA and 7-ketopregnenolone into their corresponding 7beta-hydroxy metabolites, indicating a role for H6PDH and 11beta-HSD1 in the local generation of 7beta-hydroxy-neurosteroids. 3D-structural modeling offered an explanation for the preferred formation of 7beta-hydroxy-neurosteroids. CONCLUSIONS: Our results from experiments determining the steady state concentrations of glucocorticoids or 7-oxygenated neurosteroids suggested that the equilibrium between cortisone and cortisol and between 7-keto- and 7-hydroxy-neurosteroids is regulated by 11beta-HSD1 and greatly

  18. Tumor necrosis factor-alpha upregulates 11beta-hydroxysteroid dehydrogenase type 1 expression by CCAAT/enhancer binding protein-beta in HepG2 cells.

    Science.gov (United States)

    Ignatova, Irena D; Kostadinova, Radina M; Goldring, Christopher E; Nawrocki, Andrea R; Frey, Felix J; Frey, Brigitte M

    2009-02-01

    The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes the conversion of inactive to active glucocorticoids. 11beta-HSD1 plays a crucial role in the pathogenesis of obesity and controls glucocorticoid actions in inflammation. Several studies have demonstrated that TNF-alpha increases 11beta-HSD1 mRNA and activity in various cell models. Here, we demonstrate that mRNA and activity of 11beta-HSD1 is increased in liver tissue from transgenic mice overexpressing TNF-alpha, indicating that this effect also occurs in vivo. To dissect the molecular mechanism of this increase, we investigated basal and TNF-alpha-induced transcription of the 11beta-HSD1 gene (HSD11B1) in HepG2 cells. We found that TNF-alpha acts via p38 MAPK pathway. Transient transfections with variable lengths of human HSD11B1 promoter revealed highest activity with or without TNF-alpha in the proximal promoter region (-180 to +74). Cotransfection with human CCAAT/enhancer binding protein-alpha (C/EBPalpha) and C/EBPbeta-LAP expression vectors activated the HSD11B1 promoter with the strongest effect within the same region. Gel shift and RNA interference assays revealed the involvement of mainly C/EBPalpha, but also C/EBPbeta, in basal and only of C/EBPbeta in the TNF-alpha-induced HSD11B1 expression. Chromatin immunoprecipitation assay confirmed in vivo the increased abundance of C/EBPbeta on the proximal HSD11B1 promoter upon TNF-alpha treatment. In conclusion, C/EBPalpha and C/EBPbeta control basal transcription, and TNF-alpha upregulates 11beta-HSD1, most likely by p38 MAPK-mediated increased binding of C/EBPbeta to the human HSD11B1 promoter. To our knowledge, this is the first study showing involvement of p38 MAPK in the TNF-alpha-mediated 11beta-HSD1 regulation, and that TNF-alpha stimulates enzyme activity in vivo.

  19. 17beta-hydroxysteroid dehydrogenase Type 1, and not Type 12, is a target for endocrine therapy of hormone-dependent breast cancer.

    Science.gov (United States)

    Day, Joanna M; Foster, Paul A; Tutill, Helena J; Parsons, Michael F C; Newman, Simon P; Chander, Surinder K; Allan, Gillian M; Lawrence, Harshani R; Vicker, Nigel; Potter, Barry V L; Reed, Michael J; Purohit, Atul

    2008-05-01

    Oestradiol (E2) stimulates the growth of hormone-dependent breast cancer. 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyse the pre-receptor activation/inactivation of hormones and other substrates. 17beta-HSD1 converts oestrone (E1) to active E2, but it has recently been suggested that another 17beta-HSD, 17beta-HSD12, may be the major enzyme that catalyses this reaction in women. Here we demonstrate that it is 17beta-HSD1 which is important for E2 production and report the inhibition of E1-stimulated breast tumor growth by STX1040, a non-oestrogenic selective inhibitor of 17beta-HSD1, using a novel murine model. 17beta-HSD1 and 17beta-HSD12 mRNA and protein expression, and E2 production, were assayed in wild type breast cancer cell lines and in cells after siRNA and cDNA transfection. Although 17beta-HSD12 was highly expressed in breast cancer cell lines, only 17beta-HSD1 efficiently catalysed E2 formation. The effect of STX1040 on the proliferation of E1-stimulated T47D breast cancer cells was determined in vitro and in vivo. Cells inoculated into ovariectomised nude mice were stimulated using 0.05 or 0.1 microg E1 (s.c.) daily, and on day 35 the mice were dosed additionally with 20 mg/kg STX1040 s.c. daily for 28 days. STX1040 inhibited E1-stimulated proliferation of T47D cells in vitro and significantly decreased tumor volumes and plasma E2 levels in vivo. In conclusion, a model was developed to study the inhibition of the major oestrogenic 17beta-HSD, 17beta-HSD1, in breast cancer. Both E2 production and tumor growth were inhibited by STX1040, suggesting that 17beta-HSD1 inhibitors such as STX1040 may provide a novel treatment for hormone-dependent breast cancer.

  20. Luteal 3beta-hydroxysteroid dehydrogenase and 20alpha-hydroxysteroid dehydrogenase activities in the rat corpus luteum of pseudopregnancy: Effect of the deciduoma reaction

    Directory of Open Access Journals (Sweden)

    Telleria Carlos M

    2004-05-01

    Full Text Available Abstract Background In the rat, the maintenance of gestation is dependent on progesterone production from the corpora lutea (CL, which are under the control of pituitary, decidual and placental hormones. The luteal metabolism of progesterone during gestation has been amply studied. However, the regulation of progesterone synthesis and degradation during pseudopregnancy (PSP, in which the CL are mainly under the control of pituitary prolactin (PRL, is not well known. The objectives of this investigation were: i to study the luteal metabolism of progesterone during PSP by measuring the activities of the enzymes 3beta-hydroxysteroid dehydrogenase (3betaHSD, involved in progesterone biosynthesis, and that of 20alpha-hydroxysteroid dehydrogenase (20alphaHSD, involved in progesterone catabolism; and ii to determine the role of decidualization on progesterone metabolism in PSP. Methods PSP was induced mechanically at 10:00 h on the estrus of 4-day cycling Wistar rats, and the stimulus for decidualization was provided by scratching the uterus on day 4 of PSP. 3betaHSD and 20alphaHSD activities were measured in the CL isolated from ovaries of PSP rats using a spectrophotometric method. Serum concentrations of progesterone, PRL, androstenedione, and estradiol were measured by radioimmunoassay (RIA. Results The PSP stage induced mechanically in cycling rats lasted 11.3 ± 0.09 days (n = 14. Serum progesterone concentration was high until day 10 of PSP, and declined thereafter. Serum PRL concentration was high on the first days of PSP but decreased significantly from days 6 to 9, having minimal values on days 10 and 11. Luteal 3betaHSD activities were elevated until day 6 of PSP, after which they progressively declined, reaching minimal values at the end of PSP. Luteal 20alphaHSD activities were very low until day 9, but abruptly increased at the end of PSP. When the deciduoma was induced by scratching the uterus of pseudopregnant animals on day 4 (PSP

  1. Development of hormone-dependent prostate cancer models for the evaluation of inhibitors of 17beta-hydroxysteroid dehydrogenase type 3.

    Science.gov (United States)

    Day, Joanna M; Tutill, Helena J; Foster, Paul A; Bailey, Helen V; Heaton, Wesley B; Sharland, Christopher M; Vicker, Nigel; Potter, Barry V L; Purohit, Atul; Reed, Michael J

    2009-03-25

    17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) are responsible for the pre-receptor reduction/oxidation of steroids at the 17-position into active/inactive hormones, and the 15 known enzymes vary in their substrate specificity, localisation, and directional activity. 17beta-HSD Type 3 (17beta-HSD3) has been seen to be over-expressed in prostate cancer, and catalyses the reduction of androstenedione (Adione) to testosterone (T), which stimulates prostate tumour growth. Specific inhibitors of 17beta-HSD3 may have a role in the treatment of hormone-dependent prostate cancer and benign prostate hyperplasia, and also have potential as male anti-fertility agents. A 293-EBNA-based cell line with stable expression of transfected human 17beta-HSD3 was created and used to develop a whole cell radiometric TLC-based assay to assess the 17beta-HSD3 inhibitory potency of a series of compounds. STX2171 and STX2624 (IC(50) values in the 200-450nM range) were two of several active inhibitors identified. In similar TLC-based assays these compounds were found to be inactive against 17beta-HSD1 and 17beta-HSD2, indicating selectivity. A novel proof of concept model was developed to study the efficacy of the compounds in vitro using the androgen receptor positive hormone-dependent prostate cancer cell line, LNCaPwt, and its derivative, LNCaP[17beta-HSD3], transfected and selected for stable expression of 17beta-HSD3. The proliferation of the parental cell line was most efficiently stimulated by 5alpha-dihydrotestosterone (DHT), but the LNCaP[17beta-HSD3] cells were equally stimulated by Adione, indicating that 17beta-HSD3 efficiently converts Adione to T in this model. Adione-stimulated proliferation of LNCaP[17beta-HSD3] cells was inhibited in the presence of either STX2171 or STX2624. The compounds alone neither stimulated proliferation of the cells nor caused significant cell death, indicating that they are non-androgenic with low cytotoxicity. STX2171 inhibited Adione

  2. Ultraviolet- and infrared-induced 11 beta-hydroxysteroid dehydrogenase type 1 activating skin photoaging is inhibited by red ginseng extract containing high concentration of ginsenoside Rg3(S).

    Science.gov (United States)

    Nam, Jin-Ju; Min, Ji-Eun; Son, Min-Ho; Oh, Jin-Hwan; Kang, Seunghyun

    2017-08-09

    Sun irradiation is one of major extrinsic stressors responsible for premature skin aging through activation and expression of 11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive cortisone to active cortisol. The aim of this study was to evaluate the inhibitory effects of red ginseng extract containing high concentrations of ginsenoside Rg3 (S) (GERg3) on 11β-HSD1-induced skin photoaging. To evaluate the inhibitory effects of GERg3 on ultraviolet- (UV) or infrared (IR)-induced skin photoaging, human dermal fibroblasts or a normal human 3D skin model was exposed to UV or an IR. RT-PCR, ELISA, Western blot, and H&E staining were used for evaluations. GERg3 was isolated from crude red ginseng. GERg3 inhibited the increased expressions of 11β-HSD1, interleukin (IL)-6, and matrix metalloproteinase-1 (MMP-1) in UVB- or IR-exposed Hs68 cells. Additionally, the increased cortisol, IL-6, and MMP-1 expressions were effectively reduced by GERg3 in UVA-exposed 3D skin models. The photoinduced decrease in type 1 procollagen also recovered as a result of GERg3 treatment in Hs68 cells and the 3D skin model. In addition, the UVA-exposed dermal thickness was decreased in comparison with the UVA-protected 3D skin model, recovered with GERg3 treatment. GERg3 had antiphotoaging effects in UV- or IR-exposed human dermal fibroblasts and normal human 3D skin model. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Proliferative responses to altered 17beta-hydroxysteroid dehydrogenase (17HSD) type 2 expression in human breast cancer cells are dependent on endogenous expression of 17HSD type 1 and the oestradiol receptors.

    Science.gov (United States)

    Jansson, A; Gunnarsson, C; Stål, O

    2006-09-01

    The primary source of oestrogen in premenopausal women is the ovary but, after menopause, oestrogen biosynthesis in peripheral tissue is the exclusive site of formation. An enzyme group that affects the availability of active oestrogens is the 17beta-hydroxysteroid dehydrogenase (17HSD) family. In breast cancer, 17HSD type 1 and type 2 have been mostly investigated and seem to be the principal 17HSD enzymes involved thus far. The question whether 17HSD type 1 or type 2 is of greatest importance in breast tumour development is still not clear. The aim of this study was to investigate how the loss of 17HSD type 2 expression, using siRNA in the non-tumour breast epithelial cells HMEC (human mammal epithelial cells) and MCF10A, and gain of 17HSD type 2 expression, using transient transfection in the breast cancer derived cell lines MCF7 and T47D, affect oestradiol conversion and proliferation rate measured as S-phase fraction. We further investigated how this was related to the endogenous expression of 17HSD type 1 and oestradiol receptors in the examined cell lines. The oestradiol level in the medium changed significantly in the MCF7 transfected cells and the siRNA-treated HMEC cells, but not in T47D or MCF10A. The S-phase fraction decreased in the 17HSD type 2-transfected MCF7 cells and the siRNA-treated HMEC cells. The results seemed to be dependent on the endogenous expression of 17HSD type 1 and the oestradiol receptors. In conclusion, we found that high or low levels of 17HSD type 2 affected the oestradiol concentration significantly. However, the response was dependent on the endogenous expression of 17HSD type 1. Expression of 17HSD type 1 seems to be dominant to 17HSD type 2. Therefore, it may be important to investigate a ratio between 17HSD type 1 and 17HSD type 2.

  4. Induction of hepatic carbonyl reductase/20{beta}-hydroxysteroid dehydrogenase mRNA in rainbow trout downstream from sewage treatment works-Possible roles of aryl hydrocarbon receptor agonists and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Albertsson, E., E-mail: eva.albertsson@zool.gu.se [Department of Zoology, University of Gothenburg, Box 463, SE-405 30 Goeteborg (Sweden); Larsson, D.G.J. [Department of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Foerlin, L. [Department of Zoology, University of Gothenburg, Box 463, SE-405 30 Goeteborg (Sweden)

    2010-05-05

    Carbonyl reductase/20{beta}-hydroxysteroid dehydrogenase (CR/20{beta}-HSD) serves both as a key enzyme in the gonadal synthesis of maturing-inducing hormone in salmonids, and as an enzyme protecting against certain reactive oxygen species. We have previously shown that mRNA of the hepatic CR/20{beta}-HSD B isoform is increased in rainbow trout caged downstream from a Swedish sewage treatment plant. Here, we report an increase of both the A as well as B form in fish kept downstream from a second sewage treatment plant. The two mRNAs were also induced in fish hepatoma cells in vitro after exposure to effluent extract. This indicates that the effects observed in vivo could be a direct effect on the liver, i.e. the mRNA induction does not require a signal from any other organ. When fish were exposed in vivo to several effluents treated with more advanced methods (ozone, moving bed biofilm reactor or membrane bioreactor) the expression of hepatic mRNA CR/20{beta}-HSD A and B was significantly reduced. Their abundance did not parallel the reduction of estrogen-responsive transcripts, in agreement with our previous observations that ethinylestradiol is not a potent inducer. Treatment with norethisterone, methyltestosterone or hydrocortisone in vivo did not induce the hepatic CR/20{beta}-HSD A and B mRNA expression. In contrast, both isoforms were markedly induced by the aryl hydrocarbon receptor agonist {beta}-naphthoflavone as well as by the pro-oxidant herbicide paraquat. We hypothesize that the induction of CR/20{beta}-HSD A and B by sewage effluents could be due to anthropogenic contaminants stimulating the aryl hydrocarbon receptor and/or causing oxidative stress.

  5. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.; Yang, Xiaojiang; Songya Pang [Univ. of Illinois, Chicago, IL (United States)

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD gene region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.

  6. Detection and functional characterization of the novel missense mutation Y254D in type II 3{beta}-hydroxysteroid dehydrogenase (3{beta}HSD) gene of a female patient with nonsalt-losing 3{beta}HSD deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Rheaume, E.; Laflamme, N.; Labrie, F.; Simard, J. [Laval Univ., Quebec (Canada); Rosenfield, R.L. [Univ. of Chicago, IL (United States)

    1994-03-01

    Three {beta}-hydroxysteroid dehydrogenase/{Delta}{sup 5}-{Delta}{sup 4}-isomerase (3{beta}HSD) deficiency is a form of congenital adrenal hyperplasia characterized by severe impairment of steroid biosynthesis in the adrenals and gonads. To better understand the molecular basis of the phenotypic heterogeneity found in 3{beta}HSD deficiency, the authors analyzed the structure of type I and II 3{beta}HSD genes in a female patient with nonsalt-losing 3{beta}HSD deficiency diagnosed at puberty. They directly sequenced DNA fragments generated by polymerase chain reaction amplification of the four exons, the exon-intron boundaries, and the 5{prime}-flanking regions of each gene. No mutation was detected in the type I 3{beta}HSD gene, which is the predominant species expressed in the placenta and peripheral tissues. They detected a novel missense mutation, Y254D, in one allele of the patient`s type II 3{beta}HSD gene, which is the almost exclusive type expressed in the adrenals and gonads. The influence of the Y254D mutation on enzymatic activity was assessed by analyzing the recombinant mutant enzyme generated by site-directed mutagenesis after its transient expression in COS-1 monkey kidney cells. Recombinant mutant type II 3{beta}HSD enzyme carrying the Y254D substitution exhibits no detectable activity with C{sub 21} {Delta}{sup 5}-steroid pregnenolone or C{sub 19} {Delta}{sup 5}-steroid hydroepiandrosterone used as substrate. The absence of restriction fragment length polymorphism by Southern blot analysis and the finding that all of the amplified DNA fragments possess the expected length suggest the absence of deletions, duplications, or rearrangements in the other allele. A putative second mutation could be located farther than 1427 basepairs upstream of the initiation codon, thus potentially affecting the normal expression of this gene or within intronic regions, generating an alternative aberrant splicing site. 43 refs., 5 figs., 1 tab.

  7. Expression of glucocorticoid receptor, mineralocorticoid receptor, and 11beta-hydroxysteroid dehydrogenase 1 and 2 in the fetal and postnatal ovine hippocampus: ontogeny and effects of prenatal glucocorticoid exposure.

    Science.gov (United States)

    Sloboda, Deborah M; Moss, Timothy J M; Li, Shaofu; Matthews, Stephen G; Challis, John R G; Newnham, John P

    2008-05-01

    To determine the expression of glucocorticoid metabolizing and action genes in the hippocampus of fetal, neonatal, and adult sheep. Pregnant ewes (or their fetuses) received intramuscular injections of saline or betamethasone (BETA, 0-5 mg/kg) at 104, 111, 118, and/or 125 days of gestation (dG). Hippocampal tissue was collected prior to (75, 84, and 101 dG), during (109 and 116 dG), or after (121, 132, and 146 dG; 6 and 12 postnatal weeks; 3.5 years of age) saline or BETA injections. Hippocampal glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and 11beta-hydroxysteroid dehydrogenase (11betaHSD)1 and 11betaHSD2 mRNA levels were determined using qRT-PCR. Control animals late in gestation demonstrated a decrease in mRNA encoding GR and 11betaHSD1, whereas 11betaHSD2 was undetectable, consistent with a damping of the negative feedback influence of circulating or locally produced cortisol on the hypothalamic-pituitary-adrenal (HPA) axis. BETA-administration had transient effects on fetal GR and MR, and early in postnatal life (12 weeks of age) 11betaHSD1 mRNA was increased. Hippocampal MR mRNA was elevated in adult offspring exposed to either one or four doses of maternal BETA (Pglucocorticoid negative feedback, facilitating increased preterm HPA activity and parturition. Adult offspring of BETA-treated mothers demonstrated increased MR and 11betaHSD2 mRNA, therefore it appears that exposure of fetus to high levels of synthetic glucocorticoids may have long-lasting effects on the hippocampal expression of HPA-related genes into adulthood.

  8. A quantitative cytochemical study of glucose-6-phosphate dehydrogenase and delta 5-3 beta-hydroxysteroid dehydrogenase activity in the membrana granulosa of the ovulable type of follicle of the rat.

    Science.gov (United States)

    Zoller, L C; Weisz, J

    1979-08-01

    During the last four days of follicular development prior to ovulation, the activities of delta 5-3 beta-hydroxysteroid dehydrogenase (3 beta OHD) and glucose-6-phosphate dehydrogenase (G-6-PD) were quantified in cryostat sections of the rat ovary. The product of the enzyme reactions were measured using a scanning and integrating microdensitometer. The enzyme activity was measured in the peripheral region, the antral region and the cumulus of the membrana granulosa (MG) of these follicles on the morning of each of the four days of the estrous cycle. G-6-PD activity was measured in the presence and absence of an intermediate hydrogen acceptor, phenazine methosulphate, to provide a measure of the quantity of Type I and Type II Hydrogen (H) generated: Type I H is considered to be related to hydroxylating reactions such as those of steroids and Type II H to other general biosynthetic activities of cells. In all three regions of the MG of follicles of the ovulable type, 3 beta OHD activity was lowest in estrus and diestrus-1, increased on diestrus-2 and peaked in proestrus. In estrus and diestrus-1, the level of 3 beta OHD activity in the three regions was comparable. However, by diestrus-2, and even more conspicuously in proestrus, enzyme activity was significantly greater in the peripheral region than in the antral region or in the cumulus. During the same period, the level of enzyme activity remained comparable in the last two regions. Throughout the estrous cycle, both Type I and Type II H generation from G-6-PD was greatest in the peripheral region, less in the antral region and least in the cumulus. In the eripheral region, Type I H generation increased progressively after diestrus-1, to reach a maximum in prestrus. In the antral region, Type I H generation increased between diestrus-1 and diestrus-2 and then remained unchanged through proestrus. In the cumulus, Type I H generation remained at levels seen in estrus throughout the remainder of the cycle. Generation

  9. Structure and function of Caulobacter crescentus aldose-aldose oxidoreductase.

    Science.gov (United States)

    Taberman, Helena; Andberg, Martina; Koivula, Anu; Hakulinen, Nina; Penttilä, Merja; Rouvinen, Juha; Parkkinen, Tarja

    2015-12-15

    Aldose-aldose oxidoreductase (Cc AAOR) is a recently characterized enzyme from the bacterial strain Caulobacter crescentus CB15 belonging to the glucose-fructose oxidoreductase/inositol dehydrogenase/rhizopine catabolism protein (Gfo/Idh/MocA) family. Cc AAOR catalyses the oxidation and reduction of a panel of aldose monosaccharides using a tightly bound NADP(H) cofactor that is regenerated in the catalytic cycle. Furthermore, Cc AAOR can also oxidize 1,4-linked oligosaccharides. In the present study, we present novel crystal structures of the dimeric Cc AAOR in complex with the cofactor and glycerol, D-xylose, D-glucose, maltotriose and D-sorbitol determined to resolutions of 2.0, 1.8, 1.7, 1.9 and 1.8 Å (1 Å=0.1 nm), respectively. These complex structures allowed for a detailed analysis of the ligand-binding interactions. The structures showed that the C1 carbon of a substrate, which is either reduced or oxidized, is close to the reactive C4 carbon of the nicotinamide ring of NADP(H). In addition, the O1 hydroxy group of the substrate, which is either protonated or deprotonated, is unexpectedly close to both Lys(104) and Tyr(189), which may both act as a proton donor or acceptor. This led us to hypothesize that this intriguing feature could be beneficial for Cc AAOR to catalyse the reduction of a linear form of a monosaccharide substrate and the oxidation of a pyranose form of the same substrate in a reaction cycle, during which the bound cofactor is regenerated.

  10. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  11. Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the Generation of Microbial Production Strains—OptSwap

    DEFF Research Database (Denmark)

    King, Zachary A.; Feist, Adam

    2013-01-01

    Central oxidoreductase enzymes (eg, dehydrogenases, reductases) in microbial metabolism often have preferential binding specificity for one of the two major currency metabolites NAD(H) and NADP(H). These enzyme specificities result in a division of the metabolic functionality of the currency...... specificities of oxidoreductase enzyme and complementary reaction knockouts. Using the Escherichia coli genome-scale metabolic model iJO1366, OptSwap predicted eight growth-coupled production designs with significantly greater product yields or substrate-specific productivities than designs predicted with gene...... knockouts alone. These designs were identified for the production of L-alanine, succinate, acetate, and D-lactate under modeled conditions. Simulations predicted that production of L-alanine and D-lactate can be strongly coupled to growth by knocking out three reactions and swapping the cofactor specificity...

  12. Structural elucidation of the NADP(H) phosphatase activity of staphylococcal dual-specific IMPase/NADP(H) phosphatase.

    Science.gov (United States)

    Bhattacharyya, Sudipta; Dutta, Anirudha; Dutta, Debajyoti; Ghosh, Ananta Kumar; Das, Amit Kumar

    2016-02-01

    NADP(H)/NAD(H) homeostasis has long been identified to play a pivotal role in the mitigation of reactive oxygen stress (ROS) in the intracellular milieu and is therefore critical for the progression and pathogenesis of many diseases. NAD(H) kinases and NADP(H) phosphatases are two key players in this pathway. Despite structural evidence demonstrating the existence and mode of action of NAD(H) kinases, the specific annotation and the mode of action of NADP(H) phosphatases remains obscure. Here, structural evidence supporting the alternative role of inositol monophosphatase (IMPase) as an NADP(H) phosphatase is reported. Crystal structures of staphylococcal dual-specific IMPase/NADP(H) phosphatase (SaIMPase-I) in complex with the substrates D-myo-inositol-1-phosphate and NADP(+) have been solved. The structure of the SaIMPase-I-Ca(2+)-NADP(+) ternary complex reveals the catalytic mode of action of NADP(H) phosphatase. Moreover, structures of SaIMPase-I-Ca(2+)-substrate complexes have reinforced the earlier proposal that the length of the active-site-distant helix α4 and its preceding loop are the predisposing factors for the promiscuous substrate specificity of SaIMPase-I. Altogether, the evidence presented suggests that IMPase-family enzymes with a shorter α4 helix could be potential candidates for previously unreported NADP(H) phosphatase activity.

  13. Rôles respectifs des isoformes de ferrédoxine-NADP-oxydoréductase dans la cyanobactérie Synechocystis sp. PCC 6803

    OpenAIRE

    Korn, Anja

    2010-01-01

    In photosynthetic organisms, ferredoxin:NADP oxidoreductase (FNR) provides NADPH for CO2 assimilation, but it also utilizes NADPH to provide reduced ferredoxin (Fd). The cyanobacterium Synechocystis sp. strain PCC6803 contains two FNR isoforms, a small (FNRS, 34 kDa) and a large one (FNRL, 46 kDa) that is associated with the phycobilisome (PBS), a light-harvesting complex. We purified a PBS subcomplex comprising FNRL (FNRL-PC) and compared the enzymatic properties of FNRL-PC to FNRS. FNRL-PC ...

  14. Regulation by retinoids of luteinizing hormone/chorionic gonadotropin receptor, cholesterol side-chain cleavage cytochrome P-450, 3 beta-hydroxysteroid dehydrogenase/delta (5-4)-isomerase and 17 alpha-hydroxylase/C17-20 lyase cytochrome P-450 messenger ribonucleic acid levels in the K9 mouse Leydig cell line.

    Science.gov (United States)

    Lefèvre, A; Rogier, E; Astraudo, C; Duquenne, C; Finaz, C

    1994-12-01

    Vitamin A is a potent regulator of testicular function. We have reported that retinol (R) and retinoic acid (RA) induced a down regulation of luteinizing hormone/human chorionic gonadotropin (LH/CG) binding sites in K9 Leydig cells. In the present study we evaluated the effect of R and RA on LH/CG receptors, cholesterol side-chain cleavage cytochrome P-450 (P-450 scc), 17 alpha-hydroxylase/C17-20 lyase (P-450 17 alpha) and 3 beta-hydroxysteroid dehydrogenase (3 beta HSD) mRNA levels in K9 mouse Leydig cells. To validate K9 cells as a model for studying Leydig cell steroidogenesis at the molecular level, we first investigated the effect of hCG on mRNA levels of the steroidogenic enzymes. P-450 scc, 3 beta HSD and P-450 17 alpha were expressed constitutively. The addition of 10 ng/ml hCG enhanced mRNA levels for the three genes within 2 h. Maximal accumulation of P-450 scc, P-450 17 alpha and 3 beta HSD mRNA in treated cells represents a 2.5-, 8.5- and 4-fold increase over control values, respectively. P-450 17 alpha expression reached a maximum by 4 h and then declined rapidly to return to control value by 24 h. The pattern of LH/CG receptor mRNAs in K9 cells was very similar to that of MA10 Leydig cells and showed six transcripts of 1.1, 1.6, 1.9, 2.6, 4.2 and 7.0 kb. Treatment of cells with R or RA resulted in a time- and dose-dependent decrease in all six species.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Rational proteomics II: electrostatic nature of cofactor preference in the short-chain oxidoreductase (SCOR) enzyme family.

    Science.gov (United States)

    Pletnev, Vladimir Z; Weeks, Charles M; Duax, William L

    2004-11-01

    The dominant role of long-range electrostatic interatomic interactions in nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NAD/NADP) cofactor recognition has been shown for enzymes of the short-chain oxidoreductase (SCOR) family. An estimation of cofactor preference based only on the contribution of the electrostatic energy term to the total energy of enzyme-cofactor interaction has been tested for approximately 40 known three-dimensional (3D) crystal complexes and approximately 330 SCOR enzymes, with cofactor preference predicted by the presence of Asp or Arg recognition residues at specific 3D positions in the beta2alpha3 loop (Duax et al., Proteins 2003;53:931-943). The results obtained were found to be consistent with approximately 90% reliable cofactor assignments for those subsets. The procedure was then applied to approximately 170 SCOR enzymes with completely uncertain NAD/NADP dependence, due to the lack of Asp and Arg marker residues. The proposed 3D electrostatic approach for cofactor assignment ("3D_DeltaE(el)") has been implemented in an automatic screening procedure, and together with the use of marker residues proposed earlier (Duax et al., Proteins 2003;53:931-943), increases the level of reliable predictions for the putative SCORs from approximately 70% to approximately 90%. It is expected to be applicable for any NAD/NADP-dependent enzyme subset having at least 25-30% sequence identity, with at least one enzyme of known 3D crystal structure.

  16. Estudio del sistema NADP/tiorredoxina de trigo

    OpenAIRE

    2002-01-01

    En este trabajo se ha desarrollado un estudio del sistema NADP/Tiorredoxna constituido por una Tiorredoxina H una RADPH Tiorredoxina reductosa (NTR), fundamentalmente en la semilla de trigo. Los puntos principales del estudio han sido: ... nt-family: 'Ti

  17. Crystal structure of the NADP-dependent mannitol dehydrogenase from Cladosporium herbarum: Implications for oligomerisation and catalysis.

    Science.gov (United States)

    Nüss, Dorota; Goettig, Peter; Magler, Iris; Denk, Ursula; Breitenbach, Michael; Schneider, Peter B; Brandstetter, Hans; Simon-Nobbe, Birgit

    2010-08-01

    The ascomycete Cladosporium herbarum is a prominent fungal inducer of Type I allergy. The only major allergen identified so far is Cla h 8, a NADP-dependent mannitol dehydrogenase (MtDH). MtDH, a cytoplasmic protein of 28.5kDa, belongs to the Short chain Dehydrogenases/Reductases (SDR), acting as a NADP-dependent oxidoreductase. In this study, we found that C. herbarum MtDH can exist as monomers, dimers and tetramers in solution and, correspondingly, forms tetramers and higher oligomers in two crystal structures. Additionally, we identified a unique adaptive binding site for the metal ions Na(+) and Zn(2+) that were distinguished by an anomalous dispersion experiment. A Translation-Libration-Screw analysis confirmed the stabilising effect of Zn(2+) for the tetrameric assembly. Moreover, the zinc containing structure explains the mode of MtDH multimerisation by metal bridging of the tetramers. The formation of oligomers and higher multimers of MtDH provides a missing link to its allergenic properties. Based on the well defined active site region and a comparative analysis with related structures, we can also clarify the atypical enzymatic properties of MtDH by two alternative binding modes of the substrate to the active site.

  18. Unexpected properties of NADP-dependent secondary alcohol dehydrogenase (ADH-1) in Trichomonas vaginalis and other microaerophilic parasites.

    Science.gov (United States)

    Leitsch, David; Williams, Catrin F; Lloyd, David; Duchêne, Michael

    2013-07-01

    Our previous observation that NADP-dependent secondary alcohol dehydrogenase (ADH-1) is down-regulated in metronidazole-resistant Trichomonas vaginalis isolates prompted us to further characterise the enzyme. In addition to its canonical enzyme activity as a secondary alcohol dehydrogenase, a pronounced, so far unknown, background NADPH-oxidising activity in absence of any added substrate was observed when the recombinant enzyme or T. vaginalis extract were used. This activity was strongly enhanced at low oxygen concentrations. Unexpectedly, all functions of ADH-1 were efficiently inhibited by coenzyme A which is a cofactor of a number of key enzymes in T. vaginalis metabolism, i.e. pyruvate:ferredoxin oxidoreductase (PFOR). These observations could be extended to Entamoeba histolytica and Tritrichomonas foetus, both of which have a homologue of ADH-1, but not to Giardia lamblia which lacks an NADP-dependent secondary alcohol dehydrogenase. Although we could not identify the substrate of the observed background activity, we propose that ADH-1 functions as a major sink for NADPH in microaerophilic parasites at low oxygen tension.

  19. Expansion and evolution of insect GMC oxidoreductases

    Directory of Open Access Journals (Sweden)

    Ko Wen-Ya

    2007-05-01

    Full Text Available Abstract Background The GMC oxidoreductases comprise a large family of diverse FAD enzymes that share a homologous backbone. The relationship and origin of the GMC oxidoreductase genes, however, was unknown. Recent sequencing of entire genomes has allowed for the evolutionary analysis of the GMC oxidoreductase family. Results Although genes that encode enzyme families are rarely linked in higher eukaryotes, we discovered that the majority of the GMC oxidoreductase genes in the fruit fly (D. melanogaster, mosquito (A. gambiae, honeybee (A. mellifera, and flour beetle (T. castaneum are located in a highly conserved cluster contained within a large intron of the flotillin-2 (Flo-2 gene. In contrast, the genomes of vertebrates and the nematode C. elegans contain few GMC genes and lack a GMC cluster, suggesting that the GMC cluster and the function of its resident genes are unique to insects or arthropods. We found that the development patterns of expression of the GMC cluster genes are highly complex. Among the GMC oxidoreductases located outside of the GMC gene cluster, the identities of two related enzymes, glucose dehydrogenase (GLD and glucose oxidase (GOX, are known, and they play major roles in development and immunity. We have discovered that several additional GLD and GOX homologues exist in insects but are remotely similar to fungal GOX. Conclusion We speculate that the GMC oxidoreductase cluster has been conserved to coordinately regulate these genes for a common developmental or physiological function related to ecdysteroid metabolism. Furthermore, we propose that the GMC gene cluster may be the birthplace of the insect GMC oxidoreductase genes. Through tandem duplication and divergence within the cluster, new GMC genes evolved. Some of the GMC genes have been retained in the cluster for hundreds of millions of years while others might have transposed to other regions of the genome. Consistent with this hypothesis, our analysis indicates

  20. The phosphate makes a difference: cellular functions of NADP.

    Science.gov (United States)

    Agledal, Line; Niere, Marc; Ziegler, Mathias

    2010-01-01

    Recent research has unraveled a number of unexpected functions of the pyridine nucleotides. In this review, we will highlight the variety of known physiological roles of NADP. In its reduced form (NADPH), this molecule represents a universal electron donor, not only to drive biosynthetic pathways. Perhaps even more importantly, NADPH is the unique provider of reducing equivalents to maintain or regenerate the cellular detoxifying and antioxidative defense systems. The roles of NADPH in redox sensing and as substrate for NADPH oxidases to generate reactive oxygen species further extend its scope of functions. NADP(+), on the other hand, has acquired signaling functions. Its conversion to second messengers in calcium signaling may have critical impact on important cellular processes. The generation of NADP by NAD kinases is a key determinant of the cellular NADP concentration. The regulation of these enzymes may, therefore, be critical to feed the diversity of NADP-dependent processes adequately. The increasing recognition of the multiple roles of NADP has thus led to exciting new insights in this expanding field.

  1. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    Science.gov (United States)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  2. Ferredoxin and ferredoxin-NADP reductase from photosynthetic and nonphotosynthetic tissues of tomato

    Science.gov (United States)

    Green, L. S.; Yee, B. C.; Buchanan, B. B.; Kamide, K.; Sanada, Y.; Wada, K.

    1991-01-01

    Ferredoxin and ferredoxin-NADP+ oxidoreductase (FNR) were purified from leaves, roots, and red and green pericarp of tomato (Lycopersicon esculentum, cv VFNT and cv Momotaro). Four different ferredoxins were identified on the basis of N-terminal amino acid sequence and charge. Ferredoxins I and II were the most prevalent forms in leaves and green pericarp, and ferredoxin III was the most prevalent in roots. Red pericarp of the VFNT cv yielded variable amounts of ferredoxins II and III plus a unique form, ferredoxin IV. Red pericarp of the Momotaro cv contained ferredoxins I, II, and IV. This represents the first demonstration of ferredoxin in a chromoplast-containing tissue. There were no major differences among the tomato ferredoxins in absorption spectrum or cytochrome c reduction activity. Two forms of FNR were present in tomato as judged by anion exchange chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. FNR II had a lower apparent relative molecular weight, a slightly altered absorption spectrum, and a lower specific activity for cytochrome c reduction than FNR I. FNR II could be a partially degraded form of FNR I. The FNRs from the different tissues of tomato plants all showed diaphorase activity, with FNR II being more active than FNR I. The presence of ferredoxin and FNR in heterotrophic tissues of tomato is consistent with the existence of a nonphotosynthetic ferredoxin/FNR redox pathway to support the function of ferredoxin-dependent enzymes.

  3. Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases.

    Science.gov (United States)

    Ceccarelli, Eduardo A; Arakaki, Adrián K; Cortez, Néstor; Carrillo, Néstor

    2004-05-06

    Ferredoxin (flavodoxin)-NADP(H) reductases (FNRs) are ubiquitous flavoenzymes that deliver NADPH or low potential one-electron donors (ferredoxin, flavodoxin, adrenodoxin) to redox-based metabolisms in plastids, mitochondria and bacteria. Two great families of FAD-containing proteins displaying FNR activity have evolved from different and independent origins. The enzymes present in mitochondria and some bacterial genera are members of the structural superfamily of disulfide oxidoreductases whose prototype is glutathione reductase. A second group, comprising the FNRs from plastids and most eubacteria, constitutes a unique family, the plant-type FNRs, totally unrelated in sequence with the former. The two-domain structure of the plant family of FNR also provides the basic scaffold for an extended superfamily of electron transfer flavoproteins. In this article we compare FNR flavoenzymes from very different origins and describe how the natural history of these reductases shaped structure, flavin conformation and catalytic activity to face the very different metabolic demands they have to deal with in their hosts. We show that plant-type FNRs can be classified into a plastidic class, characterised by extended FAD conformation and high catalytic efficiency, and a bacterial class displaying a folded FAD molecule and low turnover rates. Sequence alignments supported this classification, providing a criterion to predict the structural and biochemical properties of newly identified members of the family.

  4. Overexpression of plastidic maize NADP-malate dehydrogenase (ZmNADP-MDH) in Arabidopsis thaliana confers tolerance to salt stress.

    Science.gov (United States)

    Kandoi, Deepika; Mohanty, Sasmita; Tripathy, Baishnab C

    2017-09-24

    The plastidic C4 Zea mays NADP-malate dehydrogenase (ZmNADP-MDH), responsible for catalysis of oxaloacetate to malate, was overexpressed in Arabidopsis thaliana to assess its impact on photosynthesis and tolerance to salinity stress. Different transgenic lines were produced having ~3-6-fold higher MDH protein abundance and NADP-MDH enzyme activity than vector control. The overexpressors had similar chlorophyll, carotenoid, and protein content as that of vector control. Their photosynthetic electron transport rates, carbon assimilation rate, and consequently fresh weight and dry weight were almost similar. However, these overexpressors were tolerant to salt stress (150 mM NaCl). In saline environment, the Fv/Fm ratio, yield of photosystem II, chlorophyll, and protein content were higher in ZmNADP-MDH overexpressor than vector control. Under identical conditions, the generation of reactive oxygen species (H2O2) and production of malondialdehyde, a membrane lipid peroxidation product, were lower in overexpressors. In stress environment, the structural distortion of granal organization and swelling of thylakoids were less pronounced in ZmNADP-MDH overexpressing plants as compared to the vector control. Chloroplastic NADP-MDH in consort with cytosolic and mitochondrial NAD-MDH plays an important role in exporting reducing power (NADPH) and exchange of metabolites between different cellular compartments that maintain the redox homeostasis of the cell via malate valve present in chloroplast envelope membrane. The tolerance of NADP-MDH overexpressors to salt stress could be due to operation of an efficient malate valve that plays a major role in maintaining the cellular redox environment.

  5. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP.

    Science.gov (United States)

    Wang, Jing-Fang; Wei, Dong-Qing; Lin, Ying; Wang, Yong-Hua; Du, Hong-Li; Li, Yi-Xve; Chou, Kuo-Chen

    2007-07-27

    NAD(P)H-dependent d-xylose reductase is a homodimeric oxidoreductase that belongs to the aldo-keto reductase superfamily. The enzyme has the special function to catalyze the first step in the assimilation of xylose into yeast metabolic pathways. Performing this function via reducing the open chain xylose to xylitol, the xylose reductase of Pichia stipitis is one of the most important enzymes that can be used to construct recombinant Saccharomyces cerevisiae strain for utilizing xylose and producing alcohol. To investigate into the interaction mechanism of the enzyme with its ligand NAD and NADP, the 3D structure was developed for the NAD(P)H-dependent d-xylose reductase from P. stipitis. With the 3D structure, the molecular docking operations were conducted to find the most stable bindings of the enzyme with NAD and NADP, respectively. Based on these results, the binding pockets of the enzyme for NAD and NADP have been explicitly defined. It has been found that the residues in forming the binding pockets for both NAD and NADP are almost the same and mainly hydrophilic. These findings may be used to guide mutagenesis studies, providing useful clues to modify the enzyme to improve the utilization of xylose for producing alcohol. Also, because human aldose reductases have the function to reduce the open chain form of glucose to sorbitol, a process physiologically significant for diabetic patients at the time that their blood glucose levels are elevated, the information gained through this study may also stimulate the development of new strategies for therapeutic treatment of diabetes.

  6. Regulation by ammonium of glutamate dehydrogenase (NADP+) from Saccharomyces cerevisiae.

    Science.gov (United States)

    Bogonez, E; Satrústegui, J; Machado, A

    1985-06-01

    The activity of glutamate dehydrogenase (NADP+) (EC 1.4.1.4; NADP-GDH) of Saccharomyces cerevisiae is decreased under conditions in which intracellular ammonia concentrations increases. A high internal ammonia concentration can be obtained (a) by increasing the ammonium sulphate concentration in the culture medium, and (b) by growing the yeast either in acetate + ammonia media, where the pH of the medium rises during growth, or in heavily buffered glucose + ammonia media at pH 7.5. Under these conditions cellular oxoglutarate concentrations do not vary and changes in NADP-GDH activity appear to provide a constant rate of oxoglutarate utilization. The following results suggest that the decrease in NADP-GDH activity in ammonia-accumulating yeast cells is brought about by repression of synthesis: (i) after a shift to high ammonium sulphate concentrations, the number of units of activity per cell decreased as the inverse of cell doubling; and (ii) the rate of degradation of labelled NADP-GDH was essentially the same in ammonia-accumulating yeast cells and in controls, whereas the synthesis constant was much lower in the ammonia-accumulating cells than in the controls.

  7. New insight into the molecular basis of 3beta-hydroxysteroid dehydrogenase deficiency: identification of eight mutations in the HSD3B2 gene eleven patients from seven new families and comparison of the functional properties of twenty-five mutant enzymes.

    Science.gov (United States)

    Moisan, A M; Ricketts, M L; Tardy, V; Desrochers, M; Mébarki, F; Chaussain, J L; Cabrol, S; Raux-Demay, M C; Forest, M G; Sippell, W G; Peter, M; Morel, Y; Simard, J

    1999-12-01

    Classical 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase (3betaHSD) deficiency is a form of congenital adrenal hyperplasia that impairs steroidogenesis in both the adrenals and gonads resulting from mutations in the HSD3B2 gene and causing various degrees of salt-wasting in both sexes and incomplete masculinization of the external genitalia in genetic males. To identify the molecular lesion(s) in the HSD3B2 gene in the 11 patients from the seven new families suffering from classical 3betaHSD deficiency, the complete nucleotide sequence of the whole coding region and exon-intron splicing boundaries of this gene was determined by direct sequencing. Five of these families were referred to Morel's molecular diagnostics laboratory in France, whereas the two other families were investigated by Peter's group in Germany. Functional characterization studies were performed by Simard's group in Canada. Following transient expression in 293 cells of each of the mutant recombinant proteins generated by site-directed mutagenesis, the effect of the 25 mutations on enzyme activity was assessed by incubating intact cells in culture with 10 nM [14C]-DHEA as substrate. The stability of the mutant proteins has been investigated using a combination of Northern and Western blot analyses, as well as an in vitro transcription/translation assay using rabbit reticulocyte lysates. The present report describes the identification of 8 mutations, in seven new families with individuals suffering from classical 3betaHSD deficiency, thus increasing the number of known HSD3B2 mutations involved in this autosomal recessive disorder to 31 (1 splicing, 1 in-frame deletion, 3 nonsense, 4 frameshift and 22 missense mutations). In addition to the mutations reported here in these new families, we have also investigated for the first time the functional significance of previously reported missense mutations and or sequence variants namely, A82T, A167V, L173R, L205P, S213G and K216E, P222H, T259

  8. Immobilized redox mediators for electrochemical NAD(P)+ regeneration

    NARCIS (Netherlands)

    Kochius, S.; Magnusson, A.O.; Hollmann, F.; Schrader, J.; Holtmann, D.

    2012-01-01

    The applicability of dissolved redox mediators for NAD(P)+ regeneration has been demonstrated several times. Nevertheless, the use of mediators in solutions for sensor applications is not a very convenient strategy since the analysis is not reagentless and long stabilization times occur. The most

  9. Structural and functional diversity of ferredoxin-NADP(+) reductases.

    Science.gov (United States)

    Aliverti, Alessandro; Pandini, Vittorio; Pennati, Andrea; de Rosa, Matteo; Zanetti, Giuliana

    2008-06-15

    Although all ferredoxin-NADP(+) reductases (FNRs) catalyze the same reaction, i.e. the transfer of reducing equivalents between NADP(H) and ferredoxin, they belong to two unrelated families of proteins: the plant-type and the glutathione reductase-type of FNRs. Aim of this review is to provide a general classification scheme for these enzymes, to be used as a framework for the comparison of their properties. Furthermore, we report on some recent findings, which significantly increased the understanding of the structure-function relationships of FNRs, i.e. the ability of adrenodoxin reductase and its homologs to catalyze the oxidation of NADP(+) to its 4-oxo derivative, and the properties of plant-type FNRs from non-photosynthetic organisms. Plant-type FNRs from bacteria and Apicomplexan parasites provide examples of novel ways of FAD- and NADP(H)-binding. The recent characterization of an FNR from Plasmodium falciparum brings these enzymes into the field of drug design.

  10. Rational proteomics I. Fingerprint identification and cofactor specificity in the short-chain oxidoreductase (SCOR) enzyme family.

    Science.gov (United States)

    Duax, William L; Pletnev, Vladimir; Addlagatta, Anthony; Bruenn, Jeremy; Weeks, Charles M

    2003-12-01

    The short-chain oxidoreductase (SCOR) family of enzymes includes over 2000 members identified in sequenced genomes. Of these enzymes, approximately 200 have been characterized functionally, and the three-dimensional crystal structures of approximately 40 have been reported. Since some SCOR enzymes are involved in hypertension, diabetes, breast cancer, and polycystic kidney disease, it is important to characterize the other members of the family for which the biological functions are currently unknown. Although the SCOR family appears to have only a single fully conserved residue, it was possible, using bioinformatics methods, to determine characteristic fingerprints composed of 30-40 residues that are conserved at the 70% or greater level in SCOR subgroups. These fingerprints permit reliable prediction of several important structure-function features including NAD/NADP cofactor preference. For example, the correlation of aspartate or arginine residues with NAD or NADP binding, respectively, predicts the cofactor preference of more than 70% of the SCOR proteins with unknown function. The analysis of conserved residues surrounding the cofactor has revealed the presence of previously undetected CH em leader O hydrogen bonds in the majority of the SCOR crystal structures, predicts the presence of similar hydrogen bonds in 90% of the SCOR proteins of unknown function, and suggests that these hydrogen bonds may play a critical role in the catalytic functions of these enzymes.

  11. A unifying kinetic framework for modeling oxidoreductase-catalyzed reactions

    OpenAIRE

    Chang, Ivan; Baldi, Pierre

    2013-01-01

    Motivation: Oxidoreductases are a fundamental class of enzymes responsible for the catalysis of oxidation–reduction reactions, crucial in most bioenergetic metabolic pathways. From their common root in the ancient prebiotic environment, oxidoreductases have evolved into diverse and elaborate protein structures with specific kinetic properties and mechanisms adapted to their individual functional roles and environmental conditions. While accurate kinetic modeling of oxidoreductases is thus imp...

  12. Enhanced activity of yqhD oxidoreductase in synthesis of 1,3-propanediol by error-prone PCR

    Institute of Scientific and Technical Information of China (English)

    Hongmei Li; Jia Chen; Yinghua Li

    2008-01-01

    yqhD oxidoreductase was determined to be an NADP-dependent dehydrogenase,and was more active toward 3-HPA when compared to 1,3-propanediol oxidoreductase.To further improve enzyme activity towards 3-hydroxypropionaldehyde (3-HPA),error-prone PCR was implemented to mutant yqhD gene.Two mutants,D99QN147H and Q202A with increased catalytic and affinity efficiency,were obtained after one round of error-prone polymerase chain reaction.And the catalytic efficiency of the mutant D99QN147H was up to 4-fold greater than the wild enzyme (0.0375 min-1 mM-1 vs.0.0078 min-1 mM-1).The recombined strain containing pET28yqhD D99QNI47H yielded 28 g L-1 of 1,3-propanediol in the fed-batch LB cultures (1 L volume) with an initial 3-HPA concentration of 40 g L-1,which was higher than the 21 and 17 g L-1 of 1,3-propanediol from the mutant Q202A and the wild-type,respectively.Except for propionaldehyde,the optimal mutant D99QN147H also exhibited higher activity on a range of substituted aldehydes than the wild-type.

  13. Engineering an NADPH/NADP+ Redox Biosensor in Yeast

    DEFF Research Database (Denmark)

    Zhang, Jie; Sonnenschein, Nikolaus; Pihl, Thomas Peter Boye

    2016-01-01

    and biotechnology. Still, there is a need for bioprospecting and engineering of more biosensors to enable real-time monitoring of specific cellular states and controlling downstream actuation. In this study, we report the engineering and application of a transcription factor-based NADPH/NADP+ redox biosensor...... NADPH deficiency by activation of NADPH regeneration. Finally, we couple the biosensor with an expression of dosage-sensitive genes (DSGs) and thereby create a novel tunable sensor-selector useful for synthetic selection of cells with higher NADPH/NADP+ ratios from mixed cell populations. We show...... that the combination of exploitation and rational engineering of native signaling components is applicable for diagnosis, regulation, and selection of cellular redox states....

  14. Purification and characterization of an (S)-3-hydroxycarboxylate oxidoreductase from Clostridium tyrobutyricum.

    Science.gov (United States)

    Bayer, M; Günther, H; Simon, H

    1994-10-01

    An NADP(+)-dependent reversible 3-hydroxycarboxylate oxidoreductase present in Clostridium tyrobutyricum has been purified. As judged by gel electrophoresis the enzyme was pure after a 940-fold enrichment by four chromatographic steps. Its molecular mass was estimated to be 40-43 kDa. The enzyme was most active at pH 4.5 in the reduction of 3-oxobutyrate. Other substrates were 3-oxovalerate, 3-oxocaproate, 3-oxoisocaproate and 4-chloro-3-oxobutyrate. Except for the latter all substrates were converted enantioselectively to (S)-3-hydroxy acids in the presence of NADPH. 4-Chloro-3-oxobutyrate was reduced to the (R)-3-hydroxy acid. The specific activity of the enzyme was about 1400 mumol min-1 mg-1 protein for the reduction of 3-oxobutyrate at pH 5.0. The Michaelis constant (Km) values for 3-oxobutyrate, 3-oxovalerate and 3-oxocaproate were determined to be 0.22, 1.6 and 3.0 mM, respectively. The Km values for dehydrogenation of (S)-3-hydroxybutyrate, (S)-3-hydroxyvalerate and (S)-3-hydroxycaproate were found to be 2.6, 1.1 and 5.2 mM, respectively. The identity of 43 of the first 45 N-terminal amino acid residues has been determined. So far such enzyme activities have been described in eucaryotes only.

  15. Engineering an NADPH/NADP(+) Redox Biosensor in Yeast.

    Science.gov (United States)

    Zhang, Jie; Sonnenschein, Nikolaus; Pihl, Thomas P B; Pedersen, Kasper R; Jensen, Michael K; Keasling, Jay D

    2016-12-16

    Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science and biotechnology. Still, there is a need for bioprospecting and engineering of more biosensors to enable real-time monitoring of specific cellular states and controlling downstream actuation. In this study, we report the engineering and application of a transcription factor-based NADPH/NADP(+) redox biosensor in the budding yeast Saccharomyces cerevisiae. Using the biosensor, we are able to monitor the cause of oxidative stress by chemical induction, and changes in NADPH/NADP(+) ratios caused by genetic manipulations. Because of the regulatory potential of the biosensor, we also show that the biosensor can actuate upon NADPH deficiency by activation of NADPH regeneration. Finally, we couple the biosensor with an expression of dosage-sensitive genes (DSGs) and thereby create a novel tunable sensor-selector useful for synthetic selection of cells with higher NADPH/NADP(+) ratios from mixed cell populations. We show that the combination of exploitation and rational engineering of native signaling components is applicable for diagnosis, regulation, and selection of cellular redox states.

  16. Abnormal erythrocyte metabolism in hepatic disease: effect of NADP repletion.

    Science.gov (United States)

    Smith, J R; Kay, N E; Gottlieb, A J; Oski, F A

    1979-01-01

    Erythrocytes from ten patients with severe liver disease displayed low methylene blue-stimulated hexose monophosphate (HMP) shunt activity and glucose recycling despite elevated total glucose consumption when compared to controls. Heinz body formation was increased and reduced glutathione concentration significantly decreased. After hemolysis, no differences in methylene-blue estimulated HMP shunt activity or glucose recycling could be demonstrated between patients and controls. The addition of 2- and 4-mM NADP to the hemolysates produced significantly greater HMP shunt activity and glucose recycling in the patients' hemolysates. The addition of NADPH to the incubation mixture produced no significant stimulation of either HMP shunt activity or glucose recycling, unless methylene blue was also added. Omission of NAD or phosphate from the incubation mixture produced no change in shunt metabolism. The absence of supplemental ATP resulted in extremely low shunt metabolism and refractoriness to NADP stimulation in both patients and controls. In the absence of additional magnesium, a reduction of shunt metabolism was noted. These data suggest that the defect in stimulated shunt metabolism in the intact erythrocytes of patients with hepatic disease does not result from an absolute enzyme deficiency, but rather from an unavailability of NADP or other cofactor.

  17. The regulation and catalytic mechanism of the NADP-malic enzyme from tobacco leaves

    Directory of Open Access Journals (Sweden)

    VERONIKA DOUBNEROVÁ

    2009-08-01

    Full Text Available The non-photosynthetic NADP-malic enzyme EC 1.1.1.40 (NADP-ME, which catalyzes the oxidative decarboxylation of L-malate and NADP+ to produce pyruvate and NADPH, respectively, and which could be involved in plant defense responses, was isolated from Nicotiana tabacum L. leaves. The mechanism of the enzyme reaction was studied by the initial rate method and was found to be an ordered sequential one. Regulation possibilities of purified cytosolic NADP-ME by cell metabolites were tested. Intermediates of the citric acid cycle (a-ketoglutarate, succinate, fumarate, metabolites of glycolysis (pyruvate, phosphoenolpyruvate, glucose-6-phosphate, compounds connected with lipogenesis (coenzyme A, acetyl-CoA, palmitoyl-CoA and some amino acids (glutamate, glutamine, aspartate did not significantly affect the NADP-ME activity from tobacco leaves. In contrast, macroergic compounds (GTP, ATP and ADP were strong inhibitors of NADP-ME; the type of inhibition and the inhibition constants were determined in the presence of the most effective cofactors (Mn2+ or Mg2+, required by NADP-ME. Predominantly non-competitive type of inhibitions of NADP-ME with respect to NADP+ and mixed type to L-malate were found.

  18. Identification of an NADP/thioredoxin system in Chlamydomonas reinhardtii

    Science.gov (United States)

    Huppe, H. C.; Picaud, A.; Buchanan, B. B.; Miginiac-Maslow, M.

    1991-01-01

    The protein components of the NADP/thioredoxin system, NADP-thioredoxin reductase (NTR) and thioredoxin h, have been purified and characterized from the green alga, Chlamydomonas reinhardtii. The analysis of this system confirms that photoautotrophic Chlamydomonas cells resemble leaves in having both an NADP- and ferrodoxin-linked thioredoxin redox system. Chlamydomonas thioredoxin h, which is smaller on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than thioredoxin m from the same source, cross-reacted with antisera to thioredoxin h from spinach (Spinacia oleracea L.) and wheat germ (Triticum vulgaris L.) but not with antisera to m or f thioredoxins. In these properties, the thioredoxin h resembled a thioredoxin from Chlamydomonas, designated Ch1, whose sequence was reported recently (P. Decottignies et al., 1991, Eur. J. Biochem. 198, 505-512). The differential reactivity of thioredoxin h with antisera was used to demonstrate that thioredoxin h is enriched outside the chloroplast. The NTR was purified from Chlamydomonas using thioredoxin h from the same source. Similar to its counterpart from other organisms, Chlamydomonas NTR had a subunit size of approx. 36 kDa and was specific for NADPH. Chlamydomonas NTR effectively reduced thioredoxin h from the same source but showed little activity with the other thioredoxins tested, including spinach thioredoxin h and Escherichia coli thioredoxin. Comparison of the reduction of Chlamydomonas thioredoxins m and h by each of the endogenous thioredoxin reductases, NTR and ferredoxin-thioredoxin reductase, revealed a differential specificity of each enzyme for thioredoxin. Thus, NTR showed increased activity with thioredoxin h and ferredoxin-thioredoxin reductase with thioredoxins m and f.

  19. Crystal structures of Leptospira interrogans FAD-containing ferredoxin-NADP+ reductase and its complex with NADP+.

    Science.gov (United States)

    Nascimento, Alessandro S; Catalano-Dupuy, Daniela L; Bernardes, Amanda; Neto, Mario de Oliveira; Santos, Maria Auxiliadora M; Ceccarelli, Eduardo A; Polikarpov, Igor

    2007-10-24

    Ferredoxin-NADP(H) reductases (FNRs) are flavoenzymes that catalyze the electron transfer between NADP(H) and the proteins ferredoxin or flavodoxin. A number of structural features distinguish plant and bacterial FNRs, one of which is the mode of the cofactor FAD binding. Leptospira interrogans is a spirochaete parasitic bacterium capable of infecting humans and mammals in general. Leptospira interrogans FNR (LepFNR) displays low sequence identity with plant (34% with Zea mays) and bacterial (31% with Escherichia coli) FNRs. However, LepFNR contains all consensus sequences that define the plastidic class FNRs. The crystal structures of the FAD-containing LepFNR and the complex of the enzyme with NADP+, were solved and compared to known FNRs. The comparison reveals significant structural similarities of the enzyme with the plastidic type FNRs and differences with the bacterial enzymes. Our small angle X-ray scattering experiments show that LepFNR is a monomeric enzyme. Moreover, our biochemical data demonstrate that the LepFNR has an enzymatic activity similar to those reported for the plastidic enzymes and that is significantly different from bacterial flavoenzymes, which display lower turnover rates. LepFNR is the first plastidic type FNR found in bacteria and, despite of its low sequence similarity with plastidic FNRs still displays high catalytic turnover rates. The typical structural and biochemical characteristics of plant FNRs unveiled for LepFNR support a notion of a putative lateral gene transfer which presumably offers Leptospira interrogans evolutionary advantages. The wealth of structural information about LepFNR provides a molecular basis for advanced drugs developments against leptospirosis.

  20. Crystal structures of Leptospira interrogans FAD-containing ferredoxin-NADP+ reductase and its complex with NADP+

    Directory of Open Access Journals (Sweden)

    Ceccarelli Eduardo A

    2007-10-01

    Full Text Available Abstract Background Ferredoxin-NADP(H reductases (FNRs are flavoenzymes that catalyze the electron transfer between NADP(H and the proteins ferredoxin or flavodoxin. A number of structural features distinguish plant and bacterial FNRs, one of which is the mode of the cofactor FAD binding. Leptospira interrogans is a spirochaete parasitic bacterium capable of infecting humans and mammals in general. Leptospira interrogans FNR (LepFNR displays low sequence identity with plant (34% with Zea mays and bacterial (31% with Escherichia coli FNRs. However, LepFNR contains all consensus sequences that define the plastidic class FNRs. Results The crystal structures of the FAD-containing LepFNR and the complex of the enzyme with NADP+, were solved and compared to known FNRs. The comparison reveals significant structural similarities of the enzyme with the plastidic type FNRs and differences with the bacterial enzymes. Our small angle X-ray scattering experiments show that LepFNR is a monomeric enzyme. Moreover, our biochemical data demonstrate that the LepFNR has an enzymatic activity similar to those reported for the plastidic enzymes and that is significantly different from bacterial flavoenzymes, which display lower turnover rates. Conclusion LepFNR is the first plastidic type FNR found in bacteria and, despite of its low sequence similarity with plastidic FNRs still displays high catalytic turnover rates. The typical structural and biochemical characteristics of plant FNRs unveiled for LepFNR support a notion of a putative lateral gene transfer which presumably offers Leptospira interrogans evolutionary advantages. The wealth of structural information about LepFNR provides a molecular basis for advanced drugs developments against leptospirosis.

  1. Mitochondrial dynamics in human NADH:ubiquinone oxidoreductase deficiency.

    NARCIS (Netherlands)

    Willems, P.H.G.M.; Smeitink, J.A.M.; Koopman, W.J.H.

    2009-01-01

    Mitochondrial NADH:ubiquinone oxidoreductase or complex I (CI) is a frequently affected enzyme in cases of mitochondrial disorders. However, the cytopathological mechanism of the associated pediatric syndromes is poorly understood. Evidence in the literature suggests a connection between mitochondri

  2. Peroxisomal NADP-isocitrate dehydrogenase is required for Arabidopsis stomatal movement.

    Science.gov (United States)

    Leterrier, Marina; Barroso, Juan B; Valderrama, Raquel; Begara-Morales, Juan C; Sánchez-Calvo, Beatriz; Chaki, Mounira; Luque, Francisco; Viñegla, Benjamin; Palma, José M; Corpas, Francisco J

    2016-03-01

    Peroxisomes are subcellular organelles characterized by a simple morphological structure but have a complex biochemical machinery involved in signaling processes through molecules such as hydrogen peroxide (H2O2) and nitric oxide (NO). Nicotinamide adenine dinucleotide phosphate (NADPH) is an essential component in cell redox homeostasis, and its regeneration is critical for reductive biosynthesis and detoxification pathways. Plants have several NADPH-generating dehydrogenases, with NADP-isocitrate dehydrogenase (NADP-ICDH) being one of these enzymes. Arabidopsis contains three genes that encode for cytosolic, mitochondrial/chloroplastic, and peroxisomal NADP-ICDH isozymes although the specific function of each of these remains largely unknown. Using two T-DNA insertion lines of the peroxisomal NADP-ICDH designated as picdh-1 and picdh-2, the data show that the peroxisomal NADP-ICDH is involved in stomatal movements, suggesting that peroxisomes are a new element in the signaling network of guard cells.

  3. Studies of interaction of homo-dimeric ferredoxin-NAD(P)+ oxidoreductases of Bacillus subtilis and Rhodopseudomonas palustris, that are closely related to thioredoxin reductases in amino acid sequence, with ferredoxins and pyridine nucleotide coenzymes.

    Science.gov (United States)

    Seo, Daisuke; Okabe, Seisuke; Yanase, Mitsuhiro; Kataoka, Kunishige; Sakurai, Takeshi

    2009-04-01

    Ferredoxin-NADP(+) oxidoreductases (FNRs) of Bacillus subtilis (YumC) and Rhodopseudomonas palustris CGA009 (RPA3954) belong to a novel homo-dimeric type of FNR with high amino acid sequence homology to NADPH-thioredoxin reductases. These FNRs were purified from expression constructs in Escherichia coli cells, and their steady-state reactions with [2Fe-2S] type ferredoxins (Fds) from spinach and R. palustris, [4Fe-4S] type Fd from B. subtilis, NAD(P)(+)/NAD(P)H and ferricyanide were studied. From the K(m) and k(cat) values for the diaphorase activity with ferricyanide, it is demonstrated that both FNRs are far more specific for NADPH than for NADH. The UV-visible spectral changes induced by NADP(+) and B. subtilis Fd indicated that both FNRs form a ternary complex with NADP(+) and Fd, and that each of the two ligands decreases the affinities of the others. The steady-state kinetics of NADPH-cytochrome c reduction activity of YumC is consistent with formation of a ternary complex of NADPH and Fd during catalysis. These results indicate that despite their low sequence homology to other FNRs, these enzymes possess high FNR activity but with measurable differences in affinity for different types of Fds as compared to other more conventional FNRs.

