WorldWideScience

Sample records for beta-delayed neutron emission

  1. Studies of Beta-Delayed Neutron Emission using Trapped Ions

    Science.gov (United States)

    Siegl, Kevin; Aprahamian, A.; Scielzo, N. D.; Savard, G.; Clark, J. A.; Levand, A. F.; Burkey, M.; Caldwell, S.; Czeszumska, A.; Hirsh, T. Y.; Kolos, K.; Marley, S. T.; Morgan, G. E.; Norman, E. B.; Nystrom, A.; Orford, R.; Padgett, S.; Pérez Galván, A.; Sh, K. S.; Strauss, S. Y.; Wang, B. S.

    2017-01-01

    Using a radio-frequency quadrupole ion trap to confine radioactive ions allows indirect measurements of beta-delayed neutron (BDN) emission. By determining the recoil energy of the beta-decay daughter ions it is possible to study BDN emission, as the neutron emission can impart a significantly larger nuclear recoil than from beta-decay alone. This method avoids most of the systematic uncertainties associated with direct neutron detection but introduces dependencies on the specifics of the decay and interactions of the ion with the RF fields. The decays of seven BDN precursors were studied using the Beta-decay Paul Trap (BPT) to confine fission fragments from the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. The analysis of these measurements and results for the branching ratios and neutron energy spectra will be presented. Supported by the NSF under grant PHY-1419765, and the U.S. DOE under the NEUP project 13-5485, contracts DE-AC02-06CH11357 (ANL) and DE-AC52-07NA27344 (LLNL), and award DE-NA0000979 (NNSA).

  2. Neutron-gamma competition for $\\beta$-delayed neutron emission

    CERN Document Server

    Mumpower, Matthew; Moller, Peter

    2016-01-01

    We present a coupled Quasi-particle Random Phase Approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information which starts with Gamow-Teller strength distributions in the daughter nucleus, and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is $\\gamma$-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-gamma competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. A second consequence of this formalism is a prediction of more neutrons on average being emitted after $\\beta$-decay for nuclei near the neutron dripline compared to models that do not consider the statistical decay.

  3. Evidence for beta -delayed neutron emission from /sup 31/Mg and /sup 32/Mg

    CERN Document Server

    Zaidins, C S; De Saint-Simon, M; Détraz, C; Epherre-Rey-Campagnolle, Marcelle; Guillemaud, D; Klapisch, Robert; Langevin, M; Naulin, F; Thibault, C; Touchard, F

    1981-01-01

    Investigates the time spectrum of beta -delayed neutron emission from /sup 30-34/Na and their descendants using beta -neutron coincidence detection. The authors have been able to assign an upper limit of 0,4% to the probability of beta -delayed neutron emission, p/sub n/, from the /sup 30/Na daugher isotope /sup 30/Mg. In fitting the time spectra of beta -delayed neutrons from /sup 31/Na and /sup 32/Na, we find a definitive component from subsequent daughter decay as well. This provides evidence for beta -delayed neutron emission from /sup 31/Mg and /sup 32/Mg with P/sub n/ values of the order of 2% for each. (7 refs).

  4. The neutron long counter NERO for studies of beta-delayed neutron emission in the r-process

    CERN Document Server

    Pereira, J; Lorusso, G; Santi, P; Couture, A; Daly, J; Del Santo, M; Elliot, T; Goerres, J; Herlitzius, C; Kratz, K -L; Lamm, L O; Lee, H Y; Montes, F; Ouellette, M; Pellegrini, E; Reeder, P; Schatz, H; Schertz, F; Schnorrenberger, L; Smith, K; Stech, E; Strandberg, E; Ugalde, C; Wiescher, M; Woehr, A; 10.1016/j.nima.2010.02.262

    2010-01-01

    The neutron long counter NERO was built at the National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, for measuring beta-delayed neutron-emission probabilities. The detector was designed to work in conjunction with a beta-decay implantation station, so that beta decays and beta-delayed neutrons emitted from implanted nuclei can be measured simultaneously. The high efficiency of about 40%, for the range of energies of interest, along with the small background, are crucial for measuring beta-delayed neutron emission branchings for neutron-rich r-process nuclei produced as low intensity fragmentation beams in in-flight separator facilities.

  5. {beta}-delayed neutron emission measurements around the third r-process abundance peak

    Energy Technology Data Exchange (ETDEWEB)

    Caballero-Folch, R.; Cortes, G.; Calvino, F.; Gomez-Hornillos, M. B.; Riego, A. [INTE-DFEN, Universitat Politecnica de Catalunya, Barcelona (Spain); Domingo-Pardo, C.; Tain, J. L.; Agramunt, J.; Rubio, B. [IFIC, CSIC-University of Valencia, Valencia (Spain); Algora, A. [IFIC, CSIC-University of Valencia, Valencia (Spain) and Inst. Nucl. Research, Debrecen (Hungary); Ameil, F.; Farinon, F.; Heil, M.; Knoebel, R.; Kojouharov, I.; Kurcewicz, J.; Kurz, N.; Litvinov, Y.; Mukha, I.; Nociforo, C. [GSI, Darmstadt (Germany); and others

    2013-06-10

    This contribution summarizes an experiment performed at GSI (Germany) in the neutron-rich region beyond N=126. The aim of this measurement is to provide the nuclear physics input of relevance for r-process model calculations, aiming at a better understanding of the third r-process abundance peak. Many exotic nuclei were measured around {sup 211}Hg and {sup 215}Tl. Final ion identification diagrams are given in this contribution. For most of them, we expect to derive halflives and and {beta}-delayed neutron emission probabilities. The detectors used in this experiment were the Silicon IMplantation and Beta Absorber (SIMBA) detector, based on an array of highly segmented silicon detectors, and the BEta deLayEd Neutron (BELEN) detector, which consisted of 30 3He counters embedded in a polyethylene matrix.

  6. Beta-delayed neutron emission studies with a C7LYC array at CARIBU

    Science.gov (United States)

    Wilson, Gemma; Chowdhury, Partha; Lister, Christopher; Brown, Tristan; Carpenter, Michael; Chillery, Thomas; Copp, Patrick; Doucet, Emery; Mitchell, Alan; Savard, Guy; Zhu, Shaofei

    2016-09-01

    This work is a study of β-delayed neutron and γ emission from 94Rb at CARIBU. Beta-delayed neutron emission studies are important in the astrophysical r-process, nuclear structure and for nuclear reactor safety and design. Approximately 150 γ rays are known in the daughter 94Sr, many of which are unplaced. An estimated 26% of γ rays are thought to be missing. The probability of β-delayed neutron emission in 94Sr is 10.2(2)%. Recently, substantial γ-decay from above the neutron separation energy in 94Rb has been reported. This research is aimed at understanding this high-lying γ-strength. The experiment employed the X-Array (a high efficiency HPGe clover array), SCANS (Small CLYC Array for Neutron Scattering) and the SATURN decay station (Scintillator And Tape Using Radioactive Nuclei) for γ, fast neutron and β-particle detection, respectively. Data were collected in a triggerless digital data acquisition system, with detected β , n , and γ events correlated offline. Techniques, analysis and first results will be discussed. Supported by the NNSA Stewardship Science Academic Alliance Program under Grant DE-NA00013008, and by US DoE, Office of Nuclear Physics, under DE-FG02-94ER40848.

  7. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    Science.gov (United States)

    Koura, Hiroyuki

    2014-09-01

    A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for

  8. First-forbidden $\\mathbf{\\beta}$-decay rates, energy rates of $\\beta$-delayed neutrons and probability of $\\beta$-delayed neutron emissions for neutron-rich nickel isotopes

    CERN Document Server

    Nabi, Jameel-Un; Iftikhar, Zafar

    2016-01-01

    First-forbidden (FF) transitions can play an important role in decreasing the calculated half-lives specially in environments where allowed Gamow-Teller (GT) transitions are unfavored. Of special mention is the case of neutron-rich nuclei where, due to phase-space amplification, FF transitions are much favored. We calculate the allowed GT transitions in various pn-QRPA models for even-even neutron-rich isotopes of nickel. Here we also study the effect of deformation on the calculated GT strengths. The FF transitions for even-even neutron-rich isotopes of nickel are calculated assuming the nuclei to be spherical. Later we take into account deformation of nuclei and calculate GT + unique FF transitions, stellar $\\beta$-decay rates, energy rate of $\\beta$-delayed neutrons and probability of $\\beta$-delayed neutron emissions. The calculated half-lives are in excellent agreement with measured ones and might contribute in speeding-up of the $r$-matter flow.

  9. Beta-delayed proton emission in neutron-deficient lanthanide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, P.A.

    1988-09-30

    Forty-two ..beta..-delayed proton precursors with 56less than or equal toZless than or equal to71 and 63less than or equal toNless than or equal to83 were produced in heavy-ion reactions at the Lawrence Berkeley Laboratory SuperHILAC and their radioactive decay properties studied at the on-line mass separation facility OASIS. Twenty-five isotopes and eight delayed proton branches were identified for the first time. Delayed proton energy spectra and proton coincident ..gamma..-ray and x-ray spectra were measured for all precursors. In a few cases, proton branching ratios were also determined. The precursor mass numbers were determined by the separator, while the proton coincident x-ray energies provided unambiguous Z identifications. The proton coincident ..gamma..-ray intensities were used to extract final state branching ratios. Proton emission from ground and isomeric states was observed in many cases. The majority of the delayed proton spectra exhibited the smooth bell-shaped distribution expected for heavy mass precursors. The experimental results were compared to statistical model calculations using standard parameter sets. Calculations using Nilsson model/RPA ..beta..-strength functions were found to reproduce the spectral shapes and branching ratios better than calculations using either constant or gross theory ..beta..-strength functions. Precursor half-life predictions from the Nilsson model/RPA ..beta..-strength functions were also in better agreement with the measured half-lives than were gross theory predictions. The ratios of positron coincident proton intensities to total proton intensities were used to determine Q/sub EC/-B/sub p/ values for several precursors near N=82. The statistical model calculations were not able to reproduce the experimental results for N=81 precursors. 154 refs., 82 figs., 19 tabs.

  10. {beta} delayed emission of a proton by a one-neutron halo nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Baye, D., E-mail: dbaye@ulb.ac.b [Physique Quantique, CP 165/82, Universite Libre de Bruxelles (ULB), B-1050 Brussels (Belgium); Physique Nucleaire Theorique et Physique Mathematique, CP229, Universite Libre de Bruxelles (ULB), B-1050 Brussels (Belgium); Tursunov, E.M., E-mail: tursune@inp.u [Institute of Nuclear Physics, Uzbekistan Academy of Sciences, 100214, Ulugbek, Tashkent (Uzbekistan)

    2011-02-14

    Some one-neutron halo nuclei can emit a proton in a {beta} decay of the halo neutron. The branching ratio towards this rare decay mode is calculated within a two-body potential model of the initial core + neutron bound state and final core + proton scattering states. The decay probability per second is evaluated for the {sup 11}Be, {sup 19}C and {sup 31}Ne one-neutron halo nuclei. It is very sensitive to the neutron separation energy.

  11. MONSTER: a TOF Spectrometer for beta-delayed Neutron Spetroscopy

    CERN Document Server

    Martinez, T; Castilla, J; Garcia, A R; Marin, J; Martinez, G; Mendoza, E; Santos, C; Tera, F; Jordan, M D; Rubio, B; Tain, J L; Bhattacharya, C; Banerjee, K; Bhattacharya, S; Roy, P; Meena, J K; Kundu, S; Mukherjee, G; Ghosh, T K; Rana, T K; Pandey, R; Saxena, A; Behera, B; Penttila, H; Jokinen, A; Rinta-Antila, S; Guerrero, C; Ovejero, M C; Villamarin, D; Agramunt, J; Algora, A

    2014-01-01

    Beta-delayed neutron (DN) data, including emission probabilities, P-n, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

  12. $\\beta$-decay and $\\beta$-delayed Neutron Emission Measurements at GSI-FRS Beyond N=126, for r-process Nucleosynthesis

    CERN Document Server

    Caballero-Folch, R; Cortès, G; Taín, J L; Agramunt, J; Algora, A; Ameil, F; Ayyad, Y; Benlliure, J; Bowry, M; Calviño, F; Cano-Ott, D; Davinson, T; Dillmann, I; Estrade, A; Evdokimov, A; Faestermann, T; Farinon, F; Galaviz, D; García-Ríos, A; Geissel, H; Gelletly, W; Gernhäuser, R; Gómez-Hornillos, M B; Guerrero, C; Heil, M; Hinke, C; Knöbel, R; Kojouharov, I; Kurcewicz, J; Kurz, N; Litvinov, Y; Maier, L; Marganiec, J; Marta, M; Martínez, T; Montes, F; Mukha, I; Napoli, D R; Nociforo, C; Paradela, C; Pietri, S; Podolyák, Zs; Prochazka, A; Rice, S; Riego, A; Rubio, B; Schaffner, H; Scheidenberger, C; Smith, K; Sokol, E; Steiger, K; Sun, B; Takechi, M; Testov, D; Weick, H; Wilson, E; Winfield, J S; Wood, R; Woods, P J; Yeremin, A

    2014-01-01

    New measurements of very exotic nuclei in the neutron-rich region beyond N=126 have been performed at the GSI facility with the fragment separator (FRS). The aim of the experiment is to determine half-lives and beta-delayed neutron emission branching ratios of isotopes of Hg, Tl and Pb in this region. This contribution summarizes final counting statistics for identification and for implantation, as well as the present status of the data analysis of the half-lives. In summary, isotopes of Pt, Au, Hg, Ti, Pb, Bi, Po, At, Rn and Fr were clearly identified and several of them (Hg208-211, Tl211-215, Pb214-218) were implanted with enough statistics to determine their half-lives. About half of them are expected to be neutron emitters, in such cases it will become possible to obtain the neutron emission probabilities, P-n.

  13. Half-lives and branchings for {\\beta}-delayed neutron emission for neutron-rich Co-Cu isotopes in the r-process

    CERN Document Server

    Hosmer, P; Aprahamian, A; Arndt, O; Clement, R R C; Estrade, A; Farouqi, K; Kratz, K -L; Liddick, S N; Lisetskiy, A F; Mantica, P F; Möller, P; Mueller, W F; Montes, F; Morton, A C; Ouellette, M; Pellegrini, E; Pereira, J; Pfeiffer, B; Reeder, P; Santi, P; Steiner, M; Stolz, A; Tomlin, B E; Walters, W B; Wöhr, A; 10.1103/PhysRevC.82.025806

    2010-01-01

    The {\\beta} decays of very neutron-rich nuclides in the Co-Zn region were studied experimentally at the National Superconducting Cyclotron Laboratory using the NSCL {\\beta}-counting station in conjunction with the neutron detector NERO. We measured the branchings for {\\beta}-delayed neutron emission (Pn values) for 74Co (18 +/- 15%) and 75-77Ni (10 +/- 2.8%, 14 +/- 3.6%, and 30 +/- 24%, respectively) for the first time, and remeasured the Pn values of 77-79Cu, 79,81Zn, and 82Ga. For 77-79Cu and for 81Zn we obtain significantly larger Pn values compared to previous work. While the new half-lives for the Ni isotopes from this experiment had been reported before, we present here in addition the first half-life measurements of 75Co (30 +/- 11 ms) and 80Cu (170+110 -50 ms). Our results are compared with theoretical predictions, and their impact on various types of models for the astrophysical rapid neutron-capture process (r-process) is explored. We find that with our new data, the classical r-process model is bet...

  14. Beta-decay half-lives and beta-delayed neutron emission probabilities of nuclei in the region below A=110, relevant for the r-process

    CERN Document Server

    Pereira, J; Aprahamian, A; Arndt, O; Becerril, A; Elliot, T; Estrade, A; Galaviz, D; Kessler, R; Kratz, K -L; Lorusso, G; Mantica, P F; Matos, M; Møller, P; Montes, F; Pfeiffer, B; Schatz, H; Schertz, F; Schnorrenberger, L; Smith, E; Stolz, A; Quinn, M; Walters, W B; Wöhr, A

    2009-01-01

    Measurements of the beta-decay properties of r-process nuclei below A=110 have been completed at the National Superconducting Cyclotron Laboratory, at Michigan State University. Beta-decay half-lives for Y-105, Zr-106,107 and Mo-111, along with beta-delayed neutron emission probabilities of Y-104, Mo-109,110 and upper limits for Y-105, Zr-103,104,105,106,107 and Mo-108,111 have been measured for the first time. Studies on the basis of the quasi-random phase approximation are used to analyze the ground-state deformation of these nuclei.

  15. Beta-delayed neutron decay of {sup 33}Na

    Energy Technology Data Exchange (ETDEWEB)

    Radivojevic, Z. E-mail: zoran.radivojevic@phys.jyu.fi; Baumann, P.; Caurier, E.; Cederkaell, J.; Courtin, S.; Dessagne, Ph.; Jokinen, A.; Knipper, A.; Scornet, G.L.G. Le; Lyapin, V.; Miehe, Ch.; Nowacki, F.; Nummela, S.; Oinonen, M.; Poirier, E.; Ramdhane, M.; Trzaska, W.H.; Walter, G.; Aeystoe, J

    2002-04-01

    Beta-delayed neutron decay of {sup 33}Na has been studied using the on-line mass separator ISOLDE. The delayed neutron spectra were measured by time-of-flight technique using fast scintillators. Two main neutron groups at 800(60) and 1020(80) keV were assigned to the {sup 33}Na decay, showing evidence for strong feeding of states at about 4 MeV in {sup 33}Mg. By simultaneous {beta}-{gamma}-n counting the delayed neutron emission probabilities P{sub 1n}=47(6)% and P{sub 2n}=13(3)% were determined. The half-life value for {sup 33}Na, T{sub 1/2}=8.0(3) ms, was measured by three different techniques, one employing identifying gamma transitions and two employing beta and neutron counting.

  16. Beta-delayed neutron spectroscopy using ion traps

    Science.gov (United States)

    Wang, Barbara; Czeszumska, A.; Siegl, K.; Caldwell, S.; Aprahamian, A.; Burkey, M.; Clark, J.; Levand, A.; Marley, S.; Morgan, G.; Norman, E.; Nystrom, A.; Orford, R.; Padgett, S.; Perez Galvan, A.; Savard, G.; Scielzo, N.; Sharma, K.; Strauss, S.

    2017-01-01

    Trapped radioactive ions suspended in vacuum allow for a new way to perform beta-delayed neutron spectroscopy. Decay branching ratios and energy spectra of the emitted neutrons are inferred from a measurement of the nuclear recoil, thereby circumventing the many limitations associated with direct neutron detection. Beta-delayed neutron measurements were carried out for 137-138,140I, 134-136Sb, and 144-145Cs at the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. The data collected are needed in many fields of basic and applied science such as nuclear energy, nuclear astrophysics, and stockpile stewardship. Results for the isotopes 135-136Sb and 140I will be presented. Supported by NSF under PHY-1419765, and U.S. DOE under NEUP 13-5485, DE-AC02-06CH11357 (ANL), DE-AC52-07NA27344 (LLNL), and DE-NA0000979 (NNSA).

  17. Beta-delayed neutron spectroscopy of spherical and deformed neutron emitters with VANDLE

    Science.gov (United States)

    King, Thomas; Gross, C. J.; Grzywacz, R. K.; Paulauskas, S. V.; Rykaczewski, K. P.; Stracener, D. W.,; Taylor, S. Z.; Vandle Collaboration

    2016-09-01

    For many neutron-rich isotopes, the main decay mode is through beta-delayed neutron and gamma emission. Neutron and gamma coincidences provide information necessary to extract the beta-strength distribution. These distributions are inputs to test nuclear models needed for r-process modeling. The detailed data on beta decay feeding to neutron-unbound states are used to calculate reactor decay heat and understand the antineutrino spectrum. A series of measurements with selective ion sources was performed at the On-Line Test Facility (OLTF) at Oak Ridge National Laboratory with the Versatile Array of Neutron Detectors at Low Energy (VANDLE). These experiments revisited decays of spherical and deformed isotopes produced in proton induced fission of 238U, which included beta delayed precursors of bromine, rubidium, cesium, and iodine. Unique data sets with neutron and gamma ray coincidences were collected. Achieving high coincidence efficiency required the addition of high-efficiency gamma-ray detectors consisting of 16 LaBr3 crystals (HAGRiD) and a large volume set of NaI detectors to VANDLE. Preliminary results will be presented. This research was sponsored by DOE under Contracts DE-FG52-08NA2855, DE-AC05-00OR22725 and DE-FG02-96ER40983.

  18. Beta-delayed proton emission from $^{21}$Mg

    CERN Document Server

    Lund, M V; Briz, J A; Cederkäll, J; Fynbo, H O U; Jensen, J H; Jonson, B; Laursen, K L; Nilsson, T; Perea, A; Pesudo, V; Riisager, K; Tengblad, O

    2015-01-01

    Beta-delayed proton emission from $^{21}$Mg has been measured at ISOLDE, CERN, with a detection setup including particle identification capabilities. $\\beta$-delayed protons with center of mass energies between 0.39$\\,$MeV and 7.2$\\,$MeV were measured and used to determine the half life of $^{21}$Mg as $118.6\\pm 0.5\\,$ms. From a line shape fit of the $\\beta p$ branches we extract spectroscopic information about the resonances of $^{21}$Na. Finally an improved interpretation of the decay scheme in accordance with the results obtained in reaction studies is presented.

  19. First measurement of several $\\beta$-delayed neutron emitting isotopes beyond N=126

    CERN Document Server

    Caballero-Folch, R; Agramunt, J; Algora, A; Ameil, F; Arcones, A; Ayyad, Y; Benlliure, J; Borzov, I N; Bowry, M; Calvino, F; Cano-Ott, D; Cortés, G; Davinson, T; Dillmann, I; Estrade, A; Evdokimov, A; Faestermann, T; Farinon, F; Galaviz, D; García, A R; Geissel, H; Gelletly, W; Gernhäuser, R; Gómez-Hornillos, M B; Guerrero, C; Heil, M; Hinke, C; Knöbel, R; Kojouharov, I; Kurcewicz, J; Kurz, N; Litvinov, Y; Maier, L; Marganiec, J; Marketin, T; Marta, M; Martínez, T; Martínez-Pinedo, G; Montes, F; Mukha, I; Napoli, D R; Nociforo, C; Paradela, C; Pietri, S; Podolyák, Zs; Prochazka, A; Rice, S; Riego, A; Rubio, B; Schaffner, H; Scheidenberger, Ch; Smith, K; Sokol, E; Steiger, K; Sun, B; Taín, J L; Takechi, M; Testov, D; Weick, H; Wilson, E; Winfield, J S; Wood, R; Woods, P; Yeremin, A

    2015-01-01

    The $\\beta$-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with $\\beta$-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb and Bi in the mass region N$\\gtrsim$126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the $\\beta$-decay strength distribution. In doing so, it provides important constraints to global theoretical models currently used in $r$-process nucleosynthesis.

  20. Study of $\\beta$-delayed neutron decay of $^{8}$He

    CERN Multimedia

    The goal of the present proposal is to study $\\beta$-delayed neutron decay branch of $^{8}$He. The energy spectra of the emitted neutrons will be measured in the energy range of 0.1 – 6 MeV using the VANDLE spectrometer. Using coincident $\\gamma$-ray measurement, components of the spectrum corresponding to transitions to the ground- and first- excited states of $^{7}$Li will be disentangled. The new data will allow us to get a more complete picture of the $\\beta$-decay of $^{8}$He and to clarify the discrepancy between the B(GT) distributions derived from the $\\beta$-decay and $^{8}$He(p, n)$^{8}$Li reaction studies.

  1. Beta-delayed proton emission from {sup 21}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Lund, M.V.; Fynbo, H.O.U.; Jensen, J.H.; Laursen, K.L.; Riisager, K. [Aarhus University, Department of Physics and Astronomy, Aarhus C (Denmark); Borge, M.J.G. [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); CERN, ISOLDE, PH Department, Geneva 23 (Switzerland); Briz, J.A.; Perea, A.; Pesudo, V.; Tengblad, O. [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Cederkaell, J. [Lund University, Department of Nuclear Physics, Lund (Sweden); Jonson, B.; Nilsson, T. [Chalmers University of Technology, Department of Fundamental Physics, Goeteborg (Sweden)

    2015-09-15

    Beta-delayed proton emission from {sup 21}Mg has been measured at ISOLDE, CERN, with a detection setup consisting of two charged-particle telescopes surrounding the decay point. Altogether 27 βp branches were measured with center-of-mass energies between 0.4-7.2 MeV. Seven new βp branches were observed. Beta-delayed protons were used to determine the half-life of {sup 21}Mg as 118.6 ± 0.5 ms. From a line shape fit of the βp branches we extract the widths, spins, and parities of the resonances of {sup 21}Na. An improved interpretation of the decay scheme in accordance with the results obtained in reaction studies is presented. (orig.)

  2. Beta-delayed proton emission from {sup 20}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Lund, M.V.; Fynbo, H.O.U.; Howard, A.M.; Kirsebom, O.S.; Munch, M.; Riisager, K. [Aarhus University, Department of Physics and Astronomy, Aarhus C (Denmark); Andreyev, A.; Wadsworth, R. [University of York, Department of Physics, York (United Kingdom); Borge, M.J.G. [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); CERN, ISOLDE, PH Department, Geneva 23 (Switzerland); Cederkaell, J. [Lund University, Department of Nuclear Physics, Lund (Sweden); Witte, H. de; Huyse, M.; Duppen, P. van [Instituut voor Kern- en Stralingsfysica, KU-Leuven, Leuven (Belgium); Fraile, L.M.; Vedia, V. [Universidad Complutense de Madrid, CEI Moncloa, Facultad de Ciencias Fisicas, Madrid (Spain); Greenlees, P.T.; Konki, J.; Rahkila, P. [University of Helsinki, Helsinki Institute of Physics, Helsinki (Finland); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Harkness-Brennan, L.J.; Judson, D.S.; Page, R.D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Jonson, B.; Lindberg, S.; Nilsson, T. [Chalmers University of Technology, Department of Physics, Goeteborg (Sweden); Kurcewicz, J.; Madurga, M.; Rapisarda, E. [CERN, ISOLDE, PH Department, Geneva (Switzerland); Lazarus, I.; Pucknell, V. [STFC Daresbury, Daresbury, Warrington (United Kingdom); Lica, R. [CERN, ISOLDE, PH Department, Geneva (Switzerland); ' ' Horia Hulubei' ' National Institute of Physics and Nuclear Engineering, Magurele (Romania); Marginean, N.; Marginean, R.; Mihai, C.; Negret, A.; Pascu, S.; Rotaru, F.; Stanoiu, M.; Turturica, A. [' ' Horia Hulubei' ' National Institute of Physics and Nuclear Engineering, Magurele (Romania); Marroquin, I.; Nacher, E.; Perea, A.; Tengblad, O. [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Sotty, C. [Instituut voor Kern- en Stralingsfysica, KU-Leuven, Leuven (Belgium); ' ' Horia Hulubei' ' National Institute of Physics and Nuclear Engineering, Magurele (Romania); Warr, N. [Universitaet Koeln, Institut fuer Kernphysik, Koeln (Germany); Collaboration: IDS Collaboration

    2016-10-15

    Beta-delayed proton emission from {sup 20} Mg has been measured at ISOLDE, CERN, with the ISOLDE Decay Station (IDS) setup including both charged-particle and gamma-ray detection capabilities. A total of 27 delayed proton branches were measured including seven so far unobserved. An updated decay scheme, including three new resonances above the proton separation energy in {sup 20}Na and more precise resonance energies, is presented. Beta-decay feeding to two resonances above the Isobaric Analogue State (IAS) in {sup 20}Na is observed. This may allow studies of the 4032.9(2.4) keV resonance in {sup 19}Ne through the beta decay of {sup 20}Mg, which is important for the astrophysically relevant reaction {sup 15}O(α, γ){sup 19}Ne. Beta-delayed protons were used to obtain a more precise value for the half-life of {sup 20}Mg, 91.4(1.0) ms. (orig.)

  3. $\\beta$-delayed neutron spectroscopy of $^{130-132}$ Cd isotopes with the ISOLDE decay station and the VANDLE array

    CERN Multimedia

    We propose to use the new ISOLDE decay station and the neutron detector VANDLE to measure the $\\beta$-delayed neutron emission of N=82-84 $^{130-132}$Cd isotopes. The large delayed neutron emission probability observed in a previous ISOLDE measurement is indicative of the Gamow-Teller transitions due to the decay of deep core neutrons. Core Gamow-Teller decay has been experimentally proven in the $^{78}$Ni region for the N>50 nuclei using the VANDLE array. The spectroscopic measurement of delayed neutron emission along the cadmium isotopic chain will allow us to track the evolution of the single particle states and the shell gap.

  4. Beta-delayed proton emission in the 100Sn region

    CERN Document Server

    Lorusso, G; Amthor, A; Baumann, T; Bazin, D; Berryman, J S; Brown, B A; Cyburt, R H; Crawford, H L; Estrade, A; Gade, A; Ginter, T; Guess, C J; Hausmann, M; Hitt, G W; Mantica, P F; Matos, M; Meharchand, R; Minamisono, K; Montes, F; Perdikakis, G; Pereira, J; Portillo, M; Schatz, H; Smith, K; Stoker, J; Stolz, A; Zegers, R G T

    2012-01-01

    Beta-delayed proton emission from nuclides in the neighborhood of 100Sn was studied at the National Superconducting Cyclotron Laboratory. The nuclei were produced by fragmentation of a 120 MeV/nucleon 112Sn primary beam on a Be target. Beam purification was provided by the A1900 Fragment Separator and the Radio Frequency Fragment Separator. The fragments of interest were identified and their decay was studied with the NSCL Beta Counting System (BCS) in conjunction with the Segmented Germanium Array (SeGA). The nuclei 96Cd, 98Ing, 98Inm and 99In were identified as beta-delayed proton emitters, with branching ratios bp = 5.5(40)%, 5.5+3 -2%, 19(2)% and 0.9(4)%, respectively. The bp for 89Ru, 91,92Rh, 93Pd and 95Ag were deduced for the first time with bp = 3+1.9 -1.7%, 1.3(5)%, 1.9(1)%, 7.5(5)% and 2.5(3)%, respectively. The bp = 22(1)% for 101Sn was deduced with higher precision than previously reported. The impact of the newly measured bp values on the composition of the type-I X-ray burst ashes was studied.

  5. News on $\\beta$-delayed particle emission from $^{14}$Be

    CERN Document Server

    Jeppesen, H; Borge, M J G; Cederkäll, J; Fynbo, H O U; Fedoseyev, V N; Hansper, V Y; Jonson, B; Markenroth, K; Mishin, V I; Nilsson, T; Nyman, G; Riisager, K; Tengblad, O; Wilhelmsen Rolander, K

    2002-01-01

    $\\beta$-delayed charged particles from $^{14}$Be have been measured and give an upper limit on $\\beta$-delayed $\\alpha$-particles of B($\\beta\\alpha$) < $\\,6.7\\times\\!10^{-5}$ and a tentative branching ratio on $\\beta$-delayed tritons of $7.5\\times\\!10^{-5}$ < B($\\beta$t) < $\\,3.9\\times\\!10^{-4}$. We combine the knowledge on $\\beta$-delayed particles from $^{14}$Be to deduce information on the $\\beta$-strength distribution.

  6. A trapped-ion technique for beta-delayed neutron studies

    Science.gov (United States)

    Caldwell, Shane

    The properties of beta-delayed neutron emission (betan) are important in basic and applied nuclear physics. The neutron spectra and branching ratios of betan emitters reflect the evolution of nuclear structure in neutron-rich nuclei. Branching ratios affect the heavy-element abundances resulting from the astrophysical r process. Energy spectra and branching ratios are also important to nuclear stockpile stewardship and the safe design of nuclear reactors. Recently we demonstrated a novel technique for betan spectroscopy using I137+ ions confined to a ˜1 mm 3 volume within a linear RFQ ion trap [61, 77]. By measuring the time-of-flight spectrum of ions recoiling from both beta and betan decays, the betan branching ratio and spectrum can be determined. This recoil-ion technique has several advantages over techniques that rely on neutron detection: the recoil-ions are easily detectable; complications due to scattered neutrons and gamma-rays are avoided; and the betan branching ratio can be extracted in several ways. In this thesis we present new measurements of the delayed-neutron energy spectra and branching ratios of 137I, 135Sb, and 136Sb, which include the first observation of the 136Sb spectrum. These measurements were motivated by the impact that the branching ratios of 135Sb and136Sb can have on the r-process abundances and by the use of 137 I, a well-studied case, as a benchmark for the new technique. Our current understanding of the r process is severely limited by the lack of an exhaustive body of data on neutron-rich nuclei. Relative to the previous demonstration on 137I, the present iteration of the experiment incorporates a 10x improvement in both the detection efficiencies and the beam intensity, as well as a position-sensitive design for the recoil-ion detectors that enables an improvement in energy resolution. An important analytical tool is introduced, which models the evolution of each ion population in the trap and is used to provide a needed

  7. $\\beta$-particle energy-summing correction for $\\beta$-delayed proton emission measurements

    CERN Document Server

    Meisel, Z; Crawford, H L; Cyburt, R H; Grinyer, G F; Langer, C; Montes, F; Schatz, H; Smith, K

    2016-01-01

    A common approach to studying $\\beta$-delayed proton emission is to measure the energy of the emitted proton and corresponding nuclear recoil in a double-sided silicon-strip detector (DSSD) after implanting the $\\beta$-delayed proton emitting ($\\beta$p) nucleus. However, in order to extract the proton-decay energy, the measured energy must be corrected for the additional energy implanted in the DSSD by the $\\beta$-particle emitted from the $\\beta$p nucleus, an effect referred to here as $\\beta$-summing. We present an approach to determine an accurate correction for $\\beta$-summing. Our method relies on the determination of the mean implantation depth of the $\\beta$p nucleus within the DSSD by analyzing the shape of the total (proton + recoil + $\\beta$) decay energy distribution shape. We validate this approach with other mean implantation depth measurement techniques that take advantage of energy deposition within DSSDs upstream and downstream of the implantation DSSD.

  8. Total Absorption Gamma-Ray Spectroscopy of 87Br, 88Br and 94Rb Beta-Delayed Neutron Emitters

    CERN Document Server

    Valencia, E; Algora, A; Agramunt, J; Rubio, B; Rice, S; Gelletly, W; Regan, P; Zakari-Issoufou, A -A; Fallot, M; Porta, A; Rissanen, J; Eronen, T; Aysto, J; Batist, L; Bowry, M; Bui, V M; Caballero-Folch, R; Cano-Ott, D; Elomaa, V -V; Estevez, E; Farrelly, G F; Garcia, A R; Gomez-Hornillos, B; Gorlychev, V; Hakala, J; Jordan, M D; Jokinen, A; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Moore, I; Penttila, H; Podolyak, Zs; Reponen, M; Sonnenschein, V; Sonzogni, A A

    2016-01-01

    We investigate the decay of 87Br, 88Br and 94Rb using total absorption gamma-ray spectroscopy. These important fission products are beta-delayed neutron emitters. Our data show considerable gamma-intensity, so far unobserved in high-resolution gamma-ray spectroscopy, from states at high excitation energy. We also find significant differences with the beta intensity that can be deduced from existing measurements of the beta spectrum. We evaluate the impact of the present data on reactor decay heat using summation calculations. Although the effect is relatively small it helps to reduce the discrepancy between calculations and integral measurements of the photon component for 235U fission at cooling times in the range 1 to 100 s. We also use summation calculations to evaluate the impact of present data on reactor antineutrino spectra. We find a significant effect at antineutrino energies in the range of 5 to 9 MeV. In addition, we observe an unexpected strong probability for gamma emission from neutron unbound s...

  9. A Further Measurement of the beta-Delayed alpha-Particle Emission of 16N

    CERN Document Server

    III, R H F; McDonald, J E; Wilds, E L

    2007-01-01

    We measured the beta-delayed alpha-particle emission spectrum of 16N with a sensitivity for beta-decay branching ratios of the order of 10-10. The 16N nuclei were produced using the d(15N,16N)p reaction with 70 MeV 15N beams and a deuterium gas target 7.5 cm long at a pressure of 1250 torr. The 16N nuclei were collected (over 10 s) using a thin aluminum foil with an areal density of 180 mu g/cm2 tilted at 7 Deg with respect to the beam. The activity was transferred to the counting area by means of a stepping motor in less than 3 s with the counting carried out over 8 s. The beta-delayed alpha-particles were measured using a time of flight method to achieve a sufficiently low background. Standard calibration sources (148Gd, 241Am, 208,209Po, and 227Ac) as well as alpha-particles and 7Li from the 10B(n,alpha)7Li reaction were used for an accurate energy calibration. The energy resolution of the catcher foil (180-220 keV) was calculated and the time of flight resolution (3-10 nsec) was measured using the beta-de...

  10. Studies of $\\beta$-delayed two-proton emission : The cases of $^{31}$Ar and $^{35}$Ca

    CERN Multimedia

    Riisager, K; Jokinen, A; Canchel, G; Heinz, A M; Jonson, B N G; Dominguez reyes, R R; Koldste, G T; Fraile prieto, L M; Nilsson, T; Audirac, L L

    2008-01-01

    We propose to perform detailed studies of the decays of the two dripline nuclei $^{31}$Ar and $^{35}$Ca. This will allow an in-depth study in the process of $\\beta$-delayed two-proton emission ($\\beta$2p); as well as provide important information on resonances in $^{30}$S and $^{34}$Ar relevant for the astrophysical rp-process.

  11. $\\beta$-delayed neutrons from oriented $^{137,139}$I and $^{87,89}$Br nuclei

    CERN Document Server

    Grzywacz, Robert; Stone, Nicholas; Köster, Ulli; Singh, Barlaj; Bingham, Carrol; Gaulard, S; Kolos, Karolina; Madurga, Miguel; Nikolov, J; Otsubo, T; Roccia, S; Veskovic, Miroslav; Walker, Phil; Walters, William

    2013-01-01

    We propose a world-­‐first measurement of the angular distribution of $\\beta$-­‐delayed n and $\\gamma$- radiation from oriented $^{137, 139}$I and $^{87,89}$Br nuclei, polarised at low temperature at the NICOLE facility. $\\beta$-­‐delayed neutron emission is an increasingly important decay mechanism as the drip line is approached and its detailed understanding is essential to phenomena as fundamental as the r‐process and practical as the safe operation of nuclear power reactors. The experiments offer sensitive tests of theoretical input concerning the allowed and first-­‐forbidden $\\beta$‐decay strength, the spin-­‐density of neutron emitting states and the partial wave barrier penetration as a function of nuclear deformation. In $^{137}$I and $^{87}$Br the decay feeds predominantly the ground state of the daughters $^{136}$Xe and $^{86}$Kr whereas in $^{139}$I and $^{89}$Br we will explore the use of n-$\\gamma$- coincidence to study neutron transitions to the first and second excited state...

  12. $\\beta$-delayed neutrons from oriented $^{137,139}$I and $^{87,89}$Br nuclei

    CERN Multimedia

    We propose a world-first measurement of the angular distribution of $\\beta$‐delayed n and $\\gamma$-radiation from oriented $^{137, 139}$I and $^{87,89}$Br nuclei, polarised at low temperature at the NICOLE facility. $\\beta$­-delayed neutron emission is an increasingly important decay mechanism as the drip line is approached and its detailed understanding is essential to phenomena as fundamental as the r‐process and practical as the safe operation of nuclear power reactors. The experiments offer sensitive tests of theoretical input concerning the allowed and first­‐forbidden $\\beta$‐decay strength, the spin-density of neutron emitting states and the partial wave barrier penetration as a function of nuclear deformation. In $^{137}$I and $^{87}$Br the decay feeds predominantly the ground state of the daughters $^{136}$Xe and $^{86}$Kr whereas in $^{139}$I and $^{89}$Br we will explore the use of n-$\\gamma$- coincidence to study neutron transitions to the first and second excited states in the daughters...

