WorldWideScience

Sample records for beta-excited x-ray sources

  1. Design and characteristics of beta-excited X-ray sources; Caracteristiques des sources de rayons X excitees par des particules beta; Konstruktsiya i kharakteristiki beta-vozbuzhdennykh istochnikov rentgenovskikh luchej; Diseno y caracteristicas de las fuentes de rayos X excitadas por particulas beta

    Energy Technology Data Exchange (ETDEWEB)

    Filosofo, I; Reiffel, L; Stone, C A; Voyvodic, L [Physics Division, Armour Research Foundation, Chicago, IL (United States)

    1962-01-15

    The paper reports on recent work on beta-excited X-ray sources. Results of detailed experimental investigation on the X-rays produced by the fission products Pm{sup 147}, Kr{sup 85} and Sr{sup 90} are described. X-ray yields and spectral distributions have been studied for target materials ranging from copper to uranium and in a variety of source-target geometries (transmission target, reflection target, sandwich target, intimate source-target mixtures). To interpret the experimental results, an analytical treatment of the processes involved in X-ray production by beta particles has been developed and is outlined. By taking into account bremsstrahlung, K-shell ionization, and fluorescent X-ray excitation, a convenient mathematical formulation may be derived for photon spectra and yields as functions of maximum {beta}-energy, target thickness and source configuration. The agreement between calculated and experimentally determined yields is excellent and confirms the merit of the analysis. It thus becomes possible to optimize the design of isotopic X-ray sources for specific applications. Kr{sup 85} and Pm{sup 147} prototype sources have been designed and 'their performance in thickness and composition-analysis measurements is discussed. A high level Pm{sup 147} source for industrial radiography has also been designed and its performance, along with the utility of image intensifiers to extend its applicability, is considered. Finally, a general review of potentialities, advantages and limitations of isotopic X-ray sources is given. (author) [French] Le memoire rend compte des recents travaux sur les sources de rayons X excitees par des particules beta. Il donne les resultats d'une etude experimentale detaillee sur les rayons X emis par les produits de fission {sup 147}Pm, {sup 85}Kr et {sup 90}Sr. Les auteurs ont etudie l'emission et la distribution spectrale des rayons X pour des cibles allant du cuivre a l'uranium, et ce dans plusieurs geometries source

  2. Compact alpha-excited sources of low energy x-rays

    International Nuclear Information System (INIS)

    Amlauer, K.; Tuohy, I.

    1976-01-01

    A discussion is given of the use of alpha emitting isotopes, such as 210 Po and 244 Cm, for the production of low energy x-rays (less than 5.9 keV). The design of currently available sources is described, and x-ray fluxes observed from various target materials are presented. Commercial applications of the alpha excitation technique are briefly discussed

  3. Research Applications of Beta-Particle Techniques: Back-Scattering and X-Ray Excitation; Applications de l'irradiation beta dans la recherche: retrodiffusion et excitation de rayons X; Primenenie metodov beta-chastits v issledovatel'skoj rabote: obratnoe rasseyanie i vozbuzhdenie rentgenovskikh luchej; Aplicacion de la irradiacion beta en la investigacion: retrodispersion y excitacion de rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R H [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1962-01-15

    Studies in this Laboratory during the past seven years have established precise relationships for the back-scattering of beta-particles and these methods have been supplemented by techniques using isotope-excited X-rays. Such X-ray techniques have received wide attention and in many cases have revolutionized industrial gauging practices. This report is concerned with applications to precise absorptiometry, thickness of films, the identification and quantitative estimation of substances by absorption-edge measurements, and to paper chromatography. In the latter, chromatograms can be evaluated by beta-absorption, by X-ray absorption, or by excitation of X-rays in the various zones by beta-bombardment. These alternative approaches are compared and evaluated. Some microchemical techniques have been examined, and, either by beta-absorption or by beta-excitation of X-rays, small amounts of substances can be identified and determined. The lower limits of detection are not as small as one can achieve by tracer techniques, but there are numerous advantages, the primary one being that one deals with sealed sources from which contamination is virtually impossible. For all these phenomena precise equations have been developed from the data - some empirical, and others substantially fundamental. It is interesting that these equations accurately predict optimum source parameters as established by other investigators both in the United States and abroad. It is believed that these techniques confirm the opinion that radioactive isotopes have tremendous scientific and technical promise. As far as X-ray sources are concerned, it may be said that everything in X-ray technology, other than crystal-structure elucidation, can be done more simply by these means. With multi-curie sources, even the latter may eventually be possible. (author) [French] Les etudes qui se poursuivent depuis sept ans au Laboratoire de Los Alamos ont permis d'etablir des rapports precis pour la retrodiffusion

  4. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  5. Application of radionuclide sources for excitation in energy-dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Hoffmann, P.

    1986-01-01

    X-ray fluorescence (XRF) analysis is in broad application in many fields of science where elemental determinations are necessary. Solid and liquid samples are analyzed by this method. Solids are introduced in thin or thick samples as melted glass, pellets, powders or as original specimen. The excitation of X-ray spectra can be performed by specific and polychromic radiation of X-ray tubes, by protons, deuterons, α-particles, heavy ions and synchrotron radiation from accelerators and by α-particles, X- and γ-rays and by bremsstrahlung generated by β - -particles from radionuclide sources. The radionuclides are devided into groups with respect to their decay mode and the energy of the emitted radiation. The broad application of radionuclides in XRF excitation is shown in examples as semi-quantitative analysis of glasses, as quantitative analysis of coarse ceramics and as quantitative determination of heavy elements (mainly actinides) in solutions. The advantages and disadvantages of radionuclide excitation in XRF analysis are discussed. (orig.) [de

  6. Choice of excitation source for determination of rare earth elements with radioisotope excited X ray fluorescence

    International Nuclear Information System (INIS)

    Zhang Quanshi; Chang Yongfu

    2000-01-01

    The comparisons of two radioisotope source ( 241 Am and 238 Pu) which are the most available in the radioisotope excited X Ray Fluorescence (XRF) analysis technique and two characteristic X ray series (KX and LX) analyzed for the determination of the rare-earth (RE) elements were investigated in detail. According to the principle of emission and detection of X ray , the relative excitation efficiencies were calculated by the some fundamental physical parameters including the photoelectric mass attenuation coefficient, the fluorescent yield, the absorption jump factor, the emission probability of the detected fluorescent line with reference to other liens of the same series etc., The advantages and disadvantages of the two conditions are discussed. These results may determine the optimal excitation and detection conditions for different rare-earth elements. The experimental results with nine rare-earth elements (Ce, Nd, Sm, Tb, Tm, Ho, Er, Yb and Lu) are in agreement with the results of theoretical calculations

  7. Beta-Excited Sources of Electromagnetic Radiation; Sources de rayonnements electromagnetiques excites par des particules beta; Vozbuzhdennye beta-chastitsami istochniki ehlektromagnitnogo izlucheniya; Fuentes de radiacion electromagnetica excitadas por particulas beta

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, J F; Rhodes, J R [Physics Group, Isotope Research Division, (AERE), Wantage Research Laboratory, Wantage, Berks (United Kingdom)

    1962-01-15

    Beta-excited sources of electromagnetic radiation covering the energy region 1-200 keV and suitable for industrial use are described. H{sup 3}, Pm{sup 147}, Kr{sup 85}, Tl{sup 204} and (Sr+Y){sup 90} were chosen as sources of beta particles by the criteria of long half-life, low price, ready availability and high specific activity. The {beta}-excited sources have been designed on the basis of a compromise between practical source construction and the best theoretical efficiency in a given energy region. In their paper, the authors calculate the number of photons produced per beta particle and consider how the results must be corrected for self-absorption of the X-rays. In the calculations account is taken of both bremsstrahlung and characteristic {alpha}-radiation; optimum characteristic X-ray yield is achieved for targets with an atomic number between 40 and 60. ''Sandwich'' targets of 1-2 beta half-value thicknesses are found to give maximum photon-yields in the desired energy region. Al, Ag and Au are suitable from the manufacturing point of view as source coverings. They were also found to give satisfactory bremsstrahlung and X-ray yields and distribution for various energy regions in the range 1-200 keV when correctly combined with the above-mentioned D-emitters. Some energy spectra are given and absorption curves in Al and Fe are shown for the best source-target combinations. The difference between sources constructed of {beta}-emitters sandwiched between target foils and intimate source-target mixtures was found to be small. Tables are given as a guide to the best source to be used for a particular absorber thickness range. (author) [French] Les auteurs decrivent des sources de rayonnements electromagnetiques excites par des particules beta, couvrant une gamme d'energies allant de 1 a 200 keV et convenant aux usages industriels. Comme sources de particules beta on a choisi le tritium, le {sup 147}Pm, le {sup 85}Kr, le {sup 204}Tl et le {sup 90}(Sr+Y), en

  8. Portable X-ray fluorescence analyzer of high sensitivity using X-ray tube excitation

    International Nuclear Information System (INIS)

    Vatai, E.; Ando, L.

    1982-01-01

    A review of the three main methods of X-ray fluorescence analysis and their problems is given. The attainable accuracy and effectiveness of each method are discussed. The main properties of portable X-ray analyzers required by the industry are described. The results and experiences of R and D activities in ATOMKI (Debrecen, Hungary) for developing portable X-ray analyzers are presented. The only way for increasing the accuracy and decreasing the measuring time is the application of X-ray tube excitation instead of radioactive sources. The new ATOMKI equipment presently under construction and patenting uses X-ray tube excitation; it will increase the accuracy of concentration determination by one order of magnitude. (D.Gy.)

  9. Stellar X-ray sources

    International Nuclear Information System (INIS)

    Katz, J.I.; Washington Univ., St. Louis, MO

    1988-01-01

    I Review some of the salient accomplishments of X-rap studies of compact objects. Progress in this field has closely followed the improvement of observational methods, particularly in angular resolution and duration of exposure. Luminous compact X-ray sources are accreting neutron stars or black holes. Accreting neutron stars may have characteristic temporal signatures, but the only way to establish that an X-ray source is a black hole is to measure its mass. A rough phenomenological theory is succesful, but the transport of angular momentum in accretion flows is not onderstood. A number of interesting complications have been observed, including precessing accretion discs, X-ray bursts, and the acceleration of jets in SS433. Many puzzles remain unsolved, including the excitation of disc precession, the nature of the enigmatic A- and gamma-ray source Cyg X-3, the mechanism by which slowly spinning accreting neutron stars lose angular momentum, and the superabundance of X-ray sources in globular clusters. 41 refs.; 5 figs

  10. Inner-shell/subshell photoionization cross section measurements using a gamma excited variable energy X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sood, B S; Allawadhi, K L; Arora, S K [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1982-02-15

    The method developed for the determination of K/L shell photoionization cross sections in various elements, 39 <= Z <= 92, in the characteristic X-ray energy region using a gamma excited variable energy X-ray source has been used for the measurement of Lsub(III) subshell photoionization cross section in Pb, Th and U. The measurements are made at the K X-ray energies of Rb, Nb and Mo, since these are able to excite selectively the Lsub(III) subshells of Pb, Th and U, respectively. The results, when compared with theoretical calculations of Scofield, are found to agree within the uncertainties of determination.

  11. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    DEFF Research Database (Denmark)

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measured...... on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of the electronic configuration on specific metal...

  12. Secondary-source energy-dispersive x-ray spectrometer

    International Nuclear Information System (INIS)

    Larsen, R.P.; Tisue, G.T.

    1975-01-01

    A secondary-source energy-dispersive x-ray spectrometer has been built and tested. In this instrument the primary source of x rays is a tungsten-target tube powered by a high-voltage (75 kV), a high-power (3.7 kW) generator from a wavelength spectrometer (G.E. XRD-6). The primary polychromatic x rays irradiate an elemental foil, the secondary source. Its characteristic essentially monochromatic x rays are used to irradiate the sample. Fluorescent x rays from the sample are detected and resolved by a lithium-drifted silicon detector, multichannel-analyzer system. The design of the instrument provides a convenient means for changing the secondary, and hence, the energy of the excitation radiation

  13. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    International Nuclear Information System (INIS)

    Nicoul, Matthieu

    2010-01-01

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0±0.3) ps, and the ratio of the Grueneisen parameters was found to be γ e / γ i = (0.5±0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A 1g mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase and its development for excitations close to the

  14. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Nicoul, Matthieu

    2010-09-01

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0{+-}0.3) ps, and the ratio of the Grueneisen parameters was found to be {gamma}{sub e} / {gamma}{sub i} = (0.5{+-}0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A{sub 1g} mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase

  15. Production of hollow atoms by high brightness x-ray sources and its applications

    International Nuclear Information System (INIS)

    Moribayashi, Kengo

    2004-01-01

    We study x-ray emissions from the (multi-)inner-shell states and hollow atoms of Si ions excited by high intensity x-ray sources. It is found that the x-ray number from multi-inner-shell excited states (1s 2 2s 2 2p k 3s 2 3p 2 , k=1-4) and hollow atoms (1s 2 2s 2 3p 2 ) is affected greatly by the high intensity short-pulse x-rays and little by weak intensity post-long pulse x-rays. The ratio of the x-ray intensities from hollow atoms to those from the multi-inner-shell excited states becomes almost independent of the pulses and dependent on the intensities of x-ray sources. This ratio may be used for the measurement of intensities of high intensity short pulse x-ray sources. (author)

  16. L{sub {iota}}, L{sub {alpha}}, L{sub {beta}} and L{sub {gamma}} X-ray fluorescence cross-sections of heavy elements for the exciting photons energy 38.18, 43.95, 50.21 and 59.5 keV

    Energy Technology Data Exchange (ETDEWEB)

    Bastug, Arif [Department of Physics Education, College of Education, Erzincan University, 24030 Erzincan (Turkey)], E-mail: abastug40@hotmail.com

    2008-03-15

    The cross-sections for the production of L{sub {iota}}, L{sub {alpha}}, L{sub {beta}} and L{sub {gamma}} X-ray fluorescence (XRF) in Er, Ta, W, Au, Hg, Tl, Pb and Bi by photons with energies in the range 38-59.5 keV have been measured, using a standard doublereflection experimental set-up. Measurements have been performed using an annular 241 Am primary source and X-ray emitting secondary-exciter system. Experimental cross-sections have been compared with the theoretically calculated values of L X-ray cross-sections and fairly good agreement is observed between the experimental and theoretical values.

  17. Characterization of phosphates and phosphogypsum by x-ray fluorescence with radioisotopic excitation sources of 55 Fe, 238 Pu and 109 Cd

    International Nuclear Information System (INIS)

    Parreira, Paulo S.; Nascimento Filho, Virgilio F.

    1999-01-01

    Using the energy dispersive X-ray fluorescence technique (ED-XRF), with radioisotopic sources of 55 Fe, 238 Pu e 109 Cd samples excitation, a qualitative study was carried out in a phosphogypsum and phosphate samples from different origin. The objective was to verify the excitation responses from different sources and to establish the analytical conditions of the technique for these kind of matrices. Besides the P and Ca, characteristic macro elements of this of matrix, it was also observed the elements Si, S, K, matrix, it was also observed the elements Si, S, K, Ti, Cr, Mn, Cu, Zn, Pb, Sr, Y, Zr and Nb. With different sources could be observed different groups of elements, since the emission response of the characteristic X-rays are associated to the excitation energy, in other words to the radioactive source. From the nutrients of major interest in this kind of matrix (P, S and Ca), the P and S elements showed small analytical sensibilities to the 109 Cd source. Greater intensities of characteristics X-ray emissions for the mainly elements of interest, was observed with the 55 Fe source and with the 238 Pu and 109 Cd sources analysis could be done showing trace elements which are present in those sort of samples. (author)

  18. Spin-polarized x-ray emission of 3d transition-metal ions : A comparison via K alpha and K beta detection

    NARCIS (Netherlands)

    Wang, Xin; deGroot, F.M.F.; Cramer, SP

    1997-01-01

    This paper demonstrates that spin-polarized x-ray-excitation spectra can be obtained using K alpha emission as well as K beta lines. A spin-polarized analysis of K alpha x-ray emission and the excitation spectra by K alpha detection on a Ni compound is reported. A systematic analysis of the

  19. X-ray Optics for BES Light Source Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Dennis [Argonne National Lab. (ANL), Argonne, IL (United States); Padmore, Howard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lessner, Eliane [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  20. X-ray Optics for BES Light Source Facilities

    International Nuclear Information System (INIS)

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    2013-01-01

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today's X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today's resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting

  1. Resonant inelastic x-ray scattering studies of elementary excitations

    NARCIS (Netherlands)

    Ament, Lucas Johannes Peter (Luuk)

    2010-01-01

    Resonant Inelastic X-ray Scattering (RIXS) is an X-ray in, X-ray out technique that enables one to study the dispersion of excitations in solids. In this thesis, we investigated how various elementary excitations of transition metal oxides show up in RIXS spectra.

  2. Development of X-ray excitable luminescent probes for scanning X-ray microscopy

    International Nuclear Information System (INIS)

    Moronne, M.M.

    1999-01-01

    Transmission soft X-ray microscopy is now capable of achieving resolutions that are typically 5 times better than the best-visible light microscopes. With expected improvements in zone plate optics, an additional factor of two may be realized within the next few years. Despite the high resolution now available with X-ray microscopes and the high X-ray contrast provided by biological molecules in the soft X-ray region (λ=2-5 nm), molecular probes for localizing specific biological targets have been lacking. To circumvent this problem, X-ray excitable molecular probes are needed that can target unique biological features. In this paper we report our initial results on the development of lanthanide-based fluorescent probes for biological labeling. Using scanning luminescence X-ray microscopy (SLXM, Jacobsen et al., J. Microscopy 172 (1993) 121-129), we show that lanthanide organo-polychelate complexes are sufficiently bright and radiation resistant to be the basis of a new class of X-ray excitable molecular probes capable of providing at least a fivefold improvement in resolution over visible light microscopy. Lanthanide probes, able to bind 80-100 metal ions per molecule, were found to give strong luminescent signals with X-ray doses exceeding 10 8 Gy, and were used to label actin stress fibers and in vitro preparations of polymerized tubulin. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. X-ray photoelectron microscope with a compact x-ray source generated by line-focused laser irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, N.; Okamoto, Y.; Hara, T.; Takahashi, Z.; Nishimura, Y.; Sakata, A.; Watanabe, K.; Azuma, H.

    2004-01-01

    Full text: A laboratory-sized microscopic system of x-ray photoelectrons has been developing using a compact x-ray source produced by line-focused laser irradiation. The system is a scanning type photoelectron microscope where x-ray beam is micro-focused via a Schwartzschild optics. A compact laser-plasma x-ray source has been developed with a YAG laser system, a line-focus lens system, a tape-target driving system and a debris prevention system, that was operated at repetition rate of 10 Hz or 50 Hz. X-rays were delivered along line plasma whose length was 0.6 to 11 mm with higher intensity than that from a point-focused source. Because the transition line of Al V (13.1 nm) was prominent in the soft x-ray spectrum when the Al tape target irradiated at the lower power density of 10 11 W/cm 2 , the 13.1 nm x-ray was used as an excitation source. The Schwartzschild optics was set on the beamline at a distance about 1 m from the source, which was coated with Mo/Si multilayers for 13.1 nm x-ray. The designed demagnification is 224 that was confirmed in the previous experiment. Therefore, an x-ray micro spot of sub-micron size can be formed on a sample surface when the source size is less than about 0.2 mm. Samples were set on a two-axis high-precision piezo stage mounted to a four-axis manipulator. The electron energy analyzer was a spherical capacitor analyzer with mean diameter of 279.4 mm. The electron detector was a microchannel plate (MCP) with a phosphor screen and the optical image of electrons on the exit plane of the analyzer was taken and recorded by using an ultra low dark noise CCD camera, that was suited for detection of vast photoelectrons excited by x-ray pulse of ns-order duration. We performed spatial resolution test measurements by using a GaAs wafer coated with photo-resist that formed a stripe pattern. The spatial resolution less than 3 micron has been obtained from the variation of As 3d electron intensity along the position of the GaAs sample

  4. Excitation of K X-rays for a wide range of elements (25 ≤ Z ≤ 82) by direct interaction of beta particles from phosphorus-32

    International Nuclear Information System (INIS)

    LaBrecque, J.J.; Rosales, P.A.

    1989-01-01

    The relative sensitivities of low-medium and high-Z elements from manganese to lead were investigated via their K α employing 75 μCi of 32 P. This was accomplished by preparing various synthetic mixtures of elements in the range 25 ≤Z≤82, then simply introducing 32 P solution to form source-samples. The advantages of excitation with 32 P, a pure β-emitter with a β max. energy at 1709 keV, include the following: excitation of all the K α x-rays from manganese to lead; the relative sensitivities of the K x-rays are all within one order of magnitude; the source itself does not produce any spectral lines; and the background can be greatly reduced by filtering. Excitation with 32 P is compared with that of a conventional 109 Cd source and some possible applications are discussed. (author)

  5. X-Ray Absorption Near-Edge Structure (XANES) of Calcium L3,2 Edges of Various Calcium Compounds and X-Ray Excited Optical Luminescence (XEOL) Studies of Luminescent Calcium Compounds

    International Nuclear Information System (INIS)

    Ko, J. Y. Peter; Zhou Xingtai; Sham, T.-K.; Heigl, Franziskus; Regier, Tom; Blyth, Robert

    2007-01-01

    X-ray absorption at calcium L3,2 edges of various calcium compounds were measured using a high resolution Spherical Grating Monochromator (SGM) at the Canadian Light Source (CLS). We observe that each compound has its unique fine structure of L3,2 edges. This uniqueness is due to differences in local structure of compounds. We also performed (X-ray Excited Optical Luminescence) XEOL of selected luminescent calcium compounds to investigate their optical properties. XEOL is a photon-in-photon-out technique in which the optical luminescence that is excited by tunable x-rays from a synchrotron light source is monitored. Depending on excitation energy of the x-ray, relative intensities of luminescence peaks vary. Recent findings of the results will be presented here

  6. Polarized X-ray excitation for scatter reduction in X-ray fluorescence computed tomography.

    Science.gov (United States)

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    X-ray fluorescence computer tomography (XFCT) is a new molecular imaging modality which uses X-ray excitation to stimulate the emission of fluorescent photons in high atomic number contrast agents. Scatter contamination is one of the main challenges in XFCT imaging which limits the molecular sensitivity. When polarized X-rays are used, it is possible to reduce the scatter contamination significantly by placing detectors perpendicular to the polarization direction. This study quantifies scatter contamination for polarized and unpolarized X-ray excitation and determines the advantages of scatter reduction. The amount of scatter in preclinical XFCT is quantified in Monte Carlo simulations. The fluorescent X-rays are emitted isotropically, while scattered X-rays propagate in polarization direction. The magnitude of scatter contamination is studied in XFCT simulations of a mouse phantom. In this study, the contrast agent gold is examined as an example but a scatter reduction from polarized excitation is also expected for other elements. The scatter reduction capability is examined for different polarization intensities with a monoenergetic X-ray excitation energy of 82 keV. The study evaluates two different geometrical shapes of CZT detectors which are modeled with an energy resolution of 1 keV FWHM at an X-ray energy of 80 keV. Benefits of a detector placement perpendicular to the polarization direction are shown in iterative and analytic image reconstruction including scatter correction. The contrast to noise ratio (CNR) and the normalized mean square error (NMSE) are analyzed and compared for the reconstructed images. A substantial scatter reduction for common detector sizes was achieved for 100% and 80% linear polarization while lower polarization intensities provide a decreased scatter reduction. By placing the detector perpendicular to the polarization direction, a scatter reduction by factor up to 5.5 can be achieved for common detector sizes. The image

  7. Soft X-ray excited optical luminescence from functional organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Sham, T.K., E-mail: tsham@uwo.ca

    2015-10-01

    Highlights: • Many functional organic materials convert X-ray energy into visible light. • The X-ray induced luminescence (XEOL) across an absorption edge can be site and excitation channel specific. • XEOL is composition, morphology, size and crystallinity dependent. • XEOL using the time structure of a synchrotron can reveal the decay and energy transfer dynamics of the sample. • The combined use of XEOL and XAS in the analysis of functional organic materials is illustrated. - Abstract: This brief report reviews some of the recent findings in the study of synchrotron based X-ray excited optical luminescence (XEOL) from representative organic light emitting device (OLED) and related functional organic materials. The systems of interest include Alq{sub 3}, aluminium tris(8-hydroxylquinoline); Ru(bipy){sub 3}{sup 2+}, tris-(2,2-bipyridine) ruthenium(II); Ir(bpy){sub 3}, tris(2-phenyl-bipyridine)iridium; PVK (poly(N-vinylcarbazole)) and [Au{sub 2}(dppe)(bipy)]{sup 2+}, a Au(I) polymer containing 1,2-bis(diphenylphosphino)ethane and the 4,40-bipyridyl ligands, as well as TBPe (2,5,8,11-tetra-tert-butylperylene) polyhedral crystals and fluorescein isothiocyanate (FITC) and FITC-labelled proteins. It is shown that tunable and pulsed X-rays from synchrotron light sources enable the detailed tracking of the optical properties of organic functional materials by monitoring the luminescence in both the energy and time domain as the excitation energy is scanned across an element-specific absorption edge. The use of XEOL and X-ray absorption spectroscopy (XAS) in materials analysis is illustrated.

  8. Development of X-ray photoelectron microscope with a compact X-ray source generated by line-focused laser irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, N.; Takahashi, Z.; Nishimura, Y.; Watanabe, K.; Okamoto, Y.; Sakata, A.; Azuma, H.; Hara, T.

    2005-01-01

    A laboratory-sized X-ray photoelectron microscope was constructed using a compact X-ray source produced by line-focused laser irradiation. The system is a scanning type photoelectron microscope where X-ray beam is micro-focused via Schwarzschild optics. A compact laser-plasma X-ray source has been developed with a YAG laser, a line-focus lens assembly, an Al tape-target driver and a debris prevention system. The 13.1 nm X-ray was delivered along line plasma whose length was 0.6 or 11 mm with higher intensity than that from a point-focused source. The Schwarzschild optics having the designed demagnification of 224, which was coated with Mo/Si multilayers for 13.1 nm X-ray, was set on the beamline 1 m distant from the source. The electron energy analyser was a spherical capacitor analyser with the photoelectron image detection system that was suited for detection of vast photoelectrons excited by an X-ray pulse of ns-order duration. The spatial resolution less than 5 μm has been confirmed from the variation of As 3d electron intensity along the position of the GaAs sample coated with a photo-resist test pattern

  9. Time-resolved X-ray studies using third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Mills, D.M.

    1991-10-01

    The third generation, high-brilliance, hard x-ray, synchrotron radiation (SR) sources currently under construction (ESRF at Grenoble, France; APS at Argonne, Illinois; and SPring-8 at Harima, Japan) will usher in a new era of x-ray experimentation for both physical and biological sciences. One of the most exciting areas of experimentation will be the extension of x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high brilliance, and variable spectral bandwidth of these sources make them ideal for x-ray time-resolved studies. The temporal properties (bunch length, interpulse period, etc.) of these new sources will be summarized. Finally, the scientific potential and the technological challenges of time-resolved x-ray scattering from these new sources will be described. 13 refs., 4 figs

  10. The Einstein objective grating spectrometer survey of galactic binary X-ray sources

    Science.gov (United States)

    Vrtilek, S. D.; Mcclintock, J. E.; Seward, F. D.; Kahn, S. M.; Wargelin, B. J.

    1991-01-01

    The results of observations of 22 bright Galactic X-ray point sources are presented, and the most reliable measurements to date of X-ray column densities to these sources are derived. The results are consistent with the idea that some of the objects have a component of column density intrinsic to the source in addition to an interstellar component. The K-edge absorption due to oxygen is clearly detected in 10 of the sources and the Fe L and Ne K edges are detected in a few. The spectra probably reflect emission originating in a collisionally excited region combined with emission from a photoionized region excited directly by the central source.

  11. X-ray excited optical luminescence, photoluminescence, photostimulated luminescence and x-ray photoemission spectroscopy studies on BaFBr:Eu

    CERN Document Server

    Subramanian, N; Govinda-Rajan, K; Mohammad-Yousuf; Santanu-Bera; Narasimhan, S V

    1997-01-01

    The results of x-ray excited optical luminescence (XEOL), photoluminescence (PL), photostimulated luminescence (PSL) and x-ray photoemission spectroscopy (XPS) studies on the x-ray storage phosphor BaFBr:Eu are presented in this paper. Analyses of XEOL, PL and PSL spectra reveal features corresponding to the transitions from 4f sup 6 td sup 1 to 4f sup 7 configurations in different site symmetries of Eu sup 2 sup +. Increasing x-ray dose is seen to lead to a red shift in the maximum of the PL excitation spectrum for the 391 nm emission. The XEOL and XPS spectra do not show any signature of Eu sup 3 sup + in the samples studied by us, directly raising doubts about the model of Takahashi et al in which Eu sup 2 sup + is expected to ionize to Eu sup 3 sup + upon x-ray irradiation and remain stable until photostimulation. XEOL and PSL experiments with simultaneous x-ray irradiation and He - Ne laser excitation as well as those with sequential x-ray irradiation and laser stimulation bring out the competition betwe...

  12. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  13. X pinch a point x-ray source

    International Nuclear Information System (INIS)

    Garg, A.B.; Rout, R.K.; Shyam, A.; Srinivasan, M.

    1993-01-01

    X ray emission from an X pinch, a point x-ray source has been studied using a pin-hole camera by a 30 kV, 7.2 μ F capacitor bank. The wires of different material like W, Mo, Cu, S.S.(stainless steel) and Ti were used. Molybdenum pinch gives the most intense x-rays and stainless steel gives the minimum intensity x-rays for same bank energy (∼ 3.2 kJ). Point x-ray source of size (≤ 0.5 mm) was observed using pin hole camera. The size of the source is limited by the size of the pin hole camera. The peak current in the load is approximately 150 kA. The point x-ray source could be useful in many fields like micro lithography, medicine and to study the basic physics of high Z plasmas. (author). 4 refs., 3 figs

  14. Energy dispersive soft X-ray fluorescence analysis by radioisotopic α-particle excitation

    International Nuclear Information System (INIS)

    Robertson, R.

    1977-01-01

    A Si(Li) X-ray detector system and 210 Po α-particle excitation source are combined to form a spectrometer for low energy X-rays. Its response in terms of Ksub(α) X-ray rate is shown for thick targets of elements from fluorine to copper. Potential applications of the equipment to useful quantitative elemental analysis of geological, biological and organic materials are explored. The results of analyses for oxygen and silicon in rocks and potassium in vegetation samples are included. A semi-empirical method of correcting for absorption and enhancement effects is employed. This is based upon X-ray production and photon absorption cross-sections taken from the literature and upon a minimal number of experimentally derived coefficients. (Auth.)

  15. Determination of rare-earth elements in rocks by isotope-excited X-ray fluorescence spectrometry

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar; Wollenberg, H.A.

    1970-01-01

    Isotope-excited X-ray fluorescence spectrometry furnishes a rapid determination of rare-earth elements in unprepared rock samples. The samples are excited by 241Am γ-rays, generating X-ray spectra on a multichannel pulse-height analyser. Gaussian peaks of the Kα and Kβ X-ray energies are treated ......-ray spectrometric scan of a longitudinally sliced drill core showed a close correlation between rare-earth abundances and appropriate minerals.......Isotope-excited X-ray fluorescence spectrometry furnishes a rapid determination of rare-earth elements in unprepared rock samples. The samples are excited by 241Am γ-rays, generating X-ray spectra on a multichannel pulse-height analyser. Gaussian peaks of the Kα and Kβ X-ray energies are treated...

  16. X-ray scattering signatures of {beta}-thalassemia

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, Omar S. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) (Egypt); Elshemey, Wael M. [Biophysics Department, Faculty of Science, Cairo University (Egypt)], E-mail: waelelshemey@yahoo.com; Selim, Nabila S. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) (Egypt)

    2009-08-11

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm{sup -1}, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; {beta}-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of {beta}-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm{sup -1}, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  17. Miniature x-ray source

    Science.gov (United States)

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  18. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    International Nuclear Information System (INIS)

    Bussard, R.W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column. 13 references

  19. Transient soft X-ray sources

    International Nuclear Information System (INIS)

    Hayakawa, S.; Murakami, T.; Nagase, F.; Tanaka, Y.; Yamashita, K.

    1976-01-01

    A rocket observation of cosmic soft X-rays suggests the existence of transient, recurrent soft X-ray sources which are found variable during the flight time of the rocket. Some of the soft X-ray sources thus far reported are considered to be of this time. These sources are listed and their positions are shown. (Auth.)

  20. Proton exciting X ray analysis

    International Nuclear Information System (INIS)

    Ma Xinpei

    1986-04-01

    The analyzing capability of proton exciting X ray analysis for different elements in organisms was discussed, and dealing with examples of trace element analysis in the human body and animal organisms, such as blood serum, urine, and hair. The sensitivity, accuracy, and capability of multielement analysis were discussed. Its strong points for the trace element analysis in biomedicine were explained

  1. X-ray sources

    International Nuclear Information System (INIS)

    Masswig, I.

    1986-01-01

    The tkb market survey comparatively evaluates the X-ray sources and replacement tubes for stationary equipment currently available on the German market. It lists the equipment parameters of 235 commercially available X-ray sources and their replacement tubes and gives the criteria for purchase decisions. The survey has been completed with December 1985, and offers good information concerning medical and technical aspects as well as those of safety and maintenance. (orig.) [de

  2. Rapid qualitative determination of main components in archeological samples by radioisotope-excited X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Shenberg, C.; Boazi, M.

    1975-01-01

    Archeological specimen were examined by the radioisotope-excited X-ray method to determine their chemical composition. Individual K and L X-rays of Fe, Ni, Cu, Zn, Pb, Mo, Ag, In, Sn and Ba were induced by using 241 Am - I and 241 Am- Tm source- target assemblies. A lithium drifted silicone diode coupled to a 400-channel analyzer was used for detection. No sample preparation was required and all the elements were measured simultaneously in 40 min counting time. The use of different targets coupled with only one primary source makes this technique simple, versatile and economical. The target materials are suitable for exciting K and L X-rayd from potassium to uranium. In addition, the targets, as monoenergetic secondary sources, minimize the background effect. (T.G.)

  3. Comparison of exciplex generation under optical and X-ray excitation

    Science.gov (United States)

    Kipriyanov, A. A.; Melnikov, A. R.; Stass, D. V.; Doktorov, A. B.

    2017-09-01

    Exciplex generation under optical and X-ray excitation in identical conditions is experimentally compared using a specially chosen model donor-acceptor system, anthracene (electron acceptor) and N,N-dimethylaniline (electron donor) in non-polar solution, and the results are analyzed and interpreted based on analytically calculated luminescence quantum yields. Calculations are performed on the basis of kinetic equations for multistage schemes of bulk exciplex production reaction under optical excitation and combination of bulk and geminate reactions of radical ion pairs under X-ray excitation. These results explain the earlier experimentally found difference in the ratio of the quantum yields of exciplexes and excited electron acceptors (exciplex generation efficiency) and the corresponding change in the exciplex generation efficiency under X-irradiation as compared to the reaction under optical excitation.

  4. Nanomaterial-based x-ray sources

    Science.gov (United States)

    Cole, Matthew T.; Parmee, R. J.; Milne, William I.

    2016-02-01

    Following the recent global excitement and investment in the emerging, and rapidly growing, classes of one and two-dimensional nanomaterials, we here present a perspective on one of the viable applications of such materials: field electron emission based x-ray sources. These devices, which have a notable history in medicine, security, industry and research, to date have almost exclusively incorporated thermionic electron sources. Since the middle of the last century, field emission based cathodes were demonstrated, but it is only recently that they have become practicable. We outline some of the technological achievements of the past two decades, and describe a number of the seminal contributions. We explore the foremost market hurdles hindering their roll-out and broader industrial adoption and summarise the recent progress in miniaturised, pulsed and multi-source devices.

  5. Toward Femtosecond X-ray Spectroscopy at the Advanced Light Source

    International Nuclear Information System (INIS)

    Chong, Henry Herng Wei

    2004-01-01

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates ∼100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a ΔS = 2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented

  6. Soft X-ray excited colour-centre luminescence and XANES studies of calcium oxide

    International Nuclear Information System (INIS)

    Ko, J.Y.P.; Heigl, F.; Yiu, Y.M.; Zhou, X.-T.; Regier, T.; Blyth, R.I.R.; Sham, T.-K.

    2007-01-01

    In this study, we show that colour centres can be produced by irradiating calcium oxide with soft X-rays from a synchrotron radiation source. Using the X-ray excited optical Iuminescence (XEOL) technique, two colour centres, F-centre, and F + -centre can be identified. These colour centres emit photons at characteristic wavelengths. In addition, by performing time-resolved XEOL (TRXEOL), we are able to reveal timing and decay characteristics of the colour centres. We also present X-ray absorption near-edge structure (XANES) spectra collected across oxygen K-edge, calcium L 3,2 -edge, and calcium K-edge. Experimental results are compared with density functional theory (DFT) calculations. (author)

  7. Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO

    Energy Technology Data Exchange (ETDEWEB)

    Skytt, P.; Glans, P.; Gunnelin, K. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons could not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.

  8. Contribution to the analysis of light elements using x fluorescence excited by radio-elements; Contribution a l'analyse des elements legers par fluorescence x excitee au moyen de radioelements

    Energy Technology Data Exchange (ETDEWEB)

    Robert, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    In order to study the possibilities of using radioactive sources for the X-fluorescence analysis of light elements, the principle is given, after a brief description of X-fluorescence, of the excitation of this phenomenon by X, {beta} and {alpha} emission from radio-elements. The operation and use of the proportional gas counter for X-ray detection is described. A device has been studied for analysing the elements of the 2. and 3. periods of the Mendeleev table. It makes it possible to excite the fluorescence with a radioactive source emitting X-rays or a particles; the X-ray fluorescence penetrates into a window-less proportional counter, this being made possible by the use of an auxiliary electric field in the neighbourhood of the sample. The gas detection pressure leading to the maximum detection yield is given. The spectra are given for the K{sub {alpha}} lines of 3. period elements excited by {sup 55}Fe, {sup 3}H/Zr and {sup 210}Po sources; for the 2. period the K{sub {alpha}} spectra of carbon and of fluorine excited by the {alpha} particles of {sup 210}Po. (author) [French] Afin d'etudier les possibilites d'emploi de sources radioactives a l'analyse par fluorescence X des elements legers, on presente apres rappel de notions generales sur la fluorescence X, le principe de l'excitation de ce phenomene par emission X, {beta}, {alpha} de radioelements. Le fonctionnement et l'utilisation du compteur proportionnel a gaz a la detection du rayonnement X est developpe. Un dispositif permettant l'analyse des elements des 2eme et 3eme periodes de la classification de Mendeleev est etudie. Il permet l'excitation de la fluorescence par source radioactive emettrice de rayons X ou de particules {alpha}; le rayonnement X de fluorescence penetre dans un compteur proportionnel depourvu de fenetre, ceci est rendu possible en creant un champ electrique auxiliaire au voisinage de l'echantillon. On definit une pression du gaz de detection pour un rendement de detection maximal

  9. Characterization of a pulsed x-ray source for fluorescent lifetime measurements

    International Nuclear Information System (INIS)

    Blankespoor, S.C.; Derenzo, S.E.; Moses, W.W.; Rossington, C.S.; Ito, M.; Oba, K.

    1994-01-01

    To search for new, fast, inorganic scintillators, the authors have developed a bench-top pulsed x-ray source for determining fluorescent lifetimes and wavelengths of compounds in crystal or powdered form. This source uses a light-excited x-ray tube which produces x-rays when light from a laser diode strikes its photocathode. The x-ray tube has a tungsten anode, a beryllium exit window, a 30 kV maximum tube bias, and a 50 μA maximum average cathode current. The laser produces 3 x 10 7 photons at 650 nm per ∼100 ps pulse, with up to 10 7 pulses/sec. The time spread for the laser diode, x-ray tube, and a microchannel plate photomultiplier tube is less than 120 ps fwhm. The mean x-ray energy at tube biases of 20, 25, and 30 kV is 9.4, 10.3, and 11.1 keV, respectively. The authors measured 140, 230, and 330 x-ray photons per laser diode pulse per steradian, at tube biases of 20, 25, and 30 kV, respectively. Background x-rays due to dark current occur at a rate of 1 x 10 6 and 3 x 10 6 photons/sec/steradian at biases of 25 and 30 kV, respectively. Data characterizing the x-ray output with an aluminum filter in the x-ray beam are also presented

  10. Contribution to the analysis of light elements using x fluorescence excited by radio-elements; Contribution a l'analyse des elements legers par fluorescence x excitee au moyen de radioelements

    Energy Technology Data Exchange (ETDEWEB)

    Robert, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    In order to study the possibilities of using radioactive sources for the X-fluorescence analysis of light elements, the principle is given, after a brief description of X-fluorescence, of the excitation of this phenomenon by X, {beta} and {alpha} emission from radio-elements. The operation and use of the proportional gas counter for X-ray detection is described. A device has been studied for analysing the elements of the 2. and 3. periods of the Mendeleev table. It makes it possible to excite the fluorescence with a radioactive source emitting X-rays or a particles; the X-ray fluorescence penetrates into a window-less proportional counter, this being made possible by the use of an auxiliary electric field in the neighbourhood of the sample. The gas detection pressure leading to the maximum detection yield is given. The spectra are given for the K{sub {alpha}} lines of 3. period elements excited by {sup 55}Fe, {sup 3}H/Zr and {sup 210}Po sources; for the 2. period the K{sub {alpha}} spectra of carbon and of fluorine excited by the {alpha} particles of {sup 210}Po. (author) [French] Afin d'etudier les possibilites d'emploi de sources radioactives a l'analyse par fluorescence X des elements legers, on presente apres rappel de notions generales sur la fluorescence X, le principe de l'excitation de ce phenomene par emission X, {beta}, {alpha} de radioelements. Le fonctionnement et l'utilisation du compteur proportionnel a gaz a la detection du rayonnement X est developpe. Un dispositif permettant l'analyse des elements des 2eme et 3eme periodes de la classification de Mendeleev est etudie. Il permet l'excitation de la fluorescence par source radioactive emettrice de rayons X ou de particules {alpha}; le rayonnement X de fluorescence penetre dans un compteur proportionnel depourvu de fenetre, ceci est rendu possible en creant un champ electrique auxiliaire au voisinage de l'echantillon. On definit une pression du gaz de detection

  11. Miniature x-ray point source for alignment and calibration of x-ray optics

    International Nuclear Information System (INIS)

    Price, R.H.; Boyle, M.J.; Glaros, S.S.

    1977-01-01

    A miniature x-ray point source of high brightness similar to that of Rovinsky, et al. is described. One version of the x-ray source is used to align the x-ray optics on the Argus and Shiva laser systems. A second version is used to determine the spatial and spectral transmission functions of the x-ray optics. The spatial and spectral characteristics of the x-ray emission from the x-ray point source are described. The physical constraints including size, intensity and thermal limitations, and useful lifetime are discussed. The alignment and calibration techniques for various x-ray optics and detector combinations are described

  12. X-Ray and Near-Infrared Spectroscopy of Dim X-Ray Point Sources Constituting the Galactic Ridge X-Ray Emission

    Directory of Open Access Journals (Sweden)

    Kumiko Morihana

    2014-12-01

    Full Text Available We present the results of X-ray and Near-Infrared observations of the Galactic Ridge X-ray Emission (GRXE. We extracted 2,002 X-ray point sources in the Chandra Bulge Field (l =0°.113, b = 1°.424 down to ~10-14.8 ergscm-2s-1 in 2-8 keV band with the longest observation (900 ks of the GRXE. Based on X-ray brightness and hardness, we classied the X-ray point sources into three groups: A (hard, B (soft and broad spectrum, and C (soft and peaked spectrum. In order to know populations of the X-ray point sources, we carried out NIR imaging and spectroscopy observation. We identied 11% of X-ray point sources with NIR and extracted NIR spectra for some of them. Based on X-ray and NIR properties, we concluded that non-thermal sources in the group A are mostly active galactic nuclei and the thermal sources are mostly white dwarf binaries such as cataclysmic variables (CVs and Pre-CVs. We concluded that the group B and C sources are X-ray active stars in flare and quiescence, respectively.

  13. AN X-RAY COOLING-CORE CLUSTER SURROUNDING A LOW-POWER COMPACT STEEP SPECTRUM RADIO SOURCE 1321+045

    Energy Technology Data Exchange (ETDEWEB)

    Kunert-Bajraszewska, M. [Torun Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, NCU, Grudziacka 5, 87-100 Torun (Poland); Siemiginowska, A. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Labiano, A., E-mail: magda@astro.uni.torun.pl [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir km. 4, E-28850 Torrejon de Ardoz, Madrid (Spain)

    2013-07-20

    We discovered an X-ray cluster in a Chandra observation of the compact steep spectrum (CSS) radio source 1321+045 (z = 0.263). CSS sources are thought to be young radio objects at the beginning of their evolution and can potentially test the cluster heating process. 1321+045 is a relatively low-luminosity source and its morphology consists of two radio lobes on the opposite sides of a radio core with no evidence for jets or hotspots. The optical emission line ratios are consistent with an interstellar medium dominated by active galactic nucleus photoionization with a small contribution from star formation, and no contributions from shocks. Based on these ratios, we classify 1321+045 as a low excitation galaxy (LEG) and suggest that its radioactivity is in a coasting phase. The X-ray emission associated with the radio source is detected with 36.1 {+-} 8.3 counts, but the origin of this emission is highly uncertain. The current X-ray image of the cluster does not show any signatures of a radio source impact on the cluster medium. Chandra detects the cluster emission at >3{sigma} level out to {approx}60'' (240 kpc). We obtain the best-fit beta model parameters of the surface brightness profile of {beta} = 0.58 {+-} 0.2 and a core radius of 9.4{sup +1.1}{sub -0.9} arcsec. The average temperature of the cluster is equal to kT = 4.4{sup +0.5}{sub -0.3} keV, with a temperature and cooling profile indicative of a cooling core. We measure the cluster luminosity L{sub (0.5-2{sub keV)}} = 3 Multiplication-Sign 10{sup 44} erg s{sup -1} and mass 1.5 Multiplication-Sign 10{sup 14} M{sub Sun}.

  14. Short-time X-ray diffraction with an efficient-optimized, high repetition-rate laser-plasma X-ray-source

    International Nuclear Information System (INIS)

    Kaehle, Stephan

    2009-01-01

    This thesis deals with the production and application of ultrashort X-ray pulses. In the beginning different possibilities for the production of X-ray pulses with pulse durations of below one picosecond are presented, whereby the main topic lies on the so called laser-plasma X-ray sources with high repetition rate. In this case ultrashort laser pulses are focused on a metal, so that in the focus intensities of above 10 16 W/cm 2 dominate. In the ideal case in such way ultrafast electrons are produced, which are responsible for line radiation. In these experiments titanium K α radiation is produced, thes photons possess an energy of 4.51 keV. For the efficient production of line radiation here the Ti:Sa laser is optimized in view of the laser energy and the pulse shape and the influence of the different parameters on the K α production systematically studied. The influences of laser intensity, system-conditioned pre-pulses and of phase modulation are checked. It turns out that beside the increasement of the K α radiation by a suited laser intensity a reduction of the X-ray background radiation is of deciding importance for the obtaining of clear diffraction images. This background radiation is mainly composed of bremsstrahlung. It can be suppressed by the avoidance of intrinsic pre-pulses and by means of 2nd-order phase modulation. By means of optical excitation and X-ray exploration experiments the production of acoustic waves after ultrashort optical excitation in a 150 nm thick Ge(111) film on Si(111) is studied. These acoustic waves are driven by thermal (in this time scale time-independent) and electronic (time dependent) pressure amounts. As essential results it turns out that the relative amount of the electronic pressure increases with decreasing excitation density [de

  15. Comparison of sensitivities and detection limits between direct excitation and secondary excitation modes in energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Artz, B.E.; Short, M.A.

    1976-01-01

    A comparison was made between the direct tube excitation mode and the secondary target excitation mode using a Kevex 0810 energy dispersive x-ray fluorescence system. Relative sensitivities and detection limits were determined with two system configurations. The first configuration used a standard, high power, x-ray fluorescence tube to directly excite the specimen. Several x-ray tubes, including chromium, molybdenum, and tungsten, both filtered and not filtered, were employed. The second configuration consisted of using the x-ray tube to excite a secondary target which in turn excited the specimen. Appropriate targets were compared to the direct excitation results. Relative sensitivities and detection limits were determined for K-series lines for elements from magnesium to barium contained in a low atomic number matrix and in a high atomic number matrix

  16. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  17. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Butorin, S.M.; Guo, J.; Magnuson, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  18. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-01-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state

  19. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G.; Barnett, A.M.

    2016-11-11

    Results characterizing GaAs p{sup +}-i-n{sup +} mesa photodiodes with a 10 µm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 µm and 400 µm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm{sup 2} to 67 nA/cm{sup 2} at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. {sup 55}Fe X-ray spectra were obtained using one 200 µm diameter device and one 400 µm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 µm and 740 eV using the 400 µm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. {sup 63}Ni beta particle spectra obtained using the 200 µm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  20. The galactic X-ray sources

    International Nuclear Information System (INIS)

    Gursky, H.; Schreier, E.

    1975-01-01

    The current observational evidence on galactic X-ray sources is presented both from an astrophysical and astronomical point of view. The distributional properties of the sources, where they appear in the Galaxy, and certain average characteristics are discussed. In this way, certain properties of the X-ray sources can be deduced which are not apparent in the study of single objects. The properties of individual X-ray sources are then described. The hope is that more can be learnt about neutron stars and black holes, their physical properties, their origin and evolution, and their influence on other galactic phenomena. Thus attention is paid to those elements of data which appear to have the most bearing on these questions. (Auth.)

  1. Compact X-ray sources: X-rays from self-reflection

    Science.gov (United States)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  2. Determination of rare-earth elements in rocks by isotope-excited X-ray fluorescence spectrometry

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar; Wollenberg, H.A.

    1970-01-01

    Isotope-excited X-ray fluorescence spectrometry furnishes a rapid determination of rare-earth elements in unprepared rock samples. The samples are excited by 241Am γ-rays, generating X-ray spectra on a multichannel pulse-height analyser. Gaussian peaks of the Kα and Kβ X-ray energies are treated......-ray spectrometric scan of a longitudinally sliced drill core showed a close correlation between rare-earth abundances and appropriate minerals....

  3. Table-top instrumentation for time-resolved luminescence spectroscopy of solids excited by nanosecond pulse of soft X-ray source and/or UV laser

    International Nuclear Information System (INIS)

    Bruza, Petr; Fidler, Vlastimil; Nikl, Martin

    2011-01-01

    The practical applicability of the rare-earth doped scintillators in high-speed detectors is limited by the slow decay components in the temporal response of a scintillator. The study of origin and properties of material defects that induce the slow decay components is of major importance for the development of new scintillation materials. We present a table-top, time-domain UV-VIS luminescence spectrometer, featuring extended time and input sensitivity ranges and two excitation sources. The combination of both soft X-ray/XUV and UV excitation source allows the comparative measurements of luminescence spectra and decay kinetics of scintillators to be performed under the same experimental conditions. The luminescence of emission centers of a doped scintillator can be induced by conventional N 2 laser pulse, while the complete scintillation process can be initiated by a soft X-ray/XUV pulse excitation from the laser-produced plasma in gas puff target of 4 ns duration. In order to demonstrate the spectrometer, the UV-VIS luminescence spectra and decay kinetics of cerium doped Lu 3 Al 5 O 12 single crystal (LuAG:Ce) scintillator excited by XUV and UV radiation were acquired. Luminescence of the doped Ce 3+ ions was studied under 2.88 nm (430 eV) XUV excitation from the laser-produced nitrogen plasma, and compared with the luminescence under 337 nm (3.68 eV) UV excitation from nitrogen laser. In the former case the excitation energy is deposited in the LuAG host, while in the latter the 4f-5d 2 transition of Ce 3+ is directly excited. Furthermore, YAG:Ce and LuAG:Ce single crystals luminescence decay profiles are compared and discussed.

  4. New detection modules for gamma, beta and X-ray cameras

    International Nuclear Information System (INIS)

    Azman, S.; Bolle, E.; Dang, K.Q.; Dang, W.; Dietzel, K.I.; Froberg, T.; Gaarder, P.E.; Gjaerum, J.A.; Haugen, S.H.; Hellum, G.; Henriksen, J.R.; Johanson, T.M.; Kobbevik, A.; Maehlum, G.; Meier, D.; Mikkelsen, S.; Ninive, I.; Oya, P.; Pavlov, N.; Pettersen, D.M.; Sundal, B.M.; Talebi, J.; Yoshioka, K.