  4. Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production.

    Science.gov (United States)

    Zachariou, M; Scopes, R K

    1986-09-01

    The enzymes responsible for sorbitol formation in Zymomonas mobilis were investigated. A previously undescribed enzyme catalyzes the intermolecular oxidation-reduction of glucose and fructose to form gluconolactone and sorbitol. This enzyme has been purified; it had a subunit size of 40,000 daltons and is probably tetrameric at low pH. It contained tightly bound NADP as the hydrogen carrier and did not require any added cofactor for activity. In addition, a gluconolactonase has been isolated, although not completely purified. Together these two enzymes were capable of completely converting a 54% (wt/vol) equimolar mixture of glucose and fructose to sorbitol and sodium gluconate at the optimum pH of close to 6.2. The oxidoreductase had low affinities for its substrates, but natural environmental conditions would expose it to high concentrations of sugars. The amount of the enzyme in Z. mobilis cells was sufficient to account for the rate of sorbitol formation in vivo. However, the enzyme was present in the highest amounts when the cells were grown on glucose alone, and it was repressed by the presence of fructose; this was not the case with the gluconolactonase.

  5. The Flavoenzyme Ferredoxin (Flavodoxin)-NADP(H) Reductase Modulates NADP(H) Homeostasis during the soxRS Response of Escherichia coli

    Science.gov (United States)

    Krapp, Adriana R.; Rodriguez, Ramiro E.; Poli, Hugo O.; Paladini, Dar|$$|Aa|fio H.; Palatnik, Javier F.; Carrillo, Néstor

    2002-01-01

    Escherichia coli cells from strain fpr, deficient in the soxRS-induced ferredoxin (flavodoxin)-NADP(H) reductase (FPR), display abnormal sensitivity to the bactericidal effects of the superoxide-generating reagent methyl viologen (MV). Neither bacteriostatic effects nor inactivation of oxidant-sensitive hydrolyases could be detected in fpr cells exposed to MV. FPR inactivation did not affect the MV-driven soxRS response, whereas FPR overexpression led to enhanced stimulation of the regulon, with concomitant oxidation of the NADPH pool. Accumulation of a site-directed FPR mutant that uses NAD(H) instead of NADP(H) had no effect on soxRS induction and failed to protect fpr cells from MV toxicity, suggesting that FPR contributes to NADP(H) homeostasis in stressed bacteria. PMID:11844783

  6. NADP+-dependent glutamate dehydrogenase activity is impaired in mutants of Saccharomyces cerevisiae that lack aconitase.

    Science.gov (United States)

    González, A; Rodríguez, L; Olivera, H; Soberón, M

    1985-10-01

    A mutant of Saccharomyces cerevisiae lacking aconitase did not grow on minimal medium (MM) and had five- to tenfold less NADP+-dependent glutamate dehydrogenase (GDH) activity than the wild-type, although its glutamine synthetase (GS) activity was still inducible. When this mutant was incubated with glutamate as the sole nitrogen source, the 2-oxoglutarate content rose, and the NADP+-dependent GDH activity increased. Furthermore, carbon-limited cultures showed a direct relation between NADP+-dependent GDH activity and the intracellular 2-oxoglutarate content. We propose that the low NADP+-dependent GDH activity found in the mutant was due to the lack of 2-oxoglutarate or some other intermediate of the tricarboxylic acid cycle.

  7. Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets.

    Science.gov (United States)

    Bi, Jicai; Wang, Honghai; Xie, Jianping

    2011-02-01

    NAD(P) is an indispensable cofactor for all organisms and its biosynthetic pathways are proposed as promising novel antibiotics targets against pathogens such as Mycobacterium tuberculosis. Six NAD(P) biosynthetic pathways were reconstructed by comparative genomics: de novo pathway (Asp), de novo pathway (Try), NmR pathway I (RNK-dependent), NmR pathway II (RNK-independent), Niacin salvage, and Niacin recycling. Three enzymes pivotal to the key reactions of NAD(P) biosynthesis are shared by almost all organisms, that is, NMN/NaMN adenylyltransferase (NMN/NaMNAT), NAD synthetase (NADS), and NAD kinase (NADK). They might serve as ideal broad spectrum antibiotic targets. Studies in M. tuberculosis have in part tested such hypothesis. Three regulatory factors NadR, NiaR, and NrtR, which regulate NAD biosynthesis, have been identified. M. tuberculosis NAD(P) metabolism and regulation thereof, potential drug targets and drug development are summarized in this paper.

  8. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    Science.gov (United States)

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2017-07-28

    The nicotinamide adenine dinucleotide (NAD(+))/reduced NAD(+) (NADH) and NADP(+)/reduced NADP(+) (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD(+)-consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD(+) precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 00, 000-000.

  9. Molybdenum incorporation in tungsten aldehyde oxidoreductase enzymes from Pyrococcus furiosus

    NARCIS (Netherlands)

    Sevcenco, A.M; Bevers, L.E.; Pinkse, M.W.H.; Krijger, G.C.; Wolterbeek, H.T.; Verhaert, P.D.E.M.; Hagen, W.R.; Hagedoorn, P.L.

    2010-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is no

  10. Identification of oxidoreductases from the petroleum Bacillus safensis strain

    Directory of Open Access Journals (Sweden)

    Francine S.A. da Fonseca

    2015-12-01

    Full Text Available A gram-positive bacterium, denominated CFA-06, was isolated from Brazilian petroleum in the Campos Basin and is responsible for the degradation of aromatic compounds and petroleum aromatic fractions. The CFA-06 strain was identified as Bacillus safensis using the 16S rRNA and gyrase B sequence. Enzymatic assays revealed the presence of two oxidoreductases: a catalase and a new oxidoreductase. The oxidoreductases were enzymatically digested and analyzed via ESI-LTQ-Orbitrap mass spectrometry. The mass data revealed a novel oxidoreductase (named BsPMO containing 224 amino acids and 89% homology with a hypothetic protein from B. safensis (CFA-06 and a catalase (named BsCat with 491 amino acids and 60% similarity with the catalase from Bacillus pumilus (SAFR-032. The new protein BsPMO contains iron atom(s and shows catalytic activity toward a monooxygenase fluorogenic probe in the presence of cofactors (NADH, NADPH and NAD. This study enhances our knowledge of the biodegradation process of petroleum by B. safensis.

  11. Molybdenum incorporation in tungsten aldehyde oxidoreductase enzymes from Pyrococcus furiosus

    NARCIS (Netherlands)

    Sevcenco, A.M; Bevers, L.E.; Pinkse, M.W.H.; Krijger, G.C.; Wolterbeek, H.T.; Verhaert, P.D.E.M.; Hagen, W.R.; Hagedoorn, P.L.

    2010-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is no

  12. Human NADH : ubiquinone oxidoreductase deficiency : radical changes in mitochondrial morphology?

    NARCIS (Netherlands)

    Koopman, W.J.H.; Verkaart, S.A.J.; Visch, H.J.; Vries, S. de; Nijtmans, L.G.J.; Smeitink, J.A.M.; Willems, P.H.G.M.

    2007-01-01

    Malfunction of NADH:ubiquinone oxidoreductase or complex I (CI), the first and largest complex of the mitochondrial oxidative phosphorylation system, has been implicated in a wide variety of human disorders. To demonstrate a quantitative relationship between CI amount and activity and mitochondrial

  13. Nucleotide sequence of the GDH gene coding for the NADP-specific glutamate dehydrogenase of Saccharomyces cerevisiae.

    Science.gov (United States)

    Nagasu, T; Hall, B D

    1985-01-01

    The isolation of the Saccharomyces cerevisiae gene for NADP-dependent glutamate dehydrogenase (NADP-GDH) by cross hybridization to the Neurospora crassa am gene, known to encode for NADP-GDH is described. Two DNA fragments selected from a yeast genomic library in phage lambda gt11 were shown by restriction analysis to share 2.5 kb of common sequence. A yeast shuttle vector (CV13) carrying either to the cloned fragments complements the gdh- strain of S. cerevisiae and directs substantial overproduction of NADP-GDH. One of the cloned fragments was sequenced, and the deduced amino acid (aa) sequence of the yeast NADP-GDH is 64% homologous to N. crassa, 51% to Escherichia coli and 24% to bovine NADP-GDHs.

  14. Induced fit and equilibrium dynamics for high catalytic efficiency in ferredoxin-NADP(H) reductases.

    Science.gov (United States)

    Paladini, Darío H; Musumeci, Matías A; Carrillo, Néstor; Ceccarelli, Eduardo A

    2009-06-23

    Ferredoxin-NADP(H) reductase (FNR) is a FAD-containing protein that catalyzes the reversible transfer of electrons between NADP(H) and ferredoxin or flavodoxin. This enzyme participates in the redox-based metabolism of plastids, mitochondria, and bacteria. Plastidic plant-type FNRs are very efficient reductases in supporting photosynthesis. They have a strong preference for NADP(H) over NAD(H), consistent with the main physiological role of NADP(+) photoreduction. In contrast, FNRs from organisms with heterotrophic metabolisms or anoxygenic photosynthesis display turnover rates that are up to 100-fold lower than those of their plastidic and cyanobacterial counterparts. With the aim of elucidating the mechanisms by which plastidic enzymes achieve such high catalytic efficiencies and NADP(H) specificity, we investigated the manner in which the NADP(H) nicotinamide enters and properly binds to the catalytic site. Analyzing the interaction of different nucleotides, substrate analogues, and aromatic compounds with the wild type and the mutant Y308S-FNR from pea, we found that the interaction of the 2'-P-AMP moiety from NADP(+) induces a change that favors the interaction of the nicotinamide, thereby facilitating the catalytic process. Furthermore, the main role of the terminal tyrosine, Y308, is to destabilize the interaction of the nicotinamide with the enzyme, inducing product release and favoring discrimination of the nucleotide substrate. We determined that this function can be replaced by the addition of aromatic compounds that freely diffuse in solution and establish a dynamic equilibrium, reversing the effect of the mutation in the Y308S-FNR mutant.

  15. A STD-NMR Study of the Interaction of the Anabaena Ferredoxin-NADP+ Reductase with the Coenzyme

    Directory of Open Access Journals (Sweden)

    Lara V. Antonini

    2014-01-01

    Full Text Available Ferredoxin-NADP+ reductase (FNR catalyzes the electron transfer from ferredoxin to NADP+ via its flavin FAD cofactor. To get further insights in the architecture of the transient complexes produced during the hydride transfer event between the enzyme and the NADP+ coenzyme we have applied NMR spectroscopy using Saturation Transfer Difference (STD techniques to analyze the interaction between FNRox and the oxidized state of its NADP+ coenzyme. We have found that STD NMR, together with the use of selected mutations on FNR and of the non-FNR reacting coenzyme analogue NAD+, are appropriate tools to provide further information about the the interaction epitope.

  16. NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles.

    Science.gov (United States)

    DeLuna, A; Avendano, A; Riego, L; Gonzalez, A

    2001-11-23

    In the yeast Saccharomyces cerevisiae, two NADP(+)-dependent glutamate dehydrogenases (NADP-GDHs) encoded by GDH1 and GDH3 catalyze the synthesis of glutamate from ammonium and alpha-ketoglutarate. The GDH2-encoded NAD(+)-dependent glutamate dehydrogenase degrades glutamate producing ammonium and alpha-ketoglutarate. Until very recently, it was considered that only one biosynthetic NADP-GDH was present in S. cerevisiae. This fact hindered understanding the physiological role of each isoenzyme and the mechanisms involved in alpha-ketoglutarate channeling for glutamate biosynthesis. In this study, we purified and characterized the GDH1- and GDH3-encoded NADP-GDHs; they showed different allosteric properties and rates of alpha-ketoglutarate utilization. Analysis of the relative levels of these proteins revealed that the expression of GDH1 and GDH3 is differentially regulated and depends on the nature of the carbon source. Moreover, the physiological study of mutants lacking or overexpressing GDH1 or GDH3 suggested that these genes play nonredundant physiological roles. Our results indicate that the coordinated regulation of GDH1-, GDH3-, and GDH2-encoded enzymes results in glutamate biosynthesis and balanced utilization of alpha-ketoglutarate under fermentative and respiratory conditions. The possible relevance of the duplicated NADP-GDH pathway in the adaptation to facultative metabolism is discussed.

  17. Mitochondrial and chloroplastic targeting signals of NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    McKinnon, David J; Brzezowski, Pawel; Wilson, Kenneth E; Gray, Gordon R

    2009-12-01

    Many mitochondrial and chloroplast proteins are encoded in the nucleus and subsequently imported into the organelles via active protein transport systems. While usually highly specific, some proteins are dual-targeted to both organelles. In tobacco (Nicotiana tabacum L.), the cDNA encoding the mitochondrial isoform of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) contains two translational ATG start sites, suggesting the possibility of tandem targeting signals. In this work, the putative mitochondrial and chloroplastic targeting signals from NADP+-ICDH were fused to a yellow fluorescent protein (YFP) reporter to generate a series of constructs and introduced into tobacco leaves by Agrobacterium-mediated transient transformation. The subsequent sub-cellular locations of the ICDH:YFP fusion proteins were then examined using confocal microscopy. Constructs predicted to be targeted to the chloroplast all localized to the chloroplast. However, this was not the case for all of the constructs that were predicted to be mitochondrial targeted. Although some constructs localized to mitochondria as expected, others appeared to be chloroplast localized. This was attributed to an additional 50 amino acid residues of the mature NADP+-ICDH protein that were present in those constructs, generated from either 'Xanthi' or 'Petit Havana' cultivars of tobacco. The results of this study raise interesting questions regarding the targeting and processing of organellar isoforms of NADP+-ICDH.

  18. NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms.

    Science.gov (United States)

    Love, Nick R; Pollak, Nadine; Dölle, Christian; Niere, Marc; Chen, Yaoyao; Oliveri, Paola; Amaya, Enrique; Patel, Sandip; Ziegler, Mathias

    2015-02-03

    Nicotinamide adenine dinucleotide phosphate (NADP) is a critical cofactor during metabolism, calcium signaling, and oxidative defense, yet how animals regulate their NADP pools in vivo and how NADP-synthesizing enzymes are regulated have long remained unknown. Here we show that expression of Nadk, an NAD(+) kinase-encoding gene, governs NADP biosynthesis in vivo and is essential for development in Xenopus frog embryos. Unexpectedly, we found that embryonic Nadk expression is dynamic, showing cell type-specific up-regulation during both frog and sea urchin embryogenesis. We analyzed the NAD kinases (NADKs) of a variety of deuterostome animals, finding two conserved internal domains forming a catalytic core but a highly divergent N terminus. One type of N terminus (found in basal species such as the sea urchin) mediates direct catalytic activation of NADK by Ca(2+)/calmodulin (CaM), whereas the other (typical for vertebrates) is phosphorylated by a CaM kinase-dependent mechanism. This work indicates that animal NADKs govern NADP biosynthesis in vivo and are regulated by evolutionarily divergent and conserved CaM-dependent mechanisms.

  19. Heterozygosity of the sheep: Polymorphism of 'malic enzyme', isocitrate dehydrogenase (NADP+), catalase and esterase.

    Science.gov (United States)

    Baker, C M; Manwell, C

    1977-04-01

    In contrast to other reports, it is found that the sheep has approximately as much enzyme variation as man. Most of the genetically interpretable enzyme variation in heart, liver, kidney and muscle from 52 sheep (Merinos or Merino crosses) is in the NADP-dependent dehydrogenases [two 'malic enzymes' and the supernatant isocitrate dehydrogenase (NADP+)] and in the esterases. Ten different loci for NAD-dependent dehydrogenases are electrophoretically monomorphic, as are five different NADH diaphorases from heart muscle and 15 different major proteins from skeletal muscle. It is highly statistically significant that NADP-dependent dehydrogenases and esterases are polymorphic but representatives of several other major classes of enzymes are not. The physiological significance of this polymorphism may be related to the role of these enzymes in growth and detoxication, sheep having been selected by man for faster growth, of wool or of carcass, and for grazing a wide variety of plants.

  20. Location of the coenzyme binding site in the porcine mitochondrial NADP-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Huang, Yu Chu; Colman, Roberta F

    2005-08-26

    The structure of crystalline porcine mitochondrial NADP-dependent isocitrate dehydrogenase (IDH) has been determined in complex with Mn2+-isocitrate. Based on structural alignment between this porcine enzyme and seven determined crystal structures of complexes of NADP with bacterial IDHs, Arg83, Thr311, and Asn328 were chosen as targets for site-directed mutagenesis of porcine IDH. The circular dichroism spectra of purified wild-type and mutant enzymes are similar. The mutant enzymes exhibit little change in Km for isocitrate or Mn2+, showing that these residues are not involved in substrate binding. In contrast, the Arg83 mutants, Asn328 mutants, and T311A exhibit 3-20-fold increase in the Km(NADP). We propose that Arg83 enhances NADP affinity by hydrogen bonding with the 3'-OH of the nicotinamide ribose, whereas Asn328 hydrogen bonds with N1 of adenine. The pH dependence of Vmax for Arg83 and Asn328 mutants is similar to that of wild-type enzyme, but for all the Thr311 mutants, pK(es) is increased from 5.2 in the wild type to approximately 6.0. We have previously attributed the pH dependence of Vmax to the deprotonation of the metal-bound hydroxyl of isocitrate in the enzyme-substrate complex, prior to the transfer of a hydride from isocitrate to NADP's nicotinamide moiety. Thr311 interacts with the nicotinamide ribose and is the closest of the target amino acids to the nicotinamide ring. Distortion of the nicotinamide by Thr311 mutation will likely be transmitted to Mn2+-isocitrate resulting in an altered pK(es). Because porcine and human mitochondrial NADP-IDH have 95% sequence identity, these results should be applicable to the human enzyme.

  1. Primary structure of the light-dependent regulatory site of corn NADP-malate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Decottignies, P.; Schmitter, J.M.; Miginiac-Maslow, M.; Le Marechal, P.; Jacquot, J.P.; Gadal, P.

    1988-08-25

    The light-activated NADP-malate dehydrogenase (NADP-MDH) catalyzes the reduction of oxaloacetate to malate in higher plant chloroplasts. This enzyme is regulated in vivo by the ferredoxin-thioredoxin system through redox reactions. NADP-MDH has been photoactivated in vitro in a chloroplast system reconstituted from the pure protein components and thylakoid membranes. Photoactivation was accompanied by the appearance of new thiol groups (followed by (14C)iodoacetate incorporation). 14C-Carboxymethylated NADP-MDH has been purified from the incubation mixture and its amino-terminal sequence analyzed. Two (14C)carboxymethylcysteines were identified at positions 10 and 15 after light activation, while they were not detected in the dark-treated protein. In addition, the analysis of the tryptic digest of light-activated (14C)carboxymethylated NADP-MDH revealed that the radioactive label was mostly incorporated in Cys10 and Cys15, indicating that these 2 residues play a major role in the light activation mechanism. Moreover, an activation model, in which photoreduced thio-redoxin was replaced by the dithiol reductant dithio-threitol, has been developed. When NADP-MDH was activated in this way, the same sulfhydryls were found to be labeled, and alternatively, they did not incorporate any radioactivity when dithiothreitol reduction was performed after carboxymethylation in denaturating conditions. These results indicate that activation (by light or by dithiothreitol) proceeds on each subunit by reduction of a disulfide bridge located at the amino terminus of the enzyme between Cys10 and Cys15.

  2. Amelioration by glucose-6-phosphate and NADP of potato glycoalkaloid inhibition in cell, enzyme and liposome assays.

    Science.gov (United States)

    Roddick, J G; Leonard, A L

    1999-05-01

    Lysis of human erythrocytes by 20 microM chaconine was reduced by 0.5 mM glucose-6-phosphate (G6P) and NADP. Both compounds caused approximately 50% inhibition of haemolysis at 1 mM. Glucose, glucose-1-phosphate, rhamnose, galactose and galactose-6-phosphate were ineffective; NAD was effective, although not to the extent of NADP. Of the tested sugars, only G6P reduced solanine-induced haemolysis. G6P also reduced the synergistic haemolytic action of solanine and chaconine in combination. G6P and NADP at or above 5 mM antagonised chaconine-induced betanin loss from excised red beet root discs; NADP was more effective than G6P. Disruption of PC/cholesterol liposomes by chaconine and inhibition of acetylcholinesterase by chaconine or solanine, were unaffected by up to 10 mM NADP or 50 mM G6P.

  3. Structure and Function of NADP-Isocitrate Dehydrogenase%NADP-异柠檬酸脱氢酶的结构与功能

    Institute of Scientific and Technical Information of China (English)

    朱国萍; 黄恩启; 赵旵军

    2007-01-01

    异柠檬酸脱氢酶(isocitrate dehydrogenase, IDH)在三羧酸(TCA)循环中催化异柠檬酸生成α-酮戊二酸, 将NAD+或NADP+还原成NADH或NADPH. 根据空间结构特点, NADP-依赖性IDH可分为同源二聚体IDH和单体IDH, 它们对生物体的能量代谢、生物合成以及抗氧化胁迫起重要作用. 当碳源贫乏时, NADP-依赖性IDH的可逆磷酸化对TCA循环和乙醛酸旁路碳通量(carbon flux)的分配起关键性调控作用. 因此目前IDH是研究蛋白质的结构与功能关系、酶的催化与调节机制、蛋白质功能进化的最好模型之一.

  4. Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism.

    Science.gov (United States)

    Debnar-Daumler, Carlotta; Seubert, Andreas; Schmitt, Georg; Heider, Johann

    2014-01-01

    Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD(+) and NADP(+) as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH.

  5. Role of phosphoenolpyruvate in the NADP-isocitrate dehydrogenase and isocitrate lyase reaction in Escherichia coli.

    Science.gov (United States)

    Ogawa, Tadashi; Murakami, Keiko; Mori, Hirotada; Ishii, Nobuyoshi; Tomita, Masaru; Yoshin, Masataka

    2007-02-01

    Phosphoenolpyruvate inhibited Escherichia coli NADP-isocitrate dehydrogenase allosterically (Ki of 0.31 mM) and isocitrate lyase uncompetitively (Ki' of 0.893 mM). Phosphoenolpyruvate enhances the uncompetitive inhibition of isocitrate lyase by increasing isocitrate, which protects isocitrate dehydrogenase from the inhibition, and contributes to the control through the tricarboxylic acid cycle and glyoxylate shunt.

  6. Role of Phosphoenolpyruvate in the NADP-Isocitrate Dehydrogenase and Isocitrate Lyase Reaction in Escherichia coli▿

    OpenAIRE

    2006-01-01

    Phosphoenolpyruvate inhibited Escherichia coli NADP-isocitrate dehydrogenase allosterically (Ki of 0.31 mM) and isocitrate lyase uncompetitively (Ki′ of 0.893 mM). Phosphoenolpyruvate enhances the uncompetitive inhibition of isocitrate lyase by increasing isocitrate, which protects isocitrate dehydrogenase from the inhibition, and contributes to the control through the tricarboxylic acid cycle and glyoxylate shunt.

  7. U.S. Forest Service Region 1 Lake Chemistry, NADP, and IMPROVE air quality data analysis

    Science.gov (United States)

    Jill Grenon; Mark Story

    2009-01-01

    This report was developed to address the need for comprehensive analysis of U.S. Forest Service (USFS) Region 1 air quality monitoring data. The monitoring data includes Phase 3 (long-term data) lakes, National Atmospheric Deposition Program (NADP), and Interagency Monitoring of Protected Visual Environments (IMPROVE). Annual and seasonal data for the periods of record...

  8. Purification and properties of NADP-isocitrate dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Muro-Pastor, M I; Florencio, F J

    1992-01-15

    NADP-dependent isocitrate dehydrogenase activity has been screened in several cyanobacteria grown on different nitrogen sources; in all the strains tested isocitrate dehydrogenase activity levels were similar in cells grown either on ammonium or nitrate. The enzyme from the unicellular cyanobacterium Synechocystis sp. PCC 6803 has been purified to electrophoretic homogeneity by a procedure that includes Reactive-Red-120-agarose affinity chromatography and phenyl-Sepharose chromatography as main steps. The enzyme was purified about 600-fold, with a yield of 38% and a specific activity of 15.7 U/mg protein. The native enzyme (108 kDa) is composed of two identical subunits with an apparent molecular mass of 57 kDa. Synechocystis isocitrate dehydrogenase was absolutely specific for NADP as electron acceptor. Apparent Km values were 125, 59 and 12 microM for Mg2+, D,L-isocitrate and NADP, respectively, using Mg2+ as divalent cation and 4, 5.7 and 6 microM for Mn2+, D,L-isocitrate and NADP, respectively, using Mn2+ as a cofactor. The enzyme was inhibited non-competitively by ADP (Ki, 6.4 mM) and 2-oxoglutarate, (Ki, 6 mM) with respect to isocitrate and in a competitive manner by NADPH (Ki, 0.6 mM). The circular-dichroism spectrum showed a protein with a secondary structure consisting of about 30% alpha-helix and 36% beta-pleated sheet. The enzyme is an acidic protein with an isoelectric point of 4.4 and analysis of the NH2-terminal sequence revealed 45% identity with the same region of Escherichia coli isocitrate dehydrogenase. The aforementioned data indicate that NADP isocitrate dehydrogenase from Synechocystis resembles isocitrate dehydrogenase from prokaryotes and shows similar molecular and structural properties to the well-known E. coli enzyme.

  9. Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase.

    Science.gov (United States)

    Hebbelmann, Inga; Selinski, Jennifer; Wehmeyer, Corinna; Goss, Tatjana; Voss, Ingo; Mulo, Paula; Kangasjärvi, Saijaliisa; Aro, Eva-Mari; Oelze, Marie-Luise; Dietz, Karl-Josef; Nunes-Nesi, Adriano; Do, Phuc T; Fernie, Alisdair R; Talla, Sai K; Raghavendra, Agepati S; Linke, Vera; Scheibe, Renate

    2012-02-01

    The nuclear-encoded chloroplast NADP-dependent malate dehydrogenase (NADP-MDH) is a key enzyme controlling the malate valve, to allow the indirect export of reducing equivalents. Arabidopsis thaliana (L.) Heynh. T-DNA insertion mutants of NADP-MDH were used to assess the role of the light-activated NADP-MDH in a typical C(3) plant. Surprisingly, even when exposed to high-light conditions in short days, nadp-mdh knockout mutants were phenotypically indistinguishable from the wild type. The photosynthetic performance and typical antioxidative systems, such as the Beck-Halliwell-Asada pathway, were barely affected in the mutants in response to high-light treatment. The reactive oxygen species levels remained low, indicating the apparent absence of oxidative stress, in the mutants. Further analysis revealed a novel combination of compensatory mechanisms in order to maintain redox homeostasis in the nadp-mdh plants under high-light conditions, particularly an increase in the NTRC/2-Cys peroxiredoxin (Prx) system in chloroplasts. There were indications of adjustments in extra-chloroplastic components of photorespiration and proline levels, which all could dissipate excess reducing equivalents, sustain photosynthesis, and prevent photoinhibition in nadp-mdh knockout plants. Such metabolic flexibility suggests that the malate valve acts in concert with other NADPH-consuming reactions to maintain a balanced redox state during photosynthesis under high-light stress in wild-type plants.

  10. Changes of Activities in NAD Kinase and NADP Phosphatase During Ripening and Senescence of Tomato and Strawberry Fruits

    Institute of Scientific and Technical Information of China (English)

    GU Cai-qin; GUAN Jun-feng; XI Yu-fang; LI Guang-min

    2002-01-01

    Activities of NAD kinase(NADK)and NADP phosphatase and relationship between the two enzymes and temperature, respiration, ethylene production and trifluoperazine(TFP) were studied during ripening and senescence of strawberry and tomato frnits after harvest at 4℃and 20℃. The activity of NAD kinase in strawberry decreased slowly during first four days, then increased gradually. The NADP phosphatase activity increased at the second day, decreased the next day,then increased again. In tomato fruit, the activities of NAD kinase and NADP phosphatase increased at the second day, decreased with the ripening and senescence of the fruit. The change trend of NAD kinase and respiration in the two fruits were similar, the same were NADP phosphatase and ethylene production. TFP enhanced the activity of NAD kinase and had little effect on NADP phosphatase. Low temperature(4℃ ) activated the NAD kinase and reduced the activity of NADP phosphatase. These results indicated that the NAD kinase and NADP phosphatase were related to the ripening and senescence of strawberry and tomato fruits. The activation of NAD kinase probably postponed the ripening and senescence of the fruits.

  11. [Forms of xanthine oxidoreductase in the tissues of Japanese quail].

    Science.gov (United States)

    Jankela, J; Baranovská, M; Antalíková, J

    1993-01-01

    The Japanese quail tissues--liver, kidney and pancreas were analysed for the presence of forms of xanthine oxidoreductase utilised cofactors NAD+, molecular oxygen or artificial acceptor--methylene blue, as well as for the validity of correlation between enzymatic activity and diet protein content. Four groups of animals with the experimental diets, the formulae of which are given in Tab. I, and control group with a commercial mash were fed for ten days. For enzyme preparation, the rough purification of cytoplasmic fraction with subsequent dialysis was used. The xanthine oxidoreductase utilised NAD+ (XOR-NAD) was detected in all examined tissues (Fig. 1), whereby the correlation of enzymatic activity with diet protein content was shown only in liver, according our previous findings (Jankela; 1978; Baranovská and Gazo, 1990). The values in liver and pancreas of animals fed a commercial mash were somewhat out of the range of linearity, probably because of the presence of nonprotein substances in mash, which affected the XOR activity in these organs (Jankela, 1992). The XOR utilised O2 (Fig. 2) was only detected in liver and kidney with certain activity in animals fed free protein diet. The percentage of this enzyme form was below 18% of the total activity (Fig. 5). The xanthine oxidoreductase utilised methylene blue (XOR-MM) was detected in liver, kidney and pancreas (Fig. 3). The correlation of enzymatic activity with diet protein content was linear in liver and kidney. The percentage of XOR-MM activity was very high, it amounted to 55% of the total activity (Fig. 4).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. The NADP+-dependent glutamate dehydrogenase of the yeast Kluyveromyces marxianus responds to nitrogen repression similarly to Saccharomyces cerevisiae Glutamato desidrogenase dependente de NADP+ da levedura Kluyveromyces marxianus responde à repressão catabólica de maneira similar à Saccharomyces cerevisiae

    OpenAIRE

    Marcos Antonio de Morais-Júnior

    2003-01-01

    NADP+-dependent glutamate dehydrogenase (NADP+-Gdh) is the first step in ammonia assimilation pathway in Saccharomyces cerevisiae and the knowledge of its regulation is the key for many biotechnological purposes such as single cell protein production. The regulation of NADP+-Gdh activity in Kluyveromyces marxianus cells was evaluated under different ammonia supply in batch cultivations. The results showed that K. marxianus NADP+-Gdh activity is induced over a narrow range of extracellular amm...

  13. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity.

    Science.gov (United States)

    Xu, Xiang; Zhao, Jingyue; Xu, Zhen; Peng, Baozhen; Huang, Qiuhua; Arnold, Eddy; Ding, Jianping

    2004-08-06

    Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate, and regulation of the enzymatic activity of IDHs is crucial for their biological functions. Bacterial IDHs are reversibly regulated by phosphorylation of a strictly conserved serine residue at the active site. Eukaryotic NADP-dependent IDHs (NADP-IDHs) have been shown to have diverse important biological functions; however, their regulatory mechanism remains unclear. Structural studies of human cytosolic NADP-IDH (HcIDH) in complex with NADP and in complex with NADP, isocitrate, and Ca2+ reveal three biologically relevant conformational states of the enzyme that differ substantially in the structure of the active site and in the overall structure. A structural segment at the active site that forms a conserved alpha-helix in all known NADP-IDH structures assumes a loop conformation in the open, inactive form of HcIDH; a partially unraveled alpha-helix in the semi-open, intermediate form; and an alpha-helix in the closed, active form. The side chain of Asp279 of this segment occupies the isocitrate-binding site and forms hydrogen bonds with Ser94 (the equivalent of the phosphorylation site in bacterial IDHs) in the inactive form and chelates the metal ion in the active form. The structural data led us to propose a novel self-regulatory mechanism for HcIDH that mimics the phosphorylation mechanism used by the bacterial homologs, consistent with biochemical and biological data. This mechanism might be applicable to other eukaryotic NADP-IDHs. The results also provide insights into the recognition and specificity of substrate and cofactor by eukaryotic NADP-IDHs.

  14. Aluminum decreases the glutathione regeneration by the inhibition of NADP-isocitrate dehydrogenase in mitochondria.

    Science.gov (United States)

    Murakami, Keiko; Yoshino, Masataka

    2004-12-15

    Effect of aluminum on the NADPH supply and glutathione regeneration in mitochondria was analyzed. Reduced glutathione acted as a principal scavenger of reactive oxygen species in mitochondria. Aluminum inhibited the regeneration of glutathione from the oxidized form, and the effect was due to the inhibition of NADP-isocitrate dehydrogenase the only enzyme supplying NADPH in mitochondria. In cytosol, aluminum inhibited the glutathione regeneration dependent on NADPH supply by malic enzyme and NADP-isocitrate dehydrogenase, but did not affect the glucose 6-phosphate dehydrogenase dependent glutathione formation. Aluminum can cause oxidative damage on cellular biological processes by inhibiting glutathione regeneration through the inhibition of NADPH supply in mitochondria, but only a little inhibitory effect on the glutathione generation in cytosol.

  15. Characterization and regulation of NADP+-isocitrate dehydrogenase from Saccharopolyspora erythraea.

    Science.gov (United States)

    Alvarado, Alejandra; Flores, Maria Elena

    2003-07-01

    NADP+-Isocitrate dehydrogenase (ICDH) activity was detected in cell-free extracts of Saccharopolyspora erythraea CA340, an erythromycin producer. Apparent Km values for DL-isocitrate and NADP+ were 0.14 microM and 0.026 microM, respectively. ATP, ADP, GTP, citric acid, oxaloacetate, alpha-ketoglutarate, glyoxalate and glyoxalate plus oxaloacetate, each at 1 mM concentration, caused 50, 20 10, 50, 25, 60, 20 and 50% inhibition of ICDH activity, respectively. Phosphoenolpyruvate, fructose 1,6-diphosphate and pyruvate had no effect. ICDH specific activity profile was growth-associated and activity with dextrose or fructose as sole carbon source, was twice of that obtained with lactose.

  16. Isolation and characterization of two ferredoxin-NADP+ reductases from Spirulina platensis.

    Science.gov (United States)

    Masaki, R; Wada, K; Matsubara, H

    1979-10-01

    Two ferredoxin-NADP+ reductases (FNRs I and II) [EC 1.6.7.1] were purified from a blue-green alga, Spirulina platensis, by (NH4)2SO4 fractionation, gel filtration on Sephadex G-100 and DEAE-Sephadex A-50 chromatography. FNRs I and II were both FAD-containing enzymes with molecular weights of 33,000, and could photochemically reduce NADP+ to the same extent in the presence of S. platensis ferredoxin, using FNR-depleted membrane fragments of S. platensis. They had similar physical and enzymatic properties, except for chemical properties such as the amino (N)-terminal sequences and the patterns of their peptide maps. The significance of the presence of two FNRs in S. platensis as as of the multiple forms found in other organisms is discussed.

  17. Ferredoxin-NADP reductase from the thermophilic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6.

    Science.gov (United States)

    Ikeda, Takeshi; Nakamura, Miyuki; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2009-08-01

    The thermophilic, obligately chemolithoautotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, assimilates carbon dioxide via the reductive tricarboxylic acid cycle. Small iron-sulfur proteins, ferredoxins, play a central role as low-potential electron donors for this cycle. The fpr gene of this bacterium, encoding a putative ferredoxin-NADP(+) reductase (FNR, EC 1.18.1.2), was expressed in Escherichia coli, and the recombinant protein was purified to homogeneity. Unexpectedly, the monomeric Fpr protein contained one molecule of FMN as a prosthetic group, although FNRs from other organisms are known to contain FAD. The FMN-containing Fpr was shown to be a bona fide FNR that catalyzes a reversible redox reaction between NADP(+)/NADPH and ferredoxins.

  18. Neurospora NADP-glutamate dehydrogenases and its expression in E. coli and transgenic plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Genes of NADP-glutamate dehydrogenase (NADP-GDH) were cloned from Neurospora intermedia (Ni), N. crassa (Nc), and N. sitophila (Ns). The sequences showed a high degree of homology at the cDNA and protein level. The three GDH genes were cloned into pET30a and expressed in E. coli. The activity assay of purified GDH showed that the Ni-GDH had a higher activity and affinity to ammonia than Ns-GDH, and Nc-GDH. The Km value of Ni-GDH ranges from 0.3 to 0.45 mmol/L. Ni-gdh gene was transformed to Nicotiana bethamiana plants. The transformed plants grew much better in low nitrogen media than the only ROKII vector transformed control.

  19. Protein motifs involved in coenzyme interaction and enzymatic efficiency in anabaena ferredoxin-NADP+ reductase.

    Science.gov (United States)

    Peregrina, José R; Herguedas, Beatriz; Hermoso, Juan A; Martínez-Júlvez, Marta; Medina, Milagros

    2009-04-14

    Ferredoxin-NADP+ reductases (FNRs) must determine the coenzyme specificity and allow the transient encounter between N5 of its flavin cofactor and C4 of the coenzyme nicotinamide for efficient hydride transfer. Combined site-directed replacements in different putative determinants of the FNR coenzyme specificity were simultaneously produced. The resulting variants were structurally and functionally analyzed for their binding and hydride transfer abilities to the FNR physiological coenzyme NADP+/H, as well as to NAD+/H. The previously studied Y303S mutation is the only one that significantly enhances specificity for NAD+. Combination of mutations from the pyrophosphate or 2'-phosphate regions, even including Y303S, does not improve activity with NAD+, despite structures of these FNRs show how particular coenzyme-binding regions resembled motifs found in NAD+/H-dependent enzymes of the FNR family. Therefore, the "rational approach" did not succeed well, and coenzyme specificity redesign in the FNR family will be more complex than that anticipated in other NADP+/NAD+ families.

  20. Cloning, characterization and functional expression of Taenia solium 17 beta-hydroxysteroid dehydrogenase.

    Science.gov (United States)

    Aceves-Ramos, A; de la Torre, P; Hinojosa, L; Ponce, A; García-Villegas, R; Laclette, J P; Bobes, R J; Romano, M C

    2014-07-01

    The 17β-hydroxysteroid dehydrogenases (17β-HSD) are key enzymes involved in the formation (reduction) and inactivation (oxidation) of sex steroids. Several types have been found in vertebrates including fish, as well as in invertebrates like Caenorhabditis elegans, Ciona intestinalis and Haliotis diversicolor supertexta. To date limited information is available about this enzyme in parasites. We showed previously that Taenia solium cysticerci are able to synthesize sex steroid hormones in vitro when precursors are provided in the culture medium. Here, we identified a T. solium 17β-HSD through in silico blast searches in the T. solium genome database. This coding sequence was amplified by RT-PCR and cloned into the pcDNA 3.1(+) expression vector. The full length cDNA contains 957bp, corresponding to an open reading frame coding for 319 aa. The highest identity (84%) at the protein level was found with the Echinococcus multilocularis 17β-HSD although significant similarities were also found with other invertebrate and vertebrate 17β-HSD sequences. The T. solium Tsol-17βHSD belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily. HEK293T cells transiently transfected with Tsol17β-HSD induced expression of Tsol17β-HSD that transformed 3H-androstenedione into testosterone. In contrast, 3H-estrone was not significantly transformed into estradiol. In conclusion, T. solium cysticerci express a 17β-HSD that catalyzes the androgen reduction. The enzyme belongs to the short chain dehydrogenases/reductase family and shares motifs and activity with the type 3 enzyme of some other species.

  1. Dehydrogenase and Oxoreductase Activities of Porcine Placental 11Beta-Hydroxysteroid Dehydrogenase

    Science.gov (United States)

    2016-06-07

    Subsequently, samples were thawed and extracted with ethyl acetate to obtain tritiated steroids. These extracts were sub- jected to thin layer chromatography...containing .02 M EDTA (PBS) to remove most radio- activity. Tissue fragments were then homogenized in PBS and aliquots removed for DNA analysis (32). In...either 3H-cortisol or 3H-cortisone were used as substrate. Incubations were conducted as above-noted and DNA measures conducted. Statistical

  2. Genotype-Phenotype Analysis in Congenital Adrenal Hyperplasia due to P450 Oxidoreductase Deficiency

    NARCIS (Netherlands)

    Krone, Nils; Reisch, Nicole; Idkowiak, Jan; Dhir, Vivek; Ivison, Hannah E.; Hughes, Beverly A.; Rose, Ian T.; O'Neil, Donna M.; Vijzelaar, Raymon; Smith, Matthew J.; MacDonald, Fiona; Cole, Trevor R.; Adolphs, Nicolai; Barton, John S.; Blair, Edward M.; Braddock, Stephen R.; Collins, Felicity; Cragun, Deborah L.; Dattani, Mehul T.; Day, Ruth; Dougan, Shelley; Feist, Miriam; Gottschalk, Michael E.; Gregory, John W.; Haim, Michaela; Harrison, Rachel; Olney, Ann Haskins; Hauffa, Berthold P.; Hindmarsh, Peter C.; Hopkin, Robert J.; Jira, Petr E.; Kempers, Marlies; Kerstens, Michiel N.; Khalifa, Mohamed M.; Koehler, Birgit; Maiter, Dominique; Nielsen, Shelly; O'Riordan, Stephen M.; Roth, Christian L.; Shane, Kate P.; Silink, Martin; Stikkelbroeck, Nike M. M. L.; Sweeney, Elizabeth; Szarras-Czapnik, Maria; Waterson, John R.; Williamson, Lori; Hartmann, Michaela F.; Taylor, Norman F.; Wudy, Stefan A.; Malunowicz, Ewa M.; Shackleton, Cedric H. L.; Arlt, Wiebke; Smith, M.J.

    2012-01-01

    Context: P450 oxidoreductase deficiency (PORD) is a unique congenital adrenal hyperplasia variant that manifests with glucocorticoid deficiency, disordered sex development (DSD), and skeletal malformations. No comprehensive data on genotype-phenotype correlations in Caucasian patients are available.

  3. Clinical, genetic, and enzymatic characterization of P450 oxidoreductase deficiency in four patients.

    LENUS (Irish Health Repository)

    Sahakitrungruang, Taninee

    2009-12-01

    P450 oxidoreductase (POR) deficiency causes disordered steroidogenesis; severe mutations cause genital ambiguity in both sexes plus the Antley-Bixler skeletal malformation syndrome, whereas mild mutations can cause adult infertility.

  4. Dynamics of the active site architecture in plant-type ferredoxin-NADP(+) reductases catalytic complexes.

    Science.gov (United States)

    Sánchez-Azqueta, Ana; Catalano-Dupuy, Daniela L; López-Rivero, Arleth; Tondo, María Laura; Orellano, Elena G; Ceccarelli, Eduardo A; Medina, Milagros

    2014-10-01

    Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP(+) reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP(+) coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor-acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The regulation of phosphoenolpyruvate carboxykinase and the NADP-linked malic enzyme in Aspergillus nidulans.

    Science.gov (United States)

    Kelly, J M; Hynes, M J

    1981-04-01

    It has previously been suggested that the synthesis of phosphoenolpyruvate carboxykinase (EC 4.1.1.32) in Aspergillus nidulans is regulated by a repression-derepression mechanism involving a glycolytic intermediate, and not by induction. Results obtained using compounds that enter the tricarboxylic acid cycle via 2-oxoglutarate, and that can supply both a carbon and a nitrogen source for A. nidulans, suggest it is more likely that the synthesis of phosphoenolpyruvate carboxykinase is inducible, and only weakly regulated by carbon catabolite repression. a similar study of the regulation of the NADP-linked malic enzyme (EC 1.1.1.40) indicates that it too may be inducible.

  6. The Catalysis of NAD+, NADP+ and Nicotinic Amide for Methanol Electrooxidation at Platinum Electrode

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; SHI Yufang; ZHANG Qiaolian; TANG Zhiyong; ZHENG Hongtao; YUAN Runzhang

    2006-01-01

    A group of liquid catalysts composed of nicotinic amide functioning on the anode of DMFC were investigated at a Pt electrode, which were nicotinic amide, nicotinamide adenine dinucleotide (NAD+) and its phosphate (NAD(P)+). The kinetics of methanol anode oxidation in the three reaction systems was compared by measuring potentiodynamic current-potential curves and AC impedances. The experimental results show that the dynamic behavior of methanol oxidation at a Pt electrode has been changed with adding the three substances. The influence of temperature on the catalysis of these coenzymes and nicotinic amide was discussed by comparing the AC impedances spectra of methanol oxidation at different temperatures.

  7. Differences in photosynthetic responses of NADP-ME type C4 species to high light.

    Science.gov (United States)

    Romanowska, Elżbieta; Buczyńska, Alicja; Wasilewska, Wioleta; Krupnik, Tomasz; Drożak, Anna; Rogowski, Paweł; Parys, Eugeniusz; Zienkiewicz, Maksymilian

    2017-03-01

    Three species chosen as representatives of NADP-ME C4 subtype exhibit different sensitivity toward photoinhibition, and great photochemical differences were found to exist between the species. These characteristics might be due to the imbalance in the excitation energy between the photosystems present in M and BS cells, and also due to that between species caused by the penetration of light inside the leaves. Such regulation in the distribution of light intensity between M and BS cells shows that co-operation between both the metabolic systems determines effective photosynthesis and reduces the harmful effects of high light on the degradation of PSII through the production of reactive oxygen species (ROS). We have investigated several physiological parameters of NADP-ME-type C4 species (e.g., Zea mays, Echinochloa crus-galli, and Digitaria sanguinalis) grown under moderate light intensity (200 µmol photons m(-2) s(-1)) and, subsequently, exposed to excess light intensity (HL, 1600 µmol photons m(-2) s(-1)). Our main interest was to understand why these species, grown under identical conditions, differ in their responses toward high light, and what is the physiological significance of these differences. Among the investigated species, Echinochloa crus-galli is best adapted to HL treatment. High resistance of the photosynthetic apparatus of E. crus-galli to HL was accompanied by an elevated level of phosphorylation of PSII proteins, and higher values of photochemical quenching, ATP/ADP ratio, activity of PSI and PSII complexes, as well as integrity of the thylakoid membranes. It was also shown that the non-radiative dissipation of energy in the studied plants was not dependent on carotenoid contents and, thus, other photoprotective mechanisms might have been engaged under HL stress conditions. The activity of the enzymes superoxide dismutase and ascorbate peroxidase as well as the content of malondialdehyde and H2O2 suggests that antioxidant defense is not

  8. Thermodynamics of Enzyme-Catalyzed Reactions: Part 1. Oxidoreductases

    Science.gov (United States)

    Goldberg, Robert N.; Tewari, Yadu B.; Bell, Donna; Fazio, Kari; Anderson, Ellen

    1993-03-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by oxidoreductases have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement (temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used); the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it. The thermodynamic conventions pertinent to the tabulation of equilibrium data are discussed. A distinction is made between those thermodynamic quantities which pertain to the overall biochemical reaction and those which pertain to a reference reaction that involves specific species. The data from 205 references have been examined and evaluated. Chemical Abstract Service Registry Numbers have been assigned to the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participated.

  9. Xanthine Oxidoreductase-Derived Reactive Species: Physiological and Pathological Effects.

    Science.gov (United States)

    Battelli, Maria Giulia; Polito, Letizia; Bortolotti, Massimo; Bolognesi, Andrea

    2016-01-01

    Xanthine oxidoreductase (XOR) is the enzyme that catalyzes the oxidation of hypoxanthine to xanthine and xanthine to uric acid and is widely distributed among species. In addition to this housekeeping function, mammalian XOR is a physiological source of superoxide ion, hydrogen peroxide, and nitric oxide, which can function as second messengers in the activation of various pathways. This review intends to address the physiological and pathological roles of XOR-derived oxidant molecules. The cytocidal action of XOR products has been claimed in relation to tissue damage, in particular damage induced by hypoxia and ischemia. Attempts to exploit this activity to eliminate unwanted cells via the construction of conjugates have also been reported. Moreover, different aspects of XOR activity related to phlogosis, endothelial activation, leukocyte activation, and vascular tone regulation, have been taken into consideration. Finally, the positive and negative outcomes concerning cancer pathology have been analyzed because XOR products may induce mutagenesis, cell proliferation, and tumor progression, but they are also associated with apoptosis and cell differentiation. In conclusion, XOR activity generates free radicals and other oxidant reactive species that may result in either harmful or beneficial outcomes.

  10. Xanthine Oxidoreductase-Derived Reactive Species: Physiological and Pathological Effects

    Directory of Open Access Journals (Sweden)

    Maria Giulia Battelli

    2016-01-01

    Full Text Available Xanthine oxidoreductase (XOR is the enzyme that catalyzes the oxidation of hypoxanthine to xanthine and xanthine to uric acid and is widely distributed among species. In addition to this housekeeping function, mammalian XOR is a physiological source of superoxide ion, hydrogen peroxide, and nitric oxide, which can function as second messengers in the activation of various pathways. This review intends to address the physiological and pathological roles of XOR-derived oxidant molecules. The cytocidal action of XOR products has been claimed in relation to tissue damage, in particular damage induced by hypoxia and ischemia. Attempts to exploit this activity to eliminate unwanted cells via the construction of conjugates have also been reported. Moreover, different aspects of XOR activity related to phlogosis, endothelial activation, leukocyte activation, and vascular tone regulation, have been taken into consideration. Finally, the positive and negative outcomes concerning cancer pathology have been analyzed because XOR products may induce mutagenesis, cell proliferation, and tumor progression, but they are also associated with apoptosis and cell differentiation. In conclusion, XOR activity generates free radicals and other oxidant reactive species that may result in either harmful or beneficial outcomes.

  11. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme.

    Science.gov (United States)

    Solti, Adám; Müller, Brigitta; Czech, Viktória; Sárvári, Éva; Fodor, Ferenc

    2014-05-01

    Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.

  12. Xanthine oxidoreductase and its inhibitors: relevance for gout.

    Science.gov (United States)

    Day, Richard O; Kamel, Bishoy; Kannangara, Diluk R W; Williams, Kenneth M; Graham, Garry G

    2016-12-01

    Xanthine oxidoreductase (XOR) is the rate-limiting enzyme in purine catabolism and converts hypoxanthine to xanthine, and xanthine into uric acid. When concentrations of uric acid exceed its biochemical saturation point, crystals of uric acid, in the form of monosodium urate, emerge and can predispose an individual to gout, the commonest form of inflammatory arthritis in men aged over 40 years. XOR inhibitors are primarily used in the treatment of gout, reducing the formation of uric acid and thereby, preventing the formation of monosodium urate crystals. Allopurinol is established as first-line therapy for gout; a newer alternative, febuxostat, is used in patients unable to tolerate allopurinol. This review provides an overview of gout, a detailed analysis of the structure and function of XOR, discussion on the pharmacokinetics and pharmacodynamics of XOR inhibitors-allopurinol and febuxostat, and the relevance of XOR in common comorbidities of gout. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  13. Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase.

    Science.gov (United States)

    Reyes-Prieto, Adrian; Barquera, Blanca; Juárez, Oscar

    2014-01-01

    The sodium -pumping NADH: ubiquinone oxidoreductase (Na+-NQR) is the main ion pump and the primary entry site for electrons into the respiratory chain of many different types of pathogenic bacteria. This enzymatic complex creates a transmembrane gradient of sodium that is used by the cell to sustain ionic homeostasis, nutrient transport, ATP synthesis, flagellum rotation and other essential processes. Comparative genomics data demonstrate that the nqr operon, which encodes all Na+-NQR subunits, is found in a large variety of bacterial lineages with different habitats and metabolic strategies. Here we studied the distribution, origin and evolution of this enzymatic complex. The molecular phylogenetic analyses and the organizations of the nqr operon indicate that Na+-NQR evolved within the Chlorobi/Bacteroidetes group, after the duplication and subsequent neofunctionalization of the operon that encodes the homolog RNF complex. Subsequently, the nqr operon dispersed through multiple horizontal transfer events to other bacterial lineages such as Chlamydiae, Planctomyces and α, β, γ and δ -proteobacteria. Considering the biochemical properties of the Na+-NQR complex and its physiological role in different bacteria, we propose a detailed scenario to explain the molecular mechanisms that gave rise to its novel redox- dependent sodium -pumping activity. Our model postulates that the evolution of the Na+-NQR complex involved a functional divergence from its RNF homolog, following the duplication of the rnf operon, the loss of the rnfB gene and the recruitment of the reductase subunit of an aromatic monooxygenase.

  14. Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase.

    Directory of Open Access Journals (Sweden)

    Adrian Reyes-Prieto

    Full Text Available The sodium -pumping NADH: ubiquinone oxidoreductase (Na+-NQR is the main ion pump and the primary entry site for electrons into the respiratory chain of many different types of pathogenic bacteria. This enzymatic complex creates a transmembrane gradient of sodium that is used by the cell to sustain ionic homeostasis, nutrient transport, ATP synthesis, flagellum rotation and other essential processes. Comparative genomics data demonstrate that the nqr operon, which encodes all Na+-NQR subunits, is found in a large variety of bacterial lineages with different habitats and metabolic strategies. Here we studied the distribution, origin and evolution of this enzymatic complex. The molecular phylogenetic analyses and the organizations of the nqr operon indicate that Na+-NQR evolved within the Chlorobi/Bacteroidetes group, after the duplication and subsequent neofunctionalization of the operon that encodes the homolog RNF complex. Subsequently, the nqr operon dispersed through multiple horizontal transfer events to other bacterial lineages such as Chlamydiae, Planctomyces and α, β, γ and δ -proteobacteria. Considering the biochemical properties of the Na+-NQR complex and its physiological role in different bacteria, we propose a detailed scenario to explain the molecular mechanisms that gave rise to its novel redox- dependent sodium -pumping activity. Our model postulates that the evolution of the Na+-NQR complex involved a functional divergence from its RNF homolog, following the duplication of the rnf operon, the loss of the rnfB gene and the recruitment of the reductase subunit of an aromatic monooxygenase.

  15. Elementary tetrahelical protein design for diverse oxidoreductase functions

    Science.gov (United States)

    Lichtenstein, Bruce R; Sheehan, Molly M; Fry, Bryan A; Bialas, Chris; Ennist, Nathan M; Siedlecki, Jessica A; Zhao, Zhenyu; Stetz, Matthew A; Valentine, Kathleen G; Anderson, J L Ross; Wand, A Joshua; Discher, Bohdana M; Moser, Christopher C; Dutton, P Leslie

    2014-01-01

    Emulating functions of natural enzymes in man-made constructs has proven challenging. Here we describe a man-made protein platform that reproduces many of the diverse functions of natural oxidoreductases without importing the complex and obscure interactions common to natural proteins. Our design is founded on an elementary, structurally stable 4-α-helix protein monomer with a minimalist interior malleable enough to accommodate various light- and redox-active cofactors and with an exterior tolerating extensive charge patterning for modulation of redox cofactor potentials and environmental interactions. Despite its modest size, the construct offers several independent domains for functional engineering that targets diverse natural activities, including dioxygen binding and superoxide and peroxide generation, interprotein electron transfer to natural cytochrome c and light-activated intraprotein energy transfer and charge separation approximating the core reactions of photosynthesis, cryptochrome and photolyase. The highly stable, readily expressible and biocompatible characteristics of these open-ended designs promise development of practical in vitro and in vivo applications. PMID:24121554

  16. Characterization of apoptosis-related oxidoreductases from Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Patrícia Carneiro

    Full Text Available The genome from Neurospora crassa presented three open reading frames homologous to the genes coding for human AIF and AMID proteins, which are flavoproteins with oxidoreductase activities implicated in caspase-independent apoptosis. To investigate the role of these proteins, namely within the mitochondrial respiratory chain, we studied their cellular localization and characterized the respective null mutant strains. Efficiency of the respiratory chain was analyzed by oxygen consumption studies and supramolecular organization of the OXPHOS system was assessed through BN-PAGE analysis in the respective null mutant strains. The results demonstrate that, unlike in mammalian systems, disruption of AIF in Neurospora does not affect either complex I assembly or function. Furthermore, the mitochondrial respiratory chain complexes of the mutant strains display a similar supramolecular organization to that observed in the wild type strain. Further characterization revealed that N. crassa AIF appears localized to both the mitochondria and the cytoplasm, whereas AMID was found exclusively in the cytoplasm. AMID2 was detected in both mitochondria and cytoplasm of the amid mutant strain, but was barely discernible in wild type extracts, suggesting overlapping functions for the two proteins.

  17. Regulation of cyclic photophosphorylation during ferredoxin-mediated electron transport. Effect of DCMU and the NADPH/NADP/sup +/ ratio

    Energy Technology Data Exchange (ETDEWEB)

    Hosler, J.P.; Yocum, C.F.

    1987-04-01

    Addition of ferredoxin to isolated thylakoid membranes reconstitutes electron transport from water to NADP and to O/sub 2/ (the Mehler reaction). This electron flow is coupled to ATP synthesis, and both cyclic and noncyclic electron transport drive photophosphorylation. Under conditions where the NADPH/NADP/sup +/ ratio is varied, as is the amount of ATP synthesis due to cyclic activity is also varied, as is the amount of cyclic activity which is sensitive to antimycin A. Partial inhibition of photosystem II activity with DCMU (which affects reduction of electron carriers of the interphotosystem chain) also affects the level of cyclic activity. The results of these experiments indicate that two modes of cyclic electron transfer activity, which differ in their antimycin A sensitivity, can operate in the thylakoid membrane. Regulation of these activities can occur at the level of ferredoxin and is governed by the NADPH/NADP ratio.

  18. Crystal structure studies of NADP+ dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain.

    Science.gov (United States)

    Kumar, S M; Pampa, K J; Manjula, M; Abdoh, M M M; Kunishima, Naoki; Lokanath, N K

    2014-06-20

    NADP(+) dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP(+) was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH's. And, small domain and clasp domain showing significant differences when compared to other IDH's of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH's. Also, helices/beta sheets are absent in the small domain, when compared to other IDH's of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit-subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.

  19. NADP-Dependent Aldehyde Dehydrogenase from Archaeon Pyrobaculum sp.1860: Structural and Functional Features

    Directory of Open Access Journals (Sweden)

    Ekaterina Yu. Bezsudnova

    2016-01-01

    Full Text Available We present the functional and structural characterization of the first archaeal thermostable NADP-dependent aldehyde dehydrogenase AlDHPyr1147. In vitro, AlDHPyr1147 catalyzes the irreversible oxidation of short aliphatic aldehydes at 60–85°С, and the affinity of AlDHPyr1147 to the NADP+ at 60°С is comparable to that for mesophilic analogues at 25°С. We determined the structures of the apo form of AlDHPyr1147 (3.04 Å resolution, three binary complexes with the coenzyme (1.90, 2.06, and 2.19 Å, and the ternary complex with the coenzyme and isobutyraldehyde as a substrate (2.66 Å. The nicotinamide moiety of the coenzyme is disordered in two binary complexes, while it is ordered in the ternary complex, as well as in the binary complex obtained after additional soaking with the substrate. AlDHPyr1147 structures demonstrate the strengthening of the dimeric contact (as compared with the analogues and the concerted conformational flexibility of catalytic Cys287 and Glu253, as well as Leu254 and the nicotinamide moiety of the coenzyme. A comparison of the active sites of AlDHPyr1147 and dehydrogenases characterized earlier suggests that proton relay systems, which were previously proposed for dehydrogenases of this family, are blocked in AlDHPyr1147, and the proton release in the latter can occur through the substrate channel.

  20. Mechanostability of the Single-Electron-Transfer Complexes of Anabaena Ferredoxin-NADP(+) Reductase.

    Science.gov (United States)

    Marcuello, Carlos; de Miguel, Rocío; Martínez-Júlvez, Marta; Gómez-Moreno, Carlos; Lostao, Anabel

    2015-10-26

    The complexes formed between the flavoenzyme ferredoxin-NADP(+) reductase (FNR; NADP(+) =nicotinamide adenine dinucleotide phosphate) and its redox protein partners, ferredoxin (Fd) and flavodoxin (Fld), have been analysed by using dynamic force spectroscopy through AFM. A strategy is developed to immobilise proteins on a substrate and AFM tip to optimise the recognition ability. The differences in the recognition efficiency regarding a random attachment procedure, together with nanomechanical results, show two binding models for these systems. The interaction of the reductase with the natural electron donor, Fd, is threefold stronger and its lifetime is longer and more specific than that with the substitute under iron-deficient conditions, Fld. The higher bond probability and two possible dissociation pathways in Fld binding to FNR are probably due to the nature of this complex, which is closer to a dynamic ensemble model. This is in contrast with the one-step dissociation kinetics that has been observed and a specific interaction described for the FNR:Fd complex.

  1. Purification and characterization of NADP(+)-dependent 5,10-methylenetetrahydrofolate dehydrogenase from Peptostreptococcus productus marburg.

    Science.gov (United States)

    Wohlfarth, G; Geerligs, G; Diekert, G

    1991-01-01

    The 5,10-methylenetetrahydrofolate dehydrogenase of heterotrophically grown Peptostreptococcus productus Marburg was purified to apparent homogeneity. The purified enzyme catalyzed the reversible oxidation of methylenetetrahydrofolate with NADP+ as the electron acceptor at a specific activity of 627 U/mg of protein. The Km values for methylenetetrahydrofolate and for NADP+ were 27 and 113 microM, respectively. The enzyme, which lacked 5,10-methenyltetrahydrofolate cyclohydrolase activity, was insensitive to oxygen and was thermolabile at temperatures above 40 degrees C. The apparent molecular mass of the enzyme was estimated by gel filtration to be 66 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a single subunit of 34 kDa, accounting for a dimeric alpha 2 structure of the enzyme. Kinetic studies on the initial reaction velocities with different concentrations of both substrates in the absence and presence of NADPH as the reaction product were interpreted to indicate that the enzyme followed a sequential reaction mechanism. After gentle ultracentrifugation of crude extracts, the enzyme was recovered to greater than 95% in the soluble (supernatant) fraction. Sodium (10 microM to 10 mM) had no effect on enzymatic activity. The data were taken to indicate that the enzyme was similar to the methylenetetrahydrofolate dehydrogenases of other homoacetogenic bacteria and that the enzyme is not involved in energy conservation of P. productus. PMID:1899860

  2. Studies on Saccharomyces cerevisiae under carbon-limiting growth transformed with plasmid pCYG4 that carries the gene for NADP-GDH.

    Science.gov (United States)

    Lima Filho, J L; Ledingham, W M

    1990-02-01

    The gene (GDH1) coding for the NADP-linked glutamate dehydrogenase system (NADP-GDH) has been cloned from Saccharomyces cerevisiae strain. Cells being transformed by the NADP-GDH gene on a 2 micron bared vector (pCYG4) plasmid confering 11-fold higher level on expressed GDH activity over the wild-type cells. The behavior of these cells was investigated under chemostatic growth with a carbon rate-limiting nutrient. Specific growth rates of cells carrying plasmid pCYG4 were found to be slightly slower than wild type cells. Furthermore, the NADP-GDH activity increases proportionally with the dilution rate. In addition, oscillations in the NADP-GDH activity, especially at a dilution rate up to 0.15/h, are probably consequential on the appearance of a changing mixed population (cells with and without plasmids).

  3. Photosynthetic Features of Transgenic Rice Expressing Sorghum C4 Type NADP-ME%转高粱C4型NADP-ME基因水稻植株的光合生理特征

    Institute of Scientific and Technical Information of China (English)

    迟伟; 周劲松; 张方; 吴乃虎

    2004-01-01

    NADP-苹果酸酶(NADP-ME)是C4型植物C4光合途径的一个分离得到了编码高梁(Sorghum vuklgare L.)C4型NADP-ME的全长cDNA.该cDNA全长为2 139 bp,其开放可读框为1 911bp,共编码636个氨基酸和一个终止密码子(GenBank登录号为AY274836).利用农杆菌介导的转化系统将其转入水稻品种"农垦58".经Southern杂交、Northern杂交和酶活性检测表明,高粱C4型NADP-ME可以在水稻中有效表达,酶活性可被提高1~7倍.对转基因水稻进行光合生理检测表明,转NADP-ME基因水稻CO2交换特征没有明显改变,但是在中午强光条件下光抑制加剧.%The gene encoding sorghum NADP malic enzyme, which plays a key role in C4 photosynthetic pathway, was isolated by RT-PCR and cDNA library screening. The 2 139 bp cDNA sequence obtained includes a 1 911-bp open reading frame that encodes 636 amino acids and a terminating codon (GenBank accession number: AY274836). It was then introduced into Nongken 58, a rice variety, using an Agrobacteriummediated system. Southern hybridization, Northern hybridization and enzyme activity determination all confirmed the effective expression of sorghum (Sorghum vulgare L.) C4 type NADP-ME in rice, with the enzyme activity being elevated 1-7 folds. However, no appreciable change was demonstrated in carbon assimilation of the transgenic rice though increased photoinhibition was noted under high light intensity.

  4. Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural.