  13. Structure of {sup 11}Be studied in {beta}-delayed neutron- and {gamma}- decay from polarized {sup 11}Li

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Y. [Department of Physics, Graduate School of Science, Osaka University (Japan); Shimoda, T. [Department of Physics, Graduate School of Science, Osaka University (Japan); Izumi, H. [Department of Physics, Graduate School of Science, Osaka University (Japan); Yano, H. [Department of Physics, Graduate School of Science, Osaka University (Japan); Yagi, M. [Department of Physics, Graduate School of Science, Osaka University (Japan); Hatakeyama, A. [Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo (Japan); Levy, C.D.P. [TRIUMF (Canada); Jackson, K.P. [TRIUMF (Canada); Miyatake, H. [High Energy Accelerator Research Organization (KEK) (Japan)

    2004-12-27

    The detailed level scheme of {sup 11}Be, including spin-parity assignments, has been established from a {beta}-delayed decay spectroscopy of spin-polarized {sup 11}Li (Lig.s.11->{beta}Be*11->nBe*10->{gamma}Beg.s.10). From the decay scheme of {sup 11}Be, neutron spectroscopic factors of the levels in {sup 11}Be have been determined. The present results have been compared with the predictions by the Anti-symmetrized Molecular Dynamics (AMD) theory, where various types of {alpha}-cluster states have been predicted for the excited states both in {sup 11}Be and {sup 10}Be. Some of the levels in {sup 11}Be show good accord with the 2{alpha}-cluster states in the rotational bands and with a single {alpha}-cluster state.

  14. beta -delayed charged particles from /sup 9/Li and /sup 11/Li

    CERN Document Server

    Langevin, M; Détraz, C; Epherre-Rey-Campagnolle, Marcelle; Guillemaud, D; Klapisch, Robert; Mark, S K T; Naulin, F; Thibault, C; Touchard, F

    1981-01-01

    beta -delayed emission of alpha particles rom /sup 9/Li and of both alpha and /sup 6/He particles from /sup 11/Li is observed. New beta branches are reported which populate high-energy levels in the daughter nuclei. The branching ratios are measured and the beta delayed neutron emission probabilities P/sub n/ for /sup 9/Li and P /sub 3n/ for /sup 11/Li are deduced. (14 refs).

  15. Beta-delayed deuteron emission from 11Li: decay of the halo

    OpenAIRE

    2008-01-01

    The deuteron-emission channel in the beta decay of the halo nucleus 11Li was measured at the Isotope Separator and Accelerator facility at TRIUMF by implanting post-accelerated 11Li ions into a segmented silicon detector. The events of interest were identified by correlating the decays of 11Li with those of the daughter nuclei. This method allowed the energy spectrum of the emitted deuterons to be extracted, free from contributions from other channels, and a precise value for the branching ra...

  16. Beta-delayed deuteron emission from 11Li: decay of the halo

    CERN Document Server

    Raabe, R; García-Borge, M J; Buchmann, L; Capel, P; Fynbo, H O U; Huyse, M; Kanungo, R; Kirchner, T; Mattoon, C; Morton, A C; Mukha, I; Pearson, J; Ponsaers, J; Ressler, J J; Riisager, K; Ruiz, C; Ruprecht, G; Sarazin, F; Tengblad, O; Van Duppen, P; Walden, P

    2008-01-01

    The deuteron-emission channel in the beta-decay of the halo-nucleus 11Li was measured at the ISAC facility at TRIUMF by implanting post-accelerated 11Li ions into a segmented silicon detector. The events of interest were identified by correlating the decays of 11Li with those of the daughter nuclei. This method allowed the energy spectrum of the emitted deuterons to be extracted, free from contributions from other channels, and a precise value for the branching ratio B_d = 1.30(13) x 10-4 to be deduced for E(c.m.) > 200 keV. The results provide the first unambiguous experimental evidence that the decay takes place essentially in the halo of 11Li, and that it proceeds mainly to the 9Li + d continuum, opening up a new means to study of the halo wave function of 11Li.

  17. Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process

    Science.gov (United States)

    Panov, I.; Lutostansky, Yu; Thielemann, F.-K.

    2016-01-01

    For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields. For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory. The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed.

  18. Search for $\\beta$-delayed protons from $^{11}$Be

    CERN Multimedia

    $\\beta$-delayed proton emission from $^{11}$Be will be a very rare process. It is believed to decay directly into continuum states. This would imply that it will be a sensitive probe of the halo structure of the one-neutron halo nucleus $^{11}$Be. We propose to improve existing (unpublished) limits on this decay mode by two orders of magnitude. Our earlier experience at ISOLDE indicates that the required intensity and purity of the source can be obtained. The branching ratio will be measured by counting the number of $^{10}$Be atoms produced via accelerator mass spectrometry.

  19. Extension of the T{sub z} = {minus}3/2, A = 4n + 1 series of beta-delayed proton emitters to {sup 65}Se and {sup 73}Sr, and low energy beta-delayed proton emission from the T{sub z} = {minus}3/2, A = 4n + 3 nucleus {sup 23}Al

    Energy Technology Data Exchange (ETDEWEB)

    Batchelder, J.C.

    1993-12-01

    The series of known Tz = {minus}3/2, A = 4n + 1 nuclei has been extended to include the previously undiscovered isotopes {sup 65}Se and {sup 73}Sr, through the observation of beta-delayed proton emission via the isobaric analog state (IAS) of the beta-daughter (emitter). Due to the relatively large proton energies involved, these experiments were conducted using standard Si-Si {Delta}E-E telescopes. Beta-delayed protons arising from {sup 65}Se have been observed at an energy (laboratory) of 3.55 {plus_minus} 0.03 MeV, corresponding to the decay of the T = 3/2 isobaric analog state in {sup 65}As to the ground state of {sup 64}Ge. Similarly, beta-delayed protons from {sup 73}Sr at an energy of 3.75 {plus_minus} 0.04 MeV have been observed, corresponding to decay of the T = 3/2 isobaric analog state in {sup 73}Rb to the ground state of {sup 72}Kr. From the energies of these proton transitions, an improved prediction of the mass excesses of the two parent nuclei ({sup 65}Se and {sup 73}Sr) is made through the use of a Coulomb displacement formula. These predictions are {minus}33.41 {plus_minus} 0.26 and {minus}31.87 {plus_minus} 0.24 MeV for {sup 65}Se and {sup 73}Sr, respectively. Studies of low energy (down to {approximately}200 keV) beta-delayed protons from {sup 23}Al necessitated that a particle identification telescope with a low energy threshold for observation and identification of protons be developed. {sup 23}Al is of interest because of its role in the breakout of the hot CNO cycle leading to the astrophysical rp process.

  20. Beta-decay half-lives and beta-delayed neutron emisison probabilities of nuclei in the region A. 110, relevant for the r-process

    Energy Technology Data Exchange (ETDEWEB)

    Moller, Peter [Los Alamos National Laboratory; Pereira, J [MSU; Hennrich, S [MSU; Aprahamian, A [UNIV OF NOTRE DAME; Arndt, O [GERMANY; Becerril, A [MSU; Elliot, T [MSU; Estrade, A [MSU; Galaviz, D [MSU; Kessler, R [UNIV MAINZ; Kratz, K - L [GERMANY; Lorusso, G [MSU; Mantica, P F [MSU; Matos, M [MSU; Montes, F [MSU; Pfeiffer, B [UNIV MAINZ; Schatz, F [MSU; Schnorrenberger, L [GERMANY; Smith, E [MSU; Stolz, A [MSU; Quinn, M [UNIV OF NOTRE DAME; Walters, W B [UNIV OF MARYLAND; Wohr, A [UNIV OF NOTRE DAME

    2009-01-01

    Measurements of the {beta}-decay properties of A {approx}< 110 r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory, at Michigan State University. {beta}-decay half-lives for {sup 105}Y, {sup 106,107}Zr and {sup 108,111}Mo, along with ,B-delayed neutron emission probabilities of 104Y, 109,11OMo and upper limits for 105Y, 103-107Zr and 108,111 Mo have been measured for the first time. Studies on the basis of the quasi-random phase approximation are used to analyze the ground-state deformation of these nuclei.

  1. Study of multi-neutron emission in the $\\beta$-decay of $^{11}$Li

    CERN Multimedia

    A new investigation of neutron emission in the $\\beta$-decay of $^{11}$Li is proposed. The principal goal of this study will be to directly measure, for the first time for any system, two $\\beta$-delayed neutrons in coincidence and determine the energy and angular correlations. This will be possible using liquid scintillator detectors, capable of distinguishing between neutrons and ambient $\\gamma$ and cosmic-rays, coupled to a new digital electronics and acquisition system. In parallel, a considerably more refined picture of the single-neutron emission will be obtained.

  2. Experimental observation of $\\beta$-delayed neutrons from $^{9}$Li as a way to study short-pulse laser-driven deuteron production

    CERN Document Server

    Favalli, Andrea; Henzlova, Daniela; Falk, Katerina; Croft, Stephen; Gautier, Donald C; Ianakiev, Kiril D; Iliev, Metodi; Palaniyappan, Sasikumar; Roth, Markus; Fernandez, Juan C; Swinhoe, Martyn T

    2016-01-01

    A short-pulse laser-driven deuteron beam is generated in the relativistic transparency regime and aimed at a beryllium converter to generate neutrons at the TRIDENT laser facility. These prompt neutrons have been used for active interrogation to detect nuclear materials, the first such demonstration of a laser-driven neutron source. During the experiments, delayed neutrons from $^9$Li decay was observed. It was identified by its characteristic half-life of 178.3 ms. Production is attributed to the nuclear reactions $^9$Be(d,2p)$^9$Li and $^9$Be(n,p)$^9$Li inside the beryllium converter itself. These reactions have energy thresholds of 18.42 and 14.26 MeV respectively, and we estimate the (d,2p) reaction to be the dominant source of $^9$Li production. Therefore, only the higher-energy portion of the deuteron spectrum contributes to the production of the delayed neutrons. It was observed that the delayed-neutron yield decreases with increasing distance between the converter and the deuteron source. This behavio...

  3. Beta-Decay Half-Lives and Neutron-Emission Probabilities of Very Neutron-Rich Y to Tc Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mehren, T.; Pfeiffer, B.; Schoedder, S.; Kratz, K. [Institut fuer Kernchemie, Universitaet Mainz, D-55099 Mainz (Germany); Huhta, M.; Dendooven, P.; Honkanen, A.; Lhersonneau, G.; Oinonen, M.; Parmonen, J.; Penttilae, H.; Popov, A.; Rubchenya, V.; Aeystoe, J. [Department of Physics, Accelerator Laboratory, University of Jyvaeskylae, FIN-40351 Jyvaeskylae (Finland)

    1996-07-01

    Neutron-rich {sub 39}Y to {sub 43}Tc isotopes have been produced by fission of uranium with a 50MeV H{sub 2}{sup +} beam. Beta-decay half-lives, delayed neutron-emission probabilities, and production yields have been measured and compared with theory. Beta decay of 4 new isotopes is reported, and the {beta}-delayed neutron-emission mode has been discovered for 12 isotopes of the elements niobium and technetium. The results compared to quasiparticle random phase approximation predictions indicate the increasing importance of fast {beta} transitions to high-lying states of nuclei with large neutron excess. {copyright} {ital 1996 The American Physical Society.}

  4. Improvements to the on-line mass separator, RAMA, and the beta-delayed charged-particle emission of proton-rich sd shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ognibene, Theodore Joseph [Lawrence Berkeley National Lab., CA (United States). Nuclear Science Div.

    1996-03-01

    To overcome the extreme difficulties encountered in the experimental decay studies of proton drip line nuclei, several techniques have been utilized, including a helium-jet transport system, particle identification detectors and mass separation. Improvements to the ion source/extraction region of the He-jet coupled on-line Recoil Atom Mass Analyzer (RAMA) and its target/ion source coupling resulted in significant increases in RAMA efficiencies and its mass resolution, as well as reductions in the overall transit time. At the 88-Inch Cyclotron at LBNL, the decays of 31Cl, 27P and 28P, with half-lives of 150 msec, 260 msec and 270.3 msec, respectively, were examined using a he-jet and low-energy gas ΔE-gas ΔE-silicon E detector telescopes. Total beta-delayed proton branches of 0.3% and 0.07% in 31Cl and 27P, respectively, were estimated. Several proton peaks that had been previously assigned to the decay of 31Cl were shown to be from the decay of 25Si. In 27P, two proton groups at 459 ± 14 keV and 610 ± 11 keV, with intensities of 7 ± 3% and 92 ± 4% relative to the main (100%) group were discovered. The Gamow-Teller component of the preceding beta-decay of each observed proton transition was compared to results from shell model calculations. Finally, a new proton transition was identified, following the β-decay of 28P, at 1,444 ± 12 keV with a 1.7 ± 0.5% relative intensity to the 100% group. Using similar low-energy detector telescopes and the mass separator TISOL at TRIUMF, the 109 msec and 173 msec activities, 17Ne and 33Ar, were studied. A new proton group with energy 729 ± 15 keV was observed following the beta-decay of 17Ne. Several discrepancies between earlier works as to the energies, intensities and assignments of several proton transitions from 17Ne and 33Ar were resolved.

  5. Improvements to the on-line mass separator, RAMA, and the beta-delayed charged-particle emission of proton-rich sd shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ognibene, T.J. [Lawrence Berkeley National Lab., CA (United States). Nuclear Science Div.

    1996-03-01

    To overcome the extreme difficulties encountered in the experimental decay studies of proton drip line nuclei, several techniques have been utilized, including a helium-jet transport system, particle identification detectors and mass separation. Improvements to the ion source/extraction region of the He-jet coupled on-line Recoil Atom Mass Analyzer (RAMA) and its target/ion source coupling resulted in significant increases in RAMA efficiencies and its mass resolution, as well as reductions in the overall transit time. At the 88-Inch Cyclotron at LBNL, the decays of {sup 31}Cl, {sup 27}P and {sup 28}P, with half-lives of 150 msec, 260 msec and 270.3 msec, respectively, were examined using a he-jet and low-energy gas {Delta}E-gas {Delta}E-silicon E detector telescopes. Total beta-delayed proton branches of 0.3% and 0.07% in {sup 31}Cl and {sub 27}P, respectively, were estimated. Several proton peaks that had been previously assigned to the decay of {sup 31}Cl were shown to be from the decay of {sup 25}Si. In {sup 27}P, two proton groups at 459 {+-} 14 keV and 610 {+-} 11 keV, with intensities of 7 {+-} 3% and 92 {+-} 4% relative to the main (100%) group were discovered. The Gamow-Teller component of the preceding beta-decay of each observed proton transition was compared to results from shell model calculations. Finally, a new proton transition was identified, following the {beta}-decay of {sup 28}P, at 1,444 {+-} 12 keV with a 1.7 {+-} 0.5% relative intensity to the 100% group. Using similar low-energy detector telescopes and the mass separator TISOL at TRIUMF, the 109 msec and 173 msec activities, {sup 17}Ne and {sup 33}Ar, were studied. A new proton group with energy 729 {+-} 15 keV was observed following the beta-decay of {sup 17}Ne. Several discrepancies between earlier works as to the energies, intensities and assignments of several proton transitions from {sup 17}Ne and {sup 33}Ar were resolved.

  6. Axion emission from neutron stars

    Science.gov (United States)

    Iwamoto, N.

    1984-01-01

    It is shown that axion emission from neutron stars is the dominant energy-loss mechanism for a range of values of the Peccei-Quinn symmetry-breaking scale (F) not excluded by previous constraints. This gives the possibility of obtaining a better bound on F from measurements of surface temperature of neutron stars.

  7. Modeling the Production of Beta-Delayed Gamma Rays for the Detection of Special Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hall, J M; Pruet, J A; Brown, D A; Descalle, M; Hedstrom, G W; Prussin, S G

    2005-02-14

    The objective of this LDRD project was to develop one or more models for the production of {beta}-delayed {gamma} rays following neutron-induced fission of a special nuclear material (SNM) and to define a standardized formatting scheme which will allow them to be incorporated into some of the modern, general-purpose Monte Carlo transport codes currently being used to simulate inspection techniques proposed for detecting fissionable material hidden in sea-going cargo containers. In this report, we will describe a Monte Carlo model for {beta}-delayed {gamma}-ray emission following the fission of SNM that can accommodate arbitrary time-dependent fission rates and photon collection histories. The model involves direct sampling of the independent fission yield distributions of the system, the branching ratios for decay of individual fission products and spectral distributions representing photon emission from each fission product and for each decay mode. While computationally intensive, it will be shown that this model can provide reasonably detailed estimates of the spectra that would be recorded by an arbitrary spectrometer and may prove quite useful in assessing the quality of evaluated data libraries and identifying gaps in the libraries. The accuracy of the model will be illustrated by comparing calculated and experimental spectra from the decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general-purpose transport calculations, where a detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may not be necessary, it will be shown that a simple parameterization of the {gamma}-ray source function can be defined which provides high-quality average spectral distributions that should suffice for calculations describing photons being transported through thick attenuating media. Finally, a proposal for ENDF-compatible formats that describe each of the models and

  8. Neutron-emission measurements at a white neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  9. NERO-The Neutron Emission Ratio Observer

    Science.gov (United States)

    Lorusso, Giuseppe; Pereira, Jorque; Hosmer, Paul; Kratz, Karl Ludvig; Montes, Fernando; Reeder, Paul; Santi, Peter; Schatz, Hendrik

    2007-10-01

    The Neutron Emission Ratio Observer (NERO), has been constructed for the use at the National Superconducting Cyclotron Laboratory to work in conjunction with the NSCL Beta Counting System in order to detect β-delayed neutrons. The design of the detector provides high and flat efficiency for a wide range of neutron energies, as well as a low neutron background.

  10. Observation of Doppler broadening in $\\beta$-delayed proton-$\\gamma$ decay

    CERN Document Server

    Schwartz, S B; Bennett, M B; Liddick, S N; Perez-Loureiro, D; Bowe, A; Chen, A A; Chipps, K A; Cooper, N; Irvine, D; McNeice, E; Montes, F; Naqvi, F; Ortez, R; Pain, S D; Pereira, J; Prokop, C; Quaglia, J; Quinn, S J; Sakstrup, J; Santia, M; Shanab, S; Simon, A; Spyrou, A; Thiagalingam, E

    2015-01-01

    Background: The Doppler broadening of $\\gamma$-ray peaks due to nuclear recoil from $\\beta$-delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using $\\beta$-delayed proton emission or applied to a recoil heavier than $A=10$. Purpose: To test and apply this Doppler broadening method using $\\gamma$-ray peaks from the $^{26}$P($\\beta p\\gamma$)$^{25}$Al decay sequence. Methods: A fast beam of $^{26}$P was implanted into a planar Ge detector, which was used as a $^{26}$P $\\beta$-decay trigger. The SeGA array of high-purity Ge detectors was used to detect $\\gamma$ rays from the $^{26}$P($\\beta p\\gamma$)$^{25}$Al decay sequence. Results: Radiative Doppler broadening in $\\beta$-delayed proton-$\\gamma$ decay was observed for the first time. The Doppler broadening analysis method was verified using the 1613 keV $\\gamma$-ray line for which the proton energies were previously known. The 1776 keV $\\gamma$ ray de-exciting the 2720 keV $^{25}$Al level was observed...

  11. Beta-delayed gamma decay of 26P: Possible evidence of a proton halo

    CERN Document Server

    Pérez-Loureiro, D; Bennett, M B; Liddick, S N; Bowe, A; Brown, B A; Chen, A A; Chipps, K A; Cooper, N; Irvine, D; McNeice, E; Montes, F; Naqvi, F; Ortez, R; Pain, S D; Pereira, J; Prokop, C J; Quaglia, J; Quinn, S J; Sakstrup, J; Santia, M; Schwartz, S B; Shanab, S; Simon, A; Spyrou, A; Thiagalingam, E

    2016-01-01

    Background: Measurements of $\\beta$ decay provide important nuclear structure information that can be used to probe isospin asymmetries and inform nuclear astrophysics studies. Purpose: To measure the $\\beta$-delayed $\\gamma$ decay of $^{26}$P and compare the results with previous experimental results and shell-model calculations. Method: A $^{26}$P fast beam produced using nuclear fragmentation was implanted into a planar germanium detector. Its $\\beta$-delayed $\\gamma$-ray emission was measured with an array of 16 high-purity germanium detectors. Positrons emitted in the decay were detected in coincidence to reduce the background. Results: The absolute intensities of $^{26}$P $\\beta$-delayed $\\gamma$-rays were determined. A total of six new $\\beta$-decay branches and 15 new $\\gamma$-ray lines have been observed for the first time in $^{26}$P $\\beta$-decay. A complete $\\beta$-decay scheme was built for the allowed transitions to bound excited states of $^{26}$Si. $ft$ values and Gamow-Teller strengths were a...

  12. $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with radioactive At beams

    CERN Multimedia

    We propose to study the $\\beta$-delayed fission, laser spectroscopy and radioactive decay of the newly available pure beams of neutron-deficient and neutron-rich astatine (Z=85) isotopes. The fission probability and the fission fragment distribution of the even-even isotopes $^{194,196}$Po following the $\\beta$-decay of the isotopes $^{194,196}$At will be studied with the Windmill setup. In-source laser spectroscopy will be performed on the entire astatine isotopic chain, using a combination of the Windmill setup, ISOLTRAP MR-ToF and ISOLDE Faraday. Radioactive decay data will be acquired at the Windmill setup throughout those studies and contribute to the global understanding of the phenomenon of shape coexistence in the neutron-deficient lead region.

  13. Modelling and Measurements of MAST Neutron Emission

    OpenAIRE

    Klimek, Iwona

    2016-01-01

    Measurements of neutron emission from a fusion plasma can provide a wealth of information on the underlying temporal, spatial and energy distributions of reacting ions and how they are affected by a wide range of magneto-hydro-dynamic (MHD) instabilities. This thesis focuses on the interpretation of the experimental measurements recorded by neutron flux monitors with and without spectroscopic capabilities installed on the Mega Ampere Spherical Tokamak (MAST). In particular, the temporally and...

  14. Fission-neutrons source with fast neutron-emission timing

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G., E-mail: rusev@lanl.gov; Baramsai, B.; Bond, E.M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of {sup 252}Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  15. Multi-neutron emission of Cd isotopes

    CERN Document Server

    Severyukhin, A P; Borzov, I N; Sushenok, E O

    2016-01-01

    An influence of the phonon-phonon coupling (PPC) on the $\\beta$-decay half-lives and multi-neutron emission probabilities is analysed within the microscopic model based on the Skyrme interaction with tensor components included. The finite-rank separable approximation is used in order to handle large two-quasiparticle spaces. The even-even nuclei near the r-process pathes at $N=82$ are studied. The characteristics of ground states, $2^+$ excitations and $\\beta$-decay strength of the neutron-rich Cd isotopes are treated in detail. It is shown that a strong redistribution of the Gamow-Teller strength due to the PPC is mostly sensitive to the multi-neutron emission probability of the Cd isotopes.

  16. The Mechanism of $\\beta$-Delayed Two-Proton Emission

    CERN Multimedia

    2002-01-01

    The nucleus $^{31}$Ar seems to be the most prolific ${\\beta}$-2p precursor known to date and is at the same time the one with the largest production yields at ISOLDE, where the most sensitive experiments can be done. Our purpose with this experiment is to study the ${\\beta}$-2p branches in detail, search for ${\\beta}$-3p events, place them in the decay scheme and obtain information on the decay mechanism for ${\\beta}$-2p via the energy distribution and the angular correlation between the two protons. As a by product we shall also resolve existing inconsistencies in the level scheme.\\\\ \\\\ The nucleus $^{31}$Ar, produced in a cold plasma ion source unit by the impact of a 1 GeV proton beam of 0.5 Hz frequency, had an average yield over one week of 1.5 $^{31}$Ar atoms/s. The beam passed through the central hole of an annular Si detector ($\\Omega$ = 4.3~\\%) and stopped in a thin carbon foil tilted 45$^o$ with respect to the beam direction. A 70~\\% coaxial HPGe-detector ($\\Omega$~=~7.4~\\%) was located opposite to ...

  17. Microscopic description of neutron emission rates in compound nuclei

    CERN Document Server

    Zhu, Yi

    2014-01-01

    The neutron emission rates in thermal excited nuclei are conventionally described by statistical models with a phenomenological level density parameter that depends on excitation energies, deformations and mass regions. In the microscopic view of hot nuclei, the neutron emission rates can be determined by the external neutron gas densities without any free parameters. Therefore the microscopic description of thermal neutron emissions is desirable that can impact several understandings such as survival probabilities of superheavy compound nuclei and neutron emissivity in reactors. To describe the neutron emission rates microscopically, the external thermal neutron gases are self-consistently obtained based on the Finite-Temperature Hartree-Fock-Bogoliubov (FT-HFB) approach. The results are compared with the statistical model to explore the connections between the FT-HFB approach and the statistical model. The Skyrme FT-HFB equation is solved by HFB-AX in deformed coordinate spaces. Based on the FT-HFB approach...

  18. Prompt fission neutron emission: Problems and challenges

    Directory of Open Access Journals (Sweden)

    Hambsch F.-J.

    2013-12-01

    Full Text Available This paper presents some of the challenges ahead of us even after 75 years of the discovery of the fission process and large progress made since then. The focus is on application orientation, which requires improved measurements on fission cross-sections and neutron and γ-ray multiplicities. Experimental possibilities have vastly improved the past decade leading to developments of highly sophisticated detector systems and the use of digital data acquisition and signal processing. The development of innovative fast nuclear reactor technology needs improved respective nuclear data. Advancements in theoretical modelling also require better experimental data. Theory has made progress in calculating fission fragment distributions (i.e. GEF code as well as prompt neutron and γ-ray emission to catch up with the improved experiments.

  19. $\\beta$-delayed proton decays near the proton drip line

    CERN Document Server

    Xu, S W; Huang, W X; Li, Z K; Pan Qiang Yan; Shu, N C; Wang, K; Wang, X D; Xie, Y X; Xing, Y B; Xu, F R; Yu, Y; 10.1103/PhysRevC.71.054318

    2005-01-01

    We briefly reviewed and summarized the experimental study on beta - delayed proton decays published by our group over the last 8 years, namely the experimental observation of beta -delayed proton decays of nine new nuclides in the rare-earth region near the proton drip line and five nuclides in the mass 90 region with N approximately=Z by utilizing the p- gamma coincidence technique in combination with a He-jet tape transport system. In addition, important technical details of the experiments were provided. The experimental results were compared to the theoretical predictions of some nuclear models, resulting in the following conclusions. (1) The experimental half- lives for /sup 85/Mo, /sup 92/Rh, as well as the predicted "waiting point" nuclei /sup 89/Ru and /sup 93/Pd were 5-10 times longer than the macroscopic-microscopic model predictions of Moller et al. At. Data Nucl. Data Tables 66,131(1997). These data considerably influenced the predictions of the mass abundances of the nuclides produced in the rp p...

  20. Study of neutron-rich $^{51−53}$ Ca isotopes via $\\beta$-decay

    CERN Multimedia

    The high Q$_\\beta$ values in certain neutron-rich regions of the chart of nuclides opens up the possibility to study states in the daughter nuclei which lie at high excitation energy, above the neutron separation threshold. We propose to perform spectroscopy of the $\\beta$-delayed neutron emission of the $^{51-53}$K isotopes to study the population of single-particle or particle-hole states both below and above the neutron separation threshold. The VANDLE neutron detector will be used in combination with the IDS tape station setup and Ge detectors.

  1. TRANSP modelling of total and local neutron emission on MAST

    Science.gov (United States)

    Klimek, I.; Cecconello, M.; Gorelenkova, M.; Keeling, D.; Meakins, A.; Jones, O.; Akers, R.; Lupelli, I.; Turnyanskiy, M.; Ericsson, G.; the MAST Team

    2015-02-01

    The results of TRANSP simulations of neutron count rate profiles measured by a collimated neutron flux monitor-neutron camera (NC)—for different plasma scenarios on MAST are reported. In addition, the effect of various plasma parameters on neutron emission is studied by means of TRANSP simulation. The fast ion redistribution and losses due to fishbone modes, which belong to a wider category of energetic particle modes, are observed by the NC and modelled in TRANSP.

  2. Beta Decay Half-lives and Delayed Neutron Emission of r-process Neutron-Rich nuclei in the vicinity of 78Ni

    Science.gov (United States)

    Madurga, M.

    2012-10-01

    The region of neutron rich isotopes at and beyond the N=50 shell closure in the vicinity of ^78Ni has recently attracted major interest from experimental and theoretical nuclear physics community [1-4]. Moreover, as many nuclei in the region are predicted precursors of r-process nucleosynthesis, their most basic nuclear properties such as mass and beta decay half-life are required parameters in abundance calculations. The availability of hight purity and high quality radioactive beams of nuclei in this region at the Holifield Radioactive Ion Beam Facility has spurred a systematic campaign to study their properties through beta decay. Four new half-lives of ^82,83Zn, ^85Ga and ^86Ge were measured for the first time. The resulting values differ from the predictions of the Finite Range Droplet Model used in r-process abundance calculations. We presented a new model based on Density Functional Theory that correctly reproduced the new half-lives. The revised analysis of the rapid neutron capture process in low entropy environments with our new set of measured and calculated half-lives shows a significant redistribution of predicted isobaric abundances strengthening the yield of A > 140 nuclei. Continuing our effort to systematically understand decay properties in the region of beta-delayed neutron emission, 30 nuclei in the region were studied using the neutron energy Time-of-Flight detector VANDLE. Due to the shell structure in the region, most of the decay strength is expected to concentrate in states above neutron separation energy, in the so-called Pigmy Giant resonance. Precise knowledge of the position and strength of the resonance may help fine tune and develop existing models, with the aim of increasing their reliability beyond what can be experimentally measured. The data resulting from the experimental campaign at Holifield are still being analyzed. In a few species strong shell effects have already been identified and they will be presented. In particular

  3. Study of prompt-neutron emission in thermal-neutron-induced fission of /sup 235/U

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C.B.

    1987-01-01

    An original experiment was performed to measure the angular correlation of fission neutrons from thermal-neutron-induced fission of /sup 235/U, with respect to the light fission fragment direction, as a function of fragment mass division and neutron energy. A Monte Carlo model, with a realistic description of the fission fragment deexcitation process, was developed to simulate the observed neutron-fragment angular correlation data. Simulated neutron-fragment angular correlations displaying similar distributions with respect to the light fragment direction for different forms of neutron emission are shown to exhibit differing distributions when examined as a function of fragment mass division or neutron energy, thus illustrating the sensitivity of the experiment to the forms of neutron emission occurring in fission. A primary conclusion of the investigation was that neutron emission solely from fully accelerated fragments, whether isotropically or anisotropically emitted in the fragment center of mass system, was unable to adequately describe the observed neutron-fragment angular correlations. Simulation of the fission process with some neutron emission before or during fragment acceleration exhibited a closer correspondence with observed phenomena.

  4. Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Los Alamos National Laboratory; Moller, Peter [Los Alamos National Laboratory; Wilson, William B [Los Alamos National Laboratory

    2008-01-01

    Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.

  5. A compact plasma focus device and its neutron emission

    Institute of Scientific and Technical Information of China (English)

    王新新; 韩旻; 王志文; 刘坤

    1999-01-01

    A 2.2-kJ compact plasma focus device was developed and its characteristics of neutron emission were investigated. A maximum neutron yield of (3.1 ± 1.5) × 10~7 was obtained at 15 hPa deuterium filling pressure. It was found that the neutron yield Y_n is strongly correlated with the amplitude of the pinch dip in di/dt waveform. The time resolved measurement of the neutron pulse indicated that both the hard X-rays and the neutrons are emitted from plasma focus at the same instant and the width of neutron pulse (FWHM) changes slightly from 50 to 53 ns. The pinch time t_p varies from 1.5 to 16.5 ns and it is usually the case that the shorter t_p, the higher the neutron yield. It was also found that the squirrel cage cathode is better than the tubular cathode.

  6. Emission of scission neutrons in the sudden approximation

    Energy Technology Data Exchange (ETDEWEB)

    Carjan, N. [Universite Bordeaux 1, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, Chemin du Solarium, BP 120, 33175 Gradignan (France); Talou, P. [CEA-Cadarache, DEN/DER/SPRC/LEPh, Bat. 230, 13108 St-Paul-lez-Durance (France)]|[Nuclear Physics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Serot, O. [Nuclear Physics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2007-01-15

    At a certain finite neck radius during the descent of a fissioning nucleus from the saddle to the scission point, the attractive nuclear forces can no more withstand the repulsive Coulomb forces producing the neck rupture and the sudden absorption of the neck stubs by the fragments. At that moment, the neutrons, although still characterized by their pre-scission wave functions, find themselves in the newly created potential of their interaction with the separated fragments. Their wave functions become wave packets with components in the continuum. The probability to populate such states gives evidently the emission probability of neutrons at scission. In this way, we have studied scission neutrons for the fissioning nucleus {sup 236}U, using two-dimensional realistic nuclear shapes. Both the emission probability and the distribution of the emission points relative to the fission fragments strongly depend on the quantum numbers of the pre-scission state from which the neutron is emitted. In particular it was found that states with {omega}{pi} = 1/2+ dominate the emission. Depending on the assumed pre- and post-scission configurations and on the emission-barrier height, 30 to 50% of the total scission neutrons are emitted from 1/2+ states. Their emission points are concentrated in the region between the newly separated fragments. The upper limit for the total number of neutrons per scission event is predicted to lie between 0.16 and 1.73 (depending on the computational assumptions). (authors)

  7. Delayed neutron emission near the shell-closures

    Directory of Open Access Journals (Sweden)

    Borzov Ivan

    2016-01-01

    Full Text Available The self-consistent Density Functional + Continuum QRPA approach (DF+CQRPA provides a good description of the recent experimental beta-decay half-lives and delayed neutron emission branchings for the nuclei approaching to (and beyond the neutron closed shells N = 28; 50; 82. Predictions of beta-decay properties are more reliable than the ones of standard global approaches traditionally used for the r-process modelling. An impact of the quasi-particle phonon coupling on the delayed multi-neutron emission rates P2n, P3n,… near the closed shells is also discussed.

  8. Neutron emission profiles and energy spectra measurements at JET

    Energy Technology Data Exchange (ETDEWEB)

    Giacomelli, L. [JET-EFDA, Culham Science Centre, Abingdon, 0X14 3DB, United Kingdom and Department of Physics, Università degli Studi di Milano-Bicocca, Milano (Italy); Conroy, S. [JET-EFDA, Culham Science Centre, Abingdon, 0X14 3DB, United Kingdom and Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Belli, F.; Riva, M. [Associazione EURATOM-ENEA sulla Fusione, Roma (Italy); Gorini, G. [Department of Physics, Università degli Studi di Milano-Bicocca, Milano, Italy and Istituto di Física del Plasma Piero Caldirola, Milan (Italy); Horton, L.; Joffrin, E.; Lerche, E.; Murari, A.; Popovichev, S.; Syme, B. [JET-EFDA, Culham Science Centre, Abingdon, 0X14 3DB (United Kingdom); Collaboration: JET EFDA Contributors

    2014-08-21

    The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). JET makes use of many different diagnostics to measure the physical quantities of interest in plasma experiments. Concerning D or DT plasmas neutron production, various types of detectors are implemented to provide information upon the neutron total yield, emission profile and energy spectrum. The neutron emission profile emitted from the JET plasma poloidal section is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system capable of high rate neutron measurements (<0.5 MCps). A similar instrument will be implemented on ITER and it is currently in its design phase. Various types of neutron spectrometers with different view lines are also operational on JET. One of them is a new compact spectrometer (KM12) based on organic liquid scintillating material which was installed in 2010 and implements a similar digital data acquisition system as for KN3. This article illustrates the measurement results of KN3 neutron emission profiles and KM 12 neutron energy spectra from the latest JET D experimental campaign C31.

  9. Beta-delayed Proton Decay of Proton Drip-line Nucleus ~(142)Ho

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Unknown beta-delayed proton precursor~(142)Ho was synthesized in the reaction~(106)Cd(~(40)Ca,p3n)and identified for the first time by using a proton-gamma coincidence measurements in combination with a helium-jet fast tape transport system~([1~3]).Its beta-delayed proton spectrum was observed.The hal-life of~(142)Ho was

  10. Importance of ~5He Emission in Neutron Induced Reactions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The statistical model codes as the evaluation tool widely used in the world have long been performedto set up neutron data library below 20 MeV However, an important particle emission of ~5He has neverbeen included in the widely used codes. Based on the calculated threshold energies of ~3He and ~5He emissions for various nuclei, one can find

  11. Modelling of reaction cross sections and prompt neutron emission

    Science.gov (United States)

    Hambsch, F.-J.; Tudora, A.; Oberstedt, S.

    2010-10-01

    Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra) as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f) and 237Np(n, f)) both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  12. Possibility of 5He emission in neutron induced reactions

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Jingshang

    2004-01-01

    The unstable nucleus 5He emission has never been included in the widely used statistical model codes as the evaluation tool and interpretation experimental data.The calculated threshold energies of 5He emission from light nuclei to heavy nuclei indicate that in most cases the compound nucleus induced by incident neutron would emit 5He rather than 3He. Since 5He is unstable and can be separated into n+α spontaneously,so neutron is produced in 5He emission process. The formulation of the double-differential cross section of the neutron from the two-body breakup process of emitted 5He is established. Because of the strong recoil effect, the energy balance is strictly taken into account to meet the needs in nuclear engineering. Further improvement of the statistical model calculation codes on this respect is proposed. It is expected that the correlative measurement will be available to account the outgoing neutron and alpha particle simultaneously and to test and verify the existence of 5He emission.

  13. Modelling of reaction cross sections and prompt neutron emission

    Directory of Open Access Journals (Sweden)

    Oberstedt S.

    2010-10-01

    Full Text Available Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f and 237Np(n, f both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  14. The neutron long counter NERO for studies of β-delayed neutron emission in the r-process

    Science.gov (United States)

    Pereira, J.; Hosmer, P.; Lorusso, G.; Santi, P.; Couture, A.; Daly, J.; Del Santo, M.; Elliot, T.; Görres, J.; Herlitzius, C.; Kratz, K.-L.; Lamm, L. O.; Lee, H. Y.; Montes, F.; Ouellette, M.; Pellegrini, E.; Reeder, P.; Schatz, H.; Schertz, F.; Schnorrenberger, L.; Smith, K.; Stech, E.; Strandberg, E.; Ugalde, C.; Wiescher, M.; Wöhr, A.

    2010-06-01

    The neutron long counter NERO was built at the National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, for measuring β-delayed neutron-emission probabilities. The detector was designed to work in conjunction with a β-delay implantation station, so that β decays and β-delayed neutrons emitted from implanted nuclei can be measured simultaneously. The high efficiency of about 40%, for the range of energies of interest, along with the small background, are crucial for measuring β-delayed neutron emission branchings for neutron-rich r-process nuclei produced as low intensity fragmentation beams in in-flight separator facilities.

  15. $^{11}$Be($\\beta$p), a quasi-free neutron decay?

    CERN Document Server

    Riisager, K.; Borge, M.J.G.; Briz, J.A.; Carmona-Gallardo, M.; Fraile, L.M.; Fynbo, H.O.U.; Giles, T.; Gottberg, A.; Heinz, A.; Johansen, J.G.; Jonson, B.; Kurcewicz, J.; Lund, M.V.; Nilsson, T.; Nyman, G.; Rapisarda, E.; Steier, P.; Tengblad, O.; Thies, R.; Winkler, S.R.

    2014-01-01

    We have observed $\\beta$-delayed proton emission from the neutron-rich nucleus $^{11}$Be by analysing a sample collected at the ISOLDE facility at CERN with accelerator mass spectrometry (AMS). With a branching ratio of (8.4 $\\pm$ 0.6)$\\times$ 10$^{-6}$ the strength of this decay mode, as measured by the B$_\\mathrm{GT}$-value, is unexpectedly high. The result is discussed within a simple single-particle model and could be interpreted as a quasi-free decay of the $^{11}$Be halo neutron into a single-proton state.

  16. Solar neutron emissivity during the large flare on 1982 June 3

    Science.gov (United States)

    Chupp, E. L.; Forrest, D. J.; Kanbach, G.; Flueckiger, E.; Golliez, F.

    1987-01-01

    For the solar neutron event on June 3, 1982, it is shown here that the combined SMM Gamma Ray Spectrometer and Jungfraujoch neutron monitor data require a time-extended emission of neutrons at the sun with energies of 100 MeV to about 2 GeV. The solar neutron emissivity spectrum is shown to have a strong downward curvature or truncation between 2 and 4 GeV. A Bessel function and truncated power law give acceptable fits to the observational data, but only the power law can explain the rapid rise of the neutron monitor count rate. The integrated emissivity of neutrons above E(n) of 100 MeV is strongly constrained at 8 x 10 to the 28th neutrons/sr and is essentially independent of neutron spectral shape. At neutron energies of about 100 MeV, good agreement is found for both spectral forms with observations of neutron decay protons.

  17. Prompt Neutron Emission in 252CF Spontaneous Fission

    Science.gov (United States)

    Hambsch, F.-J.; Oberstedt, S.; Zeynalov, Sh.