    2003-01-01

    Full text: Ideas ASA is developing new detection modules for gamma, beta and X-ray cameras. Recent developments focus on modules using various semi-conductor materials (CZT, HgI, Si). The development includes ASIC design, detector module development, and implementation in camera heads. In this presentation we describe the characteristics of important ASICs and its properties in terms of electronic noise, and the modes for measuring signals (switched current modes, sparsified modes, self triggered modes). The ASICs are specific for detectors and applications. We describe recent developments using various semi - conductor materials. We describe important design aspects for medical applications and in life science (SPECT, beta, X-ray cameras)

  5. SOFT CORONAL X-RAYS FROM {beta} PICTORIS

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, H. M.; Wolk, S. J.; Drake, J. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lisse, C. M. [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Robrade, J.; Schmitt, J. H. M. M., E-mail: hguenther@cfa.harvard.edu [Hamburger Sternwarte, Universitaet Hamburg, Gojenbergsweg 112, 21029 Hamburg (Germany)

    2012-05-01

    A-type stars are expected to be X-ray dark, yet weak emission has been detected from several objects in this class. We present new Chandra/HRC-I observations of the A5 V star {beta} Pictoris. It is clearly detected with a flux of (9 {+-} 2) Multiplication-Sign 10{sup -4} counts s{sup -1}. In comparison with previous data this constrains the emission mechanism and we find that the most likely explanation is an optically thin, collisionally dominated, thermal emission component with a temperature around 1.1 MK. We interpret this component as a very cool and dim corona, with log L{sub X} /L{sub bol} = -8.2 (0.2-2.0 keV). Thus, it seems that {beta} Pictoris shares more characteristics with cool stars than previously thought.

  6. Three Bright X-ray Sources in NGC 1313

    Science.gov (United States)

    Colbert, E.; Petre, R.; Schlegel, E.

    1992-12-01

    Three bright X-ray sources were detected in a recent (April/May 1991) ROSAT PSPC observation of the nearby (D ~ 4.5 Mpc) face--on barred spiral galaxy NGC 1313. Two of the sources were at positions coincident with X-ray sources detected by Fabbiano & Trinchieri (ApJ 315, 1987) in a previous (Jan 1980) Einstein IPC observation. The position of the brightest Einstein source is near the center of NGC 1313, and the second Einstein source is ~ 7' south of the ``nuclear'' source, in the outskirts of the spiral arms. A third bright X-ray source was detected in the ROSAT observation ~ 7' southwest of the ``nuclear'' source. We present X-ray spectra and X-ray images for the three bright sources found in the ROSAT observation of NGC 1313, and compare with previous Einstein results. Spectral analysis of these sources require them to have very large soft X-ray luminosities ( ~ 10(40) erg s(-1) ) when compared with typical X-ray sources in our Galaxy. Feasible explanations for the X-ray emission are presented. The third X-ray source is positively identified with the recently discovered (Ryder et. al., ApJ 1992) peculiar type-II supernova 1978K.

  7. Hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    2009-01-01

    Except in the very early stage of the development of X-ray photoemission spectroscopy (XPS) by Kai Siegbahn and his coworkers, the excitation sources for XPS studies have predominantly been the Al Kα and Mg Kα emission lines. The advent of synchrotron radiation sources opened up the possibility of tuning the excitation photon energy with much higher throughputs for photoemission spectroscopy, however the excitation energy range was limited to the vacuum ultra violet and soft X-ray regions. Over the past 5-6 years, bulk-sensitive hard X-ray photoemission spectroscopy using high-brilliance high-flux X-rays from third generation synchrotron radiation facilities has been developed. This article reviews the history of HXPES covering the period from Kai Siegbahn and his coworkers' pioneering works to the present, and describes the fundamental aspects, instrumentation, applications to solid state physics, applied physics, materials science, and industrial applications of HXPES. Finally, several challenging new developments which have been conducted at SPring-8 by collaborations among several groups are introduced.

  8. Resonant Inelastic X-ray Scattering: From band mapping to inter-orbital excitations

    International Nuclear Information System (INIS)

    Luning, J.; Hague, C.F.

    2008-01-01

    Resonant inelastic X-ray scattering (also known as resonant X-ray Raman spectroscopy when only valence and conduction states are involved in the final state excitation) has developed into a major tool for understanding the electronic properties of complex materials. Presently it provides access to electron excitations in the few hundred meV range with element and bulk selectivity. Recent progress in X-ray optics and synchrotron radiation engineering have opened up new perspectives for this powerful technique to improve resolving power and efficiency. We briefly present the basics of the method and illustrate its potential with examples chosen from the literature. (authors)

  9. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    Science.gov (United States)

    Lioliou, G.; Barnett, A. M.

    2016-11-01

    Results characterizing GaAs p+-i-n+ mesa photodiodes with a 10 μm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 μm and 400 μm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm2 to 67 nA/cm2 at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. 55Fe X-ray spectra were obtained using one 200 μm diameter device and one 400 μm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 μm and 740 eV using the 400 μm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. 63Ni beta particle spectra obtained using the 200 μm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  10. X-ray bursters and the X-ray sources of the galactic bulge

    International Nuclear Information System (INIS)

    Lewin, W.H.G.; Joss, P.C.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1981-01-01

    In this article we shall discuss the observed X-ray, optical, infrared and radio properties of the galactic bulge sources, with an emphasis on those that produce type I X-ray bursts. There is persuasive evidence that these burst sources and many other galactic bulge sources are neutron stars in low-mass, close-binary stellar systems. (orig./WL)

  11. Angular dependence of Ll, L $\\alpha$ , L $\\beta$ and L $\\gamma$ X-ray differential and fluorescence cross-sections for Er, Ta, W, Au, Hg and Tl

    CERN Document Server

    Demir, L; Kurucu, Y; Karabulut, A; Sahin, Y; 10.1016/S0969-806X(02)00501-7

    2003-01-01

    Ll, L alpha , L beta and L gamma X-ray differential cross-sections, fluorescence cross-sections and L/sub i/-subshell ( sigma /sub L1/, sigma /sub L2/, and sigma /sub L3/) fluorescence cross-sections were measured for Er, Ta, W, Au, Hg, and Tl at an excitation energy of 59.6 keV using a Si(Li) detector. The differential cross-sections for these elements have been measured at different angles varying from 54 degrees to 153 degrees at intervals of 9 degrees . The Ll and L alpha groups in the L X-ray lines are found to be spatially anisotropic, while those in the L beta and L gamma peaks are isotropic. Experimental and theoretical values of L X-ray fluorescence cross- sections and L/sub i/-subshell X-ray fluorescence cross-sections were compared. (20 refs).

  12. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    Hodoroaba, V.-D.; Radtke, M.; Vincze, L.; Rackwitz, V.; Reuter, D.

    2010-01-01

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  13. A portable tube exciting X-ray fluorescence analysis system

    International Nuclear Information System (INIS)

    Yang Qiang; Lai Wanchang; Ge Liangquan

    2009-01-01

    Article introduced a portable tube exciting X-ray fluorescence analysis system which is based on arm architecture. Also, we designed Tube control circuit and finished preliminary application. The energy and the intensity of the photon can be adjusted continuously by using the tube. Experiments show that high excitation efficiency obtained by setting the appropriate parameters of the tube for the various elements. (authors)

  14. Rockets for Extended Source Soft X-ray Spectroscopy

    Science.gov (United States)

    McEntaffer, Randall

    The soft X-ray background surrounds our local galactic environment yet very little is known about the physical characteristics of this plasma. A high-resolution spectrum could unlock the properties of this million degree gas but the diffuse, low intensity nature of the background have made it difficult to observe, especially with a dispersive spectrograph. Previous observations have relied on X-ray detector energy resolution which produces poorly defined spectra that are poorly fit by complex plasma models. Here we propose a series of suborbital rocket flights that will begin the characterization of this elusive source through high-resolution X-ray grating spectroscopy. The rocket-based spectrograph can resolve individual emission lines over the soft X-ray band and place tight constraints on the temperature, density, abundance, ionization state and age of the plasma. These payloads will draw heavily from the heritage gained from previous rocket missions, while also benefiting from related NASA technology development programs. The Pennsylvania State University (PSU) team has a history of designing and flying spectrometer components onboard rockets while also being scientific leaders in the field of diffuse soft X-ray astronomy. The PSU program will provide hands-on training of young scientists in the techniques of instrumental and observational X-ray astronomy. The proposed rocket program will also expose these researchers to a full experiment cycle: design, fabrication, tolerance analysis, assembly, flight-qualification, calibration, integration, launch, and data analysis; using a combination of technologies suitable for adaptation to NASA's major missions. The PSU program in suborbital X-ray astronomy represents an exciting mix of compelling science, heritage, cutting-edge technology development, and training of future scientists.

  15. X-ray excited optical luminescence of polynuclear aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Oestreich, G.J.

    1979-05-01

    X-ray excited optical luminescence (XEOL) coupled with time resolved spectroscopy was employed to analyze polynuclear aromatic hydrocarbons (PAH) in n-alkane solvents at 10 K. A pulsed XEOL system which was designed around minicomputer control of a medical x-ray unit was developed. Computer software which generated variable width x-ray pulses, monitored timing reference pulses, controlled data acquisition, and analyzed data was written. Phosphorescence decay constants of several PAHs were determined. Synthetic mixtures of zone refined PAHs were prepared and time resolved with the pulsed XEOL technique. Analytical results obtained from the five component mixtures of PAHs at the part per million level were tabulated. Systematic improvements and further development of the pulsed XEOL method were considered.

  16. Picosecond relaxation of X-ray excited GaAs

    Czech Academy of Sciences Publication Activity Database

    Tkachenko, V.; Medvedev, Nikita; Lipp, V.; Ziaja, B.

    2017-01-01

    Roč. 24, Sep (2017), s. 15-21 ISSN 1574-1818 Institutional support: RVO:68378271 Keywords : GaAS * X-ray excitation * picosecond relaxation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.908, year: 2016

  17. Design of a tritium gas cell for beta-ray induced X-ray spectrometry using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Masanori, E-mail: masahara@ctg.u-toyama.ac.jp [Hydrogen Isotope Research Center, Organization for Promotion of Research, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555 (Japan); Abe, Shinsuke; Matsuyama, Masao [Hydrogen Isotope Research Center, Organization for Promotion of Research, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555 (Japan); Aso, Tsukasa [Electronics and Computer Engineering, National Institute of Technology, Toyama College, 1-2 Ebie-neriya, Imizu City, Toyama 933-0293 (Japan); Tatenuma, Katsuyoshi; Kawakami, Tomohiko; Ito, Takeshi [KAKEN Company Limited, 1044 Horimachi, Mito City, Ibaraki 310-0903 (Japan)

    2017-06-15

    Highlights: • Beta-ray induced X-ray spectrometry (BIXS) is a method for tritium gas analysis. • Gas cell for BIXS was designed by Monte Carlo simulations. • The optimum thickness of the gold layer on a beryllium window was around 150 nm. • This simulation model considered the self-absorption with increasing the cell length. - Abstract: One of the methods used for tritium gas analysis is beta-ray induced X-ray spectrometry (BIXS). Gas cell design is important in this method. The structure of the gas cell for BIXS was optimized by Monte Carlo simulation of beta-ray induced X-ray spectra in various window geometries using the Geant4 tool kit (version 10.01.p02). The simulated spectrum from tritium decay fitted the observed one, and the simulation model was used to obtain the cell parameters for BIXS. The optimum thickness of the gold layer on a beryllium window was around 150 nm. This simulation model also considered the relationship between self-absorption by hydrogen gas and the cell length. Self-absorption increased with increasing cell length and the relationship between the sample pressure and cell length was formulated.

  18. Modern X-ray spectroscopy 3. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi

    2008-01-01

    X-ray fluorescence holography (XFH) provides three dimensional atomic images around specified elements. The XFH uses atoms as a wave source or monitor of interference field within a crystal sample, and therefore it can record both intensity and phase of scattered X-rays. Its current performance makes it possible to apply to ultra thin film, impurity and quasicrystal. In this article, I show the theory including solutions for twin image problem, advanced measuring system, data processing for reconstruction of the atomic images and for obtaining accurate atomic positions, applications using resonant X-ray scattering and X-ray excited optical luminescence, and an example of XFH result on the local structure around copper in silicon steal. (author)

  19. Compton backscattered collmated X-ray source

    Science.gov (United States)

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  20. Compton backscattered collimated x-ray source

    Science.gov (United States)

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  1. X-ray spectroscopy with EBIT

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Cauble, R.; Chen, M.; DelGrande, N.; Knapp, D.; Marrs, R.; Osterheld, A.; Reed, K.; Schneider, M.; Scofield, J.; Wong, K.; Vogel, D.; Zasadzinski, R.; Chantrenne, S.; Wargelin, B.

    1992-04-01

    X-ray spectroscopy with the Livermore electron beam ion traps provides data on a wide range of atomic physics issues including ionization, recombination, and excitation cross sections, identification of forbidden transitions, and contributions from relatively and quantum electrodynamics to the transition energies. Here we briefly discuss the source characteristics and x-ray instrumentation, and report measurements of the excitation cross sections of the Kα transitions in heliumlike Ti 20+ as a function of beam energy. The measurements allow detailed comparisons with theoretical predictions of the direct electron-impact excitation cross sections, resonance-excitation contributions, and the electron temperature dependence of the ratio of triplet and singlet lines. The results demonstrate the importance of such measurements for increasing the reliability of x-ray diagnostics of laboratory and astrophysical plasmas

  2. P 8: Table-top instrumentation for time-resolved luminescence spectroscopy of solids excited by soft X-ray from a laser induced plasma source and/or UV-VIS laser

    International Nuclear Information System (INIS)

    Bruza, P.; Fidler, V.; Nikl, M.

    2010-01-01

    The design and use of a novel, table-top UV-VIS luminescence spectrometer with two excitation sources is described: a soft X-ray/XUV pulse excitation from the laser-produced plasma in gas puff target of about 4 ns duration, and a conventional N 2 pulse laser excitation at 337 nm (or any other UV-VIS pulse laser excitation). The XUV plasma source generates photons of either quasi-monochromatic (N target, E = 430 eV) or wide (Ar target, E = 200 ∼ 600 eV) spectral range. A combination of both X-ray/XUV and UV-VIS excitation in one experimental apparatus allows to perform comparative luminescence spectra and kinetics measurements under the same experimental conditions. In order to demonstrate the spectrometer, the UV-VIS luminescence spectra and decay kinetics of cerium doped Lu 3 Al 5 O 12 single crystal (LuAG:Ce) scintillator excited by XUV and UV radiation were acquired. Luminescence of doped Ce 3+ ions was studied under XUV 430 eV excitation from the laser-produced nitrogen plasma, and compared with the luminescence under 337 nm (3,68 eV) UV excitation from nitrogen laser. In the former case the excitation energy is deposited in the LuAG host, while in the latter the 4f-5d transition of Ce 3+ is directly excited. Furthermore, LuAG:Ce single crystals and single crystalline films luminescence decay profiles are compared and discussed. (authors)

  3. Some observational aspects of compact galactic X-ray sources

    International Nuclear Information System (INIS)

    Heise, J.

    1982-01-01

    This thesis contains the following observations of compact galactic X-ray sources: i) the X-ray experiments onboard the Astronomical Netherlands Satellite ANS, ii) a rocket-borne ultra soft X-ray experiment and iii) the Objective Grating Spectrometer onboard the EINSTEIN observatory. In Chapter I the various types of compact galactic X-ray sources are reviewed and put into the perspective of earlier and following observations. In Chapter II the author presents some of the observations of high luminosity X-ray sources, made with ANS, including the detection of soft X-rays from the compact X-ray binary Hercules X-1 and the ''return to the high state'' of the black hole candidate Cygnus X-1. Chapter III deals with transient X-ray phenomena. Results on low luminosity galactic X-ray sources are collected in Chapter IV. (Auth.)

  4. Time-resolved hard x-ray studies using third-generation synchrotron radiation sources (abstract)

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The third-generation, high-brilliance, synchrotron radiation sources currently under construction will usher in a new era of x-ray research in the physical, chemical, and biological sciences. One of the most exciting areas of experimentation will be the extension of static x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high-brilliance, variable spectral bandwidth, and large particle beam energies of these sources make them ideal for hard x-ray, time-resolved studies. The primary focus of this presentation will be on the novel instrumentation required for time-resolved studies such as optics which can increase the flux on the sample or disperse the x-ray beam, detectors and electronics for parallel data collection, and methods for altering the natural time structure of the radiation. This work is supported by the U.S. Department of Energy, BES-Materials Science, under Contract No. W-31-109-ENG-38

  5. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    Science.gov (United States)

    2000-01-01

    While taking a giant leap towards solving one of the greatest mysteries of X-ray astronomy, NASA's Chandra X-ray Observatory also may have revealed the most distant objects ever seen in the universe and discovered two puzzling new types of cosmic objects. Not bad for being on the job only five months. Chandra has resolved most of the X-ray background, a pervasive glow of X-rays throughout the universe, first discovered in the early days of space exploration. Before now, scientists have not been able to discern the background's origin, because no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. "This is a major discovery," said Dr. Alan Bunner, Director of NASA's Structure andEvolution of the universe science theme. "Since it was first observed thirty-seven years ago, understanding the source of the X-ray background has been aHoly Grail of X-ray astronomy. Now, it is within reach." The results of the observation will be discussed today at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. An article describing this work has been submitted to the journal Nature by Dr. Richard Mushotzky, of NASA Goddard Space Flight Center, Greenbelt, Md., Drs. Lennox Cowie and Amy Barger at the University of Hawaii, Honolulu, and Dr. Keith Arnaud of the University of Maryland, College Park. "We are all very excited by this finding," said Mushotzky. "The resolution of most of the hard X-ray background during the first few months of the Chandra mission is a tribute to the power of this observatory and bodes extremely well for its scientific future," Scientists have known about the X-ray glow, called the X-ray background, since the dawn of X-ray astronomy in the early 1960s. They have been unable to discern its origin, however, for no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. The German-led ROSAT mission, now completed, resolved much of the lower

  6. Effect of external magnetic field on the Kβ/Kα X-ray intensity ratios of TixNi1-x alloys excited by 59.54 and 22.69keV photons.

    Science.gov (United States)

    Perişanoğlu, Ufuk; Alım, Bünyamin; Uğurlu, Mine; Demir, Lütfü

    2016-09-01

    The effects of external magnetic field and exciting photon energies on the Kβ/Kα X-ray intensity ratios of various alloy compositions of Ti-Ni transition metal alloys have been investigated in this work using X-ray fluorescence spectroscopy. The spectrum of characteristic K-X-ray photons from pure Ti, pure Ni and TixNi1-x (x=0.30; 0.40; 0.50; 0.60; 0.70) alloys were detected with a high resolution Si (Li) solid-state detector. Firstly, Kβ/Kα X-ray intensity ratios of pure Ti, pure Ni and TixNi1-x alloys were measured following excitation by 59.54keV γ-rays from a 200mCi (241)Am radioactive point source without any magnetic field and under 0.5 and 1T external magnetic fields, separately. Later, the same measurements were repeated under the same experimental conditions for 22.69keV X-rays from a 370 MBq(1)(0)(9)Cd radioactive point source. The results obtained for Kβ/Kα X-ray intensity ratios of pure Ti, pure Ni, Ti and Ni in various Ti-Ni alloys were evaluated in terms of both external magnetic field effect and exciting photon energy effect. When the results obtained for both exciting photon energies are evaluated in terms of changing of Kβ/Kα X-ray intensity ratios depending on the alloy composition, the tendency of these changes are observed to be similar. Also, Kβ/Kα X-ray intensity ratios for all samples examined have changed with increasing external magnetic field. Therefore, the results obtained have shown that Kβ/Kα X-ray intensity ratios of Ti and Ni in TixNi1-x alloys are connected with the external magnetic field. The present study makes it possible to perform reliable interpretation of experimental Kβ/Kα X-ray intensity ratios for Ti, Ni and TixNi1-x alloys and can also provide quantitative information about the changes of the Kβ/Kα X-ray intensity ratios of these metals with alloy composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Excitation of Neutron Star f-mode in Low Mass X-ray Binaries

    International Nuclear Information System (INIS)

    Araujo, J C N de; Miranda, O D; Aguiar, O D

    2006-01-01

    Neutron Stars (NSs) present a host of pulsation modes. Only a few of them, however, is of relevance from the gravitational wave (GW) point of view. Among the various possible modes the pulsation energy is mostly stored in the f-mode in which the fluid parameters undergo the largest changes. An important question is how the pulsation modes are excited in NSs. Here we consider the excitation of the f-mode in the accreting NSs belonging to Low Mass X-ray Binaries (LMXBs), which may well be a recurrent source of GWs, since the NSs are continuously receiving matter from their companion stars. We also discuss the detectability of the GWs for the scenario considered here

  8. Optical observations of binary X-ray sources

    International Nuclear Information System (INIS)

    Boynton, P.E.

    1975-01-01

    The contribution to the recent progress in astronomy made by optical observations is pointed out. The optical properties of X-ray sources help to establish the physical nature of these objects. The current observational evidence on the binary X-ray sources HZ Her/Her X-1 and HDE 226868/Cyg X-1 is reported. (P.J.S.)

  9. Frontiers in X-Ray Science

    International Nuclear Information System (INIS)

    Young, Linda

    2011-01-01

    The year 2010 marked the fiftieth anniversary of the optical laser and the first anniversary of the world's first hard x-ray free-electron laser, the Linac Coherent Light Source (LCLS) at SLAC. This exciting, new accelerator-based source of x-rays provides peak brilliances roughly a billion times greater than currently available from synchrotron sources such as the Advanced Photon Source at Argonne, and thus explores a qualitatively different parameter space. This talk will describe the first experiments at the LCLS aimed at understanding the nature of high intensity x-ray interactions, related applications in ultrafast imaging on the atomic scale and sketch nascent plans for the extension of both linac and storage-ring based photon sources.

  10. Use of alpha-particle excited x-rays to measure the thickness of thin films containing low-Z elements

    International Nuclear Information System (INIS)

    Hanser, F.A.; Sellers, B.; Ziegler, C.A.

    1976-01-01

    The thickness of thin surface films containing low Z elements can be determined by measuring the K X-ray yields from alpha particle excitation. The samples are irradiated in a helium atmosphere by a 5 mCi polonium-210 source, and the low energy X-rays detected by a flow counter with a thin-stretched polypropylene window. The flow counter output is pulse height sorted by a single channel analyzer (SCA) and counted to give the X-ray yield. Best results have been obtained with Z = 6 to 9 (C, N, O, and F), but usable yields are obtained even for Z = 13 or 14 (Al and Si). The low energy of the X-rays (0.28 to 1.74 keV) limits the method to films of several hundred nm thickness or less and to situations where the substrate does not produce interfering X-rays. It is possible to determine the film thickness with 50 percent accuracy by direct calculation using the measured alpha-particle spectrum and known or calculated K X-ray excitation cross sections. By calibration with known standards the accuracy can be increased substantially. The system has thus far been applied to SiO 2 on Si, Al 2 O 3 on Al, and CH 2 on Al

  11. X-ray excited optical luminescence studies on the system BaXY (X ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 65; Issue 2. X-ray excited optical luminescence studies on the system Ba (, =F, Cl, Br, I) ... India; Department of Chemical Engineering, National Taiwan University, Republic of China ... Proceedings of the International Workshop/Conference on Computational ...

  12. The Mapping X-ray Fluorescence Spectrometer (MapX)

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  13. Excitation mechanisms for XUV and X-ray lasers

    International Nuclear Information System (INIS)

    El-Sherbini, T.M.; Arrubban, M.M.

    1992-01-01

    Two excitation mechanisms leading to lasing action in the extreme ultraviolet and soft X-ray spectral regions are proposed. Boron- like ions of Mg VIII, Al IX and Si X plasmas are used as the active laser material. The upper laser level is the metastable 1s 2 2s 2 4p( 2 p) state while the lower level is the short lived 1s 2 2s 2 3d( 2 D) state. (author). 10 refs, 1 fig., 3 tabs

  14. YIELDS OF IONS AND EXCITED STATES IN NONPOLAR LIQUIDS EXPOSED TO X-RAYS OF 1 TO 30 KEV ENERGY

    International Nuclear Information System (INIS)

    HOLROYD, R.A.

    1999-01-01

    When x-rays from a synchrotron source are absorbed in a liquid, the x-ray energy (E x ) is converted by the photoelectric effect into the kinetic energy of the electrons released. For hydrocarbons, absorption by the K-electrons of carbon dominates. Thus the energy of the photoelectron (E pe ) is E x -E b , where E b is the K-shell binding energy of carbon. Additional electrons with energy equal to E b is released in the Auger process that fills the hole in the K-shell. These energetic electrons will produce many ionizations, excitations and products. The consequences of the high density of ionizations and excitations along the track of the photoelectron and special effects near the K-edge are examined here

  15. CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES IN NEARBY GALAXIES. II. X-RAY LUMINOSITY FUNCTIONS AND ULTRALUMINOUS X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song; Qiu, Yanli; Liu, Jifeng [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Bregman, Joel N., E-mail: songw@bao.ac.cn, E-mail: jfliu@bao.ac.cn [University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-09-20

    Based on the recently completed Chandra /ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular ( α ∼ 1.50 ± 0.07) to elliptical (∼1.21 ± 0.02), to spirals (∼0.80 ± 0.02), to peculiars (∼0.55 ± 0.30), and to irregulars (∼0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D {sub 25} and 2 D {sub 25}, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5 σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 10{sup 40} erg s{sup −1}, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M {sub ⊙} black holes with super-Eddington radiation and intermediate mass black holes.

  16. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. W. [DESY (Deutsches Elektronen-Synchrotron), FS-PEX, Notkestrasse 85, 22607 Hamburg (Germany); Yiu, Y. M., E-mail: yyiu@uwo.ca; Sham, T. K. [Department of Chemistry, University of Western Ontario, London, ON N6A5B7 (Canada); Ward, M. J. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Liu, L. [Institute of Functional Nano and Soft Materials (FUNSOM) and Soochow University-Western University Center for Synchrotron Radiation Research, Soochow University, Suzhou, Jiangsu, 215123 (China); Hu, Y. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N2V3 (Canada); Zapien, J. A. [Center Of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Liu, Yingkai [Institute of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan, 650500 (China)

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  17. Electron-ion-x-ray spectrometer system

    International Nuclear Information System (INIS)

    Southworth, S.H.; Deslattes, R.D.; MacDonald, M.A.

    1993-01-01

    The authors describe a spectrometer system developed for electron, ion, and x-ray spectroscopy of gas-phase atoms and molecules following inner-shell excitation by tunable synchrotron radiation. The spectrometer has been used on beamline X-24A at the National Synchrotron Light Source for excitation-dependent studies of Ar L-shell and K-shell photoexcitation and vacancy decay processes. The instrumentation and experimental methods are discussed, and examples are given of electron spectra and coincidence spectra between electrons and fluorescent x-rays

  18. Study of characteristic X-ray source and its applications

    International Nuclear Information System (INIS)

    Li Fuquan

    1994-11-01

    The law of characteristic X-rays emitted by target element under the radiation of isotope source in a range of low energy is discussed. Both the way of improving the rate of γ-X conversion and the method to eliminate the influence of scatter rays are introduced. The influence of the variation of isotopes source, targets and the relative position of source-target to the output of X-rays is also discussed and then the conditions of improving signal-to-noise radio is presented. The X-ray source based on these results can produce different energy X-rays, and so can be broadly used on nuclear instruments and other fields as a low energy source. The thickness gauge, as one of the applications, has succeeded in thickness measuring of the different materials in large range, and it presents a new application field for characteristic X-ray source. (11 figs., 10 tabs.)

  19. Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation

    International Nuclear Information System (INIS)

    Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon

    2017-01-01

    The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation. (paper)

  20. AN X-RAY COOLING-CORE CLUSTER SURROUNDING A LOW-POWER COMPACT STEEP SPECTRUM RADIO SOURCE 1321+045

    International Nuclear Information System (INIS)

    Kunert-Bajraszewska, M.; Siemiginowska, A.; Labiano, A.

    2013-01-01

    We discovered an X-ray cluster in a Chandra observation of the compact steep spectrum (CSS) radio source 1321+045 (z = 0.263). CSS sources are thought to be young radio objects at the beginning of their evolution and can potentially test the cluster heating process. 1321+045 is a relatively low-luminosity source and its morphology consists of two radio lobes on the opposite sides of a radio core with no evidence for jets or hotspots. The optical emission line ratios are consistent with an interstellar medium dominated by active galactic nucleus photoionization with a small contribution from star formation, and no contributions from shocks. Based on these ratios, we classify 1321+045 as a low excitation galaxy (LEG) and suggest that its radioactivity is in a coasting phase. The X-ray emission associated with the radio source is detected with 36.1 ± 8.3 counts, but the origin of this emission is highly uncertain. The current X-ray image of the cluster does not show any signatures of a radio source impact on the cluster medium. Chandra detects the cluster emission at >3σ level out to ∼60'' (240 kpc). We obtain the best-fit beta model parameters of the surface brightness profile of β = 0.58 ± 0.2 and a core radius of 9.4 +1.1 -0.9 arcsec. The average temperature of the cluster is equal to kT = 4.4 +0.5 -0.3 keV, with a temperature and cooling profile indicative of a cooling core. We measure the cluster luminosity L (0.5-2 k eV) = 3 × 10 44 erg s –1 and mass 1.5 × 10 14 M ☉

  1. A mini X-ray generator as an alternative to a 90Sr/90Y beta source in luminescence dating

    DEFF Research Database (Denmark)

    Andersen, C.E.; Bøtter-Jensen, L.; Murray, A.S.

    2003-01-01

    We have carried out an investigation to test whether mini X-ray generators are a suitable alternative to radioactive sources in luminescence dating. The study has mainly been motivated by the need for high dose rates (similar to 1 Gy/s) to make dating of older samples using regeneration protocols...... with a sample of thermally sensitized sedimentary quartz suggest that we can use beta and X-ray irradiation interchangeably from the point of view of construction of growth curves by the single-aliquot regenerative-dose protocol. (C) 2003 Elsevier Science Ltd. All rights reserved....

  2. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  3. M series resonant x-ray lines of barium for near threshold electron excitation

    International Nuclear Information System (INIS)

    Morgon, D.V.

    1992-01-01

    An investigation of the M series resonant x-ray emission lines of barium for near threshold electron excitation was undertaken with a vacuum double crystal spectrometer equipped with potassium acid phthalate crystals. X-ray continuum isochromats were obtained for barium samples using the double crystal spectrometer as a monochrometer set to pass 532 eV photons. The rotatable anode allowed the samples to be observed by either the double crystal spectrometer or a soft x-ray appearance potential spectrometer, which was used for monitoring the surface of the varium sample for contamination, and to provide a cross-check for the double crystal spectrometer data. Barium M series characteristic x-ray spectra for 2.0 keV electron excitation were obtained for a variety of samples, and it was discovered that the fluorescent and resonant x-ray emission line energies remained virtually the same, regardless of the chemical condition of the sample. The continuum resonance effect was observed for near-threshold energy electron excitation, but it was significantly weaker than the same effect observed previously for lanthanum or cerium. The electron excitation energy and intensity of this effect were strongly dependent on the chemical condition of the barium sample. X-ray continuum isochromats were observed for pure and contaminated barium samples at a photon energy of 532 eV. For pure metallic barium, a peak associated with 4f electronic states was observed at an energy of about 10.2 eV above the Fermi level. When the sample was exposed to 1.5 x 10 4 Langmuir of air, the 4f structure became more sharply peaked, and shifted to an energy of about 12.0 eV above the Fermi level. A continuum isochromat of barium oxide was also observed. Chemical shifts in barium M IV and M V appearance potential spectra are therefore caused soley by shifts in the energy position of the empty 4f electronic states relative to the Fermi level

  4. Diagnostic X-ray sources-present and future

    Science.gov (United States)

    Behling, Rolf; Grüner, Florian

    2018-01-01

    This paper compares very different physical principles of X-ray production to spur ideation. Since more than 120 years, bremsstrahlung from X-ray tubes has been the workhorse of medical diagnostics. Generated by X-ray segments comprised of X-ray tubes and high-voltage generators in the various medical systems, X-ray photons in the spectral range between about 16 keV and 150 keV deliver information about anatomy and function of human patients and in pre-clinical animal studies. Despite of strides to employ the wave nature of X-rays as phase sensitive means, commercial diagnostic X-ray systems available until the time of writing still rely exclusively on measuring the attenuation and scattering of X-rays by matter. Significant activities in research aim at building highly brilliant short pulse X-ray sources, based on e.g. synchrotron radiation, free electron lasers and/or laser wake-field acceleration of electrons followed by wiggling with magnetic structures or Thomson scattering in bunches of light. While both approaches, non-brilliant and brilliant sources, have different scope of application, we speculate that a combination may expand the efficacy in medical application. At this point, however, severe technical and commercial difficulties hinder closing this gap. This article may inspire further development and spark innovation in this important field.

  5. Hard-x-ray phase-difference microscopy with a low-brilliance laboratory x-ray source

    International Nuclear Information System (INIS)

    Kuwabara, Hiroaki; Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Mizutani, Haruo

    2011-01-01

    We have developed a hard-X-ray phase-imaging microscopy method using a low-brilliance X-ray source. The microscope consists of a sample, a Fresnel zone plate, a transmission grating, and a source grating creating an array of mutually incoherent X-ray sources. The microscope generates an image exhibiting twin features of the sample with opposite signs separated by a distance, which is processed to generate a phase image. The method is quantitative even for non-weak-phase objects that are difficult to be quantitatively examined by the widely used Zernike phase-contrast microscopy, and it has potentially broad applications in the material and biological science fields. (author)

  6. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication

    Science.gov (United States)

    Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da

    2018-04-01

    X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.

  7. Excitation-energy-dependent resonances in x-ray emissions under near-threshold electron excitation of the Ce 3d and 4d levels

    International Nuclear Information System (INIS)

    Chamberlain, M.B.; Baun, W.L.

    1975-01-01

    Soft x-ray appearance potential spectra of the 3d and 4d levels of polycrystalline cerium metal are reported in this paper. Resonant x-ray emissions are observed when the electron-excitation energy sweeps through the ionization energies of the 3d and 4d levels. The resonant x rays excited at the 3d-level onsets are considerably more intense, and are excited at a lower electron-excitation energy than the 3d-series characteristic x rays. In the neighborhood of the 4d-electron thresholds, four line-like structures extend to approx.8 eV below the 4d-electron binding energies, while two broad and more intense structures occur above the 4d onsets, with the largest one reaching a peak intensity at 12 eV above the 4d thresholds. The resonant emissions apparently arise from the decay of threshold-excited states which are bound to the inner vacancy and have core configurations nd 9 4f 3 , (n=3,4). The exchange interaction between the three 4f electrons and the respective d-orbital vacancy spreads the 4d-threshold structures over a 20 eV range of excitation energies and the 3d-threshold structures over a much smaller range

  8. 21 CFR 872.1810 - Intraoral source x-ray system.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a... structures. The x-ray source (a tube) is located inside the mouth. This generic type of device may include... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral source x-ray system. 872.1810 Section...

  9. Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xuepeng; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Yi, Longtao; Sun, Weiyuan; Li, Fangzuo; Jiang, Bowen [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-12-01

    Two combined optic systems based on polycapillary X-ray optics and single-bounce monocapillary optics (SBMO) were designed for focusing the X-rays from a conventional laboratory X-ray source. One was based on a polycapillary focusing X-ray lens (PFXRL) and a single-bounce ellipsoidal capillary (SBEC), in which the output focal spot with the size of tens of micrometers of the PFXRL was used as the “virtual” X-ray source for the SBEC. The other system was based on a polycapillary parallel X-ray lens (PPXRL) and a single-bounce parabolic capillary (SBPC), in which the PPXRL transformed the divergent X-ray beam from an X-ray source into a quasi-parallel X-ray beam with the divergence of sever milliradians as the incident illumination of the SBPC. The experiment results showed that the combined optic systems based on PFXRL and SBEC with a Mo rotating anode X-ray generator with the focal spot with a diameter of 300 μm could obtain a focal spot with the total gain of 14,300 and focal spot size of 37.4 μm, and the combined optic systems based on PPXRL and SBPC with the same X-ray source mentioned above could acquire a focal spot with the total gain of 580 and focal spot size of 58.3 μm, respectively. The two combined optic systems have potential applications in micro X-ray diffraction, micro X-ray fluorescence, micro X-ray absorption near edge structure, full field X-ray microscopes and so on.

  10. 14th International Conference on X-Ray Lasers

    CERN Document Server

    Menoni, Carmen; Marconi, Mario

    2016-01-01

    These proceedings comprise invited and contributed papers presented at the 14th International Conference on X-Ray Lasers (ICXRL 2014). This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation. New results in the generation of intense, coherent x-rays and progress toward practical devices and their applications in numerous fields are reported. Areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation, and other x-ray generation schemes are covered.  The scope of ICXRL 2014 included, but was not limited to: Laser-pumped X-ray lasers Discharge excitation and other X-ray laser pumping methods Injection/seeding of X-ray amplifiers New lasing transitions and novel X-ray laser schemes High Harmonic sources-Free-electron laser generation in the XUV and X-ray range Novel schemes for coherent XUV and X-ray ge...

  11. X-ray and. gamma. -ray sources: a comparison of their characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Freund, A K [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1979-11-01

    A comparison of the various source characteristics, in particular the available fluxes of radiation in the X-ray/..gamma..-ray region from (1) high power rotary anode X-ray generators, (2) radioactive ..gamma..-ray sources and (3) high energy electron storage rings is presented. Some of the specific characteristics and possible applications of synchrotron radiation as a source are discussed in detail, together with problems associated with the monochromatization of the continuous radiation in the X-ray/..gamma..-ray region. The new high energy machines PEP at Stanford, the 8 GeV storage ring CESR at Cornell and the PETRA storage ring in Hamburg, which will soon come into operation provide a spectrum of high intensity radiation reaching well above h..gamma..sub(photon)=100 keV. The possibilities of using ondulators (wigglers), and laser-electron scattering for constructing high repetition rate tunable ..gamma..-ray sources are also discussed. Finally the potentials of using the powerful spontaneous emission of ..gamma..-quanta by relativistic channeled particles are mentioned.

  12. Multiwavelength study of Chandra X-ray sources in the Antennae

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2011-01-01

    We use Wide-field InfraRed Camera (WIRC) infrared (IR) images of the Antennae (NGC 4038/4039) together with the extensive catalogue of 120 X-ray point sources to search for counterpart candidates. Using our proven frame-tie technique, we find 38 X-ray sources with IR counterparts, almost doubling the number of IR counterparts to X-ray sources that we first identified. In our photometric analysis, we consider the 35 IR counterparts that are confirmed star clusters. We show that the clusters with X-ray sources tend to be brighter, Ks≈ 16 mag, with (J-Ks) = 1.1 mag. We then use archival Hubble Space Telescope (HST) images of the Antennae to search for optical counterparts to the X-ray point sources. We employ our previous IR-to-X-ray frame-tie as an intermediary to establish a precise optical-to-X-ray frame-tie with <0.6 arcsec rms positional uncertainty. Due to the high optical source density near the X-ray sources, we determine that we cannot reliably identify counterparts. Comparing the HST positions to the 35 identified IR star cluster counterparts, we find optical matches for 27 of these sources. Using Bruzual-Charlot spectral evolutionary models, we find that most clusters associated with an X-ray source are massive, and young, ˜ 106 yr.

  13. In vivo x-ray fluorescence of lead and other toxic trace elements

    International Nuclear Information System (INIS)

    Chettle, D.R.

    1995-01-01

    The first in vivo x-ray fluorescence measurements of lead in bone used y-rays from a 57 Co source to excite Pb K x-rays. Later systems used γ-rays from 109 Cd to excite Pb K x-rays or polarized x-rays to excite Ph L x-rays. All three approaches involve an extremely low effective dose to the subject. Of the two K x-ray techniques, 109 Cd is more precise and more flexible in choice of measurement site. Pb L x-ray fluorescence (L-XRF) effectively samples lead at bone surfaces, whereas Ph K x-ray fluorescence (K-XRF) samples through the bulk of a bone. Both the polarized L-XRF and 109 Cd K-XRF achieve similar precision. Renal mercury has recently been determined using a polarized x-ray source, Both renal and hepatic cadmium can be measured using polarized x-rays in conjunction with a Si(Li) detector. Platinum and gold have been measured both by radioisotopic source excitation and by using polarized x-rays, but the latter is to be preferred. Applications of Pb K-XRF have shown that measured bone lead relates strongly to cumulative lead exposure. Secondly, biological half lives of lead in different bone types have been estimated from limited longitudinal data sets and from some cross sectional surveys. Thirdly, the effect of bone lead as an endogenous source of lead has been demonstrated and it has been shown that a majority of circulating blood lead can be mobilized from bone, rather than deriving from new exposure, in some retired lead workers. 35 refs., 5 tabs

  14. Feasibility study on X-ray source with pinhole imaging method

    International Nuclear Information System (INIS)

    Qiu Rui; Li Junli

    2007-01-01

    In order to verify the feasibility of study on X-ray source with pinhole imaging method, and optimize the design of X-ray pinhole imaging system, an X-ray pinhole imaging equipment was set up. The change of image due to the change of the position and intensity of X-ray source was estimated with mathematical method and validated with experiment. The results show that the change of the spot position and gray of the spot is linearly related with the change of the position and intensity of X-ray source, so it is feasible to study X-ray source with pinhole imaging method in this application. The results provide some references for the design of X-ray pinhole imaging system. (authors)

  15. Heavy element concentration determination by the x-ray fluorescence analysis using radioisotope {gamma}-ray sources; Dosage d'elements lourds par fluorescence X utilisant des radio-sources de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, S [Commissariat a l' Energie Atomique, Dir. des Materiaux et des Combustibles Nucleaires, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    A theoretical and experimental study has been made on the fluorescence analysis of high atomic number element, using {gamma}-ray sources for excitation and characteristic K X-rays for the measurement. The choice of the proper {gamma}-ray energy according to the conditions of the determination is considered. The author has studied the usefulness of using the backscattered {gamma}-rays as a correction mean for matrix and grain-size effects. Sources of {sup 153}Gd, {sup 57}Co, {sup 137}Cs have been used for excitation using collimated geometries. Concentration measurements of tungsten in steel, tungsten and lead in aqueous solution, PbS in SiO{sub 2}-PbS powder mixtures have been done, as well as thickness evaluation of gold layers on copper. A precision of about 0.2 per cent (abs.) is obtained for lead determination in light matrixes. A probe design is proposed for the continuous determination of lead in aqueous solutions. (author) [French] On etudie de maniere theorique et experimentale l'analyse d'elements a nombre atomique eleve par fluorescence en utilisant des sources de rayons {gamma} pour l'excitation, et des rayons-X K caracteristiques pour la mesure. On considere le choix de l'energie appropriee des rayons {gamma} suivant les conditions experimentales. L'utilite d'employer les rayons {gamma} retrodiffuses pour corriger les effets de la matrice et de la dimension des grains est etudiee. Des sources de {sup 153}Gd, de {sup 57}Co et de {sup 137}Cs a geometrie collimatee ont ete utilisees pour l'excitation. Des mesures de la concentration du tungstene dans l'acier, du tungstene et du plomb en solutions aqueuses, et du PbS dans des melanges de poudre SiO{sub 2}-PbS ont ete entreprises ainsi que l'evaluation de l'epaisseur des couches d'or sur le cuivre. On obtient une precision d'environ 0,2 pour cent (en absolu) pour la determination du plomb dans des matrices legeres. On propose un modele de sonde pour la determination en continu du plomb en solution aqueuse

  16. X-ray excited photoluminescence near the giant resonance in solid-solution Gd(1-x)Tb(x)OCl nanocrystals and their retention upon solvothermal topotactic transformation to Gd(1-x)Tb(x)F3.

    Science.gov (United States)

    Waetzig, Gregory R; Horrocks, Gregory A; Jude, Joshua W; Zuin, Lucia; Banerjee, Sarbajit

    2016-01-14

    Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb(3+) centers upon excitation in proximity to the giant resonance of the host Gd(3+) ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism from multiple exciton generation to single thermal exciton formation and Auger decay processes. The solid-solution Gd1-xTbxOCl nanocrystals are further topotactically transformed with retention of a nine-coordinated cation environment to solid-solution Gd1-xTbxF3 nanocrystals upon solvothermal treatment with XeF2. The metastable hexagonal phase of GdF3 can be stabilized at room temperature through this topotactic approach and is transformed subsequently to the orthorhombic phase. The fluoride nanocrystals indicate an analogous but blue-shifted modulation of the X-ray excited optical luminescence of the Tb(3+) centers upon X-ray excitation near the giant resonance of the host Gd(3+) ions.

  17. Studies of nanostructures using time-resolved x-ray excited optical luminescence*

    International Nuclear Information System (INIS)

    Rosenberg, R.A.; Shenoy, G.K.; Smita, S.; Burda, C.; Sham, T.K.

    2004-01-01

    Full text:The scientific community is currently investing a great deal of effort into understanding the physics and chemistry of nanoscale structures. Synchrotron radiation techniques are being used to study the physical, electronic, and magnetic structure of nanosystems, albeit at a relatively large size (greater than 30 nm). A major challenge facing researchers is finding methods that can probe structures of the smallest scale (less than 10 nm). Optical luminescence has been shown to be directly sensitive to structures in this size range due to quantum confinement phenomena. X-ray-excited optical luminescence (XEOL) provides the capability to chemically map the sites responsible for producing low-energy (1-6 eV) fluorescence. By taking advantage of the time structure of the x-ray pulses at the Advanced Photon Source (70 ps wide, 153 ns separation), it also possible to determine the dynamic behavior of the states involved in the luminescence. In this paper we will present results of time-resolved XEOL experiments on various nanostructures including porous silicon, silicon nanowires, and CdSe nanodots

  18. A JEM-X catalog of X-ray sources

    DEFF Research Database (Denmark)

    Westergaard, Niels Jørgen Stenfeldt; Chenevez, Jerome; Lund, Niels

    2007-01-01

    The JEM-X catalog of X-ray sources presented here is based on detections in individual science windows with a sensitivity limit of about 10 mCrab (5-15 keV). It contains 127 sources and only those that can be identified from the existing reference catalog. The input data are taken from the, up...

  19. Simple, compact, high brightness source for x-ray lithography and x-ray radiography

    International Nuclear Information System (INIS)

    Hawryluk, A.M.

    1986-01-01

    A simple, compact, high brightness x-ray source has recently been built. This source utilizes a commercially available, cylindrical geometry electron beam evaporator, which has been modified to enhance the thermal cooling to the anode. Cooling is accomplished by using standard, low-conductivity laboratory water, with an inlet pressure of less than 50 psi, and a flow rate of approx.0.3 gal/min. The anode is an inverted cone geometry for efficient cooling. The x-ray source has a measured sub-millimeter spot size (FWHM). The anode has been operated at 1 KW e-beam power (10 KV, 100 ma). Higher operating levels will be investigated. A variety of different x-ray lines can be obtained by the simple interchange of anodes of different materials. Typical anodes are made from easily machined metals, or materials which are vacuum deposited onto a copper anode. Typically, a few microns of material is sufficient to stop 10 KV electrons without significantly decreasing the thermal conductivity through the anode. The small size and high brightness of this source make it useful for step and repeat exposures over several square centimeter areas, especially in a research laboratory environment. For an aluminum anode, the estimated Al-K x-ray flux at 10 cms from the source is 70 μW/cm 2

  20. Flash X-Ray (FXR) Accelerator Optimization Electronic Time-Resolved Measurement of X-Ray Source Size

    International Nuclear Information System (INIS)

    Jacob, J; Ong, M; Wargo, P

    2005-01-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating various approaches to minimize the x-ray source size on the Flash X-Ray (FXR) linear induction accelerator in order to improve x-ray flux and increase resolution for hydrodynamic radiography experiments. In order to effectively gauge improvements to final x-ray source size, a fast, robust, and accurate system for measuring the spot size is required. Timely feedback on x-ray source size allows new and improved accelerator tunes to be deployed and optimized within the limited run-time constraints of a production facility with a busy experimental schedule; in addition, time-resolved measurement capability allows the investigation of not only the time-averaged source size, but also the evolution of the source size, centroid position, and x-ray dose throughout the 70 ns beam pulse. Combined with time-resolved measurements of electron beam parameters such as emittance, energy, and current, key limiting factors can be identified, modeled, and optimized for the best possible spot size. Roll-bar techniques are a widely used method for x-ray source size measurement, and have been the method of choice at FXR for many years. A thick bar of tungsten or other dense metal with a sharp edge is inserted into the path of the x-ray beam so as to heavily attenuate the lower half of the beam, resulting in a half-light, half-dark image as seen downstream of the roll-bar; by measuring the width of the transition from light to dark across the edge of the roll-bar, the source size can be deduced. For many years, film has been the imaging medium of choice for roll-bar measurements thanks to its high resolution, linear response, and excellent contrast ratio. Film measurements, however, are fairly cumbersome and require considerable setup and analysis time; moreover, with the continuing trend towards all-electronic measurement systems, film is becoming increasingly difficult and expensive to procure. Here, we shall

  1. Guidelines for the calibration of low energy photon sources at beta-ray brachytherapy sources

    International Nuclear Information System (INIS)

    2000-01-01

    Kerma Rate. In this document the latter recommendation is adopted. Both of the quantities give the same numerical value for the source strength and differ only in the units they are expressed. The recommended dose calculation method is discussed further in the text. Sealed beta-ray sources for brachytherapy treatments have been in use for few decades already. An example is application of 90 Sr/ 90 Y planar sources for ophthalmic brachytherapy treatments. For these types of treatments, a precise dose distribution within the eye globe is needed. Modern diagnostic techniques permit the determination of all volumes of interest in the eye, i.e. tumor and critical structures such as optic disc and iris with a high precision. It is therefore of importance to optimize the treatment by limiting the dose to these critical structures. A relatively new and rapidly developing field in brachytherapy is the use of beta-ray sources for prevention of restenosis, i.e. re-closing of artery, following coronary and peripheral artery interventional procedures such as angioplasty, atherectomy and stent implantation. The dosimetry of beta-ray sources for therapeutic applications is particularly difficult due to the short distances involved, being at the millimeter range, and the high dose gradients at such short distances. Further difficulties are caused by the non-uniform distribution of activity in the source itself, causing a highly irregular dose distribution. The aim of this report is to recommend methods for calibration of low energy photon sources and beta-ray sources used in brachytherapy treatments and to propose suitable detectors for this purpose. Dose calculation methods are given both for the photon sources and beta-ray sources covered in this report. The present report has been developed in close collaboration with the ICRU Report Committee on this subject. The ICRU is planning to publish a report on the calibration of the type of sources discussed here. The present report is to

  2. Multiple station beamline at an undulator x-ray source

    DEFF Research Database (Denmark)

    Als-Nielsen, J.; Freund, A.K.; Grübel, G.

    1994-01-01

    The undulator X-ray source is an ideal source for many applications: the beam is brilliant, highly collimated in all directions, quasi-monochromatic, pulsed and linearly polarized. Such a precious source can feed several independently operated instruments by utilizing a downstream series of X......-ray transparent monochromator crystals. Diamond in particular is an attractive monochromator as it is rather X-ray transparent and can be fabricated to a high degree of crystal perfection. Moreover, it has a very high heat conductivity and a rather small thermal expansion so the beam X-ray heat load problem...

  3. Synchronization of x-ray pulses to the pump laser in an ultrafast x-ray facility

    International Nuclear Information System (INIS)

    Corlett, J.N.; Barry, W.; Byrd, J.M.; Schoenlein, R.; Zholents, A.

    2002-01-01

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to a pump laser exciting processes in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe a scheme for synchronizing femtosecond x-ray pulses relative to a pump laser. X-ray pulses of <100 fs duration are generated from a proposed source based on a recirculating superconducting linac [1,2,3]. Short x-ray pulses are obtained by a process of electron pulse compression, followed by transverse temporal correlation of the electrons, and ultimately x-ray pulse compression. Timing of the arrival of the x-ray pulse with respect to the pump laser is found to be dominated by the operation of the deflecting cavities which provide the transverse temporal correlation of the electrons. The deflecting cavities are driven from a highly stable RF signal derived from a modelocked laser oscillator which is also the origin of the pump l aser pulses

  4. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  5. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    Science.gov (United States)

    Pühlhofer, Gerd

    2009-05-01

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula. Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population. Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  6. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    International Nuclear Information System (INIS)

    Puehlhofer, Gerd

    2009-01-01

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula.Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population.Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  7. A portable x-ray source and method for radiography

    International Nuclear Information System (INIS)

    Golovanivsky, K.S.