    Science.gov (United States)

    Seo, Hyung-Min; Jeon, Jong-Min; Lee, Ju Hee; Song, Hun-Suk; Joo, Han-Byul; Park, Sung-Hee; Choi, Kwon-Young; Kim, Yong Hyun; Park, Kyungmoon; Ahn, Jungoh; Lee, Hongweon; Yang, Yung-Hun

    2016-01-01

    Furfural is a toxic by-product formulated from pretreatment processes of lignocellulosic biomass. In order to utilize the lignocellulosic biomass on isobutanol production, inhibitory effect of the furfural on isobutanol production was investigated and combinatorial application of two oxidoreductases, FucO and YqhD, was suggested as an alternative strategy. Furfural decreased cell growth and isobutanol production when only YqhD or FucO was employed as an isobutyraldehyde oxidoreductase. However, combinatorial overexpression of FucO and YqhD could overcome the inhibitory effect of furfural giving higher isobutanol production by 110% compared with overexpression of YqhD. The combinatorial oxidoreductases increased furfural detoxification rate 2.1-fold and also accelerated glucose consumption 1.4-fold. When it compares to another known system increasing furfural tolerance, membrane-bound transhydrogenase (pntAB), the combinatorial aldehyde oxidoreductases were better on cell growth and production. Thus, to control oxidoreductases is important to produce isobutanol using furfural-containing biomass and the combinatorial overexpression of FucO and YqhD can be an alternative strategy.

  5. NADP-malate Dehydrogenase Isoforms of Wheat Leaves under Drought: Their Localization, and Some physicochemical and Kinetic Properties

    Directory of Open Access Journals (Sweden)

    H.G. Babayev

    2015-09-01

    Full Text Available Changes in sub-cellular localization, isoenzyme spectrum and kinetic characteristics of NADP-malate dehydrogenase (NADP-MDH, EC 1.1.1.82 in Triticum durum Desf. genotypes with contrasting drought tolerance have been studied. In chloroplast and cytosol fractions of mesophyll cells of wheat flag leaves 70-75% and 25-30% of the total NADP-MDH activity were found to be localized, respectively. Three isoforms of NADP-MDH with molecular weights of 66, 74 and 86 kDa were revealed in the chloroplast fraction, whereas in the cytosolic fraction molecular weights of the isoenzymes were found to be 42, 66 and 74 kDa. Drought caused the formation of a new 90 kDa isoform of the enzyme in the chloroplast fraction in anthesis phase of ontogenesis. In the drought-tolerant genotype the appearance of the new isoform in the chloroplast fraction was accompanied by a more rapid increase in Km and Vmax contrary to the chloroplast fraction of the drought-sensitive genotype manifesting a slight decrease in these parameters, suggesting one of the adaptive traits in forming drought tolerance in C3 plants.

  6. The Differences between NAD-ME and NADP-ME Subtypes of C4 Photosynthesis: More than Decarboxylating Enzymes

    Science.gov (United States)

    Rao, Xiaolan; Dixon, Richard A.

    2016-01-01

    As an adaptation to changing climatic conditions that caused high rates of photorespiration, C4 plants have evolved to display higher photosynthetic efficiency than C3 plants under elevated temperature, high light intensities, and drought. The C4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C4 mechanisms to concentrate CO2 around the carboxylating enzyme Rubisco (ribulose bisphosphate carboxylase oxygenase). C4 photosynthesis is divided into at least two basic biochemical subtypes based on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME) and NADP-dependent malic enzyme (NADP-ME). The multiple polygenetic origins of these subtypes raise questions about the association of C4 variation between biochemical subtypes and diverse lineages. This review addresses the differences in evolutionary scenario, leaf anatomy, and especially C4 metabolic flow, C4 transporters, and cell-specific function deduced from recently reported cell-specific transcriptomic, proteomic, and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic analysis has revealed the extent to which component abundances differ between the two biochemical subtypes, leading to a better understanding of C4 photosynthetic mechanisms in NAD-ME and NADP-ME subtypes.

  7. The differences between NAD-ME and NADP-ME subtypes of C4 photosynthesis: more than decarboxylating enzymes

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2016-10-01

    Full Text Available As an adaptation to changing climatic conditions that caused high rates of photorespiration, C4 plants have evolved to display higher photosynthetic efficiency than C3 plants under elevated temperature, high light intensities and drought. The C4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C4 mechanisms to concentrate CO2 around the carboxylating enzyme Rubisco. C4 photosynthesis is divided into at least two basic biochemical subtypes based on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME and NADP-dependent malic enzyme (NADP-ME. The multiple polygenetic origins of these subtypes raise questions about the association of C4 variation between biochemical subtypes and diverse lineages. This review addresses the differences in evolutionary scenario, leaf anatomy, and especially C4 metabolic flow, C4 transporters and cell-specific function deduced from recently reported cell-specific transcriptomic, proteomic and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic analysis has revealed the extent to which component abundances differ between the two biochemical subtypes, leading to a better understanding of C4 photosynthetic mechanisms in NAD-ME and NADP-ME subtypes.

  8. Coenzyme Engineering of a Hyperthermophilic 6-Phosphogluconate Dehydrogenase from NADP+ to NAD+ with Its Application to Biobatteries

    Science.gov (United States)

    Chen, Hui; Zhu, Zhiguang; Huang, Rui; Zhang, Yi-Heng Percival

    2016-11-01

    Engineering the coenzyme specificity of redox enzymes plays an important role in metabolic engineering, synthetic biology, and biocatalysis, but it has rarely been applied to bioelectrochemistry. Here we develop a rational design strategy to change the coenzyme specificity of 6-phosphogluconate dehydrogenase (6PGDH) from a hyperthermophilic bacterium Thermotoga maritima from its natural coenzyme NADP+ to NAD+. Through amino acid-sequence alignment of NADP+- and NAD+-preferred 6PGDH enzymes and computer-aided substrate-coenzyme docking, the key amino acid residues responsible for binding the phosphate group of NADP+ were identified. Four mutants were obtained via site-directed mutagenesis. The best mutant N32E/R33I/T34I exhibited a ~6.4 × 104-fold reversal of the coenzyme selectivity from NADP+ to NAD+. The maximum power density and current density of the biobattery catalyzed by the mutant were 0.135 mW cm-2 and 0.255 mA cm-2, ~25% higher than those obtained from the wide-type 6PGDH-based biobattery at the room temperature. By using this 6PGDH mutant, the optimal temperature of running the biobattery was as high as 65 °C, leading to a high power density of 1.75 mW cm-2. This study demonstrates coenzyme engineering of a hyperthermophilic 6PGDH and its application to high-temperature biobatteries.

  9. Joint Functions of Protein Residues and NADP(H) in Oxygen Activation by Flavin-containing Monooxygenase

    NARCIS (Netherlands)

    Orru, Roberto; Torres Pazmino, Daniel; Fraaije, Marco W.; Mattevi, Andrea

    2010-01-01

    The reactivity of flavoenzymes with dioxygen is at the heart of a number of biochemical reactions with far reaching implications for cell physiology and pathology. Flavin-containing monooxygenases are an attractive model system to study flavin-mediated oxygenation. In these enzymes, the NADP(H)

  10. Directed Molecular Evolution of Nitrite Oxido-reductase by DNA-shuffling

    Institute of Scientific and Technical Information of China (English)

    JUN-WEN LI; JIN-LAI ZHENG; XIN-WEI WANG; MIN JIN; FU-HUAN CHAO

    2007-01-01

    Objective To develtop directly molecular evolution of nitrite oxido-reductase using DNA-shuffling technique because nitrobacteria grow extremely slow and are unable to nitrify effectively inorganic nitrogen in wastewater treatment. Methods The norB gene coding the nitrite oxido-reductase in nitrobacteria was cloned and sequenced. Then, directed molecular evolution of nitrite oxido-reductase was developed by DNA-shuffling of 15 norB genes from different nitrobacteria. Results After DNA-shuffling with sexual PCR and staggered extension process PCR, the sequence was different from its parental DNA fragments and the homology ranged from 98% to 99%. The maximum nitrification rate of the modified bacterium of X16 by modified bacterium had the same characteristics of its parental bacteria of E. coli and could grow rapidly in normal cultures.Conclusion DNA-shuffling was successfully used to engineer E. coli, which had norB gene and could degrade inorganic nitrogen effectively.

  11. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  12. Functional characterization of NADP-dependent isocitrate dehydrogenase isozymes from Trypanosoma cruzi.

    Science.gov (United States)

    Leroux, Alejandro E; Maugeri, Dante A; Cazzulo, Juan J; Nowicki, Cristina

    2011-05-01

    Trypanosoma cruzi exhibits two putative isocitrate dehydrogenases (IDHs). Both idh genes were cloned and the recombinant enzymes expressed in Escherichia coli. Our results showed that T. cruzi IDHs are strictly dependent on NADP(+) and display apparent affinities towards isocitrate and the coenzyme in the low micromolar range. In T. cruzi, IDHs are cytosolic and mitochondrial enzymes, and there is no evidence for the typical Krebs cycle-related NAD-dependent IDH. Hence, like in Trypanosoma brucei, the Krebs cycle is not a canonical route in T. cruzi. However, the citrate produced in the mitochondrion could be isomerized into isocitrate in the cytosol and the mitochondrion by means of the putative aconitase, which would provide the substrate for both IDHs. The cytosolic IDH is significantly more abundant in amastigotes, cell-derived and metacyclic trypomastigotes than in epimastigotes. This observation fits in well with the expected oxidative burst this pathogen has to face when infecting the mammalian host.

  13. Isolation of a cotton NADP(H oxidase homologue induced by drought stress

    Directory of Open Access Journals (Sweden)

    NEPOMUCENO ALEXANDRE LIMA

    2000-01-01

    Full Text Available The aim of this study was to identify and isolate genes that are differentially expressed in four selected cotton (Gossypium hirsutum L. genotypes contrasting according to their tolerance to water deficit. The genotypes studied were Siokra L-23, Stoneville 506, CS 50 and T-1521. Physiological, morphological and developmental changes that confer drought tolerance in plants must have a molecular genetic basis. To identify and isolate the genes, the mRNA Differential Display (DD technique was used. Messenger RNAs differentially expressed during water deficit were identified, isolated, cloned and sequenced. The cloned transcript A12B15-5, a NADP(H oxidase homologue, was up regulated only during the water deficit stress and only in Siokra L-23, a drought tolerant genotype. Ribonuclease protection assay confirmed that transcription.

  14. NADP-dependent mannitol dehydrogenase, a major allergen of Cladosporium herbarum.

    Science.gov (United States)

    Simon-Nobbe, Birgit; Denk, Ursula; Schneider, Peter Bernhard; Radauer, Christian; Teige, Markus; Crameri, Reto; Hawranek, Thomas; Lang, Roland; Richter, Klaus; Schmid-Grendelmeier, Peter; Nobbe, Stephan; Hartl, Arnulf; Breitenbach, Michael

    2006-06-16

    Cladosporium herbarum is an important allergenic fungal species that has been reported to cause allergic diseases in nearly all climatic zones. 5-30% of the allergic population displays IgE antibodies against molds. Sensitization to Cladosporium has often been associated with severe asthma and less frequently with chronic urticaria and atopic eczema. However, no dominant major allergen of this species has been found so far. We present cloning, production, and characterization of NADP-dependent mannitol dehydrogenase of C. herbarum (Cla h 8) and show that this protein is a major allergen that is recognized by IgE antibodies of approximately 57% of all Cladosporium allergic patients. This is the highest percentage of patients reacting with any Cladosporium allergen characterized so far. Cla h 8 was purified to homogeneity by standard chromatographic methods, and both N-terminal and internal amino acid sequences of protein fragments were determined. Enzymatic analysis of the purified natural protein revealed that this allergen represents a NADP-dependent mannitol dehydrogenase that interconverts mannitol and d-fructose. It is a soluble, non-glycosylated cytoplasmic protein. Two-dimensional protein analysis indicated that mannitol dehydrogenase is present as a single isoform. The cDNA encoding Cla h 8 was cloned from a lambda-ZAP library constructed from hyphae and spores. The recombinant non-fusion protein was expressed in Escherichia coli and purified to homogeneity. Its immunological and biochemical identity with the natural protein was shown by enzyme activity tests, CD spectroscopy, IgE immunoblots with sera of patients, and by skin prick testing of Cladosporium allergic patients. This protein therefore is a new major allergen of C. herbarum.

  15. 40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Glyphosate Oxidoreductase GOX or... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.524 Glyphosate... Glyphosate Oxidoreductase GOX or GOXv247 enzyme in all plants are exempt from the requirement of a tolerance...

  16. Single molecule activity measurements of cytochrome P450 oxidoreductase reveal the existence of two discrete functional states

    DEFF Research Database (Denmark)

    Laursen, Tomas; Singha, Aparajita; Rantzau, Nicolai;

    2014-01-01

    Electron transfer between membrane spanning oxidoreductase enzymes controls vital metabolic processes. Here we studied for the first time with single molecule resolution the function of P450 oxidoreductase (POR), the canonical membrane spanning activator of all microsomal cytochrome P450 enzymes....

  17. Structural studies of Saccharomyces cerevesiae mitochondrial NADP-dependent isocitrate dehydrogenase in different enzymatic states reveal substantial conformational changes during the catalytic reaction.

    Science.gov (United States)

    Peng, Yingjie; Zhong, Chen; Huang, Wei; Ding, Jianping

    2008-09-01

    Isocitrate dehydrogenases (IDHs) catalyze oxidative decarboxylation of isocitrate (ICT) into alpha-ketoglutarate (AKG). We report here the crystal structures of Saccharomyces cerevesiae mitochondrial NADP-IDH Idp1p in binary complexes with coenzyme NADP, or substrate ICT, or product AKG, and in a quaternary complex with NADPH, AKG, and Ca(2+), which represent different enzymatic states during the catalytic reaction. Analyses of these structures identify key residues involved in the binding of these ligands. Comparisons among these structures and with the previously reported structures of other NADP-IDHs reveal that eukaryotic NADP-IDHs undergo substantial conformational changes during the catalytic reaction. Binding or release of the ligands can cause significant conformational changes of the structural elements composing the active site, leading to rotation of the large domain relative to the small and clasp domains along two hinge regions (residues 118-124 and residues 284-287) while maintaining the integrity of its secondary structural elements, and thus, formation of at least three distinct overall conformations. Specifically, the enzyme adopts an open conformation when bound to NADP, a quasi-closed conformation when bound to ICT or AKG, and a fully closed conformation when bound to NADP, ICT, and Ca(2+) in the pseudo-Michaelis complex or with NADPH, AKG, and Ca(2+) in the product state. The conformational changes of eukaryotic NADP-IDHs are quite different from those of Escherichia coli NADP-IDH, for which significant conformational changes are observed only between two forms of the apo enzyme, suggesting that the catalytic mechanism of eukaryotic NADP-IDHs is more complex than that of EcIDH, and involves more fine-tuned conformational changes.

  18. Molecular cloning and characterization of a broad substrate terpenoid oxidoreductase from Artemisia annua.

    NARCIS (Netherlands)

    Ryden, A.M.; Ruyter-Spira, C.P.; Litjens, R.; Takahashi, S.; Quax, W.J.; Osada, H.; Bouwmeester, H.J.; Kayser, O.

    2010-01-01

    From Artemisia annua L., a new oxidoreductase (Red 1) was cloned, sequenced and functionally characterized. Through bioinformatics, heterologous protein expression, and enzyme substrate conversion assays, the elucidation of the enzymatic capacities of Red1 was achieved. Red1 acts on monoterpenoids,

  19. Three-Dimensional Structure of Bovine NADH : Ubiquinone Oxidoreductase of the Mitochondrial Respiratory Chain

    NARCIS (Netherlands)

    Boekema, Egbert J.; Heel, Marin G. van; Bruggen, Ernst F.J. van

    1984-01-01

    We have studied the structure of bovine heart mitochondrial NADH:ubiquinone (Q) oxidoreductase (EC 1.6.99.3) by image analysis of electron micrographs. A three-dimensional reconstruction was calculated from a tilt-series of a two-dimensional crystal of the molecule. Our interpretation of the

  20. Endoplasmic reticulum (ER Chaperones and Oxidoreductases: Critical Regulators of Tumor Cell Survival and Immunorecognition

    Directory of Open Access Journals (Sweden)

    Thomas eSimmen

    2014-10-01

    Full Text Available Endoplasmic reticulum (ER chaperones and oxidoreductases are abundant enzymes that mediate the production of fully folded secretory and transmembrane proteins. Resisting the Golgi and plasma membrane-directed bulk flow, ER chaperones and oxidoreductases enter retrograde trafficking whenever they are pulled outside of the ER. However, solid tumors are characterized by the increased production of reactive oxygen species (ROS, combined with reduced blood flow that leads to low oxygen supply and ER stress. Under these conditions, hypoxia and the unfolded protein response (UPR upregulate ER chaperones and oxidoreductases. When this occurs, ER oxidoreductases and chaperones become important regulators of tumor growth. However, under these conditions, these proteins not only promote the production of proteins, but also alter the properties of the plasma membrane and hence modulate tumor immune recognition. For instance, high levels of calreticulin serve as an eat-me signal on the surface of tumor cells. Conversely, both intracellular and surface BiP/GRP78 promotes tumor growth. Other ER folding assistants able to modulate the properties of tumor tissue include protein disulfide isomerase (PDI, Ero1α and GRP94. Understanding the roles and mechanisms of ER chaperones in regulating tumor cell functions and immunorecognition will lead to important insight for the development of novel cancer therapies.

  1. Molecular Cloning and Characterization of a Broad Substrate Terpenoid Oxidoreductase from Artemisia annua

    NARCIS (Netherlands)

    Ryden, Anna-Margareta; Ruyter-Spira, Carolien; Litjens, Ralph; Takahashi, Shunji; Quax, Wim; Osada, Hiroyuki; Bouwmeester, Harro; Kayser, Oliver

    2010-01-01

    From Artemisia annua L., a new oxidoreductase (Red 1) was cloned, sequenced and functionally characterized. Through bioinformatics, heterologous protein expression and enzyme substrate conversion assays, the elucidation of the enzymatic capacities of Red1 was achieved. Red1 acts on monoterpenoids, a

  2. Molecular cloning and characterization of a broad substrate terpenoid oxidoreductase from Artemisia annua.

    NARCIS (Netherlands)

    Ryden, A.M.; Ruyter-Spira, C.P.; Litjens, R.; Takahashi, S.; Quax, W.J.; Osada, H.; Bouwmeester, H.J.; Kayser, O.

    2010-01-01

    From Artemisia annua L., a new oxidoreductase (Red 1) was cloned, sequenced and functionally characterized. Through bioinformatics, heterologous protein expression, and enzyme substrate conversion assays, the elucidation of the enzymatic capacities of Red1 was achieved. Red1 acts on monoterpenoids,

  3. Inflammatory Role of Macrophage Xanthine Oxidoreductase in Pulmonary Hypertension: Implications for Novel Therapeutic Approaches

    Science.gov (United States)

    2015-10-01

    inflammatory macrophages. Recently we have obtained preliminary data showing XOR as a critical regulator of mitochondrial function during hypoxia (SA1b...TERMS Xanthine Oxidoreductase, Macrophage, Pulmonary hypertension, Inflammasone, Mitochondrial Repiration 16. SECURITY CLASSIFICATION OF: 17...Shift To verify the effect of XOR ablation on mitochondrial OXPHOS, we measured levels of lactate and pyruvate in purified BMDM derived from XORfl/fl

  4. Expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Paul R.; Evans, Daniel; Greenwood, Jacqueline A.; Moody, Peter C. E., E-mail: pcem1@leicester.ac.uk [Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN (United Kingdom)

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase A has been cloned, expressed and purified. Apoprotein crystals have been grown which diffracted to 1.75 Å resolution and belonged to space group P2{sub 1}; holo crystals were grown in the presence of NADP, diffracted to 2.6 Å resolution and belonged to space group P3{sub 2}. The classical glycolytic pathway contains an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, with NADP-dependent forms reserved for photosynthetic organisms and archaea. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori is reported; crystals of the protein were grown both in the presence and the absence of NADP.

  5. Faster Rubisco Is the Key to Superior Nitrogen-Use Efficiency in NADP-Malic Enzyme Relative to NAD-Malic Enzyme C4 Grasses1

    Science.gov (United States)

    Ghannoum, Oula; Evans, John R.; Chow, Wah Soon; Andrews, T. John; Conroy, Jann P.; von Caemmerer, Susanne

    2005-01-01

    In 27 C4 grasses grown under adequate or deficient nitrogen (N) supplies, N-use efficiency at the photosynthetic (assimilation rate per unit leaf N) and whole-plant (dry mass per total leaf N) level was greater in NADP-malic enzyme (ME) than NAD-ME species. This was due to lower N content in NADP-ME than NAD-ME leaves because neither assimilation rates nor plant dry mass differed significantly between the two C4 subtypes. Relative to NAD-ME, NADP-ME leaves had greater in vivo (assimilation rate per Rubisco catalytic sites) and in vitro Rubisco turnover rates (kcat; 3.8 versus 5.7 s−1 at 25°C). The two parameters were linearly related. In 2 NAD-ME (Panicum miliaceum and Panicum coloratum) and 2 NADP-ME (Sorghum bicolor and Cenchrus ciliaris) grasses, 30% of leaf N was allocated to thylakoids and 5% to 9% to amino acids and nitrate. Soluble protein represented a smaller fraction of leaf N in NADP-ME (41%) than in NAD-ME (53%) leaves, of which Rubisco accounted for one-seventh. Soluble protein averaged 7 and 10 g (mmol chlorophyll)−1 in NADP-ME and NAD-ME leaves, respectively. The majority (65%) of leaf N and chlorophyll was found in the mesophyll of NADP-ME and bundle sheath of NAD-ME leaves. The mesophyll-bundle sheath distribution of functional thylakoid complexes (photosystems I and II and cytochrome f) varied among species, with a tendency to be mostly located in the mesophyll. In conclusion, superior N-use efficiency of NADP-ME relative to NAD-ME grasses was achieved with less leaf N, soluble protein, and Rubisco having a faster kcat. PMID:15665246

  6. Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses.

    Science.gov (United States)

    Ghannoum, Oula; Evans, John R; Chow, Wah Soon; Andrews, T John; Conroy, Jann P; von Caemmerer, Susanne

    2005-02-01

    In 27 C4 grasses grown under adequate or deficient nitrogen (N) supplies, N-use efficiency at the photosynthetic (assimilation rate per unit leaf N) and whole-plant (dry mass per total leaf N) level was greater in NADP-malic enzyme (ME) than NAD-ME species. This was due to lower N content in NADP-ME than NAD-ME leaves because neither assimilation rates nor plant dry mass differed significantly between the two C4 subtypes. Relative to NAD-ME, NADP-ME leaves had greater in vivo (assimilation rate per Rubisco catalytic sites) and in vitro Rubisco turnover rates (k(cat); 3.8 versus 5.7 s(-1) at 25 degrees C). The two parameters were linearly related. In 2 NAD-ME (Panicum miliaceum and Panicum coloratum) and 2 NADP-ME (Sorghum bicolor and Cenchrus ciliaris) grasses, 30% of leaf N was allocated to thylakoids and 5% to 9% to amino acids and nitrate. Soluble protein represented a smaller fraction of leaf N in NADP-ME (41%) than in NAD-ME (53%) leaves, of which Rubisco accounted for one-seventh. Soluble protein averaged 7 and 10 g (mmol chlorophyll)(-1) in NADP-ME and NAD-ME leaves, respectively. The majority (65%) of leaf N and chlorophyll was found in the mesophyll of NADP-ME and bundle sheath of NAD-ME leaves. The mesophyll-bundle sheath distribution of functional thylakoid complexes (photosystems I and II and cytochrome f) varied among species, with a tendency to be mostly located in the mesophyll. In conclusion, superior N-use efficiency of NADP-ME relative to NAD-ME grasses was achieved with less leaf N, soluble protein, and Rubisco having a faster k(cat).

  7. Toward high-throughput screening of NAD(P)-dependent oxidoreductases using boron-doped diamond microelectrodes and microfluidic devices.

    Science.gov (United States)

    Oyobiki, Ryo; Kato, Taisuke; Katayama, Michinobu; Sugitani, Ai; Watanabe, Takeshi; Einaga, Yasuaki; Matsumoto, Yoshinori; Horisawa, Kenichi; Doi, Nobuhide

    2014-10-07

    Although oxidoreductases are widely used in many applications, such as biosensors and biofuel cells, improvements in the function of existing oxidoreductases or the discovery of novel oxidoreductases with greater activities is desired. To increase the activity of oxidoreductases by directed evolution, a powerful screening technique for oxidoreductases is required. In this study, we demonstrate the utility of boron-doped diamond (BDD) microelectrodes for quantitative and potentially high-throughput measurement of the activity of NAD(P)-dependent oxidoreductases. We first confirmed that BDD microelectrodes can quantify the activity of low concentrations (10-100 pM) of glucose-6-phosphate dehydrogenase and alcohol dehydrogenase with a measuring time of 1 ms per sample. In addition, we found that poisoning of BDD microelectrodes can be repressed by optimizing the pH and by adding l-arginine to the enzyme solution as an antiaggregation agent. Finally, we fabricated a microfluidic device containing a BDD electrode for the first time and observed the elevation of the oxidation current of NADH with increasing flow rate. These results imply that the combination of a BDD microelectrode and microfluidics can be used for high-throughput screening of an oxidoreductase library containing a large number (>10(6)) of samples, each with a small (nanoliter) sample volume.

  8. Crystallization and preliminary crystallographic analysis of Gre2p, an NADP(+)-dependent alcohol dehydrogenase from Saccharomyces cerevisiae.

    Science.gov (United States)

    Breicha, Klaus; Müller, Marion; Hummel, Werner; Niefind, Karsten

    2010-07-01

    Gre2p [Genes de respuesta a estres (stress-response gene)] from Saccharomyces cerevisiae is a monomeric enzyme of 342 amino acids with a molecular weight of 38.1 kDa. The enzyme catalyses both the stereospecific reduction of keto compounds and the oxidation of various hydroxy compounds and alcohols by the simultaneous consumption of the cofactor NADPH and formation of NADP(+). Crystals of a Gre2p complex with NADP(+) were grown using PEG 8000 as a precipitant. They belong to the monoclinic space group P2(1). The current diffraction resolution is 3.2 A. In spite of the monomeric nature of Gre2p in solution, packing and self-rotation calculations revealed the existence of two Gre2p protomers per asymmetric unit related by a twofold noncrystallographic axis.

  9. NADP(+)-specific isocitrate dehydrogenase from oleaginous yeast Yarrowia lipolytica CLIB122: biochemical characterization and coenzyme sites evaluation.

    Science.gov (United States)

    Li, Xue; Wang, Peng; Ge, Yadong; Wang, Wen; Abbas, Abdulla; Zhu, Guoping

    2013-09-01

    NADP(+)-dependent isocitrate dehydrogenase from Yarrowia lipolytica CLIB122 (YlIDP) was overexpressed and purified. The molecular mass of YlIDP was estimated to be about 81.3 kDa, suggesting its homodimeric structure in solution. YlIDP was divalent cation dependent and Mg(2+) was found to be the most favorable cofactor. The purified recombinant YlIDP displayed maximal activity at 55 °C and its optimal pH for catalysis was found to be around 8.5. Heat inactivation studies revealed that the recombinant YlIDP was stable below 45 °C, but its activity dropped quickly above this temperature. YlIDP was absolutely dependent on NADP(+) and no NAD-dependent activity could be detected. The K m values displayed for NADP(+) and isocitrate were 59 and 31 μM (Mg(2+)), 120 μM and 58 μM (Mn(2+)), respectively. Mutant enzymes were constructed to tentatively alter the coenzyme specificity of YlIDP. The K m values for NADP(+) of R322D mutant was 2,410 μM, being about 41-fold higher than that of wild type enzyme. NAD(+)-dependent activity was detected for R322D mutant and the K m and k cat values for NAD(+) were 47,000 μM and 0.38 s(-1), respectively. Although the R322D mutant showed low activity with NAD(+), it revealed the feasibility of engineering an eukaryotic IDP to a NAD(+)-dependent one.

  10. Diversification of the kinetic properties of yeast NADP-glutamate-dehydrogenase isozymes proceeds independently of their evolutionary origin.

    Science.gov (United States)

    Campero-Basaldua, Carlos; Quezada, Héctor; Riego-Ruíz, Lina; Márquez, Dariel; Rojas, Erendira; González, James; El-Hafidi, Mohammed; González, Alicia

    2016-11-19

    In the yeast Saccharomyces cerevisiae, the ScGDH1 and ScGDH3 encoded glutamate dehydrogenases (NADP-GDHs) catalyze the synthesis of glutamate from ammonium and α-ketoglutarate (α-KG). Previous kinetic characterization showed that these enzymes displayed different allosteric properties and respectively high or low rate of α-KG utilization. Accordingly, the coordinated action of ScGdh1 and ScGdh3, regulated balanced α-KG utilization for glutamate biosynthesis under either fermentative or respiratory conditions, safeguarding energy provision. Here, we have addressed the question of whether there is a correlation between the regulation and kinetic properties of the NADP-GDH isozymes present in S. cerevisiae (ScGdh1 and ScGdh3), Kluyveromyces lactis (KlGdh1), and Lachancea kluyveri (LkGdh1) and their evolutionary history. Our results show that the kinetic properties of K. lactis and L. kluyveri single NADP-GDHs are respectively similar to either ScGDH3 or ScGDH1, which arose from the whole genome duplication event of the S. cerevisiae lineage, although, KlGDH1 and LkGDH1 originated from a GDH clade, through an ancient interspecies hybridization event that preceded the divergence between the Saccharomyces clade and the one containing the genera Kluyveromyces, Lachancea, and Eremothecium. Thus, the kinetic properties which determine the NADP-GDHs capacity to utilize α-KG and synthesize glutamate do not correlate with their evolutionary origin.

  11. Silencing of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase gene enhances glioma radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Youl [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu (Korea, Republic of); Yoo, Young Hyun [Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan (Korea, Republic of); Park, Jeen-Woo, E-mail: parkjw@knu.ac.kr [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu (Korea, Republic of)

    2013-04-05

    Highlights: •Silencing of the IDPm gene enhances IR-induced autophagy in glioma cells. •Autophagy inhibition augmented apoptosis of irradiated glioma cells. •Results offer a redox-active therapeutic strategy for the treatment of cancer. -- Abstract: Reactive oxygen species (ROS) levels are elevated in organisms that have been exposed to ionizing radiation and are protagonists in the induction of cell death. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDPm) via the supply of NADPH for antioxidant systems. In the present study, we report an autophagic response to ionizing radiation in A172 glioma cells transfected with small interfering RNA (siRNA) targeting the IDPm gene. Autophagy in A172 transfectant cells was associated with enhanced autophagolysosome formation and GFP–LC3 punctuation/aggregation. Furthermore, we found that the inhibition of autophagy by chloroquine augmented apoptotic cell death of irradiated A172 cells transfected with IDPm siRNA. Taken together, our data suggest that autophagy functions as a survival mechanism in A172 cells against ionizing radiation-induced apoptosis and the sensitizing effect of IDPm siRNA and autophagy inhibitor on the ionizing radiation-induced apoptotic cell death of glioma cells offers a novel redox-active therapeutic strategy for the treatment of cancer.

  12. Mitochondrial NADP(+)-dependent isocitrate dehydrogenase knockdown inhibits tumorigenicity of melanoma cells.

    Science.gov (United States)

    Kim, Sung Hwan; Yoo, Young Hyun; Lee, Jin Hyup; Park, Jeen-Woo

    2014-08-22

    The potent cytotoxicity of reactive oxygen species (ROS) can cause various diseases but may also serve as a powerful weapon capable of destroying cancer cells. Although the balance between generation and elimination of ROS is maintained by the proper function of antioxidative systems, the severe disturbance of cellular redox status may cause various damages, leading to cell death. Mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2), an NADPH-generating enzyme, is one of the major antioxidant and redox regulators in mitochondria. To assess the effect of IDH2 knockdown in the malignancy process, we generated B16F10 melanoma cells stably transfected either with the cDNA for mouse IDH2 cloned in antisense orientation or with a control vector. Mice injected with B16F10 cells harboring IDH2 downregulation showed a dramatic reduction in tumor progression in comparison to mice administered control cells. This effect might be secondary to a shift from a reducing to an oxidative state in tumor cells. The tumor tissue of mice administered B16F10 cells transfected with the IDH2 cDNA exhibited induction of apoptosis and downregulation of angiogenesis markers. These observations demonstrate that reduction of IDH2 levels in malignant cells has anti-tumorigenic effects and suggest that IDH2 is a potential target for cancer therapy.

  13. Cloning, sequencing and expression of the Schwanniomyces occidentalis NADP-dependent glutamate dehydrogenase gene.

    Science.gov (United States)

    De Zoysa, P A; Connerton, I F; Watson, D C; Johnston, J R

    1991-08-01

    The cloned NADP-specific glutamate dehydrogenase (GDH) genes of Aspergillus nidulans (gdhA) and Neurospora crassa (am) have been shown to hybridize under reduced stringency conditions to genomic sequences of the yeast Schwanniomyces occidentalis. Using 5' and 3' gene-specific probes, a unique 5.1 kb BclI restriction fragment that encompasses the entire Schwanniomyces sequence has been identified. A recombinant clone bearing the unique BclI fragment has been isolated from a pool of enriched clones in the yeast/E. coli shuttle vector pWH5 by colony hybridization. The identity of the plasmid clone was confirmed by functional complementation of the Saccharomyces cerevisiae gdh-1 mutation. The nucleotide sequence of the Schw. occidentalis GDH gene, which consists of 1380 nucleotides in a continuous reading frame of 459 amino acids, has been determined. The predicted amino acid sequence shows considerable homology with GDH proteins from other fungi and significant homology with all other available GDH sequences.

  14. KR-62980 suppresses lipid metabolism through inhibition of cytosolic NADP isocitrate dehydrogenase in zebrafish.

    Science.gov (United States)

    Chun, Hang-Suk; Shin, Sun Hye; Ahn, Sunjoo; Shin, Dae-Seop; Choi, Sun-Sil; Ahn, Jin Hee; Bae, Myung Ae

    2014-04-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a target of antidiabetic drugs. However, many PPARγ activators, including rosiglitazone, show unwanted side effects, such as weight gain. The KR-62980 [1-(trans-methylimino-N-oxy)-3-phenyl-6-(3-phenylpropoxy)-1H-indene-2-carboxylic acid ethyl ester], a novel partial agonist of PPARγ, is a new compound for diabetes with antihyperglycemic activity and weak antiadipogenic activity. This study was performed to elucidate the mechanism of the weak adipogenesis induced by KR-62980 despite its being a PPARγ agonist in zebrafish. We elucidated the mechanism of KR-62980 in lipid metabolism using adipocytes and zebrafish. Since NADPH is a critical cofactor in fat metabolism, we investigated effect of KR-62980 on NADPH-producing enzymes such as cytosolic NADP(+) isocitrate dehydrogenase (cICDH). We found that the mRNA expression of cICDH was significantly decreased by KR-62980 in 3T3-L1 cells. KR-62980 inhibited lipase activity and lipid metabolism in zebrafish. Further, KR-62980 substantially suppressed cICDH in adipocytes and zebrafish. These results suggest that cICDH may be one of the targets of KR-62980 responsible for weight gain and adipogenesis.

  15. An Interbacterial NAD(P)+ Glycohydrolase Toxin Requires Elongation Factor Tu for Delivery to Target Cells

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, John C.; Quentin, Dennis; Sawai, Shin; LeRoux, Michele; Harding, Brittany N.; Ledvina, Hannah E.; Tran, Bao Q.; Robinson, Howard; Goo, Young Ah; Goodlett, David R.; Raunser, Stefan; Mougous, Joseph D.

    2015-10-08

    Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD+ and NADP+. Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.

  16. Purification, kinetic behavior, and regulation of NAD(P)+ malic enzyme of tumor mitochondria.

    Science.gov (United States)

    Moreadith, R W; Lehninger, A L

    1984-05-25

    The purification and kinetic characterization of an NAD(P)+-malic enzyme from 22aH mouse hepatoma mitochondria are described. The enzyme was purified 328-fold with a final yield of 51% and specific activity of 38.1 units/mg of protein by employing DEAE-cellulose chromatography and an ATP affinity column. Sephadex G-200 chromatography yielded a native Mr = 240,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a major subunit with Mr = 61,000, suggesting a tetrameric structure, and also showed that the preparation contained less than 10% polypeptide impurities. Use of the ATP affinity column required the presence of MnCl2 and fumarate (an allosteric activator) in the elution buffers. In the absence of fumarate, the Michaelis constants for malate, NAD+, and NADP+ were 3.6 mM, 55 microM, and 72 microM, respectively; in the presence of fumarate (2 mM), the constants were 0.34 mM, 9 microM, and 13 microM, respectively. ATP was shown to be an allosteric inhibitor, competitive with malate. However, the inhibition by ATP displayed hyperbolic competitive kinetics with a KI (ATP) of 80 microM (minus fumarate) and 0.5 mM (plus 2 mM fumarate). The allosteric properties of the enzyme are integrated into a rationale for its specific role in the pathways of malate and glutamate oxidation in tumor mitochondria.

  17. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Matthew [Boston, MA; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Highland Ranch, CO; Hause, Benjamin Matthew [Currie, MN; Van Hoek, Pim [Camarillo, CA; Dundon, Catherine Asleson [Minneapolis, MN

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  18. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    Science.gov (United States)

    Miller, Matthew [Boston, MA; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Highland Ranch, CO; Hause, Benjamin Matthew [Currie, MN; Van Hoek, Pim [Camarillo, CA; Dundon, Catherine Asleson [Minneapolis, MN

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  19. Antioxidant Defense by Thioredoxin Can Occur Independently of Canonical Thiol-Disulfide Oxidoreductase Enzymatic Activity

    Directory of Open Access Journals (Sweden)

    Miryoung Song

    2016-03-01

    Full Text Available The thiol-disulfide oxidoreductase CXXC catalytic domain of thioredoxin contributes to antioxidant defense in phylogenetically diverse organisms. We find that although the oxidoreductase activity of thioredoxin-1 protects Salmonella enterica serovar Typhimurium from hydrogen peroxide in vitro, it does not appear to contribute to Salmonella’s antioxidant defenses in vivo. Nonetheless, thioredoxin-1 defends Salmonella from oxidative stress resulting from NADPH phagocyte oxidase macrophage expression during the innate immune response in mice. Thioredoxin-1 binds to the flexible linker, which connects the receiver and effector domains of SsrB, thereby keeping this response regulator in the soluble fraction. Thioredoxin-1, independently of thiol-disulfide exchange, activates intracellular SPI2 gene transcription required for Salmonella resistance to both reactive species generated by NADPH phagocyte oxidase and oxygen-independent lysosomal host defenses. These findings suggest that the horizontally acquired virulence determinant SsrB is regulated post-translationally by ancestrally present thioredoxin.

  20. Plant science. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein.

    Science.gov (United States)

    Winzer, Thilo; Kern, Marcelo; King, Andrew J; Larson, Tony R; Teodor, Roxana I; Donninger, Samantha L; Li, Yi; Dowle, Adam A; Cartwright, Jared; Bates, Rachel; Ashford, David; Thomas, Jerry; Walker, Carol; Bowser, Tim A; Graham, Ian A

    2015-07-17

    Morphinan alkaloids from the opium poppy are used for pain relief. The direction of metabolites to morphinan biosynthesis requires isomerization of (S)- to (R)-reticuline. Characterization of high-reticuline poppy mutants revealed a genetic locus, designated STORR [(S)- to (R)-reticuline] that encodes both cytochrome P450 and oxidoreductase modules, the latter belonging to the aldo-keto reductase family. Metabolite analysis of mutant alleles and heterologous expression demonstrate that the P450 module is responsible for the conversion of (S)-reticuline to 1,2-dehydroreticuline, whereas the oxidoreductase module converts 1,2-dehydroreticuline to (R)-reticuline rather than functioning as a P450 redox partner. Proteomic analysis confirmed that these two modules are contained on a single polypeptide in vivo. This modular assembly implies a selection pressure favoring substrate channeling. The fusion protein STORR may enable microbial-based morphinan production.

  1. Oxidoreductases from Trametes spp. in Biotechnology: A Wealth of Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Gibson S. Nyanhongo

    2007-01-01

    Full Text Available Those oxidoreductases that are part of the ligninolytic complex of basidiomycete and ascomycete fungi have played an increasingly important role in biotechnological applications during the last decade. The stability of these extracellular enzymes, their good solubility, and a multitude of catalyzed reactions contribute to this trend. This review focuses on a single genus of white-rot basidiomycetes, Trametes, to highlight the numerous possibilities for the application of this microorganism as well as three of its enzymes: laccase, cellobiose dehydrogenase, and pyranose 2-oxidase. Whereas laccase is without doubt a major player in biotechnology, the two other enzymes are less well known, but represent emerging biocatalysts with potential. Both cellobiose dehydrogenase and pyranose 2-oxidase are presumed to participate in lignin breakdown and will be used to exemplify the potential of less prominent oxidoreductases from this genus.

  2. Arxula adeninivorans xanthine oxidoreductase and its application in the production of food with low purine content.

    Science.gov (United States)

    Jankowska, D A; Trautwein-Schult, A; Cordes, A; Hoferichter, P; Klein, C; Bode, R; Baronian, K; Kunze, G

    2013-09-01

    Isolation and characterization of xanthine oxidoreductase and its application in the production of food with low purine content. The A. adeninivorans xanthine oxidoreductase is an inducible enzyme. The best inducers were identified by enzyme activity tests and real-time PCR and used to produce large amounts of the protein. Xanthine oxidoreductase was partially purified and biochemically characterized, showing pH and temperature optimum of 8·5 and 43°C, respectively. The enzyme decreased xanthine and hypoxanthine concentrations in yeast extract and was active simultaneously with other purine-degrading enzymes so that all of the substrates for uric acid production were reduced in a single step. It was shown that induced A. adeninivorans can produce sufficient amount of xanthine dehydrogenase and that the enzyme is able to reduce xanthine and hypoxanthine content in food, and when used in conjunction with other enzymes of the pathway, uric acid concentration is significantly reduced. Reduction in dietary purines is recommended to people suffering from hyperuricemia. Elimination of most purine-rich foods may affect balanced nutrition. Food with lowered purine concentration will assist in controlling the disease. This study is a continuation of previous studies that characterized and overexpressed other enzymes of the purine degradation pathway. © 2013 The Society for Applied Microbiology.

  3. Characterization of an 8-hydroxy-5-deazaflavin:NADPH oxidoreductase from Streptomyces griseus.

    Science.gov (United States)

    Eker, A P; Hessels, J K; Meerwaldt, R

    1989-01-27

    An 8-hydroxy-5-deazaflavin-dependent oxidoreductase was isolated from the actinomycete Streptomyces griseus and purified 590-fold with 72% overall yield. The enzyme catalyzes electron transfer between 8-hydroxy-5-deazaflavins and NADPH. It seems to be more specific than methanogenic oxidoreductase as it has an absolute requirement for both the 5-deazaflavin structure and the presence of an 8-hydroxy group in the substrate. A molecular weight of 42,000 was found with gel permeation chromatography, while SDS gel electrophoresis indicated the presence of two identical subunits. Maximal enzymatic activity was found at 0.32 M NaCl and pH 5.9 for reduction of 8-hydroxy-5-deazaflavin and pH 7.9 for the reverse reaction. From the kinetic constants it was estimated that the main function of this oxidoreductase is probably to provide cells with reduced 8-hydroxy-5-deazaflavin to be used in specific reduction reactions. These results indicate the occurrence of 8-hydroxy-5-deazaflavin-dependent electron transfer in microorganisms not belonging to the archaebacteria.

  4. Suppression of tumorigenesis in mitochondrial NADP(+)-dependent isocitrate dehydrogenase knock-out mice.

    Science.gov (United States)

    Kim, Seontae; Kim, Sung Youl; Ku, Hyeong Jun; Jeon, Yong Hyun; Lee, Ho Won; Lee, Jaetae; Kwon, Taeg Kyu; Park, Kwon Moo; Park, Jeen-Woo

    2014-02-01

    The tumor host microenvironment is increasingly viewed as an important contributor to tumor growth and suppression. Cellular oxidative stress resulting from high levels of reactive oxygen species (ROS) contributes to various processes involved in the development and progress of malignant tumors including carcinogenesis, aberrant growth, metastasis, and angiogenesis. In this regard, the stroma induces oxidative stress in adjacent tumor cells, and this in turn causes several changes in tumor cells including modulation of the redox status, inhibition of cell proliferation, and induction of apoptotic or necrotic cell death. Because the levels of ROS are determined by a balance between ROS generation and ROS detoxification, disruption of this system will result in increased or decreased ROS level. Recently, we demonstrated that the control of mitochondrial redox balance and cellular defense against oxidative damage is one of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2) that supplies NADPH for antioxidant systems. To explore the interactions between tumor cells and the host, we evaluated tumorigenesis between IDH2-deficient (knock-out) and wild-type mice in which B16F10 melanoma cells had been implanted. Suppression of B16F10 cell tumorigenesis was reproducibly observed in the IDH2-deficient mice along with significant elevation of oxidative stress in both the tumor and the stroma. In addition, the expression of angiogenesis markers was significantly down-regulated in both the tumor and the stroma of the IDH2-deficient mice. These results support the hypothesis that redox status-associated changes in the host environment of tumor-bearing mice may contribute to cancer progression.

  5. Kinetic properties and metabolic contributions of yeast mitochondrial and cytosolic NADP+-specific isocitrate dehydrogenases.

    Science.gov (United States)

    Contreras-Shannon, Veronica; Lin, An-Ping; McCammon, Mark T; McAlister-Henn, Lee

    2005-02-11

    To compare kinetic properties of homologous isozymes of NADP+-specific isocitrate dehydrogenase, histidine-tagged forms of yeast mitochondrial (IDP1) and cytosolic (IDP2) enzymes were expressed and purified. The isozymes were found to share similar apparent affinities for cofactors. However, with respect to isocitrate, IDP1 had an apparent Km value approximately 7-fold lower than that of IDP2, whereas, with respect to alpha-ketoglutarate, IDP2 had an apparent Km value approximately 10-fold lower than that of IDP1. Similar Km values for substrates and cofactors in decarboxylation and carboxylation reactions were obtained for IDP2, suggesting a capacity for bidirectional catalysis in vivo. Concentrations of isocitrate and alpha-ketoglutarate measured in extracts from the parental strain were found to be similar with growth on different carbon sources. For mutant strains lacking IDP1, IDP2, and/or the mitochondrial NAD+-specific isocitrate dehydrogenase (IDH), metabolite measurements indicated that major cellular flux is through the IDH-catalyzed reaction in glucose-grown cells and through the IDP2-catalyzed reaction in cells grown with a nonfermentable carbon source (glycerol and lactate). A substantial cellular pool of alpha-ketoglutarate is attributed to IDH function during glucose growth, and to both IDP1 and IDH function during growth on glycerol/lactate. Complementation experiments using a strain lacking IDH demonstrated that overexpression of IDP1 partially compensated for the glutamate auxotrophy associated with loss of IDH. Collectively, these results suggest an ancillary role for IDP1 in cellular glutamate synthesis and a role for IDP2 in equilibrating and maintaining cellular levels of isocitrate and alpha-ketoglutarate.

  6. A variety of electrostatic interactions and adducts can activate NAD(P) cofactors for hydride transfer.

    Science.gov (United States)

    Meijers, Rob; Cedergren-Zeppezauer, Eila

    2009-03-16

    In NAD(P)-dependent enzymes the coenzyme gives or takes a hydride ion, but how the nicotinamide ring is activated to form the transition state for hydride transfer is not clear. On the basis of ultra-high resolution X-ray crystal structures of liver alcohol dehydrogenase (LADH) in complex with NADH and a number of substrate analogues we proposed that the activation of NADH is an integral part of the enzyme mechanism of aldehyde reduction [R. Meijers, R.J. Morris, H.W. Adolph, A. Merli, V.S. Lamzin, E.S. Cedergren-Zeppezauer, On the enzymatic activation of NADH, The Journal of Biological Chemistry 276(12) (2001) 9316-9321, %U http://www.ncbi.nlm.nih.gov/pubmed/11134046; R. Meijers, H.-W. Adolph, Z. Dauter, K.S. Wilson, V.S. Lamzin, E.S. Cedergren-Zeppezauer, Structural evidence for a ligand coordination switch in liver alcohol dehydrogenase, Biochemistry 46(18) (2007) 5446-5454, %U http://www.ncbi.nlm.nih.gov/pubmed/17429946]. We observed a nicotinamide with a severely distorted pyridine ring and a water molecule in close proximity to the ring. Quantum chemical calculations indicated that (de)protonation of the water molecule can be directly coupled to activation of NADH for hydride transfer. A systematic search of the Protein Data Bank (PDB) for atoms that come within van der Waals distance of the pyridine ring of the nicotinamide reveals that a large number of NAD(P)-containing protein complexes are involved in electrostatic interactions with the enzymatic environment. Using the deposited diffraction data to analyze the cofactor and its surroundings, we observe several adducts between protein atoms and the pyridine ring that were not previously reported. This further indicates that the enzymatic activation of NAD(P) induced by electrostatic interactions is an essential part of the hydride transfer mechanism.

  7. The ferredoxin-NADP+ reductase/ferredoxin electron transfer system of Plasmodium falciparum.

    Science.gov (United States)

    Balconi, Emanuela; Pennati, Andrea; Crobu, Danila; Pandini, Vittorio; Cerutti, Raffaele; Zanetti, Giuliana; Aliverti, Alessandro

    2009-07-01

    In the apicoplast of apicomplexan parasites, plastidic-type ferredoxin and ferredoxin-NADP(+) reductase (FNR) form a short electron transport chain that provides reducing power for the synthesis of isoprenoid precursors. These proteins are attractive targets for the development of novel drugs against diseases such as malaria, toxoplasmosis, and coccidiosis. We have obtained ferredoxin and FNR of both Toxoplasma gondii and Plasmodium falciparum in recombinant form, and recently we solved the crystal structure of the P. falciparum reductase. Here we report on the functional properties of the latter enzyme, which differ markedly from those of homologous FNRs. In the physiological reaction, P. falciparum FNR displays a k(cat) five-fold lower than those usually determined for plastidic-type FNRs. By rapid kinetics, we found that hydride transfer between NADPH and protein-bound FAD is slower in the P. falciparum enzyme. The redox properties of the enzyme were determined, and showed that the FAD semiquinone species is highly destabilized. We propose that these two features, i.e. slow hydride transfer and unstable FAD semiquinone, are responsible for the poor catalytic efficiency of the P. falciparum enzyme. Another unprecedented feature of the malarial parasite FNR is its ability to yield, under oxidizing conditions, an inactive dimeric form stabilized by an intermolecular disulfide bond. Here we show that the monomerdimer interconversion can be controlled by oxidizing and reducing agents that are possibly present within the apicoplast, such as H(2)O(2), glutathione, and lipoate. This finding suggests that modulation of the quaternary structure of P. falciparum FNR might represent a regulatory mechanism, although this needs to be verified in vivo.

  8. Swapping FAD binding motifs between plastidic and bacterial ferredoxin-NADP(H) reductases.

    Science.gov (United States)

    Musumeci, Matías A; Botti, Horacio; Buschiazzo, Alejandro; Ceccarelli, Eduardo A

    2011-03-29

    Plant-type ferredoxin-NADP(H) reductases (FNRs) are grouped in two classes, plastidic with an extended FAD conformation and high catalytic rates and bacterial with a folded flavin nucleotide and low turnover rates. The 112-123 β-hairpin from a plastidic FNR and the carboxy-terminal tryptophan of a bacterial FNR, suggested to be responsible for the FAD differential conformation, were mutually exchanged. The plastidic FNR lacking the β-hairpin was unable to fold properly. An extra tryptophan at the carboxy terminus, emulating the bacterial FNR, resulted in an enzyme with decreased affinity for FAD and reduced diaphorase and ferredoxin-dependent cytochrome c reductase activities. The insertion of the β-hairpin into the corresponding position of the bacterial FNR increased FAD affinity but did not affect its catalytic properties. The same insertion with simultaneous deletion of the carboxy-terminal tryptophan produced a bacterial chimera emulating the plastidic architecture with an increased k(cat) and an increased catalytic efficiency for the diaphorase activity and a decrease in the enzyme's ability to react with its substrates ferredoxin and flavodoxin. Crystallographic structures of the chimeras showed no significant changes in their overall structure, although alterations in the FAD conformations were observed. Plastidic and bacterial FNRs thus reveal differential effects of key structural elements. While the 112-123 β-hairpin modulates the catalytic efficiency of plastidic FNR, it seems not to affect the bacterial FNR behavior, which instead can be improved by the loss of the C-terminal tryptophan. This report highlights the role of the FAD moiety conformation and the structural determinants involved in stabilizing it, ultimately modulating the functional output of FNRs.

  9. A NADP-glutamate dehydrogenase mutant of the petit-negative yeast Kluyveromyces lactis uses the glutamine synthetase-glutamate synthase pathway for glutamate biosynthesis.

    Science.gov (United States)

    Valenzuela, L; Guzmán-León, S; Coria, R; Ramírez, J; Aranda, C; González, A

    1995-10-01

    The activities of the enzymes involved in ammonium assimilation and glutamate biosynthesis were determined in wild-type and NADP-glutamate dehydrogenase (GDH) null mutant strains of Kluyveromyces lactis. The specific NADP-GDH activity from K. lactis was fivefold lower than that found in Saccharomyces cerevisiae. The glutamine synthetase (GS) and glutamate synthase (GOGAT) activities were similar to those reported in S. cerevisiae. The NADP-GDH null mutant was obtained by transforming the uraA strain MD2/1 with a linearized integrative yeast vector harbouring a 390 bp fragment of the NADP-GDH structural gene. This mutant grew as well as the parent strain on ammonium, but showed GS and GOGAT activities higher that those found in the wild-type strain, implying that the GS-GOGAT pathway could play a leading role in glutamate biosynthesis in K. lactis. Southern blotting analysis of K. lactis chromosomes separated by contour-clamped homogeneous electric field electrophoresis, indicated that the NADP-GDH structural gene is localized on chromosome VI.

  10. A highly stable plastidic-type ferredoxin-NADP(H reductase in the pathogenic bacterium Leptospira interrogans.

    Directory of Open Access Journals (Sweden)

    Daniela L Catalano-Dupuy

    Full Text Available Leptospira interrogans is a bacterium that is capable of infecting animals and humans, and its infection causes leptospirosis with a range of symptoms from flu-like to severe illness and death. Despite being a bacteria, Leptospira interrogans contains a plastidic class ferredoxin-NADP(H reductase (FNR with high catalytic efficiency, at difference from the bacterial class FNRs. These flavoenzymes catalyze the electron transfer between NADP(H and ferredoxins or flavodoxins. The inclusion of a plastidic FNR in Leptospira metabolism and in its parasitic life cycle is not currently understood. Bioinformatic analyses of the available genomic and proteins sequences showed that the presence of this enzyme in nonphotosynthetic bacteria is restricted to the Leptospira genus and that a [4Fe-4S] ferredoxin (LB107 encoded by the Leptospira genome may be the natural substrate of the enzyme. Leptospira FNR (LepFNR displayed high diaphorase activity using artificial acceptors and functioned as a ferric reductase. LepFNR displayed cytochrome c reductase activity with the Leptospira LB107 ferredoxin with an optimum at pH 6.5. Structural stability analysis demonstrates that LepFNR is one of the most stable FNRs analyzed to date. The persistence of a native folded LepFNR structure was detected in up to 6 M urea, a condition in which the enzyme retains 38% activity. In silico analysis indicates that the high LepFNR stability might be due to robust interactions between the FAD and the NADP(+ domains of the protein. The limited bacterial distribution of plastidic class FNRs and the biochemical and structural properties of LepFNR emphasize the uniqueness of this enzyme in the Leptospira metabolism. Our studies show that in L. interrogans a plastidic-type FNR exchanges electrons with a bacterial-type ferredoxin, process which has not been previously observed in nature.

  11. A highly stable plastidic-type ferredoxin-NADP(H) reductase in the pathogenic bacterium Leptospira interrogans.

    Science.gov (United States)

    Catalano-Dupuy, Daniela L; Musumeci, Matías A; López-Rivero, Arleth; Ceccarelli, Eduardo A

    2011-01-01

    Leptospira interrogans is a bacterium that is capable of infecting animals and humans, and its infection causes leptospirosis with a range of symptoms from flu-like to severe illness and death. Despite being a bacteria, Leptospira interrogans contains a plastidic class ferredoxin-NADP(H) reductase (FNR) with high catalytic efficiency, at difference from the bacterial class FNRs. These flavoenzymes catalyze the electron transfer between NADP(H) and ferredoxins or flavodoxins. The inclusion of a plastidic FNR in Leptospira metabolism and in its parasitic life cycle is not currently understood. Bioinformatic analyses of the available genomic and proteins sequences showed that the presence of this enzyme in nonphotosynthetic bacteria is restricted to the Leptospira genus and that a [4Fe-4S] ferredoxin (LB107) encoded by the Leptospira genome may be the natural substrate of the enzyme. Leptospira FNR (LepFNR) displayed high diaphorase activity using artificial acceptors and functioned as a ferric reductase. LepFNR displayed cytochrome c reductase activity with the Leptospira LB107 ferredoxin with an optimum at pH 6.5. Structural stability analysis demonstrates that LepFNR is one of the most stable FNRs analyzed to date. The persistence of a native folded LepFNR structure was detected in up to 6 M urea, a condition in which the enzyme retains 38% activity. In silico analysis indicates that the high LepFNR stability might be due to robust interactions between the FAD and the NADP(+) domains of the protein. The limited bacterial distribution of plastidic class FNRs and the biochemical and structural properties of LepFNR emphasize the uniqueness of this enzyme in the Leptospira metabolism. Our studies show that in L. interrogans a plastidic-type FNR exchanges electrons with a bacterial-type ferredoxin, process which has not been previously observed in nature.

  12. 11 beta-hydroxysteroid dehydrogenase activity in proteinuric patients and the effect of angiotensin-II receptor blockade

    NARCIS (Netherlands)

    Kerstens, MN; Buter, H; Navis, GJ; Dullaart, RPF

    Background It has been suggested that an altered setpoint of the 11betaHSD-mediated cortisol to cortisone interconversion towards cortisol contributes to sodium retention in nephrotic syndrome patients. We studied the parameters of 11betaHSD activity in proteinuric patients, in particular its

  13. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  14. NADP-specific isocitrate dehydrogenase of Escherichia coli. IV. Purification by chromatography on Affi-Gel Blue.

    Science.gov (United States)

    Vasquez, B; Reeves, H C

    1979-05-23

    Affinity chromatography on Affi-Gel Blue has been used to purify the NADP-specific isocitrate dehydrogenase (EC 1.1.1.42) from Escherichia coli. The protocol permits rapid purification of the enzyme in milligram quantities with a yield of 50% and is carried out almost entirely at room temperature. The preparation was judged to be homogeneous by non-denaturing electrophoresis at pH 7.5 and denaturing electrophoresis in the presence of sodium dodecyl sulfate. The subunit molecular weight of 53 000, determined by sodium dodecyl sulfate gel electrophoresis, is in reasonable agreement with the value of 46 900 estimated from the amino acid composition data.

  15. Isolation and Characterization of NADP+ -Linked Isocitrate Dehydrogenase in Germinating Urd Bean Seeds (Phaseolus mungo

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Srivastava

    2010-06-01

    Full Text Available Isocitrate dehydrogenase (EC 1.1.1.42 has been purified to homogeneity from germinating urd bean seeds. The enzyme NADP+ -linked isocitrate dehydrogenase is a tetrameric protein (molecular weight 130,000; gel filtration made up of four identical monomers (sub unit molecular weight about 32,000-33,000; PAGE in presence of sodium dodecyl sulphate. Thermal inactivation of purified enzyme at 40 °C, 45 °C and 50 °C shows single exponential loss of enzyme activity suggesting that the inactivation of this enzyme follows simple first order kinetics (rate constants for purified enzyme 0.020, 0.043 and 0.077 min–1 at 40 °C, 45 °C and 50 °C respectively. Thermal inactivation in presence of glutathione and dithiothretol at 45 °C and 50 °C also follows simple first order kinetics, but the presence of these compounds protects the loss of enzyme activity. The enzyme shows optimum activity at pH 7.3-8.0. The variation of Vmax and Km at different pH values (6.5-8.0 suggests that proton behaves as an "Uncompetitive Inhibitor". A basic group is present at the active site of enzyme which is accessible for protonation in this pH range in the presence of substrate only, with a pKa equal to 6.8. Successive dialysis against EDTA and phosphate buffer, pH 7.5 at 0-4 °C gives an enzymatically inactive protein. Thermal inactivation of this protein at 45 °C and 50 °C shows an exponential loss of enzyme activity as in the case of untreated (native enzyme. Full activity is restored on adding Mn2+ (3.75mM to a solution of this protein. Addition of Mg2+, Zn2+, Co2+ and Cu2+ brings about partial recovery. Alkali metal ions bring about 75% inhibition at 4mM concentration. The inhibition is stronger at high concentration of Na+ and K+ . Other metal ions are not effective.

  16. The NADP+-dependent glutamate dehydrogenase of the yeast Kluyveromyces marxianus responds to nitrogen repression similarly to Saccharomyces cerevisiae Glutamato desidrogenase dependente de NADP+ da levedura Kluyveromyces marxianus responde à repressão catabólica de maneira similar à Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Marcos Antonio de Morais-Júnior

    2003-12-01

    Full Text Available NADP+-dependent glutamate dehydrogenase (NADP+-Gdh is the first step in ammonia assimilation pathway in Saccharomyces cerevisiae and the knowledge of its regulation is the key for many biotechnological purposes such as single cell protein production. The regulation of NADP+-Gdh activity in Kluyveromyces marxianus cells was evaluated under different ammonia supply in batch cultivations. The results showed that K. marxianus NADP+-Gdh activity is induced over a narrow range of extracellular ammonia supply, being repressed by both high ammonia concentration and the glutamate formed. This activity is not growth-associated and may function mainly to trace low amounts of ammonia after growth cessation. The results demonstrated that NADP+-Gdh may not be the main enzyme for ammonia assimilation in K. marxianus, as it has been postulated for K. lactis, instead is subjected to the same regulatory mechanism described for S. cerevisiae.Glutamato desidrogenase dependente de NADP+ (NADP+-Gdh constitui o primeiro passo enzimático no mecanismo de assimilação de nitrogênio em Saccharomyces cerevisiae e o conhecimento de sua regulação é chave na iniciativa de vários propósitos biotecnológicos, tais como a produção de proteína microbiana. A regulação da atividade NADP+-Gdh em células de Kluyveromyces marxianus foi avaliada a partir de diferentes condições de suprimento de amonia em cultivo em batelada. Os resultados mostraram que a atividade NADP+-Gdh de K. marxianus foi induzida em uma estreita faixa de concentração de amonia no meio, sendo reprimida tanto por altas concentrações deste composto quanto pelo produto glutamato. Esta atividade não está associada ao crescimento celular e deve funcionar principalmente no rastreamento de pequenas quantidades de amonia após a parada do crescimento celular. Isto demonstra que NADP+-Gdh não deve ser a principal enzima de assimilação de amonia em K. marxianus, como tem sido postulado para K

  17. The X-ray crystal structure of Escherichia coli succinic semialdehyde dehydrogenase; structural insights into NADP+/enzyme interactions.

    Directory of Open Access Journals (Sweden)

    Christopher G Langendorf

    Full Text Available BACKGROUND: In mammals succinic semialdehyde dehydrogenase (SSADH plays an essential role in the metabolism of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA to succinic acid (SA. Deficiency of SSADH in humans results in elevated levels of GABA and gamma-Hydroxybutyric acid (GHB, which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. In Escherichia coli, two genetically distinct forms of SSADHs had been described that are essential for preventing accumulation of toxic levels of succinic semialdehyde (SSA in cells. METHODOLOGY/PRINCIPAL FINDINGS: Here we structurally characterise SSADH encoded by the E coli gabD gene by X-ray crystallographic studies and compare these data with the structure of human SSADH. In the E. coli SSADH structure, electron density for the complete NADP+ cofactor in the binding sites is clearly evident; these data in particular revealing how the nicotinamide ring of the cofactor is positioned in each active site. CONCLUSIONS/SIGNIFICANCE: Our structural data suggest that a deletion of three amino acids in E. coli SSADH permits this enzyme to use NADP+, whereas in contrast the human enzyme utilises NAD+. Furthermore, the structure of E. coli SSADH gives additional insight into human mutations that result in disease.

  18. Mechanistic insights into ferredoxin-NADP(H) reductase catalysis involving the conserved glutamate in the active site.