    2011-10-01

    The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics. The goal was to compare the results from digital data acquisition and digital signal processing analysis with results of the pioneering work of Budtz-Jørgensen and Knitter. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 107 fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. The results are in very good agreement with literature. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.

  18. Neutron-Activated Gamma-Emission: Technology Review

    Science.gov (United States)

    2012-01-01

    defined in MCNPX to simulate the -spectra collected by NaI detectors (cell 6) from target (cell 3...numerical simulation. Safety issues are of great interest to users and are calculated in section 6. Ideas to increase target distance and reduce...neutron emission, target scatter, and gamma collection processes were simulated using MCNPX . MCNPX is a legacy code from Los Alamos National

  19. On the spreading layer emission in luminous accreting neutron stars

    CERN Document Server

    Revnivtsev, Mikhail G; Poutanen, Juri

    2013-01-01

    Emission of the neutron star surface potentially contains information about its size and thus of vital importance for high energy astrophysics. In spite of the wealth of data on the emission of luminous accreting neutron stars, the emission of their surfaces is hard to disentangle from their time averaged spectra. A recent X-ray transient source XTE J1701-462 has provided a unique dataset covering the largest ever observed luminosity range for a single source. In this paper, we extract the spectrum of the boundary layer between the inner part of the accretion disc and the neutron star surface with the help of maximally spectral model-independent method. We show compelling evidences that the energy spectrum of the boundary layer stays virtually the same over factor of 20 variations of the source luminosity. It is rather wide and cannot be described by a single temperature blackbody spectrum, probably because of the inhomogeneity of the boundary layer and a spread in the colour temperature. The observed maximum...

  20. Study of neutron rich nuclei by delayed neutron decay using the Tonnerre multidetector; Etude de la decroissance par neutrons retardes de noyaux legers riches en neutrons avec le multidetecteur tonnerre

    Energy Technology Data Exchange (ETDEWEB)

    Timis, C.N

    2001-07-01

    A new detection array for beta delayed neutrons was built. It includes up to 32 plastic scintillation counters 180 cm long located at 120 cm from the target. Neutron energy spectra are measured by time-of-flight in the 300 keV-15 MeV range with good energy resolution. The device was tested with several known nuclei. Its performances are discussed in comparison with Monte Carlo simulations. They very high overall detection efficiency on the TONNERRE array made it possible to study one and two neutron emission of {sup 11}Li. A complete decay scheme was obtained. The {sup 33}Mg and {sup 35}Al beta decays were investigated for the first time by neutron and gamma spectroscopy. Complete decay schemes were established and compared to large scale shell-model calculations. (authors)

  1. High-statistics measurement of the {beta} -delayed {alpha} spectrum of {sup 20}Na

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, K.L.; Fynbo, H.O.U.; Riisager, K. [Aarhus University, Department of Physics and Astronomy, Aarhus (Denmark); Kirsebom, O.S. [Aarhus University, Department of Physics and Astronomy, Aarhus (Denmark); TRIUMF, Vancouver, BC (Canada); Jokinen, A.; Saastamoinen, A.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Madurga, M. [Instituto de Estructura de la Materia, CSIC, Madrid (Spain); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN (United States); Tengblad, O. [Instituto de Estructura de la Materia, CSIC, Madrid (Spain)

    2013-06-15

    A measurement of the {sup 20}Na {beta} -delayed alpha spectrum with a high-granularity setup has allowed the decay scheme to be revised on several points. Three new transitions of low intensity are found at low {alpha} -particle energy. An R-matrix fit of the complete spectrum gives an improved description of the decay and indicates feeding to the broad 2{sup +} {alpha} -cluster state close to 9MeV. (orig.)

  2. Cluster emissions with ? daughter from neutron-rich nuclei

    Science.gov (United States)

    Kumar, Satish; Batra, J. S.; Gupta, Raj K.

    1996-02-01

    Cluster emissions from neutron-rich 0954-3899/22/2/006/img2, and 0954-3899/22/2/006/img3 nuclei are studied within the preformed cluster model of Malik and Gupta. Q-value estimates of the decays selected on the basis of shell effects in binding energies and their relative preformation probabilities show that these nuclei are stable (Qdecays and all the metastable (Q>0) decays are of non-alpha-like heavy clusters. The most probable decays (minimum half-life times) are the ones with a doubly magic 0954-3899/22/2/006/img6 nucleus as the daughter nucleus, arising due to the WKB penetrability. Compared to the presently measurable alpha-like cluster decays of the corresponding neutron-deficient parents into a 0954-3899/22/2/006/img7 daughter nucleus, these decays are suppressed by many orders of magnitude.

  3. Quiescent thermal emission from neutron stars in LMXBs

    CERN Document Server

    Turlione, Anabela; Pons, José A

    2013-01-01

    The quiescent thermal emission from neutron stars in low mass X-ray binaries after active periods of intense activity in x-rays (outbursts) has been monitored. The theoretical modeling of the thermal relaxation of the neutron star crust may be used to establish constraints on the crust and envelope composition and transport properties, depending on the astrophysical scenarios assumed. We perform numerical simulations of the neutron star crust thermal evolution and compare them with inferred surface temperatures for five sources: MXB 1659-29, KS 1731-260, EXO 0748-676, XTE J1701-462 and IGR J17480-2446. We also present stationary envelope models to be used as a boundary condition for the crustal cooling models. We obtain a relation between the mass accretion rate and the temperature reached at the crust-envelope interface at the end of the active phase that accounts for early observations and reduces the number of free parameters of the problem. With this relation we are also able to set constraints to the env...

  4. Acoustic, electromagnetic, neutron emissions from fracture and earthquakes

    CERN Document Server

    Lacidogna, Giuseppe; Manuello, Amedeo

    2015-01-01

    This book presents the relevant consequences of recently discovered and interdisciplinary phenomena, triggered by local mechanical instabilities. In particular, it looks at emissions from nano-scale mechanical instabilities such as fracture, turbulence, buckling and cavitation, focussing on vibrations at the TeraHertz frequency and Piezonuclear reactions. Future applications for this work could include earthquake precursors, climate change, energy production, and cellular biology. A series of fracture experiments on natural rocks demonstrates that the TeraHertz vibrations are able to induce fission reactions on medium weight elements accompanied by neutron emissions. The same phenomenon appears to have occurred in several different situations, particularly in the chemical evolution of the Earth and Solar System, through seismicity (rocky planets) and storms (gaseous planets). As the authors explore, these phenomena can also explain puzzles related to the history of our planet, like the ocean formation or th...

  5. Classification of JET Neutron and Gamma Emissivity Profiles

    Science.gov (United States)

    Craciunescu, T.; Murari, A.; Kiptily, V.; Vega, J.; Contributors, JET

    2016-05-01

    In thermonuclear plasmas, emission tomography uses integrated measurements along lines of sight (LOS) to determine the two-dimensional (2-D) spatial distribution of the volume emission intensity. Due to the availability of only a limited number views and to the coarse sampling of the LOS, the tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET. In specific experimental conditions the availability of LOSs is restricted to a single view. In this case an explicit reconstruction of the emissivity profile is no longer possible. However, machine learning classification methods can be used in order to derive the type of the distribution. In the present approach the classification is developed using the theory of belief functions which provide the support to fuse the results of independent clustering and supervised classification. The method allows to represent the uncertainty of the results provided by different independent techniques, to combine them and to manage possible conflicts.

  6. Thermal emission of neutron stars with internal heaters

    CERN Document Server

    Kaminker, A D; Potekhin, A Y; Yakovlev, D G

    2014-01-01

    Using 1D and 2D cooling codes we study thermal emission from neutron stars with steady state internal heaters of various intensities and geometries (blobs or spherical layers) located at different depths in the crust. The generated heat tends to propagate radially, from the heater down to the stellar core and up to the surface; it is also emitted by neutrinos. In local regions near the heater the results are well described with the 1D code. The heater's region projects onto the stellar surface forming a hot spot. There are two heat propagation regimes. In the first, conduction outflow regime (realized at heat rates $H_0 \\lesssim 10^{20}$ erg cm$^{-3}$ s$^{-1}$ or temperatures $T_\\mathrm{h} \\lesssim 10^9$ K in the heater) the thermal surface emission of the star depends on the heater's power and neutrino emission in the stellar core. In the second, neutrino outflow regime ($H_0 \\gtrsim 10^{20}$ erg cm$^{-3}$ s$^{-1}$ or $T_\\mathrm{h} \\gtrsim 10^9$ K) the surface thermal emission becomes independent of heater's...

  7. Monte Carlo Models for the Production of beta-delayed Gamma Rays Following Fission of Special Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Pruet, J; Prussin, S; Descalle, M; Hall, J

    2004-02-03

    A Monte Carlo method for the estimation of {beta}-delayed {gamma}-ray spectra following fission is described that can accommodate an arbitrary time-dependent fission rate and photon collection history. The method invokes direct sampling of the independent fission yield distributions of the fissioning system, the branching ratios for decay of individual fission products and the spectral distributions for photon emission for each decay mode. Though computationally intensive, the method can provide a detailed estimate of the spectrum that would be recorded by an arbitrary spectrometer, and can prove useful in assessing the quality of evaluated data libraries, for identifying gaps in these libraries, etc. The method is illustrated by a first comparison of calculated and experimental spectra from decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general purpose transport calculations, where detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may be unnecessary, it is shown that an accurate and simple parameterization of a {gamma}-ray source function can be obtained. These parametrizations should provide high-quality average spectral distributions that should prove useful in calculations describing photons escaping from thick attenuating media.

  8. On evaluated nuclear data for beta-delayed gamma rays following of special nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Mencarini, Leonardo de H.; Caldeira, Alexandre D., E-mail: mencarini@ieav.cta.b, E-mail: alexdc@ieav.cta.b [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil)

    2011-07-01

    In this paper, a new type of information available in ENDF is discussed. During a consistency check of the evaluated nuclear data library ENDF/B-VII.0 performed at the Nuclear Data Subdivision of the Institute for Advanced Studies, the size of the files for some materials drew the attention of one of the authors. Almost 94 % of all available information for these special nuclear materials is used to represent the beta-delayed gamma rays following fission. This is the first time this information is included in an ENDF version. (author)

  9. Gamow-Teller response in deformed even and odd neutron-rich Zr and Mo isotopes

    CERN Document Server

    Sarriguren, P; Pereira, J

    2014-01-01

    Beta-decay properties of neutron-rich Zr and Mo isotopes are investigated within a microscopic theoretical approach based on the proton-neutron quasiparticle random-phase approximation. The underlying mean field is described self-consistently from deformed Skyrme Hartree-Fock calculations with pairing correlations. Residual separable particle-hole and particle-particle forces are also included in the formalism. The structural evolution in these isotopic chains including both even and odd isotopes is analyzed in terms of the equilibrium deformed shapes. Gamow-Teller strength distributions, beta-decay half-lives, and beta-delayed neutron-emission probabilities are studied, stressing their relevance to describe the path of the nucleosynthesis rapid neutron capture process.

  10. Polarization of neutron star surface emission: a systematic analysis

    Science.gov (United States)

    Taverna, Roberto

    2016-07-01

    New-generation X-ray polarimeters currently under development promise to open a new window in the study of high-energy astrophysical sources. Among them, neutron stars (NSs) appear particularly suited for polarization measurements. Radiation from the (cooling) surface of an NS is expected to exhibit a large intrinsic polarization degree due to the star strong magnetic field (≈ 10 ^{12}-10 ^{15} G). We present an efficient method for computing the observed polarization fraction and polarization angle in the case of radiation coming from the entire surface of an NS, accounting for both vacuum polarization and geometrical effects due to the extended emitting region. Our approach is fairly general and is illustrated in the case of blackbody emission from an NS with either a dipolar or a (globally) twisted magnetic field.

  11. beta-delayed fission from sup 2 sup 3 sup 0 Ac

    CERN Document Server

    Yang Wei Fan; Xu Yan Bing; Xong Bing; Pan Qiang Yan; He Jian Jun; Xiao Yong Hou; Li Yi

    2002-01-01

    ThO sub 2 is irradiated with 60 MeV/u sup 1 sup 8 O beams. sup 2 sup 3 sup 0 Ra is produced via the multi-nucleon transfer and dissipative fragmentation reactions of the target. sup 2 sup 3 sup 0 Ra is radio-chemical separated from ThO sub 2 and the other reaction products. The thin Ra sources are prepared. The mica fission track detectors are exposed to the Ra sources. gamma-rays of Ra decay in the sources are measured by a HPGe detector. The mica foil is etched in HF solution. The etched mica foil is scanned with an optical microscope. The fission tracks that should come from beta-delayed fission of sup 2 sup 3 sup 0 Ac are observed. The beta-delayed fission probability of sup 2 sup 3 sup 0 Ac is determined to be (1.19 +- 0.85) x 10 sup - sup 8

  12. Beta-delayed particle decay of sup 1 sup 7 Ne

    CERN Document Server

    Morton, A C; King, J D; Boyd, R N; Bateman, N P T; Buchmann, L; D'Auria, J M; Davinson, T; Dombsky, M; Galster, W; Gete, E; Giesen, U; Iliadis, C; Jackson, K P; Powell, J; Roy, G; Shotter, A

    2002-01-01

    The beta-delayed particle decay of sup 1 sup 7 Ne has been studied via proton-gamma coincidences, time-of-flight measurements and the ''ratio-cut technique'', allowing cleanly-separated proton and alpha-particle spectra to be obtained. A complete set of proton and alpha branching ratios for the decay of 14 excited states in sup 1 sup 7 F to the ground and excited states of sup 1 sup 6 O and sup 1 sup 3 N has been determined and branching ratios for the beta decay of sup 1 sup 7 Ne to these states have been deduced. From the branching ratios, f sub A t values and reduced Gamow-Teller matrix elements were calculated; no indication of isospin mixing in the isobaric analog state in sup 1 sup 7 F was observed. From the measurement of proton-gamma angular correlations, combined with the selection rules for an allowed beta decay, we obtain J suppi=((1)/(2)) sup - for states at 8.436 and 9.450 MeV and ((3)/(2)) sup - for the state at 10.030 MeV in sup 1 sup 7 F. Probabilities for the beta-delayed p alpha decay to sup...

  13. MONSTER: a time of flight spectrometer for β-delayed neutron emission measurements

    Science.gov (United States)

    Garcia, A. R.; Martínez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marín, J.; Martínez, G.; Mendoza, E.; Ovejero, M. C.; Reillo, E. M.; Santos, C.; Tera, F. J.; Villamarín, D.; Nolte, R.; Agramunt, J.; Algora, A.; Tain, J. L.; Banerjee, K.; Bhattacharya, C.; Pentillä, H.; Rinta-Antila, S.; Gorelov, D.

    2012-05-01

    The knowledge of the β-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the β-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (Sβ) function. In addition, β-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.

  14. Pion mass effects on axion emission from neutron stars through NN bremsstrahlung processes

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, S. [Horia Hulubei National Institute of Physics and Nuclear Engineering, PO Box MG-6, 76900 Bucharest-Magurele (Romania); Horia Hulubei Foundation, Atomistilor 407, Bucharest-Magurele (Romania)], E-mail: stoica@theory.nipne.ro; Pastrav, B. [Horia Hulubei National Institute of Physics and Nuclear Engineering, PO Box MG-6, 76900 Bucharest-Magurele (Romania)], E-mail: bpastrav@theory.nipne.ro; Horvath, J.E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, 05508-900 Cidade Universitaria Sao Paulo, SP (Brazil)], E-mail: foton@astro.iag.usp.br; Allen, M.P. [CEFET-SP, R. Pedro Vicente 625, 01109-010 Caninde, Sao Paulo, SP (Brazil)

    2009-09-15

    The rates of axion emission by nucleon-nucleon bremsstrahlung are calculated with the inclusion of the full momentum contribution from a nuclear one pion exchange (OPE) potential. The contributions of the neutron-neutron (nn), proton-proton ( pp) and neutron-proton (np) processes in both the non-degenerate and degenerate limits are explicitly given. We find that the finite-momentum corrections to the emissivities are quantitatively significant for the non-degenerate regime and temperature-dependent, and should affect the existing axion mass bounds. The trend of these nuclear effects is to diminish the emissivities.

  15. An empirical fit to estimated neutron emission cross sections from proton induced reactions

    Indian Academy of Sciences (India)

    Moumita Maiti; Maitreyee Nandy; S N Roy; P K Sarkar

    2003-01-01

    Neutron emission cross section for various elements from 9Be to 209Bi have been calculated using the hybrid model code ALICE-91 for proton induced reactions in the energy range 25 MeV to 105 MeV. An empirical expression relating neutron emission cross section to target mass number and incident proton energy has been obtained. The simple expression reduces the computation time significantly. The trend in the variation of neutron emission cross sections with respect to the target mass number and incident proton energy has been discussed within the framework of the model used.

  16. Measurement of the branching ratio for beta-delayed alpha decay of 16N

    CERN Document Server

    Refsgaard, J; Dijck, E A; Fynbo, H O U; Lund, M V; Portela, M N; Raabe, R; Randisi, G; Renzi, F; Sambi, S; Sytema, A; Willmann, L; Wilschut, H W

    2015-01-01

    While the 12C(a,g)16O reaction plays a central role in nuclear astrophysics, the cross section at energies relevant to hydrostatic helium burning is too small to be directly measured in the laboratory. The beta-delayed alpha spectrum of 16N can be used to constrain the extrapolation of the E1 component of the S-factor; however, with this approach the resulting S-factor becomes strongly correlated with the assumed beta-alpha branching ratio. We have remeasured the beta-alpha branching ratio by implanting 16N ions in a segmented Si detector and counting the number of beta-alpha decays relative to the number of implantations. Our result, 1.49(5)e-5, represents a 25% increase compared to the accepted value and implies an increase of 14% in the extrapolated S-factor.

  17. Investigating Prompt Fission Neutron Emission from 235U(n,f in the Resolved Resonance Region

    Directory of Open Access Journals (Sweden)

    Göök Alf

    2016-01-01

    Full Text Available Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.

  18. Beta-Delayed Multiparticle Emission Studies at ISOL-type Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Borge, M.J.G. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Bergmann, U.C. [Institut for fysik og astronomi, Aarhus Universitet, DK-8000 Aarhus C (Denmark); EP Division, CERN, CH-1211 Geneva 23 (Switzerland); Boutami, R. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Cederkaell, J. [EP Division, CERN, CH-1211 Geneva 23 (Switzerland); Dendooven, P. [Department of Physics, University of Jyvaaeskylae, FIN-40351 Jyvaaeskylae (Finland); Fraile, L.M. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Fynbo, H.O.U. [Institut for fysik og astronomi, Aarhus Universitet, DK-8000 Aarhus C (Denmark); Huang, W.X. [Department of Physics, University of Jyvaaeskylae, FIN-40351 Jyvaaeskylae (Finland); Huikari, J. [Department of Physics, University of Jyvaaeskylae, FIN-40351 Jyvaaeskylae (Finland); Jading, Y. [EP Division, CERN, CH-1211 Geneva 23 (Switzerland); Jeppesen, H. [Institut for fysik og astronomi, Aarhus Universitet, DK-8000 Aarhus C (Denmark); Jokinen, A. [Department of Physics, University of Jyvaaeskylae, FIN-40351 Jyvaaeskylae (Finland); Jonson, B. [Experimentell Fysik, Chalmers Tekniska Hoegskola, S-41296 Goeteborg (Sweden); Martel, I. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Meister, M. [Experimentell Fysik, Chalmers Tekniska Hoegskola, S-41296 Goeteborg (Sweden); Nilsson, T. [Experimentell Fysik, Chalmers Tekniska Hoegskola, S-41296 Goeteborg (Sweden); Nyman, G. [Experimentell Fysik, Chalmers Tekniska Hoegskola, S-41296 Goeteborg (Sweden); Prezado, Y. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Riisager, K. [Institut for fysik og astronomi, Aarhus Universitet, DK-8000 Aarhus C (Denmark)] [and others

    2004-12-27

    We report here on the recent {beta}-decay studies made at ISOL-type Facilities to determine the multiparticle breakup mechanism of excited states in light nuclei by studying them in full kinematics. In particular the results obtained for the A = 9 isobars and the breakup of the 12.7 MeV state in {sup 12}C of unnatural parity are discussed. The breakup of the latter has been debated since more than a decade. Mirror beta transitions in the A=9 chain are compared and a large asymmetry factor is deduced for the transitions to high excitation energy in {sup 9}Be (11.8 MeV) and {sup 9}B (12.2 MeV) fed in the {beta}-decay of {sup 9}Li and {sup 9}C respectively. It is shown that the asymmetry is not due to experimental problems or differences in the mechanisms of breakup or in the spin of the states. As no asymmetry is found in the gs to gs transition it must be due to the particular structure of these excited states. The controversy on the breakup mechanism of the 12.7 MeV state is resolved.

  19. Study of the $\\beta$-delayed Particle Emission of $^{17}$Ne

    CERN Multimedia

    2002-01-01

    We intend to investigate the charged particle decay modes from the excited states of $^{17}$F populated in the $\\beta^+$- decay of $^{17}$Ne. In particular, we propose to study the proton decay branches to $^{16}$O states which are unstable to $\\alpha$- decay. We plan to use the recently developed ISOLDE Si-ball detector array in order to efficiently detect the charged particles in a wide solid angle. We ask for a total of 12 shifts, including 9 shifts for $^{17}$Ne and 3 shifts for stable beam and calibrations. We request the use of a Mg oxide target coupled to a plasma ion source with cooled transfer line or, if possible, to the new MINIMONOECRIS. We would like to make use of the ISOLDE VME DAQ and CERN data storage system.

  20. Study of Beta-delayed Proton Emission of 36,37Ca

    Institute of Scientific and Technical Information of China (English)

    SUN; Li-jie; LIN; Cheng-jian; XU; Xin-xing; JIA; Hui-ming; YANG; Lei; BAO; Peng-fei; MA; Nan-ru; ZHANG; Huan-qiao; LIU; Zu-hua; WU; Zhen-dong; ZHENG; Lei; WANG; Jian-song; YANG; Yan-yun; HU; Zheng-guo; XU; Hu-shan; WANG; Meng; JIN; Shi-lun; HAN; Jian-long; ZHANG; Ning-tao; MA; Jun-bing; MA; Peng; ZHANG; Yu-hu; ZHOU; Xiao-hong; MA; Xin-wen; XIAO; Guo-qing

    2013-01-01

    Our experiment on the decays of 37Ca(QEC=11 639(22)keV)and 36Ca(QEC=10 990(40)keV)was performed at the Heavy Ion Research Facility in Lanzhou(HIRFL).The radioactive ion beam(RIB)37,36Ca was produced by projectile fragmentation,then separated and purified by the Radioactive Ion Beam Line in Lanzhou(RIBLL)spectrometer.By employing the silicon detector array and segmented

  1. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    Science.gov (United States)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  2. Detecting gravitational wave emission from the known accreting neutron stars

    CERN Document Server

    Watts, Anna; Bildsten, Lars; Schutz, Bernard

    2008-01-01

    Detection of gravitational waves from accreting neutron stars (NSs) in our galaxy, due to ellipticity or internal oscillation, would be a breakthrough in our understanding of compact objects and explain the absence of NSs rotating near the break-up limit. Direct detection, however, poses a formidable challenge. Using the current data available on the properties of the accreting NSs in Low Mass X-Ray Binaries (LMXBs), we quantify the detectability for the known accreting NSs, considering various emission scenarios and taking into account the negative impact of parameter uncertainty on the data analysis process. Only a few of the persistently bright NSs accreting at rates near the Eddington limit are detectable by Advanced LIGO if they are emitting gravitational waves at a rate matching the torque from accretion. A larger fraction of the known population is detectable if the spin and orbital parameters are known in advance, especially with the narrow-band Advanced LIGO. We identify the most promising targets, a...

  3. Development of fast neutron pinhole camera using nuclear emulsion for neutron emission profile measurement in KSTAR

    Science.gov (United States)

    Izumi, Y.; Tomita, H.; Nakayama, Y.; Hayashi, S.; Morishima, K.; Isobe, M.; Cheon, M. S.; Ogawa, K.; Nishitani, T.; Naka, T.; Nakano, T.; Nakamura, M.; Iguchi, T.

    2016-11-01

    We have developed a compact fast neutron camera based on a stack of nuclear emulsion plates and a pinhole collimator. The camera was installed at J-port of Korea superconducting tokamak advanced research at National Fusion Research Institute, Republic of Korea. Fast neutron images agreed better with calculated ones based on Monte Carlo neutron simulation using the uniform distribution of Deuterium-Deuterium (DD) neutron source in a torus of 40 cm radius.

  4. The Neutron Emission Ratio Observer NERO at the National Superconducting Cyclotron Laboratory

    Science.gov (United States)

    Pereira, Jorge; Hosmer, Paul; Lorusso, Giuseppe; Santi, Peter; Del Santo, Marcelo; Herlitzius, Clemens; Kratz, Karl-Ludwig; Montes, Fernando; Schatz, Hendrik; Schertz, Florian; Schnorrenberger, Linda; Smith, Karl; Wiescher, Michael

    2009-10-01

    The new neutron counter NERO (Neutron Emission Ratio Observer) was built at the National Superconducting Cyclotron Laboratory (NSCL) for measuring Pn values of neutron-rich nuclei produced as fast fragmentation beams. The design was motivated by the requirement of being coupled to the NSCL beta counting system, so that β-decay particles and neutrons emitted from implanted nuclei can be measured simultaneously, while keeping a high efficiency. The detector's performance and main features will be discussed, as well as recent measurements done at NSCL for astrophysical studies of the r-process.

  5. Strategy for the absolute neutron emission measurement on ITER.

    Science.gov (United States)

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  6. Dynamics and gravitational-wave emission of neutron-star merger remnants

    CERN Document Server

    Bauswein, A; Stergioulas, N; Janka, H -T

    2016-01-01

    The coalescence of a neutron-star binary is likely to result in the formation of a neutron-star merger remnant for a large range of binary mass configurations. The massive merger remnant shows strong oscillations, which are excited by the merging process, and emits gravitational waves. Here we discuss possibilities and prospects of inferring unknown stellar properties of neutron stars by the detection of postmerger gravitational-wave emission, which thus leads to constraints of the equation of state of high-density matter. In particular, the dominant oscillation frequency of the postmerger remnant provides tight limits to neutron-star radii. We mention first steps towards a practical implementation of future gravitational-wave searches for the postmerger emission. Moreover, we outline possibilities to estimate the unknown maximum mass of nonrotating neutron stars from such types of measurements. Finally, we review the origin and scientific implications of secondary peaks in the gravitational-wave spectrum of ...

  7. Statistical characterization of the reproducibility of neutron emission of small plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Tarifeno-Saldivia, Ariel; Soto, Leopoldo [Comision Chilena de Energia Nuclear (CCHEN), Casilla 188-D, Santiago (Chile); Center for Research and Applications in Plasma Physics and Pulsed Power, P4 (Chile) and Departamento de Ciencias Fisicas, Universidad Andres Bello, Republica 220, Santiago (Chile)

    2012-09-15

    The purpose of this work is to discuss the techniques related to the detection of fast pulsed neutrons produced in plasma focus (PF) devices, the statistical analysis of the corresponding data, and the methodologies for evaluation of the device performance in low emission neutron sources. A general mathematical framework is presented for the assessment of the reproducibility of the neutron emission of small PF devices given the shot-to-shot distribution and detector efficiency. The effect on the reproducibility in case of using two independent detectors is also discussed. The analysis is applied to the neutron emission of the plasma focus device PF-50J operating in repetitive mode (0.1-0.5 Hz and 65 J bank energy).

  8. $\\beta$-delayed fission in proton-rich nuclei in the lead region

    CERN Document Server

    AUTHOR|(CDS)2085005; Huyse, Mark; Popescu, Lucia

    Nuclear fission is the breakup of an atomic nucleus into two (sometimes three) fragments, thereby releasing a large amount of energy. Soon after its discovery in the late 1930’s, the gross properties of the fission phenomenon were explained by macroscopic nuclear models. Certain features however, such as asymmetric fission-fragment mass distributions in the actinide region, require the inclusion of microscopic effects. This interplay of the microscopic motion of individual nucleons on this macroscopic process is, until today, not yet fully understood. The phenomenon of fission has therefore been of recurring interest for both theoretical and experimental studies. This thesis work focuses on the $\\beta$-delayed fission ($\\beta$DF) process, an excellent tool to study low-energy fission of exotic nuclei, which was discovered in 1966 in the actinide region. In this two-step process, a precursor nucleus first undergoes $\\beta$-decay to an excited level in the daughter nucleus, which may subsequently fission. Rec...

  9. MONDO: A neutron tracker for particle therapy secondary emission fluxes measurements

    Science.gov (United States)

    Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.

    2016-07-01

    Cancer treatment is performed, in Particle Therapy, using accelerated charged particles whose high irradiation precision and conformity allows the tumor destruction while sparing the surrounding healthy tissues. Dose release monitoring devices using photons and charged particles produced by the beam interaction with the patient body have already been proposed, but no attempt based on the detection of the abundant secondary radiation neutron component has been made yet. The reduced attenuation length of neutrons yields a secondary particle sample that is larger in number when compared to photons and charged particles. Furthermore, neutrons allow for a backtracking of the emission point that is not affected by multiple scattering. Since neutrons can release a significant dose far away from the tumor region, a precise measurement of their flux, production energy and angle distributions is eagerly needed in order to improve the Treatment Planning Systems (TPS) software, so to predict not only the normal tissue toxicity in the target region but also the risk of late complications in the whole body. All the aforementioned issues underline the importance for an experimental effort devoted to the precise characterization of the neutron production gaining experimental access both to the emission point and production energy. The technical challenges posed by a neutron detector aiming for a high detection efficiency and good backtracking precision will be addressed within the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project. The MONDO's main goal is to develop a tracking detector targeting fast and ultrafast secondary neutrons. The tracker is composed by a scintillating fiber matrix (4 × 4 × 8cm3). The full reconstruction of protons, produced in elastic interactions, will be used to measure energy and direction of the impinging neutron. The neutron tracker will measure the neutron production yields, as a function of production angle and energy, using different

  10. Influence of Neutron Shell Closure (Nc=126) on Prescission Particle Emission of Fissioning Systems 216,224Th

    Institute of Scientific and Technical Information of China (English)

    叶巍

    2003-01-01

    The effect of neutron shell closure Nc = 126 on the prescission-particle emission of 216Th and 224Th nuclei is investigated within the framework of an extensive Smoluchowski equation. It is found that there is a large difference in the prescission neutron multiplicity for the two Th nuclei, indicating a strong shell effect in neutron emission. Moreover, shell effects on particle emission are also investigated as functions of excitation energy,angular momentum and nuclear viscosity. The results show that with increasing excitation energy shell effects in prefission neutron evolve from continual strength to gradual weakness. Both high angular momenta and low viscosity weaken the shell effects on the particle emission.

  11. Measurements of double-differential neutron emission cross sections of {sup 6}Li and {sup 7}Li for 18 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ibaraki, Masanobu; Baba, Mamoru; Matsuyama, Shigeo; Sanami, Toshiya; Win, T.; Miura, Takako; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    Double-differential neutron emission cross sections of {sup 6}Li and {sup 7}Li were measured for 18 MeV neutrons at Tohoku University 4.5 MV Dynamitron facility. Neutron emission spectra were obtained down to 1 MeV at 13 angles with energy resolution good enough to separate discrete levels. A care was taken to eliminate the sample-dependent background due to parasitic neutrons. Experimental results were in fair agreement with the JENDL-3.2 data and a simple model considering a three-body breakup process and discrete level excitations. (author)

  12. Fast response neutron emission monitor for fusion reactor using stilbene scintillator and Flash-ADC.

    Science.gov (United States)

    Itoga, T; Ishikawa, M; Baba, M; Okuji, T; Oishi, T; Nakhostin, M; Nishitani, T

    2007-01-01

    The stilbene neutron detector which has been used for neutron emission profile monitoring in JT-60U has been improved, to respond to the requirement to observe the high-frequency phenomena in megahertz region such as toroidicity-induced Alfvén Eigen mode in burning plasma as well as the spatial profile and the energy spectrum. This high-frequency phenomenon is of great interest and one of the key issues in plasma physics in recent years. To achieve a fast response in the stilbene detector, a Flash-ADC is applied and the wave form of the anode signal stored directly, and neutron/gamma discrimination was carried out via software with a new scheme for data acquisition mode to extend the count rate limit to MHz region from 1.3 x 10(5) neutron/s in the past, and confirmed the adequacy of the method.

  13. Analyzing Neutron Star in HESS J1731-347 from Thermal Emission and Cooling Theory

    CERN Document Server

    Ofengeim, D D; Klochkov, D; Suleimanov, V; Yakovlev, D G

    2015-01-01

    The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.

  14. Low-Energy X-ray Emission from Young Isolated Neutron Stars

    CERN Document Server

    Ruderman, M

    2003-01-01

    A young neutron star with large spin-down power is expected to be closely surrounded by an e+/- pair plasma maintained by the conversion of gamma-rays associated with the star's polar-cap and/or outer-gap accelerators. Cyclotron-resonance scattering by the e- and e+ within several radii of such neutron stars prevents direct observations of thermal X-rays from the stellar surface. Estimates are presented for the parameters of the Planck-like X-radiation which ultimately diffuses out through this region. Comparisons with observations, especially of apparent blackbody emission areas as a function of neutron star age, support the proposition that we are learning about a neutron star's magnetosphere rather than about its surface from observations of young neutron star thermal X-rays.

  15. Neutrino emissivity from Goldstone boson decay in magnetized neutron matter

    CERN Document Server

    Bedaque, Paulo

    2013-01-01

    Neutron matter at densities somewhat above nuclear densities is believed to be superfluid due to the condensation of neutron pairs in the 3 P2 channel. This condensate breaks rotational symmetry spontaneously and leads to the existence of Goldstone bosons (angulons). We show that the coupling to magnetic fields mediated by the magnetic moment of the neutron makes angulons massive and capable of decaying into a neutrino-antineutrino pair. We compute the rate for this process and argue they become competitive with other cooling processes for temperatures around 10^7 K as long as the interior magnetic field of the star is in the B=10^15 G range or above.

  16. Thermal emission from low-field neutron stars

    CERN Document Server

    Gänsicke, B T; Romani, R W

    2002-01-01

    We present a new grid of LTE model atmospheres for weakly magnetic (B<=10e10G) neutron stars, using opacity and equation of state data from the OPAL project and employing a fully frequency and angle dependent radiation transfer. We discuss the differences to earlier models, including a comparison with a detailed NLTE calculation. As a first application of the new synthetic spectra, we re-analyze the available ROSAT PSPC data of the isolated neutron star candidate RXJ1856.5-3754. Our iron and solar abundance model spectra provide satisfactory fits to the X-ray spectrum and are consistent with the distance of RXJ1856.5-3754 recently measured by the Hubble Space Telescope, although pulse fractions as small as those observed are difficult to obtain for canonical neutron star radii.

  17. First-forbidden β -decay rates, energy rates of β -delayed neutrons and probability of β -delayed neutron emissions for neutron-rich nickel isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Nabi, Jameel-Un; Iftikhar, Zafar [GIK Institute of Engineering Sciences and Technology, Faculty of Engineering Sciences, Khyber Pakhtunkhwa (Pakistan); Cakmak, Necla [Karabuek University, Department of Physics, Karabuek (Turkey)

    2016-01-15

    First-forbidden (FF) transitions can play an important role in decreasing the calculated half-lives specially in environments where allowed Gamow-Teller (GT) transitions are unfavored. Of special mention is the case of neutron-rich nuclei where, due to phase-space amplification, FF transitions are much favored. We calculate the allowed GT transitions in various pn-QRPA models for even-even neutron-rich isotopes of nickel. Here we also study the effect of deformation on the calculated GT strengths. The FF transitions for even-even neutron-rich isotopes of nickel are calculated assuming the nuclei to be spherical. Later we take into account deformation of nuclei and calculate GT + unique FF transitions, stellar β -decay rates, energy rate of β -delayed neutrons and probability of β -delayed neutron emissions. The calculated half-lives are in excellent agreement with measured ones and might contribute in speeding-up of the r-matter flow. (orig.)

  18. Detecting gravitational wave emission from the known accreting neutron stars

    NARCIS (Netherlands)

    Watts, A.L.; Krishnan, B.; Bildsten, L.; Schutz, B.F.

    2008-01-01

    Detection of gravitational waves from accreting neutron stars (NSs) in our Galaxy, due to ellipticity or internal oscillation, would be a breakthrough in our understanding of compact objects and explain the absence of NSs rotating near the break-up limit. Direct detection, however, poses a formidabl

  19. $\\beta$-decay study of neutron-rich Tl and Pb isotopes

    CERN Multimedia

    It is proposed to study the structure of neutron-rich nuclei beyond $^{208}$Pb. The one-proton hole $^{211-215}$Tl and the semi magic $^{213}$Pb will be produced and studied via nuclear and atomic spectroscopy searching for long-lived isomers and investigating the $\\beta$-delayed $\\gamma$- emission to build level schemes. Information on the single particle structure in $^{211-215}$Pb, especially the position of the g$_{9/2}$ and i$_{11/2}$ neutron orbitals, will be extracted along with lifetimes. The $\\beta$-decay will be complemented with the higher spin selectivity that can be obtained by resonant laser ionization to single-out the decay properties of long-living isomers in $^{211,213}$Tl and $^{213}$Pb.

  20. Experimental studies of neutron emission spectra in Li(d,xn) reactions for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Masayuki, E-mail: hagi@post.kek.jp [Cyclotron and Radioisotope Center, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Radiation Science Center, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Itoga, Toshiro, E-mail: itoga@spring8.or.jp [Cyclotron and Radioisotope Center, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Oishi, Takuji, E-mail: oishi.takuji@canon.co.jp [Cyclotron and Radioisotope Center, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Baba, Mamoru [Cyclotron and Radioisotope Center, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan)

    2011-10-01

    To improve the accuracy of the neutron emission data in the {sup nat}Li(d,xn) reaction, which will be used as the neutron source in the International Fusion Materials Irradiation Facility (IFMIF), we measured the double-differential neutron emission cross-sections (DDXs) of the d-Li reaction at 25 MeV at the cyclotron facility of Tohoku University. The DDXs were measured at ten laboratory angles between 0{sup o} and 110{sup o} by the time-of-flight method, using a beam-swinger system and a well-collimated neutron flight channel. We used a two-gain method to obtain over most of the energy range of secondary neutrons and reveal the shape of the overall emission spectra including the breakup peak of incident deuterons near half the incidence energy, and several peaks in the high-energy tail due to stripping reactions. The experimental results compared favorably with those obtained using the extended Serber model.

  1. Detecting special nuclear material using muon-induced neutron emission

    Energy Technology Data Exchange (ETDEWEB)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius II, Joseph [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, Adam [University of New Mexico, Albuquerque, NM 87131 (United States); Milner, Edward C. [Southern Methodist University, Dallas, TX 75205 (United States); Miyadera, Haruo; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Perry, John [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States); Poulson, Daniel [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-21

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  2. Surface emission from neutron stars and implications for the physics of their interiors.

    Science.gov (United States)

    Ozel, Feryal

    2013-01-01

    Neutron stars are associated with diverse physical phenomena that take place in conditions characterized by ultrahigh densities as well as intense gravitational, magnetic and radiation fields. Understanding the properties and interactions of matter in these regimes remains one of the challenges in compact object astrophysics. Photons emitted from the surfaces of neutron stars provide direct probes of their structure, composition and magnetic fields. In this review, I discuss in detail the physics that governs the properties of emission from the surfaces of neutron stars and their various observational manifestations. I present the constraints on neutron star radii, core and crust composition, and magnetic field strength and topology obtained from studies of their broadband spectra, evolution of thermal luminosity, and the profiles of pulsations that originate on their surfaces.

  3. Heterogeneity of solid neutron-star matter: transport coefficients and neutrino emissivity

    CERN Document Server

    Jones, P B

    2004-01-01

    Calculations of weak-interaction transition rates and of nuclear formation enthalpies show that in isolated neutron stars, the solid phase, above the neutron-drip threshold, is amorphous and heterogeneous in nuclear charge. The neutrino emissivities obtained are very dependent on the effects of proton shell structure but may be several orders of magnitude larger than the electron bremsstrahlung neutrino-pair emissivity at temperatures of 10^9 K. In this phase, electrical and thermal conductivities are much smaller than for a homogeneous bcc lattice. In particular, the reduced electrical conductivity, which is also temperature-independent, must have significant consequences for the evolution of high-multipole magnetic fields in neutron stars.