    1996-01-01

    A portable x-ray source that produces a sufficient x-ray flux to produce high quality x-ray images on x-ray films. The source includes a vacuum chamber filled with a heavy atomic weight gas at low pressure and an x-ray emitter. The chamber is in a magnetic field and an oscillating electric field and generates electron cyclotron resonance (ECR) plasma having a ring of energetic electrons inside the chamber. The electrons bombard the x-ray emitter which in turn produces x-ray. A pair of magnetic members generate an axisymmetric magnetic mirror trap inside the chamber. The chamber may be nested within a microwave resonant cavity and between the magnets or the chamber and the microwave cavity may be a single composite structure. (author)

  8. Dependence of the K x-ray energy on the mode of excitation

    International Nuclear Information System (INIS)

    Wang, K.C.; Boehm, F.; Hahn, A.A.; Vogel, P.

    1977-01-01

    The energy shifts in the Ta K x rays resulting from the K-capture of 181 W, fluorescence of Ta, and β - decay of 181 Hf followed by internal conversion in 181 Ta are reported. Both W metal and WO 3 on one hand, and Ta metal and Ta 2 O 5 on the other hand, were used. Comparison of the K x-ray energies of the K-capture sources 153 Gd (Eu x rays) and 175 Hf (Lu x rays) and the corresponding fluorescence sources was also made. Various effects which may influence the K x-ray energies are discussed. 9 references

  9. Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies

    International Nuclear Information System (INIS)

    Zucchini, F.; Chauvin, C.; Combes, P.; Sol, D.; Loyen, A.; Roques, B.; Grunenwald, J.; Bland, S. N.

    2015-01-01

    X-ray emission from a molybdenum X-pinch has been investigated as a potential probe for the high pressure states made in dynamic compression experiments. Studies were performed on a novel 300 kA, 400 ns generator which coupled the load directly to a low inductance capacitor and switch combination. The X-pinch load consisted of 4 crossed molybdenum wires of 13 μm diameter, crossed at an angle of 62°. The load height was 10 mm. An initial x-ray burst generated at the wire crossing point, radiated in the soft x-ray range (hυ < 10 keV). This was followed, 2–5 ns later, by at least one harder x-ray burst (hυ > 10 keV) whose power ranged from 1 to 7 MW. Time integrated spectral measurements showed that the harder bursts were dominated by K-alpha emission; though, a lower level, wide band continuum up to at least 30 keV was also present. Initial tests demonstrated that the source was capable of driving Laue diffraction experiments, probing uncompressed samples of LiF and aluminium

  10. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  11. Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations

    Science.gov (United States)

    Servillat, M.

    2009-05-01

    Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).

  12. Classification of X-ray sources in the direction of M31

    Science.gov (United States)

    Vasilopoulos, G.; Hatzidimitriou, D.; Pietsch, W.

    2012-01-01

    M31 is our nearest spiral galaxy, at a distance of 780 kpc. Identification of X-ray sources in nearby galaxies is important for interpreting the properties of more distant ones, mainly because we can classify nearby sources using both X-ray and optical data, while more distant ones via X-rays alone. The XMM-Newton Large Project for M31 has produced an abundant sample of about 1900 X-ray sources in the direction of M31. Most of them remain elusive, giving us little signs of their origin. Our goal is to classify these sources using criteria based on properties of already identified ones. In particular we construct candidate lists of high mass X-ray binaries, low mass X-ray binaries, X-ray binaries correlated with globular clusters and AGN based on their X-ray emission and the properties of their optical counterparts, if any. Our main methodology consists of identifying particular loci of X-ray sources on X-ray hardness ratio diagrams and the color magnitude diagrams of their optical counterparts. Finally, we examined the X-ray luminosity function of the X-ray binaries populations.

  13. Infrared Counterparts to Chandra X-Ray Sources in the Antennae

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2007-03-01

    We use deep J (1.25 μm) and Ks (2.15 μm) images of the Antennae (NGC 4038/4039) obtained with the Wide-field InfraRed Camera on the Palomar 200 inch (5 m) telescope, together with the Chandra X-ray source list of Zezas and coworkers to search for infrared counterparts to X-ray point sources. We establish an X-ray/IR astrometric frame tie with ~0.5" rms residuals over a ~4.3' field. We find 13 ``strong'' IR counterparts brighter than Ks=17.8 mag and 99.9% confidence level that IR counterparts to X-ray sources are ΔMKs~1.2 mag more luminous than average non-X-ray clusters. We also note that the X-ray/IR matches are concentrated in the spiral arms and ``overlap'' regions of the Antennae. This implies that these X-ray sources lie in the most ``super'' of the Antennae's super star clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing'' IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (possibly older) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, although small-number statistics hamper this analysis.

  14. Medical X-ray sources now and for the future

    Science.gov (United States)

    Behling, Rolf

    2017-11-01

    This paper focuses on the use of X-rays in their largest field of application: medical diagnostic imaging and image-guided therapy. For this purpose, vacuum electronics in the form of X-ray tubes as the source of bremsstrahlung (braking radiation) have been the number one choice for X-ray production in the range of photon energies between about 16 keV for mammography and 150 keV for general radiography. Soft tissue on one end and bony structures on the other are sufficiently transparent and the contrast delivered by difference of absorption is sufficiently high for this spectral range. The dominance of X-ray tubes holds even more than 120 years after Conrad Roentgen's discovery of the bremsstrahlung mechanism. What are the specifics of current X-ray tubes and their medical diagnostic applications? How may the next available technology at or beyond the horizon look like? Can we hope for substantial game changers? Will flat panel sources, less expensive X-ray "LED's", compact X-ray Lasers, compact synchrotrons or equivalent X-ray sources appear in medical diagnostic imaging soon? After discussing the various modalities of imaging systems and their sources of radiation, this overview will briefly touch on the physics of bremsstrahlung generation, key characteristics of X-ray tubes, and material boundary conditions, which restrict performance. It will discuss the deficits of the bremsstrahlung technology and try to sketch future alternatives and their prospects of implementation in medical diagnostics.

  15. CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES: THE SOURCE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song; Liu, Jifeng; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng, E-mail: jfliu@bao.ac.cn, E-mail: songw@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-06-01

    The Chandra archival data is a valuable resource for various studies on different X-ray astronomy topics. In this paper, we utilize this wealth of information and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 Advanced CCD Imaging Spectrometer observations, which produces 363,530 source detections belonging to 217,828 distinct X-ray sources. This number is twice the size of the Chandra Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows that 17,828 sources are located within the D {sub 25} isophotes of 1110 galaxies, and 7504 sources are located between the D {sub 25} and 2 D {sub 25} isophotes of 910 galaxies. Contamination analysis with the log N –log S relation indicates that 51.3% of objects within 2 D {sub 25} isophotes are truly relevant to galaxies, and the “net” source fraction increases to 58.9%, 67.3%, and 69.1% for sources with luminosities above 10{sup 37}, 10{sup 38}, and 10{sup 39} erg s{sup −1}, respectively. Among the possible scientific uses of this catalog, we discuss the possibility of studying intra-observation variability, inter-observation variability, and supersoft sources (SSSs). About 17,092 detected sources above 10 counts are classified as variable in individual observation with the Kolmogorov–Smirnov (K–S) criterion ( P {sub K–S} < 0.01). There are 99,647 sources observed more than once and 11,843 sources observed 10 times or more, offering us a wealth of data with which to explore the long-term variability. There are 1638 individual objects (∼2350 detections) classified as SSSs. As a quite interesting subclass, detailed studies on X-ray spectra and optical spectroscopic follow-up are needed to

  16. Thin coating thickness determination using radioisotope-excited x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Del Castillo, Lorena A.; Calix, Virginia S.

    2001-01-01

    Three different approaches on thin coating thickness determination using a radioisotope-excited x-ray fluorescence spectrometry were demonstrated and results were compared. A standard of thin layer of gold (Au) on a nickel (Ni) substrate from the US National Bureau of Standards (with a nominal thickness of 0.300505 microns of at least 99.9% Au electrodeposited over 2 nils of Ni) on low carbon steel (1010) was analyzed using a Cd 109-excited XRF system. Au thickness computations were done using the (a) thin standard approach, (b) thick standard approach, and (c) x-ray absorption method (ASTM A754-79 1982). These three methods yielded results within the limit set by the American Society for Testing Materials (ASTM), which is +/-3%. Of the three methods, the thick standard yielded the best result with 0.124% error. (Author)

  17. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  18. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bélà; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-01

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of ˜11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of ˜0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thullium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed. source Compacte d' Impulsions Brèves d' Electrons et de Rayons X

  19. Contribution to the analysis of light elements using x fluorescence excited by radio-elements

    International Nuclear Information System (INIS)

    Robert, A.

    1964-01-01

    In order to study the possibilities of using radioactive sources for the X-fluorescence analysis of light elements, the principle is given, after a brief description of X-fluorescence, of the excitation of this phenomenon by X, β and α emission from radio-elements. The operation and use of the proportional gas counter for X-ray detection is described. A device has been studied for analysing the elements of the 2. and 3. periods of the Mendeleev table. It makes it possible to excite the fluorescence with a radioactive source emitting X-rays or a particles; the X-ray fluorescence penetrates into a window-less proportional counter, this being made possible by the use of an auxiliary electric field in the neighbourhood of the sample. The gas detection pressure leading to the maximum detection yield is given. The spectra are given for the K α lines of 3. period elements excited by 55 Fe, 3 H/Zr and 210 Po sources; for the 2. period the K α spectra of carbon and of fluorine excited by the α particles of 210 Po. (author) [fr

  20. Characteristics of hard X-ray double sources in impulsive solar flares

    Science.gov (United States)

    Sakao, T.; Kosugi, T.; Masuda, S.; Yaji, K.; Inda-Koide, M.; Makishima, K.

    1996-01-01

    Imaging observations of solar flare hard X-ray sources with the Hard X-ray Telescope (HXT) aboard the Yohkoh satellite have revealed that hard X-ray emissions (greater than 30 ke V) originate most frequently from double sources. The double sources are located on both sides of the magnetic neutral line, suggesting that the bulk of hard X-rays is emitted from footpoints of flaring magnetic loops. We also found that hard X-rays from the double sources are emitted simultaneously within a fraction of second and that the weaker source tends to be located in the stronger magnetic field region, showing a softer spectrum. Physcial implications on the observed characteristics of the hard X-ray double sources are discussed.

  1. Ultrafast X-Ray Spectroscopy of Conical Intersections

    Science.gov (United States)

    Neville, Simon P.; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2018-06-01

    Ongoing developments in ultrafast x-ray sources offer powerful new means of probing the complex nonadiabatically coupled structural and electronic dynamics of photoexcited molecules. These non-Born-Oppenheimer effects are governed by general electronic degeneracies termed conical intersections, which play a key role, analogous to that of a transition state, in the electronic-nuclear dynamics of excited molecules. Using high-level ab initio quantum dynamics simulations, we studied time-resolved x-ray absorption (TRXAS) and photoelectron spectroscopy (TRXPS) of the prototypical unsaturated organic chromophore, ethylene, following excitation to its S2(π π*) state. The TRXAS, in particular, is highly sensitive to all aspects of the ensuing dynamics. These x-ray spectroscopies provide a clear signature of the wave packet dynamics near conical intersections, related to charge localization effects driven by the nuclear dynamics. Given the ubiquity of charge localization in excited state dynamics, we believe that ultrafast x-ray spectroscopies offer a unique and powerful route to the direct observation of dynamics around conical intersections.

  2. Analysis of borophosphosilicate glass layers on silicon wafers by X-ray emission from photon and electron excitation

    International Nuclear Information System (INIS)

    Elgersma, O.; Borstrok, J.J.M.

    1989-01-01

    Phosphorus and oxygen concentrations in the homogeneous layer of borosilicate glass (BPSG) deposited on Si-integrated circuits are determined by X-ray fluorescence from photon excitation. The X-ray emission from electron excitation in an open X-ray tube instrument yields a sufficiently precise determination of the boron content. The thickness of the layer can be derived from silicon Kα-fluorescence. A calibration model is proposed for photon as well as for electron excitation. The experimentally determined parameters in this model well agree with those derived from fundamental parameters for X-ray absorption and emission. The chemical surrounding of silicon affects strongly the peak profile of the silicon Kβ-emission. This enables to distinguish emission from the silicon atoms in the wafer and from the silicon atoms in the silicon oxide complexes of the BPSG-layer. (author)

  3. Synchrotron radiation sources and condensers for projection x-ray lithography

    International Nuclear Information System (INIS)

    Murphy, J.B.; MacDowell, A.A.; White, D.L.; Wood, O.R. II

    1992-01-01

    The design requirements for a compact electron storage ring that could be used as a soft x-ray source for projection lithography are discussed. The design concepts of the x-ray optics that are required to collect and condition the radiation in divergence, uniformity and direction to properly illuminate the mask and the particular x-ray projection camera used are discussed. Preliminary designs for an entire soft x-ray projection lithography system using an electron storage ring as a soft X-ray source are presented. It is shown that by combining the existing technology of storage rings with large collection angle condensers, a powerful and reliable source of 130 Angstrom photons for production line projection x-ray lithography is possible

  4. Measurement of relative intensities of L-shell x-rays in some high-Z elements

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S; Mittal, R; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1982-10-14

    The L-shell x-ray relative intensities I(Lsub(..cap alpha..))/I(Lsub(l)),I(Lsub(..cap alpha..))/I(Lsub(..beta..)) and I(Lsub(..cap alpha..))/I(Lsub(..gamma..)) for U, Th, Pb and ratios I(Lsub(..cap alpha..+l))/I(Lsub(..beta..)) and I(Lsub(..cap alpha..+l))/I(Lsub(..gamma..)) for W have been measured. The L-shell electrons are excited by 59.57 keV gamma rays from /sup 241/Am and the fluorescent L-shell x-ray intensities are measured with a Si(Li) detector. The experimental results are found to agree well with theory.

  5. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    DEFF Research Database (Denmark)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.

    2016-01-01

    persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr. A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra...

  6. Monitoring variable X-ray sources in nearby galaxies

    Science.gov (United States)

    Kong, A. K. H.

    2010-12-01

    In the last decade, it has been possible to monitor variable X-ray sources in nearby galaxies. In particular, since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec and the X-ray skies of M31 consist of many transients and variables. Furthermore, the X-ray Telescope of Swift has been monitoring several ultraluminous X-ray sources in nearby galaxies regularly. Not only can we detect long-term X-ray variability, we can also find spectral variation as well as possible orbital period. In this talk, I will review some of the important Chandra and Swift monitoring observations of nearby galaxies in the past 10 years. I will also present a "high-definition" movie of M31 and discuss the possibility of detecting luminous transients in M31 with MAXI.

  7. Advanced imaging technology using carbon nanotube x ray source

    International Nuclear Information System (INIS)

    Choi, Hae Young; Seol, Seung Kown; Kim, Jaehoon; Yoo, Seung Hoon; Kim, Jong Uk

    2008-01-01

    Recently, X ray imaging technology is a useful and leading medical diagnostic tool for healthcare professionals to diagnose disease in human body. CNTs(i.e. carbon nanotubes)are used in many applications like FED, Micro wave amplifier, X ray source, etc. because of its suitable electrical, chemical and physical properties. Specially, CNTs are well used electron emitters for x ray source. Conventionally, thermionic type of tungsten filament x ray tube is widely employed in the field of bio medical and industrial application fields. However, intrinsic problems such as, poor emission efficiency and low imaging resolution cause the limitation of use of the x ray tube. To fulfill the current market requirement specifically for medical diagnostic field, we have developed rather a portable and compact CNT based x ray source in which high imaging resolution is provided. Electron sources used in X ray tubes should be well focused to the anode target for generation of high quality x ray. In this study, Pierce type x ray generation module was tested based its simulation results using by OPERA 3D code. Pierce type module is composed of cone type electrical lens with its number of them and inner angles of them that shows different results with these parameters. And some preliminary images obtained using the CNT x ray source were obtained. The represented images are the finger bone and teeth in human body. It is clear that the trabeculation shape is observed in finger bone. To obtain the finger bone image, tube currents of 250A at 42kV tube voltage was applied. The human tooth image, however, is somewhat unclear because the supplied voltage to the tube was limited to max. 50kV in the system developed. It should be noted that normally 60∼70kV of tube voltage is supplied in dental imaging. Considering these it should be emphasized that if the tube voltage is over 60kV then clearer image is possible. In this paper, we are discussed comparing between these experiment results and

  8. Effect on pancreatic beta cells and nerve cells by low let x-ray

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang Hun [Dept. of Nuclear Medicine, Kyungbuk National University Hospital, Daegu (Korea, Republic of); Kim, Kgu Hwan [Dept. of Radiological Technology, Daegu health College, Daegu (Korea, Republic of)

    2014-03-15

    Cultured pancreatic beta cells and nerve cells, it is given normal condition of 10% FBS (fetal bovine serum), 11.1 mM glucose and hyperglycemia condition of 1% FBS, 30 mM glucose. For low LET X-ray irradiated with 0.5 Gy/hr dose-rate(total dose: 0.5 to 5 Gy). Survival rates were measured by MTT assay. When non irradiated, differentiated in the pancreatic beta cells experiment is hyperglycemia conditions survival rate compared to normal conditions survival rate seemed a small reduction. However increasing the total dose of X-ray, the survival rate of normal conditions decreased slightly compared to the survival rate of hyperglycemia conditions, the synergistic effect was drastically reduced. When non irradiated, undifferentiated in the nerve cells experiment is hyperglycemia conditions survival rate compared to normal conditions survival rate seemed a large reduction. As the cumulative dose of X-ray normal conditions and hyperglycemia were all relatively rapid cell death. But the rate of decreased survivals by almost parallel to the reduction proceed and it didn't show synergistic effect.

  9. X-ray-excited optical luminescence of protein crystals: a new tool for studying radiation damage during diffraction data collection.

    Science.gov (United States)

    Owen, Robin L; Yorke, Briony A; Pearson, Arwen R

    2012-05-01

    During X-ray irradiation protein crystals radiate energy in the form of small amounts of visible light. This is known as X-ray-excited optical luminescence (XEOL). The XEOL of several proteins and their constituent amino acids has been characterized using the microspectrophotometers at the Swiss Light Source and Diamond Light Source. XEOL arises primarily from aromatic amino acids, but the effects of local environment and quenching within a crystal mean that the XEOL spectrum of a crystal is not the simple sum of the spectra of its constituent parts. Upon repeated exposure to X-rays XEOL spectra decay non-uniformly, suggesting that XEOL is sensitive to site-specific radiation damage. However, rates of XEOL decay were found not to correlate to decays in diffracting power, making XEOL of limited use as a metric for radiation damage to protein crystals. © 2012 International Union of Crystallography

  10. Exploration in vivo by X-ray fluorescence (thyroid-brain)

    International Nuclear Information System (INIS)

    Delcroix, V.; Allemand, R.; Laval, M.; Dipaola, M.; Tubiana, M.

    1975-01-01

    X-ray fluorescence methods of medical exploration avoid the use of radioactive tracers and hence reduce the total dose received by the patient. In addition the collimation to the excitation source and detector respectively produces a tomographic effect which improves the spatial resolution of the system and even allows organs to be charted. The physical principles involved in X-ray fluorescence are outlined, with emphasis on the fact that the only elements useful for such applications are those of high enough atomic number to emit a fluorescence radiation of energy sufficient to pass through the tissues. The apparatus used, the excitation sources (radioactive source or X-ray tube), the detector and the measurement equipment are described. The experimental results obtained are given in two fields: measurement of blood flow in the tissues; thyroid imagery [fr

  11. X-ray excited photoluminescence near the giant resonance in solid-solution Gd1-xTbxOCl nanocrystals and their retention upon solvothermal topotactic transformation to Gd1-xTbxF3

    Science.gov (United States)

    Waetzig, Gregory R.; Horrocks, Gregory A.; Jude, Joshua W.; Zuin, Lucia; Banerjee, Sarbajit

    2015-12-01

    Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb3+ centers upon excitation in proximity to the giant resonance of the host Gd3+ ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism from multiple exciton generation to single thermal exciton formation and Auger decay processes. The solid-solution Gd1-xTbxOCl nanocrystals are further topotactically transformed with retention of a nine-coordinated cation environment to solid-solution Gd1-xTbxF3 nanocrystals upon solvothermal treatment with XeF2. The metastable hexagonal phase of GdF3 can be stabilized at room temperature through this topotactic approach and is transformed subsequently to the orthorhombic phase. The fluoride nanocrystals indicate an analogous but blue-shifted modulation of the X-ray excited optical luminescence of the Tb3+ centers upon X-ray excitation near the giant resonance of the host Gd3+ ions.Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb3+ centers upon excitation in proximity to the giant resonance of the host Gd3+ ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism

  12. Near field imaging of transient collisional excitation x-ray laser

    International Nuclear Information System (INIS)

    Tanaka, Momoko; Kado, Masataka; Hasegawa, Noboru; Kawachi, Tetsuya; Sukegawa, Kouta; Lu, Peixiang; Nagashima, Akira; Kato, Yoshiaki

    2001-01-01

    We observed the spatial profile of the transient collisional excitation Ni-like Ag laser (λ=13.9 nm) for various plasma lengths using the near field imaging method. The gain coefficient of the x-ray laser was estimated as 24 cm -1 . The gain region was a 50 μm crescent shape and included localized high gain areas. (author)

  13. High energy X-ray observations of COS-B gamma-ray sources from OSO-8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Caraveo, P. A.

    1985-01-01

    During the three years between satellite launch in June 1975 and turn-off in October 1978, the high energy X-ray spectrometer on board OSO-8 observed nearly all of the COS-B gamma-ray source positions given in the 2CG catalog (Swanenburg et al., 1981). An X-ray source was detected at energies above 20 keV at the 6-sigma level of significance in the gamma-ray error box containing 2CG342 - 02 and at the 3-sigma level of significance in the error boxes containing 2CG065 + 00, 2CG195 + 04, and 2CG311 - 01. No definite association between the X-ray and gamma-ray sources can be made from these data alone. Upper limits are given for the 2CG sources from which no X-ray flux was detected above 20 keV.

  14. 21 CFR 872.1800 - Extraoral source x-ray system.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a... dental radiographic examination and diagnosis of diseases of the teeth, jaw, and oral structures. The x... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extraoral source x-ray system. 872.1800 Section...

  15. The application of {beta}-ray excitation fluorescence to the measurement of the thickness of deposits and to analysis; Applications de la fluorescence excitee au moyen des rayons {beta} a la mesure des epaisseurs des depots et a l'analyse

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Seibel, G [Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France)

    1961-07-01

    Principles of the method are first outlined and the instrumentation used is described. The different types of radiation detectors are subject of a detailed study. As a source of {beta}-radiation {sup 90}(Sr + Y) was used as well as {sup 147}Pm. Great care was taken to eliminate back-diffused electrons by deflection by a strong permanent magnet. The method was applied to the measurement of the thickness of deposits of Cr, Zn, Sn, Cd and Cu on iron as well as Zn, Cr, Ag and Au on copper and the results obtained are discussed. An attempt was made, to use {beta}-X-ray fluorescence for the analysis of minerals, iron ore and glass and for routine control of Si-Mn, Si-Ca, Fe-Mn and Fe-W. Finally the method of {beta}-X-ray fluorescence is compared with normal-X-ray fluorescence and possibilities of further development are cited. (author) [French] Les principes de la methode et l'instrumentation utilisee sont presentes. On decrit en particulier les detecteurs de rayonnement utilises. Comme source de rayonnement on utilise {sup 90}(Sr + Y) et {sup 147}Pm. Pour eliminer les electrons retrodiffuses on utilise un aimant permanent place sur le trajet du faisceau. La methode est appliquee a la mesure des epaisseurs des depots metalliques tels que le Cr, Zn, Sn, Cd et Cu sur fer et le Zn, Cr, Ag et Au sur cuivre. D'autre part, la fluorescence {beta}-X etait utilisee pour l'analyse des minerais et des verres et pour le controle des alliages Fe-Mn, Fe-W, Si-Mn, Si-Ca. Enfin, on passe a une comparaison entre la fluorescence {beta}-X et la fluorescence X normale et on discute les possibilites d'un developpement futur. (auteur)

  16. X-ray bursters and the X-ray sources of the galactic bulge

    Science.gov (United States)

    Lewin, W. H. G.; Joss, P. C.

    An attempt is made to distill from observational and theoretical information on the galactic bulge X-ray sources in general, and on the X-ray burst sources in particular, those aspects which seem to have the greatest relevance to the understanding of these sources. Galactic bulge sources appear to be collapsed objects of roughly solar mass, in most cases neutron stars, which are accreting matter from low-mass stellar companions. Type I bursts seem to result from thermonuclear flashes in the surface layers of some of these neutron stars, while the type II bursts from the Rapid Burster are almost certainly due to an instability in the accretion flow onto a neutron star. It is concluded that the studies cited offer a new and powerful observational handle on the fundamental properties of neutron stars and of the interacting binary systems in which they are often contained.

  17. Laser-produced X-ray sources

    International Nuclear Information System (INIS)

    Hudson, L.T.; Seely, J.F.

    2010-01-01

    A formidable array of advanced laser systems are emerging that produce extreme states of light and matter. By irradiating solid and gaseous targets with lasers of increasing energy densities, new physical regimes of radiation effects are being explored for the first time in controlled laboratory settings. One result that is being accomplished or pursued using a variety of techniques, is the realization of novel sources of X-rays with unprecedented characteristics and light-matter interactions, the mechanisms of which are in many cases still being elucidated. Examples include the megajoule class of laser-produced plasmas designed in pursuit of alternative-energy and security applications and the petawatt class of lasers used for fast ignition and X-ray radiographic applications such as medical imaging and real-time imaging of plasma hydrodynamics. As these technologies mature, increased emphasis will need to be placed on advanced instrumentation and diagnostic metrology to characterize the spectra, time structure, and absolute brightness of X-rays emitted by these unconventional sources. Such customized and absolutely calibrated measurement tools will serve as an enabling technology that can help in assessing the overall system performance and progress, as well as identification of the underlying interaction mechanisms of interest to basic and applied strong-field and high-energy-density science.

  18. Compound refractive lenses for novel X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Piestrup, M.A. E-mail: melpie@adelphitech.com; Beguiristain, H.R.; Gary, C.K.; Cremer, J.T.; Pantell, R.H.; Tatchyn, R

    2001-01-01

    We have measured the intensity profile of X-rays focused by a linear array of closely spaced spherical lenses fabricated using Mylar (C{sub 5}H{sub 4}O{sub 2}). We have experimentally demonstrated that we can achieve two-dimensional focusing for photon energies between 7 and 9 keV with imaging distances of less than 1 m. For example, using 8-keV X-rays we have achieved full-width-at-half-maximum (FWHM) linewidths down to 27.5 {mu}m at a distance of only 62 cm from the lens. The effective aperture of the lens was measured to be about 390 {mu}m with 38% transmission at 9 keV. A synchrotron source having source-size dimensions of 0.44x1.7 mm{sup 2} was utilized for the experimental work. Such lenses are seen as useful for focusing and increasing the intensity of novel X-ray sources that are directional and have small source size ({sigma}<1 mm)

  19. Miniaturized High-Speed Modulated X-Ray Source

    Science.gov (United States)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  20. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    Energy Technology Data Exchange (ETDEWEB)

    Girardeau-Montaut, J.-P. E-mail: jean-pierre.girardeau@univ-lyonl.fr; Kiraly, Bela; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-21

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of {approx}11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of {approx}0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed.

  1. Galactic distribution of X-ray burst sources

    International Nuclear Information System (INIS)

    Lewin, W.H.G.; Hoffman, J.A.; Doty, J.; Clark, G.W.; Swank, J.H.; Becker, R.H.; Pravdo, S.H.; Serlemitsos, P.J.

    1977-01-01

    It is stated that 18 X-ray burst sources have been observed to date, applying the following definition for these bursts - rise times of less than a few seconds, durations of seconds to minutes, and recurrence in some regular pattern. If single burst events that meet the criteria of rise time and duration, but not recurrence are included, an additional seven sources can be added. A sky map is shown indicating their positions. The sources are spread along the galactic equator and cluster near low galactic longitudes, and their distribution is different from that of the observed globular clusters. Observations based on the SAS-3 X-ray observatory studies and the Goddard X-ray Spectroscopy Experiment on OSO-9 are described. The distribution of the sources is examined and the effect of uneven sky exposure on the observed distribution is evaluated. It has been suggested that the bursts are perhaps produced by remnants of disrupted globular clusters and specifically supermassive black holes. This would imply the existence of a new class of unknown objects, and at present is merely an ad hoc method of relating the burst sources to globular clusters. (U.K.)

  2. X-ray Microprobe for Fluorescence and Diffraction Analysis

    International Nuclear Information System (INIS)

    Ice, G.E.

    2005-01-01

    X-ray diffraction (see unit 1.1) and x-ray excited fluorescence analysis are powerful techniques for the nondestructive measurement of crystal structure and chemical composition. X-ray fluorescence analysis is inherently nondestructive with orders of magnitude lower power deposited for the same detectable limit as with fluorescence excited by charged particle probes (Sparks, 1980). X-ray diffraction analysis is sensitive to crystal structure with orders-of-magnitude greater sensitivity to crystallographic strain than electron probes (Rebonato, et al. 1989). When a small-area x-ray microbeam is used as the probe, chemical composition (Z>14), crystal structure, crystalline texture, and crystalline strain distributions can be determined. These distributions can be studied both at the surface of the sample and deep within the sample (Fig. 1). Current state-of-the-art can achieve an ∼1 mm-D x-ray microprobe and an ∼0.1 mm-D x-ray microprobe has been demonstrated (Bilderback, et al., 1994). Despite their great chemical and crystallographic sensitivities, x-ray microprobe techniques have until recently been restricted by inefficient x-ray focusing optics and weak x-ray sources; x-ray microbeam analysis was largely superseded by electron techniques in the 50's. However, interest in x-ray microprobe techniques has now been revived (Howells, et al., 1983; Ice and Sparks, 1984; Chevallier, et al., 1997; Riekel 1992; Thompson, el al., 1992; and Making and Using... 1997) by the development of efficient x-ray focusing optics and ultra-high intensity synchrotron x-ray sources (Buras and Tazzari, 1984; Shenoy, et al., 1988). These advances have increased the achievable microbeam flux by more than 11 orders of magnitude (Fig. 2) (Ice, 1997); the flux in a tunable 1 mm-D beam on a 'so called' 3rd-generation synchrotron source such as the APS can exceed the flux in a fixed-energy mm2 beam on a conventional source. These advances make x-ray microfluorescence and x-ray

  3. Comparison of conventional and total reflection excitation geometry for fluorescence X-ray absorption spectroscopy on droplet samples

    International Nuclear Information System (INIS)

    Falkenberg, G.; Pepponi, G.; Streli, C.; Wobrauschek, P.

    2003-01-01

    X-ray absorption fine structure (XAFS) experiments in fluorescence mode have been performed in total reflection excitation geometry and conventional 45 deg. /45 deg. excitation/detection geometry for comparison. The experimental results have shown that XAFS measurements are feasible under normal total reflection X-ray fluorescence (TXRF) conditions, i.e. on droplet samples, with excitation in grazing incidence and using a TXRF experimental chamber. The application of the total reflection excitation geometry for XAFS measurements increases the sensitivity compared to the conventional geometry leading to lower accessible concentration ranges. However, XAFS under total reflection excitation condition fails for highly concentrated samples because of the self-absorption effect

  4. X-Ray Emission from Compact Sources

    Energy Technology Data Exchange (ETDEWEB)

    Cominsky, L

    2004-03-23

    This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

  5. X-ray source array

    International Nuclear Information System (INIS)

    Cooperstein, G.; Lanza, R.C.; Sohval, A.R.

    1983-01-01

    A circular array of cold cathode diode X-ray sources, for radiation imaging applications, such as computed tomography includes electrically conductive cathode plates each of which cooperates with at least two anodes to form at least two diode sources. In one arrangement, two annular cathodes are separated by radially extending, rod-like anodes. Field enhancement blades may be provided on the cathodes. In an alternative arrangement, the cathode plates extend radially and each pair is separated by an anode plate also extending radially. (author)

  6. Simulation of a dense plasma focus x-ray source

    International Nuclear Information System (INIS)

    Stark, R.A.

    1994-01-01

    The authors are performing simulations of the magnetohydrodynamics of a Dense Plasma Focus (DPF) x-ray source located at Science Research Laboratory (SRL), Alameda, CA, in order to optimize its performance. The SRL DPF, which was developed as a compact source for x-ray lithography, operates at 20 Hz, giving x-ray power (9--14 Angstroms) of 500 W using neon gas. The simulations are performed with the two dimensional MHD code MACH2, developed by Mission Research Corporation, with a steady state corona model as the equation of state. The results of studies of the sensitivity of x-ray output to charging voltage and current, and to initial gas density will be presented. These studies should indicate ways to optimize x-ray production efficiency. Simulations of various inner electrode configurations will also be presented

  7. Ultra-short X-ray sources generated through laser-matter interaction and their applications

    International Nuclear Information System (INIS)

    Rousse, A.

    2004-04-01

    This work is dedicated to the sources of ultra-short X-rays. The K α source, the non-linear Thomson source, the betatron source and the Xsource are presented. We show that a pump-probe experiment where the pump is a laser excitation and the probe is the X-K α ultra-short radiation, can be used to study the dynamics of material structure with a time resolution of 100 femtosecond. We describe 2 applications that have been achieved in the field of solid physics by using the diffraction technique with a time resolution in the range of the femtosecond. The first application has permitted the observation and characterization of the ultra-quick solid-phase transition that occurs on the surface of a semiconductor crystal. The second experiment deals with the role of optical phonons in the antecedent processes that lead to such ultra-quick solid-phase transitions. (A.C.)

  8. Parameters estimation for X-ray sources: positions

    International Nuclear Information System (INIS)

    Avni, Y.

    1977-01-01

    It is shown that the sizes of the positional error boxes for x-ray sources can be determined by using an estimation method which we have previously formulated generally and applied in spectral analyses. It is explained how this method can be used by scanning x-ray telescopes, by rotating modulation collimators, and by HEAO-A (author)

  9. Recent applications of hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Conan; Woicik, Joseph C., E-mail: Joseph.Woicik@NIST.gov [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Rumaiz, Abdul K. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); Pianetta, Piero [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-05-15

    Recent applications of hard x-ray photoelectron spectroscopy (HAXPES) demonstrate its many capabilities in addition to several of its limitations. Examples are given, including measurement of buried interfaces and materials under in situ or in operando conditions, as well as measurements under x-ray standing-wave and resonant excitation. Physical considerations that differentiate HAXPES from photoemission measurements utilizing soft x-ray and ultraviolet photon sources are also presented.

  10. Development and testing of an X-ray fluorescence source holder

    International Nuclear Information System (INIS)

    Csikai, J.

    1983-02-01

    For elemental analysis of low Z materials, the techniques of radioisotope excited X-ray emission was improved by the application of a vacuum chamber permitting the analysis of several samples without destroying the vacuum. The optimal geometry was determined, and the chamber designed and constructed to allow improved quantitative analysis of elements with Z<25. The contents of Ar in air permits the easy monitoring of the vacuum in the chamber, as this gas is also excited and emits characteristic X-rays. To maintain a low vacuum on the top of a solid-state detector, is important in laboratories with a high relative humidity, which can be detrimental to the thin Be window of the detector

  11. X-ray emission as a diagnostic from pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, D., E-mail: david.bowes@strath.ac.uk [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H.; He, W.; Zhang, L.; Cross, A.W.; Ronald, K.; Phelps, A.D.R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Chen, D.; Zhang, P. [Computed Tomography Lab, School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Chen, X.; Li, D. [Department of Electronic Engineering, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-09-15

    X-ray emission has been achieved using an electron beam generated by a pseudospark low-pressure discharge and utilised as a diagnostic for beam detection. A 300 A, 34 kV PS-sourced electron beam pulse of 3 mm diameter impacting on a 0.1 mm-thick molybdenum target generated X-rays which were detected via the use of a small, portable X-ray detector. Clear X-ray images of a micro-sized object were captured using an X-ray photodetector. This demonstrates the inducement of proton induced X-ray emission (PIXE) not only as an indicator of beam presence but also as a future X-ray source for small-spot X-ray imaging of materials.

  12. X-ray Diffraction Study of Arsenopyrite at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    D Fan; M Ma; W Zhou; S Wei; Z Chen; H Xie

    2011-12-31

    The high-pressure X-ray diffraction study of a natural arsenopyrite was investigated up to 28.2 GPa using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at National Synchrotron Light Source, Brookhaven National Laboratory. The 16:3:1 methanol-ethanol-water mixture was used as a pressure-transmitting medium. Pressures were measured using the ruby-fluorescence method. No phase change has been observed up to 28.2 GPa. The isothermal equation of state (EOS) was determined. The values of K{sub 0}, and K'{sub 0} refined with a third-order Birch-Murnaghan EOS are K{sub 0} = 123(9) GPa, and K'{sub 0} = 5.2(8). Furthermore, we confirm that the linear compressibilities ({beta}) along a, b and c directions of arsenopyrite is elastically isotropic ({beta}{sub a} = 6.82 x 10{sup -4}, {beta}{sub b} = 6.17 x 10{sup -4} and {beta}{sub c} = 6.57 x 10{sup -4} GPa{sup -1}).

  13. X-ray fluorescence in some medium-Z elements excited by 59.5 keV photons

    International Nuclear Information System (INIS)

    Han, I.; Shahin, M.; Demir, L.; Narmanli, E.

    2010-01-01

    K X-ray fluorescence parameters cross sections and average shell fluorescence yields) for selected ten elements in the atomic range 42 ≤ Z ≤ 66 have been experimentally determined at photon excitation energy of 59.5 keV. K X-rays emitted from the samples have been counted by a Si (Li) detector. The K spectra for investigated elements have been derived from the measured K shell X-ray spectra by peak fitting process. Experimental results of K X-ray fluorescence parameters have been compared with theory. In general there is an agreement within the standard uncertainties of the experimental and theoretical values

  14. A SEARCH FOR HYPERLUMINOUS X-RAY SOURCES IN THE XMM-NEWTON SOURCE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Zolotukhin, I.; Webb, N. A.; Godet, O.; Barret, D. [CNRS, IRAP, 9 av. Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Bachetti, M., E-mail: ivan.zolotukhin@irap.omp.eu [INAF/Osservatorio Astronomico di Cagliari, via della Scienza 5, I-09047 Selargius (Italy)

    2016-02-01

    We present a new method to identify luminous off-nuclear X-ray sources in the outskirts of galaxies from large public redshift surveys, distinguishing them from foreground and background interlopers. Using the 3XMM-DR5 catalog of X-ray sources and the SDSS DR12 spectroscopic sample of galaxies, with the help of this off-nuclear cross-matching technique, we selected 98 sources with inferred X-ray luminosities in the range 10{sup 41} < L{sub X} < 10{sup 44} erg s{sup −1}, compatible with hyperluminous X-ray objects (HLX). To validate the method, we verify that it allowed us to recover known HLX candidates such as ESO 243–49 HLX–1 and M82 X–1. From a statistical study, we conservatively estimate that up to 71 ± 11 of these sources may be foreground- or background sources, statistically leaving at least 16 that are likely to be HLXs, thus providing support for the existence of the HLX population. We identify two good HLX candidates and using other publicly available data sets, in particular the VLA FIRST in radio, UKIRT Infrared Deep Sky Survey in the near-infrared, GALEX in the ultraviolet and Canada–France–Hawaii Telescope Megacam archive in the optical, we present evidence that these objects are unlikely to be foreground or background X-ray objects of conventional types, e.g., active galactic nuclei, BL Lac objects, Galactic X-ray binaries, or nearby stars. However, additional dedicated X-ray and optical observations are needed to confirm their association with the assumed host galaxies and thus secure their HLX classification.

  15. Millianalyser by x-ray fluorescence

    International Nuclear Information System (INIS)

    Kawamoto, A.; Hirao, O.; Kashiwakura, J.; Gohshi, Y.

    1976-01-01

    Research on the possibility of mm-size nondestructive analysis was carried out by the fluorescent x-ray method. With 0.2 mm pin-hole slit, source x-rays from a Cu target diffraction tube were collimated to a spot smaller than 1 mm phi at a slide stage placed about 5 cm distant from the pin-hole slit. Resultant x-rays from a sample placed on the slide stage, which is excited by the collimated x-ray, were detected with a head-on-type 6 mm SSD, placed so that its 12.5 micron Be window was about 5 cm beneath the stage. X-ray intensities sufficient for analysis (500 to 5000 CPS) could be obtained for various metallic samples with up to 40 kV-10 mA excitation. This instrument proved to be useful for mm-size qualitative analysis in measurements of tiny samples. Furthermore, the possibility of distribution analysis is expected based on the result of an investigation on c.a. 0.1 percent Cr in LiNbO 3 , where the ratios of Cr-Kα intensity to scattered Cu-Kα intensity varied between 0.094 and 0.19, with deviations of less than 7.5 percent at five successive points located at 2 mm intervals along the direction of growth

  16. Hard X-ray balloon observations of compact galactic and extragalactic X-ray sources

    International Nuclear Information System (INIS)

    Staubert, R.; Kendziorra, E.; Pietsch, W.; Proctor, R.J.; Reppin, C.; Steinle, H.; Truemper, J.; Voges, W.

    1981-01-01

    A balloon program in hard X-ray astronomy (20-200 keV) is jointly pursued by the Astronomisches Institut der Universitaet Tuebingen (AIT) and the Max Planck-Institut fuer Extraterrestrische Physik in Garching (MPE). Since 1973 nine succussful balloon flights have been performed from Texas and Australia. Here results on Centaurus A and on several galactic binary X-ray sources are summarized. In particular the high energy photon spectrum of Hercules X-1 and the evidence for the cyclotron line feature which was discovered by us in 1976 is reviewed. (orig.)

  17. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    International Nuclear Information System (INIS)

    Canova, Federico; Poletto, Luca

    2015-01-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.

  18. X-ray Counterparts of Infrared Faint Radio Sources

    Science.gov (United States)

    Schartel, Norbert

    2011-10-01

    Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2IFRS, but if confirmed, the increased AGN numbers at these redshifts will account for the unresolved part of the X-ray background. The identification of X-ray counterparts of IFRS is considered to be the smoking gun for this hypothesis. We propose to observe 8 IFRS using 30ks pointed observations. X-ray detections of IFRS with different ratios of radio-to-infrared fluxes, will constrain the class-specific SED.

  19. Observation of extragalactic X-ray sources

    International Nuclear Information System (INIS)

    Bui-Van, Andre.

    1973-01-01

    A narrow angular resolution detection apparatus using a high performance collimator has proved particularly well suited for the programs of observation of X ray sources. The experimental set-up and its performance are described. One chapter deals with the particular problems involved in the observation of X ray sources with the aid of sounding balloons. The absorption of extraterrestrial photons by the earth atmosphere is taken into account in the procesing of the observation data using two methods of calculation: digital and with simulation techniques. The results of three balloon flights are then presented with the interpretation of the observations carried out using both thermal and non thermal emission models. This analysis leads to some possible characteristics of structure of the Perseus galaxy cluster [fr

  20. Very Luminous X-ray Point Sources in Starburst Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Ptak, A.; Weaver, K. A.; Strickland, D.

    Extranuclear X-ray point sources in external galaxies with luminosities above 1039.0 erg/s are quite common in elliptical, disk and dwarf galaxies, with an average of ~ 0.5 and dwarf galaxies, with an average of ~0.5 sources per galaxy. These objects may be a new class of object, perhaps accreting intermediate-mass black holes, or beamed stellar mass black hole binaries. Starburst galaxies tend to have a larger number of these intermediate-luminosity X-ray objects (IXOs), as well as a large number of lower-luminosity (1037 - 1039 erg/s) point sources. These point sources dominate the total hard X-ray emission in starburst galaxies. We present a review of both types of objects and discuss possible schemes for their formation.

  1. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Adjei, Daniel, E-mail: nana.adjeidan@gmail.com [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Vyšín, Luděk [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, 152, Radzikowskiego Str., 31-342 Cracow (Poland); Pina, Ladislav [Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Davídková, Marie [Institute of Nuclear Physics, Czech Academy of Sciences, Řež (Czech Republic); Juha, Libor [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray “water window” spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280–540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 10{sup 3} photons/μm{sup 2}/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms’ sensitivity to pulsed radiation in the “water window”, where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET – Linear Energy Transfer) and dose-rate effects in radiobiology.

  2. Functionalized SU-8 patterned with X-ray Lithography

    DEFF Research Database (Denmark)

    Balslev, Søren; Romanato, F.

    2005-01-01

    spontaneous emission light source that couples out light normal to the chip plane. In addition we examine the influence of the x-ray irradiation on the fluorescence of thin films of dye doped SU-8. The dye embedded in the SU-8 is optically excited during, characterization by an external light source tuned......In this work we demonstrate the feasibility of x-ray lithography on SU-8 photoresist doped with the laser dye Rhodamine 6G, while retaining the photoactive properties of the embedded dye. Two kinds of structures are fabricated via soft x-ray lithography and characterized: a laser and in amplified...

  3. Fundamental parameters method for quantitative energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Demirel, H.; Zararsiz, A.

    1986-01-01

    In this study, the requirement of the standart material in photon excited energy distributed X-ray fluorescence analysis has been removed. The interaction of X-rays with matter has been taken into account. A computer program has been developed by using the fundamental parameters of X-ray fluorescence technique and the spectral intensity 'K' of pure elements at saturation thickness has been obtained. For experimental purpose a convenient source-target-detector geometry has been designed. In order to excite the samples,Cd-109 radioisotope source has been used. The peak intensities has been obtained in a vacum chamber by counting the emitted X-rays. The calculation of concentration has been performed for double mixed samples correcting the effects of absorption and enchancement factors. The results were in conformity with their certificate values. (author)

  4. Taking snapshots of photoexcited molecules in disordered media using pulsed synchrotron x-rays

    International Nuclear Information System (INIS)

    Chen, L.X.

    2004-01-01

    Photoexcited molecules are quintessential reactants in photochemistry. Structures of these photoexcited molecules in disordered media in which a majority of photochemical reactions take place remained elusive for decades owing to a lack of suitable X-ray sources, despite their importance in understanding fundamental aspects in photochemistry. As new pulsed X-ray sources become available, short-lived excited-state molecular structures in disordered media can now be captured by using laser-pulse pump, X-ray pulse-probe techniques of third-generation synchrotron sources with time resolutions of 30-100 ps, as demonstrated by examples in this review. These studies provide unprecedented information on structural origins of molecular properties in the excited states. By using other ultrafast X-ray facilities that will be completed in the near future, time-resolution for the excited-state structure measurements should reach the femtosecond timescales, which will make 'molecular movies' of bond breaking or formation, and vibrational relaxation, a reality.

  5. Sub-threshold excited Cl Kβ (K-V) x-ray fluorescence from CF3Cl molecule

    International Nuclear Information System (INIS)

    Perera, R.C.C.; Cowan, P.L.; Lindle, D.W.; LaVilla, R.E.

    1987-10-01

    With the availability of tunable synchrotron radiation sources, unoccupied molecular orbits (below vacuum level) can be selectively populated producing highly excited neutral molecules. X-ray fluorescence spectra from molecules were obtained with excitation below the ionization threshold and were observed to have significant intensity changes, absolute and relative energy position shifts and line width changes as compared to fluorescence spectra excited above the threshold. As an example, the Cl Kβ (K-V) emission spectra from CF 3 Cl vapor are presented. The energy shifts and intensity changes are explained in terms of perturbation effects due to the presence of an electron in an unoccupied molecular orbital. The narrow line widths obtained in the spectra excited below threshold are explained in terms of the ''effective'' hole production region in a core state limited by the broadening of the unoccupied level. The change in line widths as a function of below-threshold excitation energy is proposed as a novel technique to study the localized properties and reorganization effects of a hole in a core level. 10 refs., 4 figs., 1 tab

  6. Calculation of {beta}-ray spectra. Odd-odd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Takahiro [Waseda Univ., Tokyo (Japan). Advanced Research Center for Science and Engineering

    1996-05-01

    In order to study {beta}-ray of atomic nucleus, it is natural to consider {beta}-ray data fundamental and important. In a recent experiment, Rudstam measured {beta}-ray spectra from short term nuclear fission product species in 1990. It is an important check point in theoretical study on {beta}-ray to investigate if these experimental data can be reproduced by any theoretical calculation. As there are several spectrum studies of {beta}-ray through decay heat for its various properties due to the general theory of the {beta}-decay, little descriptions can be found. In even such studies, spectra under high excitation state of daughter species difficult to measure and apt to short experimental results were treated with combination spectra composed of experimental and calculated values such as substitution of a part of the general theory with calculated value. In this paper, the {beta} spectra supposed by only the general theory was reported without using such data combination in order to confirm effectiveness of the theory. In particular, this report was described mainly on the results using recent modification of odd-odd nucleus species. (G.K.)

  7. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Sisniega, A.; Vaquero, J. J., E-mail: juanjose.vaquero@uc3m.es [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Desco, M. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid ES28029 (Spain)

    2014-01-15

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in

  8. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    International Nuclear Information System (INIS)

    Sisniega, A.; Vaquero, J. J.; Desco, M.

    2014-01-01

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in

  9. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    International Nuclear Information System (INIS)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  10. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G. [Imperial College London, London (United Kingdom); Drakopoulos, Michael [Diamond Light Source, I12 Joint Engineering, Environmental, Processing (JEEP) Beamline, Didcot, Oxfordshire (United Kingdom); Rack, Alexander [European Synchrotron Radiation Facility, Grenoble (France); Eakins, Daniel E., E-mail: d.eakins@imperial.ac.uk [Imperial College London, London (United Kingdom)

    2016-03-24

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  11. Linear polarization observations of some X-ray sources

    International Nuclear Information System (INIS)

    Shakhovskoy, N.M.; Efimov, Yu.S.

    1975-01-01

    Multicolour linear polarization of optical radiation of the X-ray sources Sco X-1, Cyg X-2, Cyg X-1 and Her X-1 was measured at the Crimean Astrophysical Observatory in 1970-1973. These observations indicate that polarization of Sco X-1 in the ultraviolet, blue and red spectral regions appears to be variable. No statistically significant variations of polarization were found for the other three sources observed. (Auth.)

  12. Measuring the black hole mass in ultraluminous X-ray sources with the X-ray scaling method

    Science.gov (United States)

    Jang, I.; Gliozzi, M.; Satyapal, S.; Titarchuk, L.

    2018-01-01

    In our recent work, we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BH), could be reliably extended to estimate the mass of supermassive black holes accreting at moderate to high level. Here, we apply this X-ray scaling method to ultraluminous X-ray sources (ULXs) to constrain their MBH. Using 49 ULXs with multiple XMM-Newton observations, we infer that ULXs host both stellar mass BHs and intermediate mass BHs. The majority of the sources of our sample seem to be consistent with the hypothesis of highly accreting massive stellar BHs with MBH ∼ 100 M⊙. Our results are in general agreement with the MBH values obtained with alternative methods, including model-independent variability methods. This suggests that the X-ray scaling method is an actual scale-independent method that can be applied to all BH systems accreting at moderate-high rate.

  13. Total-reflection x-ray fluorescence with a brillant undulator x-ray source

    International Nuclear Information System (INIS)

    Sakurai, K.; Eba, H.; Numako, C.; Suzuki, M.; Inoue, K.; Yagi, N.