    Science.gov (United States)

    Dumit, Verónica I; Essigke, Timm; Cortez, Néstor; Ullmann, G Matthias

    2010-04-02

    Plant-type ferredoxin-NADP(H) reductases (FNRs) are flavoenzymes harboring one molecule of noncovalently bound flavin adenine dinucleotide that catalyze reversible reactions between obligatory one-electron carriers and obligatory two-electron carriers. A glutamate next to the C-terminus is strictly conserved in FNR and has been proposed to function as proton donor/acceptor during catalysis. However, experimental studies of this proposed function led to contradicting conclusions about the role of this glutamate in the catalytic mechanism. In the present work, we study the titration behavior of the glutamate in the active site of FNR using theoretical methods. Protonation probabilities for maize FNR were computed for the reaction intermediates of the catalytic cycle by Poisson-Boltzmann electrostatic calculations and Metropolis Monte Carlo titration. The titration behavior of the highly conserved glutamate was found to vary depending on the bound substrates NADP(H) and ferredoxin and also on the redox states of these substrates and the flavin adenine dinucleotide. Our results support the involvement of the glutamate in the FNR catalytic mechanism not only as a proton donor but also as a key residue for stabilizing and destabilizing reaction intermediates. On the basis of our findings, we propose a model rationalizing the function of the glutamate in the reaction cycle, which allows reinterpretation of previous experimental results. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Soluble expression and purification of the oxidoreductase component of toluene 4-monooxygenase.

    Science.gov (United States)

    Bailey, Lucas J; Elsen, Nathaniel L; Pierce, Brad S; Fox, Brian G

    2008-01-01

    Toluene 4-monooxygenase (T4MO) is a member of the bacterial multicomponent monooxygenases, an enzyme family that utilizes a soluble diiron hydroxylase to oxidize a variety of hydrocarbons as the initial step in their metabolism. The hydroxylases obtain reducing equivalents from NAD(P)H via an electron transfer chain that is initiated by an oxidoreductase containing an N-terminal ferredoxin domain and C-terminal flavin- and NAD-binding domains. T4moF, the NADH oxidoreductase of T4MO, was expressed as a soluble protein in Escherichia coli BL21(DE3) from the pUC-derived expression vector pRS205. This vector contains a lac promoter instead of a T7 promoter. A three step purification from the soluble cell lysate yielded approximately 1 mg of T4moF per gram of wet cell paste with greater than 90% purity. The purified protein contained 1 mol of FAD and 2 mol of Fe per mol of T4moF; quantitative EPR spectroscopy showed approximately 1 mol of the S=1/2 signal from the reduced [2Fe-2S] cluster per mol of T4moF. Steady state kinetic analysis of p-cresol formation activity treating T4moF as the variable substrate while all other proteins and substrates were held constant gave apparent K(M-) and apparent k(cat)-values of 0.15 microM and 3.0 s(-1), respectively. This expression system and purification allows for the recovery of the soluble oxidoreductase in yields that facilitate further biochemical and structural characterizations.

  20. Oxidoreductases in early gestational monkey placenta during maternal malarial infection : histochemical localisation

    Directory of Open Access Journals (Sweden)

    Nishi Saxena , P.S.R. Murthy

    2007-06-01

    Full Text Available Background & objectives: Early gestational malaria is more deleterious than late gestational infection.Still the pathophysiology of maternofoetal organ—the placenta in malaria remains almost unexploredduring early gestation. Present study dealing with oxidoreductases in early gestational placenta duringmaternal malarial infection of Plasmodium cynomolgi bastianellii in rhesus monkeys was anticipatedto provide a better insight into the functional impairment of this organ leading to foetal abnormalities.Methods: Three control and four experimental monkeys (Macaca mulatta were quarantined for onemonth prior to experimentation. Experimental monkeys at 2–2½ months of gestation were inoculatedwith P. cynomolgi bastianellii. On attaining first peak of parasitaemia the placentae were collectedfrom anesthetised animals. The snap-frozen, cryostat sections were subjected to histochemicallocalisation for 3 (or 17 β-hydroxysteroid dehydrogenase (β-HSD [3 (or 17 β-hydroxysteroid:NAD (P+ oxidoreductase, EC 1.1.1.51 hydroxysteroid dehydrogenases] and NADPH-tetrazoliumreductase [NADPH : (acceptor oxidoreductase, EC 1.6.99.1 NADPH-TR]. Comparative microscopyof control and malaria infected placental sections was performed and analysed.Results: A localised decrease in both the enzymes was observed in syncytiotrophoblast layer ofmalaria infected monkey placenta. The areas showing morphological damage of syncytiotrophoblastwere also depicting gross reduction in NADPH-TR activity.Interpretation & conclusion: The altered enzymatic activities [3 (or 17 β-HSD and NADPH-TR] inmalaria infected early gestational monkey placenta have been discussed in the light of placentalfunction. It could be concluded by present studies that these alterations would affect the cellularmetabolism especially steroidogenesis and detoxification process which in turn would affect thenormal development of the foetus as well as maintenance of gestation.

  1. The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin.

    Directory of Open Access Journals (Sweden)

    Susannah Piek

    Full Text Available The decoration of the lipid A headgroups of the lipooligosaccharide (LOS by the LOS phosphoethanolamine (PEA transferase (LptA in Neisseria spp. is central for resistance to polymyxin. The structure of the globular domain of LptA shows that the protein has five disulphide bonds, indicating that it is a potential substrate of the protein oxidation pathway in the bacterial periplasm. When neisserial LptA was expressed in Escherichia coli in the presence of the oxidoreductase, EcDsbA, polymyxin resistance increased 30-fold. LptA decorated one position of the E. coli lipid A headgroups with PEA. In the absence of the EcDsbA, LptA was degraded in E. coli. Neisseria spp. express three oxidoreductases, DsbA1, DsbA2 and DsbA3, each of which appear to donate disulphide bonds to different targets. Inactivation of each oxidoreductase in N. meningitidis enhanced sensitivity to polymyxin with combinatorial mutants displaying an additive increase in sensitivity to polymyxin, indicating that the oxidoreductases were required for multiple pathways leading to polymyxin resistance. Correlates were sought between polymyxin sensitivity, LptA stability or activity and the presence of each of the neisserial oxidoreductases. Only meningococcal mutants lacking DsbA3 had a measurable decrease in the amount of PEA decoration on lipid A headgroups implying that LptA stability was supported by the presence of DsbA3 but did not require DsbA1/2 even though these oxidoreductases could oxidise the protein. This is the first indication that DsbA3 acts as an oxidoreductase in vivo and that multiple oxidoreductases may be involved in oxidising the one target in N. meningitidis. In conclusion, LptA is stabilised by disulphide bonds within the protein. This effect was more pronounced when neisserial LptA was expressed in E. coli than in N. meningitidis and may reflect that other factors in the neisserial periplasm have a role in LptA stability.

  2. Effects of L-malate on mitochondrial oxidoreductases in liver of aged rats.

    Science.gov (United States)

    Wu, J-L; Wu, Q-P; Peng, Y-P; Zhang, J-M

    2011-01-01

    Accumulation of oxidative damage has been implicated to be a major causative factor in the decline in physiological functions that occur during the aging process. The mitochondrial respiratory chain is a powerful source of reactive oxygen species (ROS), considered as the pathogenic agent of many diseases and aging. L-malate, a tricarboxylic acid cycle intermediate, plays an important role in transporting NADH from cytosol to mitochondria for energy production. Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. In the present study we focused on the effect of L-malate on the activities of electron transport chain in young and aged rats. We found that mitochondrial membrane potential (MMP) and the activities of succinate dehydrogenase, NADH-cytochrome c oxidoreductase and cytochrome c oxidase in liver of aged rats were significantly decreased when compared to young control rats. Supplementation of L-malate to aged rats for 30 days slightly increased MMP and improved the activities of NADH-dehydrogenase, NADH-cytochrome c oxidoreductase and cytochrome c oxidase in liver of aged rats when compared with aged control rats. In young rats, L-malate administration increased only the activity of NADH-dehydrogenase. Our result suggested that L-malate could improve the activities of electron transport chain enzymes in aged rats.

  3. Mass Transfer in Amperometric Biosensors Based on Nanocomposite Thin Films of Redox Polymers and Oxidoreductases

    Directory of Open Access Journals (Sweden)

    Aleksandr L. Simonian

    2002-03-01

    Full Text Available Mass transfer in nanocomposite hydrogel thin films consisting of alternating layers of an organometallic redox polymer (RP and oxidoreductase enzymes was investigated. Multilayer nanostructures were fabricated on gold surfaces by the deposition of an anionic self-assembled monolayer of 11-mercaptoundecanoic acid, followed by the electrostatic binding of a cationic redox polymer, poly[vinylpyridine Os(bis-bipyridine2Clco-allylamine], and an anionic oxidoreductase. Surface plasmon resonance spectroscopy, Fourier transform infrared external reflection spectroscopy (FTIR-ERS, ellipsometry and electrochemistry were employed to characterize the assembly of these nanocomposite films. Simultaneous SPR/electrochemistry enabled real time observation of the assembly of sensing components, changes in film structure with electrode potential, and the immediate, in situ electrochemical verification of substrate-dependent current upon the addition of enzyme to the multilayer structure. SPR and FTIR-ERS studies also showed no desorption of polymer or enzyme from the nanocomposite structure when stored in aqueous environment occurred over the period of three weeks, suggesting that decreasing in substrate sensitivity were due to loss of enzymatic activity rather than loss of film compounds from the nanostructure.

  4. Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity

    Science.gov (United States)

    Hernandez-Fernaud, Juan R.; Ruengeler, Elena; Casazza, Andrea; Neilson, Lisa J.; Pulleine, Ellie; Santi, Alice; Ismail, Shehab; Lilla, Sergio; Dhayade, Sandeep; MacPherson, Iain R.; McNeish, Iain; Ennis, Darren; Ali, Hala; Kugeratski, Fernanda G.; Al Khamici, Heba; van den Biggelaar, Maartje; van den Berghe, Peter V.E.; Cloix, Catherine; McDonald, Laura; Millan, David; Hoyle, Aoisha; Kuchnio, Anna; Carmeliet, Peter; Valenzuela, Stella M.; Blyth, Karen; Yin, Huabing; Mazzone, Massimiliano; Norman, Jim C.; Zanivan, Sara

    2017-01-01

    The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion. PMID:28198360

  5. Crystal structures of Pseudomonas syringae pv. tomato DC3000 quinone oxidoreductase and its complex with NADPH

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xiaowei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Hongmei; Gao, Yu; Li, Mei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Chang, Wenrui, E-mail: wrchang@sun5.ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)

    2009-12-18

    Zeta-crystallin-like quinone oxidoreductase is NAD(P)H-dependent and catalyzes one-electron reduction of certain quinones to generate semiquinone. Here we present the crystal structures of zeta-crystallin-like quinone oxidoreductase from Pseudomonas syringae pv. tomato DC3000 (PtoQOR) and its complexes with NADPH determined at 2.4 and 2.01 A resolutions, respectively. PtoQOR forms as a homologous dimer, each monomer containing two domains. In the structure of the PtoQOR-NADPH complex, NADPH locates in the groove between the two domains. NADPH binding causes obvious conformational changes in the structure of PtoQOR. The putative substrate-binding site of PtoQOR is wider than that of Escherichia coli and Thermus thermophilus HB8. Activity assays show that PtoQOR has weak 1,4-benzoquinone catalytic activity, and very strong reduction activity towards large substrates such as 9,10-phenanthrenequinone. We propose a model to explain the conformational changes which take place during reduction reactions catalyzed by PtoQOR.

  6. Redox regulation of SurR by protein disulfide oxidoreductase in Thermococcus onnurineus NA1.

    Science.gov (United States)

    Lim, Jae Kyu; Jung, Hae-Chang; Kang, Sung Gyun; Lee, Hyun Sook

    2017-03-01

    Protein disulfide oxidoreductases are redox enzymes that catalyze thiol-disulfide exchange reactions. These enzymes include thioredoxins, glutaredoxins, protein disulfide isomerases, disulfide bond formation A (DsbA) proteins, and Pyrococcus furiosus protein disulfide oxidoreductase (PfPDO) homologues. In the genome of a hyperthermophilic archaeon, Thermococcus onnurineus NA1, the genes encoding one PfPDO homologue (TON_0319, Pdo) and three more thioredoxin- or glutaredoxin-like proteins (TON_0470, TON_0472, TON_0834) were identified. All except TON_0470 were recombinantly expressed and purified. Three purified proteins were reduced by a thioredoxin reductase (TrxR), indicating that each protein can form redox complex with TrxR. SurR, a transcription factor involved in the sulfur response, was tested for a protein target of a TrxR-redoxin system and only Pdo was identified to be capable of catalyzing the reduction of SurR. Electromobility shift assay demonstrated that SurR reduced by the TrxR-Pdo system could bind to the DNA probe with the SurR-binding motif, GTTttgAAC. In this study, we present the TrxR-Pdo couple as a redox-regulator for SurR in T. onnurineus NA1.

  7. Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase.

    Science.gov (United States)

    Kather, B; Stingl, K; van der Rest, M E; Altendorf, K; Molenaar, D

    2000-06-01

    The only enzyme of the citric acid cycle for which no open reading frame (ORF) was found in the Helicobacter pylori genome is the NAD-dependent malate dehydrogenase. Here, it is shown that in this organism the oxidation of malate to oxaloacetate is catalyzed by a malate:quinone oxidoreductase (MQO). This flavin adenine dinucleotide-dependent membrane-associated enzyme donates electrons to quinones of the electron transfer chain. Similar to succinate dehydrogenase, it is part of both the electron transfer chain and the citric acid cycle. MQO activity was demonstrated in isolated membranes of H. pylori. The enzyme is encoded by the ORF HP0086, which is shown by the fact that expression of the HP0086 sequence from a plasmid induces high MQO activity in mqo deletion mutants of Escherichia coli or Corynebacterium glutamicum. Furthermore, this plasmid was able to complement the phenotype of the C. glutamicum mqo deletion mutant. Interestingly, the protein predicted to be encoded by this ORF is only distantly related to known or postulated MQO sequences from other bacteria. The presence of an MQO shown here and the previously demonstrated presence of a 2-ketoglutarate:ferredoxin oxidoreductase and a succinyl-coenzyme A (CoA):acetoacetyl-CoA transferase indicate that H. pylori possesses a complete citric acid cycle, but one which deviates from the standard textbook example in three steps.

  8. NADP-Dependent Isocitrate Dehydrogenase from Arabidopsis Roots Contributes in the Mechanism of Defence against the Nitro-Oxidative Stress Induced by Salinity

    Science.gov (United States)

    Leterrier, Marina; Barroso, Juan B.; Valderrama, Raquel; Palma, José M.; Corpas, Francisco J.

    2012-01-01

    NADPH regeneration appears to be essential in the mechanism of plant defence against oxidative stress. Plants contain several NADPH-generating dehydrogenases including isocitrate dehydrogenase (NADP-ICDH), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and malic enzyme (ME). In Arabidopsis seedlings grown under salinity conditions (100 mM NaCl) the analysis of physiological parameters, antioxidant enzymes (catalase and superoxide dismutase) and content of superoxide radical (O2   ∙−), nitric oxide (NO), and peroxynitrite (ONOO−) indicates a process of nitro-oxidative stress induced by NaCl. Among the analysed NADPH-generating dehydrogenases under salinity conditions, the NADP-ICDH showed the maximum activity mainly attributable to the root NADP-ICDH. Thus, these data provide new insights on the relevance of the NADP-ICDH which could be considered as a second barrier in the mechanism of response against the nitro-oxidative stress generated by salinity. PMID:22649311

  9. Reduction of the pea ferredoxin-NADP(H) reductase catalytic efficiency by the structuring of a carboxyl-terminal artificial metal binding site.

    Science.gov (United States)

    Catalano-Dupuy, Daniela L; Orecchia, Martín; Rial, Daniela V; Ceccarelli, Eduardo A

    2006-11-21

    Ferredoxin (flavodoxin)-NADP(H) reductases (FNRs) are ubiquitous flavoenzymes that deliver NADPH or low-potential one-electron donors (ferredoxin, flavodoxin, and adrenodoxin) to redox-based metabolisms in plastids, mitochondria, and bacteria. The FNRs from plants and most eubacteria constitute a unique family, the plant-type ferredoxin-NADP(H) reductases. Plastidic FNRs are quite efficient at sustaining the demands of the photosynthetic process. At variance, FNRs from organisms with heterotrophic metabolisms or anoxygenic photosynthesis display turnover numbers that are 20-100-fold lower than those of their plastidic and cyanobacterial counterparts. To gain insight into the FNR structural features that modulate enzyme catalytic efficiency, we constructed a recombinant FNR in which the carboxyl-terminal amino acid (Tyr308) is followed by an artificial metal binding site of nine amino acids, including four histidine residues. This added structure binds Zn2+ or Co2+ and, as a consequence, significantly reduces the catalytic efficiency of the enzyme by decreasing its kcat. The Km for NADPH and the Kd for NADP+ were increased 2 and 3 times, respectively, by the addition of the amino acid extension in the absence of Zn2+. Nevertheless, the structuring of the metal binding site did not change the Km for NADPH or the Kd for NADP+ of the FNR-tail enzyme. Our results provide experimental evidence which indicates that mobility of the carboxyl-terminal backbone region of the FNR, mainly Tyr308, is essential for obtaining an FNR enzyme with high catalytic efficiency.

  10. Regulation of the expression of NADP-malic enzyme by UV-B, red and far-red light in maize seedlings

    Directory of Open Access Journals (Sweden)

    P. Casati

    1999-10-01

    Full Text Available The induction of nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME in etiolated maize (Zea mays seedlings by UV-B and UV-A radiation, and different levels of photosynthetically active radiation (PAR, 400-700 nm was investigated by measuring changes in activity, protein quantity and RNA levels as a function of intensity and duration of exposure to the different radiations. Under low levels of PAR, exposure to UV-B radiation but not UV-A radiation for 6 to 24 h caused a marked increase in the enzyme levels similar to that observed under high PAR in the absence of UV-B. UV-B treatment of green leaves following a 12-h dark period also caused an increase in NADP-ME expression. Exposure to UV-B radiation for only 5 min resulted in a rapid increase of the enzyme, followed by a more gradual rise with longer exposure up to 6 h. Low levels of red light for 5 min or 6 h were also effective in inducing NADP-ME activity equivalent to that obtained with UV-B radiation. A 5-min exposure to far-red light following UV-B or red light treatment reversed the induction of NADP-ME, and this effect could be eliminated by further treatment with UV-B or red light. These results indicate that physiological levels of UV-B radiation can have a positive effect on the induction of this photosynthetic enzyme. The reducing power and pyruvate generated by the activity of NADP-ME may be used for respiration, in cellular repair processes and as substrates for fatty acid synthesis required for membrane repair.

  11. Crystal Structure of the FAD-Containing Ferredoxin-NADP+ Reductase from the Plant Pathogen Xanthomonas axonopodis pv. citri

    Directory of Open Access Journals (Sweden)

    María Laura Tondo

    2013-01-01

    Full Text Available We have solved the structure of ferredoxin-NADP(H reductase, FPR, from the plant pathogen Xanthomonas axonopodis pv. citri, responsible for citrus canker, at a resolution of 1.5 Å. This structure reveals differences in the mobility of specific loops when compared to other FPRs, probably unrelated to the hydride transfer process, which contributes to explaining the structural and functional divergence between the subclass I FPRs. Interactions of the C-terminus of the enzyme with the phosphoadenosine of the cofactor FAD limit its mobility, thus affecting the entrance of nicotinamide into the active site. This structure opens the possibility of rationally designing drugs against the X. axonopodis pv. citri phytopathogen.

  12. 2-hydroxyglutarate production, but not dominant negative function, is conferred by glioma-derived NADP-dependent isocitrate dehydrogenase mutations.

    Directory of Open Access Journals (Sweden)

    Genglin Jin

    Full Text Available BACKGROUND: Gliomas frequently contain mutations in the cytoplasmic NADP(+-dependent isocitrate dehydrogenase (IDH1 or the mitochondrial NADP(+-dependent isocitrate dehydrogenase (IDH2. Several different amino acid substitutions recur at either IDH1 R132 or IDH2 R172 in glioma patients. Genetic evidence indicates that these mutations share a common gain of function, but it is unclear whether the shared function is dominant negative activity, neomorphic production of (R-2-hydroxyglutarate (2HG, or both. METHODOLOGY/PRINCIPAL FINDINGS: We show by coprecipitation that five cancer-derived IDH1 R132 mutants bind IDH1-WT but that three cancer-derived IDH2 R172 mutants exert minimal binding to IDH2-WT. None of the mutants dominant-negatively lower isocitrate dehydrogenase activity at physiological (40 µM isocitrate concentrations in mammalian cell lysates. In contrast to this, all of these mutants confer 10- to 100-fold higher 2HG production to cells, and glioma tissues containing IDH1 R132 or IDH2 R172 mutations contain high levels of 2HG compared to glioma tissues without IDH mutations (54.4 vs. 0.1 mg 2HG/g protein. CONCLUSIONS: Binding to, or dominant inhibition of, WT IDH1 or IDH2 is not a shared feature of the IDH1 and IDH2 mutations, and thus is not likely to be important in cancer. The fact that the gain of the enzymatic activity to produce 2HG is a shared feature of the IDH1 and IDH2 mutations suggests that this is an important function for these mutants in driving cancer pathogenesis.

  13. Crystal structure studies of NADP{sup +} dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Pampa, K.J. [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India); Manjula, M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Abdoh, M.M.M. [Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine (Country Unknown); Kunishima, Naoki [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148 (Japan); Lokanath, N.K., E-mail: lokanath@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India)

    2014-06-20

    Highlights: • We determined the structure of isocitrate dehydrogenase with citrate and cofactor. • The structure reveals a unique novel terminal domain involved in dimerization. • Clasp domain shows significant difference, and catalytic residues are conserved. • Oligomerization of the enzyme is quantized with subunit-subunit interactions. • Novel domain of this enzyme is classified as subfamily of the type IV. - Abstract: NADP{sup +} dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP{sup +} was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH’s. And, small domain and clasp domain showing significant differences when compared to other IDH’s of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH’s. Also, helices/beta sheets are absent in the small domain, when compared to other IDH’s of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit–subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.

  14. A single tyrosine hydroxyl group almost entirely controls the NADPH specificity of Plasmodium falciparum ferredoxin-NADP+ reductase.

    Science.gov (United States)

    Baroni, Sara; Pandini, Vittorio; Vanoni, Maria Antonietta; Aliverti, Alessandro

    2012-05-08

    Plasmodium falciparum ferredoxin-NADP(+) reductase (FNR) is a FAD-containing enzyme that, in addition to be a promising target of novel antimalarial drugs, represents an excellent model of plant-type FNRs. The cofactor specificity of FNRs depends on differences in both k(cat) and K(m) values for NADPH and NADH. Here, we report that deletion of the hydroxyl group of the conserved Y258 of P. falciparum FNR, which interacts with the 2'-phosphate group of NADPH, selectively decreased the k(cat) of the NADPH-dependent reaction by a factor of 2 to match that of the NADH-dependent one. Rapid-reaction kinetics, active-site titrations with NADP(+), and anaerobic photoreduction experiments indicated that this effect may be the consequence of destabilization of the catalytically competent conformation of bound NADPH. Moreover, because the Y258F replacement increased the K(m) for NADPH 4-fold and decreased that for NADH 3-fold, it led to a drop in the ability of the enzyme to discriminate between the coenzymes from 70- to just 1.5-fold. The impact of the Y258F change was not affected by the presence of the H286Q mutation, which is known to enhance the catalytic activity of the enzyme. Our data highlight the major role played by the Y258 hydroxyl group in determining the coenzyme specificity of P. falciparum FNR. From the general standpoint of engineering the kinetic properties of plant-type FNRs, although P. falciparum FNR is less strictly NADPH-dependent than its homologues, the almost complete abolishment of coenzyme selectivity reported here has never been accomplished before through a single mutation.

  15. Induced Expression of the Gene for NADP-malic Enzyme in Leaves of Aloe vera L. under Salt Stress%盐胁迫对库拉索芦荟叶片中NADP-苹果酸酶基因的诱导表达

    Institute of Scientific and Technical Information of China (English)

    孙淑斌; 沈其荣; 万建民; 刘兆普

    2003-01-01

    A cDNA fragment for NADP-malic enzyme, catalyzing the reversible oxidative decarboxylation of L-malate to produce CO2, pyruvate and NADPH, was isolated from the leaves of a 2-month-old Aloe vera L., The level of expression of NADP-ME mRNA and accumulation of NADP-ME (AvME) protein under salt stress conditions were compared between a tolerant aloe, Aloe vera L. and a sensitive aloe, Aloe saponarea Haw. The results suggested that both the expression of the gene and the accumulation of the protein were induced in the two kinds of aloe, and the strength was related to the degree of salt tolerance. Northern blot analysis revealed that the gene for NADP-malic enzyme in Aloe vera L.(AvME) was induced by high salt, dehydration, and exogenous abscisic acid (ABA), but not by cold treatment. To further confirm whether the synthesis of AvME protein was induced with hours of treatment, Western blot analysis of the samples was conducted. The results indicated that the induction of AvME protein expression was obvious after 48 h at high salt and the level was increased with the hours of treatment.%为弄清景天酸代谢植物-库拉索芦荟中NADP-苹果酸酶(NADP-ME)基因的表达与其耐盐间的关系, 根据已知NADP-苹果酸酶序列设计引物, 从库拉索芦荟的2个月幼苗中扩增克隆了NADP-苹果酸酶496 bp的cDNA片段, 并对其进行了序列测定; 选用敏感品种皂质芦荟和耐盐品种库拉索芦荟做材料, 分别检测高盐胁迫条件下NADP-ME的表达和NADP-ME的活性. 结果表明, 两者在不同品种的芦荟中均被诱导, 但诱导的强度与芦荟的耐盐程度相关. Northern杂交分析表明, 高盐、干旱、外源ABA均能强烈诱导苹果酸酶的表达, 但寒冷对其影响不大, 这与库拉索芦荟的生物学特性相符合; 此外, 为了检测库拉索芦荟中NADP-苹果酸酶受盐诱导情况, 利用Western 印迹对样品进行了分析, 结果显示高盐条件不仅明显诱导NADP-ME的合成, 而

  16. NADH: ubiquinone oxidoreductase inhibitors block induction of ornithine decarboxylase activity in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Rowlands, J C; Casida, J E

    1998-11-01

    Rotenone is the classical inhibitor of NADH: ubiquinone oxidoreductase and its analogue deguelin is a potent inhibitor of 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ornithine decarboxylase mRNA steady state level and enzyme activity in mouse 308 cells (Gerhäuser et al. 1995). In MCF-7 human breast cancer cells, rotenone, deguelin and two structurally-unrelated miticides (pyridaben and fenazaquin) inhibit not only NADH: ubiquinone oxidoreductase but also induced ornithine decarboxylase activity with IC50 values of < 1 to 70 nM. Rotenone inhibits ornithine decarboxylase activity equally well as induced by TPA, insulin-like growth factor I and 17 beta-oestradiol. Pyridaben is the most potent of the four inhibitors not only for NADH: ubiquinone oxidoreductase activity (bovine heart enzyme) and TPA-induced ornithine decarboxylase activity and mRNA steady state level but also for TPA-induced reactive oxygen species. It is therefore proposed that NADH: ubiquinone oxidoreductase inhibitors block multiple and possibly reactive oxygen species-modulated pathways which regulate ornithine decarboxylase activity.

  17. Characteristics of endogenous flavin fluorescence of Photobacterium leiognathi luciferase and Vibrio fisheri NAD(P)H:FMN-oxidoreductase

    NARCIS (Netherlands)

    Vetrova, E.V.; Kudryasheva, N.S.; Visser, A.J.W.G.; Hoek, van A.

    2005-01-01

    The bioluminescent bacterial enzyme system NAD(P)H:FMN-oxidoreductase-luciferase has been used as a test system for ecological monitoring. One of the modes to quench bioluminescence is the interaction of xenobiotics with the enzymes, which inhibit their activity. The use of endogenous flavin fluores

  18. Pyruvate Oxidoreductases Involved in Glycolytic Anaerobic Metabolism of Polychaetes from the Continental Shelf off Central-South Chile

    Science.gov (United States)

    González, R. R.; Quiñones, R. A.

    2000-10-01

    The presence of low oxygen conditions in extensive areas of the continental shelf off central-south Chile has important effects on the biochemical adaptations of the organisms living in this ecosystem. Polychaetes assemblages cohabit on the shelf with an extensively distributed prokaryotic community made up of giant filamentous sulfur bacteria (mainly Thioploca sp.). The aim of this research was to characterize the pyruvate oxidoreductases enzymes involved in the biochemical adaptation of these benthic polychaetes. Nine polychaete species ( Paraprionospio pinnata, Nephtys ferruginea, Glycera americana, Haploscoloplos sp., Lumbrineris composita, Sigambra bassi, Aricidea pigmentata , Cossura chilensis, and Pectinaria chilensis) were assayed for lactic dehydrogenase (LDH), octopine dehydrogenase (OPDH), strombine dehydrogenase (STRDH) and alanopine dehydrogenase (ALPDH). Each species had a characteristic number of the pyruvate oxidoreductases assayed ranging from 4 in Paraprionospio pinnata to 1 in Pectinaria chilensis . The pyruvate saturation curves obtained for the enzymes from all species analysed, except L. composita, suggest that NADH can be oxidized at different rates depending on the amino acid used in the reaction with pyruvate. Our results indicate that organisms having more that one pyruvate oxidoreductase present a greater metabolic capacity to cope with functional and environmental hypoxia because these enzymes would better regulate the pyruvate consumption rate during the transition period. Thus, the dominance of Paraprionospio pinnata in the study area and its worldwide distribution is consistent with its higher number of pyruvate oxidoreductases with different pyruvate consumption rates involved in anaerobic metabolism. Finally, a positive allometric relationship was found between body size and the specific activity of ALPDH, STRDH, and maximum pyruvate oxidoreductase specific activity. This latter result suggests a positive scaling of the specific

  19. Regulation of adhE (Encoding Ethanol Oxidoreductase) by the Fis Protein in Escherichia coli

    Science.gov (United States)

    Membrillo-Hernández, Jorge; Kwon, Ohsuk; De Wulf, Peter; Finkel, Steven E.; Lin, E. C. C.

    1999-01-01

    The adhE gene of Escherichia coli encodes a multifunctional ethanol oxidoreductase whose expression is 10-fold higher under anaerobic than aerobic conditions. Transcription of the gene is under the negative control of the Cra (catabolite repressor-activator) protein, whereas translation of the adhE mRNA requires processing by RNase III. In this report, we show that the expression of adhE also depends on the Fis (factor for inversion stimulation) protein. A strain bearing a fis::kan null allele failed to grow anaerobically on glucose solely because of inadequate adhE transcription. However, fis expression itself is not under redox control. Sequence inspection of the adhE promoter revealed three potential Fis binding sites. Electrophoretic mobility shift analysis, using purified Fis protein and adhE promoter DNA, showed three different complexes. PMID:10572146

  20. NADPH: Protochlorophyllide Oxidoreductase-Structure, Catalytic Function, and Role in Prolamellar Body Formation and Morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Timko, Michael P

    2013-02-01

    The biosynthesis of chlorophyll is a critical biochemical step in the development of photosynthetic vascular plants and green algae. From photosynthetic bacteria (cyanobacteria) to algae, non-vascular plants, gymnosperms and vascular plants, mechanisms have evolved for protochlorophyllide reduction a key step in chlorophyll synthesis. Protochlorophyllide reduction is carried out by both a light-dependent (POR) and light-independent (LIPOR) mechanisms. NADPH: protochlorophyllide oxidoreductase (EC 1.3.1.33, abbreviated POR) catalyzes the light-dependent reduction of protochlorophyllide (PChlide) to chlorophyllide (Chlide). In contrast, a light-independent protochlorophyllide reductase (LIPOR) involves three plastid gene products (chlL, chlN, and chlB) and several nuclear factors. Our work focused on characterization of both the POR and LIPOR catalyzed processes.

  1. Structural domains in NADPH: Protochlorophyllide oxidoreductases involved in catalysis and substrate binding. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Timko, Michael P.

    1999-09-24

    Until recently little direct information was available about specific structural determinants within the light-dependent NADPH: protochlorophyllide oxidoreductases (PORs) required for substrate and cofactor binding, catalytic activity, and thylakoid membrane localization. Based on our previous DOE-funded studies, during the past year we brought to fruition a number of ongoing experiments, initiated several new avenues of investigations, and overall have made considerable progress towards establishing the basic structural parameters governing POR function. Our studies to date have defined residues and domains involved in substrate and cofactor binding and catalysis, and elaborated on the mechanism for membrane localization of POR in developing plastids. Our results and their significance, as well as our work in progress, are detailed.

  2. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  3. A novel insight into the oxidoreductase activity of Helicobacter pylori HP0231 protein.

    Directory of Open Access Journals (Sweden)

    Paula Roszczenko

    Full Text Available BACKGROUND: The formation of a disulfide bond between two cysteine residues stabilizes protein structure. Although we now have a good understanding of the Escherichia coli disulfide formation system, the machineries at work in other bacteria, including pathogens, are poorly characterized. Thus, the objective of this work was to improve our understanding of the disulfide formation machinery of Helicobacter pylori, a leading cause of ulcers and a risk factor for stomach cancer worldwide. METHODS AND RESULTS: The protein HP0231 from H. pylori, a structural counterpart of E. coli DsbG, is the focus of this research. Its function was clarified by using a combination of biochemical, microbiological and genetic approaches. In particular, we determined the biochemical properties of HP0231 as well as its redox state in H. pylori cells. CONCLUSION: Altogether our results show that HP0231 is an oxidoreductase that catalyzes disulfide bond formation in the periplasm. We propose to call it HpDsbA.

  4. Characterization of a unique Caulobacter crescentus aldose-aldose oxidoreductase having dual activities.

    Science.gov (United States)

    Andberg, Martina; Maaheimo, Hannu; Kumpula, Esa-Pekka; Boer, Harry; Toivari, Mervi; Penttilä, Merja; Koivula, Anu

    2016-01-01

    We describe here the characterization of a novel enzyme called aldose-aldose oxidoreductase (Cc AAOR; EC 1.1.99) from Caulobacter crescentus. The Cc AAOR exists in solution as a dimer, belongs to the Gfo/Idh/MocA family and shows homology with the glucose-fructose oxidoreductase from Zymomonas mobilis. However, unlike other known members of this protein family, Cc AAOR is specific for aldose sugars and can be in the same catalytic cycle both oxidise and reduce a panel of monosaccharides at the C1 position, producing in each case the corresponding aldonolactone and alditol, respectively. Cc AAOR contains a tightly-bound nicotinamide cofactor, which is regenerated in this oxidation-reduction cycle. The highest oxidation activity was detected on D-glucose but significant activity was also observed on D-xylose, L-arabinose and D-galactose, revealing that both hexose and pentose sugars are accepted as substrates by Cc AAOR. The configuration at the C2 and C3 positions of the saccharides was shown to be especially important for the substrate binding. Interestingly, besides monosaccharides, Cc AAOR can also oxidise a range of 1,4-linked oligosaccharides having aldose unit at the reducing end, such as lactose, malto- and cello-oligosaccharides as well as xylotetraose. (1)H NMR used to monitor the oxidation and reduction reaction simultaneously, demonstrated that although D-glucose has the highest affinity and is also oxidised most efficiently by Cc AAOR, the reduction of D-glucose is clearly not as efficient. For the overall reaction catalysed by Cc AAOR, the L-arabinose, D-xylose and D-galactose were the most potent substrates.

  5. Genotype-Phenotype Analysis in Congenital Adrenal Hyperplasia due to P450 Oxidoreductase Deficiency

    Science.gov (United States)

    Krone, Nils; Reisch, Nicole; Idkowiak, Jan; Dhir, Vivek; Ivison, Hannah E.; Hughes, Beverly A.; Rose, Ian T.; O'Neil, Donna M.; Vijzelaar, Raymon; Smith, Matthew J.; MacDonald, Fiona; Cole, Trevor R.; Adolphs, Nicolai; Barton, John S.; Blair, Edward M.; Braddock, Stephen R.; Collins, Felicity; Cragun, Deborah L.; Dattani, Mehul T.; Day, Ruth; Dougan, Shelley; Feist, Miriam; Gottschalk, Michael E.; Gregory, John W.; Haim, Michaela; Harrison, Rachel; Haskins Olney, Ann; Hauffa, Berthold P.; Hindmarsh, Peter C.; Hopkin, Robert J.; Jira, Petr E.; Kempers, Marlies; Kerstens, Michiel N.; Khalifa, Mohamed M.; Köhler, Birgit; Maiter, Dominique; Nielsen, Shelly; O'Riordan, Stephen M.; Roth, Christian L.; Shane, Kate P.; Silink, Martin; Stikkelbroeck, Nike M. M. L.; Sweeney, Elizabeth; Szarras-Czapnik, Maria; Waterson, John R.; Williamson, Lori; Hartmann, Michaela F.; Taylor, Norman F.; Wudy, Stefan A.; Malunowicz, Ewa M.; Shackleton, Cedric H. L.

    2012-01-01

    Context: P450 oxidoreductase deficiency (PORD) is a unique congenital adrenal hyperplasia variant that manifests with glucocorticoid deficiency, disordered sex development (DSD), and skeletal malformations. No comprehensive data on genotype-phenotype correlations in Caucasian patients are available. Objective: The objective of the study was to establish genotype-phenotype correlations in a large PORD cohort. Design: The design of the study was the clinical, biochemical, and genetic assessment including multiplex ligation-dependent probe amplification (MLPA) in 30 PORD patients from 11 countries. Results: We identified 23 P450 oxidoreductase (POR) mutations (14 novel) including an exonic deletion and a partial duplication detected by MLPA. Only 22% of unrelated patients carried homozygous POR mutations. p.A287P was the most common mutation (43% of unrelated alleles); no other hot spot was identified. Urinary steroid profiling showed characteristic PORD metabolomes with variable impairment of 17α-hydroxylase and 21-hydroxylase. Short cosyntropin testing revealed adrenal insufficiency in 89%. DSD was present in 15 of 18 46,XX and seven of 12 46,XY individuals. Homozygosity for p.A287P was invariably associated with 46,XX DSD but normal genitalia in 46,XY individuals. The majority of patients with mild to moderate skeletal malformations, assessed by a novel scoring system, were compound heterozygous for missense mutations, whereas nearly all patients with severe malformations carried a major loss-of-function defect on one of the affected alleles. Conclusions: We report clinical, biochemical, and genetic findings in a large PORD cohort and show that MLPA is a useful addition to POR mutation analysis. Homozygosity for the most frequent mutation in Caucasians, p.A287P, allows for prediction of genital phenotype and moderate malformations. Adrenal insufficiency is frequent, easily overlooked, but readily detected by cosyntropin testing. PMID:22162478

  6. 玉米NADP+-异柠檬酸脱氢酶基因克隆和特征分析%Cloning and Character Analysis of NADP+-Dependent Isocitrate Dehydrogenase Gene in Maize

    Institute of Scientific and Technical Information of China (English)

    袁进成; 宋晋辉; 瓮巧云; 马海莲; 王凌云; 刘颖慧

    2015-01-01

    异柠檬酸脱氢酶(IDH)是三羧酸循环中最关键和最有意义的限速酶,在生物体的三羧酸循环代谢反应中起重要的作用。我们从玉米中克隆了一个新的异柠檬酸脱氢酶基因,命名为ZmIDH2并对其特征进行初步研究。ZmIDH2基因全长1643 bp,开放阅读框1236 bp,编码412个氨基酸,同时克隆了IDH2基因组DNA,全长3463 bp,具有11个内含子和12个外显子。进化树分析表明该基因在生物进化中高度保守,与植物的细胞质IDH2基因的亲缘关系较近。半定量RT-PCR结果显示ZmIDH2基因在玉米中是组成型表达的,在根和幼胚中的表达量较高。胁迫处理玉米植株,表明在干旱和高盐条件下ZmIDH2基因表达量明显提高, ZmIDH2酶活性也受盐和干旱诱导。%NADP+-dependent isocitrate dehydrogenase (IDH) catalyzes the reversible conversion of isocitrate toα-ketoglutarate and plays an essential rate-limiting step in the citric acid cycle. In this report a cytosolic NADP+dependent isocitrate dehydrogenase gene from maize has been cloned. The analysis of the nucleotide sequence revealed an open reading frame of 1 236 bp and encoding 412 amino acids. The ZmIDH2 had a 12-extron/11-intron genomic structure and a genomic length of 3 463 bp. The amino acid sequence displayed high homology with those from other plants such as rice and Arabidopsis. The gene was transcripted in all tissues tested, with the high amount of ZmIDH2 transcript being found in root and embryo. Semi RT-PCR and enzyme active analyses showed that ZmIDH2 was induced by drought and salt stress both in transcription and enzyme level.

  7. Structure of NADP+-dependent glutamate dehydrogenase from Escherichia coli - reflections on the basis of coenzyme specificity in the family of glutamate dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Sharkey, Michael A.; Oliveira, Tânia F.; Engel, Paul C.; Khan, Amir R. [Trinity; (FCT/UNL); (UC-Dublin)

    2013-09-05

    Glutamate dehydrogenases catalyse the oxidative deamination of L-glutamate to α-ketoglutarate, using NAD+ and/or NADP+ as a cofactor. Subunits of homo-hexameric bacterial enzymes comprise a substrate-binding domain I followed by a nucleotide-binding domain II. The reaction occurs in a catalytic cleft between the two domains. Although conserved residues in the nucleotide-binding domains of various dehydrogenases have been linked to cofactor preferences, the structural basis for specificity in the GDH family remains poorly understood. Here, the refined crystal structure of Escherichia coli GDH in the absence of reactants is described at 2.5-Å resolution. Modelling of NADP+ in domain II reveals the potential contribution of positively charged residues from a neighbouring α-helical hairpin to phosphate recognition. In addition, a serine that follows the P7 aspartate is presumed to form a hydrogen bond with the 2'-phosphate. Mutagenesis and kinetic analysis confirms the importance of these residues in NADP+ recognition. Surprisingly, one of the positively charged residues is conserved in all sequences of NAD+-dependent enzymes, but the conformations adopted by the corresponding regions in proteins whose structure has been solved preclude their contribution to the coordination of the 2'-ribose phosphate of NADP+. These studies clarify the sequence–structure relationships in bacterial GDHs, revealing that identical residues may specify different coenzyme preferences, depending on the structural context. Primary sequence alone is therefore not a reliable guide for predicting coenzyme specificity. We also consider how it is possible for a single sequence to accommodate both coenzymes in the dual-specificity GDHs of animals.

  8. Crystal structure of porcine mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate. Insights into the enzyme mechanism.

    Science.gov (United States)

    Ceccarelli, Christopher; Grodsky, Neil B; Ariyaratne, Nandana; Colman, Roberta F; Bahnson, Brian J

    2002-11-08

    The crystal structure of porcine heart mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH) complexed with Mn2+ and isocitrate was solved to a resolution of 1.85 A. The enzyme was expressed in Escherichia coli, purified as a fusion protein with maltose binding protein, and cleaved with thrombin to yield homogeneous enzyme. The structure was determined by multiwavelength anomalous diffraction phasing using selenium substitution in the form of selenomethionine as the anomalous scatterer. The porcine NADP+-IDH enzyme is structurally compared with the previously solved structures of IDH from E. coli and Bacillus subtilis that share 16 and 17% identity, respectively, with the mammalian enzyme. The porcine enzyme has a protein fold similar to the bacterial IDH structures with each monomer folding into two domains. However, considerable differences exist between the bacterial and mammalian forms of IDH in regions connecting core secondary structure. Based on the alignment of sequence and structure among the porcine, E. coli, and B. subtilis IDH, a putative phosphorylation site has been identified for the mammalian enzyme. The active site, including the bound Mn2+-isocitrate complex, is highly ordered and, therefore, mechanistically informative. The consensus IDH mechanism predicts that the Mn2+-bound hydroxyl of isocitrate is deprotonated prior to its NADP+-dependent oxidation. The present crystal structure has an active site water that is well positioned to accept the proton and ultimately transfer the proton to solvent through an additional bound water.

  9. Involvement of GDH3-encoded NADP+-dependent glutamate dehydrogenase in yeast cell resistance to stress-induced apoptosis in stationary phase cells.

    Science.gov (United States)

    Lee, Yong Joo; Kim, Kyung Jin; Kang, Hong Yong; Kim, Hye-Rim; Maeng, Pil Jae

    2012-12-28

    Glutamate metabolism is linked to a number of fundamental metabolic pathways such as amino acid metabolism, the TCA cycle, and glutathione (GSH) synthesis. In the yeast Saccharomyces cerevisiae, glutamate is synthesized from α-ketoglutarate by two NADP(+)-dependent glutamate dehydrogenases (NADP-GDH) encoded by GDH1 and GDH3. Here, we report the relationship between the function of the NADP-GDH and stress-induced apoptosis. Gdh3-null cells showed accelerated chronological aging and hypersusceptibility to thermal and oxidative stress during stationary phase. Upon exposure to oxidative stress, Gdh3-null strains displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e. reactive oxygen species accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation. In addition, Gdh3-null cells, but not Gdh1-null cells, had a higher tendency toward GSH depletion and subsequent reactive oxygen species accumulation than did WT cells. GSH depletion was rescued by exogenous GSH or glutamate. The hypersusceptibility of stationary phase Gdh3-null cells to stress-induced apoptosis was suppressed by deletion of GDH2. Promoter swapping and site-directed mutagenesis of GDH1 and GDH3 indicated that the necessity of GDH3 for the resistance to stress-induced apoptosis and chronological aging is due to the stationary phase-specific expression of GDH3 and concurrent degradation of Gdh1 in which the Lys-426 residue plays an essential role.

  10. Involvement of GDH3-encoded NADP+-dependent Glutamate Dehydrogenase in Yeast Cell Resistance to Stress-induced Apoptosis in Stationary Phase Cells*

    Science.gov (United States)

    Lee, Yong Joo; Kim, Kyung Jin; Kang, Hong Yong; Kim, Hye-Rim; Maeng, Pil Jae

    2012-01-01

    Glutamate metabolism is linked to a number of fundamental metabolic pathways such as amino acid metabolism, the TCA cycle, and glutathione (GSH) synthesis. In the yeast Saccharomyces cerevisiae, glutamate is synthesized from α-ketoglutarate by two NADP+-dependent glutamate dehydrogenases (NADP-GDH) encoded by GDH1 and GDH3. Here, we report the relationship between the function of the NADP-GDH and stress-induced apoptosis. Gdh3-null cells showed accelerated chronological aging and hypersusceptibility to thermal and oxidative stress during stationary phase. Upon exposure to oxidative stress, Gdh3-null strains displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e. reactive oxygen species accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation. In addition, Gdh3-null cells, but not Gdh1-null cells, had a higher tendency toward GSH depletion and subsequent reactive oxygen species accumulation than did WT cells. GSH depletion was rescued by exogenous GSH or glutamate. The hypersusceptibility of stationary phase Gdh3-null cells to stress-induced apoptosis was suppressed by deletion of GDH2. Promoter swapping and site-directed mutagenesis of GDH1 and GDH3 indicated that the necessity of GDH3 for the resistance to stress-induced apoptosis and chronological aging is due to the stationary phase-specific expression of GDH3 and concurrent degradation of Gdh1 in which the Lys-426 residue plays an essential role. PMID:23105103

  11. 3′-NADP and 3′-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1*♦

    Science.gov (United States)

    Schuebel, Felix; Rocker, Andrea; Edelmann, Daniel; Schessner, Julia; Brieke, Clara; Meinhart, Anton

    2016-01-01

    An arsenal of effector proteins is injected by bacterial pathogens into the host cell or its vicinity to increase virulence. The commonly used top-down approaches inferring the toxic mechanism of individual effector proteins from the host's phenotype are often impeded by multiple targets of different effectors as well as by their pleiotropic effects. Here we describe our bottom-up approach, showing that the bacterial type III effector AvrRxo1 of plant pathogens is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3′-hydroxyl group. Both products of AvrRxo1, 3′-NADP and 3′-nicotinic acid adenine dinucleotide phosphate (3′-NAADP), are substantially different from the ubiquitous co-enzyme 2′-NADP and the calcium mobilizer 2′-NAADP. Interestingly, 3′-NADP and 3′-NAADP have previously been used as inhibitors or signaling molecules but were regarded as “artificial” compounds so far. Our findings now necessitate a shift in thinking about the biological importance of 3′-phosphorylated NAD derivatives. PMID:27621317

  12. Increased Furfural Tolerance Due to Overexpression of NADH-Dependent Oxidoreductase FucO in Escherichia coli Strains Engineered for the Production of Ethanol and Lactate▿

    OpenAIRE

    X. Wang; Miller, E. N.; Yomano, L. P.; Zhang, X.; Shanmugam, K. T.; Ingram, L. O.

    2011-01-01

    Furfural is an important fermentation inhibitor in hemicellulose sugar syrups derived from woody biomass. The metabolism of furfural by NADPH-dependent oxidoreductases, such as YqhD (low Km for NADPH), is proposed to inhibit the growth and fermentation of xylose in Escherichia coli by competing with biosynthesis for NADPH. The discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural provided a new approach to improve furfural tolerance. Strains that produced eth...

  13. Attenuated mitochondrial NADP+-dependent isocitrate dehydrogenase activity induces apoptosis and hypertrophy of H9c2 cardiomyocytes.

    Science.gov (United States)

    Lee, Jun Ho; Park, Jeen-Woo

    2014-04-01

    Oxidative stress, characterized by the accumulation of reactive oxygen species (ROS), is known to have numerous detrimental effects on the myocardium such as the induction of apoptotic cell death, hypertrophy, fibrosis, dysfunction, and dilatation. Over the past several years, we have shown that mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm) functions as an antioxidant and anti-apoptotic protein by supplying NADPH to antioxidant systems. Here, we showed that transfection of H9c2 clonal myoblastic cells with small interfering RNA (siRNA) specific for IDPm markedly attenuated IDPm expression and substantially induced apoptosis, senescence, and hypertrophy as indicated by increased atrial natriuretic peptide (ANP) gene expression, a marker of cardiomyocyte hypertrophy, and a larger cell size. Knockdown of IDPm expression resulted in the modulation of cellular and mitochondrial redox status, mitochondrial function, and cellular oxidative damage. Taken together, our results suggest that the suppression of IDPm expression by siRNA induces apoptosis and hypertrophy of cultured cardiomyocytes through the disruption of cellular redox balance.

  14. Characterization of NADP(+)-dependent isocitrate dehydrogenase isozymes from a psychrophilic bacterium, Colwellia psychrerythraea strain 34H.

    Science.gov (United States)

    Suzuki, Kaori; Takada, Yasuhiro

    2016-08-01

    NADP(+)-dependent isocitrate dehydrogenase (IDH) isozymes of a psychrophilic bacterium, Colwellia psychrerythraea strain 34H, were characterized. The coexistence of monomeric and homodimeric IDHs in this bacterium was confirmed by Western blot analysis, the genes encoding two monomeric (IDH-IIa and IDH-IIb) and one dimeric (IDH-I) IDHs were cloned and overexpressed in Escherichia coli, and the three IDH proteins were purified. Both of the purified IDH-IIa and IDH-IIb were found to be cold-adapted enzymes while the purified IDH-I showed mesophilic properties. However, the specific activities of IDH-IIa and IDH-IIb were lower even at low temperatures than that of IDH-I. Therefore, IDH-I was suggested to be important for the growth of this bacterium. The results of colony formation of E. coli transformants carrying the respective IDH genes and IDH activities in their crude extracts indicated that the expression of the IDH-IIa gene is cold-inducible in the E. coli cells.

  15. Putative role of the malate valve enzyme NADP-malate dehydrogenase in H2O2 signalling in Arabidopsis.

    Science.gov (United States)

    Heyno, Eiri; Innocenti, Gilles; Lemaire, Stéphane D; Issakidis-Bourguet, Emmanuelle; Krieger-Liszkay, Anja

    2014-04-19

    In photosynthetic organisms, sudden changes in light intensity perturb the photosynthetic electron flow and lead to an increased production of reactive oxygen species. At the same time, thioredoxins can sense the redox state of the chloroplast. According to our hypothesis, thioredoxins and related thiol reactive molecules downregulate the activity of H2O2-detoxifying enzymes, and thereby allow a transient oxidative burst that triggers the expression of H2O2 responsive genes. It has been shown recently that upon light stress, catalase activity was reversibly inhibited in Chlamydomonas reinhardtii in correlation with a transient increase in the level of H2O2. Here, it is shown that Arabidopsis thaliana mutants lacking the NADP-malate dehydrogenase have lost the reversible inactivation of catalase activity and the increase in H2O2 levels when exposed to high light. The mutants were slightly affected in growth and accumulated higher levels of NADPH in the chloroplast than the wild-type. We propose that the malate valve plays an essential role in the regulation of catalase activity and the accumulation of a H2O2 signal by transmitting the redox state of the chloroplast to other cell compartments.

  16. Modulation of the enzymatic efficiency of ferredoxin-NADP(H) reductase by the amino acid volume around the catalytic site.

    Science.gov (United States)

    Musumeci, Matías A; Arakaki, Adrián K; Rial, Daniela V; Catalano-Dupuy, Daniela L; Ceccarelli, Eduardo A

    2008-03-01

    Ferredoxin (flavodoxin)-NADP(H) reductases (FNRs) are ubiquitous flavoenzymes that deliver NADPH or low-potential one-electron donors (ferredoxin, flavodoxin, adrenodoxin) to redox-based metabolic reactions in plastids, mitochondria and bacteria. Plastidic FNRs are quite efficient reductases. In contrast, FNRs from organisms possessing a heterotrophic metabolism or anoxygenic photosynthesis display turnover numbers 20- to 100-fold lower than those of their plastidic and cyanobacterial counterparts. Several structural features of these enzymes have yet to be explained. The residue Y308 in pea FNR is stacked nearly parallel to the re-face of the flavin and is highly conserved amongst members of the family. By computing the relative free energy for the lumiflavin-phenol pair at different angles with the relative position found for Y308 in pea FNR, it can be concluded that this amino acid is constrained against the isoalloxazine. This effect is probably caused by amino acids C266 and L268, which face the other side of this tyrosine. Simple and double FNR mutants of these amino acids were obtained and characterized. It was observed that a decrease or increase in the amino acid volume resulted in a decrease in the catalytic efficiency of the enzyme without altering the protein structure. Our results provide experimental evidence that the volume of these amino acids participates in the fine-tuning of the catalytic efficiency of the enzyme.

  17. N-terminal structure of maize ferredoxin:NADP+ reductase determines recruitment into different thylakoid membrane complexes.

    Science.gov (United States)

    Twachtmann, Manuel; Altmann, Bianca; Muraki, Norifumi; Voss, Ingo; Okutani, Satoshi; Kurisu, Genji; Hase, Toshiharu; Hanke, Guy T

    2012-07-01

    To adapt to different light intensities, photosynthetic organisms manipulate the flow of electrons through several alternative pathways at the thylakoid membrane. The enzyme ferredoxin:NADP(+) reductase (FNR) has the potential to regulate this electron partitioning because it is integral to most of these electron cascades and can associate with several different membrane complexes. However, the factors controlling relative localization of FNR to different membrane complexes have not yet been established. Maize (Zea mays) contains three chloroplast FNR proteins with totally different membrane association, and we found that these proteins have variable distribution between cells conducting predominantly cyclic electron transport (bundle sheath) and linear electron transport (mesophyll). Here, the crystal structures of all three enzymes were solved, revealing major structural differences at the N-terminal domain and dimer interface. Expression in Arabidopsis thaliana of maize FNRs as chimeras and truncated proteins showed the N-terminal determines recruitment of FNR to different membrane complexes. In addition, the different maize FNR proteins localized to different thylakoid membrane complexes on expression in Arabidopsis, and analysis of chlorophyll fluorescence and photosystem I absorbance demonstrates the impact of FNR location on photosynthetic electron flow.

  18. Over-expression of a putative oxidoreductase (UcpA) for increasing furfural or 5-hydroxymethylfurfural tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuan; Miller, Elliot N.; Yomano, Lorraine P.; Shanmugam, Keelnatham T.; Ingram, Lonnie O' Neal

    2016-05-24

    The subject invention pertains to overexpression of a putative oxidoreductase (ucpA) for increasing furfural tolerance in genetically modified microorganisms. Genetically modified microorganisms capable of overexpressing UcpA are also provided. Increased expression of ucpA was shown to increase furfural tolerance by 50%, and to permit the fermentation of sugars to products in the presence of 15 mM furfural.

  19. Measurement and Identification of NADPH : Protochlorophyllide Oxidoreductase Solubilized with Triton X-100 from Etioplast Membranes of Squash Cotyledons

    OpenAIRE

    Masahiko, IKEUCHI; Satoru, Murakami; Department of Biology, College of General Education, University of Tokyo

    1982-01-01

    Etioplast membranes were solubilized with 1 mM Triton X-100 in the presence of excess NADPH and protochlorophyllide to isolate NADPH:protochlorophyllide oxidoreductase. The activity of this reductase was assayed as the formation of chlorophyllide by a single flash and was equivalent to the amount of photoactive protochlorophyllide-NADPH-enzyme complex present before illumination. The rate of regeneration of the phtoactive complex was estimated from the time course of chlorophyllide formation ...

  20. Over-expression of NADH-dependent oxidoreductase (fucO) for increasing furfural or 5-hydroxymethylfurfural tolerance

    Science.gov (United States)

    Miller, Elliot N.; Zhang, Xueli; Yomano, Lorraine P.; Wang, Xuan; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    2015-10-13

    The subject invention pertains to the discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural. This allows for a new approach to improve furfural tolerance in bacterial and/or yeast cells used to produce desired products. Thus, novel biocatalysts (bacterial, fungal or yeast cells) exhibiting increased tolerance to furfural and 5-hydroxymethylfurfural (5-HMF) are provided as are methods of making and using such biocatalysts for the production of a desired product.

  1. Xanthine oxidoreductase-catalyzed reactive species generation: A process in critical need of reevaluation.

    Science.gov (United States)

    Cantu-Medellin, Nadiezhda; Kelley, Eric E

    2013-06-10

    Nearly 30 years have passed since the discovery of xanthine oxidoreductase (XOR) as a critical source of reactive species in ischemia/reperfusion injury. Since then, numerous inflammatory disease processes have been associated with elevated XOR activity and allied reactive species formation solidifying the ideology that enhancement of XOR activity equates to negative clinical outcomes. However, recent evidence may shatter this paradigm by describing a nitrate/nitrite reductase capacity for XOR whereby XOR may be considered a crucial source of beneficial (•)NO under ischemic/hypoxic/acidic conditions; settings similar to those that limit the functional capacity of nitric oxide synthase. Herein, we review XOR-catalyzed reactive species generation and identify key microenvironmental factors whose interplay impacts the identity of the reactive species (oxidants vs. (•)NO) produced. In doing so, we redefine existing dogma and shed new light on an enzyme that has weathered the evolutionary process not as gadfly but a crucial component in the maintenance of homeostasis.

  2. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I).

    Science.gov (United States)

    Friedrich, Thorsten; Dekovic, Doris Kreuzer; Burschel, Sabrina

    2016-03-01

    Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters. The individual subunits and the cofactors have to be assembled together in a coordinated way to guarantee the biogenesis of the active holoenzyme. Only little is known about the assembly of the bacterial complex compared to the mitochondrial one. Due to the presence of so many Fe/S-clusters the assembly of complex I is intimately connected with the systems responsible for the biogenesis of these clusters. In addition, a few other proteins have been reported to be required for an effective assembly of the complex in other bacteria. The proposed role of known bacterial assembly factors is discussed and the information from other bacterial species is used in this review to draw an as complete as possible model of bacterial complex I assembly. In addition, the supramolecular organization of the complex in E. coli is briefly described. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof. Conrad Mullineaux.

  3. Chemical nature and reaction mechanisms of the molybdenum cofactor of xanthine oxidoreductase.

    Science.gov (United States)

    Okamoto, Ken; Kusano, Teruo; Nishino, Takeshi

    2013-01-01

    Xanthine oxidoreductase (XOR), a complex flavoprotein, catalyzes the metabolic reactions leading from hypoxanthine to xanthine and from xanthine to urate, and both reactions take place at the molybdenum cofactor. The enzyme is a target of drugs for therapy of gout or hyperuricemia. We review the chemical nature and reaction mechanisms of the molybdenum cofactor of XOR, focusing on molybdenum-dependent reactions of actual or potential medical importance, including nitric oxide (NO) synthesis. It is now generally accepted that XOR transfers the water-exchangeable -OH ligand of the molybdenum atom to the substrate. The hydroxyl group at OH-Mo(IV) can be replaced by urate, oxipurinol and FYX-051 derivatives and the structures of these complexes have been determined by xray crystallography under anaerobic conditions. Although formation of NO from nitrite or formation of xanthine from urate by XOR ischemically feasible, it is not yet clear whether these reactions have any physiological significance since the reactions are catalyzed at a slow rate even under anaerobic conditions.

  4. Reduction of xylose to xylitol catalyzed by glucose-fructose oxidoreductase from Zymomonas mobilis.

    Science.gov (United States)

    Zhang, Xiaomei; Chen, Guanjun; Liu, Weifeng

    2009-04-01

    Genetic improvements of Zymomonas mobilis for pentose utilization have a huge potential in fuel ethanol production. The production of xylitol and the resulting growth inhibition by xylitol phosphate have been considered to be one of the important factors affecting the rates and yields from xylose metabolism by the recombinant Z. mobilis, but the mechanism of xylitol formation is largely unknown. Here, we reported that glucose-fructose oxidoreductase (GFOR), a periplasmic enzyme responsible for sorbitol production, catalyzed the reduction of xylose to xylitol in vitro, operating via a ping-pong mechanism similar to that in the formation of sorbitol. However, the specific activity of GFOR for sorbitol was higher than that for xylitol (68.39 vs. 1.102 micromol min(-1) mg(-1)), and an apparent substrate-induced positive cooperativity occurred during the catalyzed formation of xylitol, with the Hill coefficient being about 2. While a change of the potential acid-base catalyst Tyr269 to Phe almost completely abolished the activity toward xylose as well as fructose, mutant S116D, which has been shown to lose tight cofactor binding, displayed an even slower catalytic process against xylose.

  5. A novel method for preparation of MNP@CS-tethered coenzyme for coupled oxidoreductase system.

    Science.gov (United States)

    Chen, Guo; Wu, Zhichao; Ma, Yunhui

    2015-02-20

    The immobilized cofactor NAD(H) is easily recovered from the reaction bulk, which is essential for repeated use of NAD(H) in the bioprocess catalyzed by NAD(H)-dependent oxidoreductase. Here, a magnetic nanoparticle platform was designed to immobilize both of the NADH and the NAD(+). The design was based on chitosan-coated magnetic nanoparticles (MNP@CS) which was activated by the EDC/NHS with the aid of azelaic acid as spacer. Interestingly, the succinimide group at the end of spacer arm catalyzed direct coupling of a carboxyl-terminal to the 6-amino group of the adenine residue of NAD(H). Our results indicated that 150 μmol NADH and 50 μmol NAD(+) was effectively attached to 1g MNP@CS at 25°C in 120 min and the prepared MNP@CS-NAD(H) showed good activity according to the coupling reaction of benzyl alcohol and acetaldehyde catalyzed by alcohol dehydrogenase.

  6. Associations of cytochrome P450 oxidoreductase genetic polymorphisms with smoking cessation in a Chinese population.

    Science.gov (United States)

    Li, Huijie; Li, Suyun; Wang, Qiang; Jia, Chongqi

    2016-12-01

    Recently, a single nucleotide polymorphism (SNP) A503V (rs1057868) in cytochrome P450 oxidoreductase (POR) gene was reported to influence nicotine metabolism. Considering the importance of nicotine metabolism to smoking cessation, the aim of this study was to investigate the association between POR gene polymorphisms and smoking cessation in a Chinese population. A case-control study was conducted with 363 successful smoking quitters as the cases, and 345 failed smoking quitters as the controls. Eight tagSNPs which cover the entire gene and four functional SNPs were selected and genotyped. Logistic regression was used to explore the relationship between POR SNPs and smoking cessation in codominant, additive, dominant and recessive models. After adjustment for potential confounders, multiple logistic regression analysis indicated that POR rs3823884 and rs3898649 were associated with increased possibility of smoking cessation. Meanwhile, POR rs17685 and rs239953 were shown to have negative effect on successful smoking cessation. No significant differences in the distribution of haplotypes between cases and controls were detected. In conclusion, this study reveals that four SNPs in the POR gene (rs3823884, rs3898649, rs239953 and rs17685) may affect the susceptibility of smoking cessation in a Chinese Han population.

  7. WW domain-containing oxidoreductase in neuronal injury and neurological diseases.

    Science.gov (United States)

    Chang, Hsin-Tzu; Liu, Chan-Chuan; Chen, Shur-Tzu; Yap, Ye Vone; Chang, Nan-Shang; Sze, Chun-I

    2014-12-15

    The human and mouse WWOX/Wwox gene encodes a candidate tumor suppressor WW domain-containing oxidoreductase protein. This gene is located on a common fragile site FRA16D. WWOX participates in a variety of cellular events and acts as a transducer in the many signal pathways, including TNF, chemotherapeutic drugs, UV irradiation, Wnt, TGF-β, C1q, Hyal-2, sex steroid hormones, and others. While transiently overexpressed WWOX restricts relocation of transcription factors to the nucleus for suppressing cancer survival, physiological relevance of this regard in vivo has not been confirmed. Unlike many tumor suppressor genes, mutation of WWOX is rare, raising a question whether WWOX is a driver for cancer initiation. WWOX/Wwox was initially shown to play a crucial role in neural development and in the pathogenesis of Alzheimer's disease and neuronal injury. Later on, WWOX/Wwox was shown to participate in the development of epilepsy, mental retardation, and brain developmental defects in mice, rats and humans. Up to date, most of the research and review articles have focused on the involvement of WWOX in cancer. Here, we review the role of WWOX in neural injury and neurological diseases, and provide perspectives for the WWOX-regulated neurodegeneration.