  4. Phillips-Tikhonov regularization with a priori information for neutron emission tomographic reconstruction on Joint European Torus

    Energy Technology Data Exchange (ETDEWEB)

    Bielecki, J.; Scholz, M.; Drozdowicz, K. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland); Giacomelli, L. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Istituto di Fisica del Plasma “P. Caldirola,” Milano (Italy); Kiptily, V.; Kempenaars, M. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Conroy, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Department of Physics and Astronomy, Uppsala University (Sweden); Craciunescu, T. [IAP, National Institute for Laser Plasma and Radiation Physics, Bucharest (Romania); Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-09-15

    A method of tomographic reconstruction of the neutron emissivity in the poloidal cross section of the Joint European Torus (JET, Culham, UK) tokamak was developed. Due to very limited data set (two projection angles, 19 lines of sight only) provided by the neutron emission profile monitor (KN3 neutron camera), the reconstruction is an ill-posed inverse problem. The aim of this work consists in making a contribution to the development of reliable plasma tomography reconstruction methods that could be routinely used at JET tokamak. The proposed method is based on Phillips-Tikhonov regularization and incorporates a priori knowledge of the shape of normalized neutron emissivity profile. For the purpose of the optimal selection of the regularization parameters, the shape of normalized neutron emissivity profile is approximated by the shape of normalized electron density profile measured by LIDAR or high resolution Thomson scattering JET diagnostics. In contrast with some previously developed methods of ill-posed plasma tomography reconstruction problem, the developed algorithms do not include any post-processing of the obtained solution and the physical constrains on the solution are imposed during the regularization process. The accuracy of the method is at first evaluated by several tests with synthetic data based on various plasma neutron emissivity models (phantoms). Then, the method is applied to the neutron emissivity reconstruction for JET D plasma discharge #85100. It is demonstrated that this method shows good performance and reliability and it can be routinely used for plasma neutron emissivity reconstruction on JET.

  5. Measurements of double-differential neutron emission cross sections of Nb and Bi for 11.5 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ibaraki, Masanobu; Matsuyama, Shigeo; Soda, Daisuke; Baba, Mamoru; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    Double-differential neutron emission cross sections (DDXs) of Nb and Bi have been measured for 11.5MeV neutrons using the {sup 15N}(d,n){sup 16}O quasi-monoenergetic neutron source at Tohoku University 4.5MV Dynamitron facility. For En`>6MeV, DDXs were measured by the conventional TOF method (single-TOF:S-TOF). For En`<6MeV, where the S-TOF spectra were distorted by the background neutrons, we adopted a double-TOF method (D-TOF). By applying D-TOF method, we obtained DDXs down to 1MeV. (author)

  6. Neutron and Photon Transport in Sea-Going Cargo Containers

    Energy Technology Data Exchange (ETDEWEB)

    Pruet, J; Descalle, M; Hall, J; Pohl, B; Prussin, S G

    2005-02-09

    Factors affecting sensing of small quantities of fissionable material in large sea-going cargo containers by neutron interrogation and detection of {beta}-delayed photons are explored. The propagation of variable-energy neutrons in cargos, subsequent fission of hidden nuclear material and production of the {beta}-delayed photons, and the propagation of these photons to an external detector are considered explicitly. Detailed results of Monte Carlo simulations of these stages in representative cargos are presented. Analytical models are developed both as a basis for a quantitative understanding of the interrogation process and as a tool to allow ready extrapolation of the results to cases not specifically considered here.

  7. Studies of {beta}-delayed proton decays of N{approx_equal}Z nuclei around {sup 100}Sn at the GSI-ISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Mukha, I. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Batist, L. [St. Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Universita ' Federico II' and INFN Napoli, Naples (Italy); Becker, F. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Blazhev, A. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); University of Sofia, Sofia (Bulgaria); Bruechle, A. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Doering, J. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Gorska, M. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Grawe, H. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Faestermann, T. [Technical University, Munich (Germany); Hoffman, C. [Florida State University, Tallahassee, FL (United States); Janas, Z. [Warsaw University, Warsaw (Poland); Jungclaus, A. [Universidad Autonoma de Madrid (Spain); Karny, M. [Warsaw University, Warsaw (Poland); Kavatsyuk, M. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); National T. Shevchenko University, Kiev (Ukraine); Kavatsyuk, O. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Kirchner, R. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); La Commara, M. [Universita ' Federico II' and INFN Napoli, Naples (Italy); Mazzocchi, C. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Plettner, C. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Plochocki, A. [Warsaw University, Warsaw (Poland); Roeckl, E. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Romoli, M. [Universita ' Federico II' and INFN Napoli, Naples (Italy); Schaedel, M. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Schwengner, R. [Inst. fuer Kern und Hadronenphysik, Forschungzentrum Rossendorf, Dresden (Germany)] [and others

    2004-12-27

    Beta decays of {sup 94,96}Ag and {sup 103}Sn nuclei into proton channels have been studied in the recent experiments at the GSI-ISOL facility. New efficient and chemically selective ion sources provided the highest yields of light silver and tin isotopes. Large arrays of germanium {gamma}-ray and silicon charged-particle detectors, as well as a total absorption spectrometer (TAS) were used to measure {beta}-proton, proton-{gamma}, {beta}-proton-{gamma} and proton-{gamma}-{gamma} spectra. For the decay of {sup 94}Ag, we observed high-spin states in {sup 93}Rh populated by proton emission following {beta} decay, whose largest spin value ({>=}39/2) yields an experimental proof for the existence of a second high-spin isomer in {sup 94}Ag with I{>=}17. Its {beta}-decay energy is at least 16.8 MeV, corresponding to an excitation energy {>=}5.5 MeV. For {sup 103}Sn, the {gamma} rays measured in coincidence with {beta}-delayed protons allowed us to establish the {beta}-decay properties of this isotope. In particular, a Q{sup EC} value of 7.5(6) MeV is derived from the intensity ratio of protons that are preceded either by EC or by {beta}{sup +} decays and populate the 2{sup +} state in {sup 102}Cd.

  8. Enhanced Gamma-Ray Emission from Neutron Unbound States Populated in Beta Decay

    CERN Document Server

    Tain, J L; Algora, A; Agramunt, J; Rubio, B; Rice, S; Gelletly, W; Regan, P; Zakari-Issoufou, A -A; Fallot, M; Porta, A; Rissanen, J; Eronen, T; Aysto, J; Batist, L; Bowry, M; Bui, V M; Caballero-Folch, R; Cano-Ott, D; Elomaa, V -V; Estevez, E; Farrelly, G F; Garcia, A R; Gomez-Hornillos, B; Gorlychev, V; Hakala, J; Jordan, M D; Jokinen, A; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Moore, I; Penttila, H; Podolyak, Zs; Reponen, M; Sonnenschein, V; Sonzogni, A A

    2015-01-01

    Total absorption spectroscopy was used to investigate the beta-decay intensity to states above the neutron separation energy followed by gamma-ray emission in 87,88Br and 94Rb. Accurate results were obtained thanks to a careful control of systematic errors. An unexpectedly large gamma intensity was observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The gamma branching as a function of excitation energy was compared to Hauser-Feshbach model calculations. For 87Br and 88Br the gamma branching reaches 57% and 20% respectively, and could be explained as a nuclear structure effect. Some of the states populated in the daughter can only decay through the emission of a large orbital angular momentum neutron with a strongly reduced barrier penetrability. In the case of neutron-rich 94Rb the observed 4.5% branching is much larger than the calculations performed with standard nuclear statistical model parameters, even after proper c...

  9. Target screening effect on the pre-emission of neutrons from Li11 halo nuclei

    Science.gov (United States)

    Petrascu, M.; Constantinescu, A.; Cruceru, I.; Giurgiu, M.; Isbasescu, A.; Petrascu, H.; Bordeanu, C.; Serban, S.; Stoica, V.; Tanihata, I.; Lynch, W. G.; Famiano, M. A.; Lyuboshits, V. L.; Lyuboshits, V. V.; Ieki, K.

    2006-05-01

    For the first time to our knowledge the target screening effect on the pre-emission of halo neutrons from Li11 has been quantitatively analyzed. Our work has been performed in the 7.5 15 MeV neutron energy range. In this range the target nuclei are likely to behave as opaque, and therefore the sharp-cutoff calculations are most appropriate for the target screening determination. It has been observed that the ζ probability used in the sharp-cutoff calculations is an observable of the experiment, because it can be directly obtained from measured quantities, which are the number of single detected neutrons and the number of detected neutron pairs. The value of ζexp obtained this way in the case of a Si target appears to be close to the ζ value calculated for the Li11 halo radius RH=4.8 fm, independently determined in another experiment [Phys. Lett. B287, 307 (1992)]. This property also allows investigation of Borromean halo nuclei such as He6, Be14, and B17, for which RH was not yet measured. The calculated value within the present approach of the two-neutron pre-emission yield appears to be 3.5 times larger in the case of C12 than in the case of a Si target.

  10. Single photon image from position emission tomography with insertable collimator for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joo Young; Yoo, Do Kun; Suh, Tae Suk [Dept. of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of); Hong, Key Jo [Molecular Imaging Program at Stanford (MIPS), Dept. of Radiology, Stanford University, Stanford (United States)

    2014-04-15

    The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one positron emission tomography (PET) module with an insertable collimator for brain tumor treatment during the boron neutron capture therapy (BNCT). The BNCT theory and conceptual diagram of our proposed system are shown fig.1. Data from the PET module, neutron source, and collimator was entered in the Monte Carlon-particle extende source code. We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector.

  11. Beta-delayed gamma and proton spectroscopy near the Z=N line

    Energy Technology Data Exchange (ETDEWEB)

    Kankainen, A.; Eronen, T.; Hager, U.; Hakala, J.; Huang, W.; Huikari, J.; Jokinen, A.; Kopecky, S.; Moore, I.; Nieminen, A.; Penttilae, H.; Rinta-Antila, S.; Wang, Y.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland); Eliseev, S.A. [Petersburg Nuclear Physics Inst. (Russian Federation); GSI, Darmstadt (Germany); Fox, S.P.; Jenkins, D. [University of York, Department of Physics, Heslington (United Kingdom); Novikov, Yu.N.; Vorobjev, G.K. [Petersburg Nuclear Physics Inst. (Russian Federation); St. Petersburg Univ. (Russian Federation); Popov, A.V.; Seliverstov, D.M. [Petersburg Nuclear Physics Institute, Petersburg (Russian Federation); Schatz, H. [Michigan State University, East Lansing, MI (United States)

    2005-09-01

    A series of beta decay experiments on nuclei near the Z=N line has been performed using the ISOL technique at the IGISOL facility in Jyvaeskylae and at ISOLDE, CERN. The decay properties of these neutron-deficient nuclei are important in astrophysics as well as in the studies of isospin symmetry. (orig.)

  12. T-odd angular correlations in the emission of prompt gamma rays and neutrons in nuclear fission induced by polarized neutrons

    Science.gov (United States)

    Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Kopach, Yu. N.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2011-05-01

    Study of the T-odd three-vector correlation in the emission of prompt neutrons from 235U fission by polarized cold neutrons has been continued at the facility MEPHISTO of the FRM II reactor (Technical University of Munich). The sought correlation was not found within experimental error of 2.3 × 10-5. The upper limit for the asymmetry coefficient has been set to | D n | < 6 × 10-5 at 99% confidence level, whereas for ternary fission correlation coefficient D α = (170±20) × 10-5. This limit casts doubt on a model that explains the three-vector correlation in ternary fission by the Coriolis mechanism. At the same time, five-vector correlation in the emission of prompt fission neutrons has been measured, which describes the rotation of the fissioning nucleus at the moment it breaks (ROT effect). At the angle 22.5° to the fission axis, the correlation coefficient was found to be (1.57 ± 0.20) × 10-4, while at the angle of 67.5° it is zero within the experimental uncertainty. The existence of ROT effect in the emission of prompt fission neutrons can be explained by the anisotropy of neutron emission in the rest frame of the fragment (fission fragments are aligned with respect to the axis of deformation of the fissioning nucleus), similar to the mechanism of ROT effect in the emission of prompt γ-rays.

  13. Models of Kilonova/macronova emission from black hole-neutron star mergers

    CERN Document Server

    Kawaguchi, Kyohei; Shibata, Masaru; Tanaka, Masaomi

    2016-01-01

    Black hole-neutron star mergers are among the promising gravitational-wave sources for ground-based detectors, and gravitational waves from black hole-neutron mergers are expected to be detected in the next few years. Simultaneous detection of electromagnetic counterparts with gravitational-wave detection provides rich information about the merger events. Among the possible electromagnetic counterparts from the black hole-neutron merger, the emission powered by the decay of radioactive r-process nuclei, so called kilonova/macronova, is one of the best targets for follow-up observation. We derive fitting formulas for the mass and the velocity of ejecta from a generic black hole-neutron merger based on recently performed numerical relativity simulations. We combined these fitting formulas with a new semi-analytic model for a black hole-neutron kilonova/macronova lightcurve which reproduces the results of radiation-transfer simulations. Specifically, the semi-analytic model reproduces the result of each band mag...

  14. Estimates of the neutron emission during large solar flares in the rising and maximum period of solar cycle 24

    Science.gov (United States)

    Lopez, D.; Matsubara, Y.; Muraki, Y.; Sako, T.; Valdés-Galicia, J. F.

    2016-03-01

    We searched for solar neutrons using the data collected by six detectors from the International Network of Solar Neutron Telescopes and one Neutron Monitor between January 2010 and December 2014. We considered the peak time of the X-ray intensity of thirty five ≥ X1.0 class flares detected by GOES satellite as the most probable production time of solar neutrons. We prepared a light-curve of the solar neutron telescopes and the neutron monitor for each flare, spanning ± 3 h from the peak time of GOES. Based on these light curves, we performed a statistical analysis for each flare. Setting a significance level at greater than 3σ, we report that no statistically significant signals due to solar neutrons were found. Therefore, upper limits are determined by the background level and solar angle of these thirty five solar flares. Our calculation assumed a power-law neutron energy spectrum and an impulsive emission profile at the Sun. The estimated upper limits of the neutron emission are consistent within the order of magnitude of the successful detections of solar neutrons made in solar cycle 23.

  15. Heat Source Neutron Emission Rate Reduction Studies - Water Induced HF Liberation

    Science.gov (United States)

    Matonic, John; Brown, John; Foltyn, Liz; Garcia, Lawrence; Hart, Ron; Herman, David; Huling, Jeff; Pansoy-Hjelvik, M. E. Lisa; Sandoval, Fritz; Spengler, Diane

    2004-02-01

    Plutonium-238 oxide (238PuO2) is used in the fabrication of general purpose heat sources (GPHS) or light-weight radioisotope heater units (LWRHUs). The heat sources supply the thermal energy used in radioisotope thermoelectric generators to power spacecraft for deep space missions and to heat critical components in the cold environs of space. Los Alamos National Laboratory has manufactured heat sources for approximately two decades. The aqueous purification of 238PuO2 is required, due to rigorous total Pu-content, actinide and non-actinide metal impurity, and neutron emission rate specifications. The 238PuO2 aqueous purification process is a new capability at Los Alamos National Laboratory as previously, aqueous purified 238PuO2 occurred at other DOE complexes. The Pu-content and actinide and non-actinide metal impurity specifications are met well within specification in the Los Alamos process, though reduction in neutron emission rates have been challenging. High neutron emission rates are typically attributed to fluoride content in the oxide. The alpha decay from 238Pu results in α,n reactions with light elements such as 17O, 18O, and 19F resulting in high neutron emission rates in the purified 238PuO2. Simple 16O-exchange takes care of the high NER due to 17O, and 18O. A new method to reduce the NER due to 19F in the purified 238PuO2 is presented in this paper. The method involves addition of water to purified 238PuO2, followed by heating to remove the water and liberating fluoride as HF.

  16. Theory of neutrino emission from nucleon-hyperon matter in neutron stars: Angular integrals

    CERN Document Server

    Kaminker, A D; Haensel, P

    2016-01-01

    Investigations of thermal evolution of neutron stars with hyperon cores require neutrino emissivities for many neutrino reactions involving strongly degenerate particles (nucleons, hyperons, electrons, muons). We calculate the angular integrals $I_n$ (over orientations of momenta of $n$ degenerate particles) for major neutrino reactions with $n$ =3, 4, 5 at all possible combinations of particle Fermi momenta. The integrals $I_n$ are necessary ingredients for constructing a uniform database of neutrino emissivities in dense nucleon-hyperon matter. The results can also be used in many problems of physical kinetics of strongly degenerate systems.

  17. Theory of neutrino emission from nucleon-hyperon matter in neutron stars: angular integrals

    Science.gov (United States)

    Kaminker, A. D.; Yakovlev, D. G.; Haensel, P.

    2016-08-01

    Investigations of thermal evolution of neutron stars with hyperon cores require neutrino emissivities for many neutrino reactions involving strongly degenerate particles (nucleons, hyperons, electrons, muons). We calculate the angular integrals In (over orientations of momenta of n degenerate particles) for major neutrino reactions with n=3, 4, 5 at all possible combinations of particle Fermi momenta. The integrals In are necessary ingredients for constructing a uniform database of neutrino emissivities in dense nucleon-hyperon matter. The results can also be used in many problems of physical kinetics of strongly degenerate systems.

  18. Electromagnetic and neutron emissions from brittle rocks failure: Experimental evidence and geological implications

    Indian Academy of Sciences (India)

    A Carpinteri; G Lacidogna; O Borla; A Manuello; G Niccolini

    2012-02-01

    It has been observed energy emission in the form of electromagnetic radiation, clearly indicating charge redistribution, and neutron bursts, necessarily involving nuclear reactions, during the failure process of quasi-brittle materials such as rocks, when subjected to compression tests. The material used is Luserna stone, which presents a very brittle behaviour during compression failure. The observed phenomenon of high-energy particle emission, i.e., electrons and neutrons, can be explained in the framework of the superradiance applied to the solid state, where individual atoms lose their identity and become part of different plasmas, electronic and nuclear. Since the analysed material contains iron, it can be conjectured that piezonuclear reactions involving fission of iron into aluminum, or into magnesium and silicon, should have occurred during compression damage and failure. These complex phenomenologies are confirmed by Energy Dispersive X-ray Spectroscopy (EDS) tests conducted on Luserna stone specimens, and found additional evidences at the Earth’s Crust scale, where electromagnetic and neutron emissions are observed just in correspondence with major earthquakes. In this context, the effects of piezonuclear reactions can be also considered from a geophysical and geological point of view.

  19. Fission properties of einsteinium and fermium. [Half-life, kinetic energy release, mass division, prompt neutron emission

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.C.

    1978-01-01

    The systematics of the low energy fission of the fermium isotopes is studied considering half-lives, masss division, kinetic-energy release, and accompanying prompt neutron emission. It is shown that the low energy fission of the fermium isotopes is a microcosm of the fission process, exhibiting a wide range of half lives, mass and kinetic energy distributions and varying neutron emission. The trends in the fermium isotopes are considered. 23 references. (JFP)

  20. Probing Shell Correction at High Spin by Neutron Emission of Doubly Magic Nuclei 208pb and 132Sn

    Institute of Scientific and Technical Information of China (English)

    YEWei

    2005-01-01

    Shell effects in particle emission for two doubly magic nuclei 132Sn and 208pb were studied in the framework of Smoluchowski equation taking into account temperature and spin-dependent shell correction. It is shown that the shelle ffects in the emission of pre-scission neutrons are sensitive to the spin dependence of the shell correction at a moderate excitation energy. Therefore, we propose to use neutron multiplicity as an observable to probe the shell correction at high spins.

  1. Pre-equilibrium emission in neutron induced reactions on /sup 54,56/Fe

    Energy Technology Data Exchange (ETDEWEB)

    Avrigeanu, M.; Ivascu, M.; Avrigeanu, V.

    1988-02-01

    The experimentally well known (n,p), (n,..cap alpha..) and (n,2n) reaction excitation functions, from threshold to 20 MeV incident energy, and neutron and proton emission spectra at 14.8 MeV from /sup 54,56/Fe targets are calculated in the frame of the geometry-dependent hybrid pre-equilibrium emission model, including angular momentum and parity conservation, and the Hauser-Feshbach statistical model. Use of a consistent statistical model parameter set enables the validation of the pre-equilibrium emission model. Moreover, an enhanced pre-equilibrium emission from higher spin composite system states, associated with higher incoming orbital momenta, has been evidenced. Higher orbital momenta involved also in the emergent channels of the process are suggested by calculations of the residual nuclei level populations.

  2. Low mass binary neutron star mergers: Gravitational waves and neutrino emission

    Science.gov (United States)

    Foucart, Francois; Haas, Roland; Duez, Matthew D.; O'Connor, Evan; Ott, Christian D.; Roberts, Luke; Kidder, Lawrence E.; Lippuner, Jonas; Pfeiffer, Harald P.; Scheel, Mark A.

    2016-02-01

    Neutron star mergers are among the most promising sources of gravitational waves for advanced ground-based detectors. These mergers are also expected to power bright electromagnetic signals, in the form of short gamma-ray bursts, infrared/optical transients powered by r-process nucleosynthesis in neutron-rich material ejected by the merger, and radio emission from the interaction of that ejecta with the interstellar medium. Simulations of these mergers with fully general relativistic codes are critical to understand the merger and postmerger gravitational wave signals and their neutrinos and electromagnetic counterparts. In this paper, we employ the Spectral Einstein Code to simulate the merger of low mass neutron star binaries (two 1.2 M⊙ neutron stars) for a set of three nuclear-theory-based, finite temperature equations of state. We show that the frequency peaks of the postmerger gravitational wave signal are in good agreement with predictions obtained from recent simulations using a simpler treatment of gravity. We find, however, that only the fundamental mode of the remnant is excited for long periods of time: emission at the secondary peaks is damped on a millisecond time scale in the simulated binaries. For such low mass systems, the remnant is a massive neutron star which, depending on the equation of state, is either permanently stable or long lived (i.e. rapid uniform rotation is sufficient to prevent its collapse). We observe strong excitations of l =2 , m =2 modes, both in the massive neutron star and in the form of hot, shocked tidal arms in the surrounding accretion torus. We estimate the neutrino emission of the remnant using a neutrino leakage scheme and, in one case, compare these results with a gray two-moment neutrino transport scheme. We confirm the complex geometry of the neutrino emission, also observed in previous simulations with neutrino leakage, and show explicitly the presence of important differences in the neutrino luminosity, disk

  3. The Statistics of Emission and Detection of Neutrons and Photons from Fissile Samples for Safeguard Applications

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Andreas

    2008-03-15

    One particular purpose of nuclear safeguards, in addition to accounting for known materials, is the detection, identifying and quantifying unknown material, to prevent accidental and clandestine transports and uses of nuclear materials. This can be achieved in a non-destructive way through the various physical and statistical properties of particle emission and detection from such materials. This thesis addresses some fundamental aspects of nuclear materials and the way they can be detected and quantified by such methods. Factorial moments or multiplicities have long been used within the safeguard area. These are low order moments of the underlying number distributions of emission and detection. One objective of the present work was to determine the full probability distribution and its dependence on the sample mass and the detection process. Derivation and analysis of the full probability distribution and its dependence on the above factors constitutes the first part of the thesis. Another possibility of identifying unknown samples lies in the information in the 'fingerprints' (pulse shape distribution) left by a detected neutron or photon. A study of the statistical properties of the interaction of the incoming radiation (neutrons and photons) with the detectors constitutes the second part of the thesis. The interaction between fast neutrons and organic scintillation detectors is derived, and compared to Monte Carlo simulations. An experimental approach is also addressed in which cross correlation measurements were made using liquid scintillation detectors. First the dependence of the pulse height distribution on the energy and collision number of an incoming neutron was derived analytically and compared to numerical simulations. Then an algorithm was elaborated which can discriminate neutron pulses from photon pulses. The resulting cross correlation graphs are analyzed and discussed whether they can be used in applications to distinguish possible

  4. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    Science.gov (United States)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  5. Hard X-ray emission from neutron star X-ray binaries

    Energy Technology Data Exchange (ETDEWEB)

    Di Salvo, T.; Santangelo, A.; Segreto, A

    2004-06-01

    In this paper we review our current knowledge of the hard X-ray emission properties of accreting X-ray Binary Pulsars and old accreting neutron stars in Low Mass X-ray Binaries in light of 7 years of BeppoSAX and RXTE observations. The paper is divided in two parts. In the first part we review the more recent findings on the phase-dependent broad band continua and cyclotron resonance scattering features observed in many systems of the X-ray Binary Pulsar class. In the second part we review the hard X-ray emission of LMXRB focussing on the hard X-ray components extending up to energies of a few hundred keV that have been clearly detected in sources of both the atoll and Z classes. The presence and characteristics of these hard emission components are then discussed in relation to source properties and spectral state. We, also, briefly mention models that have been proposed for the hard X-ray emission of neutron star X-ray binaries.

  6. Landau quantization and neutron emissions by nuclei in the crust of a magnetar

    CERN Document Server

    Chamel, N; Stoyanov, Zh K; Mihailov, L M; Pavlov, R L

    2016-01-01

    Magnetars are neutron stars endowed with surface magnetic fields of the order of $10^{14}-10^{15}$~G, and with presumably much stronger fields in their interior. As a result of Landau quantization of electron motion, the neutron-drip transition in the crust of a magnetar is shifted to either higher or lower densities depending on the magnetic field strength. The impact of nuclear uncertainties is explored considering the recent series of Brussels-Montreal microscopic nuclear mass models. All these models are based on the Hartree-Fock-Bogoliubov method with generalized Skyrme functionals. They differ in their predictions for the symmetry energy coefficient at saturation, and for the stiffness of the neutron-matter equation of state. For comparison, we have also considered the very accurate but more phenomenological model of Duflo and Zuker. Although the equilibrium composition of the crust of a magnetar and the onset of neutron emission are found to be model dependent, the quantum oscillations of the threshold...

  7. Landau quantization and neutron emissions by nuclei in the crust of a magnetar

    Science.gov (United States)

    Chamel, N.; Mutafchieva, Y. D.; Stoyanov, Zh K.; Mihailov, L. M.; Pavlov, R. L.

    2016-06-01

    Magnetars are neutron stars endowed with surface magnetic fields of the order of 1014 - 1015 G, and with presumably much stronger fields in their interior. As a result of Landau quantization of electron motion, the neutron-drip transition in the crust of a magnetar is shifted to either higher or lower densities depending on the magnetic field strength. The impact of nuclear uncertainties is explored considering the recent series of Brussels-Montreal microscopic nuclear mass models. All these models are based on the Hartree-Fock-Bogoliubov method with generalized Skyrme functionals. They differ in their predictions for the symmetry energy coefficient at saturation, and for the stiffness of the neutron-matter equation of state. For comparison, we have also considered the very accurate but more phenomenological model of Duflo and Zuker. Although the equilibrium composition of the crust of a magnetar and the onset of neutron emission are found to be model dependent, the quantum oscillations of the threshold density are essentially universal.

  8. Low mass binary neutron star mergers : gravitational waves and neutrino emission

    CERN Document Server

    Foucart, Francois; Duez, Matthew D; O'Connor, Evan; Ott, Christian D; Roberts, Luke; Kidder, Lawrence E; Lippuner, Jonas; Pfeiffer, Harald P; Scheel, Mark A

    2015-01-01

    Neutron star mergers are among the most promising sources of gravitational waves for advanced ground-based detectors. These mergers are also expected to power bright electromagnetic signals, in the form of short gamma-ray bursts, infrared/optical transients, and radio emission. Simulations of these mergers with fully general relativistic codes are critical to understand the merger and post-merger gravitational wave signals and their neutrinos and electromagnetic counterparts. In this paper, we employ the SpEC code to simulate the merger of low-mass neutron star binaries (two $1.2M_\\odot$ neutron stars) for a set of three nuclear-theory based, finite temperature equations of state. We show that the frequency peaks of the post-merger gravitational wave signal are in good agreement with predictions obtained from simulations using a simpler treatment of gravity. We find, however, that only the fundamental mode of the remnant is excited for long periods of time: emission at the secondary peaks is damped on a milli...

  9. Effect of pre-equilibrium emission on probing postsaddle nuclear dissipation with neutrons

    Science.gov (United States)

    Tian, Jian; Ye, Wei

    2016-09-01

    Using the stochastic Langevin model coupled with a statistical decay model, we study the influence of pre-equilibrium (PE) emission on probing postsaddle friction (β) with neutrons. A postsaddle friction value of (14 - 16.5) × 1021 s-1 and (11 - 13) × 1021 s-1 is obtained from comparing calculated and measured prescission neutron multiplicities of heavy fissioning systems 248Fm and 256Fm in the absence and presence of the deformation factor. Moreover, it is found that a larger β is required to fit multiplicity data after the PE effect is accounted for, and that the effect becomes stronger when more energy is removed by PE particles. Our findings suggest that, to more accurately determine the postsaddle friction strength through the measurement of prescission neutrons, in addition to incorporating the contribution of PE evaporation source into the experimental multi-source analysis for particle energy spectra in coincidence with fission fragments, on the theoretical side, it is very important to make a precise evaluation of the energy that PE emission carries away from excited compound systems produced in heavy-ion fusion reactions. Supported by National Nature Science Foundation of China (11575044)

  10. Neutrino emissivity in the quark-hadron mixed phase of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Spinella, William M. [Computational Science Research Center San Diego State University, San Diego, CA (United States); San Diego State University, Department of Physics, San Diego, CA (United States); Weber, Fridolin [San Diego State University, Department of Physics, San Diego, CA (United States); University of California San Diego, Center for Astrophysics and Space Sciences, La Jolla, CA (United States); Contrera, Gustavo A. [CONICET, Buenos Aires (Argentina); CONICET - Dept. de Fisica, UNLP, IFLP, La Plata (Argentina); Universidad Nacional de La Plata, Grupo de Gravitacion, Astrofisica y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, La Plata (Argentina); Orsaria, Milva G. [CONICET, Buenos Aires (Argentina); Universidad Nacional de La Plata, Grupo de Gravitacion, Astrofisica y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, La Plata (Argentina)

    2016-03-15

    Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures (

  11. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    Science.gov (United States)

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm.

  12. Neutron star population in the Galactic center region as a potential source of polarized X-ray emission

    Science.gov (United States)

    Zajacek, Michal; Karas, Vladimir; Eckart, Andreas

    2016-06-01

    We analyse the emission properties of neutron stars that are predicted to exist in large numbers of the order of 10000 in the innermost parts of the Galactic center. A part of the population of isolated neutron stars propagates supersonically through denser ionized streams of the Minispiral (Sgr A West), forming bow shocks where particles are accelerated and are expected to produce polarized X-ray synchrotron signal. Another source of the synchrotron emission is an elongated magnetosphere and tail. We investigate whether the polarized X-ray emission from Galactic center neutron stars will be potentially detectable in the framework of future X-ray polarimeters. A special case is a detected young neutron star - magnetar SGRJ1745-2900 - that has undergone a series of outbursts with a peak X-ray luminosity of the order of 10^{35} erg s^{-1} (1-10 keV). Apart from an intrinsic X-ray emission, the X-ray emission from neutron star outbursts may be scattered by molecular clouds in the Central Molecular Zone by Thomson scattering, which is another potential source of polarized X-ray emission.

  13. Impact of new data for neutron-rich heavy nuclei on theoretical models for $r$-process nucleosynthesis

    CERN Document Server

    Kajino, Toshitaka

    2016-01-01

    Current models for the $r$ process are summarized with an emphasis on the key constraints from both nuclear physics measurements and astronomical observations. In particular, we analyze the importance of nuclear physics input such as beta-decay rates; nuclear masses; neutron-capture cross sections; beta-delayed neutron emission; probability of spontaneous fission, beta- and neutron-induced fission, fission fragment mass distributions; neutrino-induced reaction cross sections, etc. We highlight the effects on models for $r$-process nucleosynthesis of newly measured $\\beta$-decay half-lives, masses, and spectroscopy of neutron-rich nuclei near the $r$-process path. We overview r-process nucleosynthesis in the neutrino driven wind above the proto-neutron star in core collapse supernovae along with the possibility of magneto-hydrodynamic jets from rotating supernova explosion models. We also consider the possibility of neutron star mergers as an r-process environment. A key outcome of newly measured nuclear prope...

  14. Gamma Emission Spectra from Neutron Resonances in 234,236,238U Measured Using the Dance Detector at Lansce

    Science.gov (United States)

    Ullmann, J. L.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wouters, J. M.; Wilhelmy, J. B.; Wu, C. Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.

    2013-03-01

    An accurate knowledge of the radiative strength function and level density is needed to calculate of neutron-capture cross sections. An additional constraint on these quantities is provided by measurements of γ-ray emission spectra following capture. We present γ-emission spectra from several neutron resonances in 234,236,238U, measured using the DANCE detector at LANSCE. The measurements are compared to preliminary calculations of the cascade. It is observed that the generalized Lorentzian form of the E1 strength function cannot reproduce the shape of the emission spectra, but a better description is made by adding low-lying M1 Lorentzian strength.

  15. Effects of Frame-Dragging on X-ray Emission from Black Holes and Neutron Stars

    Science.gov (United States)

    Markovic, D.; Lamb, F. K.

    2000-10-01

    In previous work on the effects of frame-dragging on viscous accretion disks around black holes and neutron stars, we discovered gravitomagnetically precessing global modes localized near the inner edge of the Keplerian flow. The highest-frequency modes of this type precess in the prograde direction with frequencies slightly lower than the Lense-Thirring precession frequency at the mean radius of the mode. Contrary to what had been expected since the pioneering work of Bardeen & Petterson, these modes are very weakly damped (Q ≈ 20--50) and are therefore likely to be excited. We present analytical arguments that shed further light on the nature of these modes and allow a better understanding of the symmetry-breaking pattern of viscous dissipation they create. The two highest-frequency modes tilt the innermost part of the Keplerian flow, redirecting gas crossing the sonic radius. As we discuss, these modes are likely to be the most easily excited and may be excited by magnetoturbulence in the disk or interaction of the disk with a stellar magnetic field. They may modulate X-ray emission from black holes and neutron stars by periodically altering the inspiral of gas from the Keplerian disk, by periodically obscuring emission from the inner disk or star, or by creating a rotating pattern of enhanced emission. This modulation is expected to create power spectral peaks at ~1--10 Hz in black hole sources and at ~10--40 Hz in the kilohertz QPO sources. It may also produce sidebands on the kilohertz QPOs, separated from the main peaks by ~10--40 Hz. Detecting and measuring the frequencies of these modes would provide valuable new information about the strongly curved, twisting spacetime expected near spinning neutron stars and black holes. This research was supported in part by the NSF and NASA.

  16. T-odd angular correlations in the emission of prompt gamma rays and neutrons in nuclear fission induced by polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Danilyan, G. V. [Institute for Theoretical and Experimental Physics (Russian Federation); Klenke, J. [Forschungs-Neutronenquelle Heinz Meier-Leibnitz (FRM II) (Germany); Krakhotin, V. A.; Kopach, Yu. N.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B. [Institute for Theoretical and Experimental Physics (Russian Federation)

    2011-05-15

    Study of the T-odd three-vector correlation in the emission of prompt neutrons from {sup 235}U fission by polarized cold neutrons has been continued at the facility MEPHISTO of the FRM II reactor (Technical University of Munich). The sought correlation was not found within experimental error of 2.3 Multiplication-Sign 10{sup -5}. The upper limit for the asymmetry coefficient has been set to vertical bar D{sub n} vertical bar < 6 Multiplication-Sign 10{sup -5} at 99% confidence level, whereas for ternary fission correlation coefficient D{sub {alpha}} = (170{+-}20) Multiplication-Sign 10{sup -5}. This limit casts doubt on a model that explains the three-vector correlation in ternary fission by the Coriolis mechanism. At the same time, five-vector correlation in the emission of prompt fission neutrons has been measured, which describes the rotation of the fissioning nucleus at the moment it breaks (ROT effect). At the angle 22.5 Degree-Sign to the fission axis, the correlation coefficient was found to be (1.57 {+-} 0.20) Multiplication-Sign 10{sup -4}, while at the angle of 67.5 Degree-Sign it is zero within the experimental uncertainty. The existence of ROT effect in the emission of prompt fission neutrons can be explained by the anisotropy of neutron emission in the rest frame of the fragment (fission fragments are aligned with respect to the axis of deformation of the fissioning nucleus), similar to the mechanism of ROT effect in the emission of prompt {gamma}-rays.

  17. Bi-Modal Model for Neutron Emissions from PuO{sub 2} and MOX Holdup

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard; Lafleur, Adrienne [Los Alamos National Laboratory, Safeguard Science and Technology Group, NEN-1, MS E540, Los Alamos, NM, 87545 (United States)

    2015-07-01

    The measurement of uranium and plutonium holdup in plants during process activity and for decommissioning is important for nuclear safeguards and material control. The amount of plutonium and uranium holdup in glove-boxes, pipes, ducts, and other containers has been measured for several decades using both neutron and gamma-ray techniques. For the larger containers such as hot cells and glove-boxes that contain processing equipment, the gamma-ray techniques are limited by self-shielding in the sample as well as gamma absorption in the equipment and associated shielding. The neutron emission is more penetrating and has been used extensively to measure the holdup for the large facilities such as the MOX processing and fabrication facilities in Japan and Europe. In some case the totals neutron emission rates are used to determine the holdup mass and in other cases the coincidence rates are used such as at the PFPF MOX fabrication plant in Japan. The neutron emission from plutonium and MOX has 3 primary source terms: 1) Spontaneous fission (SF) from the plutonium isotopes, 2) The (α,n) reactions from the plutonium alpha particle emission reacting with the oxygen and other impurities, and 3) Neutron multiplication (M) in the plutonium and uranium as a result of neutrons created by the first two sources. The spontaneous fission yield per gram is independent of thickness, whereas, the above sources 2) and 3) are very dependent on the thickness of the deposit. As the effective thickness of the deposit becomes thin relative to the alpha particle range, the (α,n) reactions and neutrons from multiplication (M) approach zero. In any glove-box, there will always be two primary modes of holdup accumulation, namely direct powder contact and non-contact by air dispersal. These regimes correspond to surfaces in the glove-box that have come into direct contact with the process MOX powder versus surface areas that have not had direct contact with the powder. The air dispersal of Pu

  18. Probing Shell Correction at High Spin by Neutron Emission of Doubly Magic Nuclei 208pb and 132Sn

    Institute of Scientific and Technical Information of China (English)

    YE Wei

    2005-01-01

    Shell effects in particle emission for two doubly magic nuclei 132 Sn and 208 Pb were studied in the framework of Smoluchowski equation taking into account temperature and spin-dependent shell correction. It is shown that the shell effects in the enission of pre-scission neutrons are sensitive to the spin dependence of the shell correction at a moderate excitation energy. Therefore, we propose to use neutron multiplicity as an observable to probe the shell correction at high spins.

  19. The effect of rotation in the neutrino emission from a neutron star

    CERN Document Server

    Dvornikov, Maxim

    2009-01-01

    We study the interaction of neutrinos with matter of a rotating neutron star. First we examine the effect of the rotation on neutrino flavor oscillations and possible existence of bound states of low energy neutrinos in rotating matter. Then we consider the spin-down of a star during its early stages due to the neutrino emission. We find that low energy neutrinos indeed can get trapped, although the effect my not have observable consequences. Concerning flavor oscillations, only for neutrinos emitted with high angular momentum is there a small shift in the value of the electron density for the Mikheyev-Smirnov-Wolfenstein resonance. Finally, the spin-down due to neutrino emission was estimated be to near 10 % and occurs only in the first few seconds of the core formation.

  20. Neutrino emissivity in the quark-hadron mixed phase of neutron stars

    CERN Document Server

    Spinella, William M; Contrera, Gustavo A; Orsaria, Milva G

    2015-01-01

    Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron m...

  1. Relativistic Iron Line Emission from the Neutron Star Low-mass X-ray Binary 4U 1636-536

    OpenAIRE

    Pandel, Dirk; Kaaret, Philip; Corbel, Stephane

    2008-01-01

    We present an analysis of XMM-Newton and RXTE data from three observations of the neutron star LMXB 4U 1636-536. The X-ray spectra show clear evidence of a broad, asymmetric iron emission line extending over the energy range 4-9 keV. The line profile is consistent with relativistically broadened Fe K-alpha emission from the inner accretion disk. The Fe K-alpha line in 4U 1636-536 is considerably broader than the asymmetric iron lines recently found in other neutron star LMXBs, which indicates...