    2000-01-01

    Total-reflection x-ray fluorescence (TXRF) is a highly sensitive technique for analyzing trace elements, because of the very low background from the sample support. Use of third-generation synchrotron x-ray source could further enhance the detection power. However, while such high sensitivity permits the detection of signals from trace elements of interest, it also means that one can observe weak parasitic x-rays as well. If the sample surface becomes even slightly contaminated, owing to air particulates near the beamline, x-ray fluorescence lines of iron, zinc, copper, nickel, chromium, and titanium can be observed even for a blank sample. Another critical problem is the low-energy-side tail of the scattering x-rays, which ultimately restricts the detection capability of the technique using a TXRF spectrometer based on a Si(Li) detector. The present paper describes our experiments with brilliant undulator x-ray beams at BL39XU and BL40XU, at the SPring-8, Harima, Japan. The emphasis is on the development of instruments to analyze a droplet of 0.1 μl containing trace elements of ppb level. Although the beamline is not a clean room, we have employed equipment for preparing a clean sample and also for avoiding contamination during transferring the sample into the spectrometer. We will report on the successful detection of the peak from 0.8 ppb selenium in a droplet (absolute amount 80 fg). We will also present the results of recent experiments obtained from a Johansson spectrometer rather than a Si(Li) detector. (author)

  14. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source

    Science.gov (United States)

    Sun, Xuepeng; zhang, Xiaoyun; Zhu, Yu; Wang, Yabing; Shang, Hongzhong; Zhang, Fengshou; Liu, Zhiguo; Sun, Tianxi

    2018-04-01

    A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.

  15. WORKSHOP: Accreting X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-09-15

    Earlier this year a workshop on 'High Energy/Ultra High Energy Behaviour of Accreting X-Ray Sources' was held in Vulcano, a small island near Sicily, jointly organized by the Italian Istituto Nazionale di Fisica Nucleare and Consiglio Nazionale delle Ricerche. About 60 astrophysicists and particle physicists attended the meeting which covered the study of galactic cosmic sources emitting in the wide energy range from the optical region to some 10{sup 15} eV.

  16. Assembling x-ray sources by carbon nanotubes

    Science.gov (United States)

    Sessa, V.; Lucci, M.; Toschi, F.; Orlanducci, S.; Tamburri, E.; Terranova, M. L.; Ciorba, A.; Rossi, M.; Hampai, D.; Cappuccio, G.

    2007-05-01

    By the use of a chemical vapour deposition technique a series of metal wires (W, Ta, Steel ) with differently shaped tips have been coated by arrays of single wall carbon nanotubes (SWNT). The field emission properties of the SWNT deposits have been measured by a home made apparatus working in medium vacuum (10 -6- 10 -7 mbar) and the SWNT-coated wires have been used to fabricate tiny electron sources for X-ray tubes. To check the efficiency of the nanotube coated wires for X-ray generation has, a prototype X-ray tube has been designed and fabricated. The X-ray tube works at pressures about 10 -6 mbar. The target ( Al film) is disposed on a hole in the stainless steel sheath: this configuration makes unnecessary the usual Be window and moreover allows us to use low accelerating potentials (< 6 kV).

  17. Laser-driven soft-X-ray undulator source

    International Nuclear Information System (INIS)

    Fuchs, Matthias

    2010-01-01

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of ∝17 nm from a compact setup. Undulator spectra were detected in ∝70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of ∝10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  18. Laser-driven soft-X-ray undulator source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Matthias

    2010-08-04

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of {proportional_to}17 nm from a compact setup. Undulator spectra were detected in {proportional_to}70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of {proportional_to}10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  19. Tire inspection system with shielded x-ray source

    International Nuclear Information System (INIS)

    Heisner, D.N.; Palermo, A. Jr.; Loyer, P.K.

    1976-01-01

    An automated tire inspection system is described which employs a penetrative radiation, such as x-radiation, to inspect the integrity of portions of tires fed sequentially along a feed path through a centering station and into a shielded enclosure where an inspection station is defined. Features of the system include a continuously operating x-ray source movable between inspection and retracted positions, and an x-ray shield for covering the source when it is retracted to permit the doors of the shielded enclosure to be opened without danger from escaping radiation. 19 Claims, 38 Drawing Figures

  20. Far-ultraviolet and optical spectrophotometry of X-ray selected Seyfert galaxies

    International Nuclear Information System (INIS)

    Clarke, J.T.; Bowyer, S.; Grewing, M.; California Univ., Berkeley; Tuebingen Universitaet, West Germany)

    1986-01-01

    Five X-ray selected Seyfert galaxies were examined via near-simultaneous far-ultraviolet and optical spectrophotometry in an effort to test models for excitation of emission lines by X-ray and ultraviolet continuum photoionization. The observed Ly-alpha/H-beta ratio in the present sample averages 22, with an increase found toward the high-velocity wings of the H lines in the spectrum of at least one of the Seyfert I nuclei. It is suggested that Seyfert galaxies with the most high-velocity gas exhibit the highest Ly-alpha/H-beta ratios at all velocities in the line profiles, and that sometimes this ratio may be highest for the highest velocity material in the broad-line clouds. Since broad-lined objects are least affected by Ly-alpha trapping effects, they have Ly-alpha/H-beta ratios much closer to those predicted by early photoionization calculations. 21 references

  1. Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation

    CERN Document Server

    Turtos, R.M.; Polovitsyn, A.; Christodoulou, S.; Salomoni, M.; Auffray, E.; Moreels, I.; Lecoq, P.; Grim, J.Q.

    2016-01-01

    Fast timing has emerged as a critical requirement for radiation detection in medical and high energy physics, motivating the search for scintillator materials with high light yield and fast time response. However, light emission rates from conventional scintillation mechanisms fundamentally limit the achievable time resolution, which is presently at least one order of magnitude slower than required for next-generation detectors. One solution to this challenge is to generate an intense prompt signal in response to ionizing radiation. In this paper, we present colloidal semiconductor nanocrystals (NCs) as promising prompt photon sources. We investigate two classes of NCs: two-dimensional CdSe nanoplatelets (NPLs) and spherical CdSe/CdS core/giant shell quantum dots (GS QDs). We demonstrate that the emission rates of these NCs under pulsed X-ray excitation are much faster than traditional mechanisms in bulk scintillators, i.e. 5d-4f transitions. CdSe NPLs have a sub-100 ps effective decay time of 77 ps and CdSe/...

  2. Synchrotron x-ray microbeam characteristics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi

    1995-01-01

    X-ray fluorescence analysis using a synchrotron x-ray microprobe has become an indispensable technique for non-destructive micro-analysis. One of the most important parameters that characterize the x-ray microbeam system for x-ray fluorescence analysis is the beam size. For practical analysis, however, the photon flux, the energy resolution and the available energy range are also crucial. Three types of x-ray microbeam systems, including monochromatic and continuum excitation systems, were compared with reference to the sensitivity, the minimum detection limit and the applicability to various types of x-ray spectroscopic analysis. 16 refs., 5 figs

  3. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  4. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    International Nuclear Information System (INIS)

    Jones, Keith W.

    1999-01-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  5. Characterisation and application of a laser-based hard x-ray source

    International Nuclear Information System (INIS)

    Graetz, M.

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm 2 onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained

  6. Characterisation and application of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, M

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm{sup 2} onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained 120 refs, figs, tabs

  7. X-Band Linac Beam-Line for Medical Compton Scattering X-Ray Source

    CERN Document Server

    Dobashi, Katsuhiro; Ebina, Futaro; Fukasawa, Atsushi; Hayano, Hitoshi; Higo, Toshiyasu; Kaneyasu, Tatsuo; Ogino, Haruyuki; Sakamoto, Fumito; Uesaka, Mitsuru; Urakawa, Junji; Yamamoto, Tomohiko

    2005-01-01

    Compton scattering hard X-ray source for 10~80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U. Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard ( 10-80

  8. An ultrasoft X-ray source in Coma Berenices

    International Nuclear Information System (INIS)

    Margon, B.; Malina, R.; Bowyer, S.; Cruddace, R.; Lampton, M.

    1976-01-01

    We have observed an intense soft X-ray source with an extraordinary spectrum in Coma Berenices, 4 0 northeast of and unassociated with the Coma cluster of galaxies. Two spectra, obtained at different times in a sounding rocket flight, indicate that the source temperature in thermal models is less than 10 6 K; a power-law model requires photon power-law indices steeper than n=-3. The intensity in the 44--165 A band is of the order of 5x10 -10 ergs cm -2 s -1 , but no flux is present at energies 0.3--2.1 keV to a limit of 1x10 -10 ergs cm -2 s -1 . The lack of bright stars or a supernova remnant in the error box implies that this may be a new class of soft X-ray sources

  9. Rotating anode X-ray source

    International Nuclear Information System (INIS)

    Wittry, D.B.

    1979-01-01

    A rotating anode x-ray source is described which consists of a rotary anode disc including a target ring and a chamber within the anode disc. Liquid is evaporated into the chamber from the target ring to cool the target and a method is provided of removing the latent heat of the vapor. (U.K.)

  10. Excitation-resolved cone-beam x-ray luminescence tomography.

    Science.gov (United States)

    Liu, Xin; Liao, Qimei; Wang, Hongkai; Yan, Zhuangzhi

    2015-07-01

    Cone-beam x-ray luminescence computed tomography (CB-XLCT), as an emerging imaging technique, plays an important role in in vivo small animal imaging studies. However, CB-XLCT suffers from low-spatial resolution due to the ill-posed nature of reconstruction. We improve the imaging performance of CB-XLCT by using a multiband excitation-resolved imaging scheme combined with principal component analysis. To evaluate the performance of the proposed method, the physical phantom experiment is performed with a custom-made XLCT/XCT imaging system. The experimental results validate the feasibility of the method, where two adjacent nanophosphors (with an edge-to-edge distance of 2.4 mm) can be located.

  11. Sixth symposium on x- and gamma ray sources and applications. Abstracts

    International Nuclear Information System (INIS)

    1985-01-01

    Abstracts are provided for technical presentations in the areas of: gamma and x-ray sources, kinds of detectors, characterization of detectors and detector systems, models and data analysis, gamma spectroscopy, instrumentation, x-ray fluorescence, tomography, x-ray absorption, and pion induced x-ray emission

  12. Environments of High Luminosity X-Ray Sources in the Antennae Galaxies

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. P.; Barry, D. J.; Houck, J. R.; Ptak, A.; Colbert, E.

    2003-12-01

    We use deep J (1.25 μ m) and Ks (2.15 μ m) images of the Antennae (NGC 4038/9) obtained with the Wide-field InfraRed Camera on the Palomar 200-inch telescope, together with the Chandra X-ray source list of Zezas et al. (2001), to establish an X-ray/IR astrometric frame tie with ˜ 0.5 ″ RMS residuals over a ˜ 5 ‧ field. We find 13 ``strong" IR counterparts 99.9% confidence), and that the X-ray/IR matches are concentrated in the spiral arms and ``bridge" regions of the Antennae. This implies that these X-ray sources lie in the most ``super" of the Antennae's Super Star Clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing" IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (older?) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, though small number statistics hamper this analysis. Finally, we find a Ks = 16.2 mag counterpart to the Ultra-Luminous X-ray (ULX) source X-37 within <0.5 ″ , eliminating the need for the ``runaway binary" hypothesis proposed by previous authors for this object. We discuss some of the implications of this detection for models of ULX emission. This work is funded by an NSF CAREER grant.

  13. High intensity line source for x-ray spectrometer calibration

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 μ x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10 4 ) time-resolved cyrstal spectrometer, will be discussed in detail

  14. Development and characterization of a laser-based hard x-ray source

    International Nuclear Information System (INIS)

    Tillman, C.

    1996-11-01

    A laser-produced plasma was generated by focusing 100 fs laser pulses, with an energy of 150 mJ, onto metal targets. The laser intensity was expected to reach 10 17 W/cm -2 . Radiation was emitted from the created plasma, with photon energies up to the MeV region. The laser-based X-ray source was optimized, with the purpose of making it a realistic source of hard X-rays (>10 keV). Dedicated equipment was developed for efficient generation and utilization of the hard X-rays. The X-ray source was characterized with respect to its spatial extent and the X-ray yield. Measurements were made of the spectral distribution, by the use of single-photon-counting detectors in different geometries, crystal spectrometers and dose measurements in combination with absorption filters. Ablation of the target material in the laser produced plasma was investigated. Imaging applications have been demonstrated, including ultrafast (picosecond) X-ray imaging, magnification imaging of up to x80, differential imaging in the spectral domain, and imaging of various biological and technical objects. The biological response of ultra-intense X-ray pulses was assessed in cell-culture exposures. The results indicate that the biological response from ultra-intense X-ray exposures is similar to the response with conventional X-ray tubes. 82 refs., 14 figs

  15. Development and characterization of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, C.

    1996-11-01

    A laser-produced plasma was generated by focusing 100 fs laser pulses, with an energy of 150 mJ, onto metal targets. The laser intensity was expected to reach 10{sup 17} W/cm{sup -2}. Radiation was emitted from the created plasma, with photon energies up to the MeV region. The laser-based X-ray source was optimized, with the purpose of making it a realistic source of hard X-rays (>10 keV). Dedicated equipment was developed for efficient generation and utilization of the hard X-rays. The X-ray source was characterized with respect to its spatial extent and the X-ray yield. Measurements were made of the spectral distribution, by the use of single-photon-counting detectors in different geometries, crystal spectrometers and dose measurements in combination with absorption filters. Ablation of the target material in the laser produced plasma was investigated. Imaging applications have been demonstrated, including ultrafast (picosecond) X-ray imaging, magnification imaging of up to x80, differential imaging in the spectral domain, and imaging of various biological and technical objects. The biological response of ultra-intense X-ray pulses was assessed in cell-culture exposures. The results indicate that the biological response from ultra-intense X-ray exposures is similar to the response with conventional X-ray tubes. 82 refs., 14 figs.

  16. Development of a sub-MeV X-ray source via Compton backscattering

    International Nuclear Information System (INIS)

    Kawase, K.; Kando, M.; Hayakawa, T.; Daito, I.; Kondo, S.; Homma, T.; Kameshima, T.; Kotaki, H.; Chen, L.-M.; Fukuda, Y.; Faenov, A.; Shizuma, T.; Shimomura, T.; Yoshida, H.; Hajima, R.; Fujiwara, M.; Bulanov, S.V.; Kimura, T.; Tajima, T.

    2011-01-01

    At the Kansai Photon Science Institute of the Japan Atomic Energy Agency, we have developed a Compton backscattered X-ray source in the energy region of a few hundred keV. The X-ray source consists of a 150-MeV electron beam, with a pulse duration of 10 ps (rms), accelerated by a Microtron accelerator and an Nd:YAG laser, with a pulse duration of 10 ns (FWHM). In the first trial experiment, the X-ray flux is estimated to be (2.2±1.0)x10 2 photons/pulse. For the actual application of an X-ray source, it is important to increase the generated X-ray flux as much as possible. Thus, for the purpose of increasing the X-ray flux, we have developed the pulse compression system for the Nd:YAG laser via stimulated Brillouin scattering (SBS). The SBS pulse compression has the great advantages of a high conversion efficiency and a simple structure. In this article, we review the present status of the Compton backscattered X-ray source and describe the SBS pulse compression system.

  17. Debris-free soft x-ray source with gas-puff target

    Science.gov (United States)

    Ni, Qiliang; Chen, Bo; Gong, Yan; Cao, Jianlin; Lin, Jingquan; Lee, Hongyan

    2001-12-01

    We have been developing a debris-free laser plasma light source with a gas-puff target system whose nozzle is driven by a piezoelectric crystal membrane. The gas-puff target system can utilize gases such as CO2, O2 or some gas mixture according to different experiments. Therefore, in comparison with soft X-ray source using a metal target, after continuously several-hour laser interaction with gas from the gas-puff target system, no evidences show that the light source can produce debris. The debris-free soft X-ray source is prepared for soft X-ray projection lithography research at State Key Laboratory of Applied Optics. Strong emission from CO2, O2 and Kr plasma is observed.

  18. A hard X-ray study of the ultraluminous X-ray source NGC 5204 X-1 with NuSTAR and XMM-Newton

    DEFF Research Database (Denmark)

    Mukherjee, E. S.; Walton, D. J.; Bachetti, M.

    2015-01-01

    We present the results from coordinated X-ray observations of the ultraluminous X-ray source NGC 5204 X-1 performed by the Nuclear Spectroscopic Telescope Array and XMM-Newton in early 2013. These observations provide the first detection of NGC 5204 X-1 above 10 keV, extending the broadband cover...

  19. Sources of the X-rays Based on Compton Scattering

    International Nuclear Information System (INIS)

    Androsov, V.; Bulyak, E.; Gladkikh, P.; Karnaukhov, I.; Mytsykov, A.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2007-01-01

    The principles of the intense X-rays generation by laser beam scattering on a relativistic electron beam are described and description of facilities assigned to produce the X-rays based on Compton scattering is presented. The possibilities of various types of such facilities are estimated and discussed. The source of the X-rays based on a storage ring with low beam energy is described in details and advantages of the sources of such type are discussed.The results of calculation and numerical simulation carried out for laser electron storage ring NESTOR that is under development in NSC KIPT show wide prospects of the accelerator facility of such type

  20. Automatic classification of time-variable X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  1. Automatic classification of time-variable X-ray sources

    International Nuclear Information System (INIS)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-01-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  2. Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications

    International Nuclear Information System (INIS)

    Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.

    2009-01-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.

  3. Measurement of relative L X-ray intensity ratio following radioactive decay and photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, P. [Department of Science Education, Faculty of Education, Erzincan University, 24030 Erzincan (Turkey)], E-mail: pasayalcin@hotmail.com; Porikli, S.; Kurucu, Y.; Sahin, Y. [Department of Physics, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2008-05-22

    The measurements of the L X-ray intensity ratio I(L{alpha})/I(L{beta}), I(L{alpha})/I(L{gamma}), I(L{alpha})/I(L{iota}), I(L{beta})/I(L{gamma}) and I(L{iota})/I(L{gamma}) for elements Dy, Ho, Yb, W, Hg, Tl and Pb were experimentally determined both by photon excitation, in which 59.5 keV {gamma}-rays from a filtered radioisotope {sup 241}Am was used, and by the radioactive decay of {sup 160}Tb, {sup 160}Er, {sup 173}Lu, {sup 182}Re, {sup 201}Tl, {sup 203}Pb and {sup 207}Bi. L X-rays emitted by samples were counted by a Si(Li) detector with resolution 160 eV at 5.9 keV. Obtained values were compared with the calculated theoretical values. Theoretical values of the I(L{alpha}/L{beta}), I(L{alpha}/L{gamma}), I(L{alpha}/L{iota}), I(L{beta}/L{gamma}) and I(L{iota}/L{gamma}) intensity ratios were calculated using theoretically tabulated values of subshell photoionization cross-section, fluorescence yield, fractional X-ray emission rates, Coster-Kronig transition probabilities. It was observed that present values agree with previous theoretical and other available experimental results.

  4. Liquid-metal-jet anode electron-impact x-ray source

    International Nuclear Information System (INIS)

    Hemberg, O.; Otendal, M.; Hertz, H.M.

    2003-01-01

    We demonstrate an anode concept, based on a liquid-metal jet, for improved brightness in compact electron-impact x-ray sources. The source is demonstrated in a proof-of-principle experiment where a 50 keV, ∼100 W electron beam is focused on a 75 μm liquid-solder jet. The generated x-ray flux and brightness is quantitatively measured in the 7-50 keV spectral region and found to agree with theory. Compared to rotating-anode sources, whose brightness is limited by intrinsic thermal properties, the liquid-jet anode could potentially be scaled to achieve a brightness >100x higher than current state-of-the-art sources. Applications such as mammography, angiography, and diffraction would benefit from such a compact high-brightness source

  5. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Weaver, K.; Strickland, D.

    2002-01-01

    The hard-X-ray luminosity of non-active galaxies has been known to be fairly well correlated with the total blue luminosity since the days of the Einstein satellite. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Chandra images of normal, elliptical and starburst galaxies now show that a significant amount of the total hard X-ray emission comes from individual point sources. We present here spatial and spectral analyses of the point sources in a small sample of Chandra obervations of starburst galaxies, and compare with Chandra point source analyses from comparison galaxies (elliptical, Seyfert and normal galaxies). We discuss possible relationships between the number and total hard luminosity of the X-ray point sources and various measures of the galaxy star formation rate, and discuss possible options for the numerous compact sources that are observed.

  6. Toward a fourth-generation X-ray source

    International Nuclear Information System (INIS)

    Monction, D. E.

    1999-01-01

    The field of synchrotron radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research that is possible with them. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the optical laser. Theoretical work over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission (SASE) in flee-electron lasers. A major facility of this type based upon a superconducting linac could produce a cost-effective facility that spans wave-lengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotrons facilities, immense new scientific opportunities would result from fourth-generation sources.

  7. Ultra-short X-ray sources generated through laser-matter interaction and their applications; Sources de rayonnement X ultrabref generees par interaction laser-matiere et leurs applications

    Energy Technology Data Exchange (ETDEWEB)

    Rousse, A

    2004-04-15

    This work is dedicated to the sources of ultra-short X-rays. The K{sub {alpha}} source, the non-linear Thomson source, the betatron source and the X-{gamma} source are presented. We show that a pump-probe experiment where the pump is a laser excitation and the probe is the X-K{sub {alpha}} ultra-short radiation, can be used to study the dynamics of material structure with a time resolution of 100 femtosecond. We describe 2 applications that have been achieved in the field of solid physics by using the diffraction technique with a time resolution in the range of the femtosecond. The first application has permitted the observation and characterization of the ultra-quick solid-phase transition that occurs on the surface of a semiconductor crystal. The second experiment deals with the role of optical phonons in the antecedent processes that lead to such ultra-quick solid-phase transitions. (A.C.)

  8. Dense plasma focus x-ray source for sub-micron lithography

    International Nuclear Information System (INIS)

    Prasad, R.R.; Krishnan, M.; Mangano, J.; Greene, P.; Qi, Niansheng

    1993-01-01

    A discharge driven, dense plasma focus in neon is under development at SRL for use as a point x-ray source for sub-micron lithography. This source is presently capable of delivering ∼ 13j/pulse of neon K-shell x-rays (8--14 angstrom) into 4π steradians with 2 kj of electrical energy stored in the capacitor bank charged to 9 kV at a pulse repetition rate of 2 Hz. The discharge is produced by a ≤4 kj, ≤12 kV, capacitor bank circuit, which has a fixed inductance of 12 nH and drives ≤450 kA currents into the DPF load, with ∼1.1 μs rise-times. X-rays are produced when a dense pinch of neon is formed along the axis of the DPF electrodes. A new rail-gap switched capacitor bank and DPF have been built, designed for continuous operation at 2 Hz and burst mode operation at 20 Hz. This paper will present measurements of the x-ray output at a repetition rate of 2 Hz using the new capacitor bank. It will also describe measurements of the spot size (0.3--0.8 mm) and the spectrum (8--14 angstrom) of the DPF source. The dependence of these parameters on the DPF head geometry, bank energy and operating pressure will be discussed. The x-ray output has been measured using filtered pin diodes, x-ray diodes, and absolutely calibrated x-ray crystal spectra. Results from the source operating at 2 Hz will be presented. A novel concept of a windowless beamline has also been developed. The results of preliminary experiments to test the concept will be discussed. At a pulse repetition rate of 20 Hz, this source should produce 200--400 W of x-ray power in the 8-14 angstrom wavelength band, with an input power of 40--60 kW

  9. A novel low cost pulse excitation source to study trap spectroscopy of persistent luminescent materials

    Science.gov (United States)

    Chandrasekhar, Ngangbam; Singh, Nungleppam Monorajan; Gartia, R. K.

    2018-04-01

    Luminescent techniques require one or the other source of excitations which may vary from high cost X-rays, γ-rays, β-rays etc. to low cost LED. Persistent luminescent materials or Glow-in-the-Dark phosphors are the optical harvesters which store the optical energy from day light illuminating a whole night. They are so sensitive that they can be excited even with the low light of firefly. Therefore, instead of using a high cost excitation source authors have developed a low cost functioning of excitation source controlling short pulses of LED to excite persistent phosphors with the aid of ExpEYES Junior (Hardware/software framework developed by IUAC, New Delhi). Using this, the authors have excited the sample under investigation upto 10 ms. Trap spectroscopy of the pre-excited sample with LED is studied using Thermoluminescence (TL) technique. In this communication, development of the excitation source is discussed and demonstrate the its usefulness in the study of trap spectroscopy of commercially available CaS:Eu2+, Sm3+. Trapping parameters are also evaluated using Computerized Glow Curve Deconvolution (CGCD) technique.

  10. X-ray emission from comets

    International Nuclear Information System (INIS)

    Dennerl, Konrad

    1999-01-01

    When comet Hyakutake (C/1996 B2) encountered Earth in March 1996 at a minimum distance of only 15 million kilometers (40 times the distance of the moon), x-ray and extreme ultraviolet emission was discovered for the first time from a comet. The observations were performed with the astronomy satellites ROSAT and EUVE. A systematic search for x-rays from comets in archival data, obtained during the ROSAT all-sky survey in 1990/91, resulted in the discovery of x-ray emission from four additional comets. They were detected at seven occasions in total, when they were optically 300 to 30 000 times fainter than Hyakutake. These findings indicated that comets represent a new class of celestial x-ray sources. Subsequent detections of x-ray emission from additional comets with the satellites ROSAT, EUVE, and BeppoSAX confirmed this conclusion. The x-ray observations have obviously revealed the presence of a process in comets which had escaped attention until recently. This process is most likely charge exchange between highly charged heavy ions in the solar wind and cometary neutrals. The solar wind, a stream of particles continuously emitted from the sun with ≅ 400 km s -1 , consists predominantly of protons, electrons, and alpha particles, but contains also a small fraction (≅0.1%) of highly charged heavier ions, such as C 6+ ,O 6+ ,Ne 8+ ,Si 9+ ,Fe 11+ . When these ions capture electrons from the cometary gas, they attain highly excited states and radiate a large fraction of their excitation energy in the extreme ultraviolet and x-ray part of the spectrum. Charge exchange reproduces the intensity, the morphology and the spectrum of the observed x-ray emission from comets very well

  11. Matching microlensing events with X-ray sources

    Science.gov (United States)

    Sartore, N.; Treves, A.

    2012-03-01

    Aims: The detection of old neutron stars and stellar mass black holes in isolation is one of the most sought after goals of compact object astrophysics. Microlensing surveys may help in achieving this aim because the lensing mechanism is independent of the emission properties of the lens. Several black hole candidates have indeed been detected by means of microlensing observations have been reported in the literature. The identification of counterparts, especially in the X-rays, would be a strong argument in favor of the compact nature of these lenses. Methods: We perform a cross-correlation between the catalogs of microlensing events produced by the OGLE, MACHO, and MOA teams, and those of X-rays sources from the data acquired by the XMM-Newton and Chandra satellites. On the basis of our previous work, we select only microlensing events with durations longer than one hundred days, which should contain a large fraction of lenses as compact objects. Our matching criterion takes into account the positional coincidence on the sky. Results: We find a single match between a microlensing event, OGLE-2004-BLG-081 (tE ~ 103 days), and the X-ray source 2XMM J180540.5-273427. The angular separation is ~0.5 arcsec, i.e. well within the 90% error box of the X-ray source. The hardness ratios reported in the 2XMM catalog imply that it has a hard spectrum with a peak between 2 keV and 4.5 keV or it has a softer but highly absorbed spectrum. Moreover, the microlensing event is not fully constrained, and other authors propose a possible association of the source star with either a flaring cataclysmic variable or a RS Canum Venaticorum-like star. Conclusions: The very small angular separation (within uncertainties) is a strong indicator that 2XMM J180540.5-273427 is the X-ray counterpart of the OGLE event. However, the uncertainties in the nature of both the lensed system and the lens itself challenge the interpretation of 2XMM J180540.5-273427 as the first confirmed isolated black

  12. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  13. The Polarimeter for Relativistic Astrophysical X-ray Sources

    Science.gov (United States)

    Jahoda, Keith; Kallman, Timothy R.; Kouveliotou, Chryssa; Angelini, Lorella; Black, J. Kevin; Hill, Joanne E.; Jaeger, Theodore; Kaaret, Philip E.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Schnittman, Jeremy; Soong, Yang; Strohmayer, Tod E.; Tamagawa, Toru; Tawara, Yuzuru

    2016-07-01

    The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study, with a launch date in 2020. The PRAXyS Observatory exploits grazing incidence X-ray mirrors and Time Projection Chamber Polarimeters capable of measuring the linear polarization of cosmic X-ray sources in the 2-10 keV band. PRAXyS combines well-characterized instruments with spacecraft rotation to ensure low systematic errors. The PRAXyS payload is developed at the Goddard Space Flight Center with the Johns Hopkins University Applied Physics Laboratory, University of Iowa, and RIKEN (JAXA) collaborating on the Polarimeter Assembly. The LEOStar-2 spacecraft bus is developed by Orbital ATK, which also supplies the extendable optical bench that enables the Observatory to be compatible with a Pegasus class launch vehicle. A nine month primary mission will provide sensitive observations of multiple black hole and neutron star sources, where theory predicts polarization is a strong diagnostic, as well as exploratory observations of other high energy sources. The primary mission data will be released to the community rapidly and a Guest Observer extended mission will be vigorously proposed.

  14. High-resolution inner-shell spectroscopies of free atoms and molecules using soft-x-ray beamlines at the third-generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2003-01-01

    This article reviews the current status of inner-shell spectroscopies of free atoms and molecules using high-resolution soft-x-ray monochromators installed in the soft-x-ray beamlines at the third-generation synchrotron radiation facilities. Beamlines and endstations devoted to atomic and molecular inner-shell spectroscopies and various types of experimental techniques, such as ion yield spectroscopy, resonant photoemission spectroscopy and multiple-coincidence momentum imaging, are described. Experimental results for K-shell excitation of Ne, O K-shell excitation of H 2 O and CO 2 , C K-shell excitation and ionization of CO 2 and B K-shell excitation of BF 3 , obtained at beamline 27SU of SPring-8 in Japan, are discussed as examples of atomic and molecular inner-shell spectroscopies using the third-generation synchrotron radiation sources. (topical review)

  15. Electromagnetic diagnostics of ECR-Ion Sources plasmas: optical/X-ray imaging and spectroscopy

    Science.gov (United States)

    Mascali, D.; Castro, G.; Altana, C.; Caliri, C.; Mazzaglia, M.; Romano, F. P.; Leone, F.; Musumarra, A.; Naselli, E.; Reitano, R.; Torrisi, G.; Celona, L.; Cosentino, L. G.; Giarrusso, M.; Gammino, S.

    2017-12-01

    Magnetoplasmas in ECR-Ion Sources are excited from gaseous elements or vapours by microwaves in the range 2.45-28 GHz via Electron Cyclotron Resonance. A B-minimum, magnetohydrodynamic stable configuration is used for trapping the plasma. The values of plasma density, temperature and confinement times are typically ne= 1011-1013 cm-3, 01 eVSilicon Drift detectors with high energy resolution of 125 eV at 5.9 keV have been used for the characterization of plasma emission at 02X-ray pin-hole camera technique has allowed space resolved X-ray spectroscopy with a spatial resolution down to 30 μm and an energy resolution down to 140 eV at 5.9 keV . In parallel, imaging in the optical range and spectroscopic measurements have been carried out. Relative abundances of H/H2 atoms/molecules in the plasmas have been measured for different values of neutral pressure, microwave power and magnetic field profile (they are critical for high-power proton sources).

  16. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  17. X-Pinch soft x-ray source for microlithography

    International Nuclear Information System (INIS)

    Glidden, S.C.; Hammer, D.A.; Kalantar, D.H.; Qi, N.

    1993-01-01

    The x-pinch soft x-ray source is described for application in submicron resolution lithography. Experiments have been performed to characterize the radiation emitted from magnesium wire x-pinch plasmas using an 80 ns, ≤500 kA pulse. Yields of 14.2 J averaged over three independent calibrated diagnostics at 445 kA have been measured in magnesium K-shell radiation (predominantly 8.4 angstrom to 9.4 angstrom or 1.5 keV to 1.3 keV) from a submillimeter source, with as little as 5-10% of the yield below the 6.74 angstrom silicon absorption edge. A new ≤700 kA, 100 ns pulser being used for x-pinch physics experiments is described. The design of a 40 pulse per second pulsed power system and wire loading mechanism for exposing a resist in 1 second at a distance 40 cm is presented

  18. Optical Counterparts for Low-Luminosity X-ray Sources in Omega Centauri

    Science.gov (United States)

    Cool, Adrienne

    2002-07-01

    We propose to use narrow-band HAlpha imaging with ACS to search for the optical counterparts of low-luminosity X-ray sources {Lx 2 x 10^30 - 5 x 10^32 erg/s} in the globular cluster Omega Centauri. With 9 WFC fields, we will cover the inner two core radii of the cluster, and encompass about 90 of the faint sources we have identified with Chandra. Approximately 30-50 of these sources should be cluster members, the remainder being mostly background galaxies plus a smaller number of foreground stars. This large population of low-Lx cluster X-ray sources is second only to the more than 100 faint sources recently discovered in 47 Tuc with Chandra {Grindlay et al. 2001a}, which have been identified as a mixture of cataclysmic variables, quiescent low-mass X-ray binaries, millisecond pulsars, and coronally active main-sequence binaries. Our Cycle 6 WFPC2 program successfully identified 2 of the 3 then-known faint X-ray sources in the core of Omega Cen using H-alpha imaging. We now propose to expand the areal coverage by a factor of about 18 to encompass the much larger number of sources that have since been discovered with Chandra. The extreme crowding in the central regions of Omega Cen requires the resolution of HST to obtain optical IDs. These identifications are key to making meaningful comparisons between the populations of faint X-ray sources in different clusters, in an effort to understand their origins and role in cluster dynamics.

  19. X-band RF gun and linac for medical Compton scattering X-ray source

    International Nuclear Information System (INIS)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-01-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year

  20. X-band RF gun and linac for medical Compton scattering X-ray source

    Science.gov (United States)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-12-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.

  1. Optimization of ion-optics system for x-ray quasi-monochromatic source on the basis of electrostatic accelerator

    Directory of Open Access Journals (Sweden)

    S. O. Vershynskyi

    2010-06-01

    Full Text Available Ion-optics system with two doublets of electrostatic quadrupole lenses for X-ray quasimonochromatic source was selected. Two variants of lens excitation for stigmatic focusing with two and four independent power supplies are considered. It is shown that using of four independent power supplies leads to improvement of focused ion beam parameters at converter.

  2. X-ray Measurements of Black Hole X-ray Binary Source GRS 1915+ ...

    Indian Academy of Sciences (India)

    tribpo

    March 30th, 1997 during a quiescent phase of the source. .... The field of view ... tagged with a 25µsec resolution and transmitted to ground on a 40 Kbit PCM/FM ... only composite model fits for the soft and hard X ray band are used and the ...

  3. Application of energy dispersive x-ray techniques for water analysis

    International Nuclear Information System (INIS)

    Funtua, I. I.

    2000-07-01

    Energy dispersive x-ray fluorescence (EDXRF) is a class of emission spectroscopic techniques that depends upon the emission of characteristic x-rays following excitation of the atomic electron energy levels by tube or isotopic source x-rays. The technique has found wide range of applications that include determination of chemical elements of water and water pollutants. Three EDXRF systems, the isotopic source, secondary target and total reflection (TXRF) are available at the Centre for Energy research and Training. These systems have been applied for the analysis of sediments, suspensions, ground water, river and rainwater. The isotopic source is based on 55 Fe, 109 Cd and 241 Am excitations while the secondary target and the total reflection are utilizing a Mo x-ray tube. Sample preparation requirements for water analysis range from physical and chemical pre-concentration steps to direct analysis and elements from Al to U can be determined with these systems. The EDXRF techniques, TXRF in particular with its multielement capability, low detection limit and possibility of direct analysis for water have competitive edge over the traditional methods of atomic absorption and flame photometry

  4. Astronomy and astrophysics of galactic X-ray binaries: from the nature of the X-ray sources to the physics of accretion processes

    International Nuclear Information System (INIS)

    Rodriguez, Jerome

    2010-01-01

    In this HDR (Accreditation to supervise research) report, the author proposes an overview of his research works in the field of accretion of X-ray binaries. After a presentation of X-ray binaries, neutron stars and black holes, micro-quasars, and of the main issues regarding X-ray binaries, the author presents and comments his activities in X-ray astronomy and gamma-ray astronomy (the INTEGRAL observatory, the discovery of new sources of X and gamma radiation, studies of new sources at different wavelengths). The second part addresses the understanding of source accretion: phenomenological studies in astronomy, relationships between accretion and ejection. The third part presents and comments several studies of the physics of phenomena related to matter accretion and ejection. (author) [fr

  5. A tunable x-ray microprobe using synchrotron radiation

    International Nuclear Information System (INIS)

    Wu, Y.; Thompson, A.C.; Underwood, J.H.; Giauque, R.D.; Chapman, K.; Rivers, M.L.; Jones, K.W.

    1989-08-01

    We describe an x-ray microprobe using multilayer mirrors. Previously, we had demonstrated a Kirkpatrick-Baez type focusing system working at both 8 and 10 keV and successfully applied it to a variety of applications, including the determination of elemental contents in fluid inclusions. In this paper, we show that the usable excitation energy for this microprobe is not restricted to between 8 and 10 keV, and furthermore, it can be simply tuned in operation. A 10-keV x-ray fluorescence microprobe can be used to measure the concentration of the elements form potassium (Z = 19) to zinc (Z = 30) using K x-ray lines, and from cadmium (Z = 48) to erbium (Z = 68) using L x-ray lines. There are a number of geologically important elements in the gap between gallium (Z = 31) and silver(Z = 47) and also with Z > 68. In order to cover this range, a higher excitation energy is required. On the other hand, for samples that contain major elements with absorption edges lower than the excitation energy, it would be hard to detect other mirror elements because of the strong signal from the major elements and the background they produce. In this case, a tunable x-ray source can be used to avoid the excitation of the major elements. We demonstrate that, with the existing setup, it is possible to tune the excitation energy from 6 keV to 14 keV, in this range, the intensity does not decrease by more than one order of magnitude. As an illustration, a geological sample was examined by using two different excitation energy range as well as the possibility of improving the intensity. 11 refs., 5 figs

  6. Broadband X-ray spectra of the ultraluminous x-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    DEFF Research Database (Denmark)

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.

    2014-01-01

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the...

  7. The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study.

    Science.gov (United States)

    Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui

    2016-03-07

    The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.

  8. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    Science.gov (United States)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  9. Preliminary Results of Nuclear Fluorescence Imaging of Alpha and Beta Emitting Sources

    International Nuclear Information System (INIS)

    Feener, Jessica S.; Charlton, William S.

    2013-06-01

    The preliminary results from a series of nuclear fluorescence imaging experiments using a variety of radioactive sources and shielding are given. These experiments were done as part of a proof of concept to determine if nuclear fluorescence imaging could be used as a safeguards measurements tool or for nuclear warhead verification for nuclear arms control treaties such as the New Strategic Arms Reduction Treaty and the Fissile Material Cut-Off Treaty. An off-the-shelf Princeton Instruments charged coupled device camera system was used to image the emission of fluorescence photons from the de-excitation of nitrogen molecules in air that have been excited by ionizing radiation. The fluorescence emissions are primarily in the near ultraviolet range; between the wavelengths of 300 and 400 nm. Fluorescent imaging techniques are currently being investigated in a number of applications. A French research team has successfully demonstrated this concept for remote imaging of alpha contamination. It has also been shown that the phenomenon can be seen through translucent materials and that alpha radiation can be seen in the presence of large gamma backgrounds. Additionally, fluorescence telescopes and satellites utilize the de-excitation of nitrogen molecules to observe cosmic ray showers in the atmosphere. In cosmic ray shower detection, electrons are the main contributor to the excitation of the of nitrogen molecules in air. The experiments presented in this paper were designed to determine if the imaging system could observe beta emitting sources, differentiate between beta emitters and alpha emitting materials such as uranium oxide and uranium metal, and to further investigate the phenomenon through translucent and non-translucent materials. The initial results show that differentiation can be made between beta and alpha emitting sources and that the device can observe the phenomenon through very thin non-transparent material. Additionally, information is given on the

  10. Time-resolved materials science opportunities using synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by ∼tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities

  11. Shielded radiography with a laser-driven MeV-energy X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shouyuan; Golovin, Grigory [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Miller, Cameron [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Haden, Daniel; Banerjee, Sudeep; Zhang, Ping; Liu, Cheng; Zhang, Jun; Zhao, Baozhen [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Clarke, Shaun; Pozzi, Sara [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Umstadter, Donald, E-mail: donald.umstadter@unl.edu [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2016-01-01

    We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeV-energy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed X-ray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 10{sup 7} photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ∼100 nGy/pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The X-ray beam’s inherently low-divergence angle (∼mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

  12. A CENSUS OF THE SUPERSOFT X-RAY SOURCES IN M31

    International Nuclear Information System (INIS)

    Orio, Marina; Nelson, Thomas; Bianchini, Antonio; Di Mille, Francesco; Harbeck, Daniel

    2010-01-01

    We examined X-ray, ultraviolet, and optical archival data of 89 supersoft X-ray sources (SSS) in M31. We studied the timescales of X-ray variability and searched UV and optical counterparts. Almost a third of the SSS are known classical or recurrent novae, and at least half of the others exhibit the same temporal behavior as post-outburst novae. Non-stellar objects among SSS seem to be rare: less than 10% of the classified SSS turned out to be supernova remnants, and only one source has been identified with an active galactic nucleus in the background. Not more than 20% of the SSS that are not coincident with observed novae are persistent or recurrent X-ray sources. A few of these long-lasting sources show characteristics in common with other SSS identified as white dwarf (WD) close binaries in the Magellanic Clouds and in the Galaxy, including variability on timescales of minutes, possibly indicating the spin period of a WD. Such objects are likely to be low-mass X-ray binaries with a massive WD. A third of the non-nova SSS are in regions of recent star formation, often at the position of an O or B star, and we suggest that they may be high-mass X-ray binaries. If these sources host a massive hydrogen-burning WD, as it seems likely, they may become Type Ia supernovae (SNe Ia), constituting the star formation dependent component of the SNe Ia rate.

  13. X-ray fluorescence (XRF) set-up with a low power X-ray tube

    International Nuclear Information System (INIS)

    Gupta, Sheenu; Deep, Kanan; Jain, Lalita; Ansari, M.A.; Mittal, Vijay Kumar; Mittal, Raj

    2010-01-01

    The X-ray fluorescence set-up with a 100 W X-ray tube comprises a computer controlled system developed for remote operation and monitoring of tube and an adjustable stable 3D arrangement to procure variable excitation energies with low scattered background. The system was tested at different filament currents/anode voltages. The MDL of the set-up at 0.05-1.00 mA/4-12 kV is found ∼(1-100) ppm for K and L excitations and ∼(200-700) ppm for M excitations of elements and improves with filament current and anode voltage. Moreover, L measurements for Sm and Eu at five K X-ray energies of elements(Z=29-40) and analytical determination in some synthetic samples were undertaken.

  14. Hard X-ray Sources for the Mexican Synchrotron Project

    International Nuclear Information System (INIS)

    Reyes-Herrera, Juan

    2016-01-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392). (paper)

  15. Hard X-ray Sources for the Mexican Synchrotron Project

    Science.gov (United States)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  16. Uncovering extreme AGN variability in serendipitous X-ray source surveys

    Science.gov (United States)

    Moran, Edward C.; Garcia Soto, Aylin; LaMassa, Stephanie; Urry, Meg

    2018-01-01

    Constraints on the duty cycle and duration of accretion episodes in active galactic nuclei (AGNs) are vital for establishing how most AGNs are fueled, which is essential for a complete picture of black hole/galaxy co-evolution. Perhaps the best handle we have on these activity parameters is provided by AGNs that have displayed dramatic changes in their bolometric luminosities and, in some cases, spectroscopic classifications. Given that X-ray emission is directly linked to black-hole accretion, X-ray surveys should provide a straightforward means of identifying AGNs that have undergone dramatic changes in their accretion states. However, it appears that such events are very rare, so wide-area surveys separated in time by many years are needed to maximize discovery rates. We have cross-correlated the Einstein IPC Two-Sigma Catalog with the ROSAT All-Sky Survey Faint Source Catalog to identify a sample of soft X-ray sources that varied by factors ranging from 7 to more than 100 over a ten year timescale. When possible, we have constructed long-term X-ray light curves for the sources by combining the Einstein and RASS fluxes with those obtained from serendipitous pointed observations by ROSAT, Chandra,XMM, and Swift. Optical follow-up observations indicate that many of the extremely variable sources in our sample are indeed radio-quiet AGNs. Interestingly, the majority of objects that dimmed between ~1980 and ~1990 are still (or are again) broad-line AGNs rather than“changing-look” candidates that have more subtle AGN signatures in their spectra — despite the fact that none of the sources examined thus far has returned to its highest observed luminosity. Future X-ray observations will provide the opportunity to characterize the X-ray behavior of these anonymous, extreme AGNs over a four decade span.

  17. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering.

    Science.gov (United States)

    Liu, X; Dean, M P M; Liu, J; Chiuzbăian, S G; Jaouen, N; Nicolaou, A; Yin, W G; Rayan Serrao, C; Ramesh, R; Ding, H; Hill, J P

    2015-05-27

    Resonant inelastic x-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr2IrO4, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolution in the hard x-ray region is usually poor.

  18. Trace analysis by measurements of charged particle-excited X-rays

    International Nuclear Information System (INIS)

    Shiokawa, Takanobu; Morita, Susumu; Kaji, Harumi

    1974-01-01

    Following the introduction on the theory of analysis by charged particle x-ray excitation, experimental methods are explained together with actual examples of quantitative analysis. Protons or particles of 3 He are allowed to hit samples as ion beam. On one target, 4 samples are installed. Therefore, it is possible to analyze 4 samples without breaking vacuum. The x-ray is detected with an Si(Li) detector. The resolving power of this detector was 205 eV for the x-ray of 5.9 KeV. The most important thing is the preparation of samples in thin state. Metals of minerals are easily prepared in films by means of vacuum evaporation. In case of the samples that are hard to prepare in thin films, carbon foils are often used as backing material to support the samples. The limit of determination is about 10 -12 g, but the theoretical limit is about 10 -14 g. The demerits of this method is that the resolving power is not good enough for the determination of light elements. The improvement of S/N ratio is also important for the increase of sensitivity. The development of backing materials is the most important thing in this view. The merits of this method are that the amount of samples may be very small, and that a number of elements are simultaneously determined to very small contents. (Fukutomi, T.)

  19. Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility

    Science.gov (United States)

    Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff

    2015-01-01

    Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.

  20. Soft x-ray source by laser produced Xe plasma

    International Nuclear Information System (INIS)

    Amano, Sho; Masuda, Kazuya; Miyamoto, Shuji; Mochizuki, Takayasu

    2010-01-01

    The laser plasma soft X-ray source in the wavelength rage of 5-17 nm was developed, which consisted of the rotating drum system supplying cryogenic Xe target and the high repetition rate pulse Nd:YAG slab laser. We found the maximum conversion efficiency of 30% and it demonstrated the soft X-ray generation with the high repetition rate pulse of 320 pps and the high average power of 20 W. The soft X-ray cylindrical mirror was developed and successfully focused the soft X-ray with an energy intensity of 1.3 mJ/cm 2 . We also succeeded in the plasma debris mitigation with Ar gas. This will allow a long lifetime of the mirror and a focusing power intensity of 400 mW/cm 2 with 320 pps. The high power soft X-ray is useful for various applications. (author)

  1. Simulation of intense laser-dense matter interactions. X-ray production and laser absorption

    Energy Technology Data Exchange (ETDEWEB)

    Ueshima, Yutaka; Kishimoto, Yasuaki; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Sentoku, Yasuhiko; Tajima, Toshiki

    1998-03-01

    The development of short-pulse ultra high intensity lasers will enable us to generate short-pulse intense soft and hard X-rays. Acceleration of an electron in laser field generates intense illuminated located radiation, Larmor radiation, around KeV at 10{sup 18} W/cm{sup 2} with 100 TW and 1 {mu}m wave length laser. The Coulomb interaction between rest ions and relativistic electron generates broad energy radiation, bremsstrahlung emission, over MeV at 10{sup 18} W/cm{sup 2} with the same condition. These intense radiations come in short pulses of the same order as that of the irradiated laser. The generated intense X-rays, Larmor and bremsstrahlung radiation, can be applied to sources of short pulse X-ray, excitation source of inner-shell X-ray laser, position production and nuclear excitation, etc. (author)

  2. Time-resolved X-ray transmission microscopy on magnetic microstructures

    International Nuclear Information System (INIS)

    Puzic, Aleksandar

    2007-01-01

    Three excitation schemes were designed for stroboscopic imaging of magnetization dynamics with time-resolved magnetic transmission X-ray microscopy (TR-MTXM). These techniques were implemented into two types of X-ray microscopes, namely the imaging transmission X-ray microscope (ITXM) and the scanning transmission X-ray microscope (STXM), both installed at the electron storage ring of the Advanced Light Source in Berkeley, USA. Circular diffraction gratings (Fresnel zone plates) used in both microscopes as focusing and imaging elements presently allow for lateral resolution down to 30 nm. Magnetic imaging is performed by using the X-ray magnetic circular dichroism (XMCD) as element specific contrast mechanism. The developed methods have been successfully applied to the experimental investigation of magnetization dynamics in ferromagnetic microstructures. A temporal resolution well below 100 ps was achieved. A conventional pump-probe technique was implemented first. The dynamic response of the magnetization excited by a broadband pulsed magnetic field was imaged spatially resolved using focused X-ray flashes. As a complementary method, the spatially resolved ferromagnetic resonance (SR-FMR) technique was developed for experimental study of magnetization dynamics in the frequency domain. As a third excitation mode, the burst excitation was implemented. The performance and efficiency of the developed methods have been demonstrated by imaging the local magnetization dynamics in laterally patterned ferromagnetic thin-film elements and three-layer stacks. The existence of multiple eigenmodes in the excitation spectra of ferromagnetic microstructures has been verified by using the pump-probe technique. Magnetostatic spin waves were selectively excited and detected with a time resolution of 50 ps using the SR-FMR technique. Thorough analysis of 20 in most cases independently prepared samples has verified that vortices which exhibit a low-amplitude switching of their core

  3. Development of an absolute x-ray fluorescence technique and high accuracy analytical methods for the determination of metals in catalytic materials

    International Nuclear Information System (INIS)

    LaBrecque, J.J.; Parker, W.C.

    1982-09-01

    A technique to produce characteristic x-rays by direct beta excitation for x-ray fluorescence analysis is presented. This is carried out by the introduction of 100 uCi of Pm-147 or Ni-63 to a small sample, which is placed directly in the window of a modified Si(Li) semiconductor. Corrected intensities are only given at 300 seconds for synthetic standards oscillating within the range 22 3 was used, to which the radioisotope was directly added. Preliminary results of the determination of eleven different radionuclides by means of an elementary x-ray analysis by using a new analytical technique, are discussed. In this technique the radioisotope and the sample are directly mixed, then this source-sample in the detector window and is protected from contamination with a thin plastic film. Future and possible applications of this technique are presented

  4. Plasma x-ray radiation source.

    Science.gov (United States)

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar', A S

    1995-01-01

    This paper gives the results of studies on a plasma x-ray source, which enables one to obtain a 2.5-krad radiation dose per pulse over an area of 100 cm2 in the quantum energy range from 20 to 500 keV. Pulse duration is 100 ns. Spectral radiation distributions from a diode under various operation conditions of a plasma are obtained. A Marx generator served as an initial energy source of 120 kJ with a discharge time of T/4 = 10-6 s. A short electromagnetic pulse (10-7 s) was shaped using plasma erosion opening switches.

  5. Relationship between type III-V radio and hard X-ray bursts

    International Nuclear Information System (INIS)

    Stewart, R.T.

    1978-01-01

    Type III-V radio bursts are found to be closely associated with impulsive hard X-ray bursts. Probably 0.1% to 1% of the fast electrons in the X-ray source region escape to heights >0.1 solar radii in the corona and excite the type III-V burst. (Auth.)

  6. Comparison of X-ray source concepts for radiographic purposes at OMEGA

    International Nuclear Information System (INIS)

    Jacquet, L.; Primout, M.; Villette, B.; Girard, F.; Oudot, G.