  8. Untargeted plasma metabolite profiling reveals the broad systemic consequences of xanthine oxidoreductase inactivation in mice.

    Directory of Open Access Journals (Sweden)

    Qiuying Chen

    Full Text Available A major challenge in systems biology is integration of molecular findings for individual enzyme activities into a cohesive high-level understanding of cellular metabolism and physiology/pathophysiology. However, meaningful prediction for how a perturbed enzyme activity will globally impact metabolism in a cell, tissue or intact organisms is precluded by multiple unknowns, including in vivo enzymatic rates, subcellular distribution and pathway interactions. To address this challenge, metabolomics offers the potential to simultaneously survey changes in thousands of structurally diverse metabolites within complex biological matrices. The present study assessed the capability of untargeted plasma metabolite profiling to discover systemic changes arising from inactivation of xanthine oxidoreductase (XOR, an enzyme that catalyzes the final steps in purine degradation. Using LC-MS coupled with a multivariate statistical data analysis platform, we confidently surveyed >3,700 plasma metabolites (50-1,000 Da for differential expression in XOR wildtype vs. mice with inactivated XOR, arising from gene deletion or pharmacological inhibition. Results confirmed the predicted derangements in purine metabolism, but also revealed unanticipated perturbations in metabolism of pyrimidines, nicotinamides, tryptophan, phospholipids, Krebs and urea cycles, and revealed kidney dysfunction biomarkers. Histochemical studies confirmed and characterized kidney failure in xor-nullizygous mice. These findings provide new insight into XOR functions and demonstrate the power of untargeted metabolite profiling for systemic discovery of direct and indirect consequences of gene mutations and drug treatments.

  9. NAD(P)H:quinone oxidoreductase 1 inducer activity of some novel anilinoquinazoline derivatives

    Science.gov (United States)

    Ghorab, Mostafa M; Alsaid, Mansour S; Higgins, Maureen; Dinkova-Kostova, Albena T; Shahat, Abdelaaty A; Elghazawy, Nehal H; Arafa, Reem K

    2016-01-01

    The Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response elements pathway enables cells to survive oxidative stress conditions through regulating the expression of cytoprotective enzymes such as NAD(P)H:quinone oxidoreductase 1 (NQO1). This work presents the design and synthesis of novel anilinoquinazoline derivatives (2–16a) and evaluation of their NQO1 inducer activity in murine cells. Molecular docking of the new compounds was performed to assess their ability to inhibit Keap1–Nrf2 protein–protein interaction through occupying the Keap1–Nrf2-binding domain, which leads to Nrf2 accumulation and enhanced gene expression of NQO1. Docking results showed that all compounds can potentially interact with Keap1; however, 1,5-dimethyl-2-phenyl-4-(2-phenylquinazolin-4-ylamino)-1,2-dihydropyrazol-3-one (9), the most potent inducer, showed the largest number of interactions with key amino acids in the binding pocket (Arg483, Tyr525, and Phe478) compared to the native ligand or any other compound in this series. PMID:27540279

  10. Stoichiometry of ATP hydrolysis and chlorophyllide formation of dark-operative protochlorophyllide oxidoreductase from Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Nomata, Jiro [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan); Terauchi, Kazuki [Department of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 (Japan); Fujita, Yuichi, E-mail: fujita@agr.nagoya-u.ac.jp [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan)

    2016-02-12

    Dark-operative protochlorophyllide (Pchlide) oxidoreductase (DPOR) is a nitrogenase-like enzyme catalyzing a reduction of the C17 = C18 double bond of Pchlide to form chlorophyllide a (Chlide) in bacteriochlorophyll biosynthesis. DPOR consists of an ATP-dependent reductase component, L-protein (a BchL dimer), and a catalytic component, NB-protein (a BchN–BchB heterotetramer). The L-protein transfers electrons to the NB-protein to reduce Pchlide, which is coupled with ATP hydrolysis. Here we determined the stoichiometry of ATP hydrolysis and the Chlide formation of DPOR. The minimal ratio of ATP to Chlide (ATP/2e{sup –}) was 4, which coincides with that of nitrogenase. The ratio increases with increasing molar ratio of L-protein to NB-protein. This profile differs from that of nitrogenase. These results suggest that DPOR has a specific intrinsic property, while retaining the common features shared with nitrogenase. - Highlights: • The stoichiometry of nitrogenase-like protochlorophyllide reductase was determined. • The minimal ATP/2e{sup –} ratio was 4, which coincides with that of nitrogenase. • The ATP/2e{sup –} ratio increases with increasing L-protein/NB-protein molar ratio. • DPOR has an intrinsic property, but retains features shared with nitrogenase.

  11. Human NADH:ubiquinone oxidoreductase deficiency: radical changes in mitochondrial morphology?

    Science.gov (United States)

    Koopman, Werner J H; Verkaart, Sjoerd; Visch, Henk Jan; van Emst-de Vries, Sjenet; Nijtmans, Leo G J; Smeitink, Jan A M; Willems, Peter H G M

    2007-07-01

    Malfunction of NADH:ubiquinone oxidoreductase or complex I (CI), the first and largest complex of the mitochondrial oxidative phosphorylation system, has been implicated in a wide variety of human disorders. To demonstrate a quantitative relationship between CI amount and activity and mitochondrial shape and cellular reactive oxygen species (ROS) levels, we recently combined native electrophoresis and confocal and video microscopy of dermal fibroblasts of healthy control subjects and children with isolated CI deficiency. Individual mitochondria appeared fragmented and/or less branched in patient fibroblasts with a severely reduced CI amount and activity (class I), whereas patient cells in which these latter parameters were only moderately reduced displayed a normal mitochondrial morphology (class II). Moreover, cellular ROS levels were significantly more increased in class I compared with class II cells. We propose a mechanism in which a mutation-induced decrease in the cellular amount and activity of CI leads to enhanced ROS levels, which, in turn, induce mitochondrial fragmentation when not appropriately counterbalanced by the cell's antioxidant defense systems.

  12. Mitochondrial Ca2+ homeostasis in human NADH:ubiquinone oxidoreductase deficiency.

    Science.gov (United States)

    Willems, Peter H G M; Valsecchi, Federica; Distelmaier, Felix; Verkaart, Sjoerd; Visch, Henk-Jan; Smeitink, Jan A M; Koopman, Werner J H

    2008-07-01

    NADH:ubiquinone oxidoreductase or complex I is a large multisubunit assembly of the mitochondrial inner membrane that channels high-energy electrons from metabolic NADH into the electron transport chain (ETC). Its dysfunction is associated with a range of progressive neurological disorders, often characterized by a very early onset and short devastating course. To better understand the cytopathological mechanisms of these disorders, we use live cell luminometry and imaging microscopy of patient skin fibroblasts with mutations in nuclear-encoded subunits of the complex. Here, we present an overview of our recent work, showing that mitochondrial membrane potential, Ca(2+) handling and ATP production are to a variable extent impaired among a large cohort of patient fibroblast lines. From the results obtained, the picture emerges that a reduction in cellular complex I activity leads to a depolarization of the mitochondrial membrane potential, resulting in a decreased supply of mitochondrial ATP to the Ca(2+)-ATPases of the intracellular stores and thus to a reduced Ca(2+) content of these stores. As a consequence, the increase in cytosolic Ca(2+) concentration evoked by a Ca(2+) mobilizing stimulus is decreased, leading to a reduction in mitochondrial Ca(2+) accumulation and ensuing ATP production and thus to a hampered energization of stimulus-induced cytosolic processes.

  13. Mutations Associated with Functional Disorder of Xanthine Oxidoreductase and Hereditary Xanthinuria in Humans

    Directory of Open Access Journals (Sweden)

    Takeshi Nishino

    2012-11-01

    Full Text Available Xanthine oxidoreductase (XOR catalyzes the conversion of hypoxanthine to xanthine and xanthine to uric acid with concomitant reduction of either NAD+ or O2. The enzyme is a target of drugs to treat hyperuricemia, gout and reactive oxygen-related diseases. Human diseases associated with genetically determined dysfunction of XOR are termed xanthinuria, because of the excretion of xanthine in urine. Xanthinuria is classified into two subtypes, type I and type II. Type I xanthinuria involves XOR deficiency due to genetic defect of XOR, whereas type II xanthinuria involves dual deficiency of XOR and aldehyde oxidase (AO, a molybdoflavo enzyme similar to XOR due to genetic defect in the molybdenum cofactor sulfurase. Molybdenum cofactor deficiency is associated with triple deficiency of XOR, AO and sulfite oxidase, due to defective synthesis of molybdopterin, which is a precursor of molybdenum cofactor for all three enzymes. The present review focuses on mutation or chemical modification studies of mammalian XOR, as well as on XOR mutations identified in humans, aimed at understanding the reaction mechanism of XOR and the relevance of mutated XORs as models to estimate the possible side effects of clinical application of XOR inhibitors.

  14. Influence of 120 kDa Pyruvate:Ferredoxin Oxidoreductase on Pathogenicity of Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk

    2016-02-01

    Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.

  15. Up-regulation of NAD(P)H quinone oxidoreductase 1 during human liver injury

    Institute of Scientific and Technical Information of China (English)

    Lauren M Aleksunes; Michael Goedken; José E Manautou

    2006-01-01

    AIM: To investigate the expression and activity of NAD(P)H quinone oxidoreductase 1 (NQO1) in human liver specimens obtained from patients with liver damage due to acetaminophen (APAP) overdose or primary biliary cirrhosis (PBC).METHODS: NQO1 activity was determined in cytosol from normal, APAP and PBC liver specimens. Western blot and immunohistochemical staining were used to determine patterns of NQO1 expression using a specific antibody against NQO1.RESULTS: NQO1 protein was very low in normal human livers. In both APAP and PBC livers, there was strong induction of NQO1 protein levels on Western blot.Correspondingly, significant up-regulation of enzyme activity (16- and 22-fold, P< 0.05) was also observed in APAP and PBC livers, respectively. Immunohistochemical analysis highlighted injury-specific patterns of NQO1 staining in both APAP and PBC livers.CONCLUSION: These data demonstrate that NQO1 protein and activity are markedly induced in human livers during both APAP overdose and PBC. Up-regulation of this cytoprotective enzyme may represent an adaptive stress response to limit further disease progression by detoxifying reactive species.

  16. Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production.

    Directory of Open Access Journals (Sweden)

    Junsong Sun

    Full Text Available Hydrogen gas is a major biofuel and is metabolized by a wide range of microorganisms. Microbial hydrogen production is catalyzed by hydrogenase, an extremely complex, air-sensitive enzyme that utilizes a binuclear nickel-iron [NiFe] catalytic site. Production and engineering of recombinant [NiFe]-hydrogenases in a genetically-tractable organism, as with metalloprotein complexes in general, has met with limited success due to the elaborate maturation process that is required, primarily in the absence of oxygen, to assemble the catalytic center and functional enzyme. We report here the successful production in Escherichia coli of the recombinant form of a cytoplasmic, NADP-dependent hydrogenase from Pyrococcus furiosus, an anaerobic hyperthermophile. This was achieved using novel expression vectors for the co-expression of thirteen P. furiosus genes (four structural genes encoding the hydrogenase and nine encoding maturation proteins. Remarkably, the native E. coli maturation machinery will also generate a functional hydrogenase when provided with only the genes encoding the hydrogenase subunits and a single protease from P. furiosus. Another novel feature is that their expression was induced by anaerobic conditions, whereby E. coli was grown aerobically and production of recombinant hydrogenase was achieved by simply changing the gas feed from air to an inert gas (N2. The recombinant enzyme was purified and shown to be functionally similar to the native enzyme purified from P. furiosus. The methodology to generate this key hydrogen-producing enzyme has dramatic implications for the production of hydrogen and NADPH as vehicles for energy storage and transport, for engineering hydrogenase to optimize production and catalysis, as well as for the general production of complex, oxygen-sensitive metalloproteins.

  17. External loops at the ferredoxin-NADP(+) reductase protein-partner binding cavity contribute to substrates allocation.

    Science.gov (United States)

    Sánchez-Azqueta, Ana; Martínez-Júlvez, Marta; Hervás, Manuel; Navarro, José A; Medina, Milagros

    2014-02-01

    Ferredoxin-NADP(+) reductase (FNR) is the structural prototype of a family of FAD-containing reductases that catalyze electron transfer between low potential proteins and NAD(P)(+)/H, and that display a two-domain arrangement with an open cavity at their interface. The inner part of this cavity accommodates the reacting atoms during catalysis. Loops at its edge are highly conserved among plastidic FNRs, suggesting that they might contribute to both flavin stabilization and competent disposition of substrates. Here we pay attention to two of these loops in Anabaena FNR. The first is a sheet-loop-sheet motif, loop102-114, that allocates the FAD adenosine. It was thought to determine the extended FAD conformation, and, indirectly, to modulate isoalloxazine electronic properties, partners binding, catalytic efficiency and even coenzyme specificity. The second, loop261-269, contains key residues for the allocation of partners and coenzyme, including two glutamates, Glu267 and Glu268, proposed as candidates to facilitate the key displacement of the C-terminal tyrosine (Tyr303) from its stacking against the isoalloxazine ring during the catalytic cycle. Our data indicate that the main function of loop102-114 is to provide the inter-domain cavity with flexibility to accommodate protein partners and to guide the coenzyme to the catalytic site, while the extended conformation of FAD must be induced by other protein determinants. Glu267 and Glu268 appear to assist the conformational changes that occur in the loop261-269 during productive coenzyme binding, but their contribution to Tyr303 displacement is minor than expected. Additionally, loop261-269 appears a determinant to ensure reversibility in photosynthetic FNRs. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA.

    Science.gov (United States)

    Shirey, Carolyn; Badieyan, Somayesadat; Sobrado, Pablo

    2013-11-08

    SidA (siderophore A) is a flavin-dependent N-hydroxylating monooxygenase that is essential for virulence in Aspergillus fumigatus. SidA catalyzes the NADPH- and oxygen-dependent formation of N(5)-hydroxyornithine. In this reaction, NADPH reduces the flavin, and the resulting NADP(+) is the last product to be released. The presence of NADP(+) is essential for activity, as it is required for stabilization of the C4a-hydroperoxyflavin, which is the hydroxylating species. As part of our efforts to determine the molecular details of the role of NADP(H) in catalysis, we targeted Ser-257 for site-directed mutagenesis and performed extensive characterization of the S257A enzyme. Using a combination of steady-state and stopped-flow kinetic experiments, substrate analogs, and primary kinetic isotope effects, we show that the interaction between Ser-257 and NADP(H) is essential for stabilization of the C4a-hydroperoxyflavin. Molecular dynamics simulation results suggest that Ser-257 functions as a pivot point, allowing the nicotinamide of NADP(+) to slide into position for stabilization of the C4a-hydroperoxyflavin.

  19. Identification of a lactate-quinone oxidoreductase (Lqo in staphylococcus aureus that is essential for virulence

    Directory of Open Access Journals (Sweden)

    James R Fuller

    2011-12-01

    Full Text Available Staphylococcus aureus is an important human pathogen commonly infecting nearly every host tissue. The ability of S. aureus to resist innate immunity is critical to its success as a pathogen, including its propensity to grow in the presence of host nitric oxide (NO·. Upon exogenous NO· exposure, S. aureus immediately excretes copious amounts of L-lactate to maintain redox balance. However, after prolonged NO·-exposure, S. aureus reassimilates L-lactate specifically and in this work, we identify the enzyme responsible for this L-lactate consumption as a L-lactate-quinone oxidoreductase (Lqo, SACOL2623. Originally annotated as Mqo2 and thought to oxidize malate, we show that this enzyme exhibits no affinity for malate but reacts specifically with L-lactate (KM = ~330 µM. In addition to its requirement for reassimilation of L-lactate during NO·-stress, Lqo is also critical to respiratory growth on L-lactate as a sole carbon source. Moreover, ∆lqo mutants exhibit attenuation in a murine model of sepsis, particularly in their ability to cause myocarditis. Interestingly, this cardiac-specific attenuation is completely abrogated in mice unable to synthesize inflammatory NO· (iNOS-/-. We demonstrate that S. aureus NO·-resistance is highly dependent on the availability of a glycolytic carbon sources. However, S. aureus can utilize the combination of peptides and L-lactate as carbon sources during NO·-stress in an Lqo-dependent fashion. Murine cardiac tissue has markedly high levels of L-lactate in comparison to renal or hepatic tissue consistent with the NO·-dependent requirement for Lqo in S. aureus myocarditis. Thus, Lqo provides S. aureus with yet another means of replicating in the presence of host NO·.

  20. Update of the NAD(PH:quinone oxidoreductase (NQO gene family

    Directory of Open Access Journals (Sweden)

    Vasiliou Vasilis

    2006-03-01

    Full Text Available Abstract The NAD(PH:quinone acceptor oxidoreductase (NQO gene family belongs to the flavoprotein clan and, in the human genome, consists of two genes (NQO1 and NQO2. These two genes encode cytosolic flavoenzymes that catalyse the beneficial two-electron reduction of quinones to hydroquinones. This reaction prevents the unwanted one-electron reduction of quinones by other quinone reductases; one-electron reduction results in the formation of reactive oxygen species, generated by redox cycling of semiquinones in the presence of molecular oxygen. Both the mammalian NQO1 and NQO2 genes are upregulated as a part of the oxidative stress response and are inexplicably overexpressed in particular types of tumours. A non-synonymous mutation in the NQO1 gene, leading to absence of enzyme activity, has been associated with an increased risk of myeloid leukaemia and other types of blood dyscrasia in workers exposed to benzene. NQO2 has a melatonin-binding site, which may explain the anti-oxidant role of melatonin. An ancient NQO3 subfamily exists in eubacteria and the authors suggest that there should be additional divisions of the NQO family to include the NQO4 subfamily in fungi and NQO5 subfamily in archaebacteria. Interestingly, no NQO genes could be identified in the worm, fly, sea squirt or plants; because these taxa carry quinone reductases capable of one- and two-electron reductions, there has been either convergent evolution or redundancy to account for the appearance of these enzyme functions whenever they have been needed during evolution.

  1. Cytochrome P450 oxidoreductase participates in nitric oxide consumption by rat brain.

    Science.gov (United States)

    Hall, Catherine N; Keynes, Robert G; Garthwaite, John

    2009-04-15

    In low nanomolar concentrations, NO (nitric oxide) functions as a transmitter in brain and other tissues, whereas near-micromolar NO concentrations are associated with toxicity and cell death. Control of the NO concentration, therefore, is critical for proper brain function, but, although its synthesis pathway is well-characterized, the major route of breakdown of NO in brain is unclear. Previous observations indicate that brain cells actively consume NO at a high rate. The mechanism of this consumption was pursued in the present study. NO consumption by a preparation of central glial cells was abolished by cell lysis and recovered by addition of NADPH. NADPH-dependent consumption of NO localized to cell membranes and was inhibited by proteinase K, indicating the involvement of a membrane-bound protein. Purification of this activity yielded CYPOR (cytochrome P450 oxidoreductase). Antibodies against CYPOR inhibited NO consumption by brain membranes and the amount of CYPOR in several cell types correlated with their rate of NO consumption. NO was also consumed by purified CYPOR but this activity was found to depend on the presence of the vitamin E analogue Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid), included in the buffer as a precaution against inadvertent NO consumption by lipid peroxidation. In contrast, NO consumption by brain membranes was independent of Trolox. Hence, it appears that, during the purification process, CYPOR becomes separated from a partner needed for NO consumption. Cytochrome P450 inhibitors inhibited NO consumption by brain membranes, making these proteins likely candidates.

  2. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    Science.gov (United States)

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model.

  3. Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chuanwu; Panda, Satya P.; Marohnic, Christopher C.; Martásek, Pavel; Masters, Bettie Sue; Kim, Jung-Ja P. (MCW); (Charles U); (UTSMC)

    2012-03-15

    NADPH-cytochrome P450 oxidoreductase (CYPOR) is essential for electron donation to microsomal cytochrome P450-mediated monooxygenation in such diverse physiological processes as drug metabolism (approximately 85-90% of therapeutic drugs), steroid biosynthesis, and bioactive metabolite production (vitamin D and retinoic acid metabolites). Expressed by a single gene, CYPOR's role with these multiple redox partners renders it a model for understanding protein-protein interactions at the structural level. Polymorphisms in human CYPOR have been shown to lead to defects in bone development and steroidogenesis, resulting in sexual dimorphisms, the severity of which differs significantly depending on the degree of CYPOR impairment. The atomic structure of human CYPOR is presented, with structures of two naturally occurring missense mutations, V492E and R457H. The overall structures of these CYPOR variants are similar to wild type. However, in both variants, local disruption of H bonding and salt bridging, involving the FAD pyrophosphate moiety, leads to weaker FAD binding, unstable protein, and loss of catalytic activity, which can be rescued by cofactor addition. The modes of polypeptide unfolding in these two variants differ significantly, as revealed by limited trypsin digestion: V492E is less stable but unfolds locally and gradually, whereas R457H is more stable but unfolds globally. FAD addition to either variant prevents trypsin digestion, supporting the role of the cofactor in conferring stability to CYPOR structure. Thus, CYPOR dysfunction in patients harboring these particular mutations may possibly be prevented by riboflavin therapy in utero, if predicted prenatally, or rescued postnatally in less severe cases.

  4. Multiple orientations in a physiological complex: the pyruvate-ferredoxin oxidoreductase-ferredoxin system.

    Science.gov (United States)

    Pieulle, Laetitia; Nouailler, Matthieu; Morelli, Xavier; Cavazza, Christine; Gallice, Philippe; Blanchet, Stéphane; Bianco, Pierre; Guerlesquin, Françoise; Hatchikian, E Claude

    2004-12-14

    Ferredoxin I from Desulfovibrio africanus (Da FdI) is a small acidic [4Fe-4S] cluster protein that exchanges electrons with pyruvate-ferredoxin oxidoreductase (PFOR), a key enzyme in the energy metabolism of anaerobes. The thermodynamic properties and the electron transfer between PFOR and either native or mutated FdI have been investigated by microcalorimetry and steady-state kinetics, respectively. The association constant of the PFOR-FdI complex is 3.85 x 10(5) M(-1), and the binding affinity has been found to be highly sensitive to ionic strength, suggesting the involvement of electrostatic forces in formation of the complex. Surprisingly, the punctual or combined neutralizations of carboxylate residues surrounding the [4Fe-4S] cluster slightly affect the PFOR-FdI interaction. Furthermore, hydrophobic residues around the cluster do not seem to be crucial for the PFOR-FdI system activity; however, some of them play an important role in the stability of the FeS cluster. NMR restrained docking associated with site-directed mutagenesis studies suggested the presence of various interacting sites on Da FdI. The modification of additional acidic residues at the interacting interface, generating a FdI pentamutant, evidenced at least two distinct FdI binding sites facing the distal [4Fe-4S] cluster of the PFOR. We also used a set of various small acidic partners to investigate the specificity of PFOR toward redox partners. The remarkable flexibility of the PFOR-FdI system supports the idea that the specificity of the physiological complex has probably been "sacrificed" to improve the turnover rate and thus the efficiency of bacterial electron transfer.

  5. NAD(PH:quinone oxidoreductase 1 (NQO1 localizes to the mitotic spindle in human cells.

    Directory of Open Access Journals (Sweden)

    David Siegel

    Full Text Available NAD(PH:quinone oxidoreductase 1 (NQO1 is an FAD containing quinone reductase that catalyzes the 2-electron reduction of a broad range of quinones. The 2-electron reduction of quinones to hydroquinones by NQO1 is believed to be a detoxification process since this reaction bypasses the formation of the highly reactive semiquinone. NQO1 is expressed at high levels in normal epithelium, endothelium and adipocytes as well as in many human solid tumors. In addition to its function as a quinone reductase NQO1 has been shown to reduce superoxide and regulate the 20 S proteasomal degradation of proteins including p53. Biochemical studies have indicated that NQO1 is primarily located in the cytosol, however, lower levels of NQO1 have also been found in the nucleus. In these studies we demonstrate using immunocytochemistry and confocal imaging that NQO1 was found associated with mitotic spindles in cells undergoing division. The association of NQO1 with the mitotic spindles was observed in many different human cell lines including nontransformed cells (astrocytes, HUVEC immortalized cell lines (HBMEC, 16HBE and cancer (pancreatic adenocarcinoma, BXPC3. Confocal analysis of double-labeling experiments demonstrated co-localization of NQO1with alpha-tubulin in mitotic spindles. In studies with BxPc-3 human pancreatic cancer cells the association of NQO1 with mitotic spindles appeared to be unchanged in the presence of NQO1 inhibitors ES936 or dicoumarol suggesting that NQO1 can associate with the mitotic spindle and still retain catalytic activity. Analysis of archival human squamous lung carcinoma tissue immunostained for NQO1 demonstrated positive staining for NQO1 in the spindles of mitotic cells. The purpose of this study is to demonstrate for the first time the association of the quinone reductase NQO1 with the mitotic spindle in human cells.

  6. Mechanistic reappraisal of early stage photochemistry in the light-driven enzyme protochlorophyllide oxidoreductase.

    Directory of Open Access Journals (Sweden)

    Derren J Heyes

    Full Text Available The light-driven enzyme protochlorophyllide oxidoreductase (POR catalyzes the reduction of protochlorophyllide (Pchlide to chlorophyllide (Chlide. This reaction is a key step in the biosynthesis of chlorophyll. Ultrafast photochemical processes within the Pchlide molecule are required for catalysis and previous studies have suggested that a short-lived excited-state species, known as I675*, is the first catalytic intermediate in the reaction and is essential for capturing excitation energy to drive subsequent hydride and proton transfers. The chemical nature of the I675* excited state species and its role in catalysis are not known. Here, we report time-resolved pump-probe spectroscopy measurements to study the involvement of the I675* intermediate in POR photochemistry. We show that I675* is not unique to the POR-catalyzed photoreduction of Pchlide as it is also formed in the absence of the POR enzyme. The I675* species is only produced in samples that contain both Pchlide substrate and Chlide product and its formation is dependent on the pump excitation wavelength. The rate of formation and the quantum yield is maximized in 50∶50 mixtures of the two pigments (Pchlide and Chlide and is caused by direct energy transfer between Pchlide and neighboring Chlide molecules, which is inhibited in the polar solvent methanol. Consequently, we have re-evaluated the mechanism for early stage photochemistry in the light-driven reduction of Pchlide and propose that I675* represents an excited state species formed in Pchlide-Chlide dimers, possibly an excimer. Contrary to previous reports, we conclude that this excited state species has no direct mechanistic relevance to the POR-catalyzed reduction of Pchlide.

  7. Evaluation by mutagenesis of the roles of His309, His315, and His319 in the coenzyme site of pig heart NADP-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Huang, Yu Chu; Colman, Roberta F

    2002-04-30

    Sequence alignment predicts that His(309) of pig heart NADP-dependent isocitrate dehydrogenase is equivalent to His(339) of the Escherichia coli enzyme, which interacts with the coenzyme in the crystal structure [Hurley et al. (1991) Biochemistry 30, 8671-8688], and porcine His(315) and His(319) are close to that site. The mutant porcine enzymes H309Q, H309F, H315Q, and H319Q were prepared by site-directed mutagenesis, expressed in E. coli, and purified. The H319Q mutant has K(m) values for NADP, isocitrate, and Mn(2+) similar to those of wild-type enzyme, and V(max) = 20.1, as compared to 37.8 micromol of NADPH min(-1) (mg of protein)(-1) for wild type. Thus, His(319) is not involved in coenzyme binding and has a minimal effect on catalysis. In contrast, H315Q exhibits a K(m) for NADP 40 times that of wild type and V(max) = 16.2 units/mg of protein, with K(m) values for isocitrate and Mn(2+) similar to those of wild type. These results implicate His(315) in the region of the NADP site. Replacement of His(309) by Q or F yields enzyme with no detectable activity. The His(309) mutants bind NADPH poorly, under conditions in which wild type and H319Q bind 1.0 mol of NADPH/mol of subunit, indicating that His(309) is important for the binding of coenzyme. The His(309) mutants bind isocitrate stoichiometrically, as do wild-type and the other mutant enzymes. However, as distinguished from the wild-type enzyme, the His(309) mutants are not oxidatively cleaved by metal isocitrate, implying that the metal ion is not bound normally. Since circular dichroism spectra are similar for wild type, H315Q, and H319Q, these amino acid substitutions do not cause major conformational changes. In contrast, replacement of His(309) results in detectable change in the enzyme's CD spectrum and therefore in its secondary structure. We propose that His(309) plays a significant role in the binding of coenzyme, contributes to the proper coordination of divalent metal ion in the presence of

  8. Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase.

    Science.gov (United States)

    Fernández, Israel S; Ruíz-Dueñas, Francisco J; Santillana, Elena; Ferreira, Patricia; Martínez, María Jesús; Martínez, Angel T; Romero, Antonio

    2009-11-01

    Lignin biodegradation, a key step in carbon recycling in land ecosystems, is carried out by white-rot fungi through an H(2)O(2)-dependent process defined as enzymatic combustion. Pleurotus eryngii is a selective lignin-degrading fungus that produces H(2)O(2) during redox cycling of p-anisylic compounds involving the secreted flavoenzyme aryl-alcohol oxidase (AAO). Here, the 2.4 A resolution X-ray crystal structure of this oxidoreductase, which catalyzes dehydrogenation reactions on various primary polyunsaturated alcohols, yielding the corresponding aldehydes, is reported. The AAO crystal structure was solved by single-wavelength anomalous diffraction of a selenomethionine derivative obtained by Escherichia coli expression and in vitro folding. This monomeric enzyme is composed of two domains, the overall folding of which places it into the GMC (glucose-methanol-choline oxidase) oxidoreductase family, and a noncovalently bound FAD cofactor. However, two additional structural elements exist in the surroundings of its active site that modulate the access of substrates; these are absent in the structure of the model GMC oxidoreductase glucose oxidase. The folding of these novel elements gives rise to a funnel-like hydrophobic channel that connects the solvent region to the buried active-site cavity of AAO. This putative active-site cavity is located in front of the re side of the FAD isoalloxazine ring and near two histidines (His502 and His546) that could contribute to alcohol activation as catalytic bases. Moreover, three aromatic side chains from two phenylalanines (Phe397 and Phe502) and one tyrosine (Tyr92) at the inner region of the channel form an aromatic gate that may regulate the access of the enzyme substrates to the active site as well as contribute to the recognition of the alcohols that can effectively be oxidized by AAO.

  9. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase

    DEFF Research Database (Denmark)

    Bavishi, Krutika; Laursen, Tomas; Martinez, Karen Laurence

    2016-01-01

    Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially...... was electro-catalytically active while the P450s generated hydrogen peroxide (H2O2). These nanodisc-based investigations lay the prospects and guidelines for construction of a simplified platform to perform mediator-free, direct electrochemistry of non-engineered cytochromes P450 under native-like conditions...

  10. Structural-functional characterization and physiological significance of ferredoxin-NADP reductase from Xanthomonas axonopodis pv. citri.

    Science.gov (United States)

    Tondo, María Laura; Musumeci, Matías A; Delprato, María Laura; Ceccarelli, Eduardo A; Orellano, Elena G

    2011-01-01

    Xanthomonas axonopodis pv. citri is a phytopathogen bacterium that causes severe citrus canker disease. Similar to other phytopathogens, after infection by this bacterium, plants trigger a defense mechanism that produces reactive oxygen species. Ferredoxin-NADP(+) reductases (FNRs) are redox flavoenzymes that participate in several metabolic functions, including the response to reactive oxygen species. Xanthomonas axonopodis pv. citri has a gene (fpr) that encodes for a FNR (Xac-FNR) that belongs to the subclass I bacterial FNRs. The aim of this work was to search for the physiological role of this enzyme and to characterize its structural and functional properties. The functionality of Xac-FNR was tested by cross-complementation of a FNR knockout Escherichia coli strain, which exhibit high susceptibility to agents that produce an abnormal accumulation of (•)O(2)(-). Xac-FNR was able to substitute for the FNR in E. coli in its antioxidant role. The expression of fpr in X. axonopodis pv. citri was assessed using semiquantitative RT-PCR and Western blot analysis. A 2.2-fold induction was observed in the presence of the superoxide-generating agents methyl viologen and 2,3-dimethoxy-1,4-naphthoquinone. Structural and functional studies showed that Xac-FNR displayed different functional features from other subclass I bacterial FNRs. Our analyses suggest that these differences may be due to the unusual carboxy-terminal region. We propose a further classification of subclass I bacterial FNRs, which is useful to determine the nature of their ferredoxin redox partners. Using sequence analysis, we identified a ferredoxin (XAC1762) as a potential substrate of Xac-FNR. The purified ferredoxin protein displayed the typical broad UV-visible spectrum of [4Fe-4S] clusters and was able to function as substrate of Xac-FNR in the cytochrome c reductase activity. Our results suggest that Xac-FNR is involved in the oxidative stress response of Xanthomonas axonopodis pv. citri and

  11. Structural-functional characterization and physiological significance of ferredoxin-NADP reductase from Xanthomonas axonopodis pv. citri.

    Directory of Open Access Journals (Sweden)

    María Laura Tondo

    Full Text Available Xanthomonas axonopodis pv. citri is a phytopathogen bacterium that causes severe citrus canker disease. Similar to other phytopathogens, after infection by this bacterium, plants trigger a defense mechanism that produces reactive oxygen species. Ferredoxin-NADP(+ reductases (FNRs are redox flavoenzymes that participate in several metabolic functions, including the response to reactive oxygen species. Xanthomonas axonopodis pv. citri has a gene (fpr that encodes for a FNR (Xac-FNR that belongs to the subclass I bacterial FNRs. The aim of this work was to search for the physiological role of this enzyme and to characterize its structural and functional properties. The functionality of Xac-FNR was tested by cross-complementation of a FNR knockout Escherichia coli strain, which exhibit high susceptibility to agents that produce an abnormal accumulation of (•O(2(-. Xac-FNR was able to substitute for the FNR in E. coli in its antioxidant role. The expression of fpr in X. axonopodis pv. citri was assessed using semiquantitative RT-PCR and Western blot analysis. A 2.2-fold induction was observed in the presence of the superoxide-generating agents methyl viologen and 2,3-dimethoxy-1,4-naphthoquinone. Structural and functional studies showed that Xac-FNR displayed different functional features from other subclass I bacterial FNRs. Our analyses suggest that these differences may be due to the unusual carboxy-terminal region. We propose a further classification of subclass I bacterial FNRs, which is useful to determine the nature of their ferredoxin redox partners. Using sequence analysis, we identified a ferredoxin (XAC1762 as a potential substrate of Xac-FNR. The purified ferredoxin protein displayed the typical broad UV-visible spectrum of [4Fe-4S] clusters and was able to function as substrate of Xac-FNR in the cytochrome c reductase activity. Our results suggest that Xac-FNR is involved in the oxidative stress response of Xanthomonas axonopodis pv

  12. Identification of NAD(PH quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(PH quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes.

    Directory of Open Access Journals (Sweden)

    Ali Ryan

    Full Text Available Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(PH quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(PH quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions.

  13. GMC oxidoreductase, a highly expressed protein in a potent biocontrol agent Fusarium oxysporum Cong:1-2, is dispensable for biocontrol activity.

    Science.gov (United States)

    Kawabe, Masato; Okabe Onokubo, Akiko; Arimoto, Yutaka; Yoshida, Takanobu; Azegami, Koji; Teraoka, Tohru; Arie, Tsutomu

    2011-01-01

    A spontaneous non-pathogenic variant (Cong:1-2) derived from Fusarium oxysporum f. sp. conglutinans (Cong: 1-1), a causal agent of cabbage yellows, carries biocontrol activity for cabbage yellows. We found a GMC oxidoreductase (ODX1) among the proteins expressed much more in Cong:1-2 than Cong:1-1 by 2D-DIGE comparison. GMC oxidoreductases have been reported to be involved in biocontrol activity of several plant pathogenic fungi. The gene encoding ODX1 in Cong:1-2 was cloned, and targeted disruption of the gene in Cong:1-2 did not affect its biocontrol activity, suggesting that GMC oxidoreductase is dispensable for biocontrol activity in the fungal biocontrol agent.

  14. Ferredoxin:NAD + Oxidoreductase of Thermoanaerobacterium saccharolyticum and Its Role in Ethanol Formation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Liang; Lo, Jonathan; Shao, Xiongjun; Zheng, Tianyong; Olson, Daniel G.; Lynd, Lee R.; Atomi, H.

    2016-09-30

    ABSTRACT

    Ferredoxin:NAD+oxidoreductase (NADH-FNOR) catalyzes the transfer of electrons from reduced ferredoxin to NAD+. This enzyme has been hypothesized to be the main enzyme responsible for ferredoxin oxidization in the NADH-based ethanol pathway inThermoanaerobacterium saccharolyticum; however, the corresponding gene has not yet been identified. Here, we identified the Tsac_1705 protein as a candidate FNOR based on the homology of its functional domains. We then confirmed its activityin vitrowith a ferredoxin-based FNOR assay. To determine its role in metabolism, thetsac_1705gene was deleted in different strains ofT. saccharolyticum. In wild-typeT. saccharolyticum, deletion oftsac_1705resulted in a 75% loss of NADH-FNOR activity, which indicated that Tsac_1705 is the main NADH-FNOR inT.saccharolyticum. When both NADH- and NADPH-linked FNOR genes were deleted, the ethanol titer decreased and the ratio of ethanol to acetate approached unity, indicative of the absence of FNOR activity. Finally, we tested the effect of heterologous expression of Tsac_1705 inClostridium thermocellumand found improvements in both the titer and the yield of ethanol.

    IMPORTANCERedox balance plays a crucial role in many metabolic engineering strategies. Ferredoxins are widely used as electron carriers for anaerobic microorganism and plants. This study identified the gene responsible for electron transfer from ferredoxin to NAD+, a key reaction in the

  15. Regulation of P450 oxidoreductase by gonadotropins in rat ovary and its effect on estrogen production

    Directory of Open Access Journals (Sweden)

    Uesaka Miki

    2008-12-01

    Full Text Available Abstract Background P450 oxidoreductase (POR catalyzes electron transfer to microsomal P450 enzymes. Its deficiency causes Antley-Bixler syndrome (ABS, and about half the patients with ABS have ambiguous genitalia and/or impaired steroidogenesis. POR mRNA expression is up-regulated when mesenchymal stem cells (MSCs differentiate into steroidogenic cells, suggesting that the regulation of POR gene expression is important for steroidogenesis. In this context we examined the regulation of POR expression in ovarian granulosa cells by gonadotropins, and its possible role in steroidogenesis. Methods Changes in gene expression in MSCs during differentiation into steroidogenic cells were examined by DNA microarray analysis. Changes in mRNA and protein expression of POR in the rat ovary or in granulosa cells induced by gonadotropin treatment were examined by reverse transcription-polymerase chain reaction and western blotting. Effects of transient expression of wild-type or mutant (R457H or V492E POR proteins on the production of estrone in COS-7 cells were examined in vitro. Effects of POR knockdown were also examined in estrogen producing cell-line, KGN cells. Results POR mRNA was induced in MSCs following transduction with the SF-1 retrovirus, and was further increased by cAMP treatment. Expression of POR mRNA, as well as Cyp19 mRNA, in the rat ovary were induced by equine chorionic gonadotropin and human chorionic gonadotropin. POR mRNA and protein were also induced by follicle stimulating hormone in primary cultured rat granulosa cells, and the induction pattern was similar to that for aromatase. Transient expression of POR in COS-7 cells, which expressed a constant amount of aromatase protein, greatly increased the rate of conversion of androstenedione to estrone, in a dose-dependent manner. The expression of mutant POR proteins (R457H or V492E, such as those found in ABS patients, had much less effect on aromatase activity than expression of wild

  16. Differential Regulation of Duplicate Light-Dependent Protochlorophyllide Oxidoreductases in the Diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Heather M Hunsperger

    Full Text Available Diatoms (Bacilliariophyceae encode two light-dependent protochlorophyllide oxidoreductases (POR1 and POR2 that catalyze the penultimate step of chlorophyll biosynthesis in the light. Algae live in dynamic environments whose changing light levels induce photoacclimative metabolic shifts, including altered cellular chlorophyll levels. We hypothesized that the two POR proteins may be differentially adaptive under varying light conditions. Using the diatom Phaeodactylum tricornutum as a test system, differences in POR protein abundance and por gene expression were examined when this organism was grown on an alternating light:dark cycles at different irradiances; exposed to continuous light; and challenged by a significant decrease in light availability.For cultures maintained on a 12h light: 12h dark photoperiod at 200μE m-2 s-1 (200L/D, both por genes were up-regulated during the light and down-regulated in the dark, though por1 transcript abundance rose and fell earlier than that of por2. Little concordance occurred between por1 mRNA and POR1 protein abundance. In contrast, por2 mRNA and POR2 protein abundances followed similar diurnal patterns. When 200L/D P. tricornutum cultures were transferred to continuous light (200L/L, the diurnal regulatory pattern of por1 mRNA abundance but not of por2 was disrupted, and POR1 but not POR2 protein abundance dropped steeply. Under 1200μE m-2 s-1 (1200L/D, both por1 mRNA and POR1 protein abundance displayed diurnal oscillations. A compromised diel por2 mRNA response under 1200L/D did not impact the oscillation in POR2 abundance. When cells grown at 1200L/D were then shifted to 50μE m-2 s-1 (50L/D, por1 and por2 mRNA levels decreased swiftly but briefly upon light reduction. Thereafter, POR1 but not POR2 protein levels rose significantly in response to this light stepdown.Given the sensitivity of diatom por1/POR1 to real-time light cues and adherence of por2/POR2 regulation to the diurnal cycle, we suggest

  17. Degradation of Swainsonine by the NADP-Dependent Alcohol Dehydrogenase A1R6C3 in Arthrobacter sp. HW08

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2016-05-01

    Full Text Available Swainsonine is an indolizidine alkaloid that has been found in locoweeds and some fungi. Our previous study demonstrated that Arthrobacter sp. HW08 or its crude enzyme extract could degrade swainsonie efficiently. However, the mechanism of swainsonine degradation in bacteria remains unclear. In this study, we used label-free quantitative proteomics method based on liquid chromatography-electrospray ionization-tandem mass spectrometry to dissect the mechanism of swainsonine biodegradation by Arthrobacter sp. HW08. The results showed that 129 differentially expressed proteins were relevant to swainsonine degradation. These differentially expressed proteins were mostly related to the biological process of metabolism and the molecular function of catalytic activity. Among the 129 differentially expressed proteins, putative sugar phosphate isomerase/epimerase A1R5X7, Acetyl-CoA acetyltransferase A0JZ95, and nicotinamide adenine dinucleotide phosphate (NADP-dependent alcohol dehydrogenase A1R6C3 were found to contribute to the swainsonine degradation. Notably, NADP-dependent alcohol dehyrodgenase A1R6C3 appeared to play a major role in degrading swainsonine, but not as much as Arthrobacter sp. HW08 did. Collectively, our findings here provide insights to understand the mechanism of swainsonine degradation in bacteria.

  18. Cloning, expression, and biochemical characterization of a novel NADP(+)-dependent 7α-hydroxysteroid dehydrogenase from Clostridium difficile and its application for the oxidation of bile acids.

    Science.gov (United States)

    Bakonyi, Daniel; Hummel, Werner

    2017-04-01

    A gene encoding a novel 7α-specific NADP(+)-dependent hydroxysteroid dehydrogenase from Clostridium difficile was cloned and heterologously expressed in Escherichia coli. The enzyme was purified using an N-terminal hexa-his-tag and biochemically characterized. The optimum temperature is at 60°C, but the enzyme is inactivated at this temperature with a half-life time of 5min. Contrary to other known 7α-HSDHs, for example from Clostridium sardiniense or E. coli, the enzyme from C. difficile does not display a substrate inhibition. In order to demonstrate the applicability of this enzyme, a small-scale biotransformation of the bile acid chenodeoxycholic acid (CDCA) into 7-ketolithocholic acid (7-KLCA) was carried out with simultaneous regeneration of NADP(+) using an NADPH oxidase that resulted in a complete conversion (<99%). Furthermore, by a structure-based site-directed mutagenesis, cofactor specificity of the 7α-HSDH from Clostridium difficile was altered to accept NAD(H). This mutant was biochemically characterized and compared to the wild-type.

  19. Comprehensively Characterizing the Thioredoxin Interactome In Vivo Highlights the Central Role Played by This Ubiquitous Oxidoreductase in Redox Control.

    Science.gov (United States)

    Arts, Isabelle S; Vertommen, Didier; Baldin, Francesca; Laloux, Géraldine; Collet, Jean-François

    2016-06-01

    Thioredoxin (Trx) is a ubiquitous oxidoreductase maintaining protein-bound cysteine residues in the reduced thiol state. Here, we combined a well-established method to trap Trx substrates with the power of bacterial genetics to comprehensively characterize the in vivo Trx redox interactome in the model bacterium Escherichia coli Using strains engineered to optimize trapping, we report the identification of a total 268 Trx substrates, including 201 that had never been reported to depend on Trx for reduction. The newly identified Trx substrates are involved in a variety of cellular processes, ranging from energy metabolism to amino acid synthesis and transcription. The interaction between Trx and two of its newly identified substrates, a protein required for the import of most carbohydrates, PtsI, and the bacterial actin homolog MreB was studied in detail. We provide direct evidence that PtsI and MreB contain cysteine residues that are susceptible to oxidation and that participate in the formation of an intermolecular disulfide with Trx. By considerably expanding the number of Trx targets, our work highlights the role played by this major oxidoreductase in a variety of cellular processes. Moreover, as the dependence on Trx for reduction is often conserved across species, it also provides insightful information on the interactome of Trx in organisms other than E. coli.

  20. Thiol-disulfide Oxidoreductases TRX1 and TMX3 Decrease Neuronal Atrophy in a Lentiviral Mouse Model of Huntington's Disease.

    Science.gov (United States)

    Fox, Jonathan; Lu, Zhen; Barrows, Lorraine

    2015-11-06

    Huntington's disease (HD) is caused by a trinucleotide CAG repeat in the huntingtin gene (HTT) that results in expression of a polyglutamine-expanded mutant huntingtin protein (mHTT). N-terminal fragments of mHTT accumulate in brain neurons and glia as soluble monomeric and oligomeric species as well as insoluble protein aggregates and drive the disease process. Decreasing mHTT levels in brain provides protection and reversal of disease signs in HD mice making mHTT a prime target for disease modification. There is evidence for aberrant thiol oxidation within mHTT and other proteins in HD models. Based on this, we hypothesized that a specific thiol-disulfide oxidoreductase exists that decreases mHTT levels in cells and provides protection in HD mice. We undertook an in-vitro genetic screen of key thiol-disulfide oxidoreductases then completed secondary screens to identify those with mHTT decreasing properties. Our in-vitro experiments identified thioredoxin 1 and thioredoxin-related transmembrane protein 3 as proteins that decrease soluble mHTT levels in cultured cells. Using a lentiviral mouse model of HD we tested the effect of these proteins in striatum. Both proteins decreased mHTT-induced striatal neuronal atrophy. Findings provide evidence for a role of dysregulated protein-thiol homeostasis in the pathogenesis of HD.

  1. Salt shock-inducible Photosystem I cyclic electron transfer in Synechocystis PCC6803 relies on binding of ferredoxin : NADP(+) reductase to the thylakoid membranes via its CpcD phycobilisome-linker homologous N-terminal domain

    NARCIS (Netherlands)

    van Thor, JJ; Jeanjean, R; Havaux, M; Sjollema, KA; Joset, F; Hellingwerf, KJ; Matthijs, HCP

    2000-01-01

    Relative to ferredoxin:NADP(+) reductase (FNR) from chloroplasts, the comparable enzyme in cyanobacteria contains an additional 9 kDa domain at its amino-terninus, The domain is homologous to the phycocyanin associated linker polypeptide CpcD of the light harvesting phycobilisome antennae. The pheno

  2. Salt shock-inducible Photosystem I cyclic electron transfer in Synechocystis PCC6803 relies on binding of ferredoxin : NADP(+) reductase to the thylakoid membranes via its CpcD phycobilisome-linker homologous N-terminal domain

    NARCIS (Netherlands)

    van Thor, JJ; Jeanjean, R; Havaux, M; Sjollema, KA; Joset, F; Hellingwerf, KJ; Matthijs, HCP

    2000-01-01

    Relative to ferredoxin:NADP(+) reductase (FNR) from chloroplasts, the comparable enzyme in cyanobacteria contains an additional 9 kDa domain at its amino-terninus, The domain is homologous to the phycocyanin associated linker polypeptide CpcD of the light harvesting phycobilisome antennae. The pheno

  3. Cortisone induces insulin resistance in C2C12 myotubes through activation of 11beta-hydroxysteroid dehydrogenase 1 and autocrinal regulation.

    Science.gov (United States)

    Park, Seung Yeon; Bae, Ji Hyun; Cho, Young Sik

    2014-04-01

    The enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) is known to catalyse inactive glucocorticoids into active forms, and its dysregulation in adipose and muscle tissues has been implicated in the development of metabolic syndrome. To delineate the molecular mechanism by which active cortisol has an antagonizing effect against insulin, we optimized the metabolic production of cortisol and its biological functions in myotubes (C2C12). Myotubes supplemented with cortisone actively catalysed its conversion into cortisol, which in turn abolished phosphorylation of Akt in response to insulin treatment. This led to diminished uptake of insulin-induced glucose. This was corroborated by the application of 11β-HSD1 inhibitor glycyrrhetinic acid and a glucocorticoid receptor antagonist RU-486, which reversed completely the antagonizing effects of cortisol on insulin action. Therefore, development of specific inhibitors targeting 11β-HSD1 might be a promising way to improve impaired insulin-stimulated glucose uptake. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Study of 5alph-reductase 2 and 3beta-hydroxysteroid dehydrogenase 2enzymes on ambiguous genital and prostate cancer

    OpenAIRE

    Lucio Fabio Caldas Ferraz

    2006-01-01

    O hormônio androgênico di-hidrotestosterona (DHT) possui fundamental importância na diferenciação sexual masculina e no desenvolvimento e manutenção da próstata. Duas enzimas atuam diretamente na concentração deste andrógeno nas células: 1) com uma função anabólica, a enzima 5α-redutase tipo 2 (gene SRD5A2) é responsável pela síntese de DHT ao converter testosterona (T) em 5α-di-hidrotestosterona e 2) com uma função catabólica, a enzima 3β- hidroxi desydrogenase/[...

  5. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Svendsen, P F; Madsbad, S; Nilas, L

    2009-01-01

    controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model......beta-HSD1 mRNA. The subgroups LP and OC had increased 11beta-HSD1 and 11beta-HSD2 mRNA expression compared with LC (Pfat...

  6. A novel genetically-obese rat model with elevated 11beta-hydroxysteroid dehydrogenase type 1 activity in subcutaneous adipose tissue

    OpenAIRE

    Giridharan Nappan V; Reddy Sirisha J; Kumar Chodavarapu; Prashanth Anamthathmakula; Prasad Sakamuri; Vajreswari Ayyalasomayajula

    2010-01-01

    Abstract 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and plays an important role in the development of obesity and metabolic syndrome. 11β-HSD1 activity is lower in liver and higher in omental adipose tissue of obese rodent models like obese zucker rats, Ob/Ob and db/db mice. Here, we report the 11β-HSD1 activity in liver and adipose tissue of lean and obese rats of WNIN/Ob strain, a new genetic rat model of...

  7. A novel genetically-obese rat model with elevated 11beta-hydroxysteroid dehydrogenase type 1 activity in subcutaneous adipose tissue

    Directory of Open Access Journals (Sweden)

    Giridharan Nappan V

    2010-11-01

    Full Text Available Abstract 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and plays an important role in the development of obesity and metabolic syndrome. 11β-HSD1 activity is lower in liver and higher in omental adipose tissue of obese rodent models like obese zucker rats, Ob/Ob and db/db mice. Here, we report the 11β-HSD1 activity in liver and adipose tissue of lean and obese rats of WNIN/Ob strain, a new genetic rat model of obesity. 11β-HSD1 activity in liver, omental and subcutaneous adipose tissues of 3 month-old male WNIN/Ob lean and obese rats was assayed. As observed in other rodent models, 11β-HSD1 activity was lower in liver and higher in omental adipose tissue. In contrast to other rodent obese models, WNIN/Ob obese rats had elevated 11β-HSD1 activity in subcutaneous adipose tissue, which is in line with the observation in human obesity. Here, we conclude that dysregulation of 11β-HSD1 in WNIN/Ob obese rat model is identical to human obesity, which makes it an excellent model for studying the effect of 11β-HSD1 inhibitors in ameliorating obesity and metabolic syndrome.

  8. A novel genetically-obese rat model with elevated 11 beta-hydroxysteroid dehydrogenase type 1 activity in subcutaneous adipose tissue.

    Science.gov (United States)

    Prasad, Sakamuri S S Vara; Prashanth, Anamthathmakula; Kumar, Chodavarapu Pavan; Reddy, Sirisha J; Giridharan, Nappan V; Vajreswari, Ayyalasomayajula

    2010-11-17

    11 β-hydroxysteroid dehydrogenase type 1 (11 β-HSD1) catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and plays an important role in the development of obesity and metabolic syndrome. 11 β-HSD1 activity is lower in liver and higher in omental adipose tissue of obese rodent models like obese zucker rats, Ob/Ob and db/db mice. Here, we report the 11 β-HSD1 activity in liver and adipose tissue of lean and obese rats of WNIN/Ob strain, a new genetic rat model of obesity. 11 β-HSD1 activity in liver, omental and subcutaneous adipose tissues of 3 month-old male WNIN/Ob lean and obese rats was assayed. As observed in other rodent models, 11 β-HSD1 activity was lower in liver and higher in omental adipose tissue. In contrast to other rodent obese models, WNIN/Ob obese rats had elevated 11 β-HSD1 activity in subcutaneous adipose tissue, which is in line with the observation in human obesity. Here, we conclude that dysregulation of 11 β-HSD1 in WNIN/Ob obese rat model is identical to human obesity, which makes it an excellent model for studying the effect of 11 β-HSD1 inhibitors in ameliorating obesity and metabolic syndrome.

  9. [Possible pathogenetic role of 11 beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) gene polymorphisms in arterial hypertension].

    Science.gov (United States)

    Morales, Mauricio A; Carvajal, Cristián A; Ortiz, Eugenia; Mosso, Lorena M; Artigas, Rocío A; Owen, Gareth I; Fardella, Carlos E

    2008-06-01

    Cortisol has been implicated in hypertension and lately reported to be regulated at the pre-receptor level by the 11betaHSD1 enzyme, which converts cortisone (E) to cortisol (F). Over-expression of this enzyme in adipose tissue could determine an increase in available cortisol that interacts with the mineralocorticoid receptor (MR) in renal, brain and heart tissue, leading to similar hypertensive effects as in 11betaHSD2 impaired patients. Several polymorphisms have been reported in HSDl IB 1 gene (CAI5, CAI9 and InsA83557), which could modify HSDl IB 1 gene expression or activity. To determine the distribution and prevalence of CAI5, CAI9 and InsA83557 in the HSDl IBl gene, and to correlate these results with biochemical parameters in cortisol/ ACTH (HPA) and renin-angiotensin-aldosterone (RAA) axis in patients with essential hypertension (EH). We studied 113 EH patients (76 non-obese and 37 obese, with a body mass índex >30 kg/m(2)) and 30 normotensive adults (NT). In each patient, we measured serum levels of E E, serum aldosterone (SA), plasma renin activity (PRA), adrenocorticotrophic hormone (ACTH), the urinary free cortisol/creatinine (UFF/Cr), F/ACTH and SA/PRA ratios. Each polymorphism was studied by PCR and 8% polyacrylamide gel electrophoresis. Statistical associations were evaluated by Pearson correlations and the genetic equilibrium by the Hardy-Weinberg (H-W) equation. We found all three polymorphisms in the EH and the NT group, both in genetic equilibrium. In obese essential hypertensives, the CAI5 polymorphism showed association with SA/PRA ratio (r =0.189, p =0.012) and F/ACTH (r =0.301, p 0.048); CA19 also showed correlation with F/ACTH in obese EH (r = 0.220, p 0.009). The InsA83557polymorphism correlated with UFF/Cr in both EH (r =0.206; p =0.03), and in obese EH (r =0.354; p =0.05). The CAI5 and CAI9 polymorphism correlated with changes in biochemical parameters in HPA and RAA axis of obese essential hypertensives. These changes may result in modifications in the expression of 11betaHSD1, leading to increased cortisol and aldosterone levels independent of ACTH and renin control, respectively.

  10. A physiological threshold for protection against menadione toxicity by human NAD(P)H : quinone oxidoreductase (NQO1) in Chinese hamster ovary (CHO) cells

    NARCIS (Netherlands)

    Haan, de L.H.J.; Boerboom, A.M.J.F.; Rietjens, I.M.C.M.; Capelle, van D.; Ruijter, de A.J.M.; Jaiswal, A.K.; Aarts, J.M.M.J.G.

    2002-01-01

    NAD(P)H:quinone oxidoreductase 1 (NQO1) has often been suggested to be involved in cancer prevention by means of detoxification of electrophilic quinones. In the present study, a series of Chinese hamster ovary (CHO) cell lines expressing various elevated levels of human NQO1 were generated by stabl

  11. Laboratory Prototype of Bioreactor for Oxidation of Toxic D-Lactate Using Yeast Cells Overproducing D-Lactate Cytochrome c Oxidoreductase

    Directory of Open Access Journals (Sweden)

    Maria Karkovska

    2016-01-01

    Full Text Available D-lactate is a natural component of many fermented foods like yogurts, sour milk, cheeses, and pickles vegetable products. D-lactate in high concentrations is toxic for children and people with short bowel syndrome and provokes encephalopathy. These facts convincingly demonstrate a need for effective tools for the D-lactate removal from some food products. The main idea of investigation is focused on application of recombinant thermotolerant methylotrophic yeast Hansenula polymorpha “tr6,” overproducing D-lactate: cytochrome c oxidoreductase (EC 1.1.2.4, D-lactate cytochrome c oxidoreductase, D-lactate dehydrogenase (cytochrome, DLDH. In addition to 6-fold overexpression of DLDH under a strong constitutive promoter (prAOX, the strain of H. polymorpha “tr6” (gcr1 catX/Δcyb2, prAOX_DLDH is characterized by impairment in glucose repression of AOX promoter, devoid of catalase and L-lactate-cytochrome c oxidoreductase activities. Overexpression of DLDH coupling with the deletion of L-lactate-cytochrome c oxidoreductase activity opens possibility for usage of the strain as a base for construction of bioreactor for removing D-lactate from fermented products due to oxidation to nontoxic pyruvate. A laboratory prototype of column-type bioreactor for removing a toxic D-lactate from model solution based on permeabilized cells of the H. polymorpha “tr6” and alginate gel was constructed and efficiency of this process was tested.

  12. Requirement of Signal Peptidase ComC and Thiol-Disulfide Oxidoreductase DsbA for Optimal Cell Surface Display of Pseudopilin ComGC in Staphylococcus aureus

    NARCIS (Netherlands)

    van der Kooi-Pol, Magdalena M.; Reilman, Ewoud; Sibbald, Mark J. J. B.; Veenstra-Kyuchukova, Yanka K.; Kouwen, Thijs R. H. M.; Buist, Girbe; van Dijl, Jan Maarten

    2012-01-01

    Staphylococcus aureus is an important Gram-positive bacterial pathogen producing many secreted and cell surface-localized virulence factors. Here we report that the staphylococcal thiol-disulfide oxidoreductase DsbA is essential for stable biogenesis of the ComGC pseudopilin. The signal peptidase

  13. The reaction of NADPH with bovine mitochondrial NADH:ubiquinone oxidoreductase revisited: II. Comparison of the proposed working hypothesis with literature data.

    NARCIS (Netherlands)

    Albracht, S.P.J.

    2010-01-01

    The first purification of bovine NADH:ubiquinone oxidoreductase (Complex I) was reported nearly half a century ago (Hatefi et al. J Biol Chem 237:1676-1680, 1962). The pathway of electron-transfer through the enzyme is still under debate. A major obstacle is the assignment of EPR signals to the indi

  14. The activity of uridine diphosphate-D-glucose: Nicotinamide-adenine dinucleotide oxidoreductase in cambial tissue and differentiating xylem isolated from sycamore trees.

    Science.gov (United States)

    Rubery, P H

    1972-06-01

    The activity of UDPGlc: NAD oxidoreductase is measured in enzyme preparations obtained from sycamore cambium and xylem tissue. The activity of this enzyme is greater in xylem than in cambium whether expressed on a specific activity basis or on a per-cell basis. It is suggested that, in developing xylem, direct oxidation of UDPGlc may contribute significantly to the biosynthesis of polysaccharide precursors.

  15. Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells.

    Science.gov (United States)

    Lee, Su Jeong; Park, Jeen-Woo

    2014-04-01

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells.

  16. Design and Synthesis of Chalcone Derivatives as Inhibitors of the Ferredoxin — Ferredoxin-NADP+ Reductase Interaction of Plasmodium falciparum: Pursuing New Antimalarial Agents

    Directory of Open Access Journals (Sweden)

    Hery Suwito

    2014-12-01

    Full Text Available Some chalcones have been designed and synthesized using Claisen-Schmidt reactions as inhibitors of the ferredoxin and ferredoxin-NADP+ reductase interaction to pursue a new selective antimalaria agent. The synthesized compounds exhibited inhibition interactions between PfFd-PfFNR in the range of 10.94%–50%. The three strongest inhibition activities were shown by (E-1-(4-aminophenyl-3-(4-methoxyphenylprop-2-en-1-one (50%, (E-1-(4-aminophenyl-3-(2,4-dimethoxyphenylprop-2-en-1-one (38.16%, and (E-1-(4-aminophenyl-3-(2,3-dimethoxyphenylprop-2-en-1-one (31.58%. From the docking experiments we established that the amino group of the methoxyamino chlacone derivatives plays an important role in the inhibition activity by electrostatic interaction through salt bridges and that it forms more stable and better affinity complexes with FNR than with Fd.

  17. A di-arginine motif contributes to the ER localization of the type I transmembrane ER oxidoreductase TMX4

    DEFF Research Database (Denmark)

    Roth, D.; Lynes, E.; Riemer, Jan

    2010-01-01

    The thiol-disulfide oxidoreductases of the PDI (protein disulfide isomerase) family assist in disulfide-bond formation in the ER (endoplasmic reticulum). In the present study, we have shown that the previously uncharacterized PDI family member TMX4 (thioredoxin-like transmembrane 4) is an N......-glycosylated type I membrane protein that localizes to the ER. We also demonstrate that TMX4 contains a single ER-luminal thioredoxin-like domain, which, in contrast with similar domains in other PDIs, is mainly oxidized in living cells. The TMX4 transcript displays a wide tissue distribution, and is strongly...... of the protein. Moreover, whereas the cytoplasmic region of TMX4 confers ER localization to a reporter protein, the KQK mutant of the same protein redistributes to the cell surface. Overall, features not commonly found in other PDIs characterize TMX4 and suggest unique functional properties of the protein...

  18. The sodium pumping NADH:quinone oxidoreductase (Na⁺-NQR), a unique redox-driven ion pump.

    Science.gov (United States)

    Barquera, Blanca

    2014-08-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is a unique Na(+) pumping respiratory complex found only in prokaryotes, that plays a key role in the metabolism of marine and pathogenic bacteria, including Vibrio cholerae and other human pathogens. Na(+)-NQR is the main entrance for reducing equivalents into the respiratory chain of these bacteria, catalyzing the oxidation of NADH and the reduction of quinone, the free energy of this redox reaction drives the selective translocation of Na(+) across the cell membrane, which energizes key cellular processes. In this review we summarize the unique properties of Na(+)-NQR in terms of its redox cofactor composition, electron transfer reactions and a possible mechanism of coupling and pumping.

  19. Mechanism of porcine liver xanthine oxidoreductase mediated N-oxide reduction of cyadox as revealed by docking and mutagenesis studies.