  2. Impact of the layout of the ITER Radial Neutron Camera in-port system on the measurement of the neutron emissivity profile

    Energy Technology Data Exchange (ETDEWEB)

    Marocco, D. [Associazione EURATOM-ENEA sulla Fusione ENEA C.R. Frascati, Via E. Fermi, 45, 00044 Frascati (Roma) (Italy); Moro, F., E-mail: fabio.moro@enea.it [Associazione EURATOM-ENEA sulla Fusione ENEA C.R. Frascati, Via E. Fermi, 45, 00044 Frascati (Roma) (Italy); Esposito, B.; Brolatti, G.; Villari, R. [Associazione EURATOM-ENEA sulla Fusione ENEA C.R. Frascati, Via E. Fermi, 45, 00044 Frascati (Roma) (Italy); Salasca, S.; Cantone, B. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2013-10-15

    Highlights: ► MCNP ITER model ‘Alite-4′ has been updated with the new Port Plug structure (three vertical drawers). ► Two different layouts for the Radial Neutron Camera (RNC) in-vessel system have been considered. ► The impact of both layouts on the RNC diagnostic performance has been assessed. ► The analysis provides useful information for a proper integration of the RNC in the EPP1. -- Abstract: The Radial Neutron Camera (RNC), located in the ITER Equatorial Port Plug 1 (EPP1), is designed to provide the neutron emissivity profile through the measurement of the neutron flux along several collimated channels. The present design of the RNC is based on collimating structures: an ex-port system viewing the plasma core and an in-port system composed by two detector cassettes viewing the upper and lower plasma edges. A design of the EPP1 in which the diagnostics are installed in three completely independent vertical drawers is under study. In this frame, space optimization and integration issues suggest two possible solutions for the layout of the in-port RNC cassettes: the first one in which both cassettes are located in a side drawer; the second one in which the two cassettes lie in the central drawer, on opposite sides of the ex-port RNC cut-out. This paper describes the work performed to assess the impact of the two different in-port system layouts on the capability of the RNC to measure the neutron emissivity profile by means of MCNP and diagnostic performance calculations. The results of the analysis provide guidelines for the integration of the RNC into the EPP1 showing that the proximity of the in-port cassettes to the ex-port cut-out strongly increases the amount of uncollimated and scattered neutrons at the detector positions, thus reducing the diagnostic measurement capability.

  3. Fission cross-sections, prompt fission neutron and γ-ray emission in request for nuclear applications

    Science.gov (United States)

    Hambsch, F.-J.; Salvador-Castiñeira, P.; Oberstedt, S.; Göök, A.; Billnert, R.

    2016-06-01

    In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL) of the OECD/Nuclear Energy Agency (NEA). In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA) and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC). Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.

  4. Fission cross-sections, prompt fission neutron and γ-ray emission in request for nuclear applications

    Directory of Open Access Journals (Sweden)

    Hambsch F.-J.

    2016-01-01

    Full Text Available In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL of the OECD/Nuclear Energy Agency (NEA. In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC. Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.

  5. MMAPDNG: A new, fast code backed by a memory-mapped database for simulating delayed γ-ray emission with MCNPX package

    Science.gov (United States)

    Lou, Tak Pui; Ludewigt, Bernhard

    2015-09-01

    The simulation of the emission of beta-delayed gamma rays following nuclear fission and the calculation of time-dependent energy spectra is a computational challenge. The widely used radiation transport code MCNPX includes a delayed gamma-ray routine that is inefficient and not suitable for simulating complex problems. This paper describes the code "MMAPDNG" (Memory-Mapped Delayed Neutron and Gamma), an optimized delayed gamma module written in C, discusses usage and merits of the code, and presents results. The approach is based on storing required Fission Product Yield (FPY) data, decay data, and delayed particle data in a memory-mapped file. When compared to the original delayed gamma-ray code in MCNPX, memory utilization is reduced by two orders of magnitude and the ray sampling is sped up by three orders of magnitude. Other delayed particles such as neutrons and electrons can be implemented in future versions of MMAPDNG code using its existing framework.

  6. Electromagnetic Emission from Long-lived Binary Neutron Star Merger Remnants. II. Lightcurves and Spectra

    Science.gov (United States)

    Siegel, Daniel M.; Ciolfi, Riccardo

    2016-03-01

    Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality thanks to the ground-based advanced LIGO/Virgo GW detector network. Here we explore such EM signatures based on the model presented in a companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission up to ˜107 s. Light curves and spectra are computed for a wide range of post-merger physical properties. We present X-ray afterglow light curves corresponding to the “standard” and the “time-reversal” scenario for SGRBs (prompt emission associated with the merger or with the collapse of the long-lived NS). The light curve morphologies include single and two-plateau features with timescales and luminosities that are in good agreement with Swift observations. Furthermore, we compute the X-ray signal that should precede the SGRB in the time-reversal scenario, the detection of which would represent smoking-gun evidence for this scenario. Finally, we find a bright, highly isotropic EM transient peaking in the X-ray band at ˜102-104 s after the BNS merger with luminosities of LX ˜ 1046-1048 erg s-1. This signal represents a very promising EM counterpart to the GW emission from BNS mergers.

  7. ELECTROMAGNETIC EMISSION FROM LONG-LIVED BINARY NEUTRON STAR MERGER REMNANTS. II. LIGHT CURVES AND SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Daniel M. [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D-14476 Potsdam-Golm (Germany); Ciolfi, Riccardo, E-mail: daniel.siegel@aei.mpg.de, E-mail: riccardo.ciolfi@unitn.it [Physics Department, University of Trento, Via Sommarive 14, I-38123 Trento (Italy)

    2016-03-01

    Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality thanks to the ground-based advanced LIGO/Virgo GW detector network. Here we explore such EM signatures based on the model presented in a companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission up to ∼10{sup 7} s. Light curves and spectra are computed for a wide range of post-merger physical properties. We present X-ray afterglow light curves corresponding to the “standard” and the “time-reversal” scenario for SGRBs (prompt emission associated with the merger or with the collapse of the long-lived NS). The light curve morphologies include single and two-plateau features with timescales and luminosities that are in good agreement with Swift observations. Furthermore, we compute the X-ray signal that should precede the SGRB in the time-reversal scenario, the detection of which would represent smoking-gun evidence for this scenario. Finally, we find a bright, highly isotropic EM transient peaking in the X-ray band at ∼10{sup 2}–10{sup 4} s after the BNS merger with luminosities of L{sub X} ∼ 10{sup 46}–10{sup 48} erg s{sup −1}. This signal represents a very promising EM counterpart to the GW emission from BNS mergers.

  8. Electromagnetic Emission from Long-lived Binary Neutron Star Merger Remnants. I. Formulation of the Problem

    Science.gov (United States)

    Siegel, Daniel M.; Ciolfi, Riccardo

    2016-03-01

    Binary neutron star (BNS) mergers are the leading model to explain the phenomenology of short gamma-ray bursts (SGRBs). Recent observations of long-lasting X-ray afterglows of SGRBs challenge standard paradigms and indicate that in a large fraction of events a long-lived neutron star (NS) may be formed rather than a black hole. Understanding the mechanisms underlying these afterglows is necessary in order to address the open questions concerning the nature of SGRB central engines. However, recent theoretical progress has been hampered by the fact that the timescales of interest for the afterglow emission are inaccessible to numerical relativity simulations. Here we present a detailed model to bridge the gap between numerical simulations of the merger process and the relevant timescales for the afterglows, assuming that the merger results in a long-lived NS. This model is formulated in terms of a set of coupled differential equations that follow the evolution of the post-merger system and predict its electromagnetic (EM) emission in a self-consistent way, starting from initial data that can be extracted from BNS merger simulations. The model presented here also allows us to search for suitable EM counterparts for multimessenger astronomy, which is expected to become reality within the next few years thanks to ground-based GW detectors such as advanced LIGO and Virgo. This paper discusses the formulation and implementation of the model. In a companion paper, we employ this model to predict the EM emission from ∼ {10}-2 to ∼ {10}7 {{s}} after a BNS merger and discuss the implications in the context of SGRBs and multimessenger astronomy.

  9. High energy neutron and pion-decay gamma-ray emissions from solar flares

    Institute of Scientific and Technical Information of China (English)

    Edward L. Chupp; James M. Ryan

    2009-01-01

    Solar flare gamma-ray emissions from energetic ions and electrons have been detected and measured to GeV energies since 1980. In addition, neutrons produced in solar flares with 100 MeV to GeV energies have been observed at the Earth. These emis-sions are produced by the highest energy ions and electrons accelerated at the Sun and they provide our only direct (albeit secondary) knowledge about the properties of the acceler-ator(s) acting in a solar flare. The solar flares, which have direct evidence for pion-decaygamma-rays, are unique and are the focus of this paper. We review our current knowl-edge of the highest energy solar emissions, and how the characteristics of the acceleration process are deduced from the observations. Results from the RHESSI, INTEGRAL and CORONAS missions will also be covered. The review will also cover the solar flare ca-pabilities of the new mission, FERMI GAMMA RAY SPACE TELESCOPE, launched on 2008 June 11. Finally, we discuss the requirements for future missions to advance this vital area of solar flare physics.

  10. Electromagnetic emission from long-lived binary neutron star merger remnants I: formulation of the problem

    CERN Document Server

    Siegel, Daniel M

    2015-01-01

    Binary neutron star (BNS) mergers are the leading model to explain the phenomenology of short gamma-ray bursts (SGRBs), which are among the most luminous explosions in the universe. Recent observations of long-lasting X-ray afterglows of SGRBs challenge standard paradigms and indicate that in a large fraction of events a long-lived neutron star (NS) may be formed rather than a black hole. Understanding the mechanisms underlying these afterglows is necessary in order to address the open questions concerning the nature of SGRB central engines. However, recent theoretical progress has been hampered by the fact that the timescales of interest for the afterglow emission are inaccessible to numerical relativity simulations. Here we present a detailed model to bridge the gap between numerical simulations of the merger process and the relevant timescales for the afterglows, assuming that the merger results in a long-lived NS. This model is formulated in terms of a set of coupled differential equations that follow the...

  11. Electromagnetic emission from long-lived binary neutron star merger remnants II: lightcurves and spectra

    CERN Document Server

    Siegel, Daniel M

    2015-01-01

    Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality with the ground-based advanced LIGO/Virgo GW detector network starting its first science run this year. Here we explore such EM signatures based on the model presented in a companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission starting from an early baryonic wind phase and resulting in a final pulsar wind nebula that is confined by the previously ejected material. Lightcurves and spectra are computed for a wide range of post-merger...

  12. Toward an optimal search strategy of optical and gravitational wave emissions from binary neutron star coalescence

    CERN Document Server

    Coward, D M; Sutton, P J; Howell, E J; Regimbau, T; Laas-Bourez, M; Klotz, A; Boer, M; Branchesi, M

    2011-01-01

    Observations of an optical source coincident with gravitational wave emission detected from a binary neutron star coalescence will improve the confidence of detection, provide host galaxy localisation, and test models for the progenitors of short gamma ray bursts. We employ optical observations of three short gamma ray bursts, 050724, 050709, 051221, to estimate the detection rate of a coordinated optical and gravitational wave search of neutron star mergers. Model R-band optical afterglow light curves of these bursts that include a jet-break are extrapolated for these sources at the sensitivity horizon of an Advanced LIGO/Virgo network. Using optical sensitivity limits of three telescopes, namely TAROT (m=18), Zadko (m=21) and an (8-10) meter class telescope (m=26), we approximate detection rates and cadence times for imaging. We find a median coincident detection rate of 4 yr^{-1} for the three bursts. GRB 050724 like bursts, with wide opening jet angles, offer the most optimistic rate of 13 coincident dete...

  13. 90° Neutron emission from high energy protons and lead ions on a thin lead target

    Science.gov (United States)

    Agosteo, S.; Birattari, C.; Foglio Para, A.; Mitaroff, A.; Silari, M.; Ulrici, L.

    2002-01-01

    The neutron emission from a relatively thin lead target bombarded by beams of high energy protons/pions and lead ions was measured at CERN in one of the secondary beam lines of the Super Proton Synchrotron for radiation protection and shielding calculations. Measurements were performed with three different beams: 208Pb 82+ lead ions at 40 GeV/ c per nucleon and 158 GeV/ c per nucleon, and 40 GeV/ c mixed protons/pions. The neutron yield and spectral fluence per incident ion on target were measured at 90° with respect to beam direction. Monte-Carlo simulations with the FLUKA code were performed for the case of protons and pions and the results found in good agreement with the experimental data. A comparison between simulations and experiment for protons, pions and lead ions have shown that—for such high energy heavy ion beams—a reasonable estimate can be carried out by scaling the result of a Monte-Carlo calculation for protons by the projectile mass number to the power of 0.80-0.84.

  14. MeV-range velocity-space tomography from gamma-ray and neutron emission spectrometry measurements at JET

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nocente, M.; Jacobsen, Asger Schou

    2017-01-01

    We demonstrate the measurement of a 2D MeV-range ion velocity distribution function by velocity-space tomography at JET. Deuterium ions were accelerated into the MeV-range by third harmonic ion cyclotron resonance heating. We made measurements with three neutron emission spectrometers and a high-...

  15. Neutron emission cross sections at low bombarding energies and the novelty in multistep compound reaction model

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkowski, A. (Ohio Univ., Athens, OH (United States) and Soltan Inst. for Nuclear Study, Warsaw (Poland)); Rapaport, J. (Ohio Univ., Athens, OH (United States)); Finlay, R.W. (Ohio Univ., Athens, OH (United States)); Brient, C. (Ohio Univ., Athens, OH (United States)); Herman, M. (ENEA-C.R.E. ' Clementel' , Bologna (Italy)); Chadwick, M.B. (Lawrence Livermore National Lab., Livermore, CA (United States))

    1993-08-30

    Inelastic neutron emission at 6.7 and 20 MeV incident energies has been measured for monoisotopic samples of [sup 165]Ho and [sup 181]Ta. Time-of-flight spectra were taken at several angles between 15 and 145 using a beam-swinger spectrometer. The cross sections are averaged over 1 MeV energy bins. The 20 MeV data, when compared with the quantum-mechanical statistical multistep calculations have revealed a magnitude problem in the existing theories. A gradual or 'multistep' absorption in the entrance channels is proposed as a way out of the difficulty. This modification turns out to be sufficient for an adequate description of the experimental data. (orig.)

  16. Characterization of neutron emission from mega-ampere deuterium gas puff Z-pinch at microsecond implosion times

    Science.gov (United States)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.

    2013-08-01

    Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.

  17. Detection of Special Nuclear Material from Delayed Neutron Emission Induced by a Dual-Particle Monoenergetic Source

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Michael F.; Nattress, J.; Jovanovic, I

    2016-06-30

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the 11B(d,n gamma)12C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass–polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time- dependent buildup and decay of delayed neutron emission from 238U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  18. Langevin study of neutron emission in the reactions 16O+181Ta and 19F+178Hf

    Institute of Scientific and Technical Information of China (English)

    YE Wei; WU Feng; YANG Hong-Wei

    2008-01-01

    The pre-scission neutrons measured in the reactions 16O+181Ta and 19F+178Hf are studied via a Langevin equation coupled with a statistical decay model.We find that because of the mass asymmetry of different entrance channels,the spin distributions of compound nuclei would be different,consequently,the measured neutrons in these two reactions would also different.This means that the entrance channel will affect the particle emission in the fission process of hot nuclei.

  19. Introducing single-crystal scattering and optical potentials into MCNPX: Predicting neutron emission from a convoluted moderator

    Science.gov (United States)

    Gallmeier, F. X.; Iverson, E. B.; Lu, W.; Baxter, D. V.; Muhrer, G.; Ansell, S.

    2016-04-01

    Neutron transport simulation codes are indispensable tools for the design and construction of modern neutron scattering facilities and instrumentation. Recently, it has become increasingly clear that some neutron instrumentation has started to exploit physics that is not well-modeled by the existing codes. In particular, the transport of neutrons through single crystals and across interfaces in MCNP(X), Geant4, and other codes ignores scattering from oriented crystals and refractive effects, and yet these are essential phenomena for the performance of monochromators and ultra-cold neutron transport respectively (to mention but two examples). In light of these developments, we have extended the MCNPX code to include a single-crystal neutron scattering model and neutron reflection/refraction physics. We have also generated silicon scattering kernels for single crystals of definable orientation. As a first test of these new tools, we have chosen to model the recently developed convoluted moderator concept, in which a moderating material is interleaved with layers of perfect crystals to provide an exit path for neutrons moderated to energies below the crystal's Bragg cut-off from locations deep within the moderator. Studies of simple cylindrical convoluted moderator systems of 100 mm diameter and composed of polyethylene and single crystal silicon were performed with the upgraded MCNPX code and reproduced the magnitude of effects seen in experiments compared to homogeneous moderator systems. Applying different material properties for refraction and reflection, and by replacing the silicon in the models with voids, we show that the emission enhancements seen in recent experiments are primarily caused by the transparency of the silicon and void layers. Finally we simulated the convoluted moderator experiments described by Iverson et al. and found satisfactory agreement between the measurements and the simulations performed with the tools we have developed.

  20. Commissioning of the IDS Neutron Detector and $\\beta$-decay fast-timing studies at IDS

    CERN Document Server

    Piersa, Monika

    2016-01-01

    The following report describes my scientific activities performed during the Summer Student Programme at ISOLDE. The main part of my project was focused on commissioning the neutron detector dedicated to nuclear decay studies at ISOLDE Decay Station (IDS). I have participated in all the steps needed to make it operational for the IS609 experiment. In the testing phase, we obtained expected detector response and calibrations confirmed its successful commissioning. The detector was mounted in the desired geometry at IDS and used in measurements of the beta-delayed neutron emission of $^8$He. After completing aforementioned part of my project, I became familiar with the fast-timing method. This technique was applied at IDS in the IS610 experiment performed in June 2016 to explore the structure of neutron-rich $^{130-134}$Sn nuclei. Since the main part of my PhD studies will be the analysis of data collected in this experiment, the second part of my project was dedicated to acquiring knowledge about technical de...

  1. Research on pinches driven by Speed-2 generator: Hard X-ray and neutron emission in plasma focus configuration

    Energy Technology Data Exchange (ETDEWEB)

    Soto, L.; Moreno, J.; Silva, P.; Sylvester, G.; Zambra, M.; Pavez, C. [Comision Chilena de Energia Nuclear, Santiago (Chile); Pavez, C. [Universidad de Concepcion (Chile); Raspa, V. [Buenos Aires Univ., PLADEMA, CONICET and INFIP (Argentina); Castillo, F. [Insitituto de Ciencias Nucleares, UNAM (Mexico); Kies, W. [Heinrich-Heine-Univ., Dusseldorf (Germany)

    2004-07-01

    Speed-2 is a generator based on Marx technology and was designed in the University of Dusseldorf. Speed-2 consists on 40 +/- Marx modules connected in parallel (4.1 {mu}F equivalent Marx generator capacity, 300 kV, 4 MA in short circuit, 187 kJ, 400 ns rise time, dI/dt {approx} 10{sup 13} A/s). Currently Speed-2 is operating at CCHEN (Chilean nuclear energy commission), being the most powerful and energetic device for dense transient plasma in the Southern Hemisphere. Most of the previous works developed in Speed-2 at Dusseldorf were done in a plasma focus configuration for soft X-ray emission and the neutron emission from Speed-2 was not completely studied. The research program at CCHEN considers experiments in different pinch configurations (plasma focus, gas puffed plasma focus, gas embedded Z-pinch, wire arrays) at current of hundred of kilo- to mega-amperes, using the Speed-2 generator. The Chilean operation has begun implementing and developing diagnostics in a conventional plasma focus configuration operating in deuterium in order to characterize the neutron emission and the hard X-ray production. Silver activation counters, plastics CR39 and scintillator-photomultiplier detectors are used to characterize the neutron emission. Images of metallic plates with different thickness are obtained on commercial radiographic film, Agfa Curix ST-G2, in order to characterize an effective energy of the hard X-ray outside of the discharge. (authors)

  2. Elemental analysis using instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Choi, Kwang Soon; Moon, Jong Hwa; Kim, Sun Ha; Lim, Jong Myoung; Kim, Young Jin [KAERI, Taejon (Korea, Republic of); Quraishi, Shamshad Begum [Bangladesh Atomic Energy Commission, Dhaka (Bangladesh)

    2003-05-01

    Elemental analyses for certified reference materials were carried out using instrumental neutron activation analysis and inductively coupled plasma-atomic emission spectrometry. Five Certified Reference Materials (CRM) were selected for the study on comparative analysis of environmental samples. The CRM are Soil (NIST SRM 2709), Coal fly ash (NIST SRM 1633a), urban dust (NIST SRM 1649a) and air particulate on filter media (NIST SRM 2783 and human hair (GBW 09101)

  3. Neutron emission cross sections on sup 93 Nb and sup 209 Bi at 20 MeV incident energy

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkowski, A.; Rapaport, J.; Finlay, R.; Aslanoglou, X. (Ohio Univ., Athens, OH (USA)); Kielan, D. (Soltan Inst. for Nuclear Studies, Warsaw (Poland))

    1991-07-29

    Double-differential neutron emission cross sections at 20 MeV incident energy have been studied for monoisotopic samples of {sup 93}Nb and {sup 209}Bi. Time-of-flight spectra were taken at several angles between 15{sup 0} and 153{sup 0} using a beam-swinger spectrometer. The data are averaged over 0.5 MeV energy bins and compared with quantum-mechanical, statistical multistep calculations. (orig.).

  4. Observational Constraints on Radio Transient Emissions from Binary Neutron Star Mergers

    Science.gov (United States)

    Papadopoulos, Joanna; Dispoto, D.; Cardena, B.; Kavic, M.; Ellingson, S.; Simonetti, J.; Cutchin, S.; Patterson, C.

    2012-01-01

    The merger of a binary neutron star pair is expected to generate a strong transient radio signal. This emission will be strongest at low-frequency and will disperse as it transverses the interstellar medium arriving at Earth after coincidentally emitted gravitational or (higher frequency) electromagnetic signals. The rate of compact object merger events is poorly constrained by observations. The Eight-meter-wavelength Transient Array (ETA) telescope is a low-frequency radio telescope initially located at the Pisgah Astronomical Research Institute (PARI), which is sensitive to a frequency range of 29-47 MHz. It is being upgraded and relocated to western Virginia where it will continue to conduct low frequency observations. This instrument is an all-sky instrument designed to detect astronomical sources of radio transients. Using a series of observations taken during the ETA's first science run, we were able to constrain the rate of such merger events to <1.3 x 10-5 Mpc-3/yr.

  5. A Model for Axions Producing Extended gamma-ray Emission from Neutron Star J0108-1431

    Science.gov (United States)

    Berenji, Bijan; Fermi LAT Collaboration

    2017-01-01

    Axions are hypothetical particles proposed to solve the strong CP problem in QCD and may constitute a significant fraction of the dark matter in the Universe. Axions are expected to be produced in neutron stars and subsequently decay, producing gamma-rays detectable by the Fermi Large Area Telescope (Fermi-LAT). Considering that light axions may travel a long range before they decay into gamma rays, neutron stars may appear as a spatially-extended source of gamma rays. We extend our previous search for gamma rays from axions, based on a point source model, to consider the neutron star as an extended source of gamma rays.We investigate the spatial emission of gamma rays using phenomenological models. We present models including the fundamental astrophysics and relativistic, extended gamma-ray emission from axions around neutron stars. A Monte Carlo simulation of the LAT gives us an expectation for the extended angular profile and spectrum. We predict a mean angular spread of 0.8 degrees with energies in the range 30-200 MeV. We consider projected sensitivities for mass limits on axions from J0108-1431, a neutron star at a distance of 240 pc. We demonstrate the feasibility of setting more stringent limits for axions in this mass range, excluding a range not probed by observations before. Based on the extended angular profile of the source, the expected sensitivity of the 95% CL upper limit on the axion mass from J0108-1431 is >10 meV. We also consider observational strategies in the search for axions from J0108-1431 with the Fermi-LAT.

  6. Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors

    Science.gov (United States)

    Giacomelli, L.; Nocente, M.; Rebai, M.; Rigamonti, D.; Milocco, A.; Tardocchi, M.; Chen, Z. J.; Du, T. F.; Fan, T. S.; Hu, Z. M.; Peng, X. Y.; Hjalmarsson, A.; Gorini, G.

    2016-11-01

    This work presents measurements done at the Peking University Van de Graaff neutron source of the response of single crystal synthetic diamond (SD) detectors to quasi-monoenergetic neutrons of 14-20 MeV. The results show an energy resolution of 1% for incoming 20 MeV neutrons, which, together with 1% detection efficiency, opens up to new prospects for fast ion physics studies in high performance nuclear fusion devices such as SD neutron spectrometry of deuterium-tritium plasmas heated by neutral beam injection.

  7. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    Science.gov (United States)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-01

    The average of fragment kinetic energy (E*) and the multiplicity of prompt neutrons (ν) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σE*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σE(A)). As a result of the simulation we obtain the dependence σE*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  8. Measurement by FIB on the ISS: Two Emissions of Solar Neutrons Detected?

    Directory of Open Access Journals (Sweden)

    Y. Muraki

    2012-01-01

    Full Text Available A new type of solar neutron detector (FIB was launched on board the Space Shuttle Endeavour on July 16, 2009, and began collecting data at the International Space Station (ISS on August 25, 2009. This paper summarizes the three years of observations obtained by the solar neutron detector FIB until the end of July 2012. The solar neutron detector FIB can determine both the energy and arrival direction of neutrons. We measured the energy spectra of background neutrons over the South Atlantic Anomaly (SAA region and elsewhere and found the typical trigger rates to be 20 and 0.22 counts/sec, respectively. It is possible to identify solar neutrons to within a level of 0.028 counts/sec, provided that directional information is applied. Solar neutrons were possibly observed in association with the M-class solar flares that occurred on March 7 (M3.7 and June 7 (M2.5 of 2011. This marked the first time that neutrons had been observed in M-class solar flares. A possible interpretation of the production process is provided.

  9. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    Science.gov (United States)

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  10. Delayed Particle Study of Neutron Rich Lithium Isotopes

    CERN Multimedia

    Marechal, F; Perrot, F

    2002-01-01

    We propose to make a systematic complete coincidence study of $\\beta$-delayed particles from the decay of neutron-rich lithium isotopes. The lithium isotopes with A=9,10,11 have proven to contain a vast information on nuclear structure and especially on the formation of halo nuclei. A mapping of the $\\beta$-strength at high energies in the daughter nucleus will make possible a detailed test of our understanding of their structure. An essential step is the comparison of $\\beta$-strength patterns in $^{11}$Li and the core nucleus $^{9}$Li, another is the full characterization of the break-up processes following the $\\beta$-decay. To enable such a measurement of the full decay process we will use a highly segmented detection system where energy and emission angles of both charged and neutral particles are detected in coincidence and with high efficiency and accuracy. We ask for a total of 30 shifts (21 shifts for $^{11}$Li, 9 shifts $^{9}$Li adding 5 shifts for setting up with stable beam) using a Ta-foil target...

  11. Prospects for measuring the fuel ion ratio in burning ITER plasmas using a DT neutron emission spectrometer

    Science.gov (United States)

    Hellesen, C.; Skiba, M.; Dzysiuk, N.; Weiszflog, M.; Hjalmarsson, A.; Ericsson, G.; Conroy, S.; Andersson-Sundén, E.; Eriksson, J.; Binda, F.

    2014-11-01

    The fuel ion ratio nt/nd is an essential parameter for plasma control in fusion reactor relevant applications, since maximum fusion power is attained when equal amounts of tritium (T) and deuterium (D) are present in the plasma, i.e., nt/nd = 1.0. For neutral beam heated plasmas, this parameter can be measured using a single neutron spectrometer, as has been shown for tritium concentrations up to 90%, using data obtained with the MPR (Magnetic Proton Recoil) spectrometer during a DT experimental campaign at the Joint European Torus in 1997. In this paper, we evaluate the demands that a DT spectrometer has to fulfill to be able to determine nt/nd with a relative error below 20%, as is required for such measurements at ITER. The assessment shows that a back-scattering time-of-flight design is a promising concept for spectroscopy of 14 MeV DT emission neutrons.

  12. Emission of neutron-proton and proton-proton pairs in electron scattering induced by meson-exchange currents

    CERN Document Server

    Simo, I Ruiz; Barbaro, M B; De Pace, A; Caballero, J A; Megias, G D; Donnelly, T W

    2016-01-01

    We use a relativistic model of meson-exchange currents to compute the proton-neutron and proton-proton yields in $(e,e')$ scattering from $^{12}$C in the 2p-2h channel. We compute the response functions and cross section with the relativistic Fermi gas model for a range of kinematics from intermediate to high momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the $\\Delta$ isobar current. We also analyze the effect of the exchange contribution and show that the direct/exchange interference strongly affects the determination of the np/pp ratio.

  13. The neutron emission method for determination of fissile materials within the spent fuel equipment optimization

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Zaid, A. [Nuclear Research Center, Atomic Energy Authority, 13759- Cairo (Ethiopia); Pytel, K. [Atomic Energy Institute, Research Reactor Center, 05-400 Otwock-Swierk (Poland)

    1998-07-01

    A nondestructive assay method using neutron technique for determination of the fissile isotopes content along the irradiated fuel rods of MARIA reactor is presented. This method is based on detection of the fission neutrons emitted from external neutron source and multiplied by the fissile isotopes U-235, Pu-239, and Pu-241 within the fuel rod. Neutrons emitted from the spent fuel originate mainly from induced fission in the fissile material and source neutrons penetrating the fuel rod without interaction. Additionally, the neutrons from ({alpha}, n) reaction and spontaneous fission of actinide isotopes contribute in the total population of emitted ones. The method gives a chance to perform an experimental calibration of the equipment using two points: fresh fuel rod (maximum signal plus background) and its mock-up (background). The Monte Carlo code has been used for the geometrical simulation and optimization of the measuring equipment: neutron source, moderating container, collimator, and the neutron detector. The results of the calculation show that the moderating container of 30 cm length and 32 cm diameter and a collimator of 26 cm length, 6.8 cm width, and 2 cm height are the optimal configuration. With respect to the fission chamber position, the number of neutrons has been calculated as a function of distance from the fuel rod surface in the case of fresh fuel and its mock-up. The distance, at which the ratio of the signal to background has its maximum, has been found at 4.5 cm far from the outer surface of the fuel. (author)

  14. The behavior of neutron emissions during ICRF minority heating of plasma at EAST

    Science.gov (United States)

    Zhong, Guoqiang; Cao, Hongrui; Hu, Liqun; Zhou, Ruijie; Xiao, Min; Li, Kai; Pu, Neng; Huang, Juan; Liu, Guangzhu; Lin, Shiyao; Lyu, Bo; Liu, Haiqing; Zhang, Xinjun; EAST Team

    2016-07-01

    Ion cyclotron radio frequency (ICRF) wave heating is a primary method to heat ions in the Experimental Advanced Superconducting Tokamak (EAST). Through neutron diagnostics, effective ion heating was observed in hydrogenminority heating (MH) scenarios. At present, investigation of deuterium-deuterium (DD) fusion neutrons is mostly based on time-resolved flux monitor and spectrometer measurements. When the ICRF was applied, the neutron intensity became one order higher. The H/H  +  D ratio was in the range of 5-10%, corresponding to the hydrogen MH dominated scenario, and a strong high energy tail was not displayed on the neutron spectrum that was measured by a liquid scintillator. Moreover, ion temperature in the plasma center (T i) was inversely calculated by the use of neutron source strength (S n) and the plasma density based on classical fusion reaction equations. This result indicates that T i increases by approximately 30% in L-mode plasma, and by more than 50% in H-mode plasma during ICRF heating, which shows good agreement with x-ray crystal spectrometer (XCS) diagnostics. Finally, the DD neutron source strength scaling law, with regard to plasma current (I P) and ICRF coupling power (P RF) on the typical minority heating condition, was obtained by statistical analysis.

  15. Shape-coexistence and shape-evolution studies for bismuth isotopes by insource laser spectroscopy and $\\beta$-delayed fission in $^{188}$Bi

    CERN Multimedia

    The proposal aims at the two main goals: \\\\ \\\\1) the studies of shape-coexistence and shape-evolution phenomena in the long chain of bismuth isotopes (Z=83) by in-source laser spectroscopy measurements of isotopic shifts (IS) and hyperfine structures (hfs), and \\\\ 2) $\\beta$-delayed fission ($\\beta$DF) of two isomeric states in $^{188}$Bi. \\\\ \\\\Isomer-selective $\\beta$DF studies for $^{188m1, 188m2}$Bi isomers will enable us for the first time to investigate the spin-dependence of the $\\beta$DF process and to check theoretical predictions of asymmetrical fission fragment mass-distribution in this region of nuclei. The measurements will be performed with the well-proven Windmill and MR-TOF MS/Penning Trap techniques.

  16. Neutron Capture Cross Sections and Gamma Emission Spectra from Neutron Capture on 234,236,238U Measured with DANCE

    Science.gov (United States)

    Ullmann, J. L.; Mosby, S.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C.-Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.

    2014-05-01

    A new measurement of the 238U(n, γ) cross section using a thin 48 mg/cm2 target was made using the DANCE detector at LANSCE over the energy range from 10 eV to 500 keV. The results confirm earlier measurements. Measurements of the gamma-ray emission spectra were also made for 238U(n, γ) as well as 234,236U(n, γ). These measurements help to constrain the radiative strength function used in the cross-section calculations.

  17. Shock breakout driven by the remnant of a neutron star binary merger: An X-ray precursor of mergernova emission

    CERN Document Server

    Li, Shao-Ze

    2015-01-01

    A supra-massive neutron star (NS) spinning extremely rapidly could survive from a merger of NS-NS binary. The spin-down of this remnant NS that is highly magnetized would power the isotropic merger ejecta to produce a bright mergernova emission in ultraviolet/optical bands. Before the mergernova, the early interaction between the NS wind and the ejecta can drive a forward shock to propagate outwards into the ejecta. As a result, a remarkable amount of heat can be accumulated to be deposited behind the shock front, the final escaping of which can produce a shock breakout emission. We describe the dynamics and thermal emission of this shock with a semi-analytical model. It is found that a sharp and luminous breakout emission, which is mainly in soft X-rays with a luminosity of $\\sim10^{45}~\\rm erg~s^{-1}$, appears at a few hours after the merger, by leading the mergernova emission as a precursor. Therefore, detections of such X-ray precursors would provide a smoking-gun evidence for identifying NS-powered merge...

  18. Shock Breakout Driven by the Remnant of a Neutron Star Binary Merger: An X-Ray Precursor of Mergernova Emission

    Science.gov (United States)

    Li, Shao-Ze; Yu, Yun-Wei

    2016-03-01

    A supra-massive neutron star (NS) spinning extremely rapidly could survive from a merger of an NS-NS binary. The spin-down of this remnant NS that is highly magnetized could power the isotropic merger ejecta to produce a bright mergernova emission in the ultraviolet/optical bands. Before the mergernova, the early interaction between the NS wind and the ejecta could drive a forward shock propagating outward into the ejecta. As a result, a remarkable amount of heat can be accumulated behind the shock front and the final escape of this heat could produce a shock breakout emission. We describe the dynamics and thermal emission of this shock with a semi-analytical model. It is found that a few hours after the merger, by leading the mergernova emission as a precursor, sharp and luminous breakout emission appears mainly in soft X-rays, with a luminosity of ∼ {10}45 {erg} {{{s}}}-1. Therefore, the detection of such an X-ray precursor could provide evidence for identifying NS-powered mergernovae and distinguishing them from radioactivity-powered novae (i.e., kilonovae or macronovae). The discovery of NS-powered mergernovae could finally help to confirm the gravitational wave signals due to the mergers and the existence of supra-massive NSs.

  19. Collisionless and Kinetic Phenomena of Interpenetrating Plasma Streams via Neutron Self-Emission

    Science.gov (United States)

    Ross, J. S.; Higginson, D. P.; Hatarik, R.; Link, A.; Park, H.-S.; Ryutov, D. D.; Weber, S. V.; Wilks, S. C.; Fiuza, F.; Li, C. K.; Sio, H.; Zylstra, A. B.

    2016-10-01

    Recent NIF experiments focus on the generation and diagnosis of collisionless shocks relevant to astrophysical phenomena such as supernova remnants and gamma ray bursts. In the experiments, two opposing CD laser-generated plasmas flow into each other at high velocity ( 1000 km/s). As the ion-ion collisional mean-free-path is near to or greater than the system size, the flows interpenetrate and neutrons are generated via beam-beam deuteron interactions. We model this system using the hybrid particle-in-cell code LSP with electric and magnetic fields suppressed to capture the full temporal and spatial size of the experiment. These simulations show good agreement with the yield, spectrum and spatial/temporal profiles of the neutrons observed in the experiment. When one CD foil is replaced with CH an asymmetry develops in the neutron spectrum that is caused by the Doppler shift related to the flow velocity. Additionally, in this case the neutron yield is found to be lower in the simulations than is observed experimentally, which indicates that the deuterons thermalize more efficiently in the experiment. This suggests that another mechanism is responsible for this yield enhancement other than small angle scattering since it is included in the simulations. Possible mechanisms such as scattering across Weibel-mediated magnetic filaments and large-angle Coulomb scattering will be evaluated and discussed. Prepared by LLNL under Contract DE-AC52-07NA27344.

  20. Competing analysis of α and 2p2n-emission from compound nuclei formed in neutron induced reactions

    Science.gov (United States)

    Kaur, Amandeep; Sharma, Manoj K.

    2017-01-01

    The decay mechanism of compound system 61Ni* formed in fast neutron induced reactions is explored within the collective clusterization approach of the Dynamical Cluster-decay Model (DCM) in reference to a recent experiment over an energy spread of En = 1- 100 MeV. The excitation functions for the decay of the compound nucleus 61Ni* formed in the n +60Ni reaction show a double humped variation with incident beam energy where the peak at lower energy corresponds to α-emission while the one at higher energy originates from 2 p 2 n-emission. The experimentally observed transmutation of α-emission at lower energy into 2 p 2 n-emission at higher incident energies is explained on the basis of temperature dependence of the binding energies used within the framework of DCM. The cross-sections for the formation of the daughter nucleus 57Fe after emission of α-cluster from the 61Ni* nucleus are addressed by employing the neck length parameter (ΔR), finding decent agreement with the available experimental data. The calculations are done for non-sticking choice of moment of inertia (INS) in the centrifugal potential term, which forms the essential ingredient in DCM based calculations. In addition to this, the effect of mass (and charge) of the compound nucleus is exercised in view of α and 2 p 2 n emission and comparative study of the decay profiles of compound systems with mass A = 17-93 is employed to get better description of decay patterns.

  1. Study of proton and 2 protons emission from light neutron deficient nuclei around A=20; Etude de l'emission proton et de deux protons dans les noyaux legers deficients en neutrons de la region A=20

    Energy Technology Data Exchange (ETDEWEB)

    Zerguerras, T

    2001-09-01

    Proton and two proton emission from light neutron deficient nuclei around A=20 have been studied. A radioactive beam of {sup 18}Ne, {sup 17}F and {sup 20}Mg, produced at the Grand Accelerateur National d'Ions Lourds by fragmentation of a {sup 24}Mg primary beam at 95 MeV/A, bombarded a {sup 9}Be target to form unbound states. Proton(s) and nuclei from the decay were detected respectively in the MUST array and the SPEG spectrometer. From energy and angle measurements, the invariant mass of the decaying nucleus could be reconstructed. Double coincidence events between a proton and {sup 17}F, {sup 16}O, {sup 15}O, {sup 14}O and {sup 18}Ne were registered to obtain excitation energy spectra of {sup 18}Ne, {sup 17}F, {sup 16}F, {sup 15}F et {sup 19}Na. Generally, the masses measures are in agreement with previous experiments. In the case of {sup 18}Ne, excitation energy and angular distributions agree well with the predictions of a break up model calculation. From {sup 17}Ne proton coincidences, a first experimental measurement of the ground state mass excess of {sup 18}Na has been obtained and yields 24,19(0,15)MeV. Two proton emission from {sup 17}Ne and {sup 18}Ne excited states and the {sup 19}Mg ground state was studied through triple coincidences between two proton and {sup 15}O, {sup 16}O and {sup 17}Ne respectively. In the first case, the proton-proton relative angle distribution in the center of mass has been compared with model calculation. Sequential emission from excited states of {sup 17}Ne, above the proton emission threshold, through {sup 16}F is dominant but a {sup 2}He decay channel could not be excluded. No {sup 2}He emission from the 1.288 MeV {sup 17}Ne state, or from the 6.15 MeV {sup 18}Ne state has been observed. Only one coincidence event between {sup 17}Ne and two proton was registered, the value of the one neutron stripping reaction cross section of {sup 20}Mg being much lower than predicted. (author)

  2. Interpretation of delayed neutron emission using a non-statistical approach

    CERN Document Server

    Shihab-Eldin, A A; Nuh, F M; Prussin, S G

    1976-01-01

    Experimental data on several delayed neutron emitting systems exhibit characteristics not accounted for by the normal statistical model. Using a single-particle approach, the locations and relative beta - strengths to configurations in the emitter nuclides populated by allowed G.T. transitions have been calculated and are in qualitative agreement with strength function data for /sup 85/As, /sup 87/Br, /sup 135/Sb and /sup 137/I. Calculations of P/sub n/-values for the bromine precursors A=87 to 92 are also in good agreement with experimental data. The lack of high energy neutrons in spectra where excited states in the final nucleus are strongly populated can be traced qualitatively to particle-hole excitations contributing to the excited states. (16 refs).