    2013-01-01

    As multi-keV X-ray sources, seven targets including thick and thin foils, metal-lined halfraums and a foil combined with a plastic cylinder, have been shot on Omega in September 2011. Titanium was used as X-ray emitting material for all the sources. Using experimental data and FCI 2 simulation results, we have, for each source type, characterized the emission lobes and determined the spatial directions of maximum multi-keV energy. These results demonstrate the benefit of using a laser drive with a prepulse for both thick and thin foils. The favorable effect of a confinement cylinder for the X-ray emitted from front side by a thin foil has also been experimentally found but is not yet confirmed by the simulations. The temporal waveforms of the X-ray power obtained from the different sources as well as the emission spots at the times of maximum emission are also compared. (authors)

  7. Nuclear Malaysia Plasma Focus Device as a X-ray Source For Radiography Applications

    International Nuclear Information System (INIS)

    Rokiah Mohd Sabri; Abdul Halim Baijan; Siti Aiasah Hashim; Mohd Rizal Mohd Chulan; Wah, L.K.; Mukhlis Mokhtar; Azaman Ahmad; Rosli Che Ros

    2013-01-01

    A 3.375 kJ plasma focus is designed to operate at 13.5 kV for the purpose of studying x-ray source for radiography in Argon discharge. X-rays is detected by using x-ray film from the mammography radiographic plate. The feasibility of the plasma focus as a high intensity flash x-ray source for good contrast in radiography image is presented. (author)

  8. High Brightness, Laser-Driven X-ray Source for Nanoscale Metrology and Femtosecond Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Siders, C W; Crane, J K; Semenov, V; Betts, S; Kozioziemski, B; Wharton, K; Wilks, S; Barbee, T; Stuart, B; Kim, D E; An, J; Barty, C

    2007-02-26

    This project developed and demonstrated a new, bright, ultrafast x-ray source based upon laser-driven K-alpha generation, which can produce an x-ray flux 10 to 100 times greater than current microfocus x-ray tubes. The short-pulse (sub-picosecond) duration of this x-ray source also makes it ideal for observing time-resolved dynamics of atomic motion in solids and thin films.

  9. Flat Field Anomalies in an X-Ray CCD Camera Measured Using a Manson X-Ray Source

    International Nuclear Information System (INIS)

    Michael Haugh

    2008-01-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. It determines how accurately NIF can point the laser beams and is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 (micro)m square pixels, and 15 (micro)m thick. A multi-anode Manson X-ray source, operating up to 10kV and 2mA, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE ∼ 12. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1.5% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. The efficiency pattern follows the properties of Si. The maximum quantum efficiency is 0.71. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation was >8% at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was less than the measurement uncertainty below 4 keV. We were also able to observe debris on the CCD chip. The debris showed maximum contrast at the lowest energy used, 930 eV, and disappeared by 4 keV. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager

  10. Multi-keV X-ray area source intensity at SGII laser facility

    Science.gov (United States)

    Wang, Rui-rong; An, Hong-hai; Xie, Zhi-yong; Wang, Wei

    2018-05-01

    Experiments for investigating the feasibility of multi-keV backlighters for several different metallic foil targets were performed at the Shenguang II (SGII) laser facility in China. Emission spectra in the energy range of 1.65-7.0 keV were measured with an elliptically bent crystal spectrometer, and the X-ray source size was measured with a pinhole camera. The X-ray intensity near 4.75 keV and the X-ray source size for titanium targets at different laser intensity irradiances were studied. By adjusting the total laser energy at a fixed focal spot size, laser intensity in the range of 1.5-5.0 × 1015 W/cm2, was achieved. The results show that the line emission intensity near 4.75 keV and the X-ray source size are dependent on the laser intensity and increase as the laser intensity increases. However, an observed "peak" in the X-ray intensity near 4.75 keV occurs at an irradiance of 4.0 × 1015 W/cm2. For the employed experimental conditions, it was confirmed that the laser intensity could play a significant role in the development of an efficient multi-keV X-ray source. The experimental results for titanium indicate that the production of a large (˜350 μm in diameter) intense backlighter source of multi-keV X-rays is feasible at the SGII facility.

  11. The Ultraluminous X-Ray Source X-37 Is a Background Quasar in the Antennae Galaxies

    Science.gov (United States)

    Clark, D. M.; Christopher, M. H.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2005-10-01

    In this Letter we report that a bright, X-ray source in the Antennae galaxies (NGC 4038/9), previously identified as an ultraluminous X-ray source (ULX), is in fact a background quasar. We identify an isolated infrared and optical counterpart within 0.3" +/- 0.5" of the X-ray source X-37. After acquiring an optical spectrum of its counterpart, we use the narrow [O III] and broad Hα emission lines to identify X-37 as a quasar at a redshift of z=0.26. Through a U, V, and Ks photometric analysis, we demonstrate that most of the observable light along this line of sight is from the quasar. We discuss the implications of this discovery and the importance of acquiring spectra for optical and IR counterparts to ULXs.

  12. X-ray sources

    International Nuclear Information System (INIS)

    Bonse, U.

    1979-11-01

    The author describes several possibilities for the production of X-radiation. Especially he discusses the use of bremsstrahlung at electron impact on solid targets and the synchrotron radiation. He presents some equations for the calculation of X-ray intensities. Especially the X-radiation from the DORIS storage ring is discussed. (HSI)

  13. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  14. Characterization of a novel x-ray source: The MIRRORCLE-6X system

    International Nuclear Information System (INIS)

    Gambaccini, M.; Marziani, M.; Taibi, A.; Cardarelli, P.; Di Domenico, G.; Mastella, E.

    2012-01-01

    MIRRORCLE is a tabletop synchrotron light source being investigated within an EC funded project named LABSYNC. To evaluate the potential of this novel x-ray source for medical imaging applications, a set of measurements was performed at the MIRRORCLE factory in Japan. In particular, the aim of this work was to characterize the proposed compact x-ray source by determining different parameters, such as the intensity of the broad spectra produced with thin wire targets, the size of the focal spot and its distribution. The average electron-beam impact current on wire targets was calculated by several methods and it was demonstrated to be in the range 0.5-1.0μA. By comparing these values with data available for conventional x-ray tubes, the current needed to achieve the same fluence as in a standard diagnostic examination was estimated to be about 0.1-0.5 mA. Finally, results from the measurements of the electron-beam impact cross-section on the target suggested that the diameter of the electron beam circulating in the storage ring is about 6 mm.

  15. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    Science.gov (United States)

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  16. Apparatus with a cooled X-ray source and a high voltage generator

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    Apparatus, especially for a dental application, with an X-ray source and a high voltage generator, whereby the X-ray source and a high voltage generator are contained in a housing, which is filled with a coolant medium, characterised by the housing being divided into two chambers, whereby the X-ray source is in the first chamber and the high voltage generator is in the second chamber and between the chambers a dividing wall is placed for the screening of the X-ray irradiation from the first chamber from the second, whereby at least one of the walls of the second chamber is elastic to accommodate the expansion of the coolant medium.

  17. Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using spherical harmonic decomposition

    Science.gov (United States)

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.

    2017-11-01

    Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.

  18. Copper L X-ray spectra measured by a high resolution ion-induced X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Hamaguchi, Dai; Kageyama, Hiroyoshi [Kyoto Inst. of Tech. (Japan); and others

    1997-03-01

    High resolution L X-ray emission spectra of Cu have been measured by 0.75 MeV/u H, He, and F, 0.73 MeV/u Ar, 0.64 MeV/u Si, and 0.073 MeV/u Si ion impacts with a crystal spectrometer. The X-ray transition energies in the Cu target for L{iota}, L{eta}, L{alpha}{sub 1,2}, L{beta}{sub 1}, and L{beta}{sub 3,4} diagram lines induced by light ion impacts are determined, which are in good agreement with those given in the reference. The difference in L X-ray emission spectra produced by H, He, F, Si, and Ar ions are considered and the L{alpha}{sub 1,2} and L{beta}{sub 1} emission spectra are compared with the calculated ones based on the multiconfiguration Dirac-Fock method. (author)

  19. Classification of X-ray sources in the XMM-Newton serendipitous source catalog: Objects of special interest

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dacheng; Webb, Natalie A.; Barret, Didier, E-mail: dlin@ua.edu [CNRS, IRAP, 9 Avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France)

    2014-01-01

    We analyze 18 sources that showed interesting properties of periodicity, very soft spectra, and/or large long-term variability in X-rays in our project of classification of sources from the 2XMMi-DR3 catalog, but were poorly studied in the literature, in order to investigate their nature. Two hard sources show X-ray periodicities of ∼1.62 hr (2XMM J165334.4–414423) and ∼2.1 hr (2XMM J133135.2–315541) and are probably magnetic cataclysmic variables. One source, 2XMM J123103.2+110648, is an active galactic nucleus (AGN) candidate showing very soft X-ray spectra (kT ∼ 0.1 keV) and exhibiting an intermittent ∼3.8 hr quasi-periodic oscillation. There are six other very soft sources (with kT < 0.2 keV), which might be in other galaxies with luminosities between ∼10{sup 38}-10{sup 42} erg s{sup –1}. They probably represent a diverse group that might include objects such as ultrasoft AGNs and cool thermal disk emission from accreting intermediate-mass black holes. Six highly variable sources with harder spectra are probably in nearby galaxies with luminosities above 10{sup 37} erg s{sup –1} and thus are great candidates for extragalactic X-ray binaries. One of them (2XMMi J004211.2+410429, in M31) is probably a new-born persistent source, having been X-ray bright and hard in 0.3-10 keV for at least four years since it was discovered entering an outburst in 2007. Three highly variable hard sources appear at low galactic latitudes and have maximum luminosities below ∼10{sup 34} erg s{sup –1} if they are in our Galaxy. Thus, they are great candidates for cataclysmic variables or very faint X-ray transients harboring a black hole or neutron star. Our interpretations of these sources can be tested with future long-term X-ray monitoring and multi-wavelength observations.

  20. Development of a Novel Tunable X-Ray Source for the RPI-LINAC

    International Nuclear Information System (INIS)

    Danon, Y.; Block, R.C.

    2004-01-01

    This document summarizes the results of a three year effort to develop a parametric x-ray (PXR) source. The emphasis of this research was to demonstrate production of high yield monoenergetic x-rays. Production of PXR is accomplished by placing a crystal in a relativistic electron beam. The process was first demonstrated in 1985 in Russia. Numerous papers were written about the characteristics of PXR from both experimental and theoretical perspectives. The advantage of PXR over other monoenergetic x-ray sources is that it is produced at large angle relative to the electron beam and at high intensity. None of the previous work described in the literature capitalized on this effect to study what is required in order to generate an effective monoenergetic x-ray source that can be used for practical applications. The work summarized here describes the process done in order to optimize the PXR production process by selecting an appropriate crystal and the optimal conditions. The research focused on production of 18 keV x-rays which are suitable for mammography however the results are not limited to this application or energy range. We are the first group to demonstrate x-ray imaging using PXR. Such sources can improve current medical imaging modalities. More research is required in order to design a prototype of a compact source

  1. Development of a Novel Tunable X-Ray Source for the RPI-LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Y. Danon; R.C. Block

    2004-11-30

    This document summarizes the results of a three year effort to develop a parametric x-ray (PXR) source. The emphasis of this research was to demonstrate production of high yield monoenergetic x-rays. Production of PXR is accomplished by placing a crystal in a relativistic electron beam. The process was first demonstrated in 1985 in Russia. Numerous papers were written about the characteristics of PXR from both experimental and theoretical perspectives. The advantage of PXR over other monoenergetic x-ray sources is that it is produced at large angle relative to the electron beam and at high intensity. None of the previous work described in the literature capitalized on this effect to study what is required in order to generate an effective monoenergetic x-ray source that can be used for practical applications. The work summarized here describes the process done in order to optimize the PXR production process by selecting an appropriate crystal and the optimal conditions. The research focused on production of 18 keV x-rays which are suitable for mammography however the results are not limited to this application or energy range. We are the first group to demonstrate x-ray imaging using PXR. Such sources can improve current medical imaging modalities. More research is required in order to design a prototype of a compact source.

  2. [Experimental investigation of laser plasma soft X-ray source with gas target].

    Science.gov (United States)

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  3. X-ray-excited Auger and photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Weightman, P.

    1982-01-01

    This article reviews developments in the understanding of x-ray-excited Auger and photoelectron spectra in the light of theoretical developments in atomic, molecular and solid-state physics. After reviewing progress in XPS and AES separately emphasis is placed on the inter-relationship between the two fields: Auger rates, for example, are the dominant contribution to core-level XPS linewidths and by combining XPS and AES it is possible to deduce information about Coster-Kronig processes which are difficult to study directly. An account is given of how the combination of measurements of environmentally dependent shifts in XPS and AES energies allows one to isolate initial- and final-state contributions which can then be related to the results of other experimental techniques. There is a brief discussion of many-electron effects and a discussion of how the combination of XPS and AES spectra involving valence levels enables the effects of hole-state localisation to be studied. (author)

  4. Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources

    Science.gov (United States)

    Siwek, Magdalena; Sądowski, Aleksander; Narayan, Ramesh; Roberts, Timothy P.; Soria, Roberto

    2017-09-01

    We have performed a set of simulations of expanding, spherically symmetric nebulae inflated by winds from accreting black holes in ultraluminous X-ray sources (ULXs). We implemented a realistic cooling function to account for free-free and bound-free cooling. For all model parameters we considered, the forward shock in the interstellar medium becomes radiative at a radius ˜100 pc. The emission is primarily in optical and UV, and the radiative luminosity is about 50 per cent of the total kinetic luminosity of the wind. In contrast, the reverse shock in the wind is adiabatic so long as the terminal outflow velocity of the wind vw ≳ 0.003c. The shocked wind in these models radiates in X-rays, but with a luminosity of only ˜1035 erg s-1. For wind velocities vw ≲ 0.001c, the shocked wind becomes radiative, but it is no longer hot enough to produce X-rays. Instead it emits in optical and UV, and the radiative luminosity is comparable to 100 per cent of the wind kinetic luminosity. We suggest that measuring the optical luminosities and putting limits on the X-ray and radio emission from shock-ionized ULX bubbles may help in estimating the mass outflow rate of the central accretion disc and the velocity of the outflow.

  5. Determination of Cr2O3 in chrome-tanned leather by radionuclide-excited X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Melich, M.; Palagyi, S.; Kern, M.

    1989-01-01

    Preliminary results on the determination of Cr 2 O 3 in chrome-tanned leather by measuring the content of Cr by means of radionuclide-excited XRF analysis are reported. For excitation a 3.7 GBq 238 Pu source was used and the characteristic K X-rays of Cr were detected with a planar Si(Li) detector. Both smooth and rough sides of the leather were analyzed directly or with a pair of V/Ti balanced filters. A fairly good correlation was found between Cr Kx counts of the rough side and the Cr 2 O 3 concentrations determined chemically in the range of 3.5 to 6.0% Cr 2 O 3 . The method renders possible a rapid and non-destructive determination of Cr 2 O 3 in various leather samples. (author)

  6. Overview of high intensity x-ray and gamma-ray sources

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Lee, J.R.; Ramirez, J.J.; Sanford, T.W.L.; Agee, F.J.; Frazier, G.B.; Miller, A.R.

    1987-01-01

    The requirements for intense x-ray and gamma-ray sources to simulate the radiation effects from nuclear weapons has led to the development of several types of terawatt-pulsed power systems. One example of a major gamma-ray source is Aurora, a 10-MV, 1.6-MA, 120-ns four-module, electron-beam generator. Recent requirements to improve the dose rate has led to the Aurora upgrade program and to the development of the 20-MV, 800-kA, 40-ns Hermes-III electron-beam accelerator. The Aurora program includes improvements to the pulsed power system and research on techniques to improve the pulse shape of the electron beam. Hermes III will feature twenty 1-MV, 800-kA induction accelerator cavities supplying energy to a magnetically insulated transmission line adder. Hermes III will become operational in 1988. Intense x-ray sources consist of pulsed power systems that operate with 1-MV to 2-MV output voltages and up to 25-TW output powers. These high powers are achieved with either low impedance electron-beam generators or multimodular pulsed power systems. The low-impedance generators have high voltage Marx generators that store the energy and then sequentially transfer this energy to pulse-forming transmission lines with lower and lower impedance until the high currents are reached. In the multimode machines, each module produces 0.7-TW to 4-TW output pulses, and all of the modules are connected together to supply energy to a single diode

  7. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy

    Directory of Open Access Journals (Sweden)

    Jérémy R. Rouxel

    2017-07-01

    Full Text Available Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. We present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O provide different local windows onto the parity breaking geometry change thus revealing the enantiomer asymmetry.

  8. OSO-7 observations of high galactic latitude x-ray sources

    International Nuclear Information System (INIS)

    Markert, T.H.; Canizares, C.R.; Clark, G.W.; Li, F.K.; Northridge, P.L.; Sprott, G.F.; Wargo, G.F.

    1976-01-01

    Six hundred days of observations by the MIT X-ray detectors aboard OSO-7 have been analyzed. All-sky maps of X-ray intensity have been constructed from these data. A sample map is displayed. Seven sources with galactic latitude vertical-barb/subi//subi/vertical-bar>10degree, discovered during the mapping process, are reported, and upper limits are set on other high-latitude sources. The OSO-7 results are compared with those of Uhuru and an implication of this comparison, that many of the high-latitude sources may be variable, is discussed

  9. Compact X-ray Light Source Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  10. Controlled agglomeration of Tb-doped Y2O3 nanocrystals studied by x-ray absorption fine structure, x-ray excited luminescence, and photoluminescence

    International Nuclear Information System (INIS)

    Soo, Y.L.; Huang, S.W.; Kao, Y.H.; Chhabra, V.; Kulkarni, B.; Veliadis, J.V.; Bhargava, R.N.

    1999-01-01

    Local environment surrounding Y atoms in Y 2 O 3 :Tb nanocrystals under various heat treatment conditions has been investigated by using the extended x-ray absorption fine structure (EXAFS) technique. X-ray excited luminescence (XEL) with the incident x-ray energy near Y K edge and Tb L edges has also been measured to investigate the mechanisms of x-ray-to-visible down conversion in these doped nanoparticles. The observed changes in EXAFS, XEL, and photoluminescent data can be explained on the basis of increased average size of the nanoparticles as confirmed by transmission electron microscopy studies. Our results thus demonstrate that the doped nanoparticles can agglomerate to a controllable degree by varying the heat treatment temperature. At higher temperatures, the local environment surrounding Y atoms in the nanoparticles is found to become similar to that in bulk Y 2 O 3 while the XEL output still shows the characteristics of nanocrystals. These results indicate that appropriate heat treatment can afford an effective means to control the intensity and signal-to-background ratio of green luminescence output of these doped nanocrystal phosphors, potentially useful for some device applications. copyright 1999 American Institute of Physics

  11. Phase contrast imaging using a micro focus x-ray source

    Science.gov (United States)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-09-01

    Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

  12. Design of a 4.8-m ring for inverse Compton scattering x-ray source

    Directory of Open Access Journals (Sweden)

    H. S. Xu

    2014-07-01

    Full Text Available In this paper we present the design of a 50 MeV compact electron storage ring with 4.8-meter circumference for the Tsinghua Thomson scattering x-ray source. The ring consists of four dipole magnets with properly adjusted bending radii and edge angles for both horizontal and vertical focusing, and a pair of quadrupole magnets used to adjust the horizontal damping partition number. We find that the dynamic aperture of compact storage rings depends essentially on the intrinsic nonlinearity of the dipole magnets with small bending radius. Hamiltonian dynamics is found to agree well with results from numerical particle tracking. We develop a self-consistent method to estimate the equilibrium beam parameters in the presence of the intrabeam scattering, synchrotron radiation damping, quantum excitation, and residual gas scattering. We also optimize the rf parameters for achieving a maximum x-ray flux.

  13. Laser-produced multi-charged heavy ions as efficient soft x-ray sources

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Suzuki, Yuhei; Kawasaki, Masato

    2016-01-01

    We demonstrate EUV and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6x nm and a water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on a high-Z plasma UTA source, coupled to x-ray optics. We will discuss the progress and Z-scaling of UTA emission spectra to achieve lab-scale table-top, efficient, high-brightness high-Z plasma EUV-soft x-ray sources for in vivo bio-imaging applications. (author)

  14. Ultra-luminous X-ray sources and intermediate-mass black holes

    International Nuclear Information System (INIS)

    Cseh, David

    2012-01-01

    More than ten years ago, the discovery of Ultra-luminous X-ray sources (ULXs) has opened up an entirely new field in astrophysics. Many ideas were developed to explain the nature of these sources, like their emission mechanism, mass, and origin, without any strong conclusions. Their discovery boosted the fields of X-ray binaries, accretion physics, stellar evolution, cosmology, black hole formation and growth, due to the concept of intermediate-mass black holes (IMBHs). Since their discovery is related to the domain of X-ray astrophysics, there have been very few studies made in other wavelengths. This thesis focuses on the multiwavelength nature of Ultra-luminous X-ray sources and intermediate-mass black holes from various aspects, which help to overcome some difficulties we face today. First, I investigated the accretion signatures of a putative intermediate-mass black hole in a particular globular cluster. To this purpose, I characterized the nature of the innermost X-ray sources in the cluster. Then I calculated an upper limit on the mass of the black hole by studying possible accretion efficiencies and rates based on the dedicated X-ray and radio observations. The accreting properties of the source was described with standard spherical accretion and in the context of inefficient accretion. Secondly, I attempted to dynamically measure the mass of the black hole in a particular ULX via optical spectroscopy. I discovered that a certain emission line has a broad component that markedly shifts in wavelength. I investigated the possibility whether this line originates in the accretion disk, and thus might trace the orbital motion of the binary system. I also characterized the parameters of the binary system, such as the mass function, possible orbital separation, the size of the line-emitting region, and an upper limit on the mass of the black hole. Then I studied the environment of a number of ULXs that are associated with large-scale optical and radio nebulae. I

  15. S-band linac-based X-ray source with {pi}/2-mode electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Abhay, E-mail: abhay@post.kek.jp [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Araki, Sakae [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Dixit, Tanuja [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Fukuda, Masafumi [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Krishnan, R; Pethe, Sanjay [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Sakaue, Kazuyuki [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Terunuma, Nobuhiro; Urakawa, Junji [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Washio, Masakazu [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the {pi}/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the {pi}/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  16. The Imaging X-Ray Polarimetry Explorer (IXPE)

    Science.gov (United States)

    Weisskopf, Martin C.; Ramsey, Brian; O’Dell, Stephen; Tennant, Allyn; Elsner, Ronald; Soffita, Paolo; Bellazzini, Ronaldo; Costa, Enrico; Kolodziejczak, Jeffery; Kaspi, Victoria; hide

    2016-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is an exciting international collaboration for a scientific mission that dramatically brings together the unique talents of the partners to expand observation space by simultaneously adding polarization measurements to the array of source properties currently measured (energy, time, and location). IXPE uniquely brings to the table polarimetric imaging. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially systems under extreme physical conditions-such as neutron stars and black holes. Polarization singularly probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. Hence, IXPE complements all other investigations in high-energy astrophysics by adding important and relatively unexplored information to the parameter space for studying cosmic X-ray sources and processes, as well as for using extreme astrophysical environments as laboratories for fundamental physics.

  17. X-Ray-Driven Gamma Emission

    International Nuclear Information System (INIS)

    Carroll, J. J.; Karamian, S. A.; Rivlin, L. A.; Zadernovsky, A. A.

    2001-01-01

    X-ray-driven gamma emission describes processes that may release nuclear energy in a 'clean' way, as bursts of incoherent or coherent gamma rays without the production of radioactive by-products. Over the past decade, studies in this area, as a part of the larger field of quantum nucleonics, have gained tremendous momentum. Since 1987 it has been established that photons could trigger gamma emission from a long-lived metastable nuclear excited state of one nuclide and it appears likely that triggering in other isotopes will be demonstrated conclusively in the near future. With these experimental results have come new proposals for the creation of collective and avalanche-like incoherent gamma-ray bursts and even for the ultimate light source, a gamma-ray laser. Obviously, many applications would benefit from controlled bursts of gamma radiation, whether coherent or not. This paper reviews the experimental results and concepts for the production of gamma rays, driven by externally produced X-rays

  18. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    Science.gov (United States)

    Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  19. The problem of dating quartz 2: Synchrotron generated X-ray excited optical luminescence (XEOL) from quartz

    International Nuclear Information System (INIS)

    King, G.E.; Finch, A.A.; Robinson, R.A.J.; Taylor, R.P.; Mosselmans, J.F.W.

    2011-01-01

    The luminescence emission of quartz is used in optically stimulated luminescence dating (OSL), however the precise origins of the emission are unclear. A suite of quartz samples were analysed using X-ray excited optical luminescence (XEOL). Radiation dose effects were observed whereby the UV emissions (3.8 and 3.4 eV) were depleted to the benefit of the red emission (1.9-2.0 eV). Samples were excited at ∼7 keV. Understanding why some quartz emit light more brightly than others will increase the efficiency and precision of OSL analyses. - Highlights: → The X-ray excited optical luminescence (XEOL) emission of quartz is explored. → The XEOL of quartz of different provenances varies. → Radiation dosing causes UV emissions to deplete to the benefit of red emissions. → The 3.8 and 3.4 eV emissions deplete at the same rate. → The quartz luminescence emission exhibits anisotropic effects.

  20. Development of confocal micro X-ray fluorescence instrument using two X-ray beams

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Nakano, Kazuhiko; Ding Xunliang

    2007-01-01

    A new confocal micro X-ray fluorescence instrument was developed. This instrument has two independent micro X-ray tubes with Mo targets. A full polycapillary X-ray lens was attached to each X-ray tube. Another half polycapillary lens was attached to a silicon drift X-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The effects of the excitation of two X-ray beams were investigated. The instrument enabled highly sensitive three-dimensional X-ray fluorescence analysis. We confirmed that the X-ray fluorescence intensity from the sample increased by applying the two independent X-ray tubes in confocal configuration. Elemental depth profiling of black wheat was demonstrated with the result that each element in the surface coat of a wheat grain showed unique distribution

  1. X-ray yields by low energy heavy ion excitation in alkali halide solid targets

    International Nuclear Information System (INIS)

    Kurup, M.B.; Prasad, K.G.; Sharma, R.P.

    1981-01-01

    Solid targets of the alkali halides KCl, NaCl and KBr are bombarded with ion beams of 35 Cl + , 40 Ar + and 63 Cu + in the energy range 165 keV to 320 keV. The MO and characteristic K X-ray yields resulting from the ion-atom collision have been systematically studied. Both MO and Cl K X-ray yields are enhanced by factors 3.5 and 2 respectively in KCl targets as compared to that in NaCl when bombarded with either Cl + or Ar + projectiles. An intercomparison of MO and K X-ray yields for a given projectile-target combination has shown that the latter increases ten times faster than the former as the energy of the projectile is increased from 165 to 320 keV indicating a correspondingly stronger velocity dependence of the K X-ray production process. The X-ray yields observed in the symmetric Cl-Cl collision are identical to those observed in the asymmetric Ar-Cl collision for the same projectile velocities in both KCl and NaCl targets. It is inferred that the multiple ionization of the projectile resulting in an increase in the binding energy of its inner shells offsets the expected enhancement in the X-ray yields in a symmetric collision. The same projectiles, Ar or Cl, incident on KBr targets have produced only Br L X-rays. Using substantially heavier projectiles than the target atoms (Na, K and Cl), like 63 Cu + ions, the inner shell excitation by recoiling atoms is shown. (orig.)

  2. Multi-wavelength properties of two supersoft X-ray sources CAL83 and RXJ0513.9-6951

    Science.gov (United States)

    Rajoelimanana, A.; Meintjes, P.; Charles, P.

    2017-10-01

    Supersoft X-ray sources (SSS) are highly luminous (˜10^{38} erg s^{-1}), yet low temperature 10^{6} K sources, interpreted as a white dwarf (WD) accreting matter at a very high rate from its (heavy) companion, leading to Eddington-limited, steady hydrogen burning on the WD surface at T˜15-80 eV. A large fraction of this energy irradiates the surface of the disc, which gives rise to a reprocessed flux much larger than the intrinsic disc luminosity, accounting for the large optical and UV fluxes detected in SSS. We present the multi-wavelength properties of two prototypical LMC SSS, CAL83 and RXJ0513.9-6951, with particular emphasis on the anti-correlation between their X-ray and optical behaviour. Our SALT spectra show variable high excitation OVI emission as a function of optical brightness state, and which we link to the cyclic changes in the temperature and size of the WD, and hence the mass accretion rate.

  3. Stationary scanning x-ray source based on carbon nanotube field emitters

    International Nuclear Information System (INIS)

    Zhang, J.; Yang, G.; Cheng, Y.; Gao, B.; Qiu, Q.; Lee, Y.Z.; Lu, J.P.; Zhou, O.

    2005-01-01

    We report a field emission x-ray source that can generate a scanning x-ray beam to image an object from multiple projection angles without mechanical motion. The key component of the device is a gated carbon nanotube field emission cathode with an array of electron emitting pixels that are individually addressable via a metal-oxide-semiconductor field effect transistor-based electronic circuit. The characteristics of this x-ray source are measured and its imaging capability is demonstrated. The device can potentially lead to a fast data acquisition rate for laminography and tomosynthesis with a simplified experimental setup

  4. Providing Bright-Hard X-ray Beams from a Lower Energy Light Source

    Science.gov (United States)

    Robin, David

    2002-04-01

    At the Advanced Light Source (ALS) there had been an increasing demand for more high brightness harder X-ray sources in the 7 to 40 KeV range. In response to that demand, the ALS storage ring was modified in August 2001. Three 1.3 Tesla normal conducting bending magnets were removed and replaced with three 5 Tesla superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV than the 1.3 Tesla bends, making them excellent sources of harder x-rays for protein crystallography and other harder x-ray applications. At the same time the Superbends do not compromise the performance of the facility in the UV and Soft X-ray regions of the spectrum. The Superbends will eventually feed 12 new x-ray beam lines greatly enhancing the facility's capacity in the hard x-ray region. The Superbend project is the biggest upgrade to the ALS storage ring since the ring was commissioned in 1993. In this paper we present, a history of the project, details of the magnet, installation, commissioning, and resulting performance of the ALS with Superbends.

  5. A preliminary study of synchrotron light sources for x-ray lithography

    International Nuclear Information System (INIS)

    Hoffmann, C.R.; Bigham, C.B.; Ebrahim, N.A.; Sawicki, J.A.; Taylor, T.

    1989-02-01

    A preliminary study of synchrotron light sources has been made, primarily oriented toward x-ray lithography. X-ray lithography is being pursued vigorously in several countries, with a goal of manufacturing high-density computer chips (0.25 μm feature sizes), and may attain commercial success in the next decade. Many other applications of soft x-rays appear worthy of investigation as well. The study group visited synchrotron radiation facilities and had discussions with members of the synchrotron radiation community, particularly Canadians. It concluded that accelerator technology for a conventional synchrotron light source appropriate for x-ray lithography is well established and is consistent with skills and experience at Chalk River Nuclear Laboratories. Compact superconducting systems are being developed also. Their technical requirements overlap with capabilities at Chalk River. (32 refs)

  6. TH-F-209-01: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources

    International Nuclear Information System (INIS)

    Behling, R.

    2016-01-01

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, the aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to remediate

  7. TH-F-209-00: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources

    International Nuclear Information System (INIS)

    2016-01-01

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, the aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to remediate

  8. TH-F-209-01: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Behling, R. [Philips Medical Systems DMC GmbH (United States)

    2016-06-15

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, the aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to remediate

  9. TH-F-209-00: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, the aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to remediate

  10. Chandra-SDSS Normal and Star-Forming Galaxies. I. X-Ray Source Properties of Galaxies Detected by the Chandra X-Ray Observatory in SDSS DR2

    Science.gov (United States)

    Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.

    2005-01-01

    We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03X-ray-studied samples of normal galaxies and those in the deepest X-ray surveys. Our chief purpose is to compare optical spectroscopic diagnostics of activity (both star formation and accretion) with X-ray properties of galaxies. Our work supports a normalization value of the X-ray-star formation rate correlation consistent with the lower values published in the literature. The difference is in the allocation of X-ray emission to high-mass X-ray binaries relative to other components, such as hot gas, low-mass X-ray binaries, and/or active galactic nuclei (AGNs). We are able to quantify a few pitfalls in the use of lower resolution, lower signal-to-noise ratio optical spectroscopy to identify X-ray sources (as has necessarily been employed for many X-ray surveys). Notably, we find a few AGNs that likely would have been misidentified as non-AGN sources in higher redshift studies. However, we do not find any X-ray-hard, highly X-ray-luminous galaxies lacking optical spectroscopic diagnostics of AGN activity. Such sources are members of the ``X-ray-bright, optically normal galaxy'' (XBONG) class of AGNs.

  11. Performance of the IBM synchrotron X-ray source for lithography

    International Nuclear Information System (INIS)

    Archie, C.

    1993-01-01

    The compact superconducting synchrotron X-ray source at the IBM Advanced Lithography Facility in East Fishkill, New York has been in service to customers since the start of 1992. It availability during scheduled time is greater than 90%, with recent months frequently surpassing 95%. Data on the long-term behavior of the X-ray source properties and subsystem performance are now available. The full system continues to meet all specifications and even to surpass them in key areas. Measured electron beam properties such as beam size, short- and long-term positional stability, and beam life are presented. Lifetimes greater than 20 hours for typical stored beams have significantly simplified operations and increased availability compared to projections. This paper also describes some unique features of this X-ray source and goes beyond a discussion of downtime to describe the efforts behind the scenes to maintain and operate it

  12. Laser interaction with matter as a source of U.V. and soft X-ray radiation: application to X-ray cinematography

    International Nuclear Information System (INIS)

    Tonon, G.F.; Colombant, Denis; Delmare, Claude; Rabeau, Maxime

    A new detecting device is described. It allows one to get the frequency, the time and space resolution of pictures of U.V. and soft X ray emission of a laser created plasma in a single shot: X ray pictures of such a plasma are presented. After these preliminary results, it is possible to set up readily an X ray framing camera. A laser created plasma is an X ray source of special interest: the emitted power can be 10% of the laser intensity and the emitted spectrum is centered around 1A wavelength [fr

  13. Silver content determination in mining and ore dressing using radionuclide-excited X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Koerner, B.; George, R.; Ratnikow, W.

    1989-01-01

    A laborsaving method based on radionuclide-excited X-ray fluorescence is described for the determination of silver in mining and ore dressing. Detection limits reached under operation conditions and measuring errors are discussed and compared with results from chemical analyses

  14. A new irradiated quartz for beta source calibration

    DEFF Research Database (Denmark)

    Hansen, Vicki; Murray, Andrew Sean; Buylaert, Jan-Pieter

    2015-01-01

    For luminescence dating to be an accurate absolute dating technique it is very important that we are able to deliver absolutely known radiation doses in the laboratory. This is normally done using a radiation source (alpha, beta, X-ray) calibrated against an absolutely known reference source. Man...... doses from a standardised gamma source to in-built irradiation sources....... from south-western Denmark (Rømø). Two grain sizes (4-11μm and 180-250μm) have been examined in detail. These were pre-treated (annealed, dosed and annealed again) to sensitise and stabilise the luminescence signals before being given an absolutely known gamma dose from a point 137Cs source in scatter...

  15. A quasi-monochromatic X-rays source for art painting pigments investigation

    Energy Technology Data Exchange (ETDEWEB)

    Albertin, F.; Franconieri, A.; Gambaccini, M.; Petrucci, F.; Chiozzi, S. [University of Ferrara, Department of Physics and INFN, Ferrara (Italy); Moro, D. [University of Padova, Department of Physics, Padova (Italy); LNL - INFN, Legnaro, Padova (Italy)

    2009-08-15

    Monochromatic X-ray sources can be used for several applications, like in medicine or in studying our cultural heritage. We are investigating imaging systems based on a tuneable energy band X-ray source, to obtain an element mapping of painting layers using the K-edge technique. The narrow energy band beams are obtained with conventional X-ray source via Bragg diffraction on a mosaic crystal; such an analysis has been performed at different diffraction angles, tuning the energy to investigate spectra of interest from the artistic point of view, like zinc and copper. In this paper the characteristics of the system in terms of fluence rate are reported, and first results of this technique on canvas samples and painting are presented. (orig.)

  16. Microfocus X-ray sources for 3D microtomography

    International Nuclear Information System (INIS)

    Flynn, M.J.; Hames, S.M.; Reimann, D.A.; Wilderman, S.J.

    1994-01-01

    An analytic model for the performance of cone beam microtomography is described. The maximum power of a microfocus X-ray source is assumed to be approximately proportional to the focal spot size. Radiation flux penetrating the specimen is predicted by a semi-empirical relation which is valid for X-ray energies less than 20 keV. Good signal to noise ratio is predicted for bone specimens of 0.1 to 10 mm when scanned at the optimal energy. A flux of about 1x10 10 photons/mm 2 /s is identified for 0.2 mm specimens. Cone beam volumetric microtomography is found to compare favorably with synchrotron based methods. ((orig.))

  17. X-ray Transient Sources (Multifrequency Laboratories The Case of the Prototype A0535+26/HDE 245770

    Directory of Open Access Journals (Sweden)

    F. Giovannelli

    2011-01-01

    Full Text Available The goal of this paper is to discuss the behaviour of the X-ray transient source A0535+26 which is considered for historical reasons and for the huge amount of multifrequency data, spread over a period of 35 years, as the prototype of this class of objects. Transient sources are formed by a Be star — the primary — and a neutron star X-ray pulsar — the secondary — and constitute a sub-class of X-ray binary systems. We will emphasize the discovery of low-energy indicators of high-energy processes. They are UBVRI magnitudes and Balmer lines of the optical companion. Particular unusual activity of the primary star — usually at the periastron passage of the neutron star – indicates that an X-ray flare is drawing near. The shape and intensity of X-ray outbursts are dependent on the strength of the activity of the primary. We derive the optical orbital period of the system as 110.856 ± 0.02 days. By using the optical flare of December 5, 1981 (here after 811205-E that triggered the subsequent X-ray outburst of December 13, 1981, we derive the ephemeris of the system as JD Popt−outb = JD0 (2, 444, 944 ± n(110.856 ± 0.02. Thus the passage of the neutron star at the periastron occurs with a periodicity of 110.856 ± 0.02 days and the different kinds of X-ray outbursts of A0535+26 — following the definitions reported in the review by Giovannelli & Sabau-Graziati (1992 — occur just after ∼ 8 days. The delay between optical and X-ray outbursts is just the transit time of the material coming out from the optical companion to reach the neutron star X-ray pulsar. The occurrence of X-ray “normal outbursts”, “anomalous outbursts” or “casual outbursts” is dependent on the activity of the Be star: “quiet state: steady stellar wind”, “excited state: stellar wind plus puffs of material”, and “expulsion of a shell”, respectively. In the latter case, the primary manifests a strong optical activity and the consequent strong

  18. Chandra Discovers X-ray Source at the Center of Our Galaxy

    Science.gov (United States)

    2000-01-01

    Culminating 25 years of searching by astronomers, researchers at Massachusetts Institute of Technology say that a faint X-ray source, newly detected by NASA's Chandra X-ray Observatory, may be the long-sought X-ray emission from a known supermassive black hole at the center of our galaxy. Frederick K. Baganoff and colleagues from Pennsylvania State University, University Park, and the University of California, Los Angeles, will present their findings today in Atlanta at the 195th national meeting of the American Astronomical Society. Baganoff, lead scientist for the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer (ACIS) team's "Sagittarius A* and the Galactic Center" project and postdoctoral research associate at MIT, said that the precise positional coincidence between the new X-ray source and the radio position of a long-known source called Sagittarius A* "encourages us to believe that the two are the same." Sagittarius A* is a point-like, variable radio source at the center of our galaxy. It looks like a faint quasar and is believed to be powered by gaseous matter falling into a supermassive black hole with 2.6 million times the mass of our Sun. Chandra's remarkable detection of this X-ray source has placed astronomers within a couple of years of a coveted prize: measuring the spectrum of energy produced by Sagittarius A* to determine in detail how the supermassive black hole that powers it works. "The race to be the first to detect X-rays from Sagittarius A* is one of the hottest and longest-running in all of X-ray astronomy," Baganoff said. "Theorists are eager to hear the results of our observation so they can test their ideas." But now that an X-ray source close to Sagittarius A* has been found, it has taken researchers by surprise by being much fainter than expected. "There must be something unusual about the environment around this black hole that affects how it is fed and how the gravitational energy released from the infalling matter is

  19. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  20. Development of multi-pixel x-ray source using oxide-coated cathodes.

    Science.gov (United States)

    Kandlakunta, Praneeth; Pham, Richard; Khan, Rao; Zhang, Tiezhi

    2017-07-07

    Multiple pixel x-ray sources facilitate new designs of imaging modalities that may result in faster imaging speed, improved image quality, and more compact geometry. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide-coated cathodes. Oxide cathodes have high emission efficiency and, thereby, produce high emission current density at low temperature when compared to traditional tungsten filaments. Indirectly heated micro-rectangular oxide cathodes were developed using carbonates, which were converted to semiconductor oxides of barium, strontium, and calcium after activation. Each cathode produces a focal spot on an elongated fixed anode. The x-ray beam ON and OFF control is performed by source-switching electronics, which supplies bias voltage to the cathode emitters. In this paper, we report the initial performance of the oxide-coated cathodes and the MPTEX source.

  1. Sequential x-ray diffraction topography at 1-BM x-ray optics testing beamline at the advanced photon source

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Shvyd’ko, Yuri; Trakhtenberg, Emil; Liu, Zunping; Lang, Keenan; Huang, Xianrong; Wieczorek, Michael; Kasman, Elina; Hammonds, John; Macrander, Albert; Assoufid, Lahsen [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2016-07-27

    We report progress on implementation and commissioning of sequential X-ray diffraction topography at 1-BM Optics Testing Beamline of the Advanced Photon Source to accommodate growing needs of strain characterization in diffractive crystal optics and other semiconductor single crystals. The setup enables evaluation of strain in single crystals in the nearly-nondispersive double-crystal geometry. Si asymmetric collimator crystals of different crystallographic orientations were designed, fabricated and characterized using in-house capabilities. Imaging the exit beam using digital area detectors permits rapid sequential acquisition of X-ray topographs at different angular positions on the rocking curve of a crystal under investigation. Results on sensitivity and spatial resolution are reported based on experiments with high-quality Si and diamond crystals. The new setup complements laboratory-based X-ray topography capabilities of the Optics group at the Advanced Photon Source.

  2. Conceptual Design of Dielectric Accelerating Structures for Intense Neutron and Monochromatic X-ray Sources

    Science.gov (United States)

    Blanovsky, Anatoly

    2004-12-01

    Bright compact photon sources, which utilize electron beam interaction with periodic structures, may benefit a broad range of medical, industrial and scientific applications. A class of dielectric-loaded periodic structures for hard and soft X-ray production has been proposed that would provide a high accelerating gradient when excited by an external RF and/or primary electron beam. Target-distributed accelerators (TDA), in which an additional electric field compensates for lost beam energy in internal targets, have been shown to provide the necessary means to drive a high flux subcritical reactor (HFSR) for nuclear waste transmutation. The TDA may also be suitable for positron and nuclear isomer production, X-ray lithography and monochromatic computer tomography. One of the early assumptions of the theory of dielectric wake-field acceleration was that, in electrodynamics, the vector potential was proportional to the scalar potential. The analysis takes into consideration a wide range of TDA design aspects including the wave model of observed phenomena, a layered compound separated by a Van der Waals gap and a compact energy source based on fission electric cells (FEC) with a multistage collector. The FEC is a high-voltage power source that directly converts the kinetic energy of the fission fragments into electrical potential of about 2MV.

  3. Development of a compact x-ray source via laser compton scattering at KEK-LUCX

    International Nuclear Information System (INIS)

    Sakaue, Kazuyuki; Washio, Masakazu; Aryshev, Alexander; Araki, Sakae; Urakawa, Junji; Terunuma, Nobuhiro; Fukuda, Masafumi; Miyoshi, Toshinobu; Takeda, Ayaki

    2013-01-01

    The compact X-ray source based on Laser-Compton scattering (LCS) has been developed at LUCX (Laser Undulator Compact X-ray source) facility in KEK. The multi-bunch high quality electron beam produced by a standing wave 3.6 cell RF Gun and accelerated by the followed S-band normal conducting 12 cells standing wave 'Booster' linear accelerator is scattered off the laser beam stored in the optical cavity. The 4-mirror planar optical cavity with finesse 335 is used. The MCP (Micro-Channer Plate) detector as well as SOI (Silicon-On-Insulator) pixel sensor was used for scattered X-ray detection. The SOI pixel sensor has been used for LCS X-ray detection for the first time and has demonstrated high spatial resolution and high SN ratio X-ray detection that in turn lead to clearest X-ray images achieved by LCS X-ray. We have also achieved generation of 6.38x10 6 ph./sec., which is more than 30 times larger LCS X-ray flux in comparison with our previous results. The complete details of LUCX LCS X-ray source, specifications of both electron and laser beams, and the results of LCS X-ray generation experiments are reported in this paper. (author)

  4. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  5. X-ray stress measurement by use of synchrotron radiation source

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Matsui, Hisaaki; Moro-oka, Toshimasa; Hasegawa, Ken-ichi; Nakajima, Tetsuo.

    1986-01-01

    In the field of X-ray stress measurement of polycrystalline materials, a diffraction plane at higher Bragg angle has to be selected in order to obtain the precise value of stress. However, the stress measurement on an optional (hkl) plane desired is not always possible because the X-ray beam exited from a metal target has a dispersive wave length. Recently, we have been able to use the synchrotron radiation source (SR) as an excellent X-ray source. In Japan, the facility of synchrotron radiation (Photon Factory, PF) was constructed in the National Laboratory for High Energy Physics (KEK) at Tsukuba academic city. The use of this SR enables the stress measurements on many (hkl) planes with high accuracy in the higher Bragg angle region by providing an X-ray beam having an optional wave length. We have started the X-ray stress analysis by use of the synchrotron radiation source. This paper reports the system of measurement and some results of preliminaly experiments. Since a monochromatic X-ray beam is required for the stress measurement, we used a beam line which consists of a double crystal monochrometer and a focusing mirror. X-rays between 4 KeV (λ = 0.31 nm) and 10 KeV (λ = 0.12 nm) are available with this optical system. We adopted a constant Bragg angle of 2θ = 154 deg for all the diffraction planes. A PSPC having a carbon fiber anode is made and used as a detector with the use of a fast digital signal processor. We could observe the diffraction profiles from (200), (211), (220), (310) and (321) crystal plane of alpha iron, respectively, and the residual stresses in these planes except the (200) plane were measured with high accuracy in a short time. Such feature especially suits the stress analysis of the material which has preferred orientation or stress gradient. (author)

  6. Determination of Al concentration in Al doped ZnO using Auger spectra excited by Mo X-rays

    International Nuclear Information System (INIS)

    Toth, J.; Koever, L.; Cserny, I.; Varga, D.

    2006-01-01

    Complete text of publication follows. A good conductor with excellent transparency is of crucial importance for the window layer of CIGS solar cells. Al doped ZnO is a good candidate for this purpose, its conductivity depends on the concentration and chemical state of the Al dopant atoms. It was demonstrated that the non-conventional XPS using Mo X-rays for excitation is a very sensitive tool for the detection of Al, P, Si [1, 2, 3]. The present paper compares the experimental ratios for Zn/Al photoinduced peak intensity ratios obtained using both Al and Mo X-ray excitations. The Mo excited Zn/Al intensity ratios can be determined with higher selectivity and sensitivity than the Zn/Al intensity ratios excited by Al X-rays. The experiments were performed with a hemispherical deflector electron spectrometer [4]. The chemical state of the Al was identified to be close to that in Al 2 O 3 . The atomic concentrations were determined using a calibration curve based on ZnO/Al samples with known composition of Al. The energy dependent efficiency of the electron spectrometer was determined comparing REELS spectra of Cu specimen to standard spectra measured by K. Goto (Nagoya Institute of Technology, Japan). For evaluation of the Al atomic concentrations from the measured photoelectron intensities the photoionisation cross-sections of Band et al [5] and the IMFP data of S. Tanuma et al [6] and C.J. Powell and A. Jablonski [7] were used. (author)

  7. A nanotube-based field emission x-ray source for microcomputed tomography

    International Nuclear Information System (INIS)

    Zhang, J.; Cheng, Y.; Lee, Y.Z.; Gao, B.; Qiu, Q.; Lin, W.L.; Lalush, D.; Lu, J.P.; Zhou, O.

    2005-01-01

    Microcomputed tomography (micro-CT) is a noninvasive imaging tool commonly used to probe the internal structures of small animals for biomedical research and for the inspection of microelectronics. Here we report the development of a micro-CT scanner with a carbon nanotube- (CNT-) based microfocus x-ray source. The performance of the CNT x-ray source and the imaging capability of the micro-CT scanner were characterized

  8. Measurement of relative intensities of L-shell X-rays of some heavy elements using Cd-109 radioisotope source

    International Nuclear Information System (INIS)

    Darko, J.B.; Tetteh, G.K.

    1992-01-01

    The relative L-shell x-ray intensities of Sm, W, Ir, Au, Hg, Pb and U were measured using a Cd-109 radioisotope source and a Si(Li) detector. The measured relative intensities were compared with the theoretically calculated values due to Scofield, computed for the present excitation energy of 22.6 keV. The experimental results were found to agree with theory in most cases. (author)

  9. Measurement of relative intensities of L-shell X-rays of some heavy elements using Cd-109 radioisotope source

    Energy Technology Data Exchange (ETDEWEB)

    Darko, J.B.; Tetteh, G.K. (Ghana Univ., Legon (Ghana). Dept. of Physics)

    The relative L-shell x-ray intensities of Sm, W, Ir, Au, Hg, Pb and U were measured using a Cd-109 radioisotope source and a Si(Li) detector. The measured relative intensities were compared with the theoretically calculated values due to Scofield, computed for the present excitation energy of 22.6 keV. The experimental results were found to agree with theory in most cases. (author).

  10. Compact X-ray source based on Compton backscattering

    CERN Document Server

    Bulyak, E V; Zelinsky, A; Karnaukhov, I; Kononenko, S; Lapshin, V G; Mytsykov, A; Telegin, Yu P; Khodyachikh, A; Shcherbakov, A; Molodkin, V; Nemoshkalenko, V; Shpak, A

    2002-01-01

    The feasibility study of an intense X-ray source based on the interaction between the electron beam in a compact storage ring and the laser pulse accumulated in an optical resonator is carried out. We propose to reconstruct the 160 MeV electron storage ring N-100, which was shutdown several years ago. A new magnetic lattice will provide a transverse of electron beam size of approx 35 mu m at the point of electron beam-laser beam interaction. The proposed facility is to generate X-ray beams of intensity approx 2.6x10 sup 1 sup 4 s sup - sup 1 and spectral brightness approx 10 sup 1 sup 2 phot/0.1%bw/s/mm sup 2 /mrad sup 2 in the energy range from 10 keV up to 0.5 MeV. These X-ray beam parameters meet the requirements for most of technological and scientific applications. Besides, we plan to use the new facility for studying the laser cooling effect.

  11. Compact X-ray source based on Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.; Gladkikh, P.; Zelinsky, A. E-mail: zelinsky@kipt.kharkov.ua; Karnaukhov, I.; Kononenko, S.; Lapshin, V.; Mytsykov, A.; Telegin, Yu.; Khodyachikh, A.; Shcherbakov, A.; Molodkin, V.; Nemoshkalenko, V.; Shpak, A

    2002-07-21

    The feasibility study of an intense X-ray source based on the interaction between the electron beam in a compact storage ring and the laser pulse accumulated in an optical resonator is carried out. We propose to reconstruct the 160 MeV electron storage ring N-100, which was shutdown several years ago. A new magnetic lattice will provide a transverse of electron beam size of {approx}35 {mu}m at the point of electron beam-laser beam interaction. The proposed facility is to generate X-ray beams of intensity {approx}2.6x10{sup 14} s{sup -1} and spectral brightness {approx}10{sup 12} phot/0.1%bw/s/mm{sup 2}/mrad{sup 2} in the energy range from 10 keV up to 0.5 MeV. These X-ray beam parameters meet the requirements for most of technological and scientific applications. Besides, we plan to use the new facility for studying the laser cooling effect.