    Directory of Open Access Journals (Sweden)

    Chigang Chen

    Full Text Available Xanthine oxidoreductase (XOR is a cytoplasmic molybdenum-containing oxidoreductase, catalyzing both endogenous purines and exogenous compounds. It is suggested that XOR in porcine hepatocytes catalyzes the N-oxide reduction of quinoxaline 1,4-di-N-oxides (QdNOs. To elucidate the molecular mechanism underlying this metabolism, the cDNA of porcine XOR was cloned and heterologously expressed in Spodoptera frugiperda insect cells. The bovine XOR, showing sequence identity of 91% to porcine XOR, was employed as template for homology modeling. By docking cyadox, a representative compound of QdNOs, into porcine XOR model, eight amino acid residues, Gly47, Asn352, Ser360, Arg427, Asp430, Asp431, Ser1227 and Lys1230, were located at distances of less than 4Å to cyadox. Site-directed mutagenesis was performed to analyze their catalytic functions. Compared with wild type porcine XOR, G47A, S360P, D431A, S1227A, and K1230A displayed altered kinetic parameters in cyadox reduction, similarly to that in xanthine oxidation, indicating these mutations influenced electron-donating process of xanthine before subsequent electron transfer to cyadox to fulfill the N-oxide reduction. Differently, R427E and D430H, both located in the 424-434 loop, exhibited a much lower K(m and a decreased V(max respectively in cyadox reduction. Arg427 may be related to the substrate binding of porcine XOR to cyadox, and Asp430 is suggested to be involved in the transfer of electron to cyadox. This study initially reveals the possible catalytic mechanism of porcine XOR in cyadox metabolism, providing with novel insights into the structure-function relationship of XOR in the reduction of exogenous di-N-oxides.

  20. Recovery of ascorbic oxidoreductase from crude extract with an aqueous two-phase system in a perforated rotating disc contactor

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Figueiredo Porto

    2004-09-01

    Full Text Available A continuous perforated rotating disc contactor was used to extract the enzyme ascorbic oxidoreductase (E.C.1.10.3.3 from crude extract of Curcubita maxima with an aqueous two-phase system of poly (ethylene glycol and phosphate salts. The effect of dispersed phase velocity on either protein mass transfer coefficients or separation efficiency at 1, 2 and 3 mL/min was studied. An increase of the mass transfer coefficients was observed with the dispersed phase velocity, while the separation efficiency showed a small decrease with the increase of this parameter. The experimental results obtained during continuous extraction showed that the ascorbic oxidoreductase activity was partitioned preferentially into the salt-rich phase in all conditions studied. The best recovery of enzyme activity was 236%, with a purification factor of 34 in flow rates of 1 mL/min for dispersed phase.Uma coluna de discos perfurados rotativos foi utilizada na extração da enzima ascorbato oxidorredutase (E.C.1.10.3.3, obtida do extrato bruto de Curcubita maxima, através da utilização do sistema bifásico aquoso Polietilenoglicol-sais de fosfato. Os efeitos da velocidade da fase dispersa nos coeficientes de transferência de massa e na eficiência de separação para valores de 1, 2 e 3 mL/min foram estudados. Observou-se um aumento da transferência de massa com a velocidade da fase dispersa, enquanto que a eficiência de separação demonstrou uma ligeira redução com o aumento deste parâmetro. Os resultados experimentais obtidos durante a extração contínua demonstraram que a atividade da ascorbato oxidorredutase se concentrou preferencialmente na fase rica em sal para todas as condições estudadas. A maior recuperação da atividade enzimática foi de 236%, com um fator de purificação de 34 para o valor de 1 mL/min para a fase dispersa.

  1. The Rnf Complex of Clostridium ljungdahlii Is a Proton-Translocating Ferredoxin:NAD(+) Oxidoreductase Essential for Autotrophic Growth

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, PL; Zhang, T; Dar, SA; Leang, C; Lovley, DR

    2012-12-26

    It has been predicted that the Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin: NAD(+) oxidoreductase which contributes to ATP synthesis by an H+-translocating ATPase under both autotrophic and heterotrophic growth conditions. The recent development of methods for genetic manipulation of C. ljungdahlii made it possible to evaluate the possible role of the Rnf complex in energy conservation. Disruption of the C. ljungdahlii rnf operon inhibited autotrophic growth. ATP synthesis, proton gradient, membrane potential, and proton motive force collapsed in the Rnf-deficient mutant with H-2 as the electron source and CO2 as the electron acceptor. Heterotrophic growth was hindered in the absence of a functional Rnf complex, as ATP synthesis, proton gradient, and proton motive force were significantly reduced with fructose as the electron donor. Growth of the Rnf-deficient mutant was also inhibited when no source of fixed nitrogen was provided. These results demonstrate that the Rnf complex of C. ljungdahlii is responsible for translocation of protons across the membrane to elicit energy conservation during acetogenesis and is a multifunctional device also implicated in nitrogen fixation. IMPORTANCE Mechanisms for energy conservation in the acetogen Clostridium ljungdahlii are of interest because of its potential value as a chassis for the production of biocommodities with novel electron donors such as carbon monoxide, syngas, and electrons derived from electrodes. Characterizing the components implicated in the chemiosmotic ATP synthesis during acetogenesis by C. ljungdahlii is a prerequisite for the development of highly productive strains. The Rnf complex has been considered the prime candidate to be the pump responsible for the formation of an ion gradient coupled with ATP synthesis in multiple acetogens. However, experimental evidence for a proton-pumping Rnf complex has been lacking. This study establishes the C. ljungdahlii Rnf complex as

  2. Biphasic kinetic behavior of E. coli WrbA, an FMN-dependent NAD(PH:quinone oxidoreductase.

    Directory of Open Access Journals (Sweden)

    Iryna Kishko

    Full Text Available The E. coli protein WrbA is an FMN-dependent NAD(PH:quinone oxidoreductase that has been implicated in oxidative defense. Three subunits of the tetrameric enzyme contribute to each of four identical, cavernous active sites that appear to accommodate NAD(PH or various quinones, but not simultaneously, suggesting an obligate tetramer with a ping-pong mechanism in which NAD departs before oxidized quinone binds. The present work was undertaken to evaluate these suggestions and to characterize the kinetic behavior of WrbA. Steady-state kinetics results reveal that WrbA conforms to a ping-pong mechanism with respect to the constancy of the apparent Vmax to Km ratio with substrate concentration. However, the competitive/non-competitive patterns of product inhibition, though consistent with the general class of bi-substrate reactions, do not exclude a minor contribution from additional forms of the enzyme. NMR results support the presence of additional enzyme forms. Docking and energy calculations find that electron-transfer-competent binding sites for NADH and benzoquinone present severe steric overlap, consistent with the ping-pong mechanism. Unexpectedly, plots of initial velocity as a function of either NADH or benzoquinone concentration present one or two Michaelis-Menten phases depending on the temperature at which the enzyme is held prior to assay. The effect of temperature is reversible, suggesting an intramolecular conformational process. WrbA shares these and other details of its kinetic behavior with mammalian DT-diaphorase, an FAD-dependent NAD(PH:quinone oxidoreductase. An extensive literature review reveals several other enzymes with two-plateau kinetic plots, but in no case has a molecular explanation been elucidated. Preliminary sedimentation velocity analysis of WrbA indicates a large shift in size of the multimer with temperature, suggesting that subunit assembly coupled to substrate binding may underlie the two-plateau behavior. An

  3. Identification of the Ndh (NAD(P)H-Plastoquinone-oxidoreductase) Complex in Etioplast Membranes of Barley : Changes during Photomorphogenesis of Chloroplasts

    OpenAIRE

    Alfredo, Guera; Pedro G.de, Nova; Bartolome, Sabater; Departamento de Biologia Vegetal, Universidad de Alcala de Henares

    2000-01-01

    In the last few years the presence in thylakoid membranes of chloroplasts of a NAD(P)H-plastoquinone oxidoreductase complex (Ndh complex) homologous to mitochondrial complex I has been well established. Herein, we report the identification of the Ndh complex in barley etioplast membranes. Two plastid DNA-encoded polypeptides of the Ndh complex (NDH-A and NDH-F) were relatively more abundant in etioplast membranes than in thylakoids from greening chloroplasts. Conversion of etioplast into chlo...

  4. Hybrid neural network model for simulating sorbitol synthesis by glucose-fructose oxidoreductase in Zymomonas mobilis CP4

    Directory of Open Access Journals (Sweden)

    Bravo S.

    2004-01-01

    Full Text Available A hybrid neural network model for simulating the process of enzymatic reduction of fructose to sorbitol process catalyzed by glucose-fructose oxidoreductase in Zymomonas mobilis CP4 is presented. Data used to derive and validate the model was obtained from experiments carried out under different conditions of pH, temperature and concentrations of both substrates (glucose and fructose involved in the reaction. Sonicated and lyophilized cells were used as source of the enzyme. The optimal pH for sorbitol synthesis at 30º C is 6.5. For a value of pH of 6, the optimal temperature is 35º C. The neural network in the model computes the value of the kinetic relationship. The hybrid neural network model is able to simulate changes in the substrates and product concentrations during sorbitol synthesis under pH and temperature conditions ranging between 5 and 7.5 and 25 and 40º C, respectively. Under these conditions the rate of sorbitol synthesis shows important differences. Values computed using the hybrid neural network model have an average error of 1.7·10-3 mole.

  5. New insights into the operative network of FaEO, an enone oxidoreductase from Fragaria x ananassa Duch.

    Science.gov (United States)

    Collu, Gabriella; Farci, Domenica; Esposito, Francesca; Pintus, Francesca; Kirkpatrick, Joanna; Piano, Dario

    2017-05-01

    The 2-methylene-furan-3-one reductase or Fragaria x ananassa Enone Oxidoreductase (FaEO) catalyses the last reductive step in the biosynthesis of 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a major component in the characteristic flavour of strawberries. In the present work, we describe the association between FaEO and the vacuolar membrane of strawberry fruits. Even if FaEO lacks epitopes for stable or transient membrane-interactions, it contains a calmodulin-binding region, suggesting that in vivo FaEO may be associated with the membrane via a peripheral protein complex with calmodulin. Moreover, we also found that FaEO occurs in dimeric form in vivo and, as frequently observed for calmodulin-regulated proteins, it may be expressed in different isoforms by alternative gene splicing. Further mass spectrometry analysis confirmed that the isolated FaEO consists in the already known isoform and that it is the most characteristic during ripening. Finally, a characterization by absorption spectroscopy showed that FaEO has specific flavoprotein features. The relevance of these findings and their possible physiological implications are discussed.

  6. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases

    Science.gov (United States)

    Zargar, Kamrun; Conrad, Alison; Bernick, David L.; Lowe, Todd M.; Stolc, Viktor; Hoeft, Shelley; Oremland, Ronald S.; Stolz, John; Saltikov, Chad W.

    2012-01-01

    Arsenotrophy, growth coupled to autotrophic arsenite oxidation or arsenate respiratory reduction, occurs only in the prokaryotic domain of life. The enzymes responsible for arsenotrophy belong to distinct clades within the DMSO reductase family of molybdenum-containing oxidoreductases: specifically arsenate respiratory reductase, ArrA, and arsenite oxidase, AioA (formerly referred to as AroA and AoxB). A new arsenite oxidase clade, ArxA, represented by the haloalkaliphilic bacterium Alkalilimnicola ehrlichii strain MLHE-1 was also identified in the photosynthetic purple sulfur bacterium Ectothiorhodospira sp. strain PHS-1. A draft genome sequence of PHS-1 was completed and an arx operon similar to MLHE-1 was identified. Gene expression studies showed that arxA was strongly induced with arsenite. Microbial ecology investigation led to the identification of additional arxA-like sequences in Mono Lake and Hot Creek sediments, both arsenic-rich environments in California. Phylogenetic analyses placed these sequences as distinct members of the ArxA clade of arsenite oxidases. ArxA-like sequences were also identified in metagenome sequences of several alkaline microbial mat environments of Yellowstone National Park hot springs. These results suggest that ArxA-type arsenite oxidases appear to be widely distributed in the environment presenting an opportunity for further investigations of the contribution of Arx-dependent arsenotrophy to the arsenic biogeochemical cycle.

  7. Crystallization of the NADH-oxidizing domain of the Na{sup +}-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Minli [Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Türk, Karin [School of Engineering and Science, International University Bremen, 28759 Bremen (Germany); Diez, Joachim [Swiss Light Source at Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Grütter, Markus G. [Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Fritz, Günter, E-mail: guenter.fritz@uni-konstanz.de [Fachbereich Biologie, Universität Konstanz, Postfach M665, Universitätsstrasse 10, 78457 Konstanz (Germany); Steuber, Julia, E-mail: guenter.fritz@uni-konstanz.de [Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)

    2006-02-01

    The FAD domain of the NqrF subunit from the Na{sup +}-translocating NADH dehydrogenase from V. cholerae has been purified and crystallized. A complete data set was recorded at 3.1 Å. The Na{sup +}-translocating NADH:quinone oxidoreductase (Na{sup +}-NQR) from pathogenic and marine bacteria is a respiratory complex that couples the exergonic oxidation of NADH by quinone to the transport of Na{sup +} across the membrane. The NqrF subunit oxidizes NADH and transfers the electrons to other redox cofactors in the enzyme. The FAD-containing domain of NqrF has been expressed, purified and crystallized. The purified NqrF FAD domain exhibited high rates of NADH oxidation and contained stoichiometric amounts of the FAD cofactor. Initial crystallization of the flavin domain was achieved by the sitting-drop technique using a Cartesian MicroSys4000 robot. Optimization of the crystallization conditions yielded yellow hexagonal crystals with dimensions of 30 × 30 × 70 µm. The protein mainly crystallizes in long hexagonal needles with a diameter of up to 30 µm. Crystals diffract to 2.8 Å and belong to space group P622, with unit-cell parameters a = b = 145.3, c = 90.2 Å, α = β = 90, γ = 120°.

  8. The Crystal Structure and Mechanism of an Unusual Oxidoreductase, GilR, Involved in Gilvocarcin V Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Noinaj, Nicholas; Bosserman, Mary A.; Schickli, M. Alexandra; Piszczek, Grzegorz; Kharel, Madan K.; Pahari, Pallab; Buchanan, Susan K.; Rohr, Jürgen (NIH); (Kentucky)

    2012-11-26

    GilR is a recently identified oxidoreductase that catalyzes the terminal step of gilvocarcin V biosynthesis and is a unique enzyme that establishes the lactone core of the polyketide-derived gilvocarcin chromophore. Gilvocarcin-type compounds form a small distinct family of anticancer agents that are involved in both photo-activated DNA-alkylation and histone H3 cross-linking. High resolution crystal structures of apoGilR and GilR in complex with its substrate pregilvocarcin V reveals that GilR belongs to the small group of a relatively new type of the vanillyl-alcohol oxidase flavoprotein family characterized by bicovalently tethered cofactors. GilR was found as a dimer, with the bicovalently attached FAD cofactor mediated through His-65 and Cys-125. Subsequent mutagenesis and functional assays indicate that Tyr-445 may be involved in reaction catalysis and in mediating the covalent attachment of FAD, whereas Tyr-448 serves as an essential residue initiating the catalysis by swinging away from the active site to accommodate binding of the 6R-configured substrate and consequently abstracting the proton of the hydroxyl residue of the substrate hemiacetal 6-OH group. These studies lay the groundwork for future enzyme engineering to broaden the substrate specificity of this bottleneck enzyme of the gilvocarcin biosynthetic pathway for the development of novel anti-cancer therapeutics.

  9. Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and glucose using an oxidoreductase of Zymomonas mobilis and inulinase.

    Science.gov (United States)

    Kim, D M; Kim, H S

    1992-02-01

    Gluconic acid and sorbitol were simultaneously produced from glucose and Jerusalem artichoke using a glucose-fructose oxidoreductase of Zymomonas mobilis and inulinase. Inulinase was immobilized on chitin by cross-linking with glutaraldehyde. Cells of Z. mobilis permeabilized with toluene were coimmobilized with chitin-immobilized inulinase in alginate beads. The optimum amounts of both chitin-immobilized inulinase and permeabilized cells for coimmobilization were determined, and operational conditions were optimized. In a continuous stirred tank reactor operation, the maximum productivities for gluconic acid and sorbitol were about 19.2 and 21.3 g/L/h, respectively, at the dilution rate of 0.23 h(-1) and the substrate concentration of 20%, but operational stability was low because of the abrasion of the beads. As an approach to increase the operational stability, a recycle packed-bed reactor (RPBR) was employed. In RPBR operation, the maximum productivities for gluconic acid and sorbitol were found to be 23.4 and 26.0 g/L/h, respectively, at the dilution rate of 0.35 h(-1) and the substrate concentration of 20% when the recirculation rate was fixed at 900 mL/h. Coimmobilized enzymes were stable for 250 h in a recycle packed-bed reactor without any loss of activity, while half-life in a continuous stirred tank reactor (CSTR) was observed to be about 150 h.

  10. Insight Into the Radical Mechanism of Phycocyanobilin-Ferredoxin Oxidoreductase (Pcya) Revealed By X-Ray Crystallography And Biochemical Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tu, S.-L.; Rockwell, N.; Lagarias, J.C.; Fisher, A.J.; /Inst. Plant Microb. Biol., Taipei /UC, Davis

    2007-07-13

    The X-ray crystal structure of the substrate-free form of phycocyanobilin (PCB)-ferredoxin oxidoreductase (PcyA; EC 1.3.7.5) from the cyanobacterium Nostoc sp. PCC7120 has been solved at 2.5 angstrom resolution. A comparative analysis of this structure with those recently reported for substrate-bound and substrate-free forms of PcyA from the cyanobacterium Synechocystis sp. PCC6803 (Hagiwara et al. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 27-32; Hagiwara et al. (2006) FEBS Lett. 580, 3823-3828) provides a compelling picture of substrate-induced changes in the PcyA enzyme and the chemical basis of PcyA's catalytic activity. On the basis of these structures and the biochemical analysis of site-directed mutants of Nostoc PcyA, including mutants reported in recent studies (Tu et al. (2006) J. Biol. Chem. 281, 3127-3136) as well as mutants described in this study, a revised mechanism for the PcyA-mediated four-electron reduction of biliverdin IX{alpha} to 3E/3Z-phycocyanobilin via enzyme-bound bilin radical intermediates is proposed. The mechanistic insight of these studies, along with homology modeling, have provided new insight into the catalytic mechanisms of other members of the ferredoxin-dependent bilin reductase family that are widespread in oxygenic photosynthetic organisms.

  11. Staphylococcus aureus DsbA is a membrane-bound lipoprotein with thiol-disulfide oxidoreductase activity.

    Science.gov (United States)

    Dumoulin, Alexis; Grauschopf, Ulla; Bischoff, Markus; Thöny-Meyer, Linda; Berger-Bächi, Brigitte

    2005-11-01

    DsbA proteins, the primary catalysts of protein disulfide bond formation, are known to affect virulence and penicillin resistance in Gram-negative bacteria. We identified a putative DsbA homologue in the Gram-positive pathogen Staphylococcus aureus that was able to restore the motility phenotype of an Escherichia coli dsbA mutant and thus demonstrated a functional thiol oxidoreductase activity. The staphylococcal DsbA (SaDsbA) had a strong oxidative redox potential of -131 mV. The persistence of the protein throughout the growth cycle despite its predominant transcription during exponential growth phase suggested a rather long half-life for the SaDsbA. SaDsbA was found to be a membrane localised lipoprotein, supporting a role in disulfide bond formation. But so far, neither in vitro nor in vivo phenotype could be identified in a staphylococcal dsbA mutant, leaving its physiological role unknown. The inability of SaDsbA to interact with the E. coli DsbB and the lack of an apparent staphylococcal DsbB homologue suggest an alternative re-oxidation pathway for the SaDsbA.

  12. NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of homocysteine-induced endoplasmic reticulum protein

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Tomoji, E-mail: t-maeda@nichiyaku.ac.jp [Department of Neuroscience, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-Cho, Shiwagun, Iwate, 028-3603 (Japan); Tanabe-Fujimura, Chiaki; Fujita, Yu; Abe, Chihiro; Nanakida, Yoshino; Zou, Kun; Liu, Junjun; Liu, Shuyu [Department of Neuroscience, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-Cho, Shiwagun, Iwate, 028-3603 (Japan); Nakajima, Toshihiro [Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku, Tokyo, Tokyo, 160-8402 (Japan); Komano, Hiroto, E-mail: hkomano@iwate-med.ac.jp [Department of Neuroscience, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-Cho, Shiwagun, Iwate, 028-3603 (Japan)

    2016-05-13

    Homocysteine-induced endoplasmic reticulum (ER) protein (Herp) is an ER stress-inducible key regulatory component of ER-associated degradation (ERAD) that has been implicated in insulin hypersecretion in diabetic mouse models. Herp expression is tightly regulated. Additionally, Herp is a highly labile protein and interacts with various proteins, which are characteristic features of ubiquitinated protein. Previously, we reported that ubiquitination is not required for Herp degradation. In addition, we found that the lysine residues of Herp (which are ubiquitinated by E3 ubiquitin ligase) are not sufficient for regulation of Herp degradation. In this study, we found that NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated targeting of Herp to the proteasome was involved in Herp degradation. In addition, we found that Herp protein levels were markedly elevated in synoviolin-null cells. The E3 ubiquitin ligase synoviolin is a central component of ERAD and is involved in the degradation of nuclear factor E2-related factor-2 (Nrf2), which regulates cellular reactive oxygen species. Additionally, NQO1 is a target of Nrf2. Thus, our findings indicated that NQO1 could stabilize Herp protein expression via indirect regulation of synoviolin. -- Highlights: •Herp interacts with NQO1. •NQO1 regulates Herp degradation.

  13. Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:ubiquinone oxidoreductase).

    Science.gov (United States)

    Okun, J G; Lümmen, P; Brandt, U

    1999-01-29

    We have developed two independent methods to measure equilibrium binding of inhibitors to membrane-bound and partially purified NADH:ubiquinone oxidoreductase (complex I) to characterize the binding sites for the great variety of hydrophobic compounds acting on this large and complicated enzyme. Taking advantage of a partial quench of fluorescence upon binding of the fenazaquin-type inhibitor 2-decyl-4-quinazolinyl amine to complex I in bovine submitochondrial particles, we determined a Kd of 17 +/- 3 nM and one binding site per complex I. Equilibrium binding studies with [3H]dihydrorotenone and the aminopyrimidine [3H]AE F119209 (4(cis-4-[3H]isopropyl cyclohexylamino)-5-chloro-6-ethyl pyrimidine) using partially purified complex I from Musca domestica exhibited little unspecific binding and allowed reliable determination of dissociation constants. Competition experiments consistently demonstrated that all tested hydrophobic inhibitors of complex I share a common binding domain with partially overlapping sites. Although the rotenone site overlaps with both the piericidin A and the capsaicin site, the latter two sites do not overlap. This is in contrast to the interpretation of enzyme kinetics that have previously been used to define three classes of complex I inhibitors. The existence of only one large inhibitor binding pocket in the hydrophobic part of complex I is discussed in the light of possible mechanisms of proton translocation.

  14. Overproduction of stromal ferredoxin:NADPH oxidoreductase in H2O 2-accumulating Brassica napus leaf protoplasts.

    Science.gov (United States)

    Tewari, Rajesh Kumar; Satoh, Mamoru; Kado, Sayaka; Mishina, Kohei; Anma, Misato; Enami, Kazuhiko; Hanaoka, Mitsumasa; Watanabe, Masami

    2014-12-01

    The isolation of Brassica napus leaf protoplasts induces reactive oxygen species generation and accumulation in the chloroplasts. An activated isoform of NADPH oxidase-like protein was detected in the protoplasts and the protoplast chloroplasts. The purpose of this study is to define the NADH oxidase-like activities in the H2O2-accumulating protoplast chloroplasts. Proteomic analysis of this protein revealed an isoform of ferredoxin:NADPH oxidoreductase (FNR1). While leaves highly expressed the LFNR1 transcript, protoplasts decreased the expression significantly. The protoplast chloroplasts predominantly expressed soluble FNR1 proteins. While the albino leaves of white kale (Brassica oleracea var. acephala f. tricolor cv. white pigeon) expressed FNR1 protein at the same level as B. napus leaves, the protoplasts of albino leaves displayed reduced FNR1 expression. The albino leaf protoplasts of white kale generated and accumulated H2O2 in the cytoplasm and on the plasma membrane. Intracellular pH showed that the chloroplasts were acidic, which suggest that excess H(+) was generated in chloroplast stroma. NADPH content of the protoplast chloroplasts increased by over sixfold during the isolation of protoplasts. This study reports a possibility of mediating electrons to oxygen by an overproduced soluble FNR, and suggests that the FNR has a function in utilizing any excess reducing power of NADPH.

  15. Central role of the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) in sodium bioenergetics of Vibrio cholerae.

    Science.gov (United States)

    Steuber, Julia; Halang, Petra; Vorburger, Thomas; Steffen, Wojtek; Vohl, Georg; Fritz, Günter

    2014-12-01

    Vibrio cholerae is a Gram-negative bacterium that lives in brackish or sea water environments. Strains of V. cholerae carrying the pathogenicity islands infect the human gut and cause the fatal disease cholera. Vibrio cholerae maintains a Na(+) gradient at its cytoplasmic membrane that drives substrate uptake, motility, and efflux of antibiotics. Here, we summarize the major Na(+)-dependent transport processes and describe the central role of the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a primary Na(+) pump, in maintaining a Na(+)-motive force. The Na(+)-NQR is a membrane protein complex with a mass of about 220 kDa that couples the exergonic oxidation of NADH to the transport of Na(+) across the cytoplasmic membrane. We describe the molecular architecture of this respiratory complex and summarize the findings how electron transport might be coupled to Na(+)-translocation. Moreover, recent advances in the determination of the three-dimensional structure of this complex are reported.

  16. Atomic-resolution structure of the phycocyanobilin:ferredoxin oxidoreductase I86D mutant in complex with fully protonated biliverdin.

    Science.gov (United States)

    Hagiwara, Yoshinori; Wada, Kei; Irikawa, Teppei; Sato, Hideaki; Unno, Masaki; Yamamoto, Ken; Fukuyama, Keiichi; Sugishima, Masakazu

    2016-10-01

    Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the reduction of biliverdin (BV) to produce phycocyanobilin, a linear tetrapyrrole pigment used for light harvesting and light sensing. Spectroscopic and HPLC analyses inidicate that BV bound to the I86D mutant of PcyA is fully protonated (BVH(+) ) and can accept an electron, but I86D is unable to donate protons for the reduction; therefore, compared to the wild-type PcyA, the I86D mutant stabilizes BVH(+) . To elucidate the structural basis of the I86D mutation, we determined the atomic-resolution structure of the I86D-BVH(+) complex and the protonation states of the essential residues Asp105 and Glu76 in PcyA. Our study revealed that Asp105 adopted a fixed conformation in the I86D mutant, although it had dual conformations in wild-type PcyA which reflected the protonation states of BV. Taken together with biochemical/spectroscopic results, our analysis of the I86D-BVH(+) structure supports the hypothesis that flexibility of Asp105 is essential for the catalytic activity of PcyA.

  17. Inhibitory Effects of Tart Cherry (Prunus cerasus) Juice on Xanthine Oxidoreductase Activity and its Hypouricemic and Antioxidant Effects on Rats.

    Science.gov (United States)

    Haidari, F; Mohammad Shahi, M; Keshavarz, S A; Rashidi, M R

    2009-03-01

    The aim of this study was to investigate the effect of tart cherry juice on serum uric acid levels, hepatic xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration), in normal and hyperuricemic rats. Tart cherry juice (5 ml/kg) was given by oral gavage to rats for 2 weeks. Allopurinol (5 mg/kg) was used as a positive control and was also given by oral gavage. Data showed that tart cherry juice treatment did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced (PTart cherry juice treatment also inhibited hepatic xanthine oxidase/dehydrogenase activity. Moreover, a significant increase (Ptart cherry juice treated-rats in both normal and hyperuricemic groups. The oral administration of tart cherry juice also led to a significant reduction (Ptart cherry, it could not significantly change anti-oxidative parameters. These features of tart cherry make it an attractive candidate for the prophylactic treatment of hyperuricaemia, particularly if it is to be taken on a long-term basis. Further investigations to define its clinical efficacy would be highly desirable.

  18. Long-term follow-up of a female with congenital adrenal hyperplasia due to P450-oxidoreductase deficiency.

    Science.gov (United States)

    Bonamichi, Beatriz D S F; Santiago, Stella L M; Bertola, Débora R; Kim, Chong A; Alonso, Nivaldo; Mendonca, Berenice B; Bachega, Tania A S S; Gomes, Larissa G

    2016-10-01

    P450 oxidoreductase deficiency (PORD) is a variant of congenital adrenal hyperplasia that is caused by POR gene mutations. The POR gene encodes a flavor protein that transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH) to all microsomal cytochrome P450 type II (including 21-hydroxylase, 17α-hydroxylase 17,20 lyase and aromatase), which is fundamental for their enzymatic activity. POR mutations cause variable impairments in steroidogenic enzyme activities that result in wide phenotypic variability ranging from 46,XX or 46,XY disorders of sexual differentiation, glucocorticoid deficiency, with or without skeletal malformations similar to Antley-Bixler syndrome to asymptomatic newborns diagnosed during neonatal screening test. Little is known about the PORD long-term evolution. We described a 46,XX patient with mild atypical genitalia associated with severe bone malformation, who was diagnosed after 13 years due to sexual infantilism. She developed large ovarian cysts and late onset adrenal insufficiency during follow-up, both of each regressed after hormone replacement therapies. We also described a late surgical approach for the correction of facial hypoplasia in a POR patient.

  19. Molecular and biochemical characterization of bifunctional pyruvate decarboxylases and pyruvate ferredoxin oxidoreductases from Thermotoga maritima and Thermotoga hypogea.

    Science.gov (United States)

    Eram, Mohammad S; Wong, Alton; Oduaran, Erica; Ma, Kesen

    2015-12-01

    Hyperthermophilic bacteria Thermotoga maritima and Thermotoga hypogea produce ethanol as a metabolic end product, which is resulted from acetaldehyde reduction catalysed by an alcohol dehydrogenase (ADH). However, the enzyme that is involved in the production of acetaldehyde from pyruvate is not well characterized. An oxygen sensitive and coenzyme A-dependent pyruvate decarboxylase (PDC) activity was found to be present in cell free extracts of T. maritima and T. hypogea. Both enzymes were purified and found to have pyruvate ferredoxin oxidoreductase (POR) activity, indicating their bifunctionality. Both PDC and POR activities from each of the purified enzymes were characterized in regards to their optimal assay conditions including pH dependency, oxygen sensitivity, thermal stability, temperature dependency and kinetic parameters. The close relatedness of the PORs that was shown by sequence analysis could be an indication of the presence of such bifunctionality in other hyperthermophilic bacteria. This is the first report of a bifunctional PDC/POR enzyme in hyperthermophilic bacteria. The PDC and the previously reported ADHs are most likely the key enzymes catalysing the production of ethanol from pyruvate in bacterial hyperthermophiles.

  20. A New Class of Tungsten-Containing Oxidoreductase in Caldicellulosiruptor, a Genus of Plant Biomass-Degrading Thermophilic Bacteria.

    Science.gov (United States)

    Scott, Israel M; Rubinstein, Gabe M; Lipscomb, Gina L; Basen, Mirko; Schut, Gerrit J; Rhaesa, Amanda M; Lancaster, W Andrew; Poole, Farris L; Kelly, Robert M; Adams, Michael W W

    2015-10-01

    Caldicellulosiruptor bescii grows optimally at 78°C and is able to decompose high concentrations of lignocellulosic plant biomass without the need for thermochemical pretreatment. C. bescii ferments both C5 and C6 sugars primarily to hydrogen gas, lactate, acetate, and CO2 and is of particular interest for metabolic engineering applications given the recent availability of a genetic system. Developing optimal strains for technological use requires a detailed understanding of primary metabolism, particularly when the goal is to divert all available reductant (electrons) toward highly reduced products such as biofuels. During an analysis of the C. bescii genome sequence for oxidoreductase-type enzymes, evidence was uncovered to suggest that the primary redox metabolism of C. bescii has a completely uncharacterized aspect involving tungsten, a rarely used element in biology. An active tungsten utilization pathway in C. bescii was demonstrated by the heterologous production of a tungsten-requiring, aldehyde-oxidizing enzyme (AOR) from the hyperthermophilic archaeon Pyrococcus furiosus. Furthermore, C. bescii also contains a tungsten-based AOR-type enzyme, here termed XOR, which is phylogenetically unique, representing a completely new member of the AOR tungstoenzyme family. Moreover, in C. bescii, XOR represents ca. 2% of the cytoplasmic protein. XOR is proposed to play a key, but as yet undetermined, role in the primary redox metabolism of this cellulolytic microorganism.

  1. Insecticidal quinazoline derivatives with (trifluoromethyl)diazirinyl and azido substituents as NADH:ubiquinone oxidoreductase inhibitors and candidate photoaffinity probes.

    Science.gov (United States)

    Latli, B; Wood, E; Casida, J E

    1996-03-01

    Two candidate photoaffinity probes are designed from 4-substituted quinazolines known to be potent insecticides/acaricides and NADH:ubiquinone oxidoreductase inhibitors acting at or near the rotenone site. 4-(11-Azidoundecyl-2-amino)quinazoline, based on the undecylamino analog SAN 548A as a prototype, was synthesized in 18% overall yield from ethyl 10-undecenoate by oxidation of the terminal double bond, reductive amination, coupling to 4-chloroquinazoline, and functional group manipulation of the terminal ethyl ester to an alcohol, a mesylate and finally nucleophilic displacement with azide ions. 4-(4-(3-(Trifluoromethyl)-3H-diazirin-3-yl)phenethoxy)quinaz oline [the (trifluoromethyl)diazirinyl analog of fenazaquin insecticide/acaricide] was prepared from 4-bromophenethyl alcohol in 31% overall yield by first introducing the trifluoromethylketone moiety followed by its conversion to the (trifluoromethyl)-diazirine and finally coupling to 4-chloroquinazoline as above. Both candidate photoaffinity probes have the inhibitory potency of rotenone (IC50 of 3-4 nM in each case). The azidoundecylamino compound has inadequate photoreactivity whereas that of the (trifluoromethyl)diazirinyl analog is ideal at 350 nm. Radiosynthesis of the latter photoaffinity ligand included introduction of the diazirinyl moiety as the carbene precursor, oxidation of (trifluoromethyl)diazirinylphenethyl alcohol to the corresponding acid with Jones' reagent, and reduction of the phenacetyl chloride intermediate with sodium borotritide to incorporate tritium.

  2. The roles of Tyr(91) and Lys(162) in general acid-base catalysis in the pigeon NADP+-dependent malic enzyme.

    Science.gov (United States)

    Kuo, Cheng-Chin; Lin, Kuan-Yu; Hsu, Yau-Jung; Lin, Shu-Yu; Lin, Yu-Tsen; Chang, Gu-Gang; Chou, Wei-Yuan

    2008-05-01

    The role of general acid-base catalysis in the enzymatic mechanism of NADP+-dependent malic enzyme was examined by detailed steady-state kinetic studies through site-directed mutagenesis of the Tyr(91) and Lys(162) residues in the putative catalytic site of the enzyme. Y91F and K162A mutants showed approx. 200- and 27000-fold decreases in k(cat) values respectively, which could be partially recovered with ammonium chloride. Neither mutant had an effect on the partial dehydrogenase activity of the enzyme. However, both Y91F and K162A mutants caused decreases in the k(cat) values of the partial decarboxylase activity of the enzyme by approx. 14- and 3250-fold respectively. The pH-log(k(cat)) profile of K162A was found to be different from the bell-shaped profile pattern of wild-type enzyme as it lacked a basic pK(a) value. Oxaloacetate, in the presence of NADPH, can be converted by malic enzyme into L-malate by reduction and into enolpyruvate by decarboxylation activities. Compared with wild-type, the K162A mutant preferred oxaloacetate reduction to decarboxylation. These results are consistent with the function of Lys(162) as a general acid that protonates the C-3 of enolpyruvate to form pyruvate. The Tyr(91) residue could form a hydrogen bond with Lys(162) to act as a catalytic dyad that contributes a proton to complete the enol-keto tautomerization.

  3. Toxicological effects of thiomersal and ethylmercury: Inhibition of the thioredoxin system and NADP(+)-dependent dehydrogenases of the pentose phosphate pathway.

    Science.gov (United States)

    Rodrigues, Juan; Branco, Vasco; Lu, Jun; Holmgren, Arne; Carvalho, Cristina

    2015-08-01

    Mercury (Hg) is a strong toxicant affecting mainly the central nervous, renal, cardiovascular and immune systems. Thiomersal (TM) is still in use in medical practice as a topical antiseptic and as a preservative in multiple dose vaccines, routinely given to young children in some developing countries, while other forms of mercury such as methylmercury represent an environmental and food hazard. The aim of the present study was to determine the effects of thiomersal (TM) and its breakdown product ethylmercury (EtHg) on the thioredoxin system and NADP(+)-dependent dehydrogenases of the pentose phosphate pathway. Results show that TM and EtHg inhibited the thioredoxin system enzymes in purified suspensions, being EtHg comparable to methylmercury (MeHg). Also, treatment of neuroblastoma and liver cells with TM or EtHg decreased cell viability (GI50: 1.5 to 20μM) and caused a significant (pMeHg≈EtHg>TM (p<0.05). Cell incubation with sodium selenite alleviated the inhibitory effects on TrxR and glucose-6-phosphate dehydrogenase. Thus, the molecular mechanism of toxicity of TM and especially of its metabolite EtHg encompasses the blockage of the electrons from NADPH via the thioredoxin system.

  4. Synthesis and application of water-soluble macromolecular derivatives of the redox coenzymes NAD(H), NADP(H) and FAD.

    Science.gov (United States)

    Bückmann, A F; Carrea, G

    1989-01-01

    During the past 15 years, the development of strategies to apply the catalytic potential of redox coenzyme-requiring enzymes has been a subject of intensive study; the main purpose of which has been to cut the cost of coenzyme to an economically acceptable level. One approach has been the utilization of isolated coenzyme-dependent enzyme systems with simultaneous enzymatic coenzyme regeneration (recycling). This has been used in conjugation with ultrafiltration reactor technology (enzyme membrane reactor), with coenzyme concentration being kept at a catalytic level. The concept implies confinement (immobilization) and practically 100% retention of both enzymes and coenzymes being dissolved in homogeneous solution within the reactor space that is closed off by an ultrafiltration membrane through which low-molecular-weight reactants (substrates and products) can freely pass. Since the problem of retaining nearly 100% native coenzymes of relatively low molecular weight by ultrafiltration membranes has not been satisfactorily solved, active macromolecular coenzyme derivatives are required. In this review, the syntheses, properties and merits of water-soluble macromolecular derivatives of NAD(H), NADP(H) and FAD are considered with respect to their biotechnological application.

  5. Engineering the α-ketoglutarate overproduction from raw glycerol by overexpression of the genes encoding NADP+-dependent isocitrate dehydrogenase and pyruvate carboxylase in Yarrowia lipolytica.

    Science.gov (United States)

    Yovkova, Venelina; Otto, Christina; Aurich, Andreas; Mauersberger, Stephan; Barth, Gerold

    2014-03-01

    To establish and develop a biotechnological process of α-ketoglutaric acid (KGA) production by Yarrowia lipolytica, it is necessary to increase the KGA productivity and to reduce the amounts of by-products, e.g. pyruvic acid (PA) as major by-product and fumarate, malate and succinate as minor by-products. The aim of this study was the improvement of KGA overproduction with Y. lipolytica by a gene dose-dependent overexpression of genes encoding NADP(+)-dependent isocitrate dehydrogenase (IDP1) and pyruvate carboxylase (PYC1) under KGA production conditions from the renewable carbon source raw glycerol. Recombinant Y. lipolytica strains were constructed, which harbour multiple copies of the respective IDP1, PYC1 or IDP1 and PYC1 genes together. We demonstrated that a selective increase in IDP activity in IDP1 multicopy transformants changes the produced amount of KGA. Overexpression of the gene IDP1 in combination with PYC1 had the strongest effect on increasing the amount of secreted KGA. About 19% more KGA compared to strain H355 was produced in bioreactor experiments with raw glycerol as carbon source. The applied cultivation conditions with this strain significantly reduced the main by-product PA and increased the KGA selectivity to more than 95% producing up to 186 g l(-1) KGA. This proved the high potential of this multicopy transformant for developing a biotechnological KGA production process.

  6. Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway.

    Science.gov (United States)

    Zhang, Jia; Zhang, Biao; Wang, Dongmei; Gao, Xiaolian; Sun, Lianhong; Hong, Jiong

    2015-09-01

    Conversion of xylose to ethanol by yeasts is a challenge because of the redox imbalances under oxygen-limited conditions. The thermotolerant yeast Kluyveromyces marxianus grows well with xylose as a carbon source at elevated temperatures, but its xylose fermentation ability is weak. In this study, a combination of the NADPH-preferring xylose reductase (XR) from Neurospora crassa and the NADP(+)-preferring xylitol dehydrogenase (XDH) mutant from Scheffersomyces stipitis (Pichia stipitis) was constructed. The xylose fermentation ability and redox balance of the recombinant strains were improved significantly by over-expression of several downstream genes. The intracellular concentrations of coenzymes and the reduced coenzyme/oxidized coenzyme ratio increased significantly in these metabolic strains. The byproducts, such as glycerol and acetic acid, were significantly reduced by the disruption of glycerol-3-phosphate dehydrogenase (GPD1). The resulting engineered K. marxianus YZJ088 strain produced 44.95 g/L ethanol from 118.39 g/L xylose with a productivity of 2.49 g/L/h at 42 °C. Additionally, YZJ088 realized glucose and xylose co-fermentation and produced 51.43 g/L ethanol from a mixture of 103.97 g/L xylose and 40.96 g/L glucose with a productivity of 2.14 g/L/h at 42 °C. These promising results validate the YZJ088 strain as an excellent producer of ethanol from xylose through the synthetic xylose assimilation pathway.

  7. Evaluation of the protection exerted by Pisum sativum Ferredoxin-NADP(H) Reductase against injury induced by hypothermia on Cos-7 cells.

    Science.gov (United States)

    Pucci Molineris, M; Di Venanzio, G; Mamprin, M E; Mediavilla, M G

    2013-08-01

    Hypothermia is employed as a method to diminish metabolism rates and preserve tissues and cells. However, low temperatures constitute a stress that produces biochemical changes whose extension depends on the duration and degree of cold exposure and is manifested when physiological temperature is restored. For many cellular types, cold induces an oxidative stress that is dependent on the elevation of intracellular iron, damages macromolecules, and is prevented by the addition of iron chelators. Pisum sativum Ferredoxin-NADP(H) Reductase (FNR) has been implicated in protection from injury mediated by intracellular iron increase and successfully used to reduce oxidative damage on bacterial, plant and mammalian systems. In this work, FNR was expressed in Cos-7 cells; then, they were submitted to cold incubation and iron overload to ascertain whether this enzyme was capable of diminishing the harm produced by these challenges. Contrary to expected, FNR was not protective and even exacerbated the damage under certain circumstances. It was also found that the injury induced by hypothermia in Cos-7 cells presented both iron-dependent and iron-independent components of damage when cells were actively dividing but only iron-independent component when cells were in an arrested state. This is in agreement with previous findings which showed that iron-dependent damage is also an energy-dependent process.

  8. The NADP-dependent glutamate dehydrogenase gene from the astaxanthin producer Xanthophyllomyces dendrorhous: use of Its promoter for controlled gene expression.

    Science.gov (United States)

    Rodríguez-Sáiz, Marta; Godio, Ramiro P; Alvarez, Vanessa; de la Fuente, Juan Luis; Martín, Juan F; Barredo, José Luis

    2009-02-01

    The gdhA gene encoding the NADP-dependent glutamate dehydrogenase (GDH) activity from Xanthophyllomyces dendrorhous has been cloned and characterized, and its promoter used for controlled gene expression in this red-pigmented heterobasidiomycetous yeast. We determined the nucleotide sequence of a 4701 bp DNA genomic fragment, showing an open reading frame of 1871 bp interrupted by five introns with fungal consensus splice-site junctions. The predicted protein (455 amino acids; 49 kDa) revealed high identity to GDHs, especially to those from the fungi Cryptococcus neoformans (70%), Sclerotinia sclerotiorum (66%), and several species of Aspergillus (66-67%). Gene phylogenies support the grouping of X. dendrorhous GDH close to those from the majority of the filamentous fungi. The promoter region of the gdhA gene (PgdhA) contains a TATA-like box and two large pyrimidine stretches. The use of PgdhA for gene expression was validated by electrotransformation of X. dendrorhous using an in-frame fusion with the hygromycin resistance gene (hygR) as a reporter. X. dendrorhous transformants were able to grow in YEME complex medium and in Czapek minimal medium supplemented with 50 microg/ml hygromycin, but gene expression in Czapek medium was repressed when using ammonium acetate as a nitrogen source. PgdhA is a valuable tool for controlled gene expression in Basidiomycetes.

  9. FAD semiquinone stability regulates single- and two-electron reduction of quinones by Anabaena PCC7119 ferredoxin:NADP+ reductase and its Glu301Ala mutant.

    Science.gov (United States)

    Anusevicius, Zilvinas; Miseviciene, Lina; Medina, Milagros; Martinez-Julvez, Marta; Gomez-Moreno, Carlos; Cenas, Narimantas

    2005-05-15

    Flavoenzymes may reduce quinones in a single-electron, mixed single- and two-electron, and two-electron way. The mechanisms of two-electron reduction of quinones are insufficiently understood. To get an insight into the role of flavin semiquinone stability in the regulation of single- vs. two-electron reduction of quinones, we studied the reactions of wild type Anabaena ferredoxin:NADP(+)reductase (FNR) with 48% FAD semiquinone (FADH*) stabilized at the equilibrium (pH 7.0), and its Glu301Ala mutant (8% FADH* at the equilibrium). We found that Glu301Ala substitution does not change the quinone substrate specificity of FNR. However, it confers the mixed single- and two-electron mechanism of quinone reduction (50% single-electron flux), whereas the wild type FNR reduces quinones in a single-electron way. During the oxidation of fully reduced wild type FNR by tetramethyl-1,4-benzoquinone, the first electron transfer (formation of FADH*) is about 40 times faster than the second one (oxidation of FADH*). In contrast, the first and second electron transfer proceeded at similar rates in Glu301Ala FNR. Thus, the change in the quinone reduction mechanism may be explained by the relative increase in the rate of second electron transfer. This enabled us to propose the unified scheme of single-, two- and mixed single- and two-electron reduction of quinones by flavoenzymes with the central role of the stability of flavin/quinone ion-radical pair.

  10. Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite

    Directory of Open Access Journals (Sweden)

    Célio Damacena-Angelis

    2017-08-01

    Full Text Available Nitrite and nitrate restore deficient endogenous nitric oxide (NO production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite (15N-nitrite by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS. Nitrate exerted no effect on aortic accumulation of 15N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in

  11. Dispelling dogma and misconceptions regarding the most pharmacologically targetable source of reactive species in inflammatory disease, xanthine oxidoreductase.

    Science.gov (United States)

    Kelley, Eric E

    2015-08-01

    Xanthine oxidoreductase (XOR), the molybdoflavin enzyme responsible for the terminal steps of purine degradation in humans, is also recognized as a significant source of reactive species contributory to inflammatory disease. In animal models and clinical studies, inhibition of XOR has resulted in diminution of symptoms and enhancement of function in a number of pathologies including heart failure, diabetes, sickle cell anemia, hypertension and ischemia-reperfusion injury. For decades, XOR involvement in pathologic processes has been established by salutary outcomes attained from treatment with the XOR inhibitor allopurinol. This has served to frame a working dogma that elevation of XOR-specific activity is associated with enhanced rates of reactive species generation that mediate negative outcomes. While adherence to this narrowly focused practice of designating elevated XOR activity to be "bad" has produced some benefit, it has also led to significant underdevelopment of the processes mediating XOR regulation, identification of alternative reactants and products as well as micro-environmental factors that alter enzymatic activity. This is exemplified by recent reports: (1) identifying XOR as a nitrite reductase and thus a source of beneficial nitric oxide ((•)NO) under in vivo conditions similar to those where XOR inhibition has been assumed an optimal treatment choice, (2) describing XOR-derived uric acid (UA) as a critical pro-inflammatory mediator in vascular and metabolic disease and (3) ascribing an antioxidant/protective role for XOR-derived UA. When taken together, these proposed and countervailing functions of XOR affirm the need for a more comprehensive evaluation of product formation as well as the factors that govern product identity. As such, this review will critically evaluate XOR-catalyzed oxidant, (•)NO and UA formation as well as identify factors that mediate their production, inhibition and the resultant impact on inflammatory disease.

  12. Deletion of P399{sub E}401 in NADPH cytochrome P450 oxidoreductase results in partial mixed oxidase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Christa E., E-mail: christa.flueck@dkf.unibe.ch [Pediatric Endocrinology, Diabetology and Metabolism, University Children' s Hospital, Bern (Switzerland); Mallet, Delphine [Service d' Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France); Hofer, Gaby [Pediatric Endocrinology, Diabetology and Metabolism, University Children' s Hospital, Bern (Switzerland); Samara-Boustani, Dinane [Hopital Necker-Enfants malades, Paris (France); Leger, Juliane [Hopital Robert Debre, Paris (France); Polak, Michel [Hopital Necker-Enfants malades, Paris (France); Morel, Yves [Service d' Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France); Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, University Children' s Hospital, Bern (Switzerland)

    2011-09-09

    Highlights: {yields} Mutations in human POR cause congenital adrenal hyperplasia. {yields} We are reporting a novel 3 amino acid deletion mutation in POR P399{sub E}401del. {yields} POR mutation P399{sub E}401del decreased P450 activities by 60-85%. {yields} Impairment of steroid metabolism may be caused by multiple hits. {yields} Severity of aromatase inhibition is related to degree of in utero virilization. -- Abstract: P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399{sub E}401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399{sub E}401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17{alpha}-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399{sub E}401 revealed reduced stability and flexibility of the mutant. In conclusion, P399{sub E}401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399{sub E}401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.

  13. The key role of glutamate 172 in the mechanism of type II NADH:quinone oxidoreductase of Staphylococcus aureus.

    Science.gov (United States)

    Sousa, Filipe M; Sena, Filipa V; Batista, Ana P; Athayde, Diogo; Brito, José A; Archer, Margarida; Oliveira, A Sofia F; Soares, Cláudio M; Catarino, Teresa; Pereira, Manuela M

    2017-10-01

    Type II NADH:quinone oxidoreductases (NDH-2s) are membrane bound enzymes that deliver electrons to the respiratory chain by oxidation of NADH and reduction of quinones. In this way, these enzymes also contribute to the regeneration of NAD(+), allowing several metabolic pathways to proceed. As for the other members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, the enzymatic mechanism of NDH-2s is still little explored and elusive. In this work we addressed the role of the conserved glutamate 172 (E172) residue in the enzymatic mechanism of NDH-2 from Staphylococcus aureus. We aimed to test our earlier hypothesis that E172 plays a key role in proton transfer to allow the protonation of the quinone. For this we performed a complete biochemical characterization of the enzyme's variants E172A, E172Q and E172S. Our steady state kinetic measurements show a clear decrease in the overall reaction rate, and our substrate interaction studies indicate the binding of the two substrates is also affected by these mutations. Interestingly our fast kinetic results show quinone reduction is more affected than NADH oxidation. We have also determined the X-ray crystal structure of the E172S mutant (2.55Ǻ) and compared it with the structure of the wild type (2.32Ǻ). Together these results support our hypothesis for E172 being of central importance in the catalytic mechanism of NDH-2, which may be extended to other members of the tDBDF superfamily. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Contribution of xanthine oxidoreductase to mammary epithelial and breast cancer cell differentiation in part modulates inhibitor of differentiation-1.

    Science.gov (United States)

    Fini, Mehdi A; Monks, Jenifer; Farabaugh, Susan M; Wright, Richard M

    2011-09-01

    Loss of xanthine oxidoreductase (XOR) has been linked to aggressive breast cancer in vivo and to breast cancer cell aggressiveness in vitro. In the present study, we hypothesized that the contribution of XOR to the development of the normal mammary gland may underlie its capacity to modulate breast cancer. We contrasted in vitro and in vivo developmental systems by differentiation marker and microarray analyses. Human breast cancer microarray was used for clinical outcome studies. The role of XOR in differentiation and proliferation was examined in human breast cancer cells and in a mouse xenograft model. Our data show that XOR was required for functional differentiation of mammary epithelial cells both in vitro and in vivo. Poor XOR expression was observed in a mouse ErbB2 breast cancer model, and pharmacologic inhibition of XOR increased breast cancer tumor burden in mouse xenograft. mRNA microarray analysis of human breast cancer revealed that low XOR expression was significantly associated with time to tumor relapse. The opposing expression of XOR and inhibitor of differentiation-1 (Id1) during HC11 differentiation and mammary gland development suggested a potential functional relationship. While overexpression of Id1 inhibited HC11 differentiation and XOR expression, XOR itself modulated expression of Id1 in differentiating HC11 cells. Overexpression of XOR both inhibited Id1-induced proliferation and -stimulated differentiation of Heregulin-β1-treated human breast cancer cells. These results show that XOR is an important functional component of differentiation whose diminished expression contributes to breast cancer aggressiveness, and they support XOR as both a breast cancer biomarker and a target for pharmacologic activation in therapeutic management of aggressive breast cancer.

  15. Chlamydomonas reinhardtii Chloroplasts Contain a Homodimeric Pyruvate:Ferredoxin Oxidoreductase That Functions with FDX11[W][OA

    Science.gov (United States)

    van Lis, Robert; Baffert, Carole; Couté, Yohann; Nitschke, Wolfgang; Atteia, Ariane

    2013-01-01

    Eukaryotic algae have long been known to live in anoxic environments, but interest in their anaerobic energy metabolism has only recently gained momentum, largely due to their utility in biofuel production. Chlamydomonas reinhardtii figures remarkably in this respect, because it efficiently produces hydrogen and its genome harbors many genes for anaerobic metabolic routes. Central to anaerobic energy metabolism in many unicellular eukaryotes (protists) is pyruvate:ferredoxin oxidoreductase (PFO), which decarboxylates pyruvate and forms acetyl-coenzyme A with concomitant reduction of low-potential ferredoxins or flavodoxins. Here, we report the biochemical properties of the homodimeric PFO of C. reinhardtii expressed in Escherichia coli. Electron paramagnetic resonance spectroscopy of the recombinant enzyme (Cr-rPFO) showed three distinct [4Fe-4S] iron-sulfur clusters and a thiamine pyrophosphate radical upon reduction by pyruvate. Purified Cr-rPFO exhibits a specific decarboxylase activity of 12 µmol pyruvate min−1 mg−1 protein using benzyl viologen as electron acceptor. Despite the fact that the enzyme is very oxygen sensitive, it localizes to the chloroplast. Among the six known chloroplast ferredoxins (FDX1–FDX6) in C. reinhardtii, FDX1 and FDX2 were the most efficient electron acceptors from Cr-rPFO, with comparable apparent Km values of approximately 4 µm. As revealed by immunoblotting, anaerobic conditions that lead to the induction of CrPFO did not increase levels of either FDX1 or FDX2. FDX1, being by far the most abundant ferredoxin, is thus likely the partner of PFO in C. reinhardtii. This finding postulates a direct link between CrPFO and hydrogenase and provides new opportunities to better study and engineer hydrogen production in this protist. PMID:23154536

  16. Cooperation of NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferases reduces menadione cytotoxicity in HEK293 cells.

    Science.gov (United States)

    Nishiyama, Takahito; Izawa, Tadashi; Usami, Mami; Ohnuma, Tomokazu; Ogura, Kenichiro; Hiratsuka, Akira

    2010-04-01

    Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process.

  17. 黄嘌呤氧化还原酶与代谢综合征%Xanthine oxidoreductase and metabolic syndrome

    Institute of Scientific and Technical Information of China (English)

    严天连; 徐承富; 厉有名

    2013-01-01

    黄嘌呤氧化还原酶(XOR)通过将嘌呤分解为尿酸,控制着人体内嘌呤代谢的限速步骤.近年来研究表明XOR活性的异常不仅可导致高尿酸血症和痛风,还积极地参与了代谢综合征的发生、发展.XOR如何影响肥胖、高血压、动脉粥样硬化、糖尿病等代谢综合征相关疾病尚不明确,其可能机制包括调节脂质代谢转录调控因子,影响尿酸、一氧化氮及活性氧簇的生成等.XOR抑制剂如别嘌呤醇和非布索坦对上述疾病有一定的保护效果,这为代谢综合征的防治提供了新思路.%Xanthine oxidoreductase (XOR) controls the rate limiting step of purine catabolism by converting xanthine to uric acid.Recent studies showed that the abnormal activity of XOR not only led to hyperuricemia and gout,but also actively participated in the development of metabolic syndrome.However,how XOR affects obesity,hypertension,atherosclerosis,diabetes and other metabolic syndrome related diseases remains unclear.Its possible mechanism includes regulating the transcription factors of adipogenesis,affecting the synthesis of uric acid,nitric oxide and reactive oxygen species,etc.XOR inhibitor such as allopurinol and febuxostat has a protective effect of the diseases mentioned above.These findings would provide new ideas for treatment of metabolic syndrome.

  18. Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen.

    Science.gov (United States)

    Pedrini, Nicolás; Ortiz-Urquiza, Almudena; Huarte-Bonnet, Carla; Fan, Yanhua; Juárez, M Patricia; Keyhani, Nemat O

    2015-07-14

    Entomopathogenic fungi and their insect hosts represent a model system for examining invertebrate-pathogen coevolutionary selection processes. Here we report the characterization of competing components of an arms race consisting of insect protective antimicrobial compounds and evolving fungal mechanisms of detoxification. The insect pathogenic fungus Beauveria bassiana has a remarkably wide host range; however, some insects are resistant to fungal infection. Among resistant insects is the tenebrionid beetle Tribolium castaneum that produces benzoquinone-containing defensive secretions. Reduced fungal germination and growth was seen in media containing T. castaneum dichloromethane extracts or synthetic benzoquinone. In response to benzoquinone exposure, the fungus expresses a 1,4-benzoquinone oxidoreductase, BbbqrA, induced >40-fold. Gene knockout mutants (ΔBbbqrA) showed increased growth inhibition, whereas B. bassiana overexpressing BbbqrA (Bb::BbbqrA(O)) displayed increased resistance to benzoquinone compared with wild type. Increased benzoquinone reductase activity was detected in wild-type cells exposed to benzoquinone and in the overexpression strain. Heterologous expression and purification of BbBqrA in Escherichia coli confirmed NAD(P)H-dependent benzoquinone reductase activity. The ΔBbbqrA strain showed decreased virulence toward T. castaneum, whereas overexpression of BbbqrA increased mortality versus T. castaneum. No change in virulence was seen for the ΔBbbqrA or Bb::BbbqrA(O) strains when tested against the greater wax moth Galleria mellonella or the beetle Sitophilus oryzae, neither of which produce significant amounts of cuticular quinones. The observation that artificial overexpression of BbbqrA results in increased virulence only toward quinone-secreting insects implies the lack of strong selection or current failure of B. bassiana to counteradapt to this particular host defense throughout evolution.

  19. Activities of Secreted Aryl Alcohol Quinone Oxidoreductases from Pycnoporus cinnabarinus Provide Insights into Fungal Degradation of Plant Biomass.

    Science.gov (United States)

    Mathieu, Yann; Piumi, Francois; Valli, Richard; Aramburu, Juan Carro; Ferreira, Patricia; Faulds, Craig B; Record, Eric

    2016-04-01

    Auxiliary activities family 3 subfamily 2 (AA3_2) from the CAZy database comprises various functions related to ligninolytic enzymes, such as fungal aryl alcohol oxidases (AAO) and glucose oxidases, both of which are flavoenzymes. The recent study of the Pycnoporus cinnabarinus CIRM BRFM 137 genome combined with its secretome revealed that four AA3_2 enzymes are secreted during biomass degradation. One of these AA3_2 enzymes, scf184803.g17, has recently been produced heterologously in Aspergillus niger Based on the enzyme's activity and specificity, it was assigned to the glucose dehydrogenases (PcinnabarinusGDH [PcGDH]). Here, we analyze the distribution of the other three AA3_2 enzymes (scf185002.g8, scf184611.g7, and scf184746.g13) to assess their putative functions. These proteins showed the highest homology with aryl alcohol oxidase from Pleurotus eryngii Biochemical characterization demonstrated that they were also flavoenzymes harboring flavin adenine dinucleotide (FAD) as a cofactor and able to oxidize a wide variety of phenolic and nonphenolic aryl alcohols and one aliphatic polyunsaturated primary alcohol. Though presenting homology with fungal AAOs, these enzymes exhibited greater efficiency in reducing electron acceptors (quinones and one artificial acceptor) than molecular oxygen and so were defined as aryl-alcohol:quinone oxidoreductases (AAQOs) with two enzymes possessing residual oxidase activity (PcAAQO2 and PcAAQO3). Structural comparison of PcAAQO homology models with P. eryngii AAO demonstrated a wider substrate access channel connecting the active-site cavity to the solvent, explaining the absence of activity with molecular oxygen. Finally, the ability of PcAAQOs to reduce radical intermediates generated by laccase from P. cinnabarinus was demonstrated, shedding light on the ligninolytic system of this fungus.

  20. Legionella pneumophila utilizes a single-player disulfide-bond oxidoreductase system to manage disulfide bond formation and isomerization.

    Science.gov (United States)

    Kpadeh, Zegbeh Z; Day, Shandra R; Mills, Brandy W; Hoffman, Paul S

    2015-03-01

    Legionella pneumophila uses a single homodimeric disulfide bond (DSB) oxidoreductase DsbA2 to catalyze extracytoplasmic protein folding and to correct DSB errors through protein-disulfide isomerase (PDI) activity. In Escherichia coli, these functions are separated to avoid futile cycling. In L. pneumophila, DsbA2 is maintained as a mixture of disulfides (S-S) and free thiols (SH), but when expressed in E. coli, only the SH form is observed. We provide evidence to suggest that structural differences in DsbB oxidases (LpDsbB1 and LpDsbB2) and DsbD reductases (LpDsbD1 and LpDsbD2) (compared with E. coli) permit bifunctional activities without creating a futile cycle. LpdsbB1 and LpdsbB2 partially complemented an EcdsbB mutant while neither LpdsbD1 nor LpdsbD2 complemented an EcdsbD mutant unless DsbA2 was also expressed. When the dsb genes of E. coli were replaced with those of L. pneumophila, motility was restored and DsbA2 was present as a mixture of redox forms. A dominant-negative approach to interfere with DsbA2 function in L. pneumophila determined that DSB oxidase activity was necessary for intracellular multiplication and assembly/function of the Dot/Icm Type IVb secretion system. Our studies show that a single-player system may escape the futile cycle trap by limiting transfer of reducing equivalents from LpDsbDs to DsbA2.

  1. The short-chain oxidoreductase Q9HYA2 from Pseudomonas aeruginosa PAO1 contains an atypical catalytic center.

    Science.gov (United States)

    Huether, Robert; Mao, Qilong; Duax, William L; Umland, Timothy C

    2010-05-01

    The characteristic oxidation or reduction reaction mechanisms of short-chain oxidoreductase (SCOR) enzymes involve a highly conserved Asp-Ser-Tyr-Lys catalytic tetrad. The SCOR enzyme Q9HYA2 from the pathogenic bacterium Pseudomonas aeruginosa was recognized to possess an atypical catalytic tetrad composed of Lys118-Ser146-Thr159-Arg163. Orthologs of Q9HYA2 containing the unusual catalytic tetrad along with conserved substrate and cofactor recognition residues were identified in 27 additional species, the majority of which are bacterial pathogens. However, this atypical catalytic tetrad was not represented within the Protein Data Bank. The crystal structures of unligated and NADPH-complexed Q9HYA2 were determined at 2.3 A resolution. Structural alignment to a polyketide ketoreductase (KR), a typical SCOR, demonstrated that Q9HYA2's Lys118, Ser146, and Arg163 superimposed upon the KR's catalytic Asp114, Ser144, and Lys161, respectively. However, only the backbone of Q9HYA2's Thr159 overlapped KR's catalytic Tyr157. The Thr159 hydroxyl in apo Q9HYA2 is poorly positioned for participating in catalysis. In the Q9HYA2-NADPH complex, the Thr159 side chain was modeled in two alternate rotamers, one of which is positioned to interact with other members of the tetrad and the bound cofactor. A chloride ion is bound at the position normally occupied by the catalytic tyrosine hydroxyl. The putative active site of Q9HYA2 contains a chemical moiety at each catalytically important position of a typical SCOR enzyme. This is the first observation of a SCOR protein with this alternate catalytic center that includes threonine replacing the catalytic tyrosine and an ion replacing the hydroxyl moiety of the catalytic tyrosine.

  2. A transcriptome-proteome integrated network identifies endoplasmic reticulum thiol oxidoreductase (ERp57) as a hub that mediates bone metastasis.