  3. Neutron-pair emission following pi /sup -/ absorption on some light nuclei

    CERN Document Server

    Furic, M; Engelhardt, H D; Klotz, W D; Takeutchi, F; Ullrich, H

    1977-01-01

    Large-area position-sensitive neutron counters with subnanosecond time resolution have been used to study the ( pi /sup -/,2n) reaction with a resolution comparable to or better than the existing ( pi /sup + /,2p) data. The measurement of the momenta of both neutrons enabled a determination of the excitation energy spectra of the residual nuclei to be made. The momentum distributions for the absorbing nucleon pair were also extracted assuming the quasifree mechanism for the ( pi /sup -/,2n) process. The pi /sup -/ beam obtained from the CERN SC II was brought to rest in the targets of /sup 9/Be, /sup 10/B, /sup 12/C and /sup 14/N. The excitation spectra of the residual nuclei were compared with the predictions based on the coefficients of fractional parentage for the removal of the two nucleons. The data and the predictions are in good agreement within the experimental resolution. (4 refs).

  4. Experimental studies on the neutron emission spectrum and activation cross-section for 40 MeV deuterons in IFMIF accelerator structural elements

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, M. E-mail: hagi@cyric.tohoku.ac.jp; Itoga, T.; Baba, M.; Uddin, M.S.; Hirabayashi, N.; Oishi, T.; Yamauchi, T

    2004-08-01

    In order to improve the nuclear data required in the safety design of the International Fusion Materials Irradiation Facility (IFMIF), we have measured the neutron emission spectra and the activation cross-sections of the IFMIF accelerator structural elements, C and Al, for 40 MeV deuterons using the Tohoku University AVF cyclotron. Neutron spectra from thick C and Al targets were measured with the time-of-flight method at ten laboratory angles between 0- and 110-deg. using a beam swinger system and a well collimated neutron flight channel. The data were obtained over almost entire energy range of secondary neutrons using a two-detector method. Activation cross-sections were measured by detecting the {gamma}-rays from C and Al targets with a high-pure Ge detector. The stacked target technique was used to obtain the data from 40 MeV down to the threshold energy.

  5. Measurement of the Cross Section for Electromagnetic Dissociation with Neutron Emission in Pb-Pb Collisions at √sNN = 2.76 TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Bottger, Stefan; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caballero Orduna, Diego; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Del Castillo Sanchez, Eduardo; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Fragkiadakis, Michail; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jancurova, Lucia; Jangal, Swensy Gwladys; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalisky, Matus; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kanaki, Kalliopi; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Minwoo; Kim, Se Yong; Kim, Seon Hee; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lechman, Mateusz; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Ajit Kumar; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, S; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujol Teixido, Jordi; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roukoutakis, Filimon; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Sgura, Irene; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, catherine; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stefanini, Giorgio; Steinbeck, Timm Morten; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Tagridis, Christos; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Tosello, Flavio; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo

    2012-01-01

    The first measurement of neutron emission in electromagnetic dissociation of 208Pb nuclei at the LHC is presented. The measurement is performed using the neutron Zero Degree Calorimeters of the ALICE experiment, which detect neutral particles close to beam rapidity. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at √sNN = 2.76 TeV with neutron emission are σ_single EMD = 187.2±0.2 (stat.) +13.8−12.0 (syst.) b and σ_mutual EMD = 6.2 ± 0.1 (stat.) ±0.4 (syst.) b respectively. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model.

  6. RE-EVALUATION OF THE NEUTRON EMISSION FROM THE SOLAR FLARE OF 2005 SEPTEMBER 7, DETECTED BY THE SOLAR NEUTRON TELESCOPE AT SIERRA NEGRA

    Energy Technology Data Exchange (ETDEWEB)

    González, L. X. [SCiESMEX, Instituto de Geofísica Unidad Michoacán, Universidad Nacional Autónoma de México, 58190, Morelia, Michoacán (Mexico); Valdés-Galicia, J. F.; Musalem, O.; Hurtado, A. [Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, D. F. Mexico (Mexico); Sánchez, F. [Instituto de Tecnologías en Detección de Astropartículas, Comisión Nacional de Energía Atómica, 1429, Buenos Aires (Argentina); Muraki, Y.; Sako, T.; Matsubara, Y.; Nagai, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Watanabe, K. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai, chuo-ku, Sagamihara 252-5210 (Japan); Shibata, S. [College of Engineering, Chubu University, Kasugai, Aichi 487-8501 (Japan); Sakai, T. [College of Industrial Technologies, Nihon University, Narashino 275-0005 (Japan)

    2015-12-01

    The X17.0 solar flare of 2005 September 7 released high-energy neutrons that were detected by the Solar Neutron Telescope (SNT) at Sierra Negra, Mexico. In three separate and independent studies of this solar neutron event, several of its unique characteristics were studied; in particular, a power-law energy spectra was estimated. In this paper, we present an alternative analysis, based on improved numerical simulations of the detector using GEANT4, and a different technique for processing the SNT data. The results indicate that the spectral index that best fits the neutron flux is around 3, in agreement with previous works. Based on the numerically calculated neutron energy deposition on the SNT, we confirm that the detected neutrons might have reached an energy of 1 GeV, which implies that 10 GeV protons were probably produced; these could not be observed at Earth, as their parent flare was an east limb event.

  7. X-ray emission from the double neutron star binary B1534+12: Powered by the pulsar wind?

    CERN Document Server

    Kargaltsev, O; Garmire, G P

    2006-01-01

    We report the detection of the double neutron star binary (DNSB) B1534+12 (= J1537+1155) with the Chandra X-ray Observatory. This DNSB (orbital period 10.1 hr) consists of the millisecond (recycled) pulsar J1537+1155A (P_A=37.9 ms) and a neutron star not detected in the radio. After the remarkable double pulsar binary J0737-3039, it is the only other DNSB detected in X-rays. We measured the flux of (2.2\\pm 0.6)\\times10^{-15} ergs s^{-1} cm^{-2} in the 0.3-6 keV band. The small number of collected counts allows only crude estimates of spectral parameters. The power-law fit yields the photon index of 3.2\\pm 0.5 and the unabsorbed 0.2-10 keV luminosity L_X=6\\times10^{29} ergs s^{-1} = 3\\times 10^{-4}Edot_A, where Edot_A is the spin-down power of J1537+1155A. Alternatively, the spectrum can be fitted by a blackbody model with T = 2.2 MK and the projected emitting area of ~ 5\\times 10^3 m^2. The distribution of photon arrival times over binary orbital phase shows a deficit of X-ray emission around apastron, which ...

  8. 90 deg.Neutron emission from high energy protons and lead ions on a thin lead target

    CERN Document Server

    Agosteo, S; Foglio-Para, A; Mitaroff, W A; Silari, Marco; Ulrici, L

    2002-01-01

    The neutron emission from a relatively thin lead target bombarded by beams of high energy protons/pions and lead ions was measured at CERN in one of the secondary beam lines of the Super Proton Synchrotron for radiation protection and shielding calculations. Measurements were performed with three different beams: sup 2 sup 0 sup 8 Pb sup 8 sup 2 sup + lead ions at 40 GeV/c per nucleon and 158 GeV/c per nucleon, and 40 GeV/c mixed protons/pions. The neutron yield and spectral fluence per incident ion on target were measured at 90 deg.with respect to beam direction. Monte-Carlo simulations with the FLUKA code were performed for the case of protons and pions and the results found in good agreement with the experimental data. A comparison between simulations and experiment for protons, pions and lead ions have shown that--for such high energy heavy ion beams--a reasonable estimate can be carried out by scaling the result of a Monte-Carlo calculation for protons by the projectile mass number to the power of 0.80-0...

  9. Spitzer Reveals Infrared Optically-Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    NARCIS (Netherlands)

    Migliari, S.; Tomsick, J.A.; Maccarone, T.J.; Gallo, E.; Fender, R.P.; Nelemans, G.; Russell, D.M.

    2006-01-01

    Spitzer observations of the neutron star (ultracompact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of nonthermal origin in the range 3.5-8 mum. The mid-infrared spectrum is well fit by a power law with spectral index of alpha=-0.57+/-0.04 (where the flux density is

  10. Characterisation of neutron and gamma-ray emission from thick target Be(p,n) reaction for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Guzek, J.; Mateva, T.; Tapper, U.A.S. [De Beers Diamond Res. Lab., Southdale (South Africa); McMurray, W.R. [National Accelerator Centre, Van de Graaff Group, P.O. Box 72, Faure 7131 (South Africa); Franklyn, C.B. [Atomic Energy Corporation of South Africa, P.O. Box 582, Pretoria (South Africa)

    1998-04-01

    Low energy accelerator-based neutron sources have promising potential for use in a clinical treatment of cancer with boron neutron capture therapy (BNCT) and boron neutron capture synovectomy (BNCS). Such sources often utilise a thick target Be(p,n) reaction using incident proton energies from several hundred keV to 1-2 MeV above the reaction threshold of 2.06 MeV. The resulting neutron and gamma-ray beams require considerable moderation and filtration in order to obtain thermal and epithermal neutron fluxes for therapy. The detailed knowledge of neutron and gamma-ray spectra, yield and angular distribution are necessary in order to design effective moderators and filters to be used for the treatment. Thick and thin beryllium target neutron and gamma spectra have been investigated in detail using the time-of-flight (TOF) technique, for incident proton energies from above threshold to 4 MeV. The results show characteristics of neutron and gamma-ray production of importance for the application of this neutron source for BNCT and BNCS. (orig.) 6 refs.

  11. Effects of the gravitational waves emission on the orbit of the binary neutron stars considering the mass variation.

    Science.gov (United States)

    Mabrouk, Zeinab; Rahoma, W. A.

    2016-07-01

    Gravitational waves which have been announced finally to be detected in February 11, 2016 are believed to be emitted from many sources and phenomena in the universe, the binary neutron stars systems specially the inspirals are one kind of them. In this paper we are going to calculate the effects of this emission on the elements of the elliptical orbits of such binary neutron stars before the onset of the mass exchange. We based our work on the Imshennik and Popov (1994) paper then we do some modifications. The main and important results that Imshennik and Popov get were the rate of change of the eccentricity e, the rate of change of the semi major axis a, and the monotonic dependence between them a=a(e). Finally they concluded the smallness of the final eccentricity which make the orbits to be near-circular due to the emission of the gravitational waves. Our modification is to consider the masses of the two binary stars to be varied using the famous Eddington-Jeams law, then we expand them around the time t using Taylor expansion. we do this variation first for one mass with the constancy of the second one, then we let both mosses to vary together. We start the algorithm from the beginning substituting with our new series of masses in the two main equations, the average rate of change of the total energy of the system (dE/dt) , and the average rate of change of the angular momentum (dJ/dt). This modification leads to new expressions of the previous mentioned rate of changes of the orbital elements obtained by Imshennik and Popov, some of them we obtained and still working in the rest.

  12. 3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface

    CERN Document Server

    Bachetti, Matteo; Kulkarni, Akshay; Burderi, Luciano; di Salvo, Tiziana; .,

    2009-01-01

    3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate $\\dot{M}$. Moreover, in some cases double QPOs appear, each of them showing the same correlation with $\\dot{M}$.

  13. Research on pinches driven by SPPED 2 generator hard X-ray and neutron emission in plasma focus configuration

    CERN Document Server

    Sánchez-Soto, L L; Silva, P; Sylvester, G S; Zambra, M; Pavez, C; Raspa, V; Castillo, F; Kies, W; Soto, Leopoldo; Moreno, Jose; Silva, Patricio; Sylvester, Gustavo; Zambra, Marcelo; Pavez, Cristian; Raspa, Veronica; Castillo, Fermin; Kies, Walter

    2004-01-01

    SPEED2 is a generator based on Marx technology and was designed in the University of Dusseldorf. SPEED2 consists on 40 +/- Marx modules connected in parallel (4.1 mF equivalent Marx generator capacity, 300 kV, 4 MA in short circuit, 187 kJ, 400 ns rise time, dI/dt~1013 A/s). Currently the SPEED2 is operating at the Comision Chilena de Energia Nuclear, CCHEN, Chile, being the most powerful and energetic device for dense transient plasma in the Southern Hemisphere. Most of the previous works developed in SPEED2 at Dusseldorf were done in a plasma focus configuration for soft X-ray emission and the neutron emission from SPEED2 was not completely studied. The research program at CCHEN considers experiments in different pinch configurations (plasma focus, gas puffed plasma focus, gas embedded Z-pinch, wire arrays) at current of hundred of kiloamperes to mega-amperes, using the SPEED2 generator. The Chilean operation has begun implementing and developing diagnostics in a conventional plasma focus configuration oper...

  14. Experimental studies on the neutron emission spectrum and induced radioactivity of the sup 7 Li(d,n) reaction in the 20-40 MeV region

    CERN Document Server

    Baba, M; Hagiwara, M; Sugimoto, M; Miura, T; Kawata, N; Yamadera, A; Orihara, H

    2002-01-01

    To improve the data accuracy of the neutron emission spectrum of the sup 7 Li(d,n) reaction and the radioactivity ( sup 7 Be, sup 3 H, etc.) accumulated in the sup 7 Li target in IFMIF, we have measured the neutron emission spectrum and the radioactivity of sup 7 Be induced in the lithium target for 25 MeV deuterons at the Tohoku University AVF cyclotron (K=110) facility. Neutron spectra were measured with the time-of-flight (TOF) method at four laboratory angles by using a beam swinger system and a well collimated TOF channel. Induced radioactivity was measured by detecting the gamma-rays from sup 7 Be with a pure Ge detector. Experimental results are compared with other experimental data. The present result of neutron emission spectra are in qualitative agreement with other experimental data but that of sup 7 Be production was much larger than expected by the recent codes. Measurement will be extended to several incident energies up to 40 MeV.

  15. Experimental studies on the neutron emission spectrum and induced radioactivity of the {sup 7}Li(d,n) reaction in the 20-40 MeV region

    Energy Technology Data Exchange (ETDEWEB)

    Baba, M. E-mail: babam@cyric.tohoku.ac.jp; Aoki, T.; Hagiwara, M.; Sugimoto, M.; Miura, T.; Kawata, N.; Yamadera, A.; Orihara, H

    2002-12-01

    To improve the data accuracy of the neutron emission spectrum of the {sup 7}Li(d,n) reaction and the radioactivity ({sup 7}Be, {sup 3}H, etc.) accumulated in the {sup 7}Li target in IFMIF, we have measured the neutron emission spectrum and the radioactivity of {sup 7}Be induced in the lithium target for 25 MeV deuterons at the Tohoku University AVF cyclotron (K=110) facility. Neutron spectra were measured with the time-of-flight (TOF) method at four laboratory angles by using a beam swinger system and a well collimated TOF channel. Induced radioactivity was measured by detecting the gamma-rays from {sup 7}Be with a pure Ge detector. Experimental results are compared with other experimental data. The present result of neutron emission spectra are in qualitative agreement with other experimental data but that of {sup 7}Be production was much larger than expected by the recent codes. Measurement will be extended to several incident energies up to 40 MeV.

  16. The Work Function Associated with Ultra-relativistic Electron Emission from Strongly Magnetized Neutron Star Surface

    Indian Academy of Sciences (India)

    Arpita Ghosh; Somenath Chakrabarty

    2011-09-01

    Following an extremely interesting idea (Schieber 1984), published long ago, the work function associated with the emission of ultra-relativistic electrons from magnetically deformed metallic crystal (mainly iron) at the outer crust of a magnetar is obtained using relativistic version of Thomas–Fermi type model for electron distribution around the nuclei in this region. In the present scenario, surprisingly, the work function becomes anisotropic; the longitudinal part is an increasing function of magnetic field strength, whereas the transverse part diverges.

  17. QPO emission from moving hot spots on the surface of neutron stars: a model

    CERN Document Server

    Bachetti, Matteo; Kulkarni, Akshay; Burderi, Luciano; di Salvo, Tiziana

    2009-01-01

    We present recent results of 3D magnetohydrodynamic simulations of neutron stars with small misalignment angles, as regards the features in light curves produced by regular movements of the hot spots during accretion onto the star. In particular, we show that the variation of position of the hot spot created by the infalling matter, as observed in 3D simulations, can produce high frequency Quasi Periodic Oscillations with frequencies associated with the inner zone of the disk. Simulations show that the usual assumption of a fixed hot spot near the polar region is valid only for misalignment angles relatively large. Otherwise, two phenomena challenge the assumption: one is the presence of Rayleigh-Taylor instabilities at the disk-magnetospheric boundary (e.g. Kulkarni & Romanova 2008), which produce tongues of accreting matter that can reach the star almost anywhere between the equator and the polar region; the other one is the motion of the hot spot around the magnetic pole during stable accretion (e.g. R...

  18. Constraints on Thermal X-ray Radiation from SAX J1808.4-3658 and Implications for Neutron Star Neutrino Emission

    CERN Document Server

    Heinke, C O; Wijnands, R; Taam, R E

    2006-01-01

    Thermal X-ray radiation from neutron star soft X-ray transients in quiescence provides the strongest constraints on the cooling rates of neutron stars, and thus on the interior composition and properties of matter in the cores of neutron stars. We analyze new (2006) and archival (2001) XMM-Newton observations of the accreting millisecond pulsar SAX J1808.4-3658 in quiescence, which provide the most stringent constraints to date. The X-ray spectrum of SAX J1808.4-3658 in the 2006 observation is consistent with a power-law of photon index 1.83\\pm0.16, without requiring the presence of a blackbody-like component from a neutron star atmosphere. Our 2006 observation shows a slightly lower 0.5-10 keV X-ray luminosity, at a level of 68^{+15}_{-13}% that inferred from the 2001 observation. Simultaneous fitting of all available XMM data allows a constraint on the quiescent bolometric (0.01-10 keV) neutron star luminosity of L_{q,bol}<1.1*10^{31} erg/s. This limit excludes some current models of neutrino emission me...

  19. Radioactive decay products in neutron star merger ejecta: heating efficiency and $\\gamma$-ray emission

    CERN Document Server

    Hotokezaka, Kenta; Tanaka, Masaomi; Bamba, Aya; Terada, Yukikatsu; Piran, Tsvi

    2015-01-01

    The radioactive decay of the freshly synthesized $r$-process nuclei ejected in compact binary mergers power optical/infrared macronovae (kilonovae) that follow these events. The light curves depend critically on the energy partition among the different products of the radioactive decay and this plays an important role in estimates of the amount of ejected $r$-process elements from a given observed signal. We study the energy partition and $\\gamma$-ray emission of the radioactive decay. We show that $20$-$50\\%$ of the total radioactive energy is released in $\\gamma$-rays on timescales from hours to a month. The number of emitted $\\gamma$-rays per unit energy interval has roughly a flat spectrum between a few dozen keV and $1$ MeV so that most of this energy is carried by $\\sim 1$ MeV $\\gamma$-rays. However at the peak of macronova emission the optical depth of the $\\gamma$-rays is $\\sim 0.02$ and most of the $\\gamma$-rays escape. The loss of these $\\gamma$-rays reduces the heat deposition into the ejecta and h...

  20. Broad iron emission line and kilohertz quasi-periodic oscillations in the neutron star system 4U 1636-53

    CERN Document Server

    Sanna, Andrea; Altamirano, Diego; Belloni, Tomaso; Hiemstra, Beike; Linares, Manuel

    2014-01-01

    Both the broad iron (Fe) line and the frequency of the kilohertz quasi-periodic oscillations (kHz QPOs) in neutron star low-mass X-ray binaries (LMXBs) can potentially provide independent measures of the inner radius of the accretion disc. We use XMM-Newton and simultaneous Rossi X-ray Timing Explorer observations of the LMXB 4U 1636-53 to test this hypothesis. We study the properties of the Fe-K emission line as a function of the spectral state of the source and the frequency of the kHz QPOs. We find that the inner radius of the accretion disc deduced from the frequency of the upper kHz QPO varies as a function of the position of the source in the colour-colour diagram, in accordance with previous work and with the standard scenario of accretion disc geometry. On the contrary, the inner disc radius deduced from the profile of the Fe line is not correlated with the spectral state of the source. The values of the inner radius inferred from kHz QPOs and Fe lines, in four observations, do not lead to a consisten...

  1. Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars

    CERN Document Server

    Metzger, Brian D

    2013-01-01

    The coalescence of binary neutron stars (NSs) may in some cases produce a stable massive NS remnant rather than a black hole. Due to the substantial angular momentum from the binary, such a remnant is born rapidly rotating and likely acquires a strong magnetic field (a `millisecond magnetar'). Magnetic spin-down deposits a large fraction of the rotational energy from the magnetar behind the small quantity of mass ejected during the merger. This has the potential for creating a bright transient that could be useful for determining whether a NS or black hole was formed in the merger. We investigate the expected signature of such an event, including for the first time the important impact of electron/positron pairs injected by the millisecond magnetar into the surrounding nebula. These pairs cool via synchrotron and inverse Compton emission, producing a pair cascade and hard X-ray spectrum. A fraction of these X-rays are absorbed by the ejecta walls and re-emitted as thermal radiation, leading to an optical/UV t...

  2. Spitzer Reveals Infrared Optically-Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    OpenAIRE

    Migliari, S.; Tomsick, J.A.; Maccarone, T.J.; Gallo, E.; Fender, R. P.; Nelemans, G; Russell, D. M.

    2006-01-01

    Spitzer observations of the neutron star (ultracompact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of nonthermal origin in the range 3.5-8 mum. The mid-infrared spectrum is well fit by a power law with spectral index of alpha=-0.57+/-0.04 (where the flux density is Fnu~nualpha). Given the ultracompact nature of the binary system, we exclude the possibility that either the companion star or the accretion disk can be the origin of the observed emission. These ...

  3. The DIORAMA Neutron Emitter

    Energy Technology Data Exchange (ETDEWEB)

    Terry, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    Emission of neutrons in a given event is modeled by the DioramaEmitterNeutron object, a subclass of the abstract DioramaEmitterModule object. The GenerateEmission method of this object is the entry point for generation of a neutron population for a given event. Shown in table 1, this method requires a number of parameters to be defined in the event definition.

  4. Effects of neutrino emissivity on the cooling of neutron stars in the presence of a strong magnetic field

    Science.gov (United States)

    Coelho, Eduardo Lenho; Chiapparini, Marcelo; Negreiros, Rodrigo Picanço

    2015-12-01

    One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 1014 G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 1018 G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. The matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.

  5. Hard-tail emission in the soft state of low-mass X-ray binaries and their relation to the neutron star magnetic field

    Science.gov (United States)

    Asai, Kazumi; Mihara, Tatehiro; Mastuoka, Masaru; Sugizaki, Mutsumi

    2016-08-01

    Average hard-tail X-ray emission in the soft state of nine bright Atoll low-mass X-ray binaries containing a neutron star (NS-LMXBs) are investigated by using the light curves of MAXI/GSC (Gas Slit Camera) and Swift/BAT (Burst Alert Telescope). Two sources (4U 1820-30 and 4U 1735-44) exhibit a large hardness ratio (15-50 keV/2-10 keV: HR >0.1), while the other sources distribute at HR ≲ 0.1. In either case, HR does not depend on the 2-10 keV luminosity. Therefore the difference of HR is due to the 15-50 keV luminosity, which is Comptonized emission. The Compton cloud is assumed to be around the neutron star. The size of the Compton cloud would affect the value of HR. Although the magnetic field of an NS-LMXB is weak, we could expect a larger Alfvén radius than the innermost stable circular orbit or the neutron star radius in some sources. In such cases, the accretion inflow is stopped at the Alfvén radius and would create a relatively large Compton cloud. This would result in the observed larger Comptonized emission. By attributing the difference of the size of Compton cloud to the Alfvén radius, we can estimate the magnetic fields of neutron stars. The obtained lower/upper limits are consistent with the previous results.

  6. A search for iron emission lines in the Chandra X-ray spectra of neutron star low-mass X-ray binaries

    CERN Document Server

    Cackett, E M; Homan, J; Van der Klis, M; Lewin, W H G; Méndez, M; Raymond, J; Steeghs, D; Wijnands, R

    2008-01-01

    While iron emission lines are well studied in black hole systems, both in X-ray binaries and Active Galactic Nuclei, there has been less of a focus on these lines in neutron star low-mass X-ray binaries (LMXBs). However, recent observations with Suzaku and XMM-Newton have revealed broad asymmetric iron line profiles in 4 neutron star LMXBs, confirming an inner disk origin for these lines in neutron star systems. Here, we present a search for iron lines in 6 neutron star LMXBs. For each object we have simultaneous Chandra and RXTE observations at 2 separate epochs, allowing for both a high resolution spectrum, as well as broadband spectral coverage. Out of the six objects in the survey, we only find significant iron lines in two of the objects, GX 17+2 and GX 349+2. However, we cannot rule out that there are weak, broad lines present in the other sources. The equivalent width of the line in GX 17+2 is consistent between the 2 epochs, while in GX 349+2 the line equivalent width increases by a factor of ~3 betwe...

  7. Hard-tail emission in the soft state of low-mass X-ray binaries and their relation to the neutron star magnetic field

    CERN Document Server

    Asai, Kazumi; Mastuoka, Masaru; Sugizaki, Mutsumi

    2016-01-01

    Average hard-tail X-ray emission in the soft state of nine bright Atoll low-mass X-ray binaries containing a neutron star (NS-LMXBs) are investigated by using the light curves of MAXI/GSC and Swift/BAT. Two sources (4U 1820$-$30 and 4U 1735$-$44) exhibit large hardness ratio (15--50 keV$/$2--10 keV: {\\it HR} $>$ 0.1), while the other sources distribute at {\\it HR} $\\ltsim$ 0.1. In either case, {\\it HR} does not depend on the 2--10 keV luminosity. Therefore the difference of {\\it HR} is due to the 15--50 keV luminosity, which is Comptonized emission. The Compton cloud is assumed to be around the neutron star. The size of the Compton cloud would affect the value of {\\it HR}. Although the magnetic field of NS-LMXB is weak, we could expect a larger Alfv\\'{e}n radius than the innermost stable circular orbit or the neutron star radius in some sources. In such cases, the accretion inflow is stopped at the Alfv\\'{e}n radius and would create relatively large Compton cloud. It would result in the observed larger Compto...

  8. Characterization of the energy distribution of neutrons generated by 5 MeV protons on a thick beryllium target at different emission angles

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P., E-mail: paolo.colautti@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), Via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Esposito, J., E-mail: juan.esposito@tin.it [INFN, Laboratori Nazionali di Legnaro (LNL), Via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Fazzi, A.; Introini, M.V.; Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Neutron energy spectra at different emission angles, between 0 Degree-Sign and 120 Degree-Sign from the Be(p,xn) reaction generated by a beryllium thick-target bombarded with 5 MeV protons, have been measured at the Legnaro Laboratories (LNL) of the Italian National Institute for Nuclear Physics research (INFN). A new and quite compact recoil-proton spectrometer, based on a monolithic silicon telescope, coupled to a polyethylene converter, was efficiently used with respect to the traditional Time-of-Flight (TOF) technique. The measured distributions of recoil-protons were processed through an iterative unfolding algorithm in order to determine the neutron energy spectra at all the angles accounted for. The neutron energy spectrum measured at 0 Degree-Sign resulted to be in good agreement with the only one so far available at the requested energy and measured years ago with TOF technique. Moreover, the results obtained at different emission angles resulted to be consistent with detailed past measurements performed at 4 MeV protons at the same angles by TOF techniques.

  9. Searches for T-odd correlations in the emission of prompt neutrons in the polarized-neutron-induced fission of 235U nuclei

    Science.gov (United States)

    Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2010-07-01

    The results of an experiment aimed at searches for formally T-odd correlations in the angular distribution of prompt neutrons from the fission of 235U nuclei are presented. The experiment was performed in the MEPHISTO polarized cold-neutron beam from the Munich FRMII reactor. The correlation coefficient proved to be (-3.5 ± 3.4) × 10-5 for a three-vector correlation (TRI effect) and (-5.0 ± 3.4) × 10-5 for a five-vector correlation (ROT effect). This means that no significant effects were discovered within the measurement errors. A comparison with the analogous effects in the ternary fission of 235U nuclei was performed. The values of the corresponding correlations in the angular distribution of prompt fission gamma rays were refined.

  10. Production of very neutron-deficient isotopes near sup 1 sup 0 sup 0 Sn via reactions involving light-particle and cluster emission

    CERN Document Server

    La Commara, M; D'Onofrio, A; Gadea, A; Glogowski, M; Jarillo-Herrero, P; Belcari, N; Borcea, R; De Angelis, G; Fahlander, C; aGórska, M; Grawe, H; Hellström, M; Kirchner, R; Rejmund, M; Roca, V; Roeckl, E; Romano, M; Rykaczewski, K; Schmidt, K; Terrasi, F

    2000-01-01

    The production of very neutron-deficient isotopes near sup 1 sup 0 sup 0 Sn has been investigated by using on-line mass separation of evaporation residues produced by heavy-ion induced complete-fusion reactions. We measured the cross sections for sup 9 sup 9 Cd, sup 1 sup 0 sup 0 In, sup 1 sup 0 sup 1 Sn and sup 1 sup 0 sup 2 In via sup 5 sup 8 Ni+ sup 5 sup 8 Ni fusion reactions followed by cluster emission, and via sup 5 sup 8 Ni+ sup 5 sup 0 Cr fusion reactions accompanied by evaporation of protons, neutrons or alpha particles. Both types of reactions yield similar cross sections for the production of exotic nuclei near sup 1 sup 0 sup 0 Sn. The data are discussed in comparison with results obtained from statistical-model calculations.

  11. Emission properties of InGaAs/GaAs heterostructures with quantum wells and dots after irradiation with neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Baidus, N. V.; Vikhrova, O. V., E-mail: vikhrova@nifti.unn.ru; Zvonkov, B. N.; Malysheva, E. I. [Lobachevsky State University of Nizhni Novgorod, Physical-Technical Research Institute (Russian Federation); Trufanov, A. N. [Sedakov Research Institute of Measurement Systems, GSP-486 (Russian Federation)

    2015-03-15

    The effect of neutron radiation on the luminescence of InGaAs/GaAs heterostructures with quantum wells and quantum dots is studied. It is found that neutron radiation results both in the formation of defects and in the radiation-induced annealing of growth-related defects. Quantum dots are more stable to neutron radiation in comparison with quantum wells. It is shown that the layer of InGaAs/GaAs quantum dots located near the surface is less sensitive to irradiation with neutrons compared with a similar layer located in the bulk. In the first case, one can observe an increase in the photoluminescence and electroluminescence intensities after irradiation with neutrons, which is related to the effects of radiation-induced annealing. The pronounced effect of elastic strains in the InGaAs/GaAs quantum wells on the extent of quenching of the photoluminescence intensity upon irradiation with neutrons is revealed. In heterostructures with quantum wells, the effect of radiation-induced annealing manifests itself in a shift of the photoluminescence peak to longer wavelengths as a result of a decrease in elastic strains upon irradiation with neutrons. Doping of the GaAs buffer layer with silicon also reduces the value of this spectral shift.

  12. The {beta}2p decay mechanism of {sup 31}Ar[23.40.Hc; 27.30.+t; Radioactivity 31Ar({beta}+p) [from Ca(p,3pxn) reaction]; Measured {beta}-delayed protons Ep, E2p; pp energy and angular correlations; 31Ar deduced {beta}1p and {beta}2p decay channels; 30S, 31Cl deduced levels, T, {pi}, branching ratios; CaO target; On-line mass separation; Double sided Si strip detector; Si p-i-n detectors; Surface barrier Si detector

    Energy Technology Data Exchange (ETDEWEB)

    Fynbo, H.O.U.; Borge, M.J.G.; Axelsson, L.; Aeystoe, J.; Bergmann, U.C.; Fraile, L.M.; Honkanen, A.; Hornshoej, P.; Jading, Y.; Jokinen, A.; Jonson, B.; Martel, I.; Mukha, I.; Nilsson, T.; Nyman, G.; Oinonen, M.; Piqueras, I.; Riisager, K.; Siiskonen, T.; Smedberg, M.H.; Tengblad, O.; Thaysen, J.; Wenander, F

    2000-09-11

    We have measured the beta-decay of {sup 31}Ar with a high granularity setup sensitive to multiparticle decay branches. Two-proton emission is observed from the isobaric analog state in {sup 31}Cl to the four lowest states in {sup 29}P and furthermore from a large number of states fed in Gamow-Teller transitions. The mechanism of two-proton emission is studied via energy and angular correlations between the two protons. In all cases the mechanism is found to be sequential yielding information about states in {sup 30}S up to 8 MeV excitation energy. Improved data on the {beta}-delayed one-proton branches together with the two-proton data provide precise information about the beta-strength distribution up to 15 MeV excitation energy.

  13. Characteristic X ray emission in gadolinium following neutron capture as an improved method of in vivo measurement: A comparison between feasibility experiment and Monte-Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Graefe, J.L., E-mail: grafejl@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1 (Canada); McNeill, F.E.; Chettle, D.R.; Byun, S.H. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1 (Canada)

    2012-06-15

    We have extended our previous experimental and Monte-Carlo work on the detection of Gd by in vivo prompt gamma neutron activation analysis to include X ray emission. In this paper we incorporate the characteristic K X ray emission that occurs due to internal conversion from the de-excitation of the {sup 155}Gd(n,{gamma}){sup 156}Gd{sup Asterisk-Operator} and {sup 157}Gd(n,{gamma}){sup 158}Gd{sup Asterisk-Operator} reactions. The experimental Gd K X ray intensities are compared with the Monte-Carlo model and demonstrate excellent agreement. The experiment was consistently higher than simulation by 5%. For the detection system used, the Gd K{sub {alpha}} X rays are about 1.5 times as intense as the most dominant prompt gamma ray from the {sup 157}Gd(n,{gamma}) reaction. The partial elemental cross section for K{sub {alpha}} X ray emission is {approx}1.35 times larger than that of the most dominant prompt gamma ray from neutron capture of {sup 157}Gd alone. The use of the K X rays was found to improve the sensitivity of the proposed system to measure Gd retention after exposure to a Gd-based MRI contrast agent. The detection limit in phantoms was {approx}30% better when the X ray signal was incorporated into the analysis method, reducing the detection limit from 0.89 to 0.64 ppm Gd.

  14. Effects of neutrino emissivity on the cooling of neutron stars in the presence of a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Eduardo Lenho, E-mail: eduardo.coelho@uva.br [Universidade Veiga de Almeida, 108 Ibituruna St., 20271-020, Rio de Janeiro (Brazil); Chiapparini, Marcelo [Instituto de Física, Universidade do Estado do Rio de Janeiro, 524 São Francisco Xavier St., 20271-020, Rio de Janeiro (Brazil); Negreiros, Rodrigo Picanço [Instituto de Física, Universidade Federal Fluminense, Gal. Milton Tavares de Souza Ave., 24210-346, Rio de Janeiro (Brazil)

    2015-12-17

    One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 10{sup 14} G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 10{sup 18} G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. The matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.

  15. Emission probabilities of {gamma}-rays from {sup 238}Np and their use for determination of the thermal neutron capture cross section of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, A. [Irfu, CEA-Saclay, 91191 Gif-sur-Yvette (France)], E-mail: aletourneau@cea.fr; Marie, F. [Irfu, CEA-Saclay, 91191 Gif-sur-Yvette (France); Mutti, P. [Institut Laue-Langevin, 38000 Grenoble (France); AlMahamid, I. [Wadsworth Center, Laboratory of Inorganic and Nuclear Chemistry, Albany, NY (United States)

    2010-03-15

    The relevant absolute {gamma}-ray emission probabilities from the {beta}-decay of {sup 238}Np were measured by means of {alpha}- and {gamma}-spectroscopic techniques. We obtained values of (25.6{+-}0.4)%, (8.9{+-}0.2)% and (18.8{+-}0.3)% for the 984.45-, 1025.87- and 1028.54-keV {gamma}-rays, respectively, in agreement with the previous measured ones. These intensities were used to deduce the thermal neutron capture cross section of {sup 237}Np for which a value of (182.2{+-}4.5) b is obtained higher by 11% than the recommended value.

  16. β-decay half-lives and β-delayed neutron emission probabilities of nuclei in the region A≲110, relevant for the r process

    Science.gov (United States)

    Pereira, J.; Hennrich, S.; Aprahamian, A.; Arndt, O.; Becerril, A.; Elliot, T.; Estrade, A.; Galaviz, D.; Kessler, R.; Kratz, K.-L.; Lorusso, G.; Mantica, P. F.; Matos, M.; Möller, P.; Montes, F.; Pfeiffer, B.; Schatz, H.; Schertz, F.; Schnorrenberger, L.; Smith, E.; Stolz, A.; Quinn, M.; Walters, W. B.; Wöhr, A.

    2009-03-01

    Measurements of β-decay properties of A≲110 r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory at Michigan State University. β-decay half-lives for Y105, Zr106,107, and Mo111, along with β-delayed neutron emission probabilities of Y104, Mo109,110 and upper limits for Y105, Zr103-107, and Mo108,111 have been measured for the first time. Studies on the basis of the quasi-random-phase approximation are used to analyze the ground-state deformation of these nuclei.

  17. Neutron emission from electromagnetic dissociation of Pb nuclei at √sNN = 2.76 TeV measured with the ALICE ZDC

    Directory of Open Access Journals (Sweden)

    Cortese P.

    2014-04-01

    The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at √sNN = 2.76 TeV, with neutron emission, are σsingle EMD = 187:4 ± 0.2 (stat.−11.2+13.2 (syst. b and σmutual EMD = 5.7 ± 0.1 (stat. ±0.4 (syst. b, respectively [1]. This is the first measurement of electromagnetic dissociation of 208Pb nuclei at the LHC energies, allowing a test of electromagnetic dissociation theory in a new energy regime. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model.

  18. Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, K., E-mail: karol.malinowski@ncbj.gov.pl; Sadowski, M. J.; Szydlowski, A. [National Centre for Nuclear Research (NCBJ), 05-400 Otwock (Poland); Institute of Plasma Physics and Laser Microfusion (IFPiLM), 01-497 Warsaw (Poland); Skladnik-Sadowska, E.; Czaus, K.; Kwiatkowski, R.; Zaloga, D. [National Centre for Nuclear Research (NCBJ), 05-400 Otwock (Poland); Paduch, M.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion (IFPiLM), 01-497 Warsaw (Poland)

    2015-01-15

    The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in “sandwiches” of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The “sandwiches” were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.

  19. Light charged particle emission induced by fast neutrons (25 to 65 MeV) on sup 5 sup 9 Co

    CERN Document Server

    Nica, N; Raeymackers, E; Slypen, I; Meulders, J P; Corcalciuc, V

    2002-01-01

    Double-differential cross sections (energy spectra) for the proton, deuteron, triton and alpha-particle production in fast neutron induced reactions on cobalt are reported for ten incident neutron energies between 25 and 65 MeV. Energy spectra were obtained at nine laboratory angles between 20 deg. and 160 deg. and extrapolated or interpolated to other ten angles covering uniformly the laboratory angular domain of 0 deg. to 180 deg. The experimental set-up and procedures for data reduction including corrections and normalization are presented and discussed. Based on the measured double-differential cross sections, energy-differential and total cross sections are reported as well. Experimental cross sections are compared with similar available data from neutron- and proton-induced reactions. Theoretical calculations based on semiclassical exciton model and Hauser-Feshbach statistical theory (GNASH code) and intranuclear cascade model for nucleon-induced interactions (INCL3 code) were done and compared to the e...

  20. Spitzer Reveals Infrared Optically Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    Science.gov (United States)

    Migliari, S.; Tomsick, J. A.; Maccarone, T. J.; Gallo, E.; Fender, R. P.; Nelemans, G.; Russell, D. M.