  12. X-ray time and spectral variability as probes of ultraluminous x-ray sources

    Science.gov (United States)

    Pasham, Dheeraj Ranga Reddy

    A long-standing debate in the field of ultraluminous X-ray sources (ULXs: luminosities > 3x1039 ergs s-1) is whether these objects are powered by stellar-mass black holes (mass range of 3-25 solar masses) undergoing hyper-accretion/emission or if they host the long-sought after class of intermediate-mass black holes (mass range of a few 100-1000 solar masses) accreting material at sub-Eddington rates. We present X-ray time and energy spectral variability studies of ULXs in order to understand their physical environments and accurately weigh their compact objects. A sample of ULXs exhibit quasi-periodic oscillations (QPOs) with centroid frequencies in the range of 10-200 mHz. The nature of the power density spectra (PDS) of these sources is qualitatively similar to stellar-mass black holes when they exhibit the so-called type-C low-frequency QPOs (frequency range of 0.2-15 Hz). However, the crucial difference is that the characteristic frequencies within the PDS of ULXs, viz., the break frequencies and the centroid frequencies of the QPOs, are scaled down by a factor of approximately 10-100 compared to stellar-mass black holes. It has thus been argued that the ULX mHz QPOs are the type-C low-frequency QPO analogs of stellar-mass black holes and that the observed difference in the frequencies (a fewx0.01 Hz compared with a few Hz) is due to the presence of intermediate-mass black holes ( MULX = (QPOstellar-mass black hole }/QPOULX)xM stellar-mass black hole, where M and QPO are the mass and the QPO frequency, respectively) within these ULXs. We analyzed all the archival XMM-Newton X-ray data of ULXs NGC 5408 X-1 and M82 X-1 in order to test the hypothesis that the ULX mHz QPOs are the type-C analogs by searching for a correlation between the mHz QPO frequency and the energy spectral power-law index as type-C QPOs show such a dependence. From our multi-epoch timing and spectral analysis of ULXs NGC 5408 X-1 and M82 X-1, we found that the mHz QPOs of these sources vary

  13. Development of Compact Soft X-ray Source Based on Laser Undulator

    CERN Document Server

    Kuroda, Ryunosuke; Minamiguchi, S; Saitô, T; Ueyama, D; Washio, Masakazu

    2004-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on backward Compton scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser and 4 MeV high quality electron beam generated from rf gun system. The range of energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein’s coefficient in this range, a dehydration of the specimens is not necessary. As a preliminary experiment, about 300 eV X-ray generation was carried out. As next step, soft X-ray optics with zone plate was proposed for Soft X-ray microscopy. In this conference, we will report details and results of the experiment.

  14. VizieR Online Data Catalog: ChaMP X-ray point source catalog (Kim+, 2007)

    Science.gov (United States)

    Kim, M.; Kim, D.-W.; Wilkes, B. J.; Green, P. J.; Kim, E.; Anderson, C. S.; Barkhouse, W. A.; Evans, N. R.; Ivezic, Z.; Karovska, M.; Kashyap, V. L.; Lee, M. G.; Maksym, P.; Mossman, A. E.; Silverman, J. D.; Tananbaum, H. D.

    2009-01-01

    We present the Chandra Multiwavelength Project (ChaMP) X-ray point source catalog with ~6800 X-ray sources detected in 149 Chandra observations covering ~10deg2. The full ChaMP catalog sample is 7 times larger than the initial published ChaMP catalog. The exposure time of the fields in our sample ranges from 0.9 to 124ks, corresponding to a deepest X-ray flux limit of f0.5-8.0=9x10-16ergs/cm2/s. The ChaMP X-ray data have been uniformly reduced and analyzed with ChaMP-specific pipelines and then carefully validated by visual inspection. The ChaMP catalog includes X-ray photometric data in eight different energy bands as well as X-ray spectral hardness ratios and colors. To best utilize the ChaMP catalog, we also present the source reliability, detection probability, and positional uncertainty. (10 data files).

  15. X-ray diagnostics in the laser-initiated fusion program

    International Nuclear Information System (INIS)

    Godwin, R.P.

    1975-08-01

    The high-density and high-temperature plasma conditions required for successful laser-initiated fusion make x-ray diagnostics a valuable tool in this exciting field. Measurements of the hard x-ray continuum emitted from laser targets provide insight into the complex laser-plasma coupling physics and the consequent energy transport through the bremsstrahlung signature of energetic electrons. X-ray techniques are important in the selection and assay of microballoon targets for current compression experiments. X-ray imaging experiments and diffraction spectroscopy of highly stripped atoms can provide information upon the symmetry, density and temperature of laser targets. Extremely high temporal and spatial resolution may be required for definitive diagnostic information on compressed targets. While laser-produced plasmas are interesting as possible intense x-ray sources and as a possible means of achieving x-ray lasing, those topics are outside the scope of this review. (auth)

  16. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels

    2006-01-01

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  17. Observations of Ultra-Luminous X-ray Sources, and Implications

    Science.gov (United States)

    Colbert, E. J. M.

    2004-05-01

    I will review observations of Ultra-Luminous X-ray Sources (ULXs; Lx > 1E39 erg/s), in particular those observations that have helped reveal the nature of these curious objects. Some recent observations suggest that ULXs are a heterogenous class. Although ULX phenomenology is not fully understood, I will present some examples from the (possibly overlapping) sub-classes. Since ULXs are the most luminous objects in starburst galaxies, they, and ``normal'' luminous black-hole high-mass X-ray binaries are intimately tied to the global galaxian X-ray-star-formation connection. Further work is needed to understand how ULXs form, and how they are associated with the putative population of intermediate-mass black holes.

  18. A Study on Mono-energetic Beam Source Using Characteristic X-ray for Substance Identification System

    International Nuclear Information System (INIS)

    Lee, Hwan Soo

    2009-02-01

    A new mono-energetic beam source was developed by using characteristic X-ray for improving performance of the substance identification system. Most of inspection systems use X-ray tubes for their source modules. However, the broad energy spectrum of X-ray tube causes an increase of uncertainty. In this study, it was found that mono-energetic beam sources can be generated by using X-ray tube and the designed target filter assembly. In order to investigate the monoenergetic beam source, the sensitivity study was conducted with a series of different X-ray tube potentials, radiator and filter materials using Monte Carlo simulation. The developed beam sources have a mono-energy peak at 69 keV, 78 keV and 99 keV, and they are named as characteristic X-ray beam BEAM69, BEAM78 and BEAM99, respectively. The characteristic X-ray beam intensity was over thirty three times more than that of hardening beam used previous work at Hanyang University. And BEAM69 and BEAM99 were applied to the substance identification system as a source. The relative error between results of characteristic X-ray beams and 69 keV and 99 keV photons was about 2% on the average for five unknown materials. In comparison with experiment results by using hardening beam, characteristic X-ray beam achieves better accuracy which is about 6.46 % on the average. Hence, it is expected that the developed characteristic X-ray beam source helps lower uncertainty of the inspection system, and the inspection time will be reduced considerably due to its high beam intensity

  19. A compact soft X-ray microscope using an electrode-less Z-pinch source

    Science.gov (United States)

    Horne, S. F.; Silterra, J.; Holber, W.

    2009-09-01

    Soft X-rays (medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. (Supported by NIH grants 5R44RR022488-03 and 5R44RR023753-03)

  20. Control of synchrotron x-ray diffraction by means of standing acoustic waves

    International Nuclear Information System (INIS)

    Zolotoyabko, E.; Quintana, J.P.

    2004-01-01

    Synchrotron x-ray diffraction measurements in quartz crystals of different thickness excited by standing acoustic waves were carried out at the Advanced Photon Source of Argonne National Laboratory. We demonstrated the ability to significantly modify the quartz rocking curves for 20-25 keV x rays by changing the shear wave parameters in the frequency range between 15 and 105 MHz. Dynamic deformation introduced into the crystal lattice by acoustic waves resulted in a remarkable broadening of the rocking curves. The broadening effect strongly depends on the strength of the ultrasound, which can be easily regulated by changing the acoustic amplitude or frequency near the resonance. The maximum rocking curve broadening reached 17 times, which corresponds to the wavelength band, Δλ/λ=4x10 -3 , when used as a monochromator or analyzer for 20-25 keV x rays. The initial rocking curve shape is restored by sweeping the acoustic frequency within a 50-100 kHz range near the resonance. The tunable broadening effect allows effective manipulation of x-ray intensities in time domain. Time-resolved x-ray diffraction measurements under a 19.6 MHz acoustic wave excitation were performed by synchronizing the acoustic wave and x-ray burst periodicity. We used the fact that twice per period the standing wave produces a zero net deformation across the crystal thickness. By introducing an oscillating delay to the acoustic excitation, we were able to effectively change the phase of the acoustic wave relative to the x-ray burst periodicity. The x-ray diffraction intensity was strongly affected by tuning the timing of the x-ray arrivals to the minimum or maximum acoustic deformation. A deep modulation of x rays was observed in a wide frequency range between 0.1 Hz and 1 MHz, which certifies that acoustically excited quartz crystals can potentially be used as slow and fast x-ray modulators with high duty cycle

  1. X-ray microscopy resource center at the Advanced Light Source

    International Nuclear Information System (INIS)

    Meyer-Ilse, W.; Koike, M.; Beguiristain, R.; Maser, J.; Attwood, D.

    1992-07-01

    An x-ray microscopy resource center for biological x-ray imaging vvill be built at the Advanced Light Source (ALS) in Berkeley. The unique high brightness of the ALS allows short exposure times and high image quality. Two microscopes, an x-ray microscope (XM) and a scanning x-ray microscope (SXM) are planned. These microscopes serve complementary needs. The XM gives images in parallel at comparable short exposure times, and the SXM is optimized for low radiation doses applied to the sample. The microscopes extend visible light microscopy towards significantly higher resolution and permit images of objects in an aqueous medium. High resolution is accomplished by the use of Fresnel zone plates. Design considerations to serve the needs of biological x-ray microscopy are given. Also the preliminary design of the microscopes is presented. Multiple wavelength and multiple view images will provide elemental contrast and some degree of 3D information

  2. Direct observation of ultrafast atomic motion using time-resolved X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shymanovich, U.

    2007-11-13

    This thesis is dedicated to the study of the atomic motion in laser irradiated solids on a picosecond to subpicosecond time-scale using the time-resolved X-ray diffraction technique. In the second chapter, the laser system, the laser-plasma based X-ray source and the experimental setup for optical pump / X-ray probe measurements were presented. Chapter 3 is devoted to the characterization and comparison of different types of X-ray optics. Chapter 4 presented the time-resolved X-ray diffraction experiments performed for this thesis. The first two sections of this chapter discuss the measurements of initially unexpected strain-induced transient changes of the integrated reflectivity of the X-ray probe beam. The elimination of the strain-induced transient changes of the integrated reflectivity represented an important prerequisite to perform the study of lattice heating in Germanium after femtosecond optical excitation by measuring the transient Debye-Waller effect. The third section describes the investigations of acoustic waves upon ultrafast optical excitation and discusses the two different pressure contributions driving them: the thermal and the electronic ones. (orig.)

  3. Direct observation of ultrafast atomic motion using time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Shymanovich, U.

    2007-01-01

    This thesis is dedicated to the study of the atomic motion in laser irradiated solids on a picosecond to subpicosecond time-scale using the time-resolved X-ray diffraction technique. In the second chapter, the laser system, the laser-plasma based X-ray source and the experimental setup for optical pump / X-ray probe measurements were presented. Chapter 3 is devoted to the characterization and comparison of different types of X-ray optics. Chapter 4 presented the time-resolved X-ray diffraction experiments performed for this thesis. The first two sections of this chapter discuss the measurements of initially unexpected strain-induced transient changes of the integrated reflectivity of the X-ray probe beam. The elimination of the strain-induced transient changes of the integrated reflectivity represented an important prerequisite to perform the study of lattice heating in Germanium after femtosecond optical excitation by measuring the transient Debye-Waller effect. The third section describes the investigations of acoustic waves upon ultrafast optical excitation and discusses the two different pressure contributions driving them: the thermal and the electronic ones. (orig.)

  4. Probing single magnon excitations in Sr2IrO4 using O K-edge resonant inelastic x-ray scattering

    International Nuclear Information System (INIS)

    Liu, X; Ding, H; Dean, M P M; Yin, W G; Hill, J P; Liu, J; Ramesh, R; Chiuzbăian, S G; Jaouen, N; Nicolaou, A; Serrao, C Rayan

    2015-01-01

    Resonant inelastic x-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin–orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr 2 IrO 4 , where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolution in the hard x-ray region is usually poor. (fast track communication)

  5. Performances for confocal X-ray diffraction technology based on polycapillary slightly focusing X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hehe; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stxbeijing@163.com [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Sun, Weiyuan; Li, Yude; Lin, Xiaoyan; Zhao, Weigang; Zhao, Guangcui; Luo, Ping; Pan, Qiuli; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2013-09-21

    The confocal X-ray diffraction (XRD) technology based on a polycapillary slightly focusing X-ray lens (PSFXRL) in excitation channel and a polycapillary parallel X-ray lens (PPXRL) with a long input focal distance in detection channel was developed. The output focal spot of the PSFXRL and the input focal spot of the PPXRL were adjusted in confocal configuration, and only the X-rays from the volume overlapped by these foci could be accordingly detected. This confocal configuration was helpful in decreasing background. The convergence of the beam focused by the PSFXRL and divergence of the beam which could be collected by the PPXRL with a long input focal distance were both about 9 mrad at 8 keV. This was helpful in improving the resolution of lattice spacing of this confocal XRD technology. The gain in power density of such PSFXRL and PPXRL was about 120 and 7 at 11 keV, respectively, which was helpful in using the low power source to perform XRD analysis efficiently. The performances of this confocal XRD technology were provided, and some common plastics were analyzed. The experimental results demonstrated that the confocal diffraction technology base on polycapillary slightly focusing X-ray optics had wide potential applications.

  6. Projection-type X-ray microscope based on a spherical compound refractive X-ray lens

    OpenAIRE

    Dudchik, Yu. I.; Gary, C. K.; Park, H.; Pantell, R. H.; Piestrup, M. A.

    2007-01-01

    New projection- type X-ray microscope with a compound refractive lens as the optical element is presented. The microscope consists of an X-ray source that is 1-2 mm in diameter, compound X-ray lens and X-ray camera that are placed in-line to satisfy the lens formula. The lens forms an image of the X-ray source at camera sensitive plate. An object is placed between the X-ray source and the lens as close as possible to the source, and the camera shows a shadow image of the object. Spatial resol...

  7. X-ray system with coupled source drive and detector drive

    International Nuclear Information System (INIS)

    1976-01-01

    An electronic coupling replacing the (more expensive) mechanical coupling which controls the speed of two sets of two electric motors, one driving an X-ray source and the other an X-ray detector, is described. Source and detector are kept rotating in parallel planes with a fairly constant velocity ratio. The drives are controlled by an electronic system comprising a comparator circuit comparing the position-indicative signals, a process control circuit and an inverter switch. The control system regulates the speed of the electric motors. The signal processing is described

  8. Exciplex formation of copper(II) octaethylporphyrin revealed by pulsed x-rays

    International Nuclear Information System (INIS)

    Chen, L.X.; Shaw, G.B.; Liu, T.; Jennings, G.; Attenkofer, K.

    2004-01-01

    The triplet excited structures of Cu(II) octaethylporphyrin (CuOEP) in toluene and in 1:1 mixture of toluene and tetrahydrofuran (THF) were investigated by time-domain laser pulse pump, X-ray pulse probe X-ray absorption spectroscopy (pump-probe XAS) at room temperature using X-rays from a third generation synchrotron source with 100-ps time resolution. The transient optical absorption measurements indicate a strong solvent dependency of the triplet excited state lifetime due to the presence of oxygen-containing solvent molecules. While the ground state CuOEP molecules remain square-planar in both solvents, the attenuation of a peak attributed to the 1s → 4p z transition at the Cu K-edge for the laser excited CuOEP in the THF/toluene mixture revealed the penta-coordinated exciplex formation which is responsible for the shortening of the triplet excited state lifetime. Meanwhile, the average Cu-N distance in the triplet excited state is lengthened by 0.03 (angstrom) due to ligation with a THF solvent molecule, which agrees with a domed coordination structure for copper in the penta-coordinated exciplex.

  9. Bright X-ray source from a laser-driven micro-plasma-waveguide

    CERN Document Server

    Yi, Longqing

    2016-01-01

    Bright tunable x-ray sources have a number of applications in basic science, medicine and industry. The most powerful sources are synchrotrons, where relativistic electrons are circling in giant storage rings. In parallel, compact laser-plasma x-ray sources are being developed. Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. The high-contrast laser pulses as well as the manufacturing of materials at micro- and nano-scales open a new realm of possibilities for laser interaction with photonic materials at the relativistic intensities. Here we demonstrate, via numerical simulations, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls by the laser field and form a dense ...

  10. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    Science.gov (United States)

    Milne, Chris J.; Pham, Van-Thai; Gawelda, Wojciech; van der Veen, Renske M.; El Nahhas, Amal; Johnson, Steven L.; Beaud, Paul; Ingold, Gerhard; Lima, Frederico; Vithanage, Dimali A.; Benfatto, Maurizio; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Hauser, Andreas; Abela, Rafael; Bressler, Christian; Chergui, Majed

    2009-11-01

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [FeII(bpy)3]2+, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 Å. In addition an analysis technique using the reduced χ2 goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  11. Multisource inverse-geometry CT. Part II. X-ray source design and prototype

    Energy Technology Data Exchange (ETDEWEB)

    Neculaes, V. Bogdan, E-mail: neculaes@ge.com; Caiafa, Antonio; Cao, Yang; De Man, Bruno; Edic, Peter M.; Frutschy, Kristopher; Gunturi, Satish; Inzinna, Lou; Reynolds, Joseph; Vermilyea, Mark; Wagner, David; Zhang, Xi; Zou, Yun [GE Global Research, Niskayuna, New York 12309 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Lounsberry, Brian [Healthcare Science Technology, GE Healthcare, West Milwaukee, Wisconsin 53219 (United States)

    2016-08-15

    Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode block per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent

  12. From laser-plasma accelerators to femtosecond X-ray sources: study, development and applications

    International Nuclear Information System (INIS)

    Corde, S.

    2012-01-01

    During the relativistic interaction between a short and intense laser pulse and an underdense plasma, electrons can be injected and accelerated up to hundreds of MeV in an accelerating structure formed in the wake of the pulse: this is the so-called laser-plasma accelerator. One of the major perspectives for laser-plasma accelerators resides in the realization of compact sources of femtosecond x-ray beams. In this thesis, two x-ray sources was studied and developed. The betatron radiation, intrinsic to laser-plasma accelerators, comes from the transverse oscillations of electrons during their acceleration. Its characterization by photon counting revealed an x-ray beam containing 10"9 photons, with energies extending above 10 keV. We also developed an all-optical Compton source producing photons with energies up to hundreds of keV, based on the collision between a photon beam and an electron beam. The potential of these x-ray sources was highlighted by the realization of single shot phase contrast imaging of a biological sample. Then, we showed that the betatron x-ray radiation can be a powerful tool to study the physics of laser-plasma acceleration. We demonstrated the possibility to map the x-ray emission region, which gives a unique insight into the interaction, permitting us for example to locate the region where electrons are injected. The x-ray angular and spectral properties allow us to gain information on the transverse dynamics of electrons during their acceleration. (author)

  13. A free-electron laser fourth-generation X-ray source

    International Nuclear Information System (INIS)

    Moncton, D. E.

    1999-01-01

    The field of synchrotrons radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research those beams make possible. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the.optical laser. Theoretical work over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission in free electron lasers. The use of a superconducting linac could produce a major, cost-effective facility that spans wavelengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotron facilities, immense new scientific opportunities from fourth-generation sources

  14. Estimating photometric redshifts for X-ray sources in the X-ATLAS field using machine-learning techniques

    Science.gov (United States)

    Mountrichas, G.; Corral, A.; Masoura, V. A.; Georgantopoulos, I.; Ruiz, A.; Georgakakis, A.; Carrera, F. J.; Fotopoulou, S.

    2017-12-01

    We present photometric redshifts for 1031 X-ray sources in the X-ATLAS field using the machine-learning technique TPZ. X-ATLAS covers 7.1 deg2 observed with XMM-Newton within the Science Demonstration Phase of the H-ATLAS field, making it one of the largest contiguous areas of the sky with both XMM-Newton and Herschel coverage. All of the sources have available SDSS photometry, while 810 additionally have mid-IR and/or near-IR photometry. A spectroscopic sample of 5157 sources primarily in the XMM/XXL field, but also from several X-ray surveys and the SDSS DR13 redshift catalogue, was used to train the algorithm. Our analysis reveals that the algorithm performs best when the sources are split, based on their optical morphology, into point-like and extended sources. Optical photometry alone is not enough to estimate accurate photometric redshifts, but the results greatly improve when at least mid-IR photometry is added in the training process. In particular, our measurements show that the estimated photometric redshifts for the X-ray sources of the training sample have a normalized absolute median deviation, nmad ≈ 0.06, and a percentage of outliers, η = 10-14%, depending upon whether the sources are extended or point like. Our final catalogue contains photometric redshifts for 933 out of the 1031 X-ray sources with a median redshift of 0.9. The table of the photometric redshifts is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A39

  15. A discussion of the eccentric binary hypothesis for transient X-ray sources

    International Nuclear Information System (INIS)

    Avni, Y.; Goldman, I.

    1979-01-01

    The eccentric binary hypothesis for transient x-ray sources in the framework of the gradual acceleration stellar wind model proposed by Barlow and Cohen is examined. It is found that a consideration of the ratio of maximum to minimum luminosities and of the ratio of the durations of the high and low states, for a typical transient x-ray source, yields a rather high eccentricity, despite the gradual acceleration of the wind. When typical physical parameters for the binary members are taken into account, we find that a consistent description is possible only for very eccentric orbits (e>=0.9), thus the model is inadequate as a general explanation of the x-ray transient phenomenon. The recurrent transient x-ray source 4U 1630-47, which was considered in ihe past to be a realization of the eccentric binary model is studied and it is demonstrated that it cannot be described consistently within the framework of the model, unless the optical primary is very peculiar. (author)

  16. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  17. Two neutrino double-beta decay of 100Mo to the first excited 0+ state in 100Ru

    International Nuclear Information System (INIS)

    Barabash, A.S.; Avignone, F.T. III; Guerard, C.K.; Umatov, V.I.

    1992-06-01

    Double-beta decay from the ground state of 100 Mo to the O + excited state at 1,130.29 keV in 100 Ru has been observed. A sample of 956q of Mo metal powder isotopically enriched to 98.468% of 100 Mo was counted in a Marinelli geometry with a well shielded, ultralow-background germanium detector. The cascade gamma-rays at 539.53 and 590.76 keV were observed. The resulting decay half-life is 1.1 -0.2 +0.3 x 10 21 y at 68% CL

  18. At-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Sutter, John; Alcock, Simon G.; Sawhney, Kawal

    2014-09-01

    Modern, third-generation synchrotron radiation sources provide coherent and extremely bright beams of X-ray radiation. The successful exploitation of such beams depends to a significant extent on imperfections and misalignment of the optics employed on the beamlines. This issue becomes even more critical with the increasing use of active optics, and the desire to achieve diffraction-limited and coherence-preserving X-ray beams. In recent years, significant progress has been made to improve optic testing and optimization techniques, especially those using X-rays for so-called atwavelength metrology. These in-situ and at-wavelength metrology methods can be used not only to optimize the performance of X-ray optics, but also to correct and minimize the collective distortions of upstream beamline optics, including monochromators, and transmission windows. An overview of at-wavelength metrology techniques implemented at Diamond Light Source is presented, including grating interferometry and X-ray near-field speckle based techniques. Representative examples of the application of these techniques are also given, including in-situ and atwavelength calibration and optimization of: active, piezo bimorph mirrors; Kirkpatrick-Baez (KB) mirrors; and refractive optics such as compound refractive lenses.

  19. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    International Nuclear Information System (INIS)

    Havrilla, George J.; Gao, Ning

    2002-01-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and double bent crystals, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. Polycapillaries will also be used to collect the X-rays from the excitation site and screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. A doubly bent crystal used as the focusing optic produces focused monochromatic X-ray excitation, which eliminates the bremsstrahlung background from the X-ray source. The coupling of the doubly bent crystal for monochromatic excitation with a polycapillary for signal collection can effectively eliminate the noise background and radiation background from the specimen. The integration of these X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites

  20. Energy dispersive X-ray fluorescence determination of cadmium in uranium matrix using Cd Kα line excited by continuum

    International Nuclear Information System (INIS)

    Dhara, Sangita; Misra, N.L.; Aggarwal, S.K.; Venugopal, V.

    2010-01-01

    An energy dispersive X-ray fluorescence method for determination of cadmium (Cd) in uranium (U) matrix using continuum source of excitation was developed. Calibration and sample solutions of cadmium, with and without uranium were prepared by mixing different volumes of standard solutions of cadmium and uranyl nitrate, both prepared in suprapure nitric acid. The concentration of Cd in calibration solutions and samples was in the range of 6 to 90 μg/mL whereas the concentration of Cd with respect to U ranged from 90 to 700 μg/g of U. From the calibration solutions and samples containing uranium, the major matrix uranium was selectively extracted using 30% tri-n-butyl phosphate in dodecane. Fixed volumes (1.5 mL) of aqueous phases thus obtained were taken directly in specially designed in-house fabricated leak proof Perspex sample cells for the energy dispersive X-ray fluorescence measurements and calibration plots were made by plotting Cd Kα intensity against respective Cd concentration. For the calibration solutions not having uranium, the energy dispersive X-ray fluorescence spectra were measured without any extraction and Cd calibration plots were made accordingly. The results obtained showed a precision of 2% (1σ) and the results deviated from the expected values by < 4% on average.

  1. X-ray apparatus

    International Nuclear Information System (INIS)

    Grady, J.K.

    1985-01-01

    X-ray apparatus is described which has a shutter between the X-ray source and the patient. The shutter controls the level of radiation to which the patient is exposed instead of merely discontinuing the electric power supplied to the source. When the shutter is opened a radiation sensor senses the level of X-radiation. When a preset quantity of X-radiation has been measured an exposure control closes the shutter. Instead of using the radiation sensor, the integrated power supplied to the anode of the X-ray source may be measured. (author)

  2. Optimization of a spectrometry for energy-dispersive x-ray fluorescence analysis by x-ray tube in combination with secondary target for multielements determination of sediment samples

    International Nuclear Information System (INIS)

    Zaidi Embong; Husin Wagiran

    1997-01-01

    The design of an energy-dispersive X-ray fluorescence spectrometer equipped with a conventional X-ray tube and secondary target is described. The spectrometer system constructed in our laboratory consists of a semiconductor detector system, irradiation chamber and X-ray tube. Primary source from X-ray tube was used to produced secondary X-ray from selenium, molybdenum and cadmium targets. The fluorescence X-ray from the sample was detected using Si(Li) detector with resolution of 0. 175 keV (Mn-K(x). The spectrometer was used for determination of multi-elements with atomic number between 20 to 44 in river sediment samples. The X-ray spectrum, from the samples were analysed using computer software which was developed based on Marquardt method. Optimal conditions and detection limits are determined experimentally by variation of excitation parameters for each combination of secondary target and tube voltage

  3. Modeling of collisional excited x-ray lasers using short pulse laser pumping

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Akira; Moribayashi, Kengo; Utsumi, Takayuki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-03-01

    A simple atomic kinetics model of electron collisional excited x-ray lasers has been developed. The model consists of a collisional radiative model using the average ion model (AIM) and a detailed term accounting (DTA) model of Ni-like Ta. An estimate of plasma condition to produce gain in Ni-like Ta ({lambda}=44A) is given. Use of the plasma confined in a cylinder is proposed to preform a uniform high density plasma from 1-D hydrodynamics calculations. (author)

  4. X-band RF Photoinjector for Laser Compton X-ray and Gamma-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R. A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Anderson, G. G. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Anderson, S. G. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Gibson, D. J. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Barty, C. J. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2015-05-06

    Extremely bright narrow bandwidth gamma-ray sources are expanding the application of accelerator technology and light sources in new directions. An X-band test station has been commissioned at LLNL to develop multi-bunch electron beams. This multi-bunch mode will have stringent requirements for the electron bunch properties including low emittance and energy spread, but across multiple bunches. The test station is a unique facility featuring a 200 MV/m 5.59 cell X-band photogun powered by a SLAC XL4 klystron driven by a Scandinova solid-state modulator. This paper focuses on its current status including the generation and initial characterization of first electron beam. Design and installation of the inverse-Compton scattering interaction region and upgrade paths will be discussed along with future applications.

  5. Direct intensity calibration of X-ray grazing-incidence microscopes with home-lab source

    Science.gov (United States)

    Li, Yaran; Xie, Qing; Chen, Zhiqiang; Xin, Qiuqi; Wang, Xin; Mu, Baozhong; Wang, Zhanshan; Liu, Shenye; Ding, Yongkun

    2018-01-01

    Direct intensity calibration of X-ray grazing-incidence microscopes is urgently needed in quantitative studies of X-ray emission from laser plasma sources in inertial confinement fusion. The existing calibration methods for single reflecting mirrors, crystals, gratings, filters, and X-ray detectors are not applicable for such X-ray microscopes due to the specific optical structure and the restrictions of object-image relation. This article presents a reliable and efficient method that can be performed using a divergent X-ray source and an energy dispersive Si-PIN (silicon positive-intrinsic-negative) detector in an ordinary X-ray laboratory. The transmission theory of X-ray flux in imaging diagnostics is introduced, and the quantities to be measured are defined. The calibration method is verified by a W/Si multilayer-coated Kirkpatrick-Baez microscope with a field of view of ˜95 μm at 17.48 keV. The mirror reflectance curve in the 1D coordinate is drawn with a peak value of 20.9% and an uncertainty of ˜6.0%.

  6. Analysis of fresco paintings by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Cechak, T.; Gerndt, J.; Musilek, L.; Kopecka, I.

    2000-01-01

    In this work we present the application of X-ray fluorescence analysis (XRFA) to examine fresco paintings from the Karlstejn castle. The X-ray fluorescence apparatus built and operated in the Laboratory of Quantitative Methods in Research of Ancient Monuments was used for the purpose of fresco paintings measurements. The X-ray sources (radionuclides) generate the characteristic X-ray photons from the sample. The Si(Li) detector measures numbers and energies of photons emitted from the specimen. The energy and number of photons detected can be converted into kind and amount of measured atoms. These results give data for qualitative and quantitative analysis of samples. XRFA is relatively simple and non-destructive method. Capability of in-situ measurement is one of big advantages of this method. The radionuclide sources of exciting radiation (e.g. 55 Fe enables the excitation of elements with Z up to 23, 238 Pu is used in interval of Z from 20 to 39 etc.) were used. An Si(Li) semiconductor detector with a 5 l Dewar vessel and portable spectroscopy system enable the in situ measurement. Narrow collimation of the exciting beam makes it possible to select the measured area of fresco painting. The valuable fresco paintings from the Karlstejn castle were investigated in this way. The measurements were carried out in collaboration with the Analytical Laboratory of the State Institute for the Preservation of Historic Monuments. A suitable analysis of paintings makes it possible to detect the kind of colours and evaluate changes in the surface colour of paintings and suggest useful and timely procedures for their conservation and restoration. (author)

  7. Laboratory source based full-field x-ray microscopy at 9 keV

    Energy Technology Data Exchange (ETDEWEB)

    Fella, C.; Balles, A.; Wiest, W. [Lehrstuhl für Röntgenmikroskopie, Julius-Maximilians-Universität, 97074 Würzburg (Germany); Zabler, S.; Hanke, R. [Lehrstuhl für Röntgenmikroskopie, Julius-Maximilians-Universität, 97074 Würzburg (Germany); Fraunhofer Development Center X-Ray Technology (EZRT), Flugplatzstrasse 75, 90768 Fürth (Germany)

    2016-01-28

    In the past decade, hard x-ray transmission microscopy experienced tremendous developments. With the avail-ability of efficient Fresnel zone plates, even set-ups utilizing laboratory sources were developed [1]. In order to improve the performance of these x-ray microscopes, novel approaches to fabricate optical elements [2] and brighter x-ray tubes [3] are promising candidates. We are currently building a laboratory transmission x-ray microscope for 9.25 keV, using an electron impact liquid-metal-jet anode source. Up to now, the further elements of our setup are: a polycapillary condenser, a tungsten zone plate, and a scintillator which is optically coupled to a CMOS camera. However, further variations in terms of optical elements are intended. Here we present the current status of our work, as well as first experimental results.

  8. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  9. Multiband Diagnostics of Unidentified 1FGL Sources with Suzaku and Swift X-Ray Observations

    Science.gov (United States)

    Takeuchi, Y.; Kataoka, J.; Maeda, K.; Takahashi, Y.; Nakamori, T.; Tahara, M.

    2013-10-01

    We have analyzed all the archival X-ray data of 134 unidentified (unID) gamma-ray sources listed in the first Fermi/LAT (1FGL) catalog and subsequently followed up by the Swift/XRT. We constructed the spectral energy distributions (SEDs) from radio to gamma-rays for each X-ray source detected, and tried to pick up unique objects that display anomalous spectral signatures. In these analyses, we target all the 1FGL unID sources, using updated data from the second Fermi/LAT (2FGL) catalog on the Large Area Telescope (LAT) position and spectra. We found several potentially interesting objects, particularly three sources, 1FGL J0022.2-1850, 1FGL J0038.0+1236, and 1FGL J0157.0-5259, which were then more deeply observed with Suzaku as a part of an AO-7 program in 2012. We successfully detected an X-ray counterpart for each source whose X-ray spectra were well fitted by a single power-law function. The positional coincidence with a bright radio counterpart (currently identified as an active galactic nucleus, AGN) in the 2FGL error circles suggests these sources are definitely the X-ray emission from the same AGN, but their SEDs show a wide variety of behavior. In particular, the SED of 1FGL J0038.0+1236 is not easily explained by conventional emission models of blazars. The source 1FGL J0022.2-1850 may be in a transition state between a low-frequency peaked and a high-frequency peaked BL Lac object, and 1FGL J0157.0-5259 could be a rare kind of extreme blazar. We discuss the possible nature of these three sources observed with Suzaku, together with the X-ray identification results and SEDs of all 134 sources observed with the Swift/XRT.

  10. The X-ray eclipse geometry of the super-soft X-ray source CAL 87

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, T.; Lopes de Oliveira, R. [Departamento de Física, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 São Cristóvão, SE (Brazil); Borges, B. W., E-mail: tribeiro@ufs.br, E-mail: rlopes@ufs.br, E-mail: bernardo@astro.ufsc.br [Universidade Federal de Santa Catarina, Campus Araranguá, 88905-120 Araranguá, SC (Brazil)

    2014-09-01

    We explore XMM-Newton observations of the eclipsing super-soft X-ray source CAL 87 in order to map the accretion structures of the system. Indirect imaging techniques were applied in X-ray light curves to provide eclipse maps. The surface brightness distribution exhibits an extended and symmetric emission, and a feature is revealed from the hardest X-rays that is likely due to a bright spot. A rate of P-dot =(+6±2)×10{sup −10} for changes in the orbital period of the system was derived from the eclipses. There is no significant variation of the emission lines even during eclipses, arguing that the lines are formed in an extended region. The continuum emission dominates the decrease in flux that is observed during eclipses. The O VIII Lyα line reveals a broadening velocity that is estimated to be 365{sub −69}{sup +65} km s{sup –1} (at 1σ), marginal evidence for asymmetry in its profile, and sometimes shows evidence of double-peaked emission. Together, the results support that the wind-driven mass transfer scenario is running in CAL 87.

  11. How to Model Super-Soft X-ray Sources?

    Science.gov (United States)

    Rauch, Thomas

    2012-07-01

    During outbursts, the surface temperatures of white dwarfs in cataclysmic variables exceed by far half a million Kelvin. In this phase, they may become the brightest super-soft sources (SSS) in the sky. Time-series of high-resolution, high S/N X-ray spectra taken during rise, maximum, and decline of their X-ray luminosity provide insights into the processes following such outbursts as well as in the surface composition of the white dwarf. Their analysis requires adequate NLTE model atmospheres. The Tuebingen Non-LTE Model-Atmosphere Package (TMAP) is a powerful tool for their calculation. We present the application of TMAP models to SSS spectra and discuss their validity.

  12. Characteristics of a multi-keV monochromatic point x-ray source

    Indian Academy of Sciences (India)

    Temporal, spatial and spectral characteristics of a multi-keV monochromatic point x-ray source based on vacuum diode with laser-produced plasma as cathode are presented. Electrons from a laser-produced aluminium plasma were accelerated towards a conical point tip titanium anode to generate K-shell x-ray radiation.

  13. Alpha particle excited x-ray fluorescence analysis for trace elements in cervical spinal cords of amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Mizumoto, Yoshihiko; Iwata, Shiro; Sasajima, Kazuhisa; Yase, Yoshio; Yoshida, Shohei.

    1980-01-01

    The mean contents of trace elements in anterior gray horn section of cervical spinal cords of six amyotrophic lateral sclerosis (ALS) cases were relatively determined against those of six control cases by α-particle excited X-ray fluorescence analysis. The anterior gray horn section of cervical spinal cord samples were excited by 1.6 MeV α-particle beam of 2 mm diameter accelerated with a Van de Graaff accelerator, and characteristic X-ray spectra were measured with a Si(Li) detector. From the peak areas on the X-ray spectra, the relative mean contents of the trace elements in cervical spinal cords of ALS and control cases were determined. As a result, the X-ray peaks of Al, Si, P, S, Cl, K, Ca, Ti, V, Mn, Fe, Cu and Zn were detected. The contents of Al, Si, P, Ca, Ti, V, Mn and Fe in ALS cases were higher than those in control cases. The contents of S, Cl, K, Cu and Zn in ALS and in control cases were equal to each other within standard deviation. The precipitation mechanisms of Al, Si, P, Ca, Ti, V, Mn and Fe into cervical spinal cord of ALS cases are discussed on the basis of the previous studies. (author)

  14. Development of full-field x-ray phase-tomographic microscope based on laboratory x-ray source

    Science.gov (United States)

    Takano, H.; Wu, Y.; Momose, A.

    2017-09-01

    An X-ray phase tomographic microscope that can quantitatively measure the refractive index of a sample in three dimensions with a high spatial resolution was developed by installing a Lau interferometer consisting of an absorption grating and a π/2 phase grating into the optics of an X-ray microscope. The optics comprises a Cu rotating anode X-ray source, capillary condenser optics, and a Fresnel zone plate for the objective. The microscope has two optical modes: a large-field-of-view mode (field of view: 65 μm x 65 μm) and a high-resolution mode (spatial resolution: 50 nm). Optimizing the parameters of the interferometer yields a self-image of the phase grating with 60% visibility. Through the normal fringe-scanning measurement, a twin phase image, which has an overlap of two phase image of opposite contrast with a shear distance much larger than system resolution, is generated. Although artifacts remain to some extent currently when a phase image is calculated from the twin phase image, this system can obtain high-spatial-resolution images resolving 50-nm structures. Phase tomography with this system has also been demonstrated using a phase object.

  15. Design Considerations of a Virtual Laboratory for Advanced X-ray Sources

    Science.gov (United States)

    Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.

    2004-11-01

    The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.

  16. Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, S., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Beye, M., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Pietzsch, A.; Quevedo, W.; Hantschmann, M. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ochmann, M.; Huse, N. [Institute for Nanostructure and Solid State Physics, University of Hamburg, Jungiusstr. 11, 20355 Hamburg, Germany and Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg (Germany); Ross, M.; Khalil, M. [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States); Minitti, M. P.; Turner, J. J.; Moeller, S. P.; Schlotter, W. F.; Dakovski, G. L. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Föhlisch, A. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam (Germany)

    2015-02-09

    The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross correlation response.

  17. Soft-X-Ray Projection Lithography Using a High-Repetition-Rate Laser-Induced X-Ray Source for Sub-100 Nanometer Lithography Processes

    NARCIS (Netherlands)

    E. Louis,; F. Bijkerk,; Shmaenok, L.; Voorma, H. J.; van der Wiel, M. J.; Schlatmann, R.; Verhoeven, J.; van der Drift, E. W. J. M.; Romijn, J.; Rousseeuw, B. A. C.; Voss, F.; Desor, R.; Nikolaus, B.

    1993-01-01

    In this paper we present the status of a joint development programme on soft x-ray projection lithography (SXPL) integrating work on high brightness laser plasma sources. fabrication of multilayer x-ray mirrors. and patterning of reflection masks. We are in the process of optimization of a

  18. Illumination system for X-ray lithography

    International Nuclear Information System (INIS)

    Buckley, W.D.

    1989-01-01

    An X-ray lithography system is described, comprising: a point source of X-Ray radiation; a wafer plane disposed in spaced relation to the point source of X-Ray radiation; a mask disposed between the point source of X-Ray radiation and the wafer plane whereby X-Ray radiation from the point source of X-ray radiation passes through the mask to the water plane; and X-Ray absorbent means mounted between the point source of X-Ray radiation and the wafer plane, the X-Ray absorbent means being of quadratically absorption from maximum absorption at the center to minimum absorption at the edge so as to have a radial absorption gradient profile to compensate for radial flux variation of the X-Ray radiation

  19. Design, development and integration of a large scale multiple source X-ray computed tomography system

    International Nuclear Information System (INIS)

    Malcolm, Andrew A.; Liu, Tong; Ng, Ivan Kee Beng; Teng, Wei Yuen; Yap, Tsi Tung; Wan, Siew Ping; Kong, Chun Jeng

    2013-01-01

    X-ray Computed Tomography (CT) allows visualisation of the physical structures in the interior of an object without physically opening or cutting it. This technology supports a wide range of applications in the non-destructive testing, failure analysis or performance evaluation of industrial products and components. Of the numerous factors that influence the performance characteristics of an X-ray CT system the energy level in the X-ray spectrum to be used is one of the most significant. The ability of the X-ray beam to penetrate a given thickness of a specific material is directly related to the maximum available energy level in the beam. Higher energy levels allow penetration of thicker components made of more dense materials. In response to local industry demand and in support of on-going research activity in the area of 3D X-ray imaging for industrial inspection the Singapore Institute of Manufacturing Technology (SIMTech) engaged in the design, development and integration of large scale multiple source X-ray computed tomography system based on X-ray sources operating at higher energies than previously available in the Institute. The system consists of a large area direct digital X-ray detector (410 x 410 mm), a multiple-axis manipulator system, a 225 kV open tube microfocus X-ray source and a 450 kV closed tube millifocus X-ray source. The 225 kV X-ray source can be operated in either transmission or reflection mode. The body of the 6-axis manipulator system is fabricated from heavy-duty steel onto which high precision linear and rotary motors have been mounted in order to achieve high accuracy, stability and repeatability. A source-detector distance of up to 2.5 m can be achieved. The system is controlled by a proprietary X-ray CT operating system developed by SIMTech. The system currently can accommodate samples up to 0.5 x 0.5 x 0.5 m in size with weight up to 50 kg. These specifications will be increased to 1.0 x 1.0 x 1.0 m and 100 kg in future

  20. Development of a fluorescent x-ray source for medical imaging

    Science.gov (United States)

    Toyofuku, F.; Tokumori, K.; Nishimura, K.; Saito, T.; Takeda, T.; Itai, Y.; Hyodo, K.; Ando, M.; Endo, M.; Naito, H.; Uyama, C.

    1995-02-01

    A fluorescent x-ray source for medical imaging, such as K-edge subtraction angiography and monochromatic x-ray CT, has been developed. Using a 6.5 GeV accumulation ring in Tsukuba, fluorescent x rays, which range from about 30 to 70 keV are generated by irradiating several target materials. Measurements have been made of output intensities and energy spectra for different target angles and extraction angles. The intensities of fluorescent x rays at a 30 mA beam current are on the order of 1-3×106 photons/mm2/s at 30 cm from the local spot where the incident beam is collimated to 1 mm2. A phantom which contains three different contrast media (iodine, barium, gadolinium) was used for the K-edge energy subtraction, and element selective CT images were obtained.

  1. Line x-ray source for diffraction enhanced imaging in clinical and industrial applications

    Science.gov (United States)

    Wang, Xiaoqin

    Mammography is one type of imaging modalities that uses a low-dose x-ray or other radiation sources for examination of breasts. It plays a central role in early detection of breast cancers. The material similarity of tumor-cell and health cell, breast implants surgery and other factors, make the breast cancers hard to visualize and detect. Diffraction enhanced imaging (DEI), first proposed and investigated by D. Chapman is a new x-ray radiographic imaging modality using monochromatic x-rays from a synchrotron source, which produced images of thick absorbing objects that are almost completely free of scatter. It shows dramatically improved contrast over standard imaging when applied to the same phantom. The contrast is based not only on attenuation but also on the refraction and diffraction properties of the sample. This imaging method may improve image quality of mammography, other medical applications, industrial radiography for non-destructive testing and x-ray computed tomography. However, the size, and cost, of a synchrotron source limits the application of the new modality to be applicable at clinical levels. This research investigates the feasibility of a designed line x-ray source to produce intensity compatible to synchrotron sources. It is composed of a 2-cm in length tungsten filament, installed on a carbon steel filament cup (backing plate), as the cathode and a stationary oxygen-free copper anode with molybdenum coating on the front surface serves as the target. Characteristic properties of the line x-ray source were computationally studied and the prototype was experimentally investigated. SIMIION code was used to computationally study the electron trajectories emanating from the filament towards the molybdenum target. A Faraday cup on the prototype device, proof-of-principle, was used to measure the distribution of electrons on the target, which compares favorably to computational results. The intensities of characteristic x-ray for molybdenum

  2. Microfocus x-ray imaging of traceable pointlike {sup 22}Na sources for quality control

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Oda, K.; Sato, Y.; Ito, H.; Masuda, S.; Yamada, T.; Matsumoto, M.; Murayama, H.; Takei, H. [Allied Health Sciences, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa 252-0373 (Japan); Positron Medical Center, Tokyo Metropolitan Institute of Gerontology Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015 (Japan); Advanced Industrial Science and Technology (AIST) Central 2, Umezono 1-1-1, Tsukuba-shi, Ibaraki 305-8568 (Japan); Kanagawa Industrial Technology Center (KITC) Shimoimazumi 705-1, Ebina-shi, Kanagawa 243-0435 (Japan); Japan Radioisotope Association (JRIA) Komagome 2-28-45, Bunkyo-ku, Tokyo 113-8941 (Japan); Molecular Imaging Center, National Institute of Radiological Sciences Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Graduate School of Medical Sciences, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa 252-0373 (Japan)

    2012-07-15

    Purpose: The purpose of this study is to propose a microfocus x-ray imaging technique for observing the internal structure of small radioactive sources and evaluating geometrical errors quantitatively, and to apply this technique to traceable pointlike {sup 22}Na sources, which were designed for positron emission tomography calibration, for the purpose of quality control of the pointlike sources. Methods: A microfocus x-ray imaging system with a focus size of 0.001 mm was used to obtain projection x-ray images and x-ray CT images of five pointlike source samples, which were manufactured during 2009-2012. The obtained projection and tomographic images were used to observe the internal structure and evaluate geometrical errors quantitatively. Monte Carlo simulation was used to evaluate the effect of possible geometrical errors on the intensity and uniformity of 0.511 MeV annihilation photon pairs emitted from the sources. Results: Geometrical errors were evaluated with sufficient precision using projection x-ray images. CT images were used for observing the internal structure intuitively. As a result, four of the five examined samples were within the tolerance to maintain the total uncertainty below {+-}0.5%, given the source radioactivity; however, one sample was found to be defective. Conclusions: This quality control procedure is crucial and offers an important basis for using the pointlike {sup 22}Na source as a basic calibration tool. The microfocus x-ray imaging approach is a promising technique for visual and quantitative evaluation of the internal geometry of small radioactive sources.

  3. Source apportionment of aerosol particles using polycapillary slightly focusing X-ray lens

    Energy Technology Data Exchange (ETDEWEB)

    Sun Tianxi [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China) and Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China) and Beijing Radiation Center, Beijing 100875 (China)], E-mail: stxbeijing@163.com; Liu Zhiguo [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China) and Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China) and Beijing Radiation Center, Beijing 100875 (China)], E-mail: liuzgbeijing@163.com; Zhu Guanghua; Liu Hui [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Xu Qing [Institute of High Energy Physics, Chinese Academy of Science, Beijing 100039 (China); Li Yude; Wang Guangpu; Luo Ping; Pan Qiuli; Ding Xunliang [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2009-06-11

    A micro-X-ray fluorescence (Micro-XRF) spectrometer based on a polycapillary slightly focusing X-ray lens (PSFXRL) and laboratory X-ray source was designed to carry out the source apportionment of aerosol particles. In the distribution curve of the X-ray intensity in the focal spot of PSFXRL, there was a plateau with a diameter of about 65 {mu}m. The uniformity of this plateau was about 3%. This was helpful in measuring the XRF spectrum of a single aerosol particle in which the element distributions are not uniform. The minimum detection limit (MDL) of this Micro-XRF spectrometer was 15 ppm for the Fe-K{sub {alpha}}. The origins of the aerosol particles at the exit of a subway station and a construction site were apportioned. This Micro-XRF spectrometer has potential applications in analysis of single aerosol particles.

  4. New hard X-ray sources at 380 declination

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F.

    1981-01-01

    We report the detection of three new hard X-rays sources emitting in the range 15-150 KeV. Their observation was carried out by means of a balloon borne payload, consisting of two large area high spectral resolution Multiwire Spectroscopic Proportional Counters. (orig.)

  5. X-ray fluorescence analysis of low concentrations metals in geological samples and technological products

    Science.gov (United States)

    Lagoida, I. A.; Trushin, A. V.

    2016-02-01

    For the past several years many nuclear physics methods of quantitative elemental analysis have been designed. Many of these methods have applied in different devices which have become useful and effective instrument in many industrial laboratories. Methods of a matter structure analysis are based on the intensity detection of the X-ray radiation from the nuclei of elements which are excited by external X-ray source. The production of characteristic X-rays involves transitions of the orbital electrons of atoms in the target material between allowed orbits, or energy states, associated with ionization of the inner atomic shells. One of these methods is X-ray fluorescence analysis, which is widespread in metallurgical and processing industries and is used to identify and measure the concentration of the elements in ores and minerals on a conveyor belt. Samples of copper ore with known concentrations of elements, were taken from the Ural deposit. To excite the characteristic X-rays radionuclide sources 109Cd, with half-life 461.4 days were used. After finding the calibration coefficients, control measurements of samples and averaging of overall samples were made. The measurement error did not exceed 3%.

  6. Mass transfer in stellar X-ray sources

    International Nuclear Information System (INIS)

    Verbunt, F.

    1982-01-01

    This thesis deals with mass transfer in the binary stars that emit X-rays. Optical observations on two sources are presented: 2A0311-227 and Cen X-4. The transferred matter will often enter a gaseous disk around the compact star, and spiral inwards slowly through this disk. The conditions for the formation of such a disk are investigated and the equations governing its structure are presented. Different models are discussed and it is concluded that different models lead to very similar results for those regions of the disk where gas pressure is more important than radiative pressure, and that these results agree fairly well with observations. No consistent model has been constructed as yet for the region where radiative pressure is dominant. Theoretically one predicts that the optical light emitted by a disk around a neutron star is mainly caused by X-ray photons from the immediate surroundings of the neutron star that hit the outer disk surface, are absorbed, thermalised, and re-emitted in the optical and ultraviolet regions of the spectrum. This expectation is verified by comparison with the collected observational data of low-mass X-ray binaries. Finally the author investigates which mechanism is responsible for the mass transfer in systems where the mass-losing star is less massive than the sun. (Auth.)

  7. Microfocussing of synchrotron X-rays using X-ray refractive lens developed at Indus-2 deep X-ray lithography beamline

    International Nuclear Information System (INIS)

    Dhamgaye, V.P.; Tiwari, M.K.; Lodha, G.S.; Sawhney, K.J.S.

    2014-01-01

    X-ray lenses are fabricated in polymethyl methacrylate using deep X-ray lithography beamline of Indus-2. The focussing performance of these lenses is evaluated using Indus-2 and Diamond Light Source Ltd. The process steps for the fabrication of X-ray lenses and microfocussing at 10 keV at moderate and low emittance sources are compared. (author)

  8. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source (HTPD 08 paper)

    International Nuclear Information System (INIS)

    Haugh, M; Schneider, M B

    2008-01-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 (micro)m square pixels, and 15 (micro)m thick. A multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE ∼ 10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager

  9. Novel X-ray telescopes for wide-field X-ray monitoring

    International Nuclear Information System (INIS)

    Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.

    2005-01-01

    We report on fully innovative very wide-field of view X-ray telescopes with high sensitivity as well as large field of view. The prototypes are very promising, allowing the proposals for space projects with very wide-field Lobster-eye X-ray optics to be considered. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study and to understand various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. The Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science

  10. kHz femtosecond laser-plasma hard X-ray and fast ion source

    International Nuclear Information System (INIS)

    Thoss, A.; Korn, G.; Stiel, H.; Voigt, U.; Elsaesser, T.; Richardson, M.C.; Siders, C.W.; Faubel, M.