    Science.gov (United States)

    Santana-Codina, Naiara; Carretero, Rafael; Sanz-Pamplona, Rebeca; Cabrera, Teresa; Guney, Emre; Oliva, Baldo; Clezardin, Philippe; Olarte, Omar E; Loza-Alvarez, Pablo; Méndez-Lucas, Andrés; Perales, Jose Carlos; Sierra, Angels

    2013-08-01

    Bone metastasis is the most common distant relapse in breast cancer. The identification of key proteins involved in the osteotropic phenotype would represent a major step toward the development of new prognostic markers and therapeutic improvements. The aim of this study was to characterize functional phenotypes that favor bone metastasis in human breast cancer. We used the human breast cancer cell line MDA-MB-231 and its osteotropic BO2 subclone to identify crucial proteins in bone metastatic growth. We identified 31 proteins, 15 underexpressed and 16 overexpressed, in BO2 cells compared with parental cells. We employed a network-modeling approach in which these 31 candidate proteins were prioritized with respect to their potential in metastasis formation, based on the topology of the protein-protein interaction network and differential expression. The protein-protein interaction network provided a framework to study the functional relationships between biological molecules by attributing functions to genes whose functions had not been characterized. The combination of expression profiles and protein interactions revealed an endoplasmic reticulum-thiol oxidoreductase, ERp57, functioning as a hub that retained four down-regulated nodes involved in antigen presentation associated with the human major histocompatibility complex class I molecules, including HLA-A, HLA-B, HLA-E, and HLA-F. Further analysis of the interaction network revealed an inverse correlation between ERp57 and vimentin, which influences cytoskeleton reorganization. Moreover, knockdown of ERp57 in BO2 cells confirmed its bone organ-specific prometastatic role. Altogether, ERp57 appears as a multifunctional chaperone that can regulate diverse biological processes to maintain the homeostasis of breast cancer cells and promote the development of bone metastasis.

  3. Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition.

    Science.gov (United States)

    Bonke, Erik; Siebels, Ilka; Zwicker, Klaus; Dröse, Stefan

    2016-10-01

    Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn(2+) ions induce hydrogen peroxide (H2O2) production from the ubiquinone binding site of mitochondrial complex II (IIQ) and generally enhance H2O2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H2O2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn(2+) and different respiratory chain inhibitors led to a dynamically increasing H2O2emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn(2+) stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca(2+) increased the rate of H2O2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H2O2 emission: stimulating its production from distinct sites (e.g. site IIQ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle.

  4. Coordinated production and utilization of FADH2 by NAD(P)H-flavin oxidoreductase and 4-hydroxyphenylacetate 3-monooxygenase.

    Science.gov (United States)

    Louie, Tai Man; Xie, X Sunney; Xun, Luying

    2003-06-24

    4-Hydroxyphenylacetate (4HPA) 3-monooxygenase (HpaB) is a reduced flavin adenine dinucleotide (FADH(2)) utilizing monooxygenase. Its cosubstrate, FADH(2), is supplied by HpaC, an NAD(P)H-flavin oxidoreductase. Because HpaB is the first enzyme for 4HPA metabolism, FADH(2) production and utilization become a major metabolic event when Escherichia coli W grows on 4HPA. An important question is how FADH(2) is produced and used, as FADH(2) is unstable in the presence of free O(2). One solution is metabolic channeling by forming a transitory HpaB-HpaC complex. However, our in vivo and in vitro data failed to support the interaction. Further investigation pointed to an alternative scheme for HpaB to sequester FADH(2). The intracellular HpaB concentration was about 122 microM in 4HPA-growing cells, much higher than the total intracellular FAD concentration, and HpaB had a high affinity for FADH(2) (K(d) of 70 nM), suggesting that most FADH(2) is bound to HpaB in vivo. The HpaB-bound FADH(2) was either used to rapidly oxidize 4HPA or slowly oxidized by O(2) to FAD and H(2)O(2) in the absence of 4HPA. Thus, HpaB's high intracellular concentration, its high affinity for FADH(2), its property of protecting bound FADH(2) in the absence of 4HPA, and its ability to rapidly use FADH(2) to oxidize 4HPA when 4HPA is available can coordinate FADH(2) production and utilization by HpaB and HpaC in vivo. This type of coordination, in responding to demand, for production and utilization of labile metabolites has not been reported to date.

  5. Enzymic synthesis of lignin precursors. Comparison of cinnamoyl-CoA reductase and cinnamyl alcohol:NADP+ dehydrogenase from spruce (Picea abies L.) and soybean (Glycine max L.).

    Science.gov (United States)

    Lüderitz, T; Grisebach, H

    1981-09-01

    Cambial sap of spruce (Picea abies) proved to be a good source for isolation of cinnamoyl-CoA reductase and cinnamyl alcohol:NADP+ dehydrogenase. Apparently homogeneous enzymes were obtained by a multistep procedure including dye-ligand chromatography and for the reductase also affinity chromatography on (coenzyme A)-agarose. An improved purification procedure for the reductase from soybean cell cultures is also reported. Molecular weights and subunit composition of reductase and dehydrogenase from spruce are very similar to those of the corresponding enzymes from soybean. Reduction of feruloyl-CoA to coniferaldehyde catalysed by the reductase is a freely reversible reaction with an equilibrium constant of 5.6 x 10(-4) M at pH 6.25. A strong dependence of the Michaelis constants on the type of buffer was found. For reductase the Km-value of feruloyl-CoA in phosphate buffer (5.2 microM) is about 14-times similar than in citrate buffer (73 microM). Pronounced differences in substrate specificities between the enzymes from spruce and soybean were found, which reflect the different lignin composition of gymnosperms and dicotyledenous angiosperms. From the kinetic constants of the enzymes it can be concluded that under physiological conditions feruloyl-CoA is the preferred substrate for the reductase from both sources whereas sinapoyl-CoA is a substrate only for the soybean reductase and sinapyldehyde a substrate only for the soybean dehydrogenase. 4-Coumaroyl-CoA is a poor substrate for the reductase from both spruce and soybean. This result is consistent with the low content of 4-coumaryl alcohol units in gymnosperm and angiosperm lignin.

  6. Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum.

    Science.gov (United States)

    Javelle, Arnaud; Morel, Mélanie; Rodríguez-Pastrana, Blanca-Rosa; Botton, Bernard; André, Bruno; Marini, Anne-Marie; Brun, Annick; Chalot, Michel

    2003-01-01

    External hyphae, which play a key role in nitrogen nutrition of trees, are considered as the absorbing structures of the ectomycorrhizal symbiosis. Here, we have cloned and characterized Hebeloma cylindrosporum AMT1, GLNA and GDHA genes, which encode a third ammonium transporter, a glutamine synthetase and an NADP-dependent glutamate dehydrogenase respectively. Amt1 can fully restore the pseudohyphal growth defect of a Saccharomyces cerevisiae mep2 mutant, and this is the first evidence that a heterologous member of the Mep/Amt family complements this dimorphic change defect. Dixon plots of the inhibition of methylamine uptake by ammonium indicate that Amt1 has a much higher affinity than the two previously characterized members (Amt2 and Amt3) of the Amt/Mep family in H. cylindrosporum. We also identified the intracellular nitrogen pool(s) responsible for the modulation of expression of AMT1, AMT2, AMT3, GDHA and GLNA. In response to exogenously supplied ammonium or glutamine, AMT1, AMT2 and GDHA were downregulated and, therefore, these genes are subjected to nitrogen repression in H. cylindrosporum. Exogenously supplied nitrate failed to induce a downregulation of the five mRNAs after transfer of mycelia from a N-starved condition. Our results demonstrate that glutamine is the main effector for AMT1 and AMT2 repression, whereas GDHA repression is controlled by intracellular ammonium, independently of the intracellular glutamine or glutamate concentration. Ammonium transport activity may be controlled by intracellular NH4+. AMT3 and GLNA are highly expressed but not highly regulated. A model for ammonium assimilation in H. cylindrosporum is presented.

  7. Regulation of the cyanobacterial CO2-concentrating mechanism involves internal sensing of NADP+ and α-ketogutarate levels by transcription factor CcmR.

    Directory of Open Access Journals (Sweden)

    Shawn M E Daley

    Full Text Available Inorganic carbon is the major macronutrient required by organisms utilizing oxygenic photosynthesis for autotrophic growth. Aquatic photoautotrophic organisms are dependent upon a CO(2 concentrating mechanism (CCM to overcome the poor CO(2-affinity of the major carbon-fixing enzyme, ribulose-bisphosphate carboxylase/oxygenase (Rubisco. The CCM involves the active transport of inorganic forms of carbon (C(i into the cell to increase the CO(2 concentration around the active site of Rubisco. It employs both bicarbonate transporters and redox-powered CO(2-hydration enzymes coupled to membranous NDH-type electron transport complexes that collectively produce C(i concentrations up to a 1000-fold greater in the cytoplasm compared to the external environment. The CCM is regulated: a high affinity CCM comprised of multiple components is induced under limiting external Ci concentrations. The LysR-type transcriptional regulator CcmR has been shown to repress its own expression along with structural genes encoding high affinity C(i transporters distributed throughout the genome of Synechocystis sp. PCC 6803. While much has been learned about the structural genes of the CCM and the identity of the transcriptional regulators controlling their expression, little is known about the physiological signals that elicit the induction of the high affinity CCM. Here CcmR is studied to identify metabolites that modulate its transcriptional repressor activity. Using surface plasmon resonance (SPR α-ketoglutarate (α-KG and the oxidized form of nicotinamide adenine dinucleotide phosphate (NADP(+ have been identified as the co-repressors of CcmR. Additionally, ribulose-1,5-bisphosphate (RuBP and 2-phosphoglycolate (2-PG have been confirmed as co-activators of CmpR which controls the expression of the ABC-type bicarbonate transporter.

  8. Data for rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H-preferring xylose reductase–xylitol dehydrogenase pathway

    Directory of Open Access Journals (Sweden)

    Biao Zhang

    2015-12-01

    Full Text Available A thermo-tolerant NADP(H-preferring xylose pathway was constructed in Kluyveromyces marxianus for ethanol production with xylose at elevated temperatures (Zhang et al., 2015 [25]. Ethanol production yield and efficiency was enhanced by pathway engineering in the engineered strains. The constructed strain, YZJ088, has the ability to co-ferment glucose and xylose for ethanol and xylitol production, which is a critical step toward enabling economic biofuel production from lignocellulosic biomass. This study contains the fermentation results of strains using the metabolic pathway engineering procedure. The ethanol-producing abilities of various yeast strains under various conditions were compared, and strain YZJ088 showed the highest production and fastest productivity at elevated temperatures. The YZJ088 xylose fermentation results indicate that it fermented well with xylose at either low or high inoculum size. When fermented with an initial cell concentration of OD600=15 at 37 °C, YZJ088 consumed 200 g/L xylose and produced 60.07 g/L ethanol; when the initial cell concentration was OD600=1 at 37 °C, YZJ088 consumed 98.96 g/L xylose and produced 33.55 g/L ethanol with a productivity of 0.47 g/L/h. When fermented with 100 g/L xylose at 42 °C, YZJ088 produced 30.99 g/L ethanol with a productivity of 0.65 g/L/h, which was higher than that produced at 37 °C.

  9. Roles of the species-specific subdomain and the N-terminal peptide of Toxoplasma gondii ferredoxin-NADP+ reductase in ferredoxin binding.

    Science.gov (United States)

    Pandini, Vittorio; Caprini, Gianluca; Tedeschi, Gabriella; Seeber, Frank; Zanetti, Giuliana; Aliverti, Alessandro

    2006-03-21

    The plant-type ferredoxin/ferredoxin-NADP(+) reductase (Fd/FNR) redox system found in parasites of the phylum Apicomplexa has been proposed as a target for novel drugs used against life-threatening diseases such as malaria and toxoplasmosis. Like many proteins from these protists, apicomplexan FNRs are characterized by the presence of unique peptide insertions of variable length and yet unknown function. Since three-dimensional data are not available for any of the parasite FNRs, we used limited proteolysis to carry out an extensive study of the conformation of Toxoplasma gondii FNR. This led to identification of 11 peptide bonds susceptible to the action of four different proteases. Cleavage sites are clustered in four regions of the enzyme, which include two of its three species-specific insertions. Such regions are thus predicted to form flexible surface loops. The protein substrate Fd protected FNR against cleavage both at its N-terminal peptide and at its largest sequence insertion (28 residues). Deletion by protein engineering of the species-specific subdomain containing the latter insertion resulted in an enzyme form that, although catalytically active, displayed a 10-fold decreased affinity for Fd. In contrast, removal of the first 15 residues of the enzyme unexpectedly enhanced its interaction with Fd. Thus, two flexible polypeptide regions of T. gondii FNR are involved in Fd interaction but have opposite roles in modulating the binding affinity for the protein ligand. In this respect, T. gondii FNR differs from plant FNRs, where the N-terminal peptide contributes to the stabilization of their complex with Fd.

  10. Pseudomonas aeruginosa IscR-Regulated Ferredoxin NADP(+ Reductase Gene (fprB Functions in Iron-Sulfur Cluster Biogenesis and Multiple Stress Response.

    Directory of Open Access Journals (Sweden)

    Adisak Romsang

    Full Text Available P. aeruginosa (PAO1 has two putative genes encoding ferredoxin NADP(+ reductases, denoted fprA and fprB. Here, the regulation of fprB expression and the protein's physiological roles in [4Fe-4S] cluster biogenesis and stress protection are characterized. The fprB mutant has defects in [4Fe-4S] cluster biogenesis, as shown by reduced activities of [4Fe-4S] cluster-containing enzymes. Inactivation of the gene resulted in increased sensitivity to oxidative, thiol, osmotic and metal stresses compared with the PAO1 wild type. The increased sensitivity could be partially or completely suppressed by high expression of genes from the isc operon, which are involved in [Fe-S] cluster biogenesis, indicating that stress sensitivity in the fprB mutant is partially caused by a reduction in levels of [4Fe-4S] clusters. The pattern and regulation of fprB expression are in agreement with the gene physiological roles; fprB expression was highly induced by redox cycling drugs and diamide and was moderately induced by peroxides, an iron chelator and salt stress. The stress-induced expression of fprB was abolished by a deletion of the iscR gene. An IscR DNA-binding site close to fprB promoter elements was identified and confirmed by specific binding of purified IscR. Analysis of the regulation of fprB expression supports the role of IscR in directly regulating fprB transcription as a transcription activator. The combination of IscR-regulated expression of fprB and the fprB roles in response to multiple stressors emphasizes the importance of [Fe-S] cluster homeostasis in both gene regulation and stress protection.

  11. Data for rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway.

    Science.gov (United States)

    Zhang, Biao; Zhang, Jia; Wang, Dongmei; Gao, Xiaolian; Sun, Lianhong; Hong, Jiong

    2015-12-01

    A thermo-tolerant NADP(H)-preferring xylose pathway was constructed in Kluyveromyces marxianus for ethanol production with xylose at elevated temperatures (Zhang et al., 2015 [25]). Ethanol production yield and efficiency was enhanced by pathway engineering in the engineered strains. The constructed strain, YZJ088, has the ability to co-ferment glucose and xylose for ethanol and xylitol production, which is a critical step toward enabling economic biofuel production from lignocellulosic biomass. This study contains the fermentation results of strains using the metabolic pathway engineering procedure. The ethanol-producing abilities of various yeast strains under various conditions were compared, and strain YZJ088 showed the highest production and fastest productivity at elevated temperatures. The YZJ088 xylose fermentation results indicate that it fermented well with xylose at either low or high inoculum size. When fermented with an initial cell concentration of OD600=15 at 37 °C, YZJ088 consumed 200 g/L xylose and produced 60.07 g/L ethanol; when the initial cell concentration was OD600=1 at 37 °C, YZJ088 consumed 98.96 g/L xylose and produced 33.55 g/L ethanol with a productivity of 0.47 g/L/h. When fermented with 100 g/L xylose at 42 °C, YZJ088 produced 30.99 g/L ethanol with a productivity of 0.65 g/L/h, which was higher than that produced at 37 °C.

  12. FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase.

    Science.gov (United States)

    Raab, Thomas; López-Ráez, Juan Antonio; Klein, Dorothée; Caballero, Jose Luis; Moyano, Enriqueta; Schwab, Wilfried; Muñoz-Blanco, Juan

    2006-04-01

    The flavor of strawberry (Fragaria x ananassa) fruit is dominated by an uncommon group of aroma compounds with a 2,5-dimethyl-3(H)-furanone structure. We report the characterization of an enzyme involved in the biosynthesis of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF; Furaneol), the key flavor compound in strawberries. Protein extracts were partially purified, and the observed distribution of enzymatic activity correlated with the presence of a single polypeptide of approximately 37 kD. Sequence analysis of two peptide fragments showed total identity with the protein sequence of a strongly ripening-induced, auxin-dependent putative quinone oxidoreductase, Fragaria x ananassa quinone oxidoreductase (FaQR). The open reading frame of the FaQR cDNA consists of 969 bp encoding a 322-amino acid protein with a calculated molecular mass of 34.3 kD. Laser capture microdissection followed by RNA extraction and amplification demonstrated the presence of FaQR mRNA in parenchyma tissue of the strawberry fruit. The FaQR protein was functionally expressed in Escherichia coli, and the monomer catalyzed the formation of HDMF. After chemical synthesis and liquid chromatography-tandem mass spectrometry analysis, 4-hydroxy-5-methyl-2-methylene-3(2H)-furanone was confirmed as a substrate of FaQR and the natural precursor of HDMF. This study demonstrates the function of the FaQR enzyme in the biosynthesis of HDMF as enone oxidoreductase and provides a foundation for the improvement of strawberry flavor and the biotechnological production of HDMF.

  13. ns-μs Time-Resolved Step-Scan FTIR of ba3 Oxidoreductase from Thermus thermophilus: Protonic Connectivity of w941-w946-w927

    Science.gov (United States)

    Nicolaides, Antonis; Soulimane, Tewfik; Varotsis, Constantinos

    2016-01-01

    Time-resolved step-scan FTIR spectroscopy has been employed to probe the dynamics of the ba3 oxidoreductase from Thermus thermophilus in the ns-μs time range and in the pH/pD 6–9 range. The data revealed a pH/pD sensitivity of the D372 residue and of the ring-A propionate of heme a3. Based on the observed transient changes a model in which the protonic connectivity of w941-w946-927 to the D372 and the ring-A propionate of heme a3 is described. PMID:27690021

  14. A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae

    OpenAIRE

    Wiebe, Marilyn G.; Nygård, Yvonne; Oja, Merja; Andberg, Martina; Ruohonen, Laura; Koivula, Anu; Penttilä, Merja; Toivari, Mervi

    2015-01-01

    An open reading frame CC1225 from the Caulobacter crescentus CB15 genome sequence belongs to the Gfo/Idh/MocA protein family and has 47 % amino acid sequence identity with the glucose-fructose oxidoreductase from Zymomonas mobilis (Zm GFOR). We expressed the ORF CC1225 in the yeast Saccharomyces cerevisiae and used a yeast strain expressing the gene coding for Zm GFOR as a reference. Cell extracts of strains overexpressing CC1225 (renamed as Cc aaor) showed some Zm GFOR type of activity, prod...

  15. The activity of some oxidoreductases in Hordeum vulgare L. plants treated with ethylmethanesulfonate and Rosmarinus officinalis L. hydro-alcoholic extracts

    Directory of Open Access Journals (Sweden)

    Gogu Gheorghita

    2011-02-01

    Full Text Available This paper focuses on the activity of some oxidoreductases (catalase, peroxidase, superoxide- dismutase in barley seedlings (Hordeum vulgare L. after 6 hours of seeds treatment with different concentrations (0,01 – 0,50% of ethyl-methane-sulfonate and 12 hours with hydro-alcoholic 0,5% rosemary (Rosmarinus officinalis L. extract (EHR. The EMS treatments led to an obvious increase of the superoxide dismutase, catalase and peroxidase activity in plants, while the application of the hydro-alcoholic rosemary extract, after the EMS treatment, led to a significant decrease of the activities of these enzymes, since the rosemary extract has an obvious antioxidant effect.

  16. Enzymatic Characterization of NADP-dependent Isocitrate Dehydrogenization inPinus sylvestris var.mongolica Ectomycorrhiza%樟子松外生菌根中NADP-依赖型异柠檬酸脱氢酶的酶学性质研究

    Institute of Scientific and Technical Information of China (English)

    王一超; 姚庆智; 朱和平; 陈丽霞; 郭欣; 杨倩倩; 闫伟

    2015-01-01

    The purpose of the work is to purify the isocitrate dehydrogenase(IDH)in mycorrhizal tissue ofSuillus luteus-Pinus sylvestrisvar. mongolica, root tissue ofP. sylvestrisvar. mongolica and cultured fungal mycelia ofS. luteus, and identify their enzymatic characterizations. The IDHs of 3 sources were purified by ammonium sulfate precipitation and glucan gel chromatography and tested by SDS-PAGE electrophoresis, and enzymatic characterizations were studied. The Km for NADP+ of mycorrhiza, root and cultured fungal mycelia were 10.7μmol/L, 11.4μmol/L and 22.1μmol/L, respectively;the Kmfor isocitrate were 71.7μmol/L, 79.3μmol/L and 87.8μmol/L, respectively. The optimal pH of mycorrhiza, root and cultured fungal mycelia were 8.2, 8.0 and 7.5 respectively;they were all slightly in alkaline. The optimal temperatures of the IDHs were 45℃ for mycorrhiza and root, and 42℃ for the fungus. The activities of 3 IDHs relied on the binding of divalent metal ions, the maximum activities of IDHs were observed when assayed with Mn2+ or Mg2+ as metal cofactor;however, Ca2+, Co2+, Cu2+ and Zn2+ dramatically inhibited the activity of IDHs. Conclusively, protein content and enzyme activity of mycorrhizal IDH have been increased.%对褐环乳牛肝菌-樟子松菌根组织、樟子松根组织及褐环乳牛肝菌纯培养菌丝的异柠檬酸脱氢酶(isocitrate dehydrogenase,IDH)进行纯化和酶学性质鉴定。通过硫酸铵分级沉淀及葡聚糖凝胶层析纯化后的IDH进行SDS-PAGE电泳检测,并进行3种来源酶的酶学性质鉴定。菌根组织、根组织及真菌纯培养菌丝NADP-IDH对NADP+的Km值分别为10.7μmol/L、11.4μmol/L和22.1μmol/L;对异柠檬酸的Km值分别为71.7μmol/L、79.3μmol/L和87.8μmol/L。最适pH分别为8.2、8.0和7.5,略偏碱性。菌根IDH和根IDH的最适反应温度为45℃,真菌IDH的最适反应温度为42℃。3种IDH的活性依赖于不同的二价金属阳离子的存在, Mn2+、Mg2+

  17. Modulation of Sonic hedgehog signaling and WW domain containing oxidoreductase WOX1 expression enhances radiosensitivity of human glioblastoma cells.

    Science.gov (United States)

    Chiang, Ming-Fu; Chen, Hsin-Hong; Chi, Chih-Wen; Sze, Chun-I; Hsu, Ming-Ling; Shieh, Hui-Ru; Lin, Chin-Ping; Tsai, Jo-Ting; Chen, Yu-Jen

    2015-03-01

    WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA double-strand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further

  18. Structural and functional insights into the catalytic inactivity of the major fraction of buffalo milk xanthine oxidoreductase.

    Directory of Open Access Journals (Sweden)

    Kaustubh S Gadave

    Full Text Available BACKGROUND: Xanthine oxidoreductase (XOR existing in two interconvertible forms, xanthine dehydrogenase (XDH and xanthine oxidase (XO, catabolises xanthine to uric acid that is further broken down to antioxidative agent allantoin. XOR also produces free radicals serving as second messenger and microbicidal agent. Large variation in the XO activity has been observed among various species. Both hypo and hyper activity of XOR leads to pathophysiological conditions. Given the important nutritional role of buffalo milk in human health especially in south Asia, it is crucial to understand the functional properties of buffalo XOR and the underlying structural basis of variations in comparison to other species. METHODS AND FINDINGS: Buffalo XO activity of 0.75 U/mg was almost half of cattle XO activity. Enzymatic efficiency (k cat/K m of 0.11 sec(-1 µM(-1 of buffalo XO was 8-10 times smaller than that of cattle XO. Buffalo XOR also showed lower antibacterial activity than cattle XOR. A CD value (Δε430 nm of 46,000 M(-1 cm(-1 suggested occupancy of 77.4% at Fe/S I centre. Buffalo XOR contained 0.31 molybdenum atom/subunit of which 48% existed in active sulfo form. The active form of XO in buffalo was only 16% in comparison to ∼30% in cattle. Sequencing revealed 97.4% similarity between buffalo and cattle XOR. FAD domain was least conserved, while metal binding domains (Fe/S and Molybdenum were highly conserved. Homology modelling of buffalo XOR showed several variations occurring in clusters, especially close to FAD binding pocket which could affect NAD(+ entry in the FAD centre. The difference in XO activity seems to be originating from cofactor deficiency, especially molybdenum. CONCLUSION: A major fraction of buffalo milk XOR exists in a catalytically inactive form due to high content of demolybdo and desulfo forms. Lower Fe/S content and structural factors might be contributing to lower enzymatic efficiency of buffalo XOR in a minor way.

  19. The Na+-Translocating NADH:Quinone Oxidoreductase Enhances Oxidative Stress in the Cytoplasm of Vibrio cholerae.

    Science.gov (United States)

    Muras, Valentin; Dogaru-Kinn, Paul; Minato, Yusuke; Häse, Claudia C; Steuber, Julia

    2016-09-01

    We searched for a source of reactive oxygen species (ROS) in the cytoplasm of the human pathogen Vibrio cholerae and addressed the mechanism of ROS formation using the dye 2',7'-dichlorofluorescein diacetate (DCFH-DA) in respiring cells. By comparing V. cholerae strains with or without active Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), this respiratory sodium ion redox pump was identified as a producer of ROS in vivo The amount of cytoplasmic ROS detected in V. cholerae cells producing variants of Na(+)-NQR correlated well with rates of superoxide formation by the corresponding membrane fractions. Membranes from wild-type V. cholerae showed increased superoxide production activity (9.8 ± 0.6 μmol superoxide min(-1) mg(-1) membrane protein) compared to membranes from the mutant lacking Na(+)-NQR (0.18 ± 0.01 μmol min(-1) mg(-1)). Overexpression of plasmid-encoded Na(+)-NQR in the nqr deletion strain resulted in a drastic increase in the formation of superoxide (42.6 ± 2.8 μmol min(-1) mg(-1)). By analyzing a variant of Na(+)-NQR devoid of quinone reduction activity, we identified the reduced flavin adenine dinucleotide (FAD) cofactor of cytoplasmic NqrF subunit as the site for intracellular superoxide formation in V. cholerae The impact of superoxide formation by the Na(+)-NQR on the virulence of V. cholerae is discussed. In several studies, it was demonstrated that the Na(+)-NQR in V. cholerae affects virulence in a yet unknown manner. We identified the reduced FAD cofactor in the NADH-oxidizing NqrF subunit of the Na(+)-NQR as the site of superoxide formation in the cytoplasm of V. cholerae Our study provides the framework to understand how reactive oxygen species formed during respiration could participate in the regulated expression of virulence factors during the transition from aerobic to microaerophilic (intestinal) habitats. This hypothesis may turn out to be right for many other pathogens which, like V. cholerae, depend on the Na

  20. Functional and Bioinformatics Analysis of Two Campylobacter jejuni Homologs of the Thiol-Disulfide Oxidoreductase, DsbA

    Science.gov (United States)

    Grabowska, Anna D.; Wywiał, Ewa; Dunin-Horkawicz, Stanislaw; Łasica, Anna M.; Wösten, Marc M. S. M.; Nagy-Staroń, Anna; Godlewska, Renata; Bocian-Ostrzycka, Katarzyna; Pieńkowska, Katarzyna; Łaniewski, Paweł; Bujnicki, Janusz M.; van Putten, Jos P. M.; Jagusztyn-Krynicka, E. Katarzyna

    2014-01-01

    Background Bacterial Dsb enzymes are involved in the oxidative folding of many proteins, through the formation of disulfide bonds between their cysteine residues. The Dsb protein network has been well characterized in cells of the model microorganism Escherichia coli. To gain insight into the functioning of the Dsb system in epsilon-Proteobacteria, where it plays an important role in the colonization process, we studied two homologs of the main Escherichia coli Dsb oxidase (EcDsbA) that are present in the cells of the enteric pathogen Campylobacter jejuni, the most frequently reported bacterial cause of human enteritis in the world. Methods and Results Phylogenetic analysis suggests the horizontal transfer of the epsilon-Proteobacterial DsbAs from a common ancestor to gamma-Proteobacteria, which then gave rise to the DsbL lineage. Phenotype and enzymatic assays suggest that the two C. jejuni DsbAs play different roles in bacterial cells and have divergent substrate spectra. CjDsbA1 is essential for the motility and autoagglutination phenotypes, while CjDsbA2 has no impact on those processes. CjDsbA1 plays a critical role in the oxidative folding that ensures the activity of alkaline phosphatase CjPhoX, whereas CjDsbA2 is crucial for the activity of arylsulfotransferase CjAstA, encoded within the dsbA2-dsbB-astA operon. Conclusions Our results show that CjDsbA1 is the primary thiol-oxidoreductase affecting life processes associated with bacterial spread and host colonization, as well as ensuring the oxidative folding of particular protein substrates. In contrast, CjDsbA2 activity does not affect the same processes and so far its oxidative folding activity has been demonstrated for one substrate, arylsulfotransferase CjAstA. The results suggest the cooperation between CjDsbA2 and CjDsbB. In the case of the CjDsbA1, this cooperation is not exclusive and there is probably another protein to be identified in C. jejuni cells that acts to re-oxidize CjDsbA1. Altogether

  1. Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA.

    Directory of Open Access Journals (Sweden)

    Anna D Grabowska

    Full Text Available BACKGROUND: Bacterial Dsb enzymes are involved in the oxidative folding of many proteins, through the formation of disulfide bonds between their cysteine residues. The Dsb protein network has been well characterized in cells of the model microorganism Escherichia coli. To gain insight into the functioning of the Dsb system in epsilon-Proteobacteria, where it plays an important role in the colonization process, we studied two homologs of the main Escherichia coli Dsb oxidase (EcDsbA that are present in the cells of the enteric pathogen Campylobacter jejuni, the most frequently reported bacterial cause of human enteritis in the world. METHODS AND RESULTS: Phylogenetic analysis suggests the horizontal transfer of the epsilon-Proteobacterial DsbAs from a common ancestor to gamma-Proteobacteria, which then gave rise to the DsbL lineage. Phenotype and enzymatic assays suggest that the two C. jejuni DsbAs play different roles in bacterial cells and have divergent substrate spectra. CjDsbA1 is essential for the motility and autoagglutination phenotypes, while CjDsbA2 has no impact on those processes. CjDsbA1 plays a critical role in the oxidative folding that ensures the activity of alkaline phosphatase CjPhoX, whereas CjDsbA2 is crucial for the activity of arylsulfotransferase CjAstA, encoded within the dsbA2-dsbB-astA operon. CONCLUSIONS: Our results show that CjDsbA1 is the primary thiol-oxidoreductase affecting life processes associated with bacterial spread and host colonization, as well as ensuring the oxidative folding of particular protein substrates. In contrast, CjDsbA2 activity does not affect the same processes and so far its oxidative folding activity has been demonstrated for one substrate, arylsulfotransferase CjAstA. The results suggest the cooperation between CjDsbA2 and CjDsbB. In the case of the CjDsbA1, this cooperation is not exclusive and there is probably another protein to be identified in C. jejuni cells that acts to re

  2. Adaptive hepatic and intestinal alterations in mice after deletion of NADPH-cytochrome P450 Oxidoreductase (Cpr) in hepatocytes.

    Science.gov (United States)

    Cheng, Xingguo; Gu, Jun; Klaassen, Curtis D

    2014-11-01

    Cytochrome P450 enzymes (P450) play an important role in first-pass metabolism in both the intestine and liver. NADPH-cytochrome P450 oxidoreductase (Cpr) is an essential electron transfer protein required for microsomal P450 activity. Mice with conditional knockout of Cpr in hepatocytes develop normally and survive even with complete loss of liver microsomal P450 activity. Our current studies were performed to determine whether alternative drug-metabolizing pathways increase in an attempt to maintain whole-body homeostasis. In addition to the liver, Cpr is mainly expressed in tissues such as lung, kidney, and gastrointestinal tract. In livers of H-Cpr-null mice, there is a marked increase in mRNA expression of phase I enzymes (Aldh1a1, 1a7, 3a2; Ces1b2, 2a6, and 2a12), antioxidant enzymes (Ho-1, Nqo1, and epoxide hydrolase), phase II enzymes (Ugt1a9; Gsta1/2, m3, m4, m6, t1, and t3; and Sult1a1 and 1d1), and drug transporters (Oatp1a4, Oct3, Mate1, Mdr1a, and Mrp3 and 4). In addition, glucuronide-conjugated bilirubin concentrations are doubled in serum of H-Cpr-null mice. Both constitutive androstane receptor (CAR) and nuclear factor erythroid 2-related factor 2 (Nrf2) protein in nuclei are higher in the livers of H-Cpr-null mice, indicating that CAR and Nrf2 are activated. In the small intestine of H-Cpr-null mice, mRNA expression of Cyp3a11 and Mdr1a, two genes critical for intestinal first-pass metabolism, are markedly up-regulated. In addition, nutrient (Pept1) and cholesterol (Npc1l1) transporters are induced in the small intestine of H-Cpr-null mice. In conclusion, in H-Cpr-null mice, adaptive regulation of alternative detoxification genes in liver and small intestine appear to partially compensate for the loss of microsomal P450 function in liver.

  3. Thiol-disulfide Oxidoreductases TRX1 and TMX3 Decrease Neuronal Atrophy in a Lentiviral Mouse Model of Huntington’s Disease

    Science.gov (United States)

    Fox, Jonathan; Lu, Zhen; Barrows, Lorraine

    2015-01-01

    Huntington’s disease (HD) is caused by a trinucleotide CAG repeat in the huntingtin gene (HTT) that results in expression of a polyglutamine-expanded mutant huntingtin protein (mHTT). N-terminal fragments of mHTT accumulate in brain neurons and glia as soluble monomeric and oligomeric species as well as insoluble protein aggregates and drive the disease process. Decreasing mHTT levels in brain provides protection and reversal of disease signs in HD mice making mHTT a prime target for disease modification. There is evidence for aberrant thiol oxidation within mHTT and other proteins in HD models. Based on this, we hypothesized that a specific thiol-disulfide oxidoreductase exists that decreases mHTT levels in cells and provides protection in HD mice. We undertook an in-vitro genetic screen of key thiol-disulfide oxidoreductases then completed secondary screens to identify those with mHTT decreasing properties. Our in-vitro experiments identified thioredoxin 1 and thioredoxin-related transmembrane protein 3 as proteins that decrease soluble mHTT levels in cultured cells. Using a lentiviral mouse model of HD we tested the effect of these proteins in striatum. Both proteins decreased mHTT-induced striatal neuronal atrophy. Findings provide evidence for a role of dysregulated protein-thiol homeostasis in the pathogenesis of HD. PMID:26664998

  4. Progesterone Exerts a Neuromodulatory Effect on Turning Behavior of Hemiparkinsonian Male Rats: Expression of 3α-Hydroxysteroid Oxidoreductase and Allopregnanolone as Suggestive of GABAA Receptors Involvement

    Directory of Open Access Journals (Sweden)

    Roberto Yunes

    2015-01-01

    Full Text Available There is a growing amount of evidence for a neuroprotective role of progesterone and its neuroactive metabolite, allopregnanolone, in animal models of neurodegenerative diseases. By using a model of hemiparkinsonism in male rats, injection of the neurotoxic 6-OHDA in left striatum, we studied progesterone’s effects on rotational behavior induced by amphetamine or apomorphine. Also, in order to find potential explanatory mechanisms, we studied expression and activity of nigrostriatal 3α-hydroxysteroid oxidoreductase, the enzyme that catalyzes progesterone to its active metabolite allopregnanolone. Coherently, we tested allopregnanolone for a possible neuromodulatory effect on rotational behavior. Also, since allopregnanolone is known as a GABAA modulator, we finally examined the action of GABAA antagonist bicuculline. We found that progesterone, in addition to an apparent neuroprotective effect, also increased ipsilateral expression and activity of 3α-hydroxysteroid oxidoreductase. It was interesting to note that ipsilateral administration of allopregnanolone reversed a clear sign of motor neurodegeneration, that is, contralateral rotational behavior. A possible GABAA involvement modulated by allopregnanolone was shown by the blocking effect of bicuculline. Our results suggest that early administration of progesterone possibly activates genomic mechanisms that promote neuroprotection subchronically. This, in turn, could be partially mediated by fast, nongenomic, actions of allopregnanolone acting as an acute modulator of GABAergic transmission.

  5. A thiol-disulfide oxidoreductase of the Gram-positive pathogen Corynebacterium diphtheriae is essential for viability, pilus assembly, toxin production and virulence.

    Science.gov (United States)

    Reardon-Robinson, Melissa E; Osipiuk, Jerzy; Jooya, Neda; Chang, Chungyu; Joachimiak, Andrzej; Das, Asis; Ton-That, Hung

    2015-12-01

    The Gram-positive pathogen Corynebacterium diphtheriae exports through the Sec apparatus many extracellular proteins that include the key virulence factors diphtheria toxin and the adhesive pili. How these proteins attain their native conformations after translocation as unfolded precursors remains elusive. The fact that the majority of these exported proteins contain multiple cysteine residues and that several membrane-bound oxidoreductases are encoded in the corynebacterial genome suggests the existence of an oxidative protein-folding pathway in this organism. Here we show that the shaft pilin SpaA harbors a disulfide bond in vivo and alanine substitution of these cysteines abrogates SpaA polymerization and leads to the secretion of degraded SpaA peptides. We then identified a thiol-disulfide oxidoreductase (MdbA), whose structure exhibits a conserved thioredoxin-like domain with a CPHC active site. Remarkably, deletion of mdbA results in a severe temperature-sensitive cell division phenotype. This mutant also fails to assemble pilus structures and is greatly defective in toxin production. Consistent with these defects, the ΔmdbA mutant is attenuated in a guinea pig model of diphtheritic toxemia. Given its diverse cellular functions in cell division, pilus assembly and toxin production, we propose that MdbA is a component of the general oxidative folding machine in C. diphtheriae.

  6. Toxicological effects of thiomersal and ethylmercury: Inhibition of the thioredoxin system and NADP{sup +}-dependent dehydrogenases of the pentose phosphate pathway

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Juan, E-mail: juanricardorodrigues@gmail.com [Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa (Portugal); Laboratory of Biochemistry, Faculty of Pharmacy, Central University of Venezuela (Venezuela, Bolivarian Republic of); Branco, Vasco [Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa (Portugal); Lu, Jun; Holmgren, Arne [Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet (Sweden); Carvalho, Cristina, E-mail: cristina.carvalho@ff.ulisboa.pt [Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa (Portugal)

    2015-08-01

    Mercury (Hg) is a strong toxicant affecting mainly the central nervous, renal, cardiovascular and immune systems. Thiomersal (TM) is still in use in medical practice as a topical antiseptic and as a preservative in multiple dose vaccines, routinely given to young children in some developing countries, while other forms of mercury such as methylmercury represent an environmental and food hazard. The aim of the present study was to determine the effects of thiomersal (TM) and its breakdown product ethylmercury (EtHg) on the thioredoxin system and NADP{sup +}-dependent dehydrogenases of the pentose phosphate pathway. Results show that TM and EtHg inhibited the thioredoxin system enzymes in purified suspensions, being EtHg comparable to methylmercury (MeHg). Also, treatment of neuroblastoma and liver cells with TM or EtHg decreased cell viability (GI{sub 50}: 1.5 to 20 μM) and caused a significant (p < 0.05) decrease in the overall activities of thioredoxin (Trx) and thioredoxin reductase (TrxR) in a concentration- and time-dependent manner in cell lysates. Compared to control, the activities of Trx and TrxR in neuroblastoma cells after EtHg incubation were reduced up to 60% and 80% respectively, whereas in hepatoma cells the reduction was almost 100%. In addition, the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were also significantly inhibited by all mercurials, with inhibition intensity of Hg{sup 2+} > MeHg ≈ EtHg > TM (p < 0.05). Cell incubation with sodium selenite alleviated the inhibitory effects on TrxR and glucose-6-phosphate dehydrogenase. Thus, the molecular mechanism of toxicity of TM and especially of its metabolite EtHg encompasses the blockage of the electrons from NADPH via the thioredoxin system. - Highlights: • TM and EtHg inhibit Trx and TrxR both in purified suspensions and cell lysates. • TM and EtHg also inhibit the activities of G6PDH and 6PGDH in cell lysates, • Co-exposure to selenite alleviates

  7. The FinR-regulated essential gene fprA, encoding ferredoxin NADP+ reductase: Roles in superoxide-mediated stress protection and virulence of Pseudomonas aeruginosa

    Science.gov (United States)

    Boonma, Siriwan; Romsang, Adisak; Duang-nkern, Jintana; Atichartpongkul, Sopapan; Trinachartvanit, Wachareeporn; Vattanaviboon, Paiboon

    2017-01-01

    Pseudomonas aeruginosa has two genes encoding ferredoxin NADP(+) reductases, denoted fprA and fprB. We show here that P. aeruginosa fprA is an essential gene. However, the ΔfprA mutant could only be successfully constructed in PAO1 strains containing an extra copy of fprA on a mini-Tn7 vector integrated into the chromosome or carrying it on a temperature-sensitive plasmid. The strain containing an extra copy of the ferredoxin gene (fdx1) could suppress the essentiality of FprA. Other ferredoxin genes could not suppress the requirement for FprA, suggesting that Fdx1 mediates the essentiality of FprA. The expression of fprA was highly induced in response to treatments with a superoxide generator, paraquat, or sodium hypochlorite (NaOCl). The induction of fprA by these treatments depended on FinR, a LysR-family transcription regulator. In vivo and in vitro analysis suggested that oxidized FinR acted as a transcriptional activator of fprA expression by binding to its regulatory box, located 20 bases upstream of the fprA -35 promoter motif. This location of the FinR box also placed it between the -35 and -10 motifs of the finR promoter, where the reduced regulator functions as a repressor. Under uninduced conditions, binding of FinR repressed its own transcription but had no effect on fprA expression. Exposure to paraquat or NaOCl converted FinR to a transcriptional activator, leading to the expression of both fprA and finR. The ΔfinR mutant showed an increased paraquat sensitivity phenotype and attenuated virulence in the Drosophila melanogaster host model. These phenotypes could be complemented by high expression of fprA, indicating that the observed phenotypes of the ΔfinR mutant arose from the inability to up-regulate fprA expression. In addition, increased expression of fprB was unable to rescue essentiality of fprA or the superoxide-sensitive phenotype of the ΔfinR mutant, suggesting distinct mechanisms of the FprA and FprB enzymes. PMID:28187184

  8. Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H(2)O (2)-Implications for their role in disease, especially cancer

    NARCIS (Netherlands)

    Albracht, S.P.J.; Meijer, A.J.; Rydström, J.

    2011-01-01

    Mammalian NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial inner membrane catalyzes the oxidation of NADH in the matrix. Excess NADH reduces nine of the ten prosthetic groups of the enzyme in bovine-heart submitochondrial particles with a rate of at least 3,300 s(-1). This results in

  9. Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H₂O₂--implications for their role in disease, especially cancer

    NARCIS (Netherlands)

    Albracht, S.P.J.; Meijer, A.J.; Rydström, J.

    2011-01-01

    Mammalian NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial inner membrane catalyzes the oxidation of NADH in the matrix. Excess NADH reduces nine of the ten prosthetic groups of the enzyme in bovine-heart submitochondrial particles with a rate of at least 3,300 s−1. This results in an

  10. Light-independent and light-dependent protochlorophyllide-reducing activities and two distinct NADPH-protochlorophyllide oxidoreductase polypeptides in mountain pine (Pinus mugo).

    Science.gov (United States)

    Forreiter, C; Apel, K

    1993-01-01

    Lower plants and gymnosperms synthesize chlorophyll and develop photosynthetically competent chloroplasts even when grown in the dark. In cell-free extracts of pine (Pinus mugo, Turra, ssp. mugo) seedlings, light-independent and light-dependent protochlorophyllide-reducing activities are present. Two distinct NADPH-protochlorophyllide-oxidoreductase (POR) polypeptides can be detected immunologically with an antiserum raised against the POR of barley. The subcellular localization and amounts of the two POR polypeptides are differentially affected by light: one of them is predominantly present in prolamellar bodies of etiochloroplasts and its abundance rapidly declines once the pine seedlings are exposed to light; the other is found in thylakoid membranes and its amount does not change during illumination of dark-grown seedlings. Two types of cDNA sequences are identified that encode two distinct POR polypeptides in pine. The relevance of these POR polypeptides for the two chlorophyll biosynthetic pathways active in gymnosperms is discussed.

  11. Structure-function analysis of the endoplasmic reticulum oxidoreductase TMX3 reveals interdomain stabilization of the n-terminal redox-active domain

    DEFF Research Database (Denmark)

    Haugstetter, J.; Maurer, M.A.; Blicher, Thomas

    2007-01-01

    Disulfide bond formation in the endoplasmic reticulum is catalyzed by enzymes of the protein disulfide-isomerase family that harbor one or more thioredoxin-like domains. We recently discovered the transmembrane protein TMX3, a thiol-disulfide oxidoreductase of the protein disulfide-isomerase family...... more resistant toward chemical denaturation and proteolysis in both the oxidized and reduced form. In combination with molecular modeling studies of TMX3 abb', the experimental results provide a new understanding of the relationship between the multidomain structure of TMX3 and its function as a redox...... enzyme. Overall, the data indicate that in addition to their role as substrate and co-factor binding domains, redox-inactive thioredoxin-like domains also function in stabilizing neighboring redox-active domains....

  12. FeS/S/FeS(2) redox system and its oxidoreductase-like chemistry in the iron-sulfur world.

    Science.gov (United States)

    Wang, Wei; Yang, Bin; Qu, Youpeng; Liu, Xiaoyang; Su, Wenhui

    2011-06-01

    The iron-sulfur world (ISW) theory is an intriguing prediction regarding the origin of life on early Earth. It hypothesizes that life arose as a geochemical process from inorganic starting materials on the surface of sulfide minerals in the vicinity of deep-sea hot springs. During the last two decades, many experimental studies have been carried out on this topic, and some interesting results have been achieved. Among them, however, the processes of carbon/nitrogen fixation and biomolecular assembly on the mineral surface have received an inordinate amount of attention. To the present, an abiotic model for the oxidation-reduction of intermediates participating in metabolic pathways has been ignored. We examined the oxidation-reduction effect of a prebiotic FeS/S/FeS(2) redox system on the interconversion between several pairs of α-hydroxy acids and α-keto acids (i.e., lactate/pyruvate, malate/oxaloacetate, and glycolate/glyoxylate). We found that, in the absence of FeS, elemental sulfur (S) oxidized α-hydroxy acids to form corresponding keto acids only at a temperature higher than its melting point (113°C); in the presence of FeS, such reactions occurred more efficiently through a coupled reaction mechanism, even at a temperature below the phase transition point of S. On the other hand, FeS was shown to have the capacity to reversibly reduce the keto acids. Such an oxidoreductase-like chemistry of the FeS/S/FeS(2) redox system suggests that it can determine the redox homeostasis of metabolic intermediates in the early evolutionary phase of life. The results provide a possible pathway for the development of primordial redox biochemistry in the iron-sulfur world. Key Words: Iron-sulfur world-FeS/S/FeS(2) redox system-Oxidoreductase-like chemistry. Astrobiology 11, 471-476.

  13. Roles of the sodium-translocating NADH:quinone oxidoreductase (Na+-NQR) on vibrio cholerae metabolism, motility and osmotic stress resistance.

    Science.gov (United States)

    Minato, Yusuke; Fassio, Sara R; Kirkwood, Jay S; Halang, Petra; Quinn, Matthew J; Faulkner, Wyatt J; Aagesen, Alisha M; Steuber, Julia; Stevens, Jan F; Häse, Claudia C

    2014-01-01

    The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology.

  14. Roles of the sodium-translocating NADH:quinone oxidoreductase (Na+-NQR on vibrio cholerae metabolism, motility and osmotic stress resistance.

    Directory of Open Access Journals (Sweden)

    Yusuke Minato

    Full Text Available The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I. Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog, transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology.

  15. The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site.

    Science.gov (United States)

    González-Segura, Lilian; Rudiño-Piñera, Enrique; Muñoz-Clares, Rosario A; Horjales, Eduardo

    2009-01-16

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)(+)-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP(+) and one of the even fewer that require K(+) ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP(+) and K(+) ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the "oxyanion hole." The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2'-phosphate of the NADP(+), thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K(+) binding sites per subunit

  16. NADP(H)相关的体外合成乳酸途径构建以及性质研究%Construction and Characterization of the Pathways of Synthesizing Lactate in Vitro Related to NADP(H)

    Institute of Scientific and Technical Information of China (English)

    茅佳灵; 许琳; 严明

    2016-01-01

    活体细胞体内代谢途径调控机制复杂,若能将目的代谢途径移到胞外,则能进行直观研究。选用嗜热酶来源的10条基因,构建一个能实现自我能量 ATP 和辅酶 NADP(H)循环平衡,葡萄糖代谢生成乳酸的体外合成途径。对该途径初步研究表明,最适反应 pH7.0,最适反应温度50℃,该条件下添加少量的辅酶 NADP+,8 h 内能将12.4 g 的葡萄糖转化生成9.5 g 的乳酸。%The regulating circles of the metabolic pathways in cells in vivo are complicated,and the intuitive researches may be carried out if the target metabolic pathways could be moved to the cells in vitro. Selecting 10 thermophilic enzymes,synthesizing pathways in vitro were constructed,which achieved the cycle balance of energy ATP and redox cofactors NAHP(H),as well as the produced lactate from glucose metabolism. The preliminary study revealed this system’s optimal reaction condition was pH 7 and 50℃. Under this condition,adding small amount of NADP+,12.4 g/L glucose was converted to 9.5 g/L lactate within 8 hours.

  17. Method of controlled reduction of nitroaromatics by enzymatic reaction with oxygen sensitive nitroreductase enzymes

    Science.gov (United States)

    Shah, Manish M.; Campbell, James A.

    1998-01-01

    A method for the controlled reduction of nitroaromatic compounds such as nitrobenzene and 2,4,6-trinitrotoluene by enzymatic reaction with oxygen sensitive nitroreductase enzymes, such as ferredoxin NADP oxidoreductase.

  18. An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo

    Science.gov (United States)

    Gayam, Srivardhan Reddy; Venkatesan, Parthiban; Sung, Yi-Ming; Sung, Shuo-Yuan; Hu, Shang-Hsiu; Hsu, Hsin-Yun; Wu, Shu-Pao

    2016-06-01

    The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material.The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this

  19. CYP450氧化还原酶的药物基因组学研究进展%Advances in pharmacogenomics of cytochrome P450 oxidoreductase

    Institute of Scientific and Technical Information of China (English)

    胡蕾; 高利臣; 卓伟; 周宏灏; 范岚

    2012-01-01

    The redox reaction of the cytochrome P450 enzymes ( CYP) are important physiological and biochemical reactions in the human body, involved in the metabolism of endogenous and exogenous compounds and steroids synthesis. POR (cytochrome P450 oxidoreductase) is the only electron donor for all the hepatic microsomal CYP enzymes. Not only acts as an electron donor involved in drug metabolism mediated by CYP enzymes, POR also directly induces the transformation and metabolism of some anti-tumor precursors. Therefore POR plays an important role in drug metabolism. The gene encoding human POR is highly polymorphic, which is of great clinical significance by having an significant effect on the metabolism and even curative effects of clinically used drugs. Studies on the pharmacogenomics of POR in recent years are summarized as follows.%细胞色素P450氧化酶(cytochrome P450enzymes,CYP)的氧化还原反应是人体内重要的生理生化反应,参与许多内、外源化合物的代谢和激素类化合物的合成.CYP450氧化还原酶(cytochrome P450 oxidoreductase,POR)是所有肝微粒体内CYP酶的唯一电子供体.POR不仅可作为电子供体参与由CYP介导的药物代谢,而且可通过1-电子还原反应直接介导一些抗肿瘤前体药物的代谢和转化.可见,POR在药物代谢过程中发挥着极其重要的作用.众多研究证实,编码人POR的基因具有遗传多态性,对临床药物代谢乃至疗效有着显著影响,具有重要的临床意义.下面对近年来POR的药物基因组学最新研究进展作一综述.

  20. A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae.

    Science.gov (United States)

    Wiebe, Marilyn G; Nygård, Yvonne; Oja, Merja; Andberg, Martina; Ruohonen, Laura; Koivula, Anu; Penttilä, Merja; Toivari, Mervi

    2015-11-01

    An open reading frame CC1225 from the Caulobacter crescentus CB15 genome sequence belongs to the Gfo/Idh/MocA protein family and has 47 % amino acid sequence identity with the glucose-fructose oxidoreductase from Zymomonas mobilis (Zm GFOR). We expressed the ORF CC1225 in the yeast Saccharomyces cerevisiae and used a yeast strain expressing the gene coding for Zm GFOR as a reference. Cell extracts of strains overexpressing CC1225 (renamed as Cc aaor) showed some Zm GFOR type of activity, producing D-gluconate and D-sorbitol when a mixture of D-glucose and D-fructose was used as substrate. However, the activity in Cc aaor expressing strain was >100-fold lower compared to strains expressing Zm gfor. Interestingly, C. crescentus AAOR was clearly more efficient than the Zm GFOR in converting in vitro a single sugar substrate D-xylose (10 mM) to xylitol without an added cofactor, whereas this type of activity was very low with Zm GFOR. Furthermore, when cultured in the presence of D-xylose, the S. cerevisiae strain expressing Cc aaor produced nearly equal concentrations of D-xylonate and xylitol (12.5 g D-xylonate l(-1) and 11.5 g D-xylitol l(-1) from 26 g D-xylose l(-1)), whereas the control strain and strain expressing Zm gfor produced only D-xylitol (5 g l(-1)). Deletion of the gene encoding the major aldose reductase, Gre3p, did not affect xylitol production in the strain expressing Cc aaor, but decreased xylitol production in the strain expressing Zm gfor. In addition, expression of Cc aaor together with the D-xylonolactone lactonase encoding the gene xylC from C. crescentus slightly increased the final concentration and initial volumetric production rate of both D-xylonate and D-xylitol. These results suggest that C. crescentus AAOR is a novel type of oxidoreductase able to convert the single aldose substrate D-xylose to both its oxidized and reduced product.

  1. Toxic-selenium and low-selenium transcriptomes in Caenorhabditis elegans: toxic selenium up-regulates oxidoreductase and down-regulates cuticle-associated genes.

    Directory of Open Access Journals (Sweden)

    Christopher J Boehler

    Full Text Available Selenium (Se is an element that in trace quantities is both essential in mammals but also toxic to bacteria, yeast, plants and animals, including C. elegans. Our previous studies showed that selenite was four times as toxic as selenate to C. elegans, but that deletion of thioredoxin reductase did not modulate Se toxicity. To characterize Se regulation of the full transcriptome, we conducted a microarray study in C. elegans cultured in axenic media supplemented with 0, 0.05, 0.1, 0.2, and 0.4 mM Se as selenite. C. elegans cultured in 0.2 and 0.4 mM Se displayed a significant delay in growth as compared to 0, 0.05, or 0.1 mM Se, indicating Se-induced toxicity, so worms were staged to mid-L4 larval stage for these studies. Relative to 0.1 mM Se treatment, culturing C. elegans at these Se concentrations resulted in 1.9, 9.7, 5.5, and 2.3%, respectively, of the transcriptome being altered by at least 2-fold. This toxicity altered the expression of 295 overlapping transcripts, which when filtered against gene sets for sulfur and cadmium toxicity, identified a dataset of 182 toxic-Se specific genes that were significantly enriched in functions related to oxidoreductase activity, and significantly depleted in genes related to structural components of collagen and the cuticle. Worms cultured in low Se (0 mM Se exhibited no signs of deficiency, but low Se was accompanied by a transcriptional response of 59 genes changed ≥2-fold when compared to all other Se concentrations, perhaps due to decreases in Se-dependent TRXR-1 activity. Overall, these results suggest that Se toxicity in C. elegans causes an increase in ROS and stress responses, marked by increased expression of oxidoreductases and reduced expression of cuticle-associated genes, which together underlie the impaired growth observed in these studies.

  2. Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli.

    Science.gov (United States)

    Knietsch, Anja; Waschkowitz, Tanja; Bowien, Susanne; Henne, Anke; Daniel, Rolf

    2003-03-01

    Enrichment of microorganisms with special traits and the construction of metagenomic libraries by direct cloning of environmental DNA have great potential for identifying genes and gene products for biotechnological purposes. We have combined these techniques to isolate novel genes conferring oxidation of short-chain (C(2) to C(4)) polyols or reduction of the corresponding carbonyls. In order to favor the growth of microorganisms containing the targeted genes, samples collected from four different environments were incubated in the presence of glycerol and 1,2-propanediol. Subsequently, the DNA was extracted from the four samples and used to construct complex plasmid libraries. Approximately 100,000 Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from polyols on indicator agar. Twenty-four positive E. coli clones were obtained during the initial screen. Sixteen of them contained a plasmid (pAK101 to pAK116) which conferred a stable carbonyl-forming phenotype. Eight of the positive clones exhibited NAD(H)-dependent alcohol oxidoreductase activity with polyols or carbonyls as the substrates in crude extracts. Sequencing revealed that the inserts of pAK101 to pAK116 encoded 36 complete and 17 incomplete presumptive protein-encoding genes. Fifty of these genes showed similarity to sequenced genes from a broad collection of different microorganisms. The genes responsible for the carbonyl formation of E. coli were identified for nine of the plasmids (pAK101, pAK102, pAK105, pAK107 to pAK110, pAK115, and pAK116). Analyses of the amino acid sequences deduced from these genes revealed that three (orf12, orf14, and orf22) encoded novel alcohol dehydrogenases of different types, four (orf5, sucB, fdhD, and yabF) encoded novel putative oxidoreductases belonging to groups distinct from alcohol dehydrogenases, one (glpK) encoded a putative glycerol kinase, and one (orf1) encoded a protein which showed no similarity to any

  3. DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli

    Science.gov (United States)

    Echave, Pedro; Esparza-Cerón, M. Angel; Cabiscol, Elisa; Tamarit, Jordi; Ros, Joaquim; Membrillo-Hernández, Jorge; Lin, E. C. C.

    2002-01-01

    The adhE gene of Escherichia coli encodes a multifunctional ethanol oxidoreductase (AdhE) that catalyzes successive reductions of acetyl-CoA to acetaldehyde and then to ethanol reversibly at the expense of NADH. Mutant JE52, serially selected for acquired and improved ability to grow aerobically on ethanol, synthesized an AdhEA267T/E568K with two amino acid substitutions that sequentially conferred improved catalytic properties and stability. Here we show that the aerobic growth ability on ethanol depends also on protection of the mutant AdhE against metal-catalyzed oxidation by the chaperone DnaK (a member of the Hsp70 family). No DnaK protection of the enzyme is evident during anaerobic growth on glucose. Synthesis of DnaK also protected E. coli from H2O2 killing under conditions when functional AdhE is not required. Our results therefore suggest that, in addition to the known role of protecting cells against heat stress, DnaK also protects numerous kinds of proteins from oxidative damage. PMID:11917132

  4. Cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 involves a malate:quinone oxidoreductase and an associated cyanide-insensitive electron transfer chain.

    Science.gov (United States)

    Luque-Almagro, Victor M; Merchán, Faustino; Blasco, Rafael; Igeño, M Isabel; Martínez-Luque, Manuel; Moreno-Vivián, Conrado; Castillo, Francisco; Roldán, M Dolores

    2011-03-01

    The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to grow with cyanide as the sole nitrogen source. Membrane fractions from cells grown under cyanotrophic conditions catalysed the production of oxaloacetate from L-malate. Several enzymic activities of the tricarboxylic acid and glyoxylate cycles in association with the cyanide-insensitive respiratory pathway seem to be responsible for the oxaloacetate formation in vivo. Thus, in cyanide-grown cells, citrate synthase and isocitrate lyase activities were significantly higher than those observed with other nitrogen sources. Malate dehydrogenase activity was undetectable, but a malate:quinone oxidoreductase activity coupled to the cyanide-insensitive alternative oxidase was found in membrane fractions from cyanide-grown cells. Therefore, oxaloacetate production was linked to the cyanide-insensitive respiration in P. pseudoalcaligenes CECT5344. Cyanide and oxaloacetate reacted chemically inside the cells to produce a cyanohydrin (2-hydroxynitrile), which was further converted to ammonium. In addition to cyanide, strain CECT5344 was able to grow with several cyano derivatives, such as 2- and 3-hydroxynitriles. The specific system required for uptake and metabolization of cyanohydrins was induced by cyanide and by 2-hydroxynitriles, such as the cyanohydrins of oxaloacetate and 2-oxoglutarate.

  5. Polymyxin B identified as an inhibitor of alternative NADH dehydrogenase and malate: quinone oxidoreductase from the Gram-positive bacterium Mycobacterium smegmatis.

    Science.gov (United States)

    Mogi, Tatsushi; Murase, Yoshiro; Mori, Mihoko; Shiomi, Kazuro; Omura, Satoshi; Paranagama, Madhavi P; Kita, Kiyoshi

    2009-10-01

    Tuberculosis is the leading cause of death due to a single infectious agent in the world and the emergence of multidrug-resistant strains prompted us to develop new drugs with novel targets and mechanism. Here, we screened a natural antibiotics library with Mycobacterium smegmatis membrane-bound dehydrogenases and identified polymyxin B (cationic decapeptide) and nanaomycin A (naphtoquinone derivative) as inhibitors of alternative NADH dehydrogenase [50% inhibitory concentration (IC(50)) values of 1.6 and 31 microg/ml, respectively] and malate: quinone oxidoreductase (IC(50) values of 4.2 and 49 microg/ml, respectively). Kinetic analysis on inhibition by polymyxin B showed that the primary site of action was the quinone-binding site. Because of the similarity in K(m) value for ubiquinone-1 and inhibitor sensitivity, we examined amino acid sequences of actinobacterial enzymes and found possible binding sites for L-malate and quinones. Proposed mechanisms of polymyxin B and nanaomycin A for the bacteriocidal activity were the destruction of bacterial membranes and production of reactive oxygen species, respectively, while this study revealed their inhibitory activity on bacterial membrane-bound dehydrogenases. Screening of the library with bacterial respiratory enzymes resulted in unprecedented findings, so we are hoping that continuing efforts could identify lead compounds for new drugs targeting to mycobacterial respiratory enzymes.

  6. Molecular genetics of 3beta-hydroxy-Delta5-C27-steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease.

    Science.gov (United States)

    Cheng, Jeffrey B; Jacquemin, Emmanuel; Gerhardt, Marie; Nazer, Hisham; Cresteil, Danièle; Heubi, James E; Setchell, Kenneth D R; Russell, David W

    2003-04-01

    The 3beta-hydroxy-Delta(5)-C(27)-steroid oxidoreductase (C(27) 3beta-HSD) is a membrane-bound enzyme of the endoplasmic reticulum that catalyzes an early step in the synthesis of bile acids from cholesterol. Subjects with autosomal recessive mutations in the encoding gene, HSD3B7, on chromosome 16p11.2-12 fail to synthesize bile acids and develop a form of progressive liver disease characterized by cholestatic jaundice and malabsorption of lipids and lipid-soluble vitamins from the gastrointestinal tract. The gene encoding the human C(27) 3beta-HSD enzyme was isolated previously, and a 2-bp deletion in exon 6 of HSD3B7 was identified in a well characterized subject with this disorder. Here, we report a molecular analysis of 15 additional patients from 13 kindreds with C(27) 3beta-HSD deficiency. Twelve different mutations were identified in the HSD3B7 gene on chromosome 16p11.2-12. Ten mutations were studied in detail and shown to cause complete loss of enzyme activity and, in two cases, alterations in the size or amount of the transcribed mRNA. Mutations were inherited in homozygous form in 13 subjects from 10 families and compound heterozygous form in four subjects from three families. We conclude that a diverse spectrum of mutations in the HSD3B7 gene underlies this rare form of neonatal cholestasis.

  7. Characterization and expression of a cDNA, AmphiSDHD,encoding the amphioxus cytochrome b small subunit in mitochondrial succinate-ubiquinone oxidoreductase

    Institute of Scientific and Technical Information of China (English)

    MA Lifang; ZHANG Shicui; ZHUANG Zhimeng; LIU Zhenhui; LI Hongyan; XIA Jianjun

    2005-01-01

    In this study, an amphioxus cDNA, AmphiSDHD, encoding the cytochrome b small subunit in mitochondrial succinate-ubiquinone oxidoreductase, was isolated from the gut cDNA library of amphioxus Branchiostoma belcheri tsingtauense. It is 1429 bp in length, with an open reading frame of 465 bp coding for a protein of 154 amino acids. The deduced protein contains a mitochondrial targeting presequence of 65 amino acids rich in basic residues like arginine and hydroxy residues such as serine and threonine. Alignment of the amino acid sequences of AmphiSDHD and other eukaryotic SDHD proteins showed that AmphiSDHD has three transmembrane segments, and includes two histidine residues in the second transmembrane segment that are the putative binding sites for the heme b molecule. The phylogenetic tree constructed suggests that AmphiSDHD appears more closely related to vertebrate SDHD proteins than invertebrate ones. Northern blotting demonstrated that AmphiSDHD is ubiquitously expressed in amphioxus, being in line with the fact that SDHD is a house-keeping protein.