    2006-05-01

    Spitzer observations of the neutron star (ultracompact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of nonthermal origin in the range 3.5-8 μm. The mid-infrared spectrum is well fit by a power law with spectral index of α=-0.57+/-0.04 (where the flux density is Fν~να). Given the ultracompact nature of the binary system, we exclude the possibility that either the companion star or the accretion disk can be the origin of the observed emission. These observations represent the first spectral evidence for a compact jet in a low-luminosity neutron star XRB and furthermore of the presence, already observed in two black hole (BH) XRBs, of a ``break'' in the synchrotron spectrum of such compact jets. We can derive a firm upper limit on the break frequency of the spectrum of νthin=3.7×1013 Hz, which is lower than that observed in BH XRBs by at least a factor of 10. Assuming a high-energy cooling cutoff at ~1 keV, we estimate a total (integrated up to X-rays) jet power to X-ray bolometric luminosity ratio of ~5%, much lower than that inferred in BHs.

  1. Spitzer Reveals Infrared Optically-Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    CERN Document Server

    Migliari, S; Gallo, E; Maccarone, T J; Nelemans, G; Russell, D M; Tomsick, J A

    2006-01-01

    Spitzer observations of the neutron star (ultra-compact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of non-thermal origin in the range 3.5-8 um. The mid-infrared spectrum is well fit by a power law with spectral index of alpha=-0.57+/-0.04 (where the flux density is F_nu \\propto nu^(alpha)). Given the ultra-compact nature of the binary system, we exclude the possibility that either the companion star or the accretion disk can be the origin of the observed emission. These observations represent the first spectral evidence for a compact jet in a low-luminosity neutron star XRB and furthermore of the presence, already observed in two black hole (BH) XRBs, of a `break' in the synchrotron spectrum of such compact jets. We can derive a firm upper limit on the break frequency of the spectrum of nu_thin=3.7x10^(13) Hz, which is lower than that observed in BH XRBs by at least a factor of 10. Assuming a high-energy cooling cutoff at ~1 keV, we estimate a total (integrated up to X-rays...

  2. The Variable Quiescent X-Ray Emission of the Neutron Star Transient XTE J1701-462

    NARCIS (Netherlands)

    Fridriksson, Joel K.; Homan, J.; Wijnands, R.; Cackett, E. M.; Degenaar, N.; Mendez, M.; Altamirano, D.; Brown, E. F.; Belloni, T. M.; Lewin, W. H. G.

    2011-01-01

    We have monitored the cooling of the neutron star in the transient low-mass X-ray binary XTE J1701-462 with Chandra and XMM-Newton since the source entered quiescence in 2007 after an exceptionally luminous 19-month outburst. A recent Chandra observation made almost 1200 days into quiescence indicat

  3. Gravitational Wave transient signal emission via Ekman Pumping in Neutron Stars during post-glitch relaxation phase

    CERN Document Server

    Singh, Avneet

    2016-01-01

    Glitches in the rotational frequency of a spinning neutron star could be promising sources of gravitational wave signals lasting between a few {\\mu}s to a few weeks. The emitted signals and their properties depend upon the internal properties of the neutron star. In stellar models that assume a super-fluid core for the neutron star, the most important physical properties are the viscosity of the super-fluid, the stratification of flow in the equilibrium state and the adiabatic sound speed. Such models were previously studied by van Eysden and Melatos (2008) and Bennett et al. (2010) following simple assumptions on all contributing factors, in which the post-glitch relaxation phase could be driven by the well-known process of 'Ekman pumping'. We explore the hydrodynamic properties of the flow of super-fluid during this phase following more relaxed assumptions on the stratification of flow and/or the pressure-density gradients within the neutron star than previously studied. We calculate the time-scales of dura...

  4. The Variable Quiescent X-Ray Emission of the Neutron Star Transient XTE J1701-462

    Science.gov (United States)

    Fridriksson, Joel K.; Homan, J.; Wijnands, R.; Cackett, E. M.; Degenaar, N.; Mendez, M.; Altamirano, D.; Brown, E. F.; Belloni, T. M.; Lewin, W. H. G.

    2011-01-01

    We have monitored the cooling of the neutron star in the transient low-mass X-ray binary XTE J1701-462 with Chandra and XMM-Newton since the source entered quiescence in 2007 after an exceptionally luminous 19-month outburst. A recent Chandra observation made almost 1200 days into quiescence indicates that the neutron star crust is likely still slowly cooling toward thermal equilibrium with the core. The current surface temperature is high compared to other quiescent neutron star transients, with an implied bolometric thermal flux of 5×1033 erg/s. The overall cooling curve seems to have followed a broken power-law shape as predicted by theoretical models, although the observed break is considerably earlier than what is expected from theory. After rapid cooling during the first 200 days of quiescence---strongly indicating a highly conductive neutron star crust---the source unexpectedly showed a large temporary increase in both thermal and non-thermal flux. Prompted by this we conducted a Swift monitoring program of the source during April-October 2010, with short observations taking place once every two weeks. During the program we detected short-term flares up to at least 1×1035 erg/s, a factor of 20 higher than the normal quiescent level. We compare this flaring---presumably arising from episodic low-level accretion---with the behavior observed from faint Galactic transients, and discuss whether flaring in XTE J1701-462 can significantly affect the cooling of the source and whether it can to some extent explain the high temperature of the neutron star core implied by our Chandra observations.

  5. Gravitational wave transient signal emission via Ekman pumping in neutron stars during post-glitch relaxation phase

    Science.gov (United States)

    Singh, Avneet

    2017-01-01

    Glitches in the rotational frequency of a spinning neutron star could be promising sources of gravitational wave signals lasting between a few microseconds to a few weeks. The emitted signals and their properties depend upon the internal properties of the neutron star. In neutron stars, the most important physical properties of the fluid core are the viscosity of the fluid, the stratification of flow in the equilibrium state, and the adiabatic sound speed. Such models were previously studied [C. A. van Eysden and A. Melatos, Classical Quantum Gravity 25, 225020 (2008, 10.1088/0264-9381/25/22/225020); M. F. Bennett, C. A. van Eysden, and A. Melatos, Mon. Not. R. Astron. Soc. 409, 1705 (2010), 10.1111/j.1365-2966.2010.17416.x] following simple assumptions on all contributing factors, in which the post-glitch relaxation phase could be driven by the well-known process of Ekman pumping [G. Walin, J. Fluid Mech. 36, 289 (1969, 10.1017/S0022112069001662); M. Abney and R. I. Epstein, J. Fluid Mech. 312, 327 (1996), 10.1017/S0022112096002030]. We explore the hydrodynamic properties of the flow of fluid during this phase following more relaxed assumptions on the stratification of flow and the pressure-density gradients within the neutron star than previously studied. We calculate the time scales of duration as well as the amplitudes of the resulting gravitational wave signals, and we detail their dependence on the physical properties of the fluid core. We find that it is possible for the neutron star to emit gravitational wave signals in a wide range of decay time scales and within the detection sensitivity of aLIGO for selected domains of physical parameters.

  6. The Variable Quiescent X-Ray Emission of the Neutron Star Transient XTE J1701-462

    CERN Document Server

    Fridriksson, Joel K; Wijnands, Rudy; Cackett, Edward M; Altamirano, Diego; Brown, Edward F; Degenaar, Nathalie; Mendez, Mariano; Belloni, Tomaso M

    2011-01-01

    We present the results of continued monitoring of the quiescent neutron star low-mass X-ray binary XTE J1701-462 with Chandra and Swift. A new Chandra observation from 2010 October extends our tracking of the neutron star surface temperature from ~800 days to ~1160 days since the end of an exceptionally luminous 19 month outburst. This observation indicates that the neutron star crust may still be slowly cooling toward thermal equilibrium with the core; another observation further into quiescence is needed to verify this. The shape of the cooling curve is consistent with that of a broken power law, although an exponential decay to a constant level cannot be excluded with the present data. To investigate possible low-level activity we conducted a monitoring campaign of XTE J1701-462 with Swift during 2010 April-October. Short-term flares - presumably arising from episodic low-level accretion - were observed up to a luminosity of ~1e35 erg/s, ~20 times higher than the normal quiescent level. We conclude that fl...

  7. Experiment LEND of the NASA Lunar Reconnaissance Orbiter for high-resolution mapping of neutron emission of the Moon.

    Science.gov (United States)

    Mitrofanov, I G; Sanin, A B; Golovin, D V; Litvak, M L; Konovalov, A A; Kozyrev, A S; Malakhov, A V; Mokrousov, M I; Tretyakov, V I; Troshin, V S; Uvarov, V N; Varenikov, A B; Vostrukhin, A A; Shevchenko, V V; Shvetsov, V N; Krylov, A R; Timoshenko, G N; Bobrovnitsky, Y I; Tomilina, T M; Grebennikov, A S; Kazakov, L L; Sagdeev, R Z; Milikh, G N; Bartels, A; Chin, G; Floyd, S; Garvin, J; Keller, J; McClanahan, T; Trombka, J; Boynton, W; Harshman, K; Starr, R; Evans, L

    2008-08-01

    The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed.

  8. Investigation of background in large-area neutron detectors due to alpha emission from impurities in aluminium

    CERN Document Server

    Birch, J; Clergeau, J -F; van Esch, P; Ferraton, M; Guerard, B; Hall-Wilton, R; Hultman, L; Höglund, C; Jensen, J; Khaplanov, A; Piscitelli, F

    2015-01-01

    Thermal neutron detector based on films of $^{10}$B$_4$C have been developed as an alternative to $^3$He detectors. In particular, The Multi-Grid detector concept is considered for future large area detectors for ESS and ILL instruments. An excellent signal-to-background ratio is essential to attain expected scientific results. Aluminium is the most natural material for the mechanical structure of of the Multi-Grid detector and other similar concepts due to its mechanical and neutronic properties. Due to natural concentration of $\\alpha$ emitters, however, the background from $\\alpha$ particles misidentified as neutrons can be unacceptably high. We present our experience operating a detector prototype affected by this issue. Monte Carlo simulations have been used to confirm the background as $\\alpha$ particles. The issues have been addressed in the more recent implementations of the Multi-Grid detector by the use of purified aluminium as well as Ni-plating of standard aluminium. The result is the reduction in...

  9. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kawano, Toshihiko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baramsai, Bayarbadrakh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haight, Robert Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jandel, Marian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vieira, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilhelmy, Jerry B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Becker, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Ching-Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Krticka, Milan [Charles Univ., Prague (Czech Republic)

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  10. Evidence for Quasi-Periodic Oscillations in the Recurrent Emission from Magnetars and their Implications on the Neutron Star Properties and Equation of State

    CERN Document Server

    El-Mezeini, Ahmed M

    2010-01-01

    We present an analysis of highly magnetized neutron stars "magnetars", in search for high frequency oscillations in the recurrent emission from the soft gamma repeater SGR 1806-20, and we discuss the physical interpretation of these oscillations and its implications on the neutron star properties and structure. We present evidence for Quasi-Periodic Oscillations (QPOs) in the recurrent outburst activity from SGR 1806-20 using RXTE observations. By searching for timing signals at the frequencies of the QPOs discovered in the 2004 December 27 giant flare from the source, we find three QPOs at 84, 103, and 648 Hz in three different bursts. The first two QPOs lie within 8.85% and 11.83%, respectively, from the 92 Hz QPO detected in the giant flare. The third QPO lie within 3.75% from the 625 Hz QPO also detected in the same flare. The detected QPOs are found in bursts with different durations, morphologies, and brightness, and are vindicated by Monte Carlo simulations. We also find evidence for candidate QPOs at ...

  11. International key comparison of measurements of neutron source emission rate (1999-2005): CCRI(III)-K9.AmBe

    Science.gov (United States)

    Roberts, N. J.; Jones, L. N.; Wang, Z.; Liu, Y.; Wang, Q.; Chen, X.; Luo, H.; Rong, C.; Králik, M.; Park, H.; Choi, K. O.; Pereira, W. W.; da Fonseca, E. S.; Cassette, P.; Dewey, M. S.; Moiseev, N. N.; Kharitonov, I. A.

    2011-01-01

    Section III (neutron measurements) of the Comité Consultatif des Rayonnements Ionisants, CCRI, conducted a key comparison of primary measurements of the neutron emission rate of an 241Am-Be(α,n) radionuclide source. A single 241Am-Be(α,n) source was circulated to all the participants between 1999 and 2005. Eight laboratories participated—the CIAE (China), CMI (Czech Republic), KRISS (Republic of Korea), LNMRI (Brazil), LNE-LNHB (France), NIST (USA), NPL (UK) and the VNIIM (Russian Federation)—with the NPL making their measurements at the start and repeating them near the end of the exercise to verify the stability of the source. Each laboratory reported the emission rate into 4π sr together with a detailed uncertainty budget. All participants used the manganese bath technique, with the VNIIM also making measurements using an associated particle technique. The CMI, KRISS, VNIIM, and later the NPL, also measured the anisotropy of the source although this was not a formal part of the comparison. The first draft report was released in May 2006 and having been discussed and modified by the participants and subsequently reviewed by the CCRI(III), the present paper is now the final report of the comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section III, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  12. Neutron stimulated emission computed tomography applied to the assessment of calcium deposition due to the presence of microcalcifications associated with breast cancer; Tomografia computadorizada de emissao estimulada por neutrons aplicada para avaliar a deposicao de calcio devido a presenca de microcalcificacoes associadas ao cancer de mama

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Rodrigo S.S.; Yoriyaz, Helio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, (SP) (Brazil)

    2011-07-01

    In this paper we presented an application of the Neutron Stimulated Emission Computed Tomography (NSECT), which uses a thin beam of fast neutrons to stimulate stable nuclei in a sample, emitting characteristic gamma radiation. The photon energy is unique and it is used to identify the emitting nuclei. This technique was applied for evaluating the calcium isotopic composition changing due to the development of breast microcalcifications. A particular situation was simulated in which clustered microcalcifications were modeled with diameters less than 1.40 mm. In this case, neutron beam breast spectroscopy was successful in detecting the counting changes in the photon emission spectra for energies, which are characteristics of 4{sup 0C}a isotope in a low deposited dose rate. (author)

  13. Neutron/muon correlation functions to improve neutron detection capabilities outside nuclear facilities

    Science.gov (United States)

    Ordinario, Donald Thomas

    The natural neutron background rate is largely due to cosmic ray interactions in the atmosphere and the subsequent neutron emission from the interaction products. The neutron background is part of a larger cosmic radiation shower that also includes electrons, gamma rays, and muons. Since neutrons interact much differently than muons in building materials, the muon and neutron fluence rates in the natural background can be compared to the measured muon and neutron fluence rate when shielded by common building materials. The simultaneous measurement of muon and neutron fluence rates might allow for an earlier identification of man-made neutron sources, such as hidden nuclear materials. This study compares natural background neutron rates to computer simulated neutron rates shielded by common structural and building materials. The characteristic differences between neutrons and muons resulted in different attenuation properties under the same shielded conditions. Correlation functions between cosmic ray generated neutrons and muons are then used to predict neutron fluence rates in different urban environments.

  14. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of 34U

    Science.gov (United States)

    Montoya, M.; Rojas, J.; Lobato, I.

    2008-12-01

    The kinetic energy distribution as a function of mass of final fragments (m) from low energy fission of $^{234}U$, measured with the Lohengrin spectrometer by Belhafaf et al. presents a peak around m=108 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number; and the second peak to the distribution of the primary fragment kinetic energy. Nevertheless, the theoretical calculations related to primary distribution made by Faust et al. do not result in a peak around m = 122. In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without peaks on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on the standard deviation of the kinetic energy distribution around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as big as the measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass, the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass.

  15. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of {sup 234}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M.; Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Lobato, I. [Facultad de Ciencias, Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Apartado Postal 31-139, Lima (Peru)]. e-mail: mmontoya@ipen.gob.pe

    2008-07-01

    The standard deviation of the final kinetic energy distribution ({sigma}{sub e}) as a function of mass of final fragments (m) from low energy fission of {sup 234}U, measured with the Lohengrin spectrometer by Belhafaf et al., presents a peak around m = 109 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number, i.e. there is no peak on the standard deviation of the primary kinetic energy distribution ({sigma}{sub E}) as a function of primary fragment mass (A). The second peak is attributed to a real peak on {sigma}{sub E}(A). However, theoretical calculations related to primary distributions made by H.R. Faust and Z. Bao do not suggest any peak on {sigma}{sub E}(A). In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without structures on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on {sigma}{sub e} (m) curve around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as great as that measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass Y(m), the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass. From our results we conclude that there are no peaks on the {sigma}{sub E} (A) curve, and the observed peaks on {sigma}{sub e} (m) are due to the emitted neutron multiplicity and the variation of the average fragment kinetic energy as a function of primary fragment mass. (Author)

  16. Neutrino and Electron-positron Pair Emission from Phase-induced Collapse of Neutron Stars to Quark Stars

    CERN Document Server

    Cheng, K S

    2010-01-01

    We study the energy released from phase-transition induced collapse of neutron stars, which results in large amplitude stellar oscillations. To model this process we use a Newtonian hydrodynamic code, with a high resolution shock-capturing scheme. The physical process considered is a sudden phase transition from normal nuclear matter to a mixed phase of quark and nuclear matter. We show that both the temperature and the density at the neutrinosphere oscillate with time. However, they are nearly 180 degree out of phase. Consequently, extremely intense, pulsating neutrino/antineutrino and leptonic pair fluxes will be emitted. During this stage several mass ejecta can be ejected from the stellar surface by the neutrinos and antineutrinos. These ejecta can be further accelerated to relativistic speeds by the electron/positron pairs, created by the neutrino and antineutrino annihilation outside the stellar surface. We suggest that this process may be a possible mechanism for short Gamma-Ray Bursts.

  17. Spectrometry and emission tomographic image reconstruction stimulated by neutrons via EM algorithm and Monte Carlo Method; Espectrometria e reconstrucao de imagens tomograficas de emissao estimulada por neutrons via algoritmo EM e metodo de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Rodrigo Sartorelo Salemi

    2014-07-01

    The NSECT (Neutron Stimulated Emission Computed Tomography) figures as a new spectrographic technique able to evaluate in vivo the concentration of elements using the inelastic scattering reaction (n,n'). Since its introduction, several improvements have been proposed with the aim of investigating applications for clinical diagnosis and reduction of absorbed dose associated with CT acquisition. In this context, two new diagnostic applications are presented using spectroscopic and tomographic approaches from NSECT. A new methodology has also been proposed to optimize the sinogram sampling that is directly related to the quality of the reconstruction by the irradiation protocol. The studies were developed based on simulations with MCNP5 code. Diagnosis of Renal Cell Carcinoma (RCC) and the detection of breast microcalcifications were evaluated in studies conducted using a human phantom. The obtained results demonstrate the ability of the NSECT technique to detect changes in the composition of the modeled tissues as a function of the development of evaluated pathologies. The proposed method for optimizing sinograms was able to analytically simulate the composition of the irradiated medium allowing the assessment of quality of reconstruction and effective dose in terms of the sampling rate. However, future research must be conducted to quantify the sensitivity of detection according to the selected elements. (author)

  18. On the Origin of the Near-infrared Emission from the Neutron-star Low-mass X-Ray Binary GX 9+1

    Science.gov (United States)

    van den Berg, Maureen; Homan, Jeroen

    2017-01-01

    We have determined an improved position for the luminous persistent neutron-star low-mass X-ray binary and atoll source GX 9+1 from archival Chandra X-ray Observatory data. The new position significantly differs from a previously published Chandra position for this source. Based on the revised X-ray position we have identified a new near-infrared (NIR) counterpart to GX 9+1 in K s -band images obtained with the PANIC and FourStar cameras on the Magellan Baade Telescope. NIR spectra of this {K}s=16.5+/- 0.1 mag star, taken with the FIRE spectrograph on the Baade Telescope, show a strong Br γ emission line, which is a clear signature that we discovered the true NIR counterpart to GX 9+1. The mass donor in GX 9+1 cannot be a late-type giant, as such a star would be brighter than the estimated absolute K s magnitude of the NIR counterpart. The slope of the dereddened NIR spectrum is poorly constrained due to uncertainties in the column density N H and NIR extinction. Considering the source’s distance and X-ray luminosity, we argue that N H likely lies near the high end of the previously suggested range. If this is indeed the case, the NIR spectrum is consistent with thermal emission from a heated accretion disk, possibly with a contribution from the secondary. In this respect, GX 9+1 is similar to other bright atolls and the Z sources, whose NIR spectra do not show the slope that is expected for a dominant contribution from optically thin synchrotron emission from the inner regions of a jet. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. Constraints on Thermal X-Ray Radiation from SAX J1808.4-3658 and Implications for Neutron Star Neutrino Emission

    NARCIS (Netherlands)

    C.O. Heinke; P.G. Jonker; R. Wijnands; R.E. Taam

    2007-01-01

    Thermal X-ray radiation from neutron star soft X-ray transients in quiescence provides the strongest constraints on the cooling rates of neutron stars and thus on the interior composition and properties of matter in the cores of neutron stars. We analyze new (2006) and archival (2001) XMM-Newton obs

  20. Nonlinear reflection from the surface of neutron stars and features of radio emission from the pulsar in the Crab nebula

    Science.gov (United States)

    Kontorovich, V. M.

    2016-08-01

    There are no explanations for the high-frequency component of the emission from the pulsar in the Crab nebula, but it may be a manifestation of instability in nonlinear reflection from the star's surface. Radiation from relativistic positrons flying from the magnetosphere to the star and accelerated by the electric field of the polar gap is reflected. The instability involves stimulated scattering on surface waves.

  1. Neutron-fragment angular correlations in /sup 235/U(n/sub th/,f)

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C.B.

    1986-01-01

    Neutron-fragment angular correlations in /sup 235/U(n/sub th/,f) as a function of neutron energy and fragment mass are presented. The results obtained in this experiment, together with data for neutron-neutron angular correlations, are compared with a Monte Carlo simulation of the fission process incorporating both a scission neutron component and an anisotropic neutron emission component.

  2. Nanostructure Neutron Converter Layer Development

    Science.gov (United States)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  3. The optical/UV excess of X-ray dim isolated neutron star:bremsstrahlung emission from a strange star plasma atmosphere

    CERN Document Server

    Wang, Weiyang; Tong, Hao; Ge, Mingyu; Li, Zhaosheng; Men, Yunpeng; Xu, Renxin

    2016-01-01

    X-ray dim isolated neutron stars (XDINSs) are characterized by Planckian spectra in X-ray bands, but show optical/ultraviolet(UV) excesses which are the measured photometry exceeding that extrapolated from X-ray spectra. To solve this problem, a radiative model of bremsstrahlung emission from a plasma atmosphere is constructed in the regime of strange (quark-cluster) star. The plasma atmosphere is supposed to be of two-temperature, formed and maintained by the ISM-accreted matter which is bound on a star's surface because of the so-called strangeness barrier. All the seven XDINS spectra could be well fitted by the radiative model, from optical/UV to X-ray bands. The fitted radiation radii of XDINSs are from 7 to 13 km, while the modelled electron temperatures are between 50 and 250 eV, except RX J0806.4$-$4123 with a radiation radius $\\sim 3$ km, indicating that this source could be a low-mass strange star candidate.

  4. On the origin of the near-infrared emission from the neutron-star low-mass X-ray binary GX 9+1

    CERN Document Server

    Berg, Maureen van den

    2016-01-01

    We have determined an improved position for the luminous persistent neutron-star low-mass X-ray binary and atoll source GX 9+1 from archival Chandra X-ray Observatory data. The new position significantly differs from a previously published Chandra position for this source. Based on the revised X-ray position we have identified a new near-infrared (NIR) counterpart to GX 9+1 in Ks-band images obtained with the PANIC and FourStar cameras on the Magellan Baade Telescope. NIR spectra of this Ks=16.5+-0.1 mag star taken with the FIRE spectrograph on the Baade Telescope show a strong Br-gamma emission line, which is a clear signature that we discovered the true NIR counterpart to GX 9+1. The mass donor in GX 9+1 cannot be a late-type giant, as such a star would be brighter than the estimated absolute Ks magnitude of the NIR counterpart. The slope of the dereddened NIR spectrum is poorly constrained due to uncertainties in the column density N_H and NIR extinction. Considering the source's distance and X-ray luminos...

  5. Determining the origin and possible mechanisms of QPOS in x-ray emissions of neutron stars and black holes

    Science.gov (United States)

    Thomson, Brent Wayne

    QPOs (Quasi-Periodic Oscillations) are time oscillations that appear in the light curve of observational data in x-ray bands. They are of mysterious origin although they are believed to be a result of the intense gravity around neutron stars and black holes and emit x-rays from accretion disks. I investigate a derived ratio between two periods has been found in the QPO data. The two periods, which appear as peaks in the power density spectrum have been found to be in a 3:2 ratio and can possibly distinguish theoretical models. In the work presented here, two physical approaches are developed that can explain the integer resonance ratio. One is a cusp layer model, which is based on a boundary layer model that uses the physical conditions at opposite sides of said layer to explore the magnitude of the vertical versus radial epicyclic frequencies and confirm the anticipated scales of the observed frequencies. It also happens to recreate a 3:2 resonance ratio for the Keplerian angular frequencies at the ISCO, taken as the preferred radius for the boundary layer model. A toy model was recreated and utilized to emulate the Alfven radius due to the accretion disk's innate magnetic field and explore how it serves as a disruption radius and impacts the accretion of mass and the effective inner edge of the disk. The simulations show that there is no significance deviation from the ISCO as an effective inner edge for the accretion disk due to the magnetospheric influence of the disk alone. I also invoke a parameter to handle the coupling between the vertical and radial epicyclical frequencies and relate it to the pressure within the disk. I show the coupling is strongest at the equatorial plane where pressure is at its maximum value. A model I utilize is a relativistic resonance model, combined with a helioseismological approach to explore the pulsation of the inner edge of the accretion disk that imparts the resonance of the accreting matter moving along the Kerr space

  6. Broad-band X-ray emission and the reality of the broad iron line from the neutron star-white dwarf X-ray binary 4U 1820-30

    Science.gov (United States)

    Mondal, Aditya S.; Dewangan, G. C.; Pahari, M.; Misra, R.; Kembhavi, A. K.; Raychaudhuri, B.

    2016-09-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disc. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here, we investigate the reality of the broad iron line detected earlier from the neutron-star low-mass X-ray binary 4U 1820-30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broad-band spectral study of the atoll source using Suzaku and simultaneous NuSTAR and Swift observations. We have used different continuum models involving accretion disc emission, thermal blackbody and thermal Comptonization of either disc or blackbody photons. The Suzaku data show positive and negative residuals in the region of Fe K band. These features are well described by two absorption edges at 7.67 ± 0.14 keV and 6.93 ± 0.07 keV or partial covering photoionized absorption or by blurred reflection. Though, the simultaneous Swift and NuSTAR data do not clearly reveal the emission or absorption features, the data are consistent with the presence of either absorption or emission features. Thus, the absorption based models provide an alternative to the broad iron line or reflection model. The absorption features may arise in winds from the inner accretion disc. The broad-band spectra appear to disfavour continuum models in which the blackbody emission from the neutron-star surface provides the seed photons for thermal Comptonization. Our results suggest emission from a thin accretion disc (kTdisc ˜ 1 keV), Comptonization of disc photons in a boundary layer most likely covering a large fraction of the neutron-star surface and innermost parts of the accretion disc, and blackbody emission (kTbb ˜ 2 keV) from the polar regions.

  7. Neutron Repulsion

    OpenAIRE

    Manuel, Oliver K.

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch...

  8. Neutron and gamma-ray emission double differential cross sections for the nuclear reaction by 1.5 GeV {pi}{sup +} incidence

    Energy Technology Data Exchange (ETDEWEB)

    Iga, Kiminori; Ishibashi, Kenji; Shigyo, Nobuhiro [Kyushu Univ., Fukuoka (Japan)] [and others

    1998-03-01

    Neutron and gamma-ray production double differential cross sections were measured for iron by the use of 1.5 GeV {pi}{sup +} mesons. The measured cross sections were compared with the calculated values by HETC-KFA2. For the neutrons, the calculated results deviate from the experimental data in the neutron energy region below 30 MeV. The calculated values of gamma-ray production agree with the experimental data at gamma-ray energies from 1 to 7 MeV within a factor of three. (author)

  9. The Electromagnetic Spectrum of Neutron Stars

    CERN Document Server

    Baykal, Altan; Inam, Sitki C; Grebenev, Sergei

    2005-01-01

    Neutron stars hold a central place in astrophysics, not only because they are made up of the most extreme states of the condensed matter, but also because they are, along with white dwarfs and black holes, one of the stable configurations that stars reach at the end of stellar evolution. Neutron stars posses the highest rotation rates and strongest magnetic fields among all stars. They radiate prolifically, in high energy electromagnetic radiation and in the radio band. This book is devoted to the selected lectures presented in the 6th NATO-ASI series entitled "The Electromagnetic Spectrum of Neutron Stars" in Marmaris, Turkey, on 7-18 June 2004. This ASI is devoted to the spectral properties of neutron stars. Spectral observations of neutron stars help us to understand the magnetospheric emission processes of isolated radio pulsars and the emission processes of accreting neutron stars. This volume includes spectral information from the neutron stars in broadest sense, namely neutrino and gravitational radiat...

  10. Simulations to Evaluate Accuracy and Patient Dose in Neutron-Stimulated, Emission-Computed Tomography (NSECT) for Diagnosis of Breast Cancer

    Science.gov (United States)

    2009-04-01

    One detector design that could provide the two-dimensional projection image is the Compton coincidence detector (CCD) that has been developed and...detector such as a Compton coincidence detector and to illuminate the entire sample with the neutron beam. a neutron source, (2) a sample and (3) a...Wilderman S J 1998 C-SPRINT: a prototype Compton camera system for low energy gamma ray imaging IEEE Trans. Nucl. Sci. 45 943–9 Margalioth E J, Schenker J

  11. Development of a photonuclear activation file and measurement of delayed neutron spectra; Creation d'une bibliotheque d'activation photonucleaire et mesures de spectres d'emission de neutrons retardes

    Energy Technology Data Exchange (ETDEWEB)

    Giacri-Mauborgne, M.L

    2005-11-15

    This thesis work consists in two parts. The first part is the description of the creation of a photonuclear activation file which will be used to calculated photonuclear activation. To build this file we have used different data sources: evaluations but also calculations done using several cross sections codes (HMS-ALICE, GNASH, ABLA). This file contains photonuclear activation cross sections for more than 600 nuclides and fission fragments distributions for 30 actinides at tree different Bremsstrahlung energies and the delay neutron spectrum associated. These spectra are not in good agreement with experimental data. That is why we decided to launch measurement of delayed neutrons spectra from photofission. The second part of this thesis consists in demonstrating the possibility to do such measurements at the ELSA accelerator facility. To that purpose, we have developed the detection, the acquisition system and the analysis method of such spectra. These were tested for the measurement of the delayed neutron spectrum of uranium-238 after irradiation in a 2 MeV neutron flux. Finally, we have measured the delayed neutron spectrum of uranium-238 after irradiation in a 15 MeV Bremsstrahlung flux. We compare our results with experimental data. The experiment has allowed us to improve the value of {nu}{sub p}-bar with an absolute uncertainty below 7%, we propose {nu}{sub p}-bar = (3.03 {+-} 0.02) n/100 fissions, and to correct the Nikotin's parameters for the six group representation. Particularly, we have improved the data concerning the sixth group by taking into account results from different irradiation times.

  12. MeV Neutron Production from Thermal Neutron Capture in 6Li Simulated With Geant4

    Science.gov (United States)

    Santoro, Valentina; DiJulio, Douglas D.; Bentley, Phillip M.

    2016-09-01

    Various Li compounds are commonly used at neutron facilities as neutron absorbers. These compounds provide one of the highest ratios of neutron attenuation to y- ray production. Unfortunately, the usage of these compounds can also give rise to fast neutron emission with energies up to almost 16 MeV. Historically, some details in this fast neutron production mechanism can be absent from some modeling packages under some optimization scenarios. In this work, we tested Geant4 to assess the performance of this simulation toolkit for the fast neutron generation mechanism. We compare the results of simulations performed with Geant4 to available measurements. The outcome of our study shows that results of the Geant4 simulations are in good agreement with the available measurements for 6 Li fast neutron production, and suitable for neutron instrument background evaluation at spallation neutron sources.

  13. MeV Neutron Production from Thermal Neutron Capture in {6}^Li Simulated with Geant4

    CERN Document Server

    Santoro, Valentina; Bentley, Phillip M

    2015-01-01

    Various Li compounds are commonly used at neutron facilities as neutron absorbers. These compounds provide one of the highest ratios of neutron attenuation to $\\gamma$-ray production. Unfortunately, the usage of these compounds can also give rise to fast neutron emission with energies up to almost 16 MeV. Historically, some details in this fast neutron production mechanism can be absent from some modeling packages under some optimization scenarios. In this work, we tested Geant4 to assess the performance of this simulation toolkit for the fast neutron generation mechanism. We compare the results of simulations performed with Geant4 to available measurements. The outcome of our study shows that results of the Geant4 simulations are in good agreement with the available measurements for $^6$Li fast neutron production, and suitable for neutron instrument background evaluation at spallation neutron sources.

  14. Systematics in delayed neutron yields

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.

    1998-03-01

    An attempt was made to reproduce the systematic trend observed in the delayed neutron yields for actinides on the basis of the five-Gaussian representation of the fission yield together with available data sets for delayed neutron emission probability. It was found that systematic decrease in DNY for heavier actinides is mainly due to decrease of fission yields of precursors in the lighter side of the light fragment region. (author)

  15. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  16. Broadband X-ray emission and the reality of the broad iron line from the Neutron Star - White Dwarf X-ray binary 4U 1820-30

    CERN Document Server

    Mondal, Aditya S; Pahari, Mayukh; Misra, Ranjeev; Kembhavi, Ajit K; Raychaudhuri, Biplab

    2016-01-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disk. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here we investigate the reality of the broad iron line detected earlier from the neutron star low mass X-ray binary 4U~1820--30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broadband spectral study of the atoll source using \\suzaku{} and simultaneous \

  17. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  18. Neutron Sources for Standard-Based Testing

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLean, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  19. Neutron imaging of radioactive sources

    Science.gov (United States)

    Hameed, F.; Karimzadeh, S.; Zawisky, M.

    2008-08-01

    Isotopic neutron sources have been available for more than six decades. At the Atomic Institute in Vienna, operating a 250 kW TRIGA reactor, different neutron sources are in use for instrument calibration and fast neutron applications but we have only little information about their construction and densities. The knowledge of source design is essential for a complete MCNP5 modeling of the experiments. Neutron radiography (NR) and neutron tomography (NT) are the best choices for the non-destructive inspection of the source geometry and homogeneity. From the transmission analysis we gain information about the shielding components and the densities of the radio-isotopes in the cores. Three neutron sources, based on (alpha, n) reaction, have been investigated, two 239PuBe sources and one 241AmBe source. In the NR images the internal structure was clearly revealed using high-resolving scintillation and imaging plate detectors. In one source tablet a crack was detected which causes asymmetric neutron emission. The tomography inspection of strong absorbing materials is more challenging due to the low beam intensity of 1.3x105 n/cm2s at our NT instrument, and due to the beam hardening effect which requires an extension of reconstruction software. The tomographic inspection of a PuBe neutron source and appropriate measures for background and beam hardening correction are presented.

  20. Neutron measurements in ITER using the Radial Neutron Camera

    Science.gov (United States)

    Marocco, D.; Esposito, B.; Moro, F.

    2012-03-01

    The Radial Neutron Camera (RNC) is one of the key diagnostic systems of the ITER international fusion experiment. It is designed to measure the uncollided 14 MeV and 2.5 MeV neutrons from deuterium-tritium (DT) and deuterium-deuterium (DD) fusion reactions taking place in the ITER plasma through an array of 45 detectors positioned along collimated lines of sight. Scintillators and diamonds coupled to fast digital acquisition electronics are among the detectors presently considered for the RNC. The RNC will provide spatially resolved measurements of several plasma parameters needed for fusion power estimation, plasma control and plasma physics studies. The line-integrated RNC neutron fluxes are used to evaluate the local profile of the neutron emission (neutron emissivity, s-1m-3) and therefore the total neutron yield and the birth profile of the alpha particles. The temperature profile of the bulk ions can be derived from the Doppler broadened widths of the RNC line-integrated spectra, that also provide insight on the supra-thermal ions produced by the injection in the plasma of electromagnetic waves and neutral particles. The RNC emissivity and temperature measurements can be employed to estimate the composition of the ITER fuel, namely the ratio between the tritium and deuterium densities. Data processing techniques involving spatial inversion and spectra unfolding are necessary to deduce the profile quantities from the line-integrated RNC measurements. The expected performances of the RNC as a diagnostic for the neutron emissivity/ion temperature/fuel ratio profile (measurement range, time resolution, accuracy, precision) have been estimated by means of synthetic data simulating actual RNC measurements. The results of the simulations, together with an overall description of the diagnostic and of the measurement techniques, are presented.

  1. Superfluid Neutrons in the Core of the Neutron Star in Cassiopeia A

    CERN Document Server

    Page, Dany; Lattimer, James M; Steiner, Andrew W

    2011-01-01

    The supernova remnant Cassiopeia A contains the youngest known neutron star which is also the first one for which real time cooling has ever been observed. In order to explain the rapid cooling of this neutron star, we first present the fundamental properties of neutron stars that control their thermal evolution with emphasis on the neutrino emission processes and neutron/proton superfluidity/superconductivity. Equipped with these results, we present a scenario in which the observed cooling of the neutron star in Cassiopeia A is interpreted as being due to the recent onset of neutron superfluidity in the core of the star. The manner in which the earlier occurrence of proton superconductivity determines the observed rapidity of this neutron star's cooling is highlighted. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear densities within neutron stars.

  2. Double Neutron Stars: Evidence For Two Different Neutron-Star Formation Mechanisms

    OpenAIRE

    Heuvel, E. P. J. van den

    2007-01-01

    Six of the eight double neutron stars known in the Galactic disk have low orbital eccentricities (< 0.27) indicating that their second-born neutron stars received only very small velocity kicks at birth. This is similar to the case of the B-emission X-ray binaries, where a sizable fraction of the neutron stars received hardly any velocity kick at birth (Pfahl et al. 2002). The masses of the second-born neutron stars in five of the six low-eccentricity double neutron stars are remarkably low (...

  3. Measurements of double differential charged particle emission cross sections and development of a wide range charged particles spectrometer for ten`s MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nauchi, Yasushi; Baba, Mamoru; Kiyosumi, Takehide [Tohoku Univ., Sendai (Japan). Faculty of Engineering] [and others

    1997-03-01

    We measured (n,xp), (n,xd) cross sections of C and Al for En=64.3 MeV neutrons at the {sup 7}Li(p,n) neutron sources facility at TIARA (Takasaki Establishment, JAERI) by using a conventional SSD-NaI telescope placed in the air. They show characteristic energy and angular dependence in high energy regions. In order to extend the measurements to low energy protons and {alpha} particles, a new spectrometer consisting of low pressure gas counters and BaF{sub 2} scintillators is now under development. A low threshold for low energy {alpha} particles will be achieved by using the gas counters. The particle identification over a wide energy range will be achieved by combining the {Delta}E-E method for low energy particles with the pulse shape discrimination (PSD) method of BaF{sub 2} for high energy particles. (author)

  4. Evaluation of n + /sup 242/Pu reactions from 10 keV to 20 MeV. [Total cross sections, neutron emission energy dependence

    Energy Technology Data Exchange (ETDEWEB)

    Madland, D.G.; Young, P.G.

    1978-10-01

    An evaluation of the n + /sup 242/Pu cross sections is presented for the neutron energy range of 10 keV to 20 MeV. The total fission and radiative capture cross sections are based upon experimental measurements on /sup 242/Pu. The remaining cross sections, together with the elastic and inelastic angular distributions to low-lying states, were calculated using various reaction models. An expression is presented for the energy dependence of the average number of neutrons produced per fission. The results were placed in ENDF/B-V format and combined with a recent evaluation of data below 10 keV by the Hanford Engineering Development Laboratory, so that a complete data set covering the energy range of 10/sup -5/ eV to 20 MeV is available. 41 references. (JFP)

  5. Velocity-space sensitivity of neutron spectrometry measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Eriksson, J.;

    2015-01-01

    Neutron emission spectrometry (NES) measures the energies of neutrons produced in fusion reactions. Here we present velocity-space weight functions for NES and neutron yield measurements. Weight functions show the sensitivity as well as the accessible regions in velocity space for a given range...