    2002-01-01

    We describe the first demonstration of a new stable, kHz femtosecond laser-plasma source of hard x-ray continuum and K α emission using a thin liquid metallic jet target. kHz femtosecond x-ray sources will find many applications in time-resolved x-ray diffraction and microscopy studies. As high intensity lasers become more compact and operate at increasingly high repetition-rates, they require a target configuration that is both repeatable from shot-to-shot and is debris-free. We have solved this requirement with the use of a fine (10-30 μm diameter) liquid metal jet target that provides a pristine, unperturbed filament surface at rates >100 kHz. A number of liquid metal targets are considered. We will show hard x-ray spectra recorded from liquid Ga targets that show the generation of the 9.3 keV and 10.3 keV, K α and K β lines superimposed on a multi-keV Bremsstrahlung continuum. This source was generated by a 50fs duration, 1 kHz, 2W, high intensity Ti:Sapphire laser. We will discuss the extension of this source to higher powers and higher repetition rates, providing harder x-ray emission, with the incorporation of pulse-shaping and other techniques to enhance the x-ray conversion efficiency. Using the same liquid target technology, we have also demonstrated the generation of forward-going sub-MeV protons from a 10 μm liquid water target at 1 kHz repetition rates. kHz sources of high energy ions will find many applications in time-resolved particle interaction studies, as well as lead to the efficient generation of short-lived isotopes for use in nuclear medicine and other applications. The protons were detected with CR-39 track detectors both in the forward and backward directions up to energies of ∼500 keV. As the intensity of compact high repetition-rate lasers sources increase, we can expect improvements in the energy, conversion efficiency and directionality to occur. The impact of these developments on a number of fields will be discussed. As compact

  11. Spin-Orbital Excitations in Ca2RuO4 Revealed by Resonant Inelastic X-Ray Scattering

    DEFF Research Database (Denmark)

    Das, L.; Forte, F.; Fittipaldi, R.

    2018-01-01

    The strongly correlated insulator Ca2RuO4 is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K-edge resonant inelastic x-ray scatt......-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by Hund's coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca2RuO4.......The strongly correlated insulator Ca2RuO4 is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K-edge resonant inelastic x......-ray scattering study of the antiferromagnetic Mott insulating state of Ca2RuO4. A set of low-energy (about 80 and 400 meV) and high-energy (about 1.3 and 2.2 eV) excitations are reported, which show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band...

  12. Quasimonochromatic x-ray source using photoabsorption-edge transition radiation

    International Nuclear Information System (INIS)

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Harris, J.L.; Maruyama, X.K.; Bergstrom, J.C.; Caplan, H.S.; Silzer, R.M.; Skopik, D.M.

    1991-01-01

    By designing transition radiators to emit x rays at the foil material's K-, L-, or M-shell photoabsorption edge, the x-ray spectrum is narrowed. The source is quasimonochromatic, directional, and intense and uses an electron beam whose energy is considerably lower than that needed for synchrotron sources. Depending upon the selection of foil material, the radiation can be produced wherever there is a photoabsorption edge. In this paper we report the results of the measurement of the x-ray spectrum from a transition radiator composed of 10 foils of 2-μm titanium and exposed to low-current, 90.2-MeV electrons. The measured band of emission was from 3.2 to 5 keV. In addition, a measurment was performed of the total power from a transition radiator composed of 18 foils of 2.0-μm copper exposed to a high-average-current electron beam of 40 μA and at energies of 135, 172, and 200 MeV. The maximum measured power was 4.0 mW. The calculated band of emission was from 4 to 9 keV

  13. Measurement of spherical compound refractive X-ray lens at ANKA synchrotron radiation source

    International Nuclear Information System (INIS)

    Dudchik, Yu.I.; Simon, R.; Baumbach, T.

    2007-01-01

    Parameters of compound refractive X-ray lens were measured at ANKA synchrotron radiation source. The lens consists of 224 spherical concave epoxy microlenses formed inside glass capillary. The curvature radius of individual microlens is equal to 100 microns. Measured were: X-ray focal spot, lens focal length and gain in intensity. The energy of X-ray beam was equal to 12 keV and 14 keV. It is shown that when X-ray lens is used, the gain in intensity of the X-ray beam in some cases may exceed value of 100. Tested lens is suitable to focus X-rays into, at least, 2-microns in size spot. (authors)

  14. Special issue on compact x-ray sources

    Science.gov (United States)

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities

  15. Neutron and X-ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, Gabriella [SLAC National Accelerator Lab., Menlo Park, CA (United States); Denes, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gruener, Sol [Cornell Univ., Ithaca, NY (United States); Lessner, Elianne [Dept. of Energy (DOE), Washington DC (United States). Office of Science Office of Basic Energy Sciences

    2012-08-01

    The Basic Energy Sciences (BES) X-ray and neutron user facilities attract more than 12,000 researchers each year to perform cutting-edge science at these state-of-the-art sources. While impressive breakthroughs in X-ray and neutron sources give us the powerful illumination needed to peer into the nano- to mesoscale world, a stumbling block continues to be the distinct lag in detector development, which is slowing progress toward data collection and analysis. Urgently needed detector improvements would reveal chemical composition and bonding in 3-D and in real time, allow researchers to watch “movies” of essential life processes as they happen, and make much more efficient use of every X-ray and neutron produced by the source The immense scientific potential that will come from better detectors has triggered worldwide activity in this area. Europe in particular has made impressive strides, outpacing the United States on several fronts. Maintaining a vital U.S. leadership in this key research endeavor will require targeted investments in detector R&D and infrastructure. To clarify the gap between detector development and source advances, and to identify opportunities to maximize the scientific impact of BES user facilities, a workshop on Neutron and X-ray Detectors was held August 1-3, 2012, in Gaithersburg, Maryland. Participants from universities, national laboratories, and commercial organizations from the United States and around the globe participated in plenary sessions, breakout groups, and joint open-discussion summary sessions. Sources have become immensely more powerful and are now brighter (more particles focused onto the sample per second) and more precise (higher spatial, spectral, and temporal resolution). To fully utilize these source advances, detectors must become faster, more efficient, and more discriminating. In supporting the mission of today’s cutting-edge neutron and X-ray sources, the workshop identified six detector research challenges

  16. X-ray excited optical luminescence (XEOL) and its application to porous silicon

    International Nuclear Information System (INIS)

    Hill, D.A.

    1998-09-01

    X-ray Excited Optical Luminescence (XEOL) is investigated as a local structural probe of the light-emitting sites in porous silicon. A detailed microscopic model of the XEOL process in porous silicon is proposed. A central aspect of the technique is an assessment of the spatial separation between the primary photoionisation event and subsequent optical radiative recombination. By constructing a Monte Carlo simulation of hot electron propagation in silicon using both elastic and inelastic scattering cross-sections, the mean minimum range of luminescence excitation can be calculated. This range is estimated as 546±1A for the silicon K-edge (∼ 1839eV), but is reduced to 8.9±0.1A for the silicon L 2,3 -edge (∼ 99eV). From known porous silicon properties, it is concluded that this mean minimum range is comparable to the actual range of excitation. Hence, more localised structural information may be obtained from L 2,3 -edge XEOL measurements. This important difference between the two spectra has been neglected in previous studies. Simultaneous measurements of the XEOL and total electron yield (TEY) x-ray absorption spectra (XAS) have been conducted at both the silicon K-edge and L 2,3 -edge for various porous silicon samples and related materials. Measurements have been conducted at the Si K-edge on a rapid thermally oxidised (RTO) porous silicon sample. XEOL spectra yield two distinct luminescence bands in the visible region. From multi-bunch wavelength-selective XEOL measurements, it is concluded that there are blue luminescent defective silica sites together with a red luminescent site originating from silicon-like material. The spectral time decay curve under pulsed x-ray excitation gives two distinct decay components; one fast in the range of a few nanoseconds and the other slow in the range of microseconds. Time-resolved XEOL measurements in single-bunch mode show that the fast band mirrors the blue wavelength XEOL whereas the slow band correlates with the

  17. X-ray microscopy using collimated and focussed synchrotron radiation

    International Nuclear Information System (INIS)

    Jones, K.W.; Kwiatek, W.M.; Gordon, B.M.

    1987-01-01

    X-ray microscopy is a field that has developed rapidly in recent years. Two different approaches have been used. Zone plates have been employed to produce focused beams with sizes as low as 0.07 μm for x-ray energies below 1 keV. Images of biological materials and elemental maps for major and minor low Z have been produced using above and below absorption edge differences. At higher energies collimators and focusing mirrors have been used to make small diameter beams for excitation of characteristic K- or L-x rays of all elements in the periodic table. The practicality of a single instrument combining all the features of these two approaches is unclear. The use of high-energy x rays for x-ray microscopy has intrinsic value for characterization of thick samples and determination of trace amounts of most elements. A summary of work done on the X-26 beam line at the National Synchrotron Light Source (NSLS) with collimated and focused x rays with energies above 4 keV is given here. 6 refs., 5 figs., 1 tab

  18. Micro-fresnel structures for microscopy of laser generated bright x-ray sources

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Shavers, D.C.; Flanders, D.C.; Smith, H.I.

    1979-01-01

    A brief parametric survey of the x-ray characteristics of a gold micro-disk irradiated at 3 x 10 14 watt/cm 2 by a 1 nsec Nd-glass laser pulse has been provided as an example of a laser generated bright x-ray source. It was shown that a simple phenomenological model of the laser generated x-ray source as a microscopic equilibrium plasma radiating as a blackbody for a finite time determined by its hydrodynamic disassembly and radiation losses, serves to provide an adequate approximation to the x-ray characteristics of such sources. The current state of x-ray microscopy within the LLL laser fusion program was briefly reviewed. Kirpatrick--Baez grazing incidence reflection x-ray microscopes are being used to provide 3 to 5 μm resolution, broadband images (ΔE/E approx. 0.3) over a spectral range from .6 keV to 3.5 keV. Zone Plate Coded Imaging is used to provide 5 to 10 μm resolution, broadband (ΔE/E approx. 0.5) images over a spectral range from 3 keV to 50 keV. Efficient x-ray lensing elements with anticipated submicron resolution are being developed for narrowband (ΔE/E approx. 10 -2 ) imaging applications over a spectral range .1 keV to 8 keV. The x-ray lens design is that of a transmission blazed Fresnel phase plate. Micro--Fresnel zone plates with 3200 A minimum linewidth have been fabricated and preliminary resolution tests begun. The first resolution test pattern, having minimum linewidth of 2.5 μm, was imaged in lambda = 8.34 A light with no difficulty. Newer test patterns with submicron minimum line are being prepared for the next stage of resolution testing. An off-axis Fresnel zone plate with 1600 A minimum linewidth is presently being fabricated for use as an imaging spectrometer in order to provide spatially separated, chromatically distinct images of characteristic line emissions from laser fusion targets

  19. X-ray holographic microscopy experiments at the Brookhaven synchrotron light source

    International Nuclear Information System (INIS)

    Howells, M.R.; Iarocci, M.; Kenney, J.; Kirz, J.; Rarback, H.

    1983-01-01

    Soft x-ray holographic microscopy is discussed from an experimental point of view. Three series of measurements have been carried out using the Brookhaven 750 MeV storage ring as an x-ray source. Young slits fringes, Gabor (in line) holograms and various data pertaining to the soft x-ray performance of photographic plates are reported. The measurements are discussed in terms of the technique for recording them and the experimental limitations in effect. Some discussion is also given of the issues involved in reconstruction using visible light

  20. Investigation of Deuterium Loaded Materials Subject to X-Ray Exposure

    Science.gov (United States)

    Benyo, Theresa L.; Steinetz, Bruce M.; Hendricks, Robert C.; Martin, Richard E.; Forsley, Lawrence P.; Daniels, Christopher C.; Chait, Arnon; Pines, Vladimir; Pines, Marianna; Penney, Nicholas; hide

    2017-01-01

    Results are presented from an exploratory study involving x-ray irradiation of select deuterated materials. Titanium deuteride plus deuterated polyethylene, deuterated polyethylene alone, and for control, hydrogen-based polyethylene samples and nondeuterated titanium samples were exposed to x-ray irradiation. These samples were exposed to various energy levels from 65 to 280 kV with prescribed electron flux from 500 to 9000 µA impinging on a tungsten braking target, with total exposure times ranging from 55 to 280 min. Gamma activity was measured using a high-purity germanium (HPGe) detector, and for all samples no gamma activity above background was detected. Alpha and beta activities were measured using a gas proportional counter, and for select samples beta activity was measured with a liquid scintillator spectrometer. The majority of the deuterated materials subjected to the microfocus x-ray irradiation exhibited postexposure beta activity above background and several showed short-lived alpha activity. The HPE and nondeuterated titanium control samples exposed to the x-ray irradiation showed no postexposure alpha or beta activities above background. Several of the samples (SL10A, SL16, SL17A) showed beta activity above background with a greater than 4s confidence level, months after exposure. Portions of SL10A, SL16, and SL17A samples were also scanned using a beta scintillator and found to have beta activity in the tritium energy band, continuing without noticeable decay for over 12 months. Beta scintillation investigation of as-received materials (before x-ray exposure) showed no beta activity in the tritium energy band, indicating the beta emitters were not in the starting materials.

  1. Demonstration of Laser Plasma X-Ray Source with X-Ray Collimator Final Report CRADA No. TC-1564-99

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Forber, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    This collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and JMAR Research, Inc. (JRI), was to demonstrate that LLNL x-ray collimators can effectively increase the wafer throughput of JRI's laser based x-ray lithography systems. The technical objectives were expected to be achieved by completion of the following tasks, which are separated into two task lists by funding source. The organization (LLNL or JMAR) having primary responsibility is given parenthetically for each task.

  2. X-ray fluorescence in geology

    International Nuclear Information System (INIS)

    Dutra, C.V.; Gomes, C.B.

    1990-01-01

    This work is about the X-ray fluorescence aplication in geology. It's showing the X-ray origin and excitation. About the instrumentation this work shows the following: X-ray tubes, colimators, analysers crystals, detectors, amplifiers, pulse height selector, and others electronic components. By X-ray fluorescente are done quantitative and qualitative geological analysis and this work shows this analysis and its detection limits. The problems determination is the example. In this work was done yet the comparative analysis of the various instrumental methods in geochemistry. (C.G.) [pt

  3. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Ohsuka, Shinji, E-mail: ohsuka@crl.hpk.co.jp [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202 (Japan); Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Nakano, Tomoyasu [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Ray-Focus Co. Ltd., 6009 Shinpara, Hamakita-ku, Hamamatsu-City, 434-0003 (Japan); Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  4. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    Science.gov (United States)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  5. Development and characterization of a tunable ultrafast X-ray source via inverse-Compton-scattering

    International Nuclear Information System (INIS)

    Jochmann, Axel

    2014-01-01

    Ultrashort, nearly monochromatic hard X-ray pulses enrich the understanding of the dynamics and function of matter, e.g., the motion of atomic structures associated with ultrafast phase transitions, structural dynamics and (bio)chemical reactions. Inverse Compton backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright X-ray pulses which can be used in a pump-probe experiment, but also for the investigation of the electron beam dynamics at the interaction point. The focus of this PhD work lies on the detailed understanding of the kinematics during the interaction of the relativistic electron bunch and the laser pulse in order to quantify the influence of various experiment parameters on the emitted X-ray radiation. The experiment was conducted at the ELBE center for high power radiation sources using the ELBE superconducting linear accelerator and the DRACO Ti:sapphire laser system. The combination of both these state-of-the-art apparatuses guaranteed the control and stability of the interacting beam parameters throughout the measurement. The emitted X-ray spectra were detected with a pixelated detector of 1024 by 256 elements (each 26μm by 26μm) to achieve an unprecedented spatial and energy resolution for a full characterization of the emitted spectrum to reveal parameter influences and correlations of both interacting beams. In this work the influence of the electron beam energy, electron beam emittance, the laser bandwidth and the energy-anglecorrelation on the spectra of the backscattered X-rays is quantified. A rigorous statistical analysis comparing experimental data to ab-initio 3D simulations enabled, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard X-ray source PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) and potential all optical gamma-ray sources. The results

  6. Spectral state transitions of the Ultraluminous X-ray Source IC 342 X-1

    Science.gov (United States)

    Marlowe, H.; Kaaret, P.; Lang, C.; Feng, H.; Grisé, F.; Miller, N.; Cseh, D.; Corbel, S.; Mushotzky, R. F.

    2014-10-01

    We observed the Ultraluminous X-ray Source (ULX) IC 342 X-1 simultaneously in X-ray and radio with Chandra and the JVLA to investigate previously reported unresolved radio emission coincident with the ULX. The Chandra data reveal a spectrum that is much softer than observed previously and is well modelled by a thermal accretion disc spectrum. No significant radio emission above the rms noise level was observed within the region of the ULX, consistent with the interpretation as a thermal state though other states cannot be entirely ruled out with the current data. We estimate the mass of the black hole using the modelled inner disc temperature to be 30 M_{⊙} ≲ M√{cosi}≲ 200 M_{⊙} based on a Shakura-Sunyaev disc model. Through a study of the hardness and high-energy curvature of available X-ray observations, we find that the accretion state of X-1 is not determined by luminosity alone.

  7. CARNAÚBA: The Coherent X-Ray Nanoprobe Beamline for the Brazilian Synchrotron SIRIUS/LNLS

    Science.gov (United States)

    Tolentino, Hélio C. N.; Soares, Márcio M.; Perez, Carlos A.; Vicentin, Flávio C.; Abdala, Dalton B.; Galante, Douglas; Teixeira, Verônica de C.; de Araújo, Douglas H. C.; Westfahl, Harry, Jr.

    2017-06-01

    The CARNAÚBA beamline is the tender-to-hard X-ray (2 - 15 keV) scanning nanoprobe planned for the 4th generation storage ring SIRIUS at the LNLS. CARNAÚBA uses an undulator source with vertical linear polarization in a low-beta straight section and grazing incidence-focusing mirrors to create a nanoprobe at 143 m from the source. The beamline optic is based on KB mirrors and provides high brilliance at an achromatic focal spot down to the diffraction limit diameter of ˜30 nm with a working distance of ˜6 cm. These characteristics are crucial for studying nanometric samples in experiments involving complex stages and environments. The CARNAÚBA beamline aims to perform raster scans using x-ray fluorescence, x-ray absorption spectroscopy, x-ray diffraction and coherent x-ray imaging techniques. Computed tomography will extend these methods to three dimensions.

  8. Ultraluminous supersoft X-ray sources

    Science.gov (United States)

    Liu, Jifeng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2017-06-01

    While ultraluminous supersoft X-ray sources (ULSs) bear features for intermediate mass black holes or very massive white dwarfs possibly close to Chandrasekhar mass limit, our recent discovery of processing relativistic baryonic jets from a prototype ULS in M81 demonstrate that they are not IMBHs or WDs, but black holes accreting at super-Eddington rates. This discovery strengthens the recent ideas that ULXs are stellar black holes with supercritical accretion, and provides a vivid manifestation of what happens when a black hole devours too much, that is, it will generate thick disk winds and fire out sub-relativistic baryonic jets along the funnel as predicted by recent numerical simulations.

  9. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    International Nuclear Information System (INIS)

    Schulze, D.; Anderson, S.; Mattigod, S.

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography

  10. New developments in the analysis and measurement of thicknesses by {beta}-particle excitation of X fluorescent rays; Nouveaux developpements de l'analyse et de la mesure des epaisseurs par excitation des raies de fluorescence X au moyen de particules {beta}; Novye usovershenstvovaniya analiza i izmereniya plotnosti putem vozbuzhdeniya fluorestsiruyushchikh spektrov rentgenovskogo lucha beta-chastitsami; Nuevos adelantos en el analisis y la medicion de espesores mediante la excitacion de rayos X por particulas beta

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, P [Commissariat a l' Energie Atomique, Saclay (France); Seibel, G [Institut de Recherches de la Siderurgie, St-Germain-en-Laye (France)

    1962-01-15

    The method of analysing and measuring the thickness of deposits by {beta}-X fluorescence which we previously described has been further developed. Using Pm{sup 147} and Kr{sup 85} sources, it is possible to reduce the background observed with Sr{sup 90}. We quote the results obtained for various thickness measurements of metal deposits, an analysis of the solutions, and the continuous measurement of calcium and iron in core samples. We describe experiments made for analysis of the X-radiation by crystal. (author) [French] Le procede d'analyse et de mesure des epaisseurs de depots par fluorescence {beta}-X que nous avons precedemment decrit a fait l'objet de nouveaux developpements. L'emploi de sources de {sup 147}Pm et de {sup 85}Kr permet de reduire le bruit de fond que l'on observe avec le {sup 90}Sr. Nous donnons les resultats obtenus pour diverses mesures d'epaisseurs de depots metalliques, l'analyse des solutions et la mesure en continu du calcium et du fer dans les carottes de minerais. Nous decrivons les essais effectues en vue d'analyser le rayonnement X au moyen d'un cristal. (author) [Spanish] Los autores han introducido nuevos perfeccionamientos en su procedimiento de analisis y de medicion de espesores de depositos por fluorescencia de rayos X excitada por particulas beta. La utilizacion de fuentes de {sup 147}Pm y de {sup 85}Kr permite reducir la actividad de fondo que se observa empleando {sup 90}Sr. Los autores exponen los resultados obtenidos en materia de mediciones de espesores de depositos metalicos, analisis de soluciones y medicion continua del calcio y del hierro en muestras de minerales extraidas por sondeo. Tambien describen los ensayos realizados con miras a analizar los rayos X por medio de un cristal. (author) [Russian] Protsess analiza i izmereniya plotnosti sloev putem fluorestsiruyushchikh beta- i rentgenovskikh luchej, kotoryj opisyvalsya nami ran'she, byl predmetom novykh usovershenstvovanij. Ispol'zovanie istochnikov prometeya-147 i

  11. Optical observations of binary X-ray sources

    International Nuclear Information System (INIS)

    Charles, P.

    1982-01-01

    Here I shall consider only those systems where the compact object is a neutron star (or in a few cases perhaps a black hole). Since van Paradijs (1982) has recently produced an excellent and comprehensive review of optical observations of compact galactic X-ray sources I shall summarise the basic properties of the optical counterparts and discuss a few representative systems in some detail. (orig./WL)

  12. A spherical model for the transient x-ray source A0620-00

    International Nuclear Information System (INIS)

    Dilworth, C.; Maraschi, L.; Perola, G.C.

    1977-01-01

    The continuum spectrum of the transient X-ray source A0620-00, from infrared to X-ray frequencies, is interpreted as emission from a uniform spherical cloud of hot gas in which the free-free spectrum is modified by Thomson scattering. On this basis, the radius and the density of the cloud, and the distance of the source, are derived. The change of the spectrum with the time indicates a decrease of both radius and density with decreasing luminosity. Considering the production of X-rays to be due to impulsive accretion in a low-mass binary system, these results open the question as to whether the accreting object is a white dwarf rather than a neutron star. (author)

  13. Propagation and scattering of high-intensity X-ray pulses in dense atomic gases and plasmas

    International Nuclear Information System (INIS)

    Weninger, Clemens

    2015-10-01

    Nonlinear spectroscopy in the X-ray domain is a promising technique to explore the dynamics of elementary excitations in matter. X-rays provide an element specificity that allows them to target individual chemical elements, making them a great tool to study complex molecules. The recent advancement of X-ray free electron lasers (XFELs) allows to investigate non-linear processes in the X-ray domain for the first time. XFELs provide short femtosecond X-ray pulses with peak powers that exceed previous generation synchrotron X-ray sources by more than nine orders of magnitude. This thesis focuses on the theoretical description of stimulated emission processes in the X-ray regime in atomic gases. These processes form the basis for more complex schemes in molecules and provide a proof of principle for nonlinear X-ray spectroscopy. The thesis also includes results from two experimental campaigns at the Linac Coherent Light Source and presents the first experimental demonstration of stimulated X-ray Raman scattering. Focusing an X-ray free electron laser beam into an elongated neon gas target generates an intense stimulated X-ray emission beam in forward direction. If the incoming X-rays have a photon energy above the neon K edge, they can efficiently photo-ionize 1s electrons and generate short-lived core excited states. The core-excited states decay mostly via Auger decay but have a small probability to emit a spontaneous X-ray photon. The spontaneous emission emitted in forward direction can stimulate X-ray emission along the medium and generate a highly directional and intense X-ray laser pulse. If the photon energy of the incoming X-rays however is below the ionization edge in the region of the pre-edge resonance the incoming X-rays can be inelastically scattered. This spontaneous X-ray Raman scattering process has a very low probability, but the spontaneously scattered photons in the beginning of the medium can stimulate Raman scattering along the medium. The

  14. Z-pinches as intense x-ray sources for high energy density physics application

    International Nuclear Information System (INIS)

    Matzen, M.K.

    1997-01-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads, producing implosions velocities as high as 100 cm/μs and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years 8 a radiation source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case. These large volume, long-lived radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Hydromagnetic Rayleigh-Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, Zn reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75±10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the Saturn n accelerator, and are a record for x-ray powers in the laboratory

  15. Equipment for x- and gamma ray radiography

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    The following topics related to the equipment for x - and gamma ray radiography are discussed in this chapter. The topics are x-ray source for Industrial Radiography: properties of x-ray, generation of x-ray, mechanism of x-ray production, x-ray equipment, power supply, distribution of x-ray intensity along the tube: gamma ray source for Industrial Radiography: properties of gamma rays, gamma ray sources, gamma ray projectors on cameras, source changing. Care of Radiographic Equipments: Merits and Demerits of x and Gamma Rays

  16. X-RAY OUTFLOWS AND SUPER-EDDINGTON ACCRETION IN THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1

    International Nuclear Information System (INIS)

    Walton, D. J.; Harrison, F. A.; Miller, J. M.; Reis, R. C.; Fabian, A. C.; Roberts, T. P.; Middleton, M. J.

    2013-01-01

    Studies of X-ray continuum emission and flux variability have not conclusively revealed the nature of ultraluminous X-ray sources (ULXs) at the high-luminosity end of the distribution (those with L X ≥ 10 40 erg s –1 ). These are of particular interest because the luminosity requires either super-Eddington accretion onto a black hole of mass ∼10 M ☉ or more standard accretion onto an intermediate-mass black hole. Super-Eddington accretion models predict strong outflowing winds, making atomic absorption lines a key diagnostic of the nature of extreme ULXs. To search for such features, we have undertaken a long, 500 ks observing campaign on Holmberg IX X-1 with Suzaku. This is the most sensitive data set in the iron K bandpass for a bright, isolated ULX to date, yet we find no statistically significant atomic features in either emission or absorption; any undetected narrow features must have equivalent widths less than 15-20 eV at 99% confidence. These limits are far below the ∼>150 eV lines expected if observed trends between mass inflow and outflow rates extend into the super-Eddington regime and in fact rule out the line strengths observed from disk winds in a variety of sub-Eddington black holes. We therefore cannot be viewing the central regions of Holmberg IX X-1 through any substantial column of material, ruling out models of spherical super-Eddington accretion. If Holmberg IX X-1 is a super-Eddington source, any associated outflow must have an anisotropic geometry. Finally, the lack of iron emission suggests that the stellar companion cannot be launching a strong wind and that Holmberg IX X-1 must primarily accrete via Roche-lobe overflow

  17. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K. [Lawrence Livermore National Laboratory, P.O. Box 808 L170, Livermore, California 94551 (United States); Hohenberger, M.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-06-15

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.

  18. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    Science.gov (United States)

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection

  19. X-ray micro-Tomography at the Advanced Light Source

    Science.gov (United States)

    The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...

  20. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  1. X-ray cardiovascular examination apparatus

    International Nuclear Information System (INIS)

    1977-01-01

    An X-ray source is mounted in an enclosure for angulating longitudinally about a horizontal axis. An X-ray-permeable, patient-supporting table is mounted on the top of the enclosure for executing lateral and longitudinal movements. An X-ray image-receiving device such as an X-ray image intensifier is mounted above the table on a vertically movable arm which is on a longitudinally movable carriage. Electric control means are provided for angulating the X-ray source and image intensifier synchronously as the image intensifier system is shifted longitudinally or vertically such that the central ray from the X-ray source is kept intensifier

  2. High resolution hard x-ray microscope on a second generation synchrotron source

    International Nuclear Information System (INIS)

    Tian Yangchao; Li Wenjie; Chen Jie; Liu Longhua; Liu Gang; Tian Jinping; Xiong Ying; Tkachuk, Andrei; Gelb, Jeff; Hsu, George; Yun Wenbing

    2008-01-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  3. THE BROADBAND XMM-NEWTON AND NuSTAR X-RAY SPECTRA OF TWO ULTRALUMINOUS X-RAY SOURCES IN THE GALAXY IC 342

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Vikram; Harrison, Fiona A.; Walton, Dominic J.; Furst, Felix; Grefenstette, Brian W.; Madsen, Kristin K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bachetti, Matteo; Barret, Didier; Webb, Natalie A. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Miller, Jon M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Fabian, Andrew C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn C. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Ptak, Andrew F.; Zhang, William W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2015-02-01

    We present results for two ultraluminous X-ray sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by ∼7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being 1.04{sub −0.06}{sup +0.08}×10{sup 40} erg s{sup –1} for IC 342 X-1 and 7.40 ± 0.20 × 10{sup 39} erg s{sup –1} for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like blackbody component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.

  4. High-voltage transistor converter for pulsed x-ray sources

    International Nuclear Information System (INIS)

    Krasil'nikov, S.B.; Kristalinskii, A.L.; Lozovoi, L.N.; Markov, S.N.; Sindalovskii, E.I.

    1986-01-01

    A 24-V/12-kV converter for MIRA-2D and NORA pulsed x-ray sources is described. When the low-voltage supply varies within 20-26 V, the frequency stability of the x-ray pulses is higher by a factor of 3 ≅ 3 than when the PRIMA converter is used. For 14-24 V, the average output power of the converter is independent of the load impedance and increases linearly with an increase in supply voltage. The efficiency of the converter reaches 60%. The converter operates in the temperature range of -40 to +60 0 C

  5. Improvement of detection limits in the annular 241Am radioisotope-excited X-ray fluorescence analysis for minor elements of environmental sample

    International Nuclear Information System (INIS)

    Thai My Phe; Ngo Quang Huy; Nguyen Van Suc; Tran Van Luyen; Nguyen Van Mai; Dao Van Hoang; Trinh Thi Bich

    2003-01-01

    The improvement of limit detection to elements Pb, Sr, Zr, Nd, and Ba in mud samples is presented. Two ways for reducing background radiation are: 1/ choosing the optimum γ-ray-excited X-ray assembly such as scattering angle (θ), filter for primary beam, excited holder, collimator for fluorescent lines, etc; 2/ using the chemical separation method to remove major composition for matrix reduction. (NHA)

  6. DIFFERENT TYPES OF ULTRALUMINOUS X-RAY SOURCES IN NGC 4631

    International Nuclear Information System (INIS)

    Soria, Roberto; Ghosh, Kajal K.

    2009-01-01

    We have re-examined the most luminous X-ray sources in the starburst galaxy NGC 4631, using XMM-Newton, Chandra, and ROSAT data. The most interesting source is a highly variable supersoft ultraluminous X-ray source (ULX). We suggest that its bolometric luminosity ∼ a few 10 39 erg s -1 in the high/supersoft state: this is an order of magnitude lower than estimated in previous studies, thus reducing the need for extreme or exotic scenarios. Moreover, we find that this source was in a noncanonical low/soft (kT ∼ 0.1-0.3 keV) state during the Chandra observation. By comparing the high and low state, we argue that the spectral properties may not be consistent with the expected behavior of an accreting intermediate-mass black hole. We suggest that recurrent super-Eddington outbursts with photospheric expansion from a massive white dwarf (M wd ∼> 1.3 M sun ), powered by nonsteady nuclear burning, may be a viable possibility, in alternative to the previously proposed scenario of a super-Eddington outflow from an accreting stellar-mass black hole. The long-term average accretion rate required for nuclear burning to power such white-dwarf outbursts in this source and perhaps in other supersoft ULXs is ∼(5-10) x 10 -6 M sun yr -1 : this is comparable to the thermal-timescale mass transfer rate invoked to explain the most luminous hard-spectrum ULXs (powered by black hole accretion). The other four most luminous X-ray sources in NGC 4631 (three of which can be classified as ULXs) appear to be typical accreting black holes, in four different spectral states: high/soft, convex-spectrum, power-law with soft excess, and simple power-law. None of them require masses ∼>50 M sun .

  7. Sources of linear polarized x-rays

    International Nuclear Information System (INIS)

    Aiginger, H.; Wobrauschek, P.

    1989-01-01

    Linear polarized X-rays are used in X-ray fluorescence analysis to decrease the background caused by scattered photons. Various experiments, calculations and constructions have demonstrated the possibility to produce polarized radiation in an analytical laboratory with an X-ray tube and polarizer-analyzer facilities as auxiliary equipment. The results obtained with Bragg-polarizers of flat and curved focussing geometry and of Barkla-polarizers are presented. The advantages and disadvantages of the method are discussed and compared with the respective quality of synchrotron radiation. Polarization by scattering reduces the intensity of the primary radiation. Recently much effort is devoted to the construction of integrated high power X-ray tube polarizer-analyzer arrangements. The detailed design, geometry and performance of such a facility is described. (author)

  8. Preliminary soft x-ray studies of beta-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Shek, M.L. [Brookhaven National Lab., Upton, NY (United States); Miyano, K.E.; Ederer, D.L. [Tulane Univ., New Orleans, LA (United States). Dept. of Physics; Dong, Q.Y.; Callcott, T.A. [Tennessee Univ., Knoxville, TN (United States). Dept. of Physics

    1994-06-01

    We have looked at beta-SiC with soft x-ray emission and photoemission spectroscopy. From the Si L{sub 23} and C K emissions, the Si s+d-like and C p partial density of states in the bulk valence band are identified, and compared with valence band photoemission. In addition to bulk electronic structural features, photoemission from a (3 {times} 2) Si-rich surface shows two surface-derived valence features at {approximately}{minus}2.6 and {approximately}{minus}1.6 eV relative to the Fermi level. The intensities of these valence features vary as those of surface Si 2p core level components shifted by {minus}0.5 eV and {minus}1.4 eV from the bulk-like SiC Si 2p core level. We have also used the Si L{sub 23} absorption edge as a probe of the unfilled states near the conduction, band minimum.

  9. An update on carbon nanotube-enabled X-ray sources for biomedical imaging.

    Science.gov (United States)

    Puett, Connor; Inscoe, Christina; Hartman, Allison; Calliste, Jabari; Franceschi, Dora K; Lu, Jianping; Zhou, Otto; Lee, Yueh Z

    2018-01-01

    A new imaging technology has emerged that uses carbon nanotubes (CNT) as the electron emitter (cathode) for the X-ray tube. Since the performance of the CNT cathode is controlled by simple voltage manipulation, CNT-enabled X-ray sources are ideal for the repetitive imaging steps needed to capture three-dimensional information. As such, they have allowed the development of a gated micro-computed tomography (CT) scanner for small animal research as well as stationary tomosynthesis, an experimental technology for large field-of-view human imaging. The small animal CT can acquire images at specific points in the respiratory and cardiac cycles. Longitudinal imaging therefore becomes possible and has been applied to many research questions, ranging from tumor response to the noninvasive assessment of cardiac output. Digital tomosynthesis (DT) is a low-dose and low-cost human imaging tool that captures some depth information. Known as three-dimensional mammography, DT is now used clinically for breast imaging. However, the resolution of currently-approved DT is limited by the need to swing the X-ray source through space to collect a series of projection views. An array of fixed and distributed CNT-enabled sources provides the solution and has been used to construct stationary DT devices for breast, lung, and dental imaging. To date, over 100 patients have been imaged on Institutional Review Board-approved study protocols. Early experience is promising, showing an excellent conspicuity of soft-tissue features, while also highlighting technical and post-acquisition processing limitations that are guiding continued research and development. Additionally, CNT-enabled sources are being tested in miniature X-ray tubes that are capable of generating adequate photon energies and tube currents for clinical imaging. Although there are many potential applications for these small field-of-view devices, initial experience has been with an X-ray source that can be inserted into the

  10. Pleiades: A Sub-picosecond Tunable X-ray Source at the LLNL Electron Linac

    International Nuclear Information System (INIS)

    Slaughter, Dennis; Springer, Paul; Le Sage, Greg; Crane, John; Ditmire, Todd; Cowan, Tom; Anderson, Scott G.; Rosenzweig, James B.

    2002-01-01

    The use of ultra fast laser pulses to generate very high brightness, ultra short (fs to ps) pulses of x-rays is a topic of great interest to the x-ray user community. In principle, femto-second-scale pump-probe experiments can be used to temporally resolve structural dynamics of materials on the time scale of atomic motion. The development of sub-ps x-ray pulses will make possible a wide range of materials and plasma physics studies with unprecedented time resolution. A current project at LLNL will provide such a novel x-ray source based on Thomson scattering of high power, short laser pulses with a high peak brightness, relativistic electron bunch. The system is based on a 5 mm-mrad normalized emittance photo-injector, a 100 MeV electron RF linac, and a 300 mJ, 35 fs solid-state laser system. The Thomson x-ray source produces ultra fast pulses with x-ray energies capable of probing into high-Z metals, and a high flux per pulse enabling single shot experiments. The system will also operate at a high repetition rate (∼ 10 Hz). (authors)

  11. Configuration interaction calculations and excitation rates of X-ray and EUV transitions in sulfurlike manganese

    Energy Technology Data Exchange (ETDEWEB)

    El-Maaref, A.A., E-mail: ahmed.maaref@azhar.edu.eg; Saddeek, Y.B.; Abou halaka, M.M.

    2017-02-15

    Highlights: • Fine-structure calculations of sulfurlike Mn have been performed using configuration interaction technique, CI. • The relativistic effects, Breit-Pauli Hameltonian, have been correlated to the CI calculations. • Excitation rates by electron impact of the Mn X ion have been evaluated up to ionization potential. - Abstract: Fine-structure calculations of energies and transition parameters have been performed using the configuration interaction technique (CI) as implemented in CIV3 code for sulfurlike manganese, Mn X. The calculations are executed in an intermediate coupling scheme using the Breit-Pauli Hamiltonian. As well as, energy levels and oscillator strengths are calculated using LANL code, where the calculations by LANL have been used to estimate the accuracy of the present CI calculations. The calculated energy levels, oscillator strengths, and lifetimes are in reasonable agreement with the published experimental and theoretical values. Electron impact excitation rates of the transitions emit soft X-ray and extreme ultraviolet (EUV) wavelengths have been evaluated. The level population densities are calculated using the collisional radiative model (CRM), as well. The collisional excitation rates and collision strengths have been calculated in the electron temperature range ≤ the ionization potential, ∼1–250 eV.

  12. The beta(+) decay and cosmic-ray half-life of Mn-54

    Science.gov (United States)

    Dacruz, M. T. F.; Norman, E. B.; Chan, Y. D.; Garcia, A.; Larimer, R. M.; Lesko, K. T.; Stokstad, R. G.; Wietfeldt, F. E.

    1993-03-01

    We performed a search for the beta(+) branch of Mn-54 decay. As a cosmic ray, Mn-54, deprived of its atomic electrons, can decay only via beta(+) and beta(-) decay, with a half-life of the order of 106 yr. This turns Mn-54 into a suitable cosmic chronometer for the study of cosmic-ray confinement times. We searched for coincident back-to-back 511-keV gamma-rays using two germanium detectors inside a Nal(Tl) annulus. An upper limit of 2 x 10-8 was found for the beta(+) decay branch, corresponding to a lower limit of 13.7 for the log ft value.

  13. Broadband X-ray spectra of the ultraluminous X-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.; Fuerst, F.; Madsen, K. K.; Rana, V.; Stern, D. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Bachetti, M.; Barret, D.; Webb, N. [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fabian, A. C.; Parker, M. L. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Ptak, A.; Zhang, W. W., E-mail: dwalton@srl.caltech.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-09-20

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X-ray coverage of this remarkable source up to ∼30 keV. Broadband observations were undertaken at two epochs, between which Holmberg IX X-1 exhibited both flux and strong spectral variability, increasing in luminosity from L {sub X} = (1.90 ± 0.03) × 10{sup 40} erg s{sup –1} to L {sub X} = (3.35 ± 0.03) × 10{sup 40} erg s{sup –1}. Neither epoch exhibits a spectrum consistent with emission from the standard low/hard accretion state seen in Galactic black hole binaries, which would have been expected if Holmberg IX X-1 harbors a truly massive black hole accreting at substantially sub-Eddington accretion rates. The NuSTAR data confirm that the curvature observed previously in the 3-10 keV bandpass does represent a true spectral cutoff. During each epoch, the spectrum appears to be dominated by two optically thick thermal components, likely associated with an accretion disk. The spectrum also shows some evidence for a nonthermal tail at the highest energies, which may further support this scenario. The available data allow for either of the two thermal components to dominate the spectral evolution, although both scenarios require highly nonstandard behavior for thermal accretion disk emission.

  14. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A. [Shenzhen College of International Education, 1st HuangGang Park St., Shenzhen, GuangDong (China); Luo, J. [Department of Biomedical Engineering, University at Buffalo, 332 Bonner Hall, Buffalo, NY 14260-1920 (United States); Wang, A. [Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Broadbent, C. [School of Engineering, Columbia University, 1130 Amsterdam Av., New York, NY 10027 (United States); Zhong, J. [Department of English, Dartmouth College, 6032 Sanborn House, Hanover, NH 03755 (United States); Dilmanian, F.A. [Departments of Radiation Oncology, Neurology, and Radiology, Stony Brook University, Stony Brook, NY 11794 (United States); Zafonte, F.; Zhong, Z. [National Synchrotron Light Source II, Brookhaven National Laboratory, Bldg. 743, Upton, NY 11973 (United States)

    2015-07-11

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  15. Analysis of River sediments from the Tigre river (Venezuela) by radioisotope excited x-ray fluorescence

    International Nuclear Information System (INIS)

    LaBrecque, J.J.; Rosales, P.A.; Schorin, H.

    1985-01-01

    This paper describes qualitative elemental scans by both energy dispersive (radioisotope excited) and conventional wavelength dispersive x-ray fluorescence of different grain size fractions of river sediments. An internal standard thin-film technique was used. The precision of Rb, Sr, Y and Zr determination for SY-3 standard reference rock and one real sample for five independently prepared samples is demonstrated

  16. Cold cathode diode X-ray source

    International Nuclear Information System (INIS)

    Cooperstein, G.; Lanza, R.C.; Sohval, A.R.

    1983-01-01

    A cold cathode diode X-ray source for radiation imaging, especially computed tomography, comprises a rod-like anode and a generally cylindrical cathode, concentric with the anode. The spacing between anode and cathode is so chosen that the diode has an impedance in excess of 100 ohms. The anode may be of tungsten, or of carbon with a tungsten and carbon coating. An array of such diodes may be used with a closely packed array of detectors to produce images of rapidly moving body organs, such as the beating heart. (author)

  17. ANALYSIS OF A STATE CHANGING SUPERSOFT X-RAY SOURCE IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Patel, B. [Department of Physics and Astronomy Rutgers, State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Di Stefano, R.; Primini, F. A.; Liu, J.; Scoles, S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Nelson, T. [Department of Physics, 1000 Hilltop Circle, University of Maryland at Baltimore, Baltimore, MD 21250 (United States)

    2013-07-01

    We report on observations of a luminous supersoft X-ray source (SSS) in M31, r1-25, that has exhibited spectral changes to harder X-ray states. We document these spectral changes. In addition, we show that they have important implications for modeling the source. Quasisoft states in a source that has been observed as an SSS represent a newly discovered phenomenon. We show how such state changers could prove to be examples of unusual black hole or neutron star accretors. Future observations of this and other state changers can provide the information needed to determine the nature(s) of these intriguing new sources.

  18. Geodesic acoustic modes excited by finite beta drift waves

    DEFF Research Database (Denmark)

    Chakrabarti, Nikhil Kumar; Guzdar, P.N.; Kleva, R.G.

    2008-01-01

    Presented in this paper is a mode-coupling analysis for the nonlinear excitation of the geodesic acoustic modes (GAMs) in tokamak plasmas by finite beta drift waves. The finite beta effects give rise to a strong stabilizing influence on the parametric excitation process. The dominant finite beta...... effect is the combination of the Maxwell stress, which has a tendency to cancel the primary drive from the Reynolds stress, and the finite beta modification of the drift waves. The zonal magnetic field is also excited at the GAM frequency. However, it does not contribute to the overall stability...... of the three-wave process for parameters of relevance to the edge region of tokamaks....

  19. Dosage of silicon in a soluble silicate using an x-ray-fluorescence radioisotopic method

    International Nuclear Information System (INIS)

    Wasilewska, M.; Robert, A.

    1969-01-01

    A description is given of a spectrometer for X ray fluorescence analysis having a radio active excitation source. It has been applied to the analysis of the silicon contained in an industrial soluble silicate. A theoretical study has been made for this analysis of the operational conditions such as: the effect of the particle size, the dilution of the sample, the sensitivity as a function of the X ray excitation energy. It is possible to obtain a relative accuracy of 0,87 per cent for the silicon determination, for one standard deviation. A comparison is made of the sensitivity obtained using this apparatus for the Si determination with that which can be obtained using a conventional apparatus fitted with an X ray tube. (author) [fr

  20. Simultaneous analysis of Grazing Incidence X-Ray reflectivity and X-ray standing waves from periodic multilayer systems

    NARCIS (Netherlands)

    Yakunin, S.N.; Makhotkin, Igor Alexandrovich; Chuyev, M.A.; Seregin, A.Y.; Pashayev, E.M.; Louis, Eric; van de Kruijs, Robbert Wilhelmus Elisabeth; Bijkerk, Frederik; Kovalchuk, M.V.

    2012-01-01

    Structural analysis of periodic multilayers with small period thickness (~4 nm) is a challenging task, especially when thicknesses of intermixed interfaces become comparable to individual layer thicknesses. In general, angular dependent X-ray fluorescence measurements, excited by the X-ray standing

  1. Use of a portable X-ray analyser for manganese and iron assay in minerals

    International Nuclear Information System (INIS)

    Taqueda, M.H.S.; Agudo, E.G.

    1975-01-01

    The use of a protable X-ray fluorescence analyser for manganese and iron assay in minerals is described. The concentration range in the measured samples was 30% to 60% for Mn and 2% to 20% for Fe. The excitation source used was a 3 mCi 109 Cd sealed source. Balanced filters were used for the X-ray analysis. The statistical study of results showed a precision better than 0,5 for Mn, but only 4% for iron. They can be improved either increasing the counting time or using a 238 Pu source

  2. The superconducting x-ray lithography source program at Brookhaven

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G. P.; Heese, R. N.; Vignola, G.; Murphy, J. B.; Godel, J. B.; Hsieh, H.; Galayda, J.; Seifert, A.; Knotek, M. L.

    1989-07-01

    A compact electron storage ring with superconducting dipole magnets, is being developed at the National Synchrotron Light Source at Brookhaven. The parameters of the source have been optimized for its future use as an x-ray source for lithography. This first ring is a prototype which will be used to study the operating characteristics of machines of this type with particular attention being paid to low-energy injection and long beam lifetime.

  3. 2XMM ultraluminous X-ray source candidates in nearby galaxies

    Science.gov (United States)

    Walton, D. J.; Roberts, T. P.; Mateos, S.; Heard, V.

    2011-09-01

    Ultraluminous X-ray sources (ULXs) are some of the most enigmatic X-ray bright sources known to date. It is generally accepted that they cannot host black holes as large as those associated with active galaxies, but they appear to be significantly more luminous than their better understood Galactic X-ray binary (XRB) cousins, while displaying an intriguing combination of differences and similarities with them. Through studying large, representative samples of these sources we may hope to enhance our understanding of them. To this end, we derive a large catalogue of 650 X-ray detections of 470 ULX candidates, located in 238 nearby galaxies, by cross-correlating the 2XMM Serendipitous Survey with the Third Reference Catalogue of Bright Galaxies. The presented dedicated catalogue offers a significant improvement over those previously published in terms of both the number and the contribution of background contaminants, e.g. distant quasars, which we estimate to be at most 24 per cent, but more likely ˜17 per cent. To undertake population studies, we define a 'complete' sub-sample of sources compiled from observations of galaxies with sensitivity limits below 1039 erg s-1. The luminosity function of this sample is consistent with a simple power law of form N(>LX) ∝ L-0.96 ± 0.11X. Although we do not find any statistical requirement for a cut-off luminosity of Lc˜ 1040 erg s-1, as has been reported previously, we are not able to rule out its presence. Also, we find that the number of ULXs per unit galaxy mass, Su, decreases with increasing galaxy mass for ULXs associated with spiral galaxies, and is well modelled with a power law of form Su ∝ M-0.64 ± 0.07. This is in broad agreement with previous results, and is likely to be a consequence of the decrease in specific star formation and increase in metallicity with increasing spiral galaxy mass. Su is consistent with being constant with galaxy mass for sources associated with elliptical galaxies, implying this

  4. X-ray fluorescence analyzer arrangement

    International Nuclear Information System (INIS)

    Vatai, Endre; Ando, Laszlo; Gal, Janos.

    1981-01-01

    An x-ray fluorescence analyzer for the quantitative determination of one or more elements of complex samples is reported. The novelties of the invention are the excitation of the samples by x-rays or γ-radiation, the application of a balanced filter pair as energy selector, and the measurement of the current or ion charge of ionization detectors used as sensors. Due to the increased sensitivity and accuracy, the novel design can extend the application fields of x-ray fluorescence analyzers. (A.L.)

  5. Soft x-ray microradiography and lithograph using a laser produced plasma source

    International Nuclear Information System (INIS)

    Cheng, P.C.

    1992-01-01

    Considering the hardware characteristics of the laser-induced plasma X-ray source and the limitations of the conventional cone-beam reconstruction algorithm, a general cone-beam reconstruction algorithm has been developed at our laboratory, in which the motion locus of the X-ray source is an arbitrary curve corresponding to at least a 2π continuous horizontal angular displacement in the coordinate system of the specimen. The preliminary simulation shows that the general cone-beam reconstruction algorithm consistently results in visually satisfactory images

  6. X-ray intensity and source size characterizations for the 25 kV upgraded Manson source at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Loisel, G., E-mail: gploise@sandia.gov; Lake, P.; Gard, P.; Dunham, G.; Nielsen-Weber, L.; Wu, M. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Norris, E. [Missouri University of Science and Technology, Rolla, Missouri 65409 (United States)

    2016-11-15

    At Sandia National Laboratories, the x-ray generator Manson source model 5 was upgraded from 10 to 25 kV. The purpose of the upgrade is to drive higher characteristics photon energies with higher throughput. In this work we present characterization studies for the source size and the x-ray intensity when varying the source voltage for a series of K-, L-, and M-shell lines emitted from Al, Y, and Au elements composing the anode. We used a 2-pinhole camera to measure the source size and an energy dispersive detector to monitor the spectral content and intensity of the x-ray source. As the voltage increases, the source size is significantly reduced and line intensity is increased for the three materials. We can take advantage of the smaller source size and higher source throughput to effectively calibrate the suite of Z Pulsed Power Facility crystal spectrometers.

  7. X-ray intensity and source size characterizations for the 25 kV upgraded Manson source at Sandia National Laboratories.

    Science.gov (United States)

    Loisel, G; Lake, P; Gard, P; Dunham, G; Nielsen-Weber, L; Wu, M; Norris, E

    2016-11-01

    At Sandia National Laboratories, the x-ray generator Manson source model 5 was upgraded from 10 to 25 kV. The purpose of the upgrade is to drive higher characteristics photon energies with higher throughput. In this work we present characterization studies for the source size and the x-ray intensity when varying the source voltage for a series of K-, L-, and M-shell lines emitted from Al, Y, and Au elements composing the anode. We used a 2-pinhole camera to measure the source size and an energy dispersive detector to monitor the spectral content and intensity of the x-ray source. As the voltage increases, the source size is significantly reduced and line intensity is increased for the three materials. We can take advantage of the smaller source size and higher source throughput to effectively calibrate the suite of Z Pulsed Power Facility crystal spectrometers.