  8. Pro187Ser Polymorphism of NAD(P)H:quinone oxidoreductase 1 and Prognosis of Non-small Cell Lung Cancer after Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Si Yeol; Yoon, Sang Min; Shin, Seong Soo; Ahn, Seung Do; Lee, Jung Shin; Choi, Eun Kyung [University of Ulsan, Seoul (Korea, Republic of); Park, Heon Joo [Inha University, Incheon (Korea, Republic of); Hong, Yun Chul; Kim, Jin Hee; Park, Charn Il and others [Seoul National University, Seoul (Korea, Republic of)

    2005-07-01

    NAD(P)H:quinone oxidoreductase 1 (NQO1) has been known to function on reduction of oxidative status as a cytosolic flavoenzyme that catalyzes the electron reduction of substrates. It was reported to play a role in the prognosis of lung cancer patients treated with chemotherapy. Single nucleotide polymorphisms (SNPs) make up about ninety percent of human DNA polymorphisms, and they are a major focus of study about the individual differences for the risk of cancer and for anti-cancer treatment. A point mutation in exon 6 of the NQO1 gene is a C-to-T base pair substitution at position 609 of the NQO1 cDNA, and this codes for a proline-to-serine change at position 187 in the amino acid sequence of the protein. We hypothesized that NQO1 polymorphism could have an adverse influence on the survival of NSCLC patients treated with radiation therapy and/or surgery, and so we tried to discover whether the NQO1 polymorphism could be a predictive or prognostic marker for determining treatment outcome of radiotherapy in nonsmall cell lung cancer (NSCLC) patients.

  9. Identification of the Ndh (NAD(P)H-plastoquinone-oxidoreductase) complex in etioplast membranes of barley: changes during photomorphogenesis of chloroplasts.

    Science.gov (United States)

    Guéra, A; de Nova, P G; Sabater, B

    2000-01-01

    In the last few years the presence in thylakoid membranes of chloroplasts of a NAD(P)H-plastoquinone oxidoreductase complex (Ndh complex) homologous to mitochondrial complex I has been well established. Herein, we report the identification of the Ndh complex in barley etioplast membranes. Two plastid DNA-encoded polypeptides of the Ndh complex (NDH-A and NDH-F) were relatively more abundant in etioplast membranes than in thylakoids from greening chloroplasts. Conversion of etioplast into chloroplast, after light exposure of barley seedlings grown in the dark, was accompanied by a decrease in the NADH dehydrogenase activity associated to plastid membranes. Using native-PAGE and immunolabelling techniques we have determined that a NADH specific dehydrogenase activity associated with plastid membranes, which was more active in etioplasts than in greening chloroplasts, contained the NDH-A and NDH-F polypeptides. These results complemented by those obtained through blue-native-PAGE indicated that NDH-A and NDH-F polypeptides are part of a 580 kDa NADH dependent dehydrogenase complex present in etioplast membranes. This finding proves that accumulation of the Ndh complex is independent of light. The decrease in the relative levels and specific activity of this complex during the transition from etioplast to chloroplasts was accompanied by a parallel decrease in the specific activity of peroxidase associated to plastid membranes. Based on the mentioned observations it is proposed that an electron transport chain from NADH to H2O2 could be active in barley etioplasts.

  10. Sulindac compounds facilitate the cytotoxicity of β-lapachone by up-regulation of NAD(P)H quinone oxidoreductase in human lung cancer cells.

    Science.gov (United States)

    Kung, Hsiu-Ni; Weng, Tsai-Yun; Liu, Yu-Lin; Lu, Kuo-Shyan; Chau, Yat-Pang

    2014-01-01

    β-lapachone, a major component in an ethanol extract of Tabebuia avellanedae bark, is a promising potential therapeutic drug for various tumors, including lung cancer, the leading cause of cancer-related deaths worldwide. In the first part of this study, we found that apoptotic cell death induced in lung cancer cells by high concentrations of β-lapachone was mediated by increased activation of the pro-apoptotic factor JNK and decreased activation of the cell survival/proliferation factors PI3K, AKT, and ERK. In addition, β-lapachone toxicity was positively correlated with the expression and activity of NAD(P)H quinone oxidoreductase 1 (NQO1) in the tumor cells. In the second part, we found that the FDA-approved non-steroidal anti-inflammatory drug sulindac and its metabolites, sulindac sulfide and sulindac sulfone, increased NQO1 expression and activity in the lung adenocarcinoma cell lines CL1-1 and CL1-5, which have lower NQO1 levels and lower sensitivity to β-lapachone treatment than the A549 cell lines, and that inhibition of NQO1 by either dicoumarol treatment or NQO1 siRNA knockdown inhibited this sulindac-induced increase in β-lapachone cytotoxicity. In conclusion, sulindac and its metabolites synergistically increase the anticancer effects of β-lapachone primarily by increasing NQO1 activity and expression, and these two drugs may provide a novel combination therapy for lung cancers.

  11. Sulindac compounds facilitate the cytotoxicity of β-lapachone by up-regulation of NAD(PH quinone oxidoreductase in human lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Hsiu-Ni Kung

    Full Text Available β-lapachone, a major component in an ethanol extract of Tabebuia avellanedae bark, is a promising potential therapeutic drug for various tumors, including lung cancer, the leading cause of cancer-related deaths worldwide. In the first part of this study, we found that apoptotic cell death induced in lung cancer cells by high concentrations of β-lapachone was mediated by increased activation of the pro-apoptotic factor JNK and decreased activation of the cell survival/proliferation factors PI3K, AKT, and ERK. In addition, β-lapachone toxicity was positively correlated with the expression and activity of NAD(PH quinone oxidoreductase 1 (NQO1 in the tumor cells. In the second part, we found that the FDA-approved non-steroidal anti-inflammatory drug sulindac and its metabolites, sulindac sulfide and sulindac sulfone, increased NQO1 expression and activity in the lung adenocarcinoma cell lines CL1-1 and CL1-5, which have lower NQO1 levels and lower sensitivity to β-lapachone treatment than the A549 cell lines, and that inhibition of NQO1 by either dicoumarol treatment or NQO1 siRNA knockdown inhibited this sulindac-induced increase in β-lapachone cytotoxicity. In conclusion, sulindac and its metabolites synergistically increase the anticancer effects of β-lapachone primarily by increasing NQO1 activity and expression, and these two drugs may provide a novel combination therapy for lung cancers.

  12. Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes.

    Science.gov (United States)

    Li, Meng; Cao, Huiluo; Hong, Yi-Guo; Gu, Ji-Dong

    2011-01-01

    The community and population dynamics of anammox bacteria in summer (wet) and winter (dry) seasons in estuarial mudflat sediment of the Mai Po Nature Reserve were investigated by 16S rRNA and hydrazine oxidoreductase (hzo) genes. 16S rRNA phylogenetic diversity showed that sequences related to 'Kuenenia' anammox bacteria were presented in summer but not winter while 'Scalindua' anammox bacteria occurred in both seasons and could be divided into six different clusters. Compared to the 16S rRNA genes, the hzo genes revealed a relatively uniform seasonal diversity, with sequences relating to 'Scalindua', 'Anammoxoglobus', and planctomycete KSU-1 found in both seasons. The seasonal specific bacterial groups and diversity based on the 16S rRNA and hzo genes indicated strong seasonal community structures in estuary sediment of this site. Furthermore, the higher abundance of hzo genes in summer than winter indicates clear seasonal population dynamics. Combining the physicochemical characteristics of estuary sediment in the two seasons and their correlations with anammox bacteria community structure, we proposed the strong seasonal dynamics in estuary sediment of Mai Po to be due to the anthropogenic and terrestrial inputs, especially in summer, which brings in freshwater anammox bacteria, such as 'Kuenenia', interacting with the coastal marine anammox bacteria 'Scalindua'.

  13. Inhibition of the sodium-translocating NADH-ubiquinone oxidoreductase [Na+-NQR] decreases cholera toxin production in Vibrio cholerae O1 at the late exponential growth phase.

    Science.gov (United States)

    Minato, Yusuke; Fassio, Sara R; Reddekopp, Rylan L; Häse, Claudia C

    2014-01-01

    Two virulence factors produced by Vibrio cholerae, cholera toxin (CT) and toxin-corregulated pilus (TCP), are indispensable for cholera infection. ToxT is the central regulatory protein involved in activation of CT and TCP expression. We previously reported that lack of a respiration-linked sodium-translocating NADH-ubiquinone oxidoreductase (Na(+)-NQR) significantly increases toxT transcription. In this study, we further characterized this link and found that Na(+)-NQR affects toxT expression only at the early-log growth phase, whereas lack of Na(+)-NQR decreases CT production after the mid-log growth phase. Such decreased CT production was independent of toxT and ctxB transcription. Supplementing a respiratory substrate, l-lactate, into the growth media restored CT production in the nqrA-F mutant, suggesting that decreased CT production in the Na(+)-NQR mutant is dependent on electron transport chain (ETC) activity. This notion was supported by the observations that two chemical inhibitors, a Na(+)-NQR specific inhibitor 2-n-Heptyl-4-hydroxyquinoline N-oxide (HQNO) and a succinate dehydrogenase (SDH) inhibitor, thenoyltrifluoroacetone (TTFA), strongly inhibited CT production in both classical and El Tor biotype strains of V. cholerae. Accordingly, we propose the main respiratory enzyme of V. cholerae, as a potential drug target to treat cholera because human mitochondria do not contain Na(+)-NQR orthologs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Identification, design and biological evaluation of heterocyclic quinolones targeting Plasmodium falciparum type II NADH:quinone oxidoreductase (PfNDH2).

    Science.gov (United States)

    Leung, Suet C; Gibbons, Peter; Amewu, Richard; Nixon, Gemma L; Pidathala, Chandrakala; Hong, W David; Pacorel, Bénédicte; Berry, Neil G; Sharma, Raman; Stocks, Paul A; Srivastava, Abhishek; Shone, Alison E; Charoensutthivarakul, Sitthivut; Taylor, Lee; Berger, Olivier; Mbekeani, Alison; Hill, Alasdair; Fisher, Nicholas E; Warman, Ashley J; Biagini, Giancarlo A; Ward, Stephen A; O'Neill, Paul M

    2012-03-08

    Following a program undertaken to identify hit compounds against NADH:ubiquinone oxidoreductase (PfNDH2), a novel enzyme target within the malaria parasite Plasmodium falciparum, hit to lead optimization led to identification of CK-2-68, a molecule suitable for further development. In order to reduce ClogP and improve solubility of CK-2-68 incorporation of a variety of heterocycles, within the side chain of the quinolone core, was carried out, and this approach led to a lead compound SL-2-25 (8b). 8b has IC(50)s in the nanomolar range versus both the enzyme and whole cell P. falciparum (IC(50) = 15 nM PfNDH2; IC(50) = 54 nM (3D7 strain of P. falciparum) with notable oral activity of ED(50)/ED(90) of 1.87/4.72 mg/kg versus Plasmodium berghei (NS Strain) in a murine model of malaria when formulated as a phosphate salt. Analogues in this series also demonstrate nanomolar activity against the bc(1) complex of P. falciparum providing the potential added benefit of a dual mechanism of action. The potent oral activity of 2-pyridyl quinolones underlines the potential of this template for further lead optimization studies.

  15. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis.

    Science.gov (United States)

    Moreadith, R W; Batshaw, M L; Ohnishi, T; Kerr, D; Knox, B; Jackson, D; Hruban, R; Olson, J; Reynafarje, B; Lehninger, A L

    1984-09-01

    We report the case of an infant with hypoglycemia, progressive lactic acidosis, an increased serum lactate/pyruvate ratio, and elevated plasma alanine, who had a moderate to profound decrease in the ability of mitochondria from four organs to oxidize pyruvate, malate plus glutamate, citrate, and other NAD+-linked respiratory substrates. The capacity to oxidize the flavin adenine dinucleotide-linked substrate, succinate, was normal. The most pronounced deficiency was in skeletal muscle, the least in kidney mitochondria. Enzymatic assays on isolated mitochondria ruled out defects in complexes II, III, and IV of the respiratory chain. Further studies showed that the defect was localized in the inner membrane mitochondrial NADH-ubiquinone oxidoreductase (complex I). When ferricyanide was used as an artificial electron acceptor, complex I activity was normal, indicating that electrons from NADH could reduce the flavin mononucleotide cofactor. However, electron paramagnetic resonance spectroscopy performed on liver submitochondrial particles showed an almost total loss of the iron-sulfur clusters characteristic of complex I, whereas normal signals were noted for other mitochondrial iron-sulfur clusters. This infant is presented as the first reported case of congenital lactic acidosis caused by a deficiency of the iron-sulfur clusters of complex I of the mitochondrial electron transport chain.

  16. Structure, Activity and Stereoselectivity of NADPH-Dependent Oxidoreductases Catalysing the S-Selective Reduction of the Imine Substrate 2-Methylpyrroline.

    Science.gov (United States)

    Man, Henry; Wells, Elizabeth; Hussain, Shahed; Leipold, Friedemann; Hart, Sam; Turkenburg, Johan P; Turner, Nicholas J; Grogan, Gideon

    2015-05-04

    Oxidoreductases from Streptomyces sp. GF3546 [3546-IRED], Bacillus cereus BAG3X2 (BcIRED) and Nocardiopsis halophila (NhIRED) each reduce prochiral 2-methylpyrroline (2MPN) to (S)-2-methylpyrrolidine with >95 % ee and also a number of other imine substrates with good selectivity. Structures of BcIRED and NhIRED have helped to identify conserved active site residues within this subgroup of imine reductases that have S selectivity towards 2MPN, including a tyrosine residue that has a possible role in catalysis and superimposes with an aspartate in related enzymes that display R selectivity towards the same substrate. Mutation of this tyrosine residue-Tyr169-in 3546-IRED to Phe resulted in a mutant of negligible activity. The data together provide structural evidence for the location and significance of the Tyr residue in this group of imine reductases, and permit a comparison of the active sites of enzymes that reduce 2MPN with either R or S selectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Oxidant-induced formation of a neutral flavosemiquinone in the Na+-translocating NADH:Quinone oxidoreductase (Na+-NQR) from Vibrio cholerae.

    Science.gov (United States)

    Tao, Minli; Casutt, Marco S; Fritz, Günter; Steuber, Julia

    2008-01-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the human pathogen Vibrio cholerae is a respiratory flavo-FeS complex composed of the six subunits NqrA-F. The Na(+)-NQR was produced as His(6)-tagged protein by homologous expression in V. cholerae. The isolated complex contained near-stoichiometric amounts of non-covalently bound FAD (0.78 mol/mol Na(+)-NQR) and riboflavin (0.70 mol/mol Na(+)-NQR), catalyzed NADH-driven Na(+) transport (40 nmol Na(+)min(-1) mg(-1)), and was inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide. EPR spectroscopy showed that Na(+)-NQR as isolated contained very low amounts of a neutral flavosemiquinone (10(-3) mol/mol Na(+)-NQR). Reduction with NADH resulted in the formation of an anionic flavosemiquinone (0.10 mol/mol Na(+)-NQR). Subsequent oxidation of the Na(+)-NQR with ubiquinone-1 or O(2) led to the formation of a neutral flavosemiquinone (0.24 mol/mol Na(+)-NQR). We propose that the Na(+)-NQR is fully oxidized in its resting state, and discuss putative schemes of NADH-triggered redox transitions.

  18. The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae enhances insertion of FeS in overproduced NqrF subunit.

    Science.gov (United States)

    Tao, Minli; Fritz, Günter; Steuber, Julia

    2008-01-01

    The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae is a membrane-bound, respiratory Na+ pump. Its NqrF subunit contains one FAD and a [2Fe-2S] cluster and catalyzes the initial oxidation of NADH. A soluble variant of NqrF lacking its hydrophobic, N-terminal helix (NqrF') was produced in V. cholerae wild type and nqr deletion strain. Under identical conditions of growth and induction, the yield of NqrF' increased by 30% in the presence of the Na+-NQR. FAD-containing NqrF' species with or without the FeS cluster were observed, indicating that assembly of the FeS center, but not insertion of the flavin cofactor, was limited during overproduction in V. cholerae. A comparison of these distinct NqrF' species with regard to specific NADH dehydrogenase activity, pH dependence of activity and thermal inactivation showed that NqrF' lacking the [2Fe-2S] cluster was less stable, partially unfolded, and therefore prone to proteolytic degradation in V. cholerae. We conclude that the overall yield of NqrF' critically depends on the amount of fully assembled, FeS-containing NqrF' in the V. cholerae host cells. The Na+-NQR is proposed to increase the stability of NqrF' by stimulating the maturation of FeS centers.

  19. Localization and function of the membrane-bound riboflavin in the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae.

    Science.gov (United States)

    Casutt, Marco S; Huber, Tamara; Brunisholz, René; Tao, Minli; Fritz, Günter; Steuber, Julia

    2010-08-27

    The sodium ion-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na(+) across the bacterial membrane. The Na(+)-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na(+)-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na(+)-NQR is discussed.

  20. Analysis of experimental errors in bioprocesses. 1. Production of lactobionic acid and sorbitol using the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of Zymomonas mobilis.

    Science.gov (United States)

    Severo, João B; Pinto, José C; Ferraz, Helen C; Alves, Tito L M

    2011-09-01

    The proper determination of experimental errors in bioprocesses can be very important because experimental errors can exert a major impact on the analysis of experimental results. Despite this, the effect of experimental errors on the analysis of bioprocess data has been largely overlooked in the literature. For this reason, we performed detailed statistical analyses of experimental errors obtained during the production of lactobionic acid and sorbitol in a system utilizing as catalyst the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of the bacteria Zymomonas mobilis. The magnitude of the experimental errors thus obtained were then correlated with the process operation conditions and with the composition of the culture media used for bacterial growth. It is shown that experimental errors can depend very significantly on the operation conditions and affect the interpretation of available experimental data. More specifically, in this study, experimental errors depended on the nutritional supplements added to the cultivation medium, the inoculation process, and the reaction time, which may be of fundamental importance for actual process development. The results obtained also indicate, for the first time, that GFOR activity can be affected by the composition of the medium in which cells are cultivated.

  1. Novel lavendamycin analogues as antitumor agents: synthesis, in vitro cytotoxicity, structure-metabolism, and computational molecular modeling studies with NAD(P)H:quinone oxidoreductase 1.

    Science.gov (United States)

    Hassani, Mary; Cai, Wen; Holley, David C; Lineswala, Jayana P; Maharjan, Babu R; Ebrahimian, G Reza; Seradj, Hassan; Stocksdale, Mark G; Mohammadi, Farahnaz; Marvin, Christopher C; Gerdes, John M; Beall, Howard D; Behforouz, Mohammad

    2005-12-01

    Novel lavendamycin analogues with various substituents were synthesized and evaluated as potential NAD(P)H:quinone oxidoreductase (NQO1)-directed antitumor agents. Pictet-Spengler condensation of quinoline- or quninoline-5,8-dione aldehydes with tryptamine or tryptophans yielded the lavendamycins. Metabolism studies with recombinant human NQO1 revealed that addition of NH2 and CH2OH groups at the quinolinedione-7-position and indolopyridine-2'-position had the greatest positive impact on substrate specificity. The best and poorest substrates were 37 (2'-CH2OH-7-NH2 derivative) and 31 (2'-CONH2-7-NHCOC3H7-n derivative) with reduction rates of 263 +/- 30 and 0.1 +/- 0.1 micromol/min/mg NQO1, respectively. Cytotoxicity toward human colon adenocarcinoma cells was determined for the lavendamycins. The best substrates for NQO1 were also the most selectively toxic to the NQO1-rich BE-NQ cells compared to NQO1-deficient BE-WT cells with 37 as the most selective. Molecular docking supported a model in which the best substrates were capable of efficient hydrogen-bonding interactions with key residues of the active site along with hydride ion reception.

  2. Potential plant growth-promoting strain Bacillus sp. SR-2-1/1 decolorized azo dyes through NADH-ubiquinone:oxidoreductase activity.

    Science.gov (United States)

    Mahmood, Faisal; Shahid, Muhammad; Hussain, Sabir; Shahzad, Tanvir; Tahir, Muhammad; Ijaz, Muhammad; Hussain, Athar; Mahmood, Khalid; Imran, Muhammad; Babar, Shahid Ali Khan

    2017-03-22

    In this study, a bacterial strain SR-2-1/1 was isolated from textile wastewater-irrigated soil for its concurrent potential of plant growth promotion and azo-dye decolorization. Analysis of 16S rRNA gene sequence confirmed its identity as Bacillus sp. The strain tolerated high concentrations (i.e. up to 1000mgL(-1)) of metals (Ni(2+), Cd(2+), Co(2+), Zn(2+), and Cr(6+)) and efficiently decolorized the azo dyes (i.e. reactive black-5, reactive red-120, direct blue-1 and congo red). It also demonstrated considerable in vitro phosphate solubilizing and 1-aminocyclopropane-1-carboxylic acid deaminase abilities at high metal and salt levels. Bioinformatics analysis of its 537bp azoreductase gene and deduced protein revealed that it decolorized azo dyes through NADH-ubiquinone:oxidoreductase enzyme activity. The deduced protein was predicted structurally and functionally different to those of its closely related database proteins. Thus, the strain SR-2-1/1 is a powerful bioinoculant for bioremediation of textile wastewater contaminated soils in addition to stimulation of plant growth.

  3. Formate oxidase, an enzyme of the glucose-methanol-choline oxidoreductase family, has a His-Arg pair and 8-formyl-FAD at the catalytic site.

    Science.gov (United States)

    Doubayashi, Daiju; Ootake, Takumi; Maeda, Yosifumi; Oki, Masaya; Tokunaga, Yuji; Sakurai, Akihiko; Nagaosa, Yukio; Mikami, Bunzo; Uchida, Hiroyuki

    2011-01-01

    Formate oxidase of Aspergillus oryzae RIB40 contains an 8-replaced FAD with molecular mass of 799 as cofactor. The ¹H-NMR spectrum of the cofactor fraction obtained from the enzyme indicated that the 8-replaced FAD in the fraction was 8-formyl-FAD, present in open form and hemiacetal form. The oxidation-reduction potentials of the open and hemiacetal forms were estimated by cyclic voltammetry to be -47 and -177 mV vs. Normal Hydrogen Electrode respectively. The structure of the enzyme was constructed using diffraction data to 2.24 Å resolution collected from a crystal of the enzyme. His₅₁₁ and Arg₅₅₄ were situated close to the pyrimidine part of the isoalloxazine ring of 8-formyl-FAD in open form. The enzyme had 8-formyl-FAD, the oxidation potential of which was approximately 160 mV more positive than that of FAD, and the His-Arg pair at the catalytic site, unlike the other enzymes belonging to the glucose-methanol-choline oxidoreductase family.

  4. Vitamin A decreases pre-receptor amplification of glucocorticoids in obesity: study on the effect of vitamin A on 11beta-hydroxysteroid dehydrogenase type 1 activity in liver and visceral fat of WNIN/Ob obese rats

    Directory of Open Access Journals (Sweden)

    Ayyalasomayajula Vajreswari

    2011-06-01

    Full Text Available Abstract Background 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and its inhibition ameliorates obesity and metabolic syndrome. So far, no studies have reported the effect of dietary vitamin A on 11β-HSD1 activity in visceral fat and liver under normal and obese conditions. Here, we studied the effect of chronic feeding of vitamin A-enriched diet (129 mg/kg diet on 11β-HSD1 activity in liver and visceral fat of WNIN/Ob lean and obese rats. Methods Male, 5-month-old, lean and obese rats of WNIN/Ob strain (n = 16 for each phenotype were divided into two subgroups consisting of 8 rats of each phenotype. Control groups received stock diet containing 2.6 mg vitamin A/kg diet, where as experimental groups received diet containing 129 mg vitamin A/Kg diet for 20 weeks. Food and water were provided ad libitum. At the end of the experiment, tissues were collected and 11β-HSD1 activity was assayed in liver and visceral fat. Results Vitamin A supplementation significantly decreased body weight, visceral fat mass and 11β-HSD1 activity in visceral fat of WNIN/Ob obese rats. Hepatic 11β-HSD1 activity and gene expression were significantly reduced by vitamin A supplementation in both the phenotypes. CCAAT/enhancer binding protein α (C/EBPα, the main transcription factor essential for the expression of 11β-HSD1, decreased in liver of vitamin A fed-obese rats, but not in lean rats. Liver × receptor α (LXRα, a nuclear transcription factor which is known to downregulate 11β-HSD1 gene expression was significantly increased by vitamin A supplementation in both the phenotypes. Conclusions This study suggests that chronic consumption of vitamin A-enriched diet decreases 11β-HSD1 activity in liver and visceral fat of WNIN/Ob obese rats. Decreased 11β-HSD1 activity by vitamin A may result in decreased levels of active glucocorticoids in adipose tissue and possibly contribute to visceral fat loss in these obese rats. Studying the role of various nutrients on the regulation of 11β-HSD1 activity and expression will help in the evolving of dietary approaches to treat obesity and insulin resistance.

  5. Conversion of Human Steroid 5[beta]-Reductase (AKR1D1) into 3[beta]-Hydroxysteroid Dehydrogenase by Single Point Mutation E120H: Example of Perfect Enzyme Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mo; Drury, Jason E.; Christianson, David W.; Penning, Trevor M. (UPENN)

    2012-10-10

    Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5{beta}-reduction of {Delta}{sup 4}-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His120 (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5{beta}-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5{alpha}-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3{beta}-HSD as opposed to a 3{alpha}-HSD. The catalytic efficiency achieved for 3{beta}-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5{beta}-dihydrotestosterone, and {Delta}{sup 4}-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the {Delta}{sup 4}-double bond and confers 3{beta}-HSD activity on the 5{beta}-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its {alpha}-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.

  6. Regulation of Expression of the adhE Gene, Encoding Ethanol Oxidoreductase in Escherichia coli: Transcription from a Downstream Promoter and Regulation by Fnr and RpoS

    Science.gov (United States)

    Membrillo-Hernández, Jorge; Lin, E. C. C.

    1999-01-01

    The adhE gene of Escherichia coli, located at min 27 on the chromosome, encodes the bifunctional NAD-linked oxidoreductase responsible for the conversion of acetyl-coenzyme A to ethanol during fermentative growth. The expression of adhE is dependent on both transcriptional and posttranscriptional controls and is about 10-fold higher during anaerobic than during aerobic growth. Two putative transcriptional start sites have been reported: one at position −292 and the other at −188 from the translational start codon ATG. In this study we show, by using several different transcriptional and translational fusions to the lacZ gene, that both putative transcriptional start sites can be functional and each site can be redox regulated. Although both start sites are NarL repressible in the presence of nitrate, Fnr activates only the −188 start site and Fis is required for the transcription of only the −292 start site. In addition, it was discovered that RpoS activates adhE transcription at both start sites. Under all experimental conditions tested, however, only the upstream start site is active. Available evidence indicates that under those conditions, the upstream promoter region acts as a silencer of the downstream transcriptional start site. Translation of the mRNA starting at −292, but not the one starting at −188, requires RNase III. The results support the previously postulated ribosomal binding site (RBS) occlusion model, according to which RNase III cleavage is required to release the RBS from a stem-loop structure in the long transcript. PMID:10601216

  7. LEDGF/p75 Overexpression Attenuates Oxidative Stress-Induced Necrosis and Upregulates the Oxidoreductase ERP57/PDIA3/GRP58 in Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Anamika Basu

    Full Text Available Prostate cancer (PCa mortality is driven by highly aggressive tumors characterized by metastasis and resistance to therapy, and this aggressiveness is mediated by numerous factors, including activation of stress survival pathways in the pro-inflammatory tumor microenvironment. LEDGF/p75, also known as the DFS70 autoantigen, is a stress transcription co-activator implicated in cancer, HIV-AIDS, and autoimmunity. This protein is targeted by autoantibodies in certain subsets of patients with PCa and inflammatory conditions, as well as in some apparently healthy individuals. LEDGF/p75 is overexpressed in PCa and other cancers, and promotes resistance to chemotherapy-induced cell death via the transactivation of survival proteins. We report in this study that overexpression of LEDGF/p75 in PCa cells attenuates oxidative stress-induced necrosis but not staurosporine-induced apoptosis. This finding was consistent with the observation that while LEDGF/p75 was robustly cleaved in apoptotic cells into a p65 fragment that lacks stress survival activity, it remained relatively intact in necrotic cells. Overexpression of LEDGF/p75 in PCa cells led to the upregulation of transcript and protein levels of the thiol-oxidoreductase ERp57 (also known as GRP58 and PDIA3, whereas its depletion led to ERp57 transcript downregulation. Chromatin immunoprecipitation and transcription reporter assays showed LEDGF/p75 binding to and transactivating the ERp57 promoter, respectively. Immunohistochemical analysis revealed significantly elevated co-expression of these two proteins in clinical prostate tumor tissues. Our results suggest that LEDGF/p75 is not an inhibitor of apoptosis but rather an antagonist of oxidative stress-induced necrosis, and that its overexpression in PCa leads to ERp57 upregulation. These findings are of significance in clarifying the role of the LEDGF/p75 stress survival pathway in PCa.

  8. Electrical Wiring of the Aldehyde Oxidoreductase PaoABC with a Polymer Containing Osmium Redox Centers: Biosensors for Benzaldehyde and GABA

    Directory of Open Access Journals (Sweden)

    Artavazd Badalyan

    2014-11-01

    Full Text Available Biosensors for the detection of benzaldehyde and g-aminobutyric acid (GABA are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below −0.15 V (vs. Ag|AgCl, 1 M KCl. The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A “reagentless” biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10–150 µM and the detection limit of 5 µM (signal to noise ratio 3:1 of benzaldehyde. The relative standard deviation in a series (n = 13 for 200 µM benzaldehyde is 1.9%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T and PaoABC in the osmium containing redox polymer.

  9. Optimization of heme precursors for the expression of human cytochrome P450 2A13 and its co-expression with oxidoreductase in baculovirus/sf9 system.

    Science.gov (United States)

    Lu, Hui-Yuan; Qiu, Liang-Lin; Yang, Xue-Jiao; Zhang, Xiao-Ming; Zhang, Zhan; Wang, Shou-Lin

    2013-06-01

    Human cytochrome P450 2A13 (CYP2A13), mainly expressed in respiratory tract, is active towards numerous toxicants. To establish the metabolism in vitro, we expressed CYP2A13 and NADPH-CYP450 oxidoreductase (POR) in a baculovirus/sf9 system. Due to the deficiency of sf9 cells in heme incorporation, we investigated the effects of different heme precursors on the expression of CYP2A13, POR and their co-expression. The present results showed that both CYP2A13 and POR were presented the highest expression levels or activity with 0.2 mM δ-aminolaevulinic acid (5-ALA), 0.02 mM Fe(3+) and 0.5-1.0 μg/ml hemin. The combination of 0.2 mM 5-ALA and 0.02 mM Fe(3+) significantly improved CYP2A13 expression and content compared with heme precursors alone, so was POR activity. A multiplicity of infection (MOI) value of 5 pfu/cell for CYP2A13 baculovirus particles induced very high CYP2A13 expression. When co-infected with different POR MOI values, a viral ratio of 5 : 2 was associated with the highest CYP2A13 activity, whereas POR activity dose dependently increased with POR MOI. Furthermore, the expressed CYP2A13 in the optimized conduction could eliminate its substrate aflatoxin B1 at a significantly higher than those in other condition (P < 0.01). Our results provide an efficient approach for expressing functionally characterized, highly active and homogeneous CYP2A13 proteins.

  10. Regulation of Etioplast Pigment-Protein Complexes, Inner Membrane Architecture, and Protochlorophyllide a Chemical Heterogeneity by Light-Dependent NADPH:Protochlorophyllide Oxidoreductases A and B1

    Science.gov (United States)

    Franck, Fabrice; Sperling, Ulrich; Frick, Geneviève; Pochert, Babette; van Cleve, Barbara; Apel, Klaus; Armstrong, Gregory A.

    2000-01-01

    The etioplast of dark-grown angiosperms is characterized by the prolamellar body (PLB) inner membrane, the absence of chlorophyll, and the accumulation of divinyl and monovinyl derivatives of protochlorophyll(ide) a [Pchl(ide) a]. Either of two structurally related, but differentially expressed light-dependent NADPH:Pchlide oxidoreductases (PORs), PORA and PORB, can assemble the PLB and form dark-stable ternary complexes containing enzymatically photoactive Pchlide-F655. Here we have examined in detail whether these polypeptides play redundant roles in etioplast differentiation by manipulating the total POR content and the PORA-to-PORB ratio of etiolated Arabidopsis seedlings using antisense and overexpression approaches. POR content correlates closely with PLB formation, the amounts, spectroscopic properties, and photoreduction kinetics of photoactive Pchlide, the ratio of photoactive Pchlide-F655 to non-photoactive Pchl(ide)-F632, and the ratio of divinyl- to monovinyl-Pchl(ide). This last result defines POR as the first endogenous protein factor demonstrated to influence the chemical heterogeneity of Pchl(ide) in angiosperms. It is intriguing that excitation energy transfer between different spectroscopic forms of Pchl(ide) in etiolated cotyledons remains largely independent of POR content. We therefore propose that the PLB contains a minimal structural unit with defined pigment stoichiometries, within which a small amount of non-photoactive Pchl(ide) transfers excitation energy to a large excess of photoactive Pchlide-F655. In addition, our data suggests that POR may bind not only stoichiometric amounts of photoactive Pchlide, but also substoichiometric amounts of non-photoactive Pchl(ide). We conclude that the typical characteristics of etioplasts are closely related to total POR content, but not obviously to the specific presence of PORA or PORB. PMID:11115885

  11. Dopamine as a potent inducer of cellular glutathione and NAD(P)H:quinone oxidoreductase 1 in PC12 neuronal cells: a potential adaptive mechanism for dopaminergic neuroprotection.

    Science.gov (United States)

    Jia, Zhenquan; Zhu, Hong; Misra, Bhaba R; Li, Yunbo; Misra, Hara P

    2008-11-01

    Dopamine auto-oxidation and the consequent formation of reactive oxygen species and electrophilic quinone molecules have been implicated in dopaminergic neuronal cell death in Parkinson's disease. We reported here that in PC12 dopaminergic neuronal cells dopamine at noncytotoxic concentrations (50-150 muM) potently induced cellular glutathione (GSH) and the phase 2 enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), two critical cellular defenses in detoxification of ROS and electrophilic quinone molecules. Incubation of PC12 cells with dopamine also led to a marked increase in the mRNA levels for gamma-glutamylcysteine ligase catalytic subunit (GCLC) and NQO1. In addition, treatment of PC12 cells with dopamine resulted in a significant elevation of GSH content in the mitochondrial compartment. To determine whether treatment with dopamine at noncytotoxic concentrations, which upregulated the cellular defenses could protect the neuronal cells against subsequent lethal oxidative and electrophilic injury, PC12 cells were pretreated with dopamine (150 muM) for 24 h and then exposed to various cytotoxic concentrations of dopamine or 6-hydroxydopamine (6-OHDA). We found that pretreatment of PC12 cells with dopamine at a noncytotoxic concentration led to a remarkable protection against cytotoxicity caused by dopamine or 6-OHDA at lethal concentrations, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. In view of the critical roles of GSH and NQO1 in protecting against dopaminergic neuron degeneration, the above findings implicate that upregulation of both GSH and NQO1 by dopamine at noncytotoxic concentrations may serve as an important adaptive mechanism for dopaminergic neuroprotection.

  12. The vitamin K oxidoreductase is a multimer that efficiently reduces vitamin K epoxide to hydroquinone to allow vitamin K-dependent protein carboxylation.

    Science.gov (United States)

    Rishavy, Mark A; Hallgren, Kevin W; Wilson, Lee A; Usubalieva, Aisulu; Runge, Kurt W; Berkner, Kathleen L

    2013-11-01

    The vitamin K oxidoreductase (VKORC1) recycles vitamin K to support the activation of vitamin K-dependent (VKD) proteins, which have diverse functions that include hemostasis and calcification. VKD proteins are activated by Glu carboxylation, which depends upon the oxygenation of vitamin K hydroquinone (KH2). The vitamin K epoxide (KO) product is recycled by two reactions, i.e. KO reduction to vitamin K quinone (K) and then to KH2, and recent studies have called into question whether VKORC1 reduces K to KH2. Analysis in insect cells lacking endogenous carboxylation components showed that r-VKORC1 reduces KO to efficiently drive carboxylation, indicating KH2 production. Direct detection of the vitamin K reaction products is confounded by KH2 oxidation, and we therefore developed a new assay that stabilized KH2 and allowed quantitation. Purified VKORC1 analyzed in this assay showed efficient KO to KH2 reduction. Studies in 293 cells expressing tagged r-VKORC1 revealed that VKORC1 is a multimer, most likely a dimer. A monomer can only perform one reaction, and a dimer is therefore interesting in explaining how VKORC1 accomplishes both reactions. An inactive mutant (VKORC1(C132A/C135A)) was dominant negative in heterodimers with wild type VKORC1, resulting in decreased KO reduction in cells and carboxylation in vitro. The results are significant regarding human VKORC1 mutations, as warfarin-resistant patients have mutant and wild type VKORC1 alleles. A VKORC1 dimer indicates a mixed population of homodimers and heterodimers that may have different functional properties, and VKORC1 reduction may therefore be more complex in these patients than appreciated previously.

  13. Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (Nyssaceae

    Directory of Open Access Journals (Sweden)

    Santamaria Anna

    2010-04-01

    Full Text Available Abstract Background Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT. At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production. Results The pattern of CPT accumulation was compared with the expression pattern of some genes involved in CPT biosynthesis in C. acuminata [i.e., Ca-TDC1 and Ca-TDC2 (encoding for tryptophan decarboxylase and Ca-HGO (encoding for 10-hydroxygeraniol oxidoreductase]. Both CPT accumulation and gene expression were investigated in plants at different degrees of development and in plantlets subjected to drought-stress. In all organs, CPT accumulation was detected in epidermal idioblasts, in some glandular trichomes, and in groups of idioblast cells localized in parenchyma tissues. Drought-stress caused an increase in CPT accumulation and in the number of glandular trichomes containing CPT, whereas no increase in epidermal or parenchymatous idioblasts was observed. In the leaf, Ca-TDC1 expression was detected in some epidermal cells and in groups of mesophyll cells but not in glandular trichomes; in the stem, it was observed in parenchyma cells of the vascular tissue; in the root, no expression was detected. Ca-TDC2 expression was observed exclusively in leaves of plantlets subjected to drought-stress, in the same sites described for Ca-TDC1. In the leaf, Ca-HGO was detected in all chlorenchyma cells; in the stem, it was observed in the same sites described for Ca-TDC1; in the root, no expression was detected. Conclusions The finding that the sites of CPT accumulation are not consistently the same as those in which the studied genes are expressed demonstrates an organ-to-organ and cell-to-cell translocation of CPT or its precursors.

  14. Cross-Species Analysis of Protein Dynamics Associated with Hydride and Proton Transfer in the Catalytic Cycle of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase.

    Science.gov (United States)

    Hoeven, Robin; Hardman, Samantha J O; Heyes, Derren J; Scrutton, Nigel S

    2016-02-16

    Experimental interrogation of the relationship between protein dynamics and enzyme catalysis is challenging. Light-activated protochlorophyllide oxidoreductase (POR) is an excellent model for investigating this relationship because photoinitiation of the reaction cycle enables coordinated turnover in a "dark-assembled" ternary enzyme-substrate complex. The catalytic cycle involves sequential hydride and proton transfers (from NADPH and an active site tyrosine residue, respectively) to the substrate protochlorophyllide. Studies with a limited cross-species subset of POR enzymes (n = 4) have suggested that protein dynamics associated with hydride and proton transfer are distinct [Heyes, D. J., Levy, C., Sakuma, M., Robertson, D. L., and Scrutton, N. S. (2011) J. Biol. Chem. 286, 11849-11854]. Here, we use steady-state assays and single-turnover laser flash spectroscopy to analyze hydride and proton transfer dynamics in an extended series of POR enzymes taken from many species, including cyanobacteria, algae, embryophytes, and angiosperms. Hydride/proton transfer in all eukaryotic PORs is faster compared to prokaryotic PORs, suggesting active site architecture has been optimized in eukaryotic PORs following endosymbiosis. Visible pump-probe spectroscopy was also used to demonstrate a common photoexcitation mechanism for representative POR enzymes from different branches of the phylogenetic tree. Dynamics associated with hydride transfer are localized to the active site of all POR enzymes and are conserved. However, dynamics associated with proton transfer are variable. Protein dynamics associated with proton transfer are also coupled to solvent dynamics in cyanobacterial PORs, and these networks are likely required to optimize (shorten) the donor-acceptor distance for proton transfer. These extended networks are absent in algal and plant PORs. Our analysis suggests that extended networks of dynamics are disfavored, possibly through natural selection. Implications for

  15. Gypenosides Inhibits Xanthine Oxidoreductase and Ameliorates Urate Excretion in Hyperuricemic Rats Induced by High Cholesterol and High Fat Food (Lipid Emulsion)

    Science.gov (United States)

    Pang, Minxia; Fang, Yingying; Chen, Suhong; Zhu, Xuexin; Shan, Chaowen; Su, Jie; Yu, Jingjing; Li, Bo; Yang, Yao; Chen, Bo; Liang, Kailun; Hu, Huiming; Lv, Guiyuan

    2017-01-01

    Background The aim of this study was to study the effects of gypenosides (GPS) on lowering uric acid (UA) levels in hyperuricemic rats induced by lipid emulsion (LE) and the related mechanisms. GPS are natural saponins extracted from Gynostemma pentaphyllum. Material/Methods Forty-eight male SD rats were randomly divided into six groups: normal, model, two positive controls, and two GPS treated groups (two different doses of GPS). The normal group rats were fed a basic diet, and the other rats were orally pretreated with LE. Urine and blood were collected at regular intervals. Full automatic biochemical analyzer was used to detect the concentration levels of serum UA (SUA), serum creatinine (SCr), BUN, and urine UA (UUA), and urine creatinine (UCr) and fractional excretion of UA (FEUA). ELISA kits were used to detect enzymes activities: xanthine oxidase (XOD), adenosime deaminase (ADA), guanine deaminase (GDA), and xanthine dehydrogenase (XDH). Immunohistochemistry was used to observe kidney changes and protein (URAT1, GLUT9, and OAT1) expression levels. RT-PCR was used to detect the relevant mRNA expression levels. Results Treatment with GPS significantly reduced the SUA, prevented abnormal weight loss caused by LE, and improved kidney pathomorphology. Treatment with GPS also decreased the levels of XOD, ADA, and XDH expression, increased the kidney index and FEUA, downregulated URAT1 and GLUT9 expression and upregulated OAT1 expression in the kidney. Conclusions GPS may be an effective treatment for hyperuricemia via a decrease in xanthine oxidoreductase through the XOD/XDH system; and via an increase in urate excretion through regulating URAT1, GLUT9, and OAT1 transporters. PMID:28258276

  16. Identification, design and biological evaluation of bisaryl quinolones targeting Plasmodium falciparum type II NADH:quinone oxidoreductase (PfNDH2).

    Science.gov (United States)

    Pidathala, Chandrakala; Amewu, Richard; Pacorel, Bénédicte; Nixon, Gemma L; Gibbons, Peter; Hong, W David; Leung, Suet C; Berry, Neil G; Sharma, Raman; Stocks, Paul A; Srivastava, Abhishek; Shone, Alison E; Charoensutthivarakul, Sitthivut; Taylor, Lee; Berger, Olivier; Mbekeani, Alison; Hill, Alasdair; Fisher, Nicholas E; Warman, Ashley J; Biagini, Giancarlo A; Ward, Stephen A; O'Neill, Paul M

    2012-03-08

    A program was undertaken to identify hit compounds against NADH:ubiquinone oxidoreductase (PfNDH2), a dehydrogenase of the mitochondrial electron transport chain of the malaria parasite Plasmodium falciparum. PfNDH2 has only one known inhibitor, hydroxy-2-dodecyl-4-(1H)-quinolone (HDQ), and this was used along with a range of chemoinformatics methods in the rational selection of 17 000 compounds for high-throughput screening. Twelve distinct chemotypes were identified and briefly examined leading to the selection of the quinolone core as the key target for structure-activity relationship (SAR) development. Extensive structural exploration led to the selection of 2-bisaryl 3-methyl quinolones as a series for further biological evaluation. The lead compound within this series 7-chloro-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)quinolin-4(1H)-one (CK-2-68) has antimalarial activity against the 3D7 strain of P. falciparum of 36 nM, is selective for PfNDH2 over other respiratory enzymes (inhibitory IC(50) against PfNDH2 of 16 nM), and demonstrates low cytotoxicity and high metabolic stability in the presence of human liver microsomes. This lead compound and its phosphate pro-drug have potent in vivo antimalarial activity after oral administration, consistent with the target product profile of a drug for the treatment of uncomplicated malaria. Other quinolones presented (e.g., 6d, 6f, 14e) have the capacity to inhibit both PfNDH2 and P. falciparum cytochrome bc(1), and studies to determine the potential advantage of this dual-targeting effect are in progress.

  17. Role of the NAD(P)H quinone oxidoreductase NQR and the cytochrome b AIR12 in controlling superoxide generation at the plasma membrane.

    Science.gov (United States)

    Biniek, Catherine; Heyno, Eiri; Kruk, Jerzy; Sparla, Francesca; Trost, Paolo; Krieger-Liszkay, Anja

    2017-04-01

    The quinone reductase NQR and the b-type cytochrome AIR12 of the plasma membrane are important for the control of reactive oxygen species in the apoplast. AIR12 and NQR are two proteins attached to the plant plasma membrane which may be important for generating and controlling levels of reactive oxygen species in the apoplast. AIR12 (Auxin Induced in Root culture) is a single gene of Arabidopsis that codes for a mono-heme cytochrome b. The NADPH quinone oxidoreductase NQR is a two-electron-transferring flavoenzyme that contributes to the generation of O 2(•-) in isolated plasma membranes. A. thaliana double knockout plants of both NQR and AIR12 generated more O 2(•-) and germinated faster than the single mutant affected in AIR12. To test whether NQR and AIR12 are able to interact functionally, recombinant purified proteins were added to plasma membranes isolated from soybean hypocotyls. In vitro NADH-dependent O 2(•-) production at the plasma membrane in the presence of NQR was reduced upon addition of AIR12. Electron donation from semi-reduced menadione to AIR12 was shown to take place. Biochemical analysis showed that purified plasma membrane from soybean hypocotyls or roots contained phylloquinone and menaquinone-4 as redox carriers. This is the first report on the occurrence of menaquinone-4 in eukaryotic photosynthetic organisms. We propose that NQR and AIR12 interact via the quinone, allowing an electron transfer from cytosolic NAD(P)H to apoplastic monodehydroascorbate and control thereby the level of reactive oxygen production and the redox state of the apoplast.

  18. Structural and functional investigation of flavin binding center of the NqrC subunit of sodium-translocating NADH:quinone oxidoreductase from Vibrio harveyi.

    Directory of Open Access Journals (Sweden)

    Valentin Borshchevskiy

    Full Text Available Na+-translocating NADH:quinone oxidoreductase (NQR is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium.

  19. Structural and functional investigation of flavin binding center of the NqrC subunit of sodium-translocating NADH:quinone oxidoreductase from Vibrio harveyi.

    Science.gov (United States)

    Borshchevskiy, Valentin; Round, Ekaterina; Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

    2015-01-01

    Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium.

  20. GLYCOLATE OXIDASE3, a Glycolate Oxidase Homolog of Yeast l-Lactate Cytochrome c Oxidoreductase, Supports l-Lactate Oxidation in Roots of Arabidopsis1

    Science.gov (United States)

    Engqvist, Martin K.M.; Schmitz, Jessica; Gertzmann, Anke; Florian, Alexandra; Jaspert, Nils; Arif, Muhammad; Balazadeh, Salma; Mueller-Roeber, Bernd; Fernie, Alisdair R.; Maurino, Veronica G.

    2015-01-01

    In roots of Arabidopsis (Arabidopsis thaliana), l-lactate is generated by the reduction of pyruvate via l-lactate dehydrogenase, but this enzyme does not efficiently catalyze the reverse reaction. Here, we identify the Arabidopsis glycolate oxidase (GOX) paralogs GOX1, GOX2, and GOX3 as putative l-lactate-metabolizing enzymes based on their homology to CYB2, the l-lactate cytochrome c oxidoreductase from the yeast Saccharomyces cerevisiae. We found that GOX3 uses l-lactate with a similar efficiency to glycolate; in contrast, the photorespiratory isoforms GOX1 and GOX2, which share similar enzymatic properties, use glycolate with much higher efficiencies than l-lactate. The key factor making GOX3 more efficient with l-lactate than GOX1 and GOX2 is a 5- to 10-fold lower Km for the substrate. Consequently, only GOX3 can efficiently metabolize l-lactate at low intracellular concentrations. Isotope tracer experiments as well as substrate toxicity tests using GOX3 loss-of-function and overexpressor plants indicate that l-lactate is metabolized in vivo by GOX3. Moreover, GOX3 rescues the lethal growth phenotype of a yeast strain lacking CYB2, which cannot grow on l-lactate as a sole carbon source. GOX3 is predominantly present in roots and mature to aging leaves but is largely absent from young photosynthetic leaves, indicating that it plays a role predominantly in heterotrophic rather than autotrophic tissues, at least under standard growth conditions. In roots of plants grown under normoxic conditions, loss of function of GOX3 induces metabolic rearrangements that mirror wild-type responses under hypoxia. Thus, we identified GOX3 as the enzyme that metabolizes l-lactate to pyruvate in vivo and hypothesize that it may ensure the sustainment of low levels of l-lactate after its formation under normoxia. PMID:26246447

  1. Electrical Wiring of the Aldehyde Oxidoreductase PaoABC with a Polymer Containing Osmium Redox Centers: Biosensors for Benzaldehyde and GABA.

    Science.gov (United States)

    Badalyan, Artavazd; Dierich, Marlen; Stiba, Konstanze; Schwuchow, Viola; Leimkühler, Silke; Wollenberger, Ulla

    2014-12-01

    Biosensors for the detection of benzaldehyde and γ-aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below -0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A "reagentless" biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10-150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer.

  2. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:FAD oxidoreductase (TftC) of Burkholderia cepacia AC1100.

    Science.gov (United States)

    Webb, Brian N; Ballinger, Jordan W; Kim, Eunjung; Belchik, Sara M; Lam, Ka-Sum; Youn, Buhyun; Nissen, Mark S; Xun, Luying; Kang, Chulhee

    2010-01-15

    Burkholderia cepacia AC1100 completely degrades 2,4,5-trichlorophenol, in which an FADH(2)-dependent monooxygenase (TftD) and an NADH:FAD oxidoreductase (TftC) catalyze the initial steps. TftD oxidizes 2,4,5-trichlorophenol (2,4,5-TCP) to 2,5-dichloro-p-benzoquinone, which is chemically reduced to 2,5-dichloro-p-hydroquinone (2,5-DiCHQ). Then, TftD oxidizes the latter to 5-chloro-2-hydroxy-p-benzoquinone. In those processes, TftC provides all the required FADH(2). We have determined the crystal structures of dimeric TftC and tetrameric TftD at 2.0 and 2.5 A resolution, respectively. The structure of TftC was similar to those of related flavin reductases. The stacked nicotinamide:isoalloxazine rings in TftC and sequential reaction kinetics suggest that the reduced FAD leaves TftC after NADH oxidation. The structure of TftD was also similar to the known structures of FADH(2)-dependent monooxygenases. Its His-289 residue in the re-side of the isoalloxazine ring is within hydrogen bonding distance with a hydroxyl group of 2,5-DiCHQ. An H289A mutation resulted in the complete loss of activity toward 2,5-DiCHQ and a significant decrease in catalytic efficiency toward 2,4,5-TCP. Thus, His-289 plays different roles in the catalysis of 2,4,5-TCP and 2,5-DiCHQ. The results support that free FADH(2) is generated by TftC, and TftD uses FADH(2) to separately transform 2,4,5-TCP and 2,5-DiCHQ. Additional experimental data also support the diffusion of FADH(2) between TftC and TftD without direct physical interaction between the two enzymes.

  3. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:flavin adenine dinucleotide oxidoreductase (TftC) of Burkholderia cepacia AC1100.

    Science.gov (United States)

    Gisi, Michelle R; Xun, Luying

    2003-05-01

    Burkholderia cepacia AC1100 uses 2,4,5-trichlorophenoxyacetic acid, an environmental pollutant, as a sole carbon and energy source. Chlorophenol 4-monooxygenase is a key enzyme in the degradation of 2,4,5-trichlorophenoxyacetic acid, and it was originally characterized as a two-component enzyme (TftC and TftD). Sequence analysis suggests that they are separate enzymes. The two proteins were separately produced in Escherichia coli, purified, and characterized. TftC was an NADH:flavin adenine dinucleotide (FAD) oxidoreductase. A C-terminally His-tagged fusion TftC used NADH to reduce either FAD or flavin mononucleotide (FMN) but did not use NADPH or riboflavin as a substrate. Kinetic and binding property analysis showed that FAD was a better substrate than FMN. TftD was a reduced FAD (FADH(2))-utilizing monooxygenase, and FADH(2) was supplied by TftC. It converted 2,4,5-trichlorophenol to 2,5-dichloro-p-quinol and then to 5-chlorohydroxyquinol but converted 2,4,6-trichlorophenol only to 2,6-dichloro-p-quinol as the final product. TftD interacted with FADH(2) and retarded its rapid oxidation by O(2). A spectrum of possible TftD-bound FAD-peroxide was identified, indicating that the peroxide is likely the active oxygen species attacking the aromatic substrates. The reclassification of the two enzymes further supports the new discovery of FADH(2)-utilizing enzymes, which have homologues in the domains Bacteria and Archaea.

  4. Steroid metabolism in the hormone dependent MCF-7 human breast carcinoma cell line and its two hormone resistant subpopulations MCF-7/LCC1 and MCF-7/LCC2

    DEFF Research Database (Denmark)

    Jørgensen, L; Brünner, N; Spang-Thomsen, M

    1998-01-01

    and 17beta-hydroxysteroid oxidoreductase were investigated isolating the following steroids: estriol (E3), estradiol (E2), estrone (E1), 3alpha/beta-androstanediol (A-diol), testosterone (T), dihydrotestosterone (DHT), androsterone (AND), androstenedion (4-AD) and androstanedione (A-dion). For all......, and preincubation with cortisol had no effect on the enzyme activity. With [14C]T as the substrate, the metabolized level of DHT was very similar in the three cell lines, though MCF-7/LCC1 and MCF-7/LCC2 utilized the substrate to a much lesser extent. The amount of DHT and 4-AD produced were comparable in the two...... to the parent MCF-7. However, since treatment with DHT and T inhibited cell growth equally well in all three tumor cell lines, it is unlikely that the found differences in steroid metabolism was involved in the acquisition of the endocrine resistance of the two MCF-7 sublines....

  5. Comparison of the effect of cortisol on aromatase activity and androgen metabolism in two human fibroblast cell lines derived from the same individual

    DEFF Research Database (Denmark)

    Svenstrup, B; Brünner, N; Dombernowsky, P

    1990-01-01

    The effect of preincubation with cortisol on estrogen and androgen metabolism was investigated in human fibroblast monolayers grown from biopsies of genital and non-genital skin of the same person. The activity in the cells of aromatase, 5 alpha-reductase, 17 beta-hydroxysteroid oxidoreductase.......5-1.0 x 10(-6) M in both cell lines. When preincubation with cortisol was omitted no estrogen synthesis was detected. The formation of androgen was not altered after preincubation with cortisol. Pronounced differences were found in estrogen and in androgen metabolism in the two cell lines suggesting...... a local regulation of the hormonal environment. The aromatase activity, which is low in many tissues could be stimulated by cortisol without altering the androgen metabolism was found to be a suitable system for investigations of the cellular interconversion of androgens and estrogens...

  6. NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I

    Energy Technology Data Exchange (ETDEWEB)

    Levova, Katerina; Moserova, Michaela [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic); Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati (United States); Phillips, David H. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King' s College London, London (United Kingdom); Frei, Eva [Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg (Germany); Schmeiser, Heinz H. [Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg (Germany); Arlt, Volker M. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King' s College London, London (United Kingdom); Stiborova, Marie, E-mail: stiborov@natur.cuni.cz [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic)

    2012-12-15

    Aristolochic acid causes a specific nephropathy (AAN), Balkan endemic nephropathy, and urothelial malignancies. Using Western blotting suitable to determine protein expression, we investigated in several transgenic mouse lines expression of NAD(P)H:quinone oxidoreductase (NQO1)—the most efficient cytosolic enzyme that reductively activates aristolochic acid I (AAI). The mouse tissues used were from previous studies [Arlt et al., Chem. Res. Toxicol. 24 (2011) 1710; Stiborova et al., Toxicol. Sci. 125 (2012) 345], in which the role of microsomal cytochrome P450 (CYP) enzymes in AAI metabolism in vivo had been determined. We found that NQO1 levels in liver, kidney and lung of Cyp1a1(−/−), Cyp1a2(−/−) and Cyp1a1/1a2(−/−) knockout mouse lines, as well as in two CYP1A-humanized mouse lines harboring functional human CYP1A1 and CYP1A2 and lacking the mouse Cyp1a1/1a2 orthologs, differed from NQO1 levels in wild-type mice. NQO1 protein and enzymic activity were induced in hepatic and renal cytosolic fractions isolated from AAI-pretreated mice, compared with those in untreated mice. Furthermore, this increase in hepatic NQO1 enzyme activity was associated with bioactivation of AAI and elevated AAI-DNA adduct levels in ex vivo incubations of cytosolic fractions with DNA and AAI. In conclusion, AAI appears to increase its own metabolic activation by inducing NQO1, thereby enhancing its own genotoxic potential. Highlights: ► NAD(P)H:quinone oxidoreductase expression in Cyp1a knockout and humanized CYP1A mice ► Reductive activation of the nephrotoxic and carcinogenic aristolochic acid I (AAI) ► NAD(P)H:quinone oxidoreductase is induced in mice treated with AAI. ► Induced hepatic enzyme activity resulted in elevated AAI-DNA adduct levels.

  7. 基于氧化还原酶活性时变研究巴利阿里假单胞菌中心碳代谢%Analysis of Central Carbon Metabolism in Pseudomonas balearica Based on Key Oxidoreductases Detecting

    Institute of Scientific and Technical Information of China (English)

    温卫卫; 周小芬; 王世珍; 方柏山

    2013-01-01

    Assaying the central carbon metabolism (CCM) through the enzyme's level may be one effective method to reveal the interaction between the adaptability of marine bacteria and the extreme environmental conditions. Marine bacteria may have different CCM with terrestrial bacteria as they have different growth environment. So it is valuable to research the related key oxidoreductases, which is important to uncover the CCM of marine bacteria. The response of central carbon metabolism of marine bacteria to incubation time was investigated based on key oxidoreductases detecting, while traditional metabolic analysis was carried out by 13C metabolic flux analysis. For example,Pseudomonas balearica isolated from sediment of China's offshore was investigated. Besides growth kinetics,the central carbon metabolism of P. balearica was uncovered by a comprehensive analysis of six key oxidoreductases, glu-cose-6-phosphate dehydrogenase, pyruvate dehydrogenase, 2-ketoglutarate dehydrogenase, malate dehydrogenase, malic enzyme and isocitrate dehydrogenase. The changing regularity of key oxidoreductases activities of central carbon metabolism in P. balearica was revealed on protein level. A new technique for the study of microbial central carbon metabolism and the excavation of new enzyme preparations from marine microbial was provided.%以分离自中国北部湾沉积物的海洋菌株巴利阿里假单胞菌(Pseudomonas balearica)为例,在考察其生长动力学的同时,监测了其中心碳代谢(CCM)中6种关键氧化还原酶,葡萄糖-6-磷酸脱氢酶、丙酮酸脱氢酶、2-酮戊二酸脱氢酶、苹果酸脱氢酶、苹果酸酶及异柠檬酸脱氢酶的酶活性时变,从酶蛋白表达水平揭示了海洋生长条件下巴利阿里假单胞菌CCM中关键氧化还原酶的酶活性变化的规律,为研究微生物CCM和发掘海洋微生物新型酶制剂提供一种新思路.

  8. Calcium and calcium sensing receptor modulates the expression of thymidylate synthase, NAD(P)H:quinone oxidoreductase 1 and survivin in human colon carcinoma cells: promotion of cytotoxic response to mitomycin C and fluorouracil

    OpenAIRE

    Liu, Guangming; Hu, Xin; Varani, James; Chakrabarty, Subhas

    2009-01-01

    Ca2+ and the cell-surface calcium sensing receptor (CaSR) constitute a novel and robust ligand/receptor system in regulating the proliferation and differentiation of colonic epithelial cells. Here we show that activation of CaSR by extracellular Ca2+ (or CaSR agonists) enhanced the sensitivity of human colon carcinoma cells to mitomycin C (MMC) and fluorouracil (5-FU). Activation of CaSR up-regulated the expression of MMC activating enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO-1) and down-re...

  9. Induction of NAD(P)H:quinone oxidoreductase 1 (NQO1) by Glycyrrhiza species used for women's health: differential effects of the Michael acceptors isoliquiritigenin and licochalcone A

    Science.gov (United States)

    Hajirahimkhan, Atieh; Simmler, Charlotte; Dong, Huali; Lantvit, Daniel D.; Li, Guannan; Chen, Shao-Nong; Nikolić, Dejan; Pauli, Guido F.; van Breemen, Richard B.; Dietz, Birgit M.; Bolton, Judy L.

    2016-01-01

    For the alleviation of menopausal symptoms, women frequently turn to botanical dietary supplements, such as licorice and hops. In addition to estrogenic properties, these botanicals could also have chemopreventive effects. We have previously shown that hops and its Michael acceptor xanthohumol (XH) induced the chemoprevention enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), in vitro and in vivo. Licorice species could also induce NQO1, as they contain the Michael acceptors isoliquiritigenin (LigC) found in Glycyrrhiza glabra (GG), G. uralensis (GU), and G. inflata (GI) and licochalcone A (LicA) which is only found in GI. These licorice species and hops induced NQO1 activity in murine hepatoma (Hepa1c1c7) cells; hops >> GI > GG ≅ GU. Similar to the known chemopreventive compounds curcumin (turmeric), sulforaphane (broccoli), and XH, LigC and LicA were active dose-dependently; sulforaphane >> XH > LigC > LicA ≅ curcumin >> LigF. Induction of the antioxidant response element-luciferase in human hepatoma (Hep-G2-ARE-C8) cells suggested involvement of the Keap1-Nrf2 pathway. GG, GU, and LigC also induced NQO1 in non-tumorigenic breast epithelial MCF-10A cells. In female Sprague-Dawley rats treated with GG and GU, LigC and LigF were detected in the liver and mammary gland. GG weakly enhanced NQO1 activity in the mammary tissue but not in the liver. Treatment with LigC alone did not induce NQO1 in vivo most likely due to its conversion to LigF, extensive metabolism, and its low bioavailability in vivo. These data show the chemopreventive potential of licorice species in vitro could be due to LigC and LicA and emphasize the importance of chemical and biological standardization of botanicals used as dietary supplements. Although the in vivo effects in the rat model after four day treatment are minimal, it must be emphasized that menopausal women take these supplements for extended periods of time and long-term beneficial effects are quite possible. PMID:26473469

  10. Influence of various polymorphic variants of cytochrome P450 oxidoreductase (POR on drug metabolic activity of CYP3A4 and CYP2B6.

    Directory of Open Access Journals (Sweden)

    Xuan Chen

    Full Text Available Cytochrome P450 oxidoreductase (POR is known as the sole electron donor in the metabolism of drugs by cytochrome P450 (CYP enzymes in human. However, little is known about the effect of polymorphic variants of POR on drug metabolic activities of CYP3A4 and CYP2B6. In order to better understand the mechanism of the activity of CYPs affected by polymorphic variants of POR, six full-length mutants of POR (e.g., Y181D, A287P, K49N, A115V, S244C and G413S were designed and then co-expressed with CYP3A4 and CYP2B6 in the baculovirus-Sf9 insect cells to determine their kinetic parameters. Surprisingly, both mutants, Y181D and A287P in POR completely inhibited the CYP3A4 activity with testosterone, while the catalytic activity of CYP2B6 with bupropion was reduced to approximately ~70% of wild-type activity by Y181D and A287P mutations. In addition, the mutant K49N of POR increased the CLint (Vmax/Km of CYP3A4 up to more than 31% of wild-type, while it reduced the catalytic efficiency of CYP2B6 to 74% of wild-type. Moreover, CLint values of CYP3A4-POR (A115V, G413S were increased up to 36% and 65% of wild-type respectively. However, there were no appreciable effects observed by the remaining two mutants of POR (i.e., A115V and G413S on activities of CYP2B6. In conclusion, the extent to which the catalytic activities of CYP were altered did not only depend on the specific POR mutations but also on the isoforms of different CYP redox partners. Thereby, we proposed that the POR-mutant patients should be carefully monitored for the activity of CYP3A4 and CYP2B6 on the prescribed medication.

  11. Heterologous expression of equine CYP3A94 and investigation of a tunable system to regulate co-expressed NADPH P450 oxidoreductase levels.

    Directory of Open Access Journals (Sweden)

    Ramona Dettwiler

    Full Text Available The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR. The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS. Addition of "Shield-1" prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the