  8. A scintillation detector for measuring inert gas beta rays

    International Nuclear Information System (INIS)

    Shi Hengchang; Yu Yunchang

    1989-10-01

    The inert gas beta ray scintillation detector, which is made of organic high polymers as the base and coated with compact fluorescence materials, is a lower energy scintillation detector. It can be used in the nuclear power plant and radioactive fields as a lower energy monitor to detect inert gas beta rays. Under the conditions of time constant 10 minutes, confidence level is 99.7% (3σ), the intensity of gamma rays 2.6 x 10 -7 C/kg ( 60 Co), and the minimum detectable concentration (MDC) of this detector for 133 Xe 1.2 Bq/L. The measuring range for 133 Xe is 11.1 ∼ 3.7 x 10 4 Bq/L. After a special measure is taken, the device is able to withstand 3 x 10 5 Pa gauge pressure. In the loss-of-cooolant-accident, it can prevent the radioactive gas of the detector from leaking. This detector is easier to be manufactured and decontaminated

  9. Microfocussing of synchrotron X-rays using X-ray refractive lens

    Indian Academy of Sciences (India)

    X-ray lenses are fabricated in polymethyl methacrylate using deep X-ray lithography beamline of Indus-2. The focussing performance of these lenses is evaluated using Indus-2 and Diamond Light Source Ltd. The process steps for the fabrication of X-ray lenses and microfocussing at 10 keV at moderate and low emittance ...

  10. Material Discriminated X-Ray CT System by Using New X-Ray Imager with Energy Discriminate Function

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2008-04-01

    Full Text Available Material discriminated X-ray CT system has been constructed by using conventional X-ray tube (white X-ray source and photon-counting X-ray imager as an application with energy band detection. We have already reported material identify X-ray CT using K-shell edge method elsewhere. In this report the principle of material discrimination was adapted the separation of electron-density and atomic number from attenuation coefficient mapping in X-ray CT reconstructed image in two wavelength X-ray CT method using white X-ray source and energy discriminated X-ray imager by using two monochrome X-ray source method. The measurement phantom was prepared as four kinds material rods (Carbon(C, Iron(Fe, Copper(Cu, Titanium(Ti rods of 3mm-diameter inside an aluminum(Al rod of 20mm-diameter. We could observed material discriminated X-ray CT reconstructed image, however, the discrimination properties were not good than two monochrome X-ray CT method. This results was could be explained because X-ray scattering, beam-hardening and so on based on white X-ray source, which could not observe in two monochrome X-ray CT method. However, since our developed CdTe imager can be detect five energy-bands at the same time, we can use multi-band analysis to decrease the least square error margin. We will be able to obtain more high separation in atomic number mapping in X-ray CT reconstructed image by using this system.

  11. Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source

    International Nuclear Information System (INIS)

    Donath, Tilman; Bunk, Oliver; Groot, Waldemar; Bednarzik, Martin; Gruenzweig, Christian; David, Christian; Pfeiffer, Franz; Hempel, Eckhard; Popescu, Stefan; Hoheisel, Martin

    2009-01-01

    Phase-contrast imaging at laboratory-based x-ray sources using grating interferometers has been developed over the last few years for x-ray energies of up to 28 keV. Here, we show first phase-contrast projection and tomographic images recorded at significantly higher x-ray energies, produced by an x-ray tube source operated at 100 kV acceleration voltage. We find our measured tomographic phase images in good agreement with tabulated data. The extension of phase-contrast imaging to this significantly higher x-ray energy opens up many applications of the technique in medicine and industrial nondestructive testing.

  12. Three-dimensional imagery by encoding sources of X rays

    International Nuclear Information System (INIS)

    Magnin, Isabelle

    1987-01-01

    This research thesis addresses the theoretical and practical study of X ray coded sources, and thus notably aims at exploring whether it would be possible to transform a standard digital radiography apparatus (as those operated in radiology hospital departments) into a low cost three-dimensional imagery system. The author first recalls the principle of conventional tomography and improvement attempts, and describes imagery techniques based on the use of encoding openings and source encoding. She reports the modelling of an imagery system based on encoded sources of X ray, and addresses the original notion of three-dimensional response for such a system. The author then addresses the reconstruction method by considering the reconstruction of a plane object, of a multi-plane object, and of real three-dimensional object. The frequency properties and the tomographic capacities of various types of source codes are analysed. She describes a prototype tomography apparatus, and presents and discusses three-dimensional actual phantom reconstructions. She finally introduces a new principle of dynamic three-dimensional radiography which implements an acquisition technique by 'gating code'. The acquisition principle should allow the reconstruction of volumes animated by periodic deformations, such as the heart for example [fr

  13. Computerized tomography using high resolution X-ray imaging system with a microfocus source

    International Nuclear Information System (INIS)

    Zaprazny, Z.; Korytar, D.; Konopka, P.; Ac, V.; Bielecki, J.

    2011-01-01

    In recent years there is an effort to image an internal structure of an object by using not only conventional 2D X-ray radiography but also using high resolution 3D tomography which is based on reconstruction of multiple 2D projections at various angular positions of the object. We have previously reported [1] the development and basic parameters of a high resolution x-ray imaging system with a microfocus source. We report the recent progress using this high resolution X-ray laboratory system in this work. These first findings show that our system is particularly suitable for light weight and nonmetallic objects such as biological objects, plastics, wood, paper, etc. where phase contrast helps to increase the visibility of the finest structures of the object. Phase-contrast X-ray Computerized Tomography is of our special interest because it is an emerging imaging technique that can be implemented at third generation synchrotron radiation sources and also in laboratory conditions using a microfocus X-ray tube or beam conditioning optics. (authors)

  14. Identification of resonant x-ray Raman scattering using SR- and conventional TXRF

    International Nuclear Information System (INIS)

    Zhu, Q.; Burrow, B.; Baur, K.; Brennan, S.; Pianetta, P.

    2000-01-01

    Analyzing and control the surface contamination are important steps in the processing of integrated circuits. The need for using non-destructive analysis techniques either as laboratory or in-line inspection tools has increased dramatically in the past. Total reflection x-ray fluorescence (TXRF) spectroscopy is one of the best choices to fill such needs. Earlier works have established the phenomenon of resonant x-ray Raman scattering with excitation energy very close to the Si-K absorption edge (1.74 keV). In this work, similar phenomena are identified in W-silicide and GaAs substrate with the excitation of W-Lβ 9.67 keV) line, a choice of x-ray source for almost all the conventional TXRF systems nowadays. The observation of the resonant Raman peak is clearly the result of close proximity of W-L and As-K absorption edges to the excitation energy. Synchrotron TXRF measurements are performed by tuning the excitation energy. The resonant Raman peak shifts accordingly with the excitation energy, along with the drastic change of its intensity below and above the absorption edge of W-L or As-K in the respective samples. The current analysis provides new perspective for analyzing W- and As-containing samples, which suggests Raman background correction in conventional TXRF with W-Lβ excitation. (author)

  15. Optimization of tube parameters in a tube excited X-ray fluorescence (TEXRF) system using secondary fluorescers

    International Nuclear Information System (INIS)

    Islam, A.; Biswas, S.K.

    1995-12-01

    A study of the optimization of excitation parameters in a tube excited X-ray fluorescence system (TEXRF) having Mo as the primary target has been carried out for biological matrix. Fe, Zn and Mo were used as the secondary fluorecers. For the present investigation a cellulose based synthetic standard containing K, Cr, Ni, Zn, Se and Y was excited with the TEXRF system. All experiments were carried out under the same experimental conditions except the tube potential. For each fluorescer the minimum detection limits (MDL) of excited elements were calculated for the corresponding tube voltage. The MDLs were found to be increasing with decreasing atomic number and it was also observed that the maximum sensitivity with Fe and Zn secondary fluorescers for elements analyzed occurred around 35 kV of the excitation potential. For Mo secondary fluorescer maximum sensitivity was found at higher excitation potential. In most cases MDLs were minimum at 40-45 kV of the excitation potential. 5 refs., 12 figs

  16. NLTE Model Atmospheres for Super-Soft X-ray Sources

    Science.gov (United States)

    Rauch, Thomas; Werner, Klaus

    2009-09-01

    Spectral analysis by means of fully line-blanketed Non-LTE model atmospheres has arrived at a high level of sophistication. The Tübingen NLTE Model Atmosphere Package (TMAP) is used to calculate plane-parallel NLTE model atmospheres which are in radiative and hydrostatic equilibrium. Although TMAP is not especially designed for the calculation of burst spectra of novae, spectral energy distributions (SEDs) calculated from TMAP models are well suited e.g. for abundance determinations of Super Soft X-ray Sources like nova V4743 Sgr or line identifications in observations of neutron stars with low magnetic fields in low-mass X-ray binaries (LMXBs) like EXO 0748-676.

  17. Lasers, extreme UV and soft X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  18. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    Science.gov (United States)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  19. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  20. Luminescence of yttrium niobium-tantalate doubly activated by europium and/or terbium under X-ray and electron beam excitation

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, I.D., E-mail: arellano@utp.edu.co [Department of Physics, Technological University of Pereira, Vereda La Julita, Pereira (Colombia); Nazarov, M.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Republic of Moldova (Moldova, Republic of); School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Cortes, J.A. [Department of Physics, Technological University of Pereira, Vereda La Julita, Pereira (Colombia); Ahmad Fauzi, M.N [School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2012-09-15

    This paper reports the luminescence emission spectra of Y(Ta,Nb)O{sub 4} activated by rare earth ions such as Eu{sup 3+} and Tb{sup 3+}. The influence of these rare earth ions on the luminescence of yttrium niobium-tantalate phosphors was investigated. The luminescent properties were studied under X-ray and electron beam excitations. Under these excitations, the emission centers of the rare earth activators (Eu{sup 3+},Tb{sup 3+}) were found to contribute efficiently to the overall luminescence. Changing the mol concentration of the incorporated activators resulted in a broad variation of visible photoluminescence. Color cathodoluminescence images showed clearly the dependence of chromaticity on the different activators. With their various luminescence chromaticities, these rare earth activated phosphors are promising materials for solid-state lighting applications as well as for X-ray intensifying screens in medical diagnosis, providing a broad variation of visible photoluminescence from blue to red. - Highlights: Black-Right-Pointing-Pointer The Y(Ta,Nb)O{sub 4} phosphors were activated by rare earth ions such as Eu{sup 3+} and Tb{sup 3+}. Black-Right-Pointing-Pointer The phosphors were studied under X-ray and electron beam excitations. Black-Right-Pointing-Pointer The emission centers contribute efficiently to the overall luminescence. Black-Right-Pointing-Pointer Changing the concentration of the activators resulted in a broad luminescence.

  1. Perspectives of the lobster-eye telescope: The promising types of cosmic X-ray sources

    Science.gov (United States)

    Šimon, V.

    2017-07-01

    We show the astrophysical aspects of observing the X-ray sky with the planned lobster-eye telescope. This instrument is important because it is able to provide wide-field X-ray imaging. For the testing observations, we propose to include also X-ray binaries in which matter transfers onto the compact object (mostly the neutron star). We show the typical features of the long-term X-ray activity of such objects. Observing in the soft X-ray band is the most promising because their X-ray intensity is the highest in this band. Since these X-ray sources tend to concentrate toward the center of our Galaxy, several of them can be present in the field of view of the tested instrument.

  2. Higher coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Nagashima, Keisuke; Kawachi, Tetsuya

    2001-01-01

    X-ray lasers generated by an ultra short pulse laser have advantages such as monochromatic, short pulse duration, small beam divergence, high intensity, and coherence. Spatial coherence is most important for applications, we have investigated the transient collisional excitation (TCE) scheme x-ray laser lasing from Ne-like titanium (31.6 nm), Ne-like silver (13.9 nm) and tin (11.9 nm). However, the spatial coherence was not so good with this scheme. We have been studying to improve the spatial coherence of the x-ray laser and have proposed to use coherent seed light tuned to the x-ray laser wavelength generated from higher harmonics generation (HHG), which is introduced to the x-ray laser medium (Ne-like titanium, Ni-like silver plasmas). We present about the theoretical study of the coupling efficiency HHG light with x-ray laser medium. (author)

  3. Exotic sources of x-rays for iodine K-edge angiography

    International Nuclear Information System (INIS)

    Carr, R.

    1993-08-01

    Digital Subtractive Angiography (DSA) has been performed to image human coronary arteries using wiggler radiation from electron storage rings. The significant medical promise of this procedure motivates the development of smaller and less costly x-ray sources. Several exotic sources are candidates for consideration, using effects such as Cherenkov, channeling, coherent bremsstrahlung, laser backscattering, microundulator, parametric, Smith-Purcell, and transition radiation. In this work we present an analysis of these effects as possible sources of intense x-rays at the iodine K-edge at 33.169 key. The criteria we use are energy, efficiency, flux, optical properties, and technical realizability. For each of the techniques, we find that they suffer either from low flux, a low energy cutoff, target materials heating, too high electron beam energy requirement, optical mismatch to angiography, or a combination of these. We conclude that the foreseeable state-of-the-art favors a compact storage ring design

  4. NSLS [National Synchrotron Light Source] X-19A beamline performance for x-ray absorption measurements

    International Nuclear Information System (INIS)

    Yang, C.Y.; Penner-Hahn, J.E.; Stefan, P.M.

    1989-01-01

    Characterization of the X-19A beamline at the National Synchrotron Light Source (NSLS) is described. The beamline is designed for high resolution x-ray absorption spectroscopy over a wide energy range. All of the beamline optical components are compatible with ultrahigh vacuum (UHV) operation. This permits measurements to be made in a window-less mode, thereby facilitating lower energy (<4 KeV) studies. To upgrade the beamline performance, several possible improvements in instrumentation and practice are discussed to increase photon statistics with an optimum energy resolution, while decreasing the harmonic contamination and noise level. A special effort has been made to improve the stability and UHV compatibility of the monochromator system. Initial x-ray absorption results demonstrate the capabilities of this beamline for x-ray absorption studies of low Z elements (e.g. S) in highly dilute systems. The future use of this beamline for carrying out various x-ray absorption experiments is presented. 10 refs., 4 figs

  5. TOWARD IDENTIFYING THE UNASSOCIATED GAMMA-RAY SOURCE 1FGL J1311.7-3429 WITH X-RAY AND OPTICAL OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, J.; Takahashi, Y.; Maeda, K. [Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Yatsu, Y.; Kawai, N. [Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro, Tokyo 152-8551 (Japan); Urata, Y.; Tsai, A. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Cheung, C. C. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Totani, T.; Makiya, R. [Department of Astronomy, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Hanayama, H.; Miyaji, T., E-mail: kataoka.jun@waseda.jp [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa, Ishigaki, Okinawa, 907-0024 (Japan)

    2012-10-01

    We present deep optical and X-ray follow-up observations of the bright unassociated Fermi-LAT gamma-ray source 1FGL J1311.7-3429. The source was already known as an unidentified EGRET source (3EG J1314-3431, EGR J1314-3417), hence its nature has remained uncertain for the past two decades. For the putative counterpart, we detected a quasi-sinusoidal optical modulation of {Delta}m {approx} 2 mag with a period of {approx_equal}1.5 hr in the Rc, r', and g' bands. Moreover, we found that the amplitude of the modulation and peak intensity changed by {approx}>1 mag and {approx}0.5 mag, respectively, over our total six nights of observations from 2012 March to May. Combined with Swift UVOT data, the optical-UV spectrum is consistent with a blackbody temperature, kT {approx_equal} 1 eV and the emission volume radius R{sub bb} {approx_equal} 1.5 Multiplication-Sign 10{sup 4} d{sub kpc} km (d{sub kpc} is the distance to the source in units of 1 kpc). In contrast, deep Suzaku observations conducted in 2009 and 2011 revealed strong X-ray flares with a light curve characterized with a power spectrum density of P(f) {proportional_to} f {sup -2.0{+-}0.4}, but the folded X-ray light curves suggest an orbital modulation also in X-rays. Together with the non-detection of a radio counterpart, and significant curved spectrum and non-detection of variability in gamma-rays, the source may be the second 'radio-quiet' gamma-ray emitting millisecond pulsar candidate after 1FGL J2339.7-0531, although the origin of flaring X-ray and optical variability remains an open question.

  6. Time-resolved X-ray transmission microscopy on magnetic microstructures; Zeitaufloesende Roentgentransmissionsmikroskopie an magnetischen Mikrostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Puzic, Aleksandar

    2007-10-23

    Three excitation schemes were designed for stroboscopic imaging of magnetization dynamics with time-resolved magnetic transmission X-ray microscopy (TR-MTXM). These techniques were implemented into two types of X-ray microscopes, namely the imaging transmission X-ray microscope (ITXM) and the scanning transmission X-ray microscope (STXM), both installed at the electron storage ring of the Advanced Light Source in Berkeley, USA. Circular diffraction gratings (Fresnel zone plates) used in both microscopes as focusing and imaging elements presently allow for lateral resolution down to 30 nm. Magnetic imaging is performed by using the X-ray magnetic circular dichroism (XMCD) as element specific contrast mechanism. The developed methods have been successfully applied to the experimental investigation of magnetization dynamics in ferromagnetic microstructures. A temporal resolution well below 100 ps was achieved. A conventional pump-probe technique was implemented first. The dynamic response of the magnetization excited by a broadband pulsed magnetic field was imaged spatially resolved using focused X-ray flashes. As a complementary method, the spatially resolved ferromagnetic resonance (SR-FMR) technique was developed for experimental study of magnetization dynamics in the frequency domain. As a third excitation mode, the burst excitation was implemented. The performance and efficiency of the developed methods have been demonstrated by imaging the local magnetization dynamics in laterally patterned ferromagnetic thin-film elements and three-layer stacks. The existence of multiple eigenmodes in the excitation spectra of ferromagnetic microstructures has been verified by using the pump-probe technique. Magnetostatic spin waves were selectively excited and detected with a time resolution of 50 ps using the SR-FMR technique. Thorough analysis of 20 in most cases independently prepared samples has verified that vortices which exhibit a low-amplitude switching of their core

  7. Influence of Bernstein modes on the efficiency of electron cyclotron resonance x-ray source

    International Nuclear Information System (INIS)

    Andreev, V. V.; Nikitin, G.V.; Savanovich, V.Yu.; Umnov, A.M.; Elizarov, L.I.; Serebrennikov, K.S.; Vostrikova, E.A.

    2006-01-01

    The article considers the factors influencing the temperature of hot electron component in an electron cyclotron resonance (ECR) x-ray source. In such sources the electron heating occurs often due to extraordinary electromagnetic wave propagating perpendicularly to the magnetic field. In this case the possibility of the absorption of Bernstein modes is regarded as an additional mechanism of electron heating. The Bernstein modes in an ECR x-ray source can arise due to either linear transformation or parametric instability of external transversal wave. The article briefly reviews also the further experiments which will be carried out to study the influence of Bernstein modes on the increase of hot electron temperature and consequently of x-ray emission

  8. Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Yuki, E-mail: f.yuki@mail.tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kawaguchi, Noriaki [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Research and Development Division, Tokuyama., Co. Ltd., ICR-Building, Minamiyoshinari, Aoba-ku, Sendai (Japan); Ishizu, Sumito [Research and Development Division, Tokuyama., Co. Ltd., ICR-Building, Minamiyoshinari, Aoba-ku, Sendai (Japan); Uchiyama, Koro; Mori, Kuniyoshi [Hamamatsu Photonics K.K., 325-6, Sunayama-cho, Naka-ku, Hamamatsu, Shizuoka 430-8587 (Japan); Kitano, Ken [Vacuum and Optical Instruments, 2-18-18 Shimomaruko, Ota, Tokyo 146-0092 (Japan); Nikl, Martin [Institute of Physics ASCR, Cukrovarnicka 10, Prague 6, 162-53 (Czech Republic); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); NICHe, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2011-04-01

    To design new scintillating materials, it is very important to understand detailed information about the events, which occurred during the excitation and emission processes under the ionizing radiation excitation. We developed a streak camera system equipped with picosecond pulsed X-ray source to observe time- and wavelength-resolved scintillation events. In this report, we test the performance of this new system using several types of scintillators including bulk oxide/halide crystals, transparent ceramics, plastics and powders. For all samples, the results were consistent with those reported previously. The results demonstrated that the developed system is suitable for evaluation of the scintillation properties.

  9. The spherical pinch as a soft x-ray source for microlithography and other industrial applications

    International Nuclear Information System (INIS)

    Aithal, S.; Lamari, M.; Panarella, E.

    1992-01-01

    In the course of the past several years, an R and D program has been carried out at ALFT in order to exploit the Spherical Pinch concept of plasma heating to create a hot plasma of radiation emission characteristics of interest for industrial X-ray microlithography. The program has been successful and a prototype machine has now been built. The plasma is generated by inductively discharging 30 kJ of electrical energy from a condenser bank in a spherically shaped coil. Since the energy transfer efficiency is ∼ 25%, in excess of 7 kJ of energy is deposited into the plasma. The strong implosion thus generated, on compressing a preformed central plasma, creates a source of soft X-rays having the following characteristics: X-ray energy, 1--3, keV; X-ray energy per pulse, ∼ 50, J; Source size, ∼ 1, mm; X-ray flux at--20 cm from source, ∼10, mJ/cm 2 /shot; position reproducibility, 0.1, Hz. These characteristics are very close to what is required by the semiconductor industries for microlithography. For this reason, a commercial unit is now being designed and manufactured and will be available for marketing by the end of 1992. This source of soft X-rays has recently found another industrial application, paper radiography for quality evaluation and control in the paper industry. The possibility of imaging by means of soft X-rays the microstructure of paper on production line enables the operator to adjust the paper manufacturing configuration through variations of the relative speed of the jet compared to that of the wire. A compact X-ray source for paper radiography is now being designed and manufactured, and a prototype machine will be ready by the beginning of 1993. The Spherical Pinch plasma source is a good radiation emitter also in the UV and the deep UV range of the spectrum

  10. Spatial coherence properties of a compact and ultrafast laser-produced plasma keV x-ray source

    International Nuclear Information System (INIS)

    Boschetto, D.; Mourou, G.; Rousse, A.; Mordovanakis, A.; Hou, Bixue; Nees, J.; Kumah, D.; Clarke, R.

    2007-01-01

    The authors use Fresnel diffraction from knife-edges to demonstrate the spatial coherence of a tabletop ultrafast x-ray source produced by laser-plasma interaction. Spatial coherence is achieved in the far field by producing micrometer-scale x-ray spot dimensions. The results show an x-ray source size of 6 μm that leads to a transversal coherence length of 20 μm at a distance of 60 cm from the source. Moreover, they show that the source size is limited by the spatial spread of the absorbed laser energy

  11. TOMOX : An X-rays tomographer for planetary exploration

    Science.gov (United States)

    Marinangeli, Lucia; Pompilio, Loredana; Chiara Tangari, Anna; Baliva, Antonio; Alvaro, Matteo; Chiara Domeneghetti, Maria; Frau, Franco; Melis, Maria Teresa; Bonanno, Giovanni; Consolata Rapisarda, Maria; Petrinca, Paolo; Menozzi, Oliva; Lasalvia, Vasco; Pirrotta, Simone

    2017-04-01

    The TOMOX instrument has recently been founded under the ASI DC-EOS-2014-309 call. The TOMOX objective is to acquire both X-ray fluorescence and diffraction measurements from a sample in order to: a) achieve its chemical and mineralogical composition; b) reconstruct a 3D tomography of the sample exposed surface; c) give hints regarding the sample age. Nevertheless, this technique has applicability in several disciplines other than planetary geology, especially archaeology. The word 'tomography' is nowadays used for many 3D imaging methods, not just for those based on radiographic projections, but also for a wider range of techniques that yield 3D images. Fluorescence tomography is based on the signal produced on an energy-sensitive detector, generally placed in the horizontal plane at some angle with respect to the incident beam caused by photons coming from fluorescence emission. So far, a number of setups have been designed in order to acquire X-rays fluorescence tomograms of several different sample types. The proposed instrument is based on the MARS-XRD heritage, an ultra miniaturised XRD and XRF instrument developed for the ESA ExoMars mission. The general idea of TOMOX is to distribute both sources and detectors along a moving hemispherical support around the target sample. As a result, both sources move integrally with the detectors while the sample is observed from a fixed position, thus preserving the geometry of observation. In that way, the whole sample surface is imagined and XRD and XRF measurements are acquired continuously along all the scans. We plan to irradiate the target sample with X-rays emitted from 55Fe and 109Cd radioactive sources. 55Fe and 109Cd radioisotopes are commonly used as X-ray sources for analysis of metals in soils and rocks. The excitation energies of 55Fe and 109Cd are 5.9 keV, and 22.1 and 87.9 keV, respectively. Therefore, the elemental analysis ranges are Al to Mn with K lines excited with 55Fe; Ca to Rh, with K lines

  12. Optimization of in-line phase contrast particle image velocimetry using a laboratory x-ray source

    International Nuclear Information System (INIS)

    Ng, I.; Fouras, A.; Paganin, D. M.

    2012-01-01

    Phase contrast particle image velocimetry (PIV) using a laboratory x-ray microfocus source is investigated using a numerical model. Phase contrast images of 75 μm air bubbles, embedded within water exhibiting steady-state vortical flow, are generated under the paraxial approximation using a tungsten x-ray spectrum at 30 kVp. Propagation-based x-ray phase-contrast speckle images at a range of source-object and object-detector distances are generated, and used as input into a simulated PIV measurement. The effects of source-size-induced penumbral blurring, together with the finite dynamic range of the detector, are accounted for in the simulation. The PIV measurement procedure involves using the cross-correlation between temporally sequential speckle images to estimate the transverse displacement field for the fluid. The global error in the PIV reconstruction, for the set of simulations that was performed, suggests that geometric magnification is the key parameter for designing a laboratory-based x-ray phase-contrast PIV system. For the modeled system, x-ray phase-contrast PIV data measurement can be optimized to obtain low error ( 15 μm) of the detector, high geometric magnification (>2.5) is desired, while for large source size system (FWHM > 30 μm), low magnification (<1.5) would be suggested instead. The methods developed in this paper can be applied to optimizing phase-contrast velocimetry using a variety of laboratory x-ray sources.

  13. Nuclear and x-ray spectroscopy with radioactive sources

    International Nuclear Information System (INIS)

    Fink, R.W.

    1977-01-01

    Research in nuclear chemistry for 1977 is reviewed. The greatest part of the effort was directed to nuclear spectroscopy (systematics, models, experimental studies), but some work was also done involving fast neutrons and x rays from radioactive sources. Isotopes of Tl, Hg, Au, and Eu were studied in particular. Personnel and publications lists are also included. 5 figures, 1 table

  14. COSMIC-RAY AND X-RAY HEATING OF INTERSTELLAR CLOUDS AND PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Glassgold, Alfred E.; Galli, Daniele; Padovani, Marco

    2012-01-01

    Cosmic-ray and X-ray heating are derived from the electron energy-loss calculations of Dalgarno, Yan, and Liu for hydrogen-helium gas mixtures. These authors treated the heating from elastic scattering and collisional de-excitation of rotationally excited hydrogen molecules. Here we consider the heating that can arise from all ionization and excitation processes, with particular emphasis on the reactions of cosmic-ray and X-ray generated ions with the heavy neutral species, which we refer to as chemical heating. In molecular regions, chemical heating dominates and can account for 50% of the energy expended in the creation of an ion pair. The heating per ion pair ranges in the limit of negligible electron fraction from ∼4.3 eV for diffuse atomic gas to ∼13 eV for the moderately dense regions of molecular clouds and to ∼18 eV for the very dense regions of protoplanetary disks. An important general conclusion of this study is that cosmic-ray and X-ray heating depends on the physical properties of the medium, i.e., on the molecular and electron fractions, the total density of hydrogen nuclei, and, to a lesser extent, on the temperature. It is also noted that chemical heating, the dominant process for cosmic-ray and X-ray heating, plays a role in UV irradiated molecular gas.

  15. Tokamak physics studies using x-ray diagnostic methods

    International Nuclear Information System (INIS)

    Hill, K.W.; Bitter, M.; von Goeler, S.

    1987-03-01

    X-ray diagnostic measurements have been used in a number of experiments to improve our understanding of important tokamak physics issues. The impurity content in TFTR plasmas, its sources and control have been clarified through soft x-ray pulse-height analysis (PHA) measurements. The dependence of intrinsic impurity concentrations and Z/sub eff/ on electron density, plasma current, limiter material and conditioning, and neutral-beam power have shown that the limiter is an important source of metal impurities. Neoclassical-like impurity peaking following hydrogen pellet injection into Alcator C and a strong effect of impurities on sawtooth behavior were demonstrated by x-ray imaging (XIS) measurements. Rapid inward motion of impurities and continuation of m = 1 activity following an internal disruption were demonstrated with XIS measurements on PLT using injected aluminum to enhance the signals. Ion temperatures up to 12 keV and a toroidal plasma rotation velocity up to 6 x 10 5 m/s have been measured by an x-ray crystal spectrometer (XCS) with up to 13 MW of 85-keV neutral-beam injection in TFTR. Precise wavelengths and relative intensities of x-ray lines in several helium-like ions and neon-like ions of silver have been measured in TFTR and PLT by the XCS. The data help to identify the important excitation processes predicted in atomic physics. Wavelengths of n = 3 to 2 silver lines of interest for x-ray lasers were measured, and precise instrument calibration techniques were developed. Electron thermal conductivity and sawtooth dynamics have been studied through XIS measurements on TFTR of heat-pulse propagation and compound sawteeth. A non-Maxwellian electron distribution function has been measured, and evidence of the Parail-Pogutse instability identified by hard x-ray PHA measurements on PLT during lower-hybrid current-drive experiments

  16. X-Ray Lasers 2016

    CERN Document Server

    Bulanov, Sergei; Daido, Hiroyuki; Kato, Yoshiaki

    2018-01-01

    These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications.   The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

  17. Development and application of sub-nanosecond pulse-repeatable hard X-ray source

    International Nuclear Information System (INIS)

    Quan Lin; Fan Yajun; Tu Jing

    2013-01-01

    A multipurpose X-ray source was developed to meet the needs of multitask application such as radiation detection, radiation imaging and so on. The multipurpose X-ray source has characteristic of adjustable width and energy, pulse-repetition operation, ultra-short pulse and fine stability. Its rising time is close to 98.6 ps, the operation voltage reaches 425 kV, and the peak fluence rate exceeds 2.07 × 10 18 cm -2 · s -1 at 10 cm, which provides an ideal radiation environment for relevant application. (authors)

  18. Sensitivity tests on the rates of the excited states of positron decays during the rapid proton capture process of the one-zone X-ray burst model

    Science.gov (United States)

    Lau, Rita

    2018-02-01

    In this paper, we investigate the sensitivities of positron decays on a one-zone model of type-I X-ray bursts. Most existing studies have multiplied or divided entire beta decay rates (electron captures and beta decay rates) by 10. Instead of using the standard Fuller & Fowler (FFNU) rates, we used the most recently developed weak library rates [1], which include rates from Langanke et al.'s table (the LMP table) (2000) [2], Langanke et al.'s table (the LMSH table) (2003) [3], and Oda et al.'s table (1994) [4] (all shell model rates). We then compared these table rates with the old FFNU rates [5] to study differences within the final abundances. Both positron decays and electron capture rates were included in the tables. We also used pn-QRPA rates [6,7] to study the differences within the final abundances. Many of the positron rates from the nuclei's ground states and initial excited energy states along the rapid proton capture (rp) process have been measured in existing studies. However, because temperature affects the rates of excited states, these studies should have also acknowledged the half-lives of the nuclei's excited states. Thus, instead of multiplying or dividing entire rates by 10, we studied how the half-lives of sensitive nuclei in excited states affected the abundances by dividing the half-lives of the ground states by 10, which allowed us to set the half-lives of the excited states. Interestingly, we found that the peak of the final abundance shifted when we modified the rates from the excited states of the 105Sn positron decay rates. Furthermore, the abundance of 80Zr also changed due to usage of pn-QRPA rates instead of weak library rates (the shell model rates).

  19. Study of vacancy decays in the L-shell photoionization of barium in the excitation energy range of 5.6-30 keV: from L{sub 2} edge to energy high above the thresholds of double L-vacancy production

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Y [Key Laboratory of Applied Ion Beam Physics (Chinese Educational Ministry), Fudan University, Shanghai 200433 (China); Oura, M [RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Hutton, R [Lund Observatory, SE-221 00 Lund (Sweden); Yamaoka, H [RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Takeshima, N [Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Takahiro, K [Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Kawatsura, K [Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Mukoyama, T [Kansai Gaidai University, 16-1 Nakamiyahigashino-cho, Hirakata, Osaka 573-1001 (Japan)

    2006-11-28

    Photoinduced Ba L x-rays were measured, in the excitation energy range of 5.6-30 keV, by using high-brilliance undulator radiation. The obtained intensity ratios, the excitation-energy independent L{beta}{sub 4}/L{beta}{sub 3}, L{eta}/L{beta}{sub 1}, L{iota}/L{alpha}{sub 1,2}, L{beta}{sub 6}/L{alpha}{sub 1,2} and L{beta}{sub 2,15}/L{alpha}{sub 1,2} as well as the excitation-energy dependent L{beta}{sub 1}/L{alpha}{sub 1,2}, L{beta}{sub 3}/L{alpha}{sub 1,2} and L{beta}{sub 3}/L{beta}{sub 1}, were compared with theoretical calculations, in which the calculations were performed by applying various subsets of the L subshell fluorescence yields and Coster-Kronig yields. Deviations of the theoretical calculations from the experimental results call on improvements in theory for the emission rates. We have also surveyed the L{alpha}{sub 1,2} related x-ray hypersatellite lines in the photoinduced Ba L x-ray spectrum.

  20. Development of cancer medical treatment/diagnostic equipment using the source of X-rays in space coherence

    International Nuclear Information System (INIS)

    Sato, Isamu; Shintomi, Kazutaka; Hayakawa, Ken

    2009-01-01

    In Nihon University, the research and development of Parametric X-rays radiation (PXR) by the 100 MeV electron linac are advanced. It was proved by basic experiment that PXR was a source of coherent X-rays. Coherent X-rays have the characteristic that a refraction action is guided with an irradiation matter. According to this action, the contrast image pick-up of an irradiation matter is attained, and X-rays becomes possible to focus a point itself. Research of cancer medical treatment and diagnosis are advanced using the new source of X-ray. Miniaturization of the source is important for the spread of cancer medical new treatment and diagnoses. Recently, the tabletop type 100 MeV class cryogenic linac with energy recovery is under development. In symposium, we report progress of these research and development. (author)

  1. Observations of Intermediate-mass Black Holes and Ultra-Luminous X-ray sources

    Science.gov (United States)

    Colbert, E. J. M.

    2003-12-01

    I will review various observations that suggest that intermediate-mass black holes (IMBHs) with masses ˜102-104 M⊙ exist in our Universe. I will also discuss some of the limitations of these observations. HST Observations of excess dark mass in globular cluster cores suggest IMBHs may be responsible, and some mass estimates from lensing experiments are nearly in the IMBH range. The intriguing Ultra-Luminous X-ray sources (ULXs, or IXOs) are off-nuclear X-ray point sources with X-ray luminosities LX ≳ 1039 erg s-1. ULXs are typically rare (1 in every 5 galaxies), and the nature of their ultra-luminous emission is currently debated. I will discuss the evidence for IMBHs in some ULXs, and briefly outline some phenomenology. Finally, I will discuss future observations that can be made to search for IMBHs.

  2. Effective Kα x-ray excitation rates for plasma impurity measurements

    International Nuclear Information System (INIS)

    Hill, K.W.; Bitter, M.; von Goeler, S.; Hiroe, S.; Hulse, R.; Ramsey, A.T.; Sesnic, S.; Shimada, M.; Stratton, B.C.

    1986-06-01

    Metal impurity concentrations are measured by the Pulse-Height-Analyzer (PHA) diagnostic from Kα x-ray peak intensities by use of an averaged excitation rate . Low-Z impurity concentrations are inferred from the continuum enhancement (relative to a pure plasma) minus the enhancement due to metals. Since the PHA does not resolve lines from different charge states, is a weighted sum of rates; coronal equilibrium is usually assumed. The used earlier omitted the intercombination and forbidden lines from the dominant helium-like state. The result was an overestimate of metals and an underestimate of low-Z impurities in cases where metals were significant. Improved values of using recent calculations for H-, He-, and Li-like Fe range from 10 to 50% larger than the earlier rates and yield metal concentrations in better agreement with those from VUV spectroscopy

  3. Neon dense plasma focus point x-ray source for ≤ 0.25 μm lithography

    International Nuclear Information System (INIS)

    Prasad, R.R.; Krishnan, M.; Berg, K.; Conlon, D.; Mangano, J.

    1994-01-01

    A discharge driven, dense plasma focus (DPF) in neon has been developed at SRL as a point x-ray source for sub-micron lithography. This source is presently capable of delivering ∼25 J/pulse of neon K-shell x-rays (8--14 angstrom) into 4 π steradians with a ∼1.4% wall plug efficiency at a 20 Hz repetition rate. The discharge is produced by a capacitor bank circuit (8 kV, 1.8 kJ) which has a fixed inductance of 11 nH and drives ∼ 320 kA currents into the DPF load, with ∼1 μs rise-times. X-rays are produced when a dense pinch of neon is formed along the axis of the DPF electrodes. The dense neon pinch has been found to be a cigar shaped object, ∼0.3 mm in diameter at the waist and ∼8 mm long on a singe shot. This source wanders slightly from shot to shot in an overall envelope which is ∼0.5--0.75 mm in diameter and ∼8 mm long. The spectrum of x-rays emitted by the pinch has been extensively studied. It has been found that 60% of the total x-ray output is radiated in the H-like and He-like lines centered at 12.9 angstrom and 40% of the output is radiated in the H-like and He-like continuum, centered at 9.8 angstrom. More than 4 x 10 5 discharges using a cooled DPF head have been fired producing x-rays. The variation in the measured x-ray output, over several hundreds of thousands of shots, corresponds to a variation in the dose delivered to a resist 40 cm from the source, of less than 1%. Data showing the measurement of the x-ray output, dose delivered to a resist, spectra of the source output, novel beam line concepts and potential lithographic applications will be presented

  4. Beta decay of 72Co and excited levels in 72Ni

    International Nuclear Information System (INIS)

    Grzywacz, R.; Rykaczewski, K.; Sawicka, M.; Pfuetzner, M.; Daugas, J.M.; Belier, G.; Sauvestre, J.E.; Meot, V.; Roig, O.; Giovinazzo, J.; Grawe, H.; Mayet, P.; Matea, I.; Georgiev, G.; Lewitowicz, M.; Olivieira, F. de; Stodel, C.; Saint-Laurent, M. G.; Stanoiu, M.; Verney, D.

    2003-01-01

    An experiment was performed at GANIL to observe isomeric- and beta-delayed gamma rays from very neutron-rich nuclei around 74Ni. Fragmentation products of the 86Kr beam at 58 AMeV were studied using new devices: the LISE 2000 spectrometer and detectors from the EXOGAM germanium array. The primary aim of the experiment was to find the 8+ microsecond isomer in 76Ni and to perform beta decay spectroscopy of Co nuclei. We have successfully measured the beta delayed gammas from the decay of 72Co to 72Ni. The energies for the lowest excited states in 72Ni are proposed, with the first 2+ state at 1096 keV. These findings suggest a solution of the problem of the disappearance of the 8+ isomer in 72Ni. We also measured beta decay of other neutron-rich Co isotopes including 70Co. First evidence was found for a new short lived isomer, most likely the Iπ=8+ state, in 76Ni

  5. Radio and x-ray observations of compact sources in or near supernova remnants

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Gilmore, W.S.

    1982-01-01

    We present VLA multifrequency radio observations of six compact radio sources from the list of nine objects proposed by Ryle et al. [Nature 276, 571 (1978)] as a new class of radio star, possibly the stellar remnants of supernovae. We also present the results of a search for x-ray emission from four of these objects with the Einstein observatory. The radio observations provide information on spectra, polarization, time variability, angular structure, and positions for these sources. The bearing of these new data on the nature of the sources is discussed. One particularly interesting result is that the polarization and angular-size measurements are combined in an astrophysical argument to conclude that one of the sources (2013+370) is extragalactic. No x-ray emission was detected from any of the four objects observed, but an extended x-ray source was found coincident with the supernova remnant G 33.6+0.1 near 1849+005. Our measurements provide no compelling arguments to consider any of the six objects studied as radio stars

  6. XMM-Newton 13H deep field - I. X-ray sources

    Science.gov (United States)

    Loaring, N. S.; Dwelly, T.; Page, M. J.; Mason, K.; McHardy, I.; Gunn, K.; Moss, D.; Seymour, N.; Newsam, A. M.; Takata, T.; Sekguchi, K.; Sasseen, T.; Cordova, F.

    2005-10-01

    We present the results of a deep X-ray survey conducted with XMM-Newton, centred on the UK ROSAT13H deep field area. This region covers 0.18 deg2, and is the first of the two areas covered with XMM-Newton as part of an extensive multiwavelength survey designed to study the nature and evolution of the faint X-ray source population. We have produced detailed Monte Carlo simulations to obtain a quantitative characterization of the source detection procedure and to assess the reliability of the resultant sourcelist. We use the simulations to establish a likelihood threshold, above which we expect less than seven (3 per cent) of our sources to be spurious. We present the final catalogue of 225 sources. Within the central 9 arcmin, 68 per cent of source positions are accurate to 2 arcsec, making optical follow-up relatively straightforward. We construct the N(>S) relation in four energy bands: 0.2-0.5, 0.5-2, 2-5 and 5-10 keV. In all but our highest energy band we find that the source counts can be represented by a double power law with a bright-end slope consistent with the Euclidean case and a break around 10-14yergcm-2s-1. Below this flux, the counts exhibit a flattening. Our source counts reach densities of 700, 1300, 900 and 300 deg-2 at fluxes of 4.1 × 10-16,4.5 × 10-16,1.1 × 10-15 and 5.3 × 10-15ergcm-2s-1 in the 0.2-0.5, 0.5-2, 2-5 and 5-10 keV energy bands, respectively. We have compared our source counts with those in the two Chandra deep fields and Lockman hole, and found our source counts to be amongst the highest of these fields in all energy bands. We resolve >51 per cent (>50 per cent) of the X-ray background emission in the 1-2 keV (2-5 keV) energy bands.

  7. Proposal to DOE Basic Energy Sciences Ultrafast X-ray science facility at the Advanced Light Source

    CERN Document Server

    Schönlein, R W; Alivisatos, A P; Belkacem, A; Berrah, N; Bozek, J; Bressler, C; Cavalleri, A; Chang, Z; Chergui, M; Falcone, R W; Glover, T E; Heimann, P A; Hepburn, J; Larsson, J; Lee, R W; McCusker, J; Padmore, H A; Pattison, P; Pratt, S T; Robin, D W; Schlüter, Ross D; Shank, C V; Wark, J; Zholents, A A; Zolotorev, M S

    2001-01-01

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  8. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-12-12

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  9. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    International Nuclear Information System (INIS)

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-01-01

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron

  10. X-ray sources in regions of star formation. I. The naked T Tauri stars

    International Nuclear Information System (INIS)

    Walter, F.M.

    1986-01-01

    Einstein X-ray observations of regions of active star formation in Taurus, Ophiuchus, and Corona Australis show a greatly enhanced surface density of stellar X-ray sources over that seen in other parts of the sky. Many of the X-ray sources are identified with low-mass, pre-main-sequence stars which are not classical T Tauri stars. The X-ray, photometric, and spectroscopic data for these stars are discussed. Seven early K stars in Oph and CrA are likely to be 1-solar-mass post-T Tauri stars with ages of 10-million yr. The late K stars in Taurus are not post-T Tauri, but naked T Tauri stars, which are coeval with the T Tauri stars, differing mainly in the lack of a circumstellar envelope. 72 references

  11. X-ray imaging with compound refractive lens and microfocus X-ray tube

    OpenAIRE

    Pina, Ladislav; Dudchik, Yury; Jelinek, Vaclav; Sveda, Libor; Marsik, Jiri; Horvath, Martin; Petr, Ondrej

    2008-01-01

    Compound refractive lenses (CRL), consisting of a lot number in-line concave microlenses made of low-Z material were studied. Lenses with focal length 109 mm and 41 mm for 8-keV X-rays, microfocus X-ray tube and X-ray CCD camera were used in experiments. Obtained images show intensity distribution of magnified microfocus X-ray source focal spot. Within the experiments, one lens was also used as an objective lens of the X-ray microscope, where the copper anode X-ray microfocus tube served as a...

  12. Real world issues for the new soft x-ray synchrotron sources

    International Nuclear Information System (INIS)

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs

  13. Analysis of monochromatic and quasi-monochromatic X-ray sources in imaging and therapy

    Science.gov (United States)

    Westphal, Maximillian; Lim, Sara; Nahar, Sultana; Orban, Christopher; Pradhan, Anil

    2017-04-01

    We studied biomedical imaging and therapeutic applications of recently developed quasi-monochromatic and monochromatic X-ray sources. Using the Monte Carlo code GEANT4, we found that the quasi-monochromatic 65 keV Gaussian X-ray spectrum created by inverse Compton scattering with relatavistic electron beams were capable of producing better image contrast with less radiation compared to conventional 120 kV broadband CT scans. We also explored possible experimental detection of theoretically predicted K α resonance fluorescence in high-Z elements using the European Synchrotron Research Facility with a tungsten (Z = 74) target. In addition, we studied a newly developed quasi-monochromatic source generated by converting broadband X-rays to monochromatic K α and β X-rays with a zirconium target (Z = 40). We will further study how these K α and K β dominated spectra can be implemented in conjunction with nanoparticles for targeted therapy. Acknowledgement: Ohio Supercomputer Center, Columbus, OH.

  14. A new high quality X-ray source for Cultural Heritage

    International Nuclear Information System (INIS)

    Walter, Ph.; Variola, A.; Zomer, F.; Jaquet, M.

    2009-01-01

    Compton based photon sources have generated much interest since the rapid advance in laser and accelerator technologies has allowed envisaging their utilisation for ultra-compact radiation sources. These should provide X-ray short pulses with a relatively high average flux. Moreover, the univocal dependence between the scattered photon energy and its angle gives the possibility of obtaining a quasi-monochromatic beam with a simple diaphragm system. For the most ambitious projects the expected performance takes into account a rate of 10 12 - 10 13 photons/s, with an angular divergence of few mrad, an X-ray energy cut-off of few tens of keV and a bandwidth ΔE/E ∼ 1-10 %. Even if the integrated rate cannot compete with synchrotron radiation sources, the cost and the compactness of these Compton based machines make them attractive for a wide spectrum of applications. We explore here the interest of these systems for Cultural Heritage preservation. (authors)

  15. A new high quality X-ray source for Cultural Heritage

    Science.gov (United States)

    Walter, Philippe; Variola, Alessandro; Zomer, Fabian; Jaquet, Marie; Loulergue, Alexandre

    2009-09-01

    Compton based photon sources have generated much interest since the rapid advance in laser and accelerator technologies has allowed envisaging their utilisation for ultra-compact radiation sources. These should provide X-ray short pulses with a relatively high average flux. Moreover, the univocal dependence between the scattered photon energy and its angle gives the possibility of obtaining a quasi-monochromatic beam with a simple diaphragm system. For the most ambitious projects the expected performance takes into account a rate of 10-10 photons/s, with an angular divergence of few mrad, an X-ray energy cut-off of few tens of keV and a bandwidth ΔE/E˜1-10%. Even if the integrated rate cannot compete with synchrotron radiation sources, the cost and the compactness of these Compton based machines make them attractive for a wide spectrum of applications. We explore here the interest of these systems for Cultural Heritage preservation. To cite this article: P. Walter et al., C. R. Physique 10 (2009).

  16. A radio monitoring survey of ultra-luminous X-ray sources

    Science.gov (United States)

    Körding, E.; Colbert, E.; Falcke, H.

    2005-06-01

    We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg s-1. A well-defined sample of the 9 nearest ULXs has been monitored eight times over 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is ≈0.15 mJy (4σ) for radio flares and ≈60 μJy for continuous emission. In M 82 two ULXs seem to have coincident compact radio sources, which are probably supernova remnants. No continuous or flaring radio emission has been detected from any other ULX. Thus, ULXs do not generally emit steady-state radio emission above radio powers of 1.5 × 1017 W/Hz. The non-detections of the continuous emission are consistent with beamed or unbeamed radio emission from accreting black holes of ≤ 103 M⊙ based on the radio/X-ray correlation. Other published radio detections (M 82, NGC 5408) are also discussed in this context. Both detections are significantly above our detection limit. If ULXs have flaring radio emission above 4 × 1017 W/Hz we can give an upper limit on the duty cycle of the flares of 6%. This upper limit is in agreement with the observed number of flares in Galactic radio transients. Additionally we present a yet unreported radio double structure in the nearby low-luminosity AGN NGC 4736.

  17. A new hybrid target concept for multi-keV X-ray sources

    International Nuclear Information System (INIS)

    Primout, M.; Babonneau, D.; Jacquet, L.; Villette, B.; Girard, F.; Brebion, D.; Stemmler, P.; Fournier, K.B.; Marrs, R.; May, M.J.; Heeter, R.F.; Wallace, R.J.; Nishimura, H.; Fujioka, S.; Tanabe, M.; Nagai, H.

    2013-01-01

    A novel concept for using hybrid targets to create multi-keV X-ray sources was tested on the GEKKO XII facility of the Osaka University and on the OMEGA facility of the University of Rochester. The sources were made via laser irradiation of a titanium foil placed at the end of a plastic cylinder, filled with a very low-density (2 and 5 mg/cm 3 ) silicon-dioxide aerogel that was designed to control the longitudinal expansion of the titanium plasma. Preliminary calculations were used to determine optimal conditions for the aerogel density, cylinder diameter and length that maximize multi-keV X-ray emission. The X-ray emission power was measured on OMEGA using absolutely calibrated broad-band, diode-based CEA diagnostics, in addition to high resolution crystal spectrometers. On GEKKO XII, the heat wave propagation velocity in the aerogel was also measured with an X-ray framing camera. The advantage of using the thermal wave generated in the aerogel to heat a solid material to increase the conversion efficiency has not been fully demonstrated in these experiments. However, it was shown that a 5 mg/cm 3 aerogel placed in front of a titanium foil can improve the x-ray conversion efficiency with respect to the case of 2 mg/cm 3 for some target diameter and length. (authors)

  18. Studies on production of metastable core-excited atoms by laser-produced x-rays. Final report, 1 October 1984-30 September 1985

    International Nuclear Information System (INIS)

    Harris, S.E.; Young, J.F.

    1986-04-01

    The overall objective of the work on this program was to study methods for production of core-excited metastable atoms by laser-generated x-rays. We are interested in the spectroscopy of these levels, their autoionizing and radiative rates, and their metastability in the presence of hot electrons and ions. The concept of using x-rays emitted from a laser-produced plasma to excite large densities of energetic excited levels in atoms and ions has been thoroughly experimentally investigated using modest, 100 mJ, plasma-producing lasers. One of the objectives of this work was to verify that these techniques could be scaled up to higher energies, such as 20 J. Thus a major effort this year has been devoted to the design and construction of the high energy (20 J) 1064 nm plasma-forming laser system and the tunable probe/transfer laser

  19. Experimental Comparison of 2-3MV X-Ray Sources for Flash Radiography

    International Nuclear Information System (INIS)

    MENGE, PETER RICHARD; JOHNSON, DAVID LEE; MAENCHEN, JOHN E.; OLSON, CRAIG L.; ROVANG, DEAN C.; DROEMER, D.; HUNT, E.; OLIVER, BRYAN VELTEN; ROSE, DAVID VINCENT; WELCH, DALE ROBERT

    2002-01-01

    High-brightness flash x-ray sources are needed for penetrating dynamic radiography for a variety of applications. Various bremsstrahlung source experiments have been conducted on the TriMeV accelerator (3MV, 60 Ω 20 ns) to determine the best diode and focusing configuration in the 2-3 MV range. Three classes of candidate diodes were examined: gas cell focusing, magnetically immersed, and rod pinch. The best result for the gas cell diode was 6 rad at 1 meter from the source with a 5 mm diameter x-ray spot. Using a 0.5 mm diameter cathode immersed in a 17 T solenoidal magnetic field, the best shot produced 4.1 rad with a 2.9 mm spot. The rod pinch diode demonstrated very reproducible radiographic spots between 0.75 and 0.8 mm in diameter, producing 1.2 rad. This represents a factor of eight improvement in the TriMeV flash radiographic capability above the original gas cell diode to a figure of merit (dose/spot diameter) > 1.8 rad/mm. These results clearly show the rod pinch diode to be the choice x-ray source for flash radiography at 2-3 M V

  20. X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Spoth, Katherine; /SUNY, Buffalo /SLAC

    2012-08-28

    Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.