  6. Fusion neutron diagnostics on ITER tokamak

    Science.gov (United States)

    Bertalot, L.; Barnsley, R.; Direz, M. F.; Drevon, J. M.; Encheva, A.; Jakhar, S.; Kashchuk, Y.; Patel, K. M.; Arumugam, A. P.; Udintsev, V.; Walker, C.; Walsh, M.

    2012-04-01

    ITER is an experimental nuclear reactor, aiming to demonstrate the feasibility of nuclear fusion realization in order to use it as a new source of energy. ITER is a plasma device (tokamak type) which will be equipped with a set of plasma diagnostic tools to satisfy three key requirements: machine protection, plasma control and physics studies by measuring about 100 different parameters. ITER diagnostic equipment is integrated in several ports at upper, equatorial and divertor levels as well internally in many vacuum vessel locations. The Diagnostic Systems will be procured from ITER Members (Japan, Russia, India, United States, Japan, Korea and European Union) mainly with the supporting structures in the ports. The various diagnostics will be challenged by high nuclear radiation and electromagnetic fields as well by severe environmental conditions (ultra high vacuum, high thermal loads). Several neutron systems with different sensitivities are foreseen to measure ITER expected neutron emission from 1014 up to almost 1021 n/s. The measurement of total neutron emissivity is performed by means of Neutron Flux Monitors (NFM) installed in diagnostic ports and by Divertor Neutron Flux Monitors (DNFM) plus MicroFission Chambers (MFC) located inside the vacuum vessel. The neutron emission profile is measured with radial and vertical neutron cameras. Spectroscopy is accomplished with spectrometers looking particularly at 2.5 and 14 MeV neutron energy. Neutron Activation System (NAS), with irradiation ends inside the vacuum vessel, provide neutron yield data. A calibration strategy of the neutron diagnostics has been developed foreseeing in situ and cross calibration campaigns. An overview of ITER neutron diagnostic systems and of the associated challenging engineering and integration issues will be reported.

  7. A derivation of bulk-motion insensitive implosion metrics inferred from neutron and high-energy x-ray emission in a series of high yield implosions on the NIF

    Science.gov (United States)

    Springer, P. T.; Macphee, A. G.; Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Cerjan, C. J.; Dewald, E. L.; Dittrich, T. R.; Doeppner, T.; Edgell, D. H.; Edwards, M. J.; Gaffney, J.; Grim, G. P.; Haan, S.; Hammer, J. H.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Milovich, J.; Munro, D. H.; Pak, A.; Park, H. S.

    2015-11-01

    A suite of nuclear and x-ray data is used to deduce key implosion performance metrics at stagnation including the hotspot pressure, energy, and the role of alpha heating on producing the observed yield. Key to this analysis is a determination of the burn-averaged temperature of the hot plasma so that the nuclear reactivity and yield can then be used to deduce the plasma density and pressure. In this presentation we examine the systematics of both neutron and high-energy x-ray emission (22 keV x-ray monochromator) from a series of high yield implosions on the NIF. The advantage of incorporating high energy x-rays into the analysis is their insignificant attenuation and insensitivity to bulk flows, thus providing insight as to whether these effects complicate the interpretation of the nuclear data, and that a precipitous drop in their production is expected as the thermal temperature is reduced. A dynamic model for hotspot assembly is developed that incorporates thermal conduction, radiative losses, and alpha heating, which simultaneously matches both neutron and x-ray data with nearly identical nuclear and x-ray derived thermal temperatures. Work performed under the auspices of the USDoE by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  8. Theory of neutron star magnetospheres

    CERN Document Server

    Curtis Michel, F

    1990-01-01

    An incomparable reference for astrophysicists studying pulsars and other kinds of neutron stars, "Theory of Neutron Star Magnetospheres" sums up two decades of astrophysical research. It provides in one volume the most important findings to date on this topic, essential to astrophysicists faced with a huge and widely scattered literature. F. Curtis Michel, who was among the first theorists to propose a neutron star model for radio pulsars, analyzes competing models of pulsars, radio emission models, winds and jets from pulsars, pulsating X-ray sources, gamma-ray burst sources, and other neutron-star driven phenomena. Although the book places primary emphasis on theoretical essentials, it also provides a considerable introduction to the observational data and its organization. Michel emphasizes the problems and uncertainties that have arisen in the research as well as the considerable progress that has been made to date.

  9. Observation of Ground-State Two-Neutron Decay

    CERN Document Server

    Thoennessen, M; Spyrou, A; Lunderberg, E; DeYoung, P A; Attanayake, H; Baumann, T; Bazin, D; Brown, B A; Christian, G; Divaratne, D; Grimes, S M; Haagsma, A; Finck, J E; Frank, N; Luther, B; Mosby, S; Nagi, T; Peaslee, G F; Peters, W A; Schiller, A; Smith, J K; Snyder, J; Strongman, M; Volya, A

    2012-01-01

    Neutron decay spectroscopy has become a successful tool to explore nuclear properties of nuclei with the largest neutron-to-proton ratios. Resonances in nuclei located beyond the neutron dripline are accessible by kinematic reconstruction of the decay products. The development of two-neutron detection capabilities of the Modular Neutron Array (MoNA) at NSCL has opened up the possibility to search for unbound nuclei which decay by the emission of two neutrons. Specifically this exotic decay mode was observed in 16Be and 26O.

  10. Characterization of the volcanic eruption emissions using neutron activation analysis; Caracterizacion de las emisiones de una erupcion volcanica mediante analisis por activacion neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Pla, Rita R. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Radioquimica, Tecnicas Analiticas Nucleares; Tafuri, Victoria V. [Servicio Meteorologico Nacional, Buenos Aires (Argentina). Centro de Contaminacion del Aire

    1997-10-01

    Characterization of the volcanic particulate material has been performed by analyzing aerosols and ashes with instrumental neutron activation analysis. Crustal enrichment factors were calculated using the elemental concentration and clustering techniques, and multivariate analysis were done. The analytical and data treatment methodologies allowed the sample differentiation from their geographical origin viewpoint, based on their chemical composition patterns, which are related to the deposit formation processes, which consist of direct deposition from the volcanic cloud, and removal by wind action after the end of the eruption, and and finally the deposition. (author). 8 refs., 5 figs.

  11. Neutronic design of the ITER radial neutron camera

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy)], E-mail: petrizzi@frascati.enea.it; Barnsley, R. [EFDA CSU-Garching (Germany); Bertalot, L.; Esposito, B. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy); Haskell, H. [ITER International Team, Garching (Germany); Mainardi, E.; Marocco, D.; Podda, S. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy); Walker, C. [ITER International Team, Garching (Germany); Villari, S. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy)

    2007-10-15

    This paper summarizes the work, performed in the frame of various EFDA contracts during 2004-2005, on the design review and upgrade of the ITER radial neutron camera (RNC). The RNC, which should provide information on the spatial distribution and energy spectrum of the neutron emission, consists of an ex-vessel system (fan-like collimator with 12 x 3 lines of sights) and an in-vessel system with further 9 lines for a full coverage of the plasma. A Monte Carlo code (MCNP) has been used for the neutronic calculations. The basic ITER model has been developed from the CATIA drawings to include the RNC with all details relevant for the neutronic analysis. In the model the collimator diameters have been set to 2 and 4 cm, respectively, for the ex-vessel and in-vessel systems. A detailed space dependent fusion neutron source (DD and DT phases in various plasma scenarios) has been used with a consistent ion temperature radial profile. A special variance reduction treatment has been developed so that neutrons reach the far regions in the high collimated neutron beam and score with a satisfying statistical error. Neutron and photon fluxes and spectra have been calculated. Approximately, one neutron out of 10{sup 11} emitted in all the plasma reaches a single ex-vessel detector. Therefore, for an emission rate of 1.8 x 10{sup 20} n/s (corresponding to 500 MW fusion power) the flux on the detectors is in the range (1-5) x 10{sup 8} n/(cm{sup 2} s) depending on the poloidal orientation. The fraction of scattered neutrons (>1 MeV) is lower than few % of the total. A measurement simulation software tool (MSST) performing asymmetric Abel inversion of simulated measured neutron signals has also been developed for line of sight and design optimization. Combining information from MCNP calculations and MSST, it has been possible to evaluate the performance of the RNC, check whether the present design of the RNC meets the measurement requirements and optimize the RNC design.

  12. Neutron Repulsion

    CERN Document Server

    Manuel, Oliver K

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding...

  13. Tutorial on Neutron Physics in Dosimetry

    CERN Document Server

    Pomp, S

    2009-01-01

    Almost since the time of the discovery of the neutron more than 70 years ago, efforts have been made to understand the effects of neutron radiation on tissue and, eventually, to use neutrons for cancer treatment. In contrast to charged particle or photon radiations which directly lead to release of electrons, neutrons interact with the nucleus and induce emission of several different types of charged particles such as protons, alpha particles or heavier ions. Therefore, a fundamental understanding of the neutron-nucleus interaction is necessary for dose calculations and treatment planning with the needed accuracy. We will discuss the concepts of dose and kerma, neutron-nucleus interactions and have a brief look at nuclear data needs and experimental facilities and set-ups where such data are measured.

  14. Evolution of Neutron Stars and Observational Constraints

    Directory of Open Access Journals (Sweden)

    Lattimer J.

    2010-10-01

    Full Text Available The structure and evolution of neutron stars is discussed with a view towards constraining the properties of high density matter through observations. The structure of neutron stars is illuminated through the use of several analytical solutions of Einstein’s equations which, together with the maximally compact equation of state, establish extreme limits for neutron stars and approximations for binding energies, moments of inertia and crustal properties as a function of compactness. The role of the nuclear symmetry energy is highlighted and constraints from laboratory experiments such as nuclear masses and heavy ion collisions are presented. Observed neutron star masses and radius limits from several techniques, such as thermal emissions, X-ray bursts, gammaray flares, pulsar spins and glitches, spin-orbit coupling in binary pulsars, and neutron star cooling, are discussed. The lectures conclude with a discusson of proto-neutron stars and their neutrino signatures.

  15. Double Neutron Stars: Evidence For Two Different Neutron-Star Formation Mechanisms

    NARCIS (Netherlands)

    van den Heuvel, E.P.J.

    2007-01-01

    Six of the eight double neutron stars known in the Galactic disk have low orbital eccentricities (< 0.27) indicating that their second-born neutron stars received only very small velocity kicks at birth. This is similar to the case of the B-emission X-ray binaries, where a sizable fraction of the ne

  16. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  17. Detection of special nuclear material by observation of delayed neutrons with a novel fast neutron composite detector

    Science.gov (United States)

    Mayer, Michael; Nattress, Jason; Barhoumi Meddeb, Amira; Foster, Albert; Trivelpiece, Cory; Rose, Paul; Erickson, Anna; Ounaies, Zoubeida; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material is crucial to countering nuclear terrorism and proliferation, but its detection is challenging. By observing the emission of delayed neutrons, which is a unique signature of nuclear fission, the presence of nuclear material can be inferred. We report on the observation of delayed neutrons from natural uranium by using monoenergetic photons and neutrons to induce fission. An interrogating beam of 4.4 MeV and 15.1 MeV gamma-rays and neutrons was produced using the 11B(d,n-γ)12C reaction and used to probe different targets. Neutron detectors with complementary Cherenkov detectors then discriminate material undergoing fission. A Li-doped glass-polymer composite neutron detector was used, which displays excellent n/ γ discrimination even at low energies, to observe delayed neutrons from uranium fission. Delayed neutrons have relatively low energies (~0.5 MeV) compared to prompt neutrons, which makes them difficult to detect using recoil-based detectors. Neutrons were counted and timed after the beam was turned off to observe the characteristic decaying time profile of delayed neutrons. The expected decay of neutron emission rate is in agreement with the common parametrization into six delayed neutron groups.

  18. Conceptual design of a camera system for neutron imaging in low fusion power tokamaks

    Science.gov (United States)

    Xie, X.; Yuan, X.; Zhang, X.; Nocente, M.; Chen, Z.; Peng, X.; Cui, Z.; Du, T.; Hu, Z.; Li, T.; Fan, T.; Chen, J.; Li, X.; Zhang, G.; Yuan, G.; Yang, J.; Yang, Q.

    2016-02-01

    The basic principles for designing a camera system for neutron imaging in low fusion power tokamaks are illustrated for the case of the HL-2A tokamak device. HL-2A has an approximately circular cross section, with total neutron yields of about 1012 n/s under 1 MW neutral beam injection (NBI) heating. The accuracy in determining the width of the neutron emission profile and the plasma vertical position are chosen as relevant parameters for design optimization. Typical neutron emission profiles and neutron energy spectra are calculated by Monte Carlo method. A reference design is assumed, for which the direct and scattered neutron fluences are assessed and the neutron count profile of the neutron camera is obtained. Three other designs are presented for comparison. The reference design is found to have the best performance for assessing the width of peaked to broadened neutron emission profiles. It also performs well for the assessment of the vertical position.

  19. Neutron tomography

    Science.gov (United States)

    Crump, James C., III; Richards, Wade J.; Shields, Kevin C.

    1995-07-01

    The McClellan Nuclear Radiation Center's (MNRC) staff in conjunction with a Cooperative Research and Development Agreement (CRDA) with the U.C. Santa Barbara facility has developed a system that can be used for aircraft inspection of jet engine blades. The problem was to develop an inspection system that can detect very low concentrations of hydrogen (i.e., greater than 100 ppm) in metal matricies. Specifically in Titanium alloy jet engine blades. Entrapment and precipitation of hydrogen in metals is an undesirable phenomenon which occurs in many alloys of steel and titanium. In general, metals suffer a loss of mechanical properties after long exposures to hydrogen, especially at high temperatures and pressures, thereby becoming embrittled. Neutron radiography has been used as a nondestructive testing technique for many years. Neutrons, because of their unique interactions with materials, are especially useful in the detection of hydrogen. They have an extremely high interaction cross section for low atomic number nuclei (i.e., hydrogen). Thus hydrogen in a metal matrix can be visualized using neutrons. Traditional radiography is sensitive to the total attenuation integrated over the path of radiation through the material. Increased sensitivity and quantitative cross section resolution can be obtained using three-dimensional volumetric imaging techniques such as tomography. The solution used to solve the problem was to develop a neutron tomography system. The neutron source is the McClellan Nuclear Radiation Center's 1 MW TRIGA reactor. This paper describes the hardware used in the system as well as some of the preliminary results.

  20. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  1. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.

    Science.gov (United States)

    Yanch, J C; Harling, O K

    1993-08-01

    A series of studies of "ideal" beams has been carried out using Monte Carlo simulation with the goal of providing guidance for the design of epithermal beams for boron neutron capture therapy (BNCT). An "ideal" beam is defined as a monoenergetic, photon-free source of neutrons with user-specified size, shape and angular dependence of neutron current. The dosimetric behavior of monoenergetic neutron beams in an elliptical phantom composed of brain-equivalent material has been assessed as a function of beam diameter and neutron emission angle (beam angle), and the results are reported here. The simulation study indicates that substantial differences exist in the dosimetric behavior of small and large neutron beams (with respect to the phantom) as a function of the extent of beam collimation. With a small beam, dose uniformity increases as the beam becomes more isotropic (less collimated); the opposite is seen with large beams. The penetration of thermal neutrons is enhanced as the neutron emission angle is increased with a small beam; again the opposite trend is seen with large beams. When beam size is small, the dose delivered per neutron is very dependent on the extent of beam collimation; this does not appear to be the case with a larger beam. These trends in dose behavior are presented graphically and discussed in terms of their effect on several figures of merit, the advantage depth, the advantage ratio, and the advantage depth-dose rate. Tables giving quick summaries of these results are provided.

  2. Major and trace elemental analysis in milk powder by inductively coupled plasma-optical emission spectrometry (ICP-OES) and instrumental neutron activation analysis(INAA)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Major and trace element in seven different kinds of milk powder were studied. The concentration of 24 elements were determined byICP-OES method, from these elements 9 elements determined by INAA. The determination of trace element contents of foodstuffs, especiallymilk as daily drink for all peoples age which being a complex food has great importance. The elemental analysis of milk is important both as anindicator of environmental contamination and because milk is a significant pathway for toxic metal intake and a source of essential nutrients forhumans. The major elements are Ca, K, Mg, Na, P and S. While trace element are B, Ba, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Sb, Se,Sn, Sr, V, W and Zn.ICP-OES technique is shown to be a powerful tool for trace determinations in powder samples. This is shown by its use for analysis of aseries of the milk powders mentioned and comparative results of other direct technique such as instrumental neutron activation analysis.Analysis of both standard reference material A-11 milk powder and NBS Orchard leaves for quality accurance had been completed, andused for a relative method calculate. The importance of the major and trace elements to human health was discussed.

  3. KiloHertz QPO and Gravitational Wave Emission as the Signature of the Rotation and Precession of a LMXB Neutron Star Near Breakup

    CERN Document Server

    Jernigan, J G

    2001-01-01

    The basic theory of torque free precession (TFP) of the outer crust of a neutron star (NS) as the signature of the approach to NS breakup is a viable explanation of the uniform properties of kHz Quasi-periodic Oscillations (QPO) observed in X-rays emitted by Low Mass X-ray Binary (LMXB) sources. The theory outlined in this paper relates the intrinsic properties of NS structure to the observed kHz frequencies. The range of kHz frequencies and the observed quality factors (Qs) are also explained by this simple dynamical model. A scenario that begins with the melting of the inner crust of an LMXB NS creates the conditions necessary for the generation of kHz QPO. The theory relates the ratio of the observed kHz frequencies to the ratios of the components of the moments of inertia of the NS, thereby tightly constraining the equation of state (EOS) of NS matter (polytrope index ~1.0). The TFP model is in strong contrast to existing models which primarily relate the kHz QPO phenomenon to the physics of gas dynamics ...

  4. Cooling neutrons using non-dispersive magnetic excitations

    CERN Document Server

    Zimmer, Oliver

    2014-01-01

    A new method is proposed for cooling neutrons by inelastic magnetic scattering in weakly absorbing, cold paramagnetic systems. Kinetic neutron energy is removed in constant decrements determined by the Zeeman energy of paramagnetic atoms or ions in an external magnetic field, or by zero-field level splittings in magnetic molecules. Analytical solutions of the stationary neutron transport equation are given using inelastic neutron scattering cross sections derived in an appendix. They neglect any inelastic process except the paramagnetic scattering and hence still underestimate very-cold neutron densities. Molecular oxygen with its triplet ground state appears particularly promising, notably as a host in fully deuterated oxygen-clathrate hydrate, or more exotically, in dry oxygen-He4 van der Waals clusters. At a neutron temperature about 6 K, for which neutron conversion to ultra-cold neutrons by single-phonon emission in pure superfluid He4 works best, conversion rates due to paramagnetic scattering in the cl...

  5. Neutron stars are gold mines

    Science.gov (United States)

    Lattimer, James M.

    Neutron stars are not only mines for clues to dense matter physics but may also be the auspicious sources of half of all nuclei heavier than A = 60 in the universe, including the auric isotopes. Although the cold dense matter above the nuclear saturation density cannot be directly explored in the laboratory, gilded constraints on the properties of matter from 1 to 10 times higher density can now be panned from neutron star observations. We show how upcoming observations, such as gravitational wave from mergers, precision timing of pulsars, neutrinos from neutron star birth and X-rays from bursts and thermal emissions, will provide the bullion from which further advances can be smelted.

  6. Radiation Fields in the Vicinity of Compact Accelerator Neutron Generators

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Brandon W. Blackburn; Augustine J. Caffrey

    2006-10-01

    Intense pulsed radiation fields emitted from sealed tube neutron generators provide a challenge for modern health physics survey instrumentation. The spectral sensitivity of these survey instruments requires calibration under realistic field conditions while the pulsed emission characteristics of neutron generators can vary from conditions of steady-state operation. As a general guide for assessing radiological conditions around neutron generators, experiments and modeling simulations have been performed to assess radiation fields near DD and DT neutron generators. The presence of other materials and material configurations can also have important effects on the radiation dose fields around compact accelerator neutron generators.

  7. Inclusive deuteron-induced reactions and final neutron states

    CERN Document Server

    Potel, Gregory; Thompson, Ian J

    2015-01-01

    We present in this paper a formalism for deuteron-induced inclusive reactions. We disentangle direct elastic breakup contributions from other processes (which we generically call non-elastic breakup) implying a capture of the neutron both above and below the neutron emission threshold. The reaction is described as a two step process, namely the breakup of the deuteron followed by the propagation of the neutron-target system driven by an optical potential. The final state interaction between the neutron and the target can eventually form an excited compound nucleus. Within this context, the direct neutron transfer to a sharp bound state is a limiting case of the present formalism.

  8. Plastic fiber scintillator response to fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-11-15

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  9. Neutron activation of natural materials in a PWR spectrum: feedback on {sup 116m}In relative γ emission intensities and half-life

    Energy Technology Data Exchange (ETDEWEB)

    Gruel, Adrien; Geslot, Benoit; Di Salvo, Jacques; Blaise, Patrick; Girard, Jean-Michel; Destouches, Christophe [CEA, DEN, SPEx, Cadarache, F-13108 St Paul lez Durance (France)

    2015-07-01

    During the MAESTRO program, carried out between 2011 and 2014 in MINERVE zero power reactor, common Gen-II and Gen-III light water reactor materials were irradiated. For some of these materials, the decay of their activation products was also measured by γ spectrometry. Initially devoted to the measurement of the integral capture cross section by activation and reactivity-oscillation method, these results can also provide useful information on decay data of various radionuclides. This approach of this experiment led to a common roadmap shared by the Experimental Physics Section and the Henri Becquerel National Laboratory to improve decay data in nuclear data libraries. Results discussed in this paper concern the relative emission intensities of the main γ rays of {sup 116m}In. Six irradiations of samples with various physical forms of {sup nat}In were carried out. Measurements were analyzed using decay data from several evaluations and it is shown that γ ray activities are not consistent. Analyses were carried out to provide new relative γ emission intensities from these measurements. The {sup 116m}In half-life has also been measured and shows a good agreement with existing values. Finally, an overview of the foreseen results on additional decay data from the MAESTRO program is given. (authors)

  10. β-Decay of Light Neutron-Rich Nuclei

    Institute of Scientific and Technical Information of China (English)

    何超; 华辉; 李湘庆; 汪波

    2012-01-01

    The β-decays of neutron-rich carbon, nitrogen and fluorine isotopes have been systematically studied using the OXBASH shell Model. In the psd, spsd and spsdpf model space, we use the WBP interaction to calculate the half-lives and neutron emission probabilities of neutron- rich carbon and nitrogen isotopes, respectively. With the USD (W) and CW interactions, we calculate the half-lives and neutron emission probabilities of neutron-rich fluorine isotope in the sd model space, respectively. The calculated half-lives and neutron emission probabilities reproduce recent experimental data very well. It seems to show that the particles of the neutron-rich carbon and nitrogen isotopes are mainly excited in the spsd space. The β-decay of 21N to the neutron bound states in 210 is mostly the first forbidden transition which makes the neutron emission probability increase. The theoretical calculation of β-decay of 25F to 25Ne with CW interaction shows that CW interaction is better than USD interaction.

  11. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  12. Rapidly rotating neutron star progenitors

    Science.gov (United States)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-12-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In this paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE (Binary Star Evolution) population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 yr. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1-1 per cent of the total core collapses, depending on the common envelope efficiency.

  13. Rapidly rotating neutron star progenitors

    Science.gov (United States)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-08-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 years. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1 - 1% of the total core collapses, depending on the common envelope efficiency.

  14. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    Science.gov (United States)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  15. The ITER Radial Neutron Camera Detection System

    Science.gov (United States)

    Marocco, D.; Belli, F.; Bonheure, G.; Esposito, B.; Kaschuck, Y.; Petrizzi, L.; Riva, M.

    2008-03-01

    A multichannel neutron detection system (Radial Neutron Camera, RNC) will be installed on the ITER equatorial port plug 1 for total neutron source strength, neutron emissivity/ion temperature profiles and nt/nd ratio measurements [1]. The system is composed by two fan shaped collimating structures: an ex-vessel structure, looking at the plasma core, containing tree sets of 12 collimators (each set lying on a different toroidal plane), and an in-vessel structure, containing 9 collimators, for plasma edge coverage. The RNC detecting system will work in a harsh environment (neutron fiux up to 108-109 n/cm2 s, magnetic field >0.5 T or in-vessel detectors), should provide both counting and spectrometric information and should be flexible enough to cover the high neutron flux dynamic range expected during the different ITER operation phases. ENEA has been involved in several activities related to RNC design and optimization [2,3]. In the present paper the up-to-date design and the neutron emissivity reconstruction capabilities of the RNC will be described. Different options for detectors suitable for spectrometry and counting (e.g. scintillators and diamonds) focusing on the implications in terms of overall RNC performance will be discussed. The increase of the RNC capabilities offered by the use of new digital data acquisition systems will be also addressed.

  16. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  17. Used Fuel Cask Identification through Neutron Profile

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-20

    Currently, most spent fuel is stored near reactors. An interim consolidated fuel storage facility would receive fuel from multiple sites and store it in casks on site for decades. For successful operation of such a facility there is need for a way to restore continuity of knowledge if lost as well as a method that will indicate state of fuel inside the cask. Used nuclear fuel is identifiable by its radiation emission, both gamma and neutron. Neutron emission from fission products, multiplication from remaining fissile material, and the unique distribution of both in each cask produce a unique neutron signature. If two signatures taken at different times do not match, either changes within the fuel content or misidentification of a cask occurred. It was found that identification of cask loadings works well through the profile of emitted neutrons in simulated real casks. Even casks with similar overall neutron emission or average counts around the circumference can be distinguished from each other by analyzing the profile. In conclusion, (1) identification of unaltered casks through neutron signature profile is viable; (2) collecting the profile provides insight to the condition and intactness of the fuel stored inside the cask; and (3) the signature profile is stable over time.

  18. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  19. Neutronic effects on tungsten-186 double neutron capture

    Science.gov (United States)

    Garland, Marc Alan

    Rhenium-188, a daughter product of tungsten-188, is an isotope of great interest in therapeutic nuclear medicine, being used in dozens of laboratory and clinical investigations worldwide. Applications include various cancer therapy strategies, treatment of rheumatoid arthritis, prevention of restenosis following coronary artery angioplasty, and palliation of bone pain associated with cancer metastases. With its half-life of 17 hours, 2.12 MeV (maximum) beta-particle emission, chemical similarity to technetium-99m (the most widely used diagnostic radioisotope), and its availability in a convenient tungsten-188/rhenium-188 generator system, rhenium-188 is a superb candidate for a broad range of applications. Production of 188W is typically via double neutron capture by 186W in a high flux nuclear reactor, predominantly the High Flux Isotope Reactor at the Oak Ridge National Laboratory in Tennessee. Experience at HFIR has shown that production yields (measured in Ci of 188W produced per g of 186W target) decrease considerably as target size increases. While the phenomenon of neutron resonance self-shielding would be expected to produce such an effect, temperature effects on neutron flux distribution and neutron capture rates may also be involved. Experimental investigations of these phenomena have not been previously performed. The work presented in this thesis evaluates the factors that contribute to the decrease in 188W yield from both theoretical and experimental standpoints. Neutron self-shielding and temperature effects were characterized to develop a strategy for target design that would optimize production yield, an important factor in minimizing health care costs. It was determined that decrease in yield due to neutron self-shielding can be attributed to depletion of epithermal neutrons at resonant energies, most significantly within the initial 0.4 mm depth of the target. The results from these studies further show that 188W yield in the interior of the

  20. The Effects of δ Meson on the Neutron Star Cooling

    Institute of Scientific and Technical Information of China (English)

    许妍; 刘广洲; 吴姚睿; 朱明枫; 喻孜; 王红岩; 赵恩广

    2012-01-01

    In the framework of the relativistic mean field theory, the isovector scalar interaction is considered by exchanging δ meson to study the influence of δ meson on the cooling properties of neutron star matter. The calculation results show that with the inclusion of δ meson, the neutrino emissivity of the direct Urca processes increases, and thus enhances the cooling of neutron star matter. When strong proton superfluidity is considered, the theoretical cooling curves agree with the observed thermal radiation for isolated neutron stars.

  1. Absolute Calibration of Proportional Counter Based Fast Pulsed Neutron Detectors with Resolution Below 105 neutron/pulse

    Science.gov (United States)

    Tarifeño-Saldivia, A.; Mayer, R. E.; Pavez, C.; Soto, L.

    2014-05-01

    A method for absolute calibration of proportional counters for pulsed fast neutrons is presented. The method is based on the use of an isotopic standard source and development of a model for counting detected events from area of a signal compounded by single piled up neutron pulses. Effects of detection counting statistics and electrical background noise are also considered. The method is applied in detectors used for D-D neutron yield measurements in low emission plasma focus devices.

  2. Neutron calibration sources in the Daya Bay experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J., E-mail: jianglai.liu@sjtu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai (China); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Carr, R. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Dwyer, D.A. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gu, W.Q. [Department of Physics, Shanghai Jiao Tong University, Shanghai (China); Li, G.S., E-mail: lgs1029@sjtu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai (China); McKeown, R.D. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Department of Physics, College of William and Mary, Williamsburg, VA (United States); Qian, X. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Brookhaven National Laboratory, Upton, NY (United States); Tsang, R.H.M. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Wu, F.F. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Zhang, C. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Brookhaven National Laboratory, Upton, NY (United States)

    2015-10-11

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. The design characteristics have been validated in the Daya Bay anti-neutrino detector.

  3. Neutron Calibration Sources in the Daya Bay Experiment

    CERN Document Server

    Liu, J; Dwyer, D A; Gu, W Q; Li, G S; McKeown, R D; Qian, X; Tsang, R H M; Wu, F F; Zhang, C

    2015-01-01

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. The design characteristics have been validated in the Daya Bay anti-neutrino detector.

  4. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  5. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  6. Evaluation of secondary and prompt fission neutron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Porodzinskij, Yu.V.; Sukhovitskij, E.Sh. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)

    1997-03-01

    A simple model allowing to split neutron emission spectra into reaction partials is suggested. Predicted spectra of (n,n`{gamma}), (n,n`f), etc appear to be much harder than usually evaluated. (author)

  7. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... of new material. Understanding self-assembly of 2D-3D nanostructures at surfaces and the related interfaces in layered films is a precondition for the development of tailored tools with distributed functions, like new clothes (self-cleaning surfaces combined with mechanical resistance, low permeability...... of polar molecules like water and high permeability for gases), films to be applied as specific sensors or for packaging, surface coverage for implants with incorporated antibiotics, thin magnetic material with designed domain distributions, … . The structures of interest range from a few Ǻngstrøm up...

  8. Neutrons produced by 75MeV/u 12C—ion on thick targets

    Institute of Scientific and Technical Information of China (English)

    LiGisheng; ZHANGTianmei; 等

    1999-01-01

    Fluence rates and angular distributions of the neutron emitted by 75MeV/u 12C-ion bombardment on thick Be and Au targets have been measured by means of the threshold detector activation method.Based on that,the neutron yields,emission rates in the forward direction and neutron dose equivalent rate distributions were deduced.

  9. On the Rutherford-Santilli neutron model

    Energy Technology Data Exchange (ETDEWEB)

    Burande, Chandrakant S. [Vilasrao Deshmukh College of Engineering and Technology, Mouda, India-441104, Email: csburande@gmail.com (India)

    2015-03-10

    In 1920 H. Rutherford conjectured that the first particle synthesized in stars is neutron from a proton and an electron after which all known matter is progressively synthesized. However, Pauli objected Rutherford’s version of neutron synthesis because inability to represent spin 1/2 of the neutron. Using this objection E. Fermi proposed emission of massless particle, called “neutrino”. However, Santilli has dismissed the neutrino hypothesis following certain ambiguities such as positive binding energy required in synthesis of neutron. He found that celebrated Schrödinger’s equation of quantum physics is not suitable for obtaining positive binding energy for bound state at the dimension of 10{sup −13}cm. In order to remove these shortcomings, Santilli has developed isomathematics and then hadronic mechanics, which allowed the time invariant representation of Hamiltonian and non-Hamiltonian interactions as needed for the neutron synthesis (see for example: References cited at [1]).Thus the anomalies pertaining to the binding energy, the spin and the magnetic moment got resolved. He successfully calculated missing positive binding energy via isonormalization of the mass for electron when totally immersed within the hyper-dense medium inside the proton. Considering Rutherford’s compression of the isoelectron within the proton in the singlet coupling, he also identified the spin 1/2 for neutron and calculated the magnetic moment of the neutron. In order to verify his logical concept, he repeated the Don Carlo Borghi experiment of synthesis of the neutron from proton and electrons and verified that the said setup indeed produces neutron-type particles called “neutroids” which latter is absorbed by the activated detector substances that produces known nuclear reactions. He dismissed the neutrino hypothesis and replaced it with a longitudinal impulse originating from the ether as a universal substratum, named, “etherino”. He pointed out that all the

  10. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  11. 2D Cooling of Magnetized Neutron Stars

    CERN Document Server

    Aguilera, Deborah N; Miralles, Juan A

    2007-01-01

    Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^{13}G. A realistic cooling model should be reconsidered including the presence of high magnetic fields. Aims: We investigate the effects of anisotropic temperature distribution and Joule heating on the cooling of magnetized neutron stars. Methods: The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results: The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions: There is a huge effect of the Joule heating on the thermal evolution of strongly magnetized neutron stars. Magnetic fields and Joule heating play a key role in maintaining magnetars warm for a long time. Moreover, this effect is also important for intermediate field neu...

  12. Advanced modeling of prompt fission neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Talou, Patrick [Los Alamos National Laboratory

    2009-01-01

    Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.

  13. Study of neutron spectrometers for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kaellne, Jan

    2005-11-15

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation.

  14. Fission neutron spectra measurements at LANSCE - status and plans

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory; Noda, Shusaku [Los Alamos National Laboratory; Nelson, Ronald O [Los Alamos National Laboratory; O' Donnell, John M [Los Alamos National Laboratory; Devlin, Matt [Los Alamos National Laboratory; Chatillon, Audrey [CEA-FRANCE; Granier, Thierry [CEA-FRANCE; Taieb, Julien [CEA-FRANCE; Laurent, Benoit [CEA-FRANCE; Belier, Gilbert [CEA-FRANCE; Becker, John A [LLNL; Wu, Ching - Yen [LLNL

    2009-01-01

    A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. The range of outgoing energies measured so far is from 1 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date will be presented and a discussion of uncertainties will be given in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including mea urements of fission neutrons below 1 MeV and improvements in the data above 8 MeV.

  15. Solar neutrons from the impulsive flare on 1982 June 3 at 1143 UT

    Science.gov (United States)

    Chupp, E. L.; Forrest, D. J.; Share, G. H.; Kanbach, G.; Debrunner, H.; Flueckiger, E.

    1983-01-01

    A transient flux of high energy solar neutrons from 50 MeV to about 1 GeV has been detected by the Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission (SMM) satellite following an intense burst of high energy photons (less than 100 MeV) peaking at 1143:29 UT. The neutrons were also detected by the IGY neutron monitor on Jungfraujoch (Switzerland). In this paper the SMM GRS observations are summarized and compared with the Jungfraujoch neutron monitor data, and both the time dependent neutron flux at the earth and the neutron emission spectrum at the sun are estimated.

  16. Enhancing the Detector for Advanced Neutron Capture Experiments

    Directory of Open Access Journals (Sweden)

    Couture A.

    2015-01-01

    Full Text Available The Detector for Advanced Neutron Capture Experiments (DANCE has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  17. MONSTER: a TOF Spectrometer for β-delayed Neutron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, T., E-mail: trino.martinez@ciemat.es [Centro de Investigaciones Energéticas, MedioAmbientales y Tecnológicas, CIEMAT, Madrid 28040 (Spain); Cano-Ott, D.; Castilla, J.; Garcia, A.R.; Marin, J.; Martinez, G.; Mendoza, E.; Santos, C.; Tera, F.J.; Villamarin, D. [Centro de Investigaciones Energéticas, MedioAmbientales y Tecnológicas, CIEMAT, Madrid 28040 (Spain); Agramunt, J.; Algora, A.; Domingo, C.; Jordan, M.D.; Rubio, B.; Taín, J.L. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia (Spain); Bhattacharya, C.; Banerjee, K.; Bhattacharya, S.; Roy, P. [Variable Energy Cyclotron Centre (VECC), Kolkata (India); and others

    2014-06-15

    β-delayed neutron (DN) data, including emission probabilities, Pn, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

  18. Study of Collimated Neutron Flux Monitors for MAST and MAST Upgrade

    OpenAIRE

    Sangaroon, Siriyaporn

    2014-01-01

    Measurements of the neutron emission, resulting from nuclear fusion reactions between the hydrogen isotopes deuterium and tritium, can provide a wealth of information on the confinement properties of fusion plasmas and how these are affected by Magneto-Hydro-Dynamic (MHD) instabilities. This thesis describes work aimed to develop neutron measurement techniques for nuclear fusion plasma experiments, specifically regarding the performance and design of collimated neutron flux monitors (neutron ...

  19. Ion Acceleration in Solar Flares Determined by Solar Neutron Observations

    Science.gov (United States)

    Watanabe, K.; Solar Neutron Observation Group

    2013-05-01

    Large amounts of particles can be accelerated to relativistic energy in association with solar flares and/or accompanying phenomena (e.g., CME-driven shocks), and they sometimes reach very near the Earth and penetrate the Earth's atmosphere. These particles are observed by ground-based detectors (e.g., neutron monitors) as Ground Level Enhancements (GLEs). Some of the GLEs originate from high energy solar neutrons which are produced in association with solar flares. These neutrons are also observed by ground-based neutron monitors and solar neutron telescopes. Recently, some of the solar neutron detectors have also been operating in space. By observing these solar neutrons, we can obtain information about ion acceleration in solar flares. Such neutrons were observed in association with some X-class flares in solar cycle 23, and sometimes they were observed by two different types of detectors. For example, on 2005 September 7, large solar neutron signals were observed by the neutron monitor at Mt. Chacaltaya in Bolivia and Mexico City, and by the solar neutron telescopes at Chacaltaya and Mt. Sierra Negra in Mexico in association with an X17.0 flare. The neutron signal continued for more than 20 minutes with high statistical significance. Intense gamma-ray emission was also registered by INTEGRAL, and by RHESSI during the decay phase. We analyzed these data using the solar-flare magnetic-loop transport and interaction model of Hua et al. (2002), and found that the model could successfully fit the data with intermediate values of loop magnetic convergence and pitch angle scattering parameters. These results indicate that solar neutrons were produced at the same time as the gamma-ray line emission and that ions were continuously accelerated at the emission site. In this paper, we introduce some of the solar neutron observations in solar cycle 23, and discuss the tendencies of the physical parameters of solar neutron GLEs, and the energy spectrum and population of the

  20. A new approach to prompt fission neutron TOF data treatment

    Science.gov (United States)

    Zeynalov, Sh.; Zeynalova, O. V.; Hambsch, F.-J.; Oberstedt, S.

    The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. A new mathematical approach, applicable to single events, was developed for prompt fission neutron (PFN) time-offlight distribution unfolding. The main goal was to understand the reasons of the long existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of the fission fragments (FF). Since the 252Cf (sf) reaction is one of the main references for nuclear data the understanding of the PFN emission mechanism is very important both for nuclear fission theory and nuclear data. The experimental data were taken with a twin Frisch-grid ionization chamber and a NE213-equivalent neutron detector in an experimental setup similar to the well known work of C. Budtz-Jorgensen and H.-H. Knitter. About 2.5 × 105 coincidences between fission fragment (FF) and neutron detector response to prompt fission neutron detection have been registered (∼ 1.6 × 107 of total recorded fission events). Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12-bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. The main goal of this work was a detailed description of the prompt fission neutron treatment.

  1. Superheated drop neutron spectrometer

    CERN Document Server

    Das, M; Roy, B; Roy, S C; Das, Mala

    2000-01-01

    Superheated drops are known to detect neutrons through the nucleation caused by the recoil nuclei produced by the interactions of neutrons with the atoms constituting the superheated liquid molecule. A novel method of finding the neutron energy from the temperature dependence response of SDD has been developed. From the equivalence between the dependence of threshold energy for nucleation on temperature of SDD and the dependence of dE/dx of the recoil ions with the energy of the neutron, a new method of finding the neutron energy spectrum of a polychromatic as well as monochromatic neutron source has been developed.

  2. Neutron streak camera

    Science.gov (United States)

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  3. Neutron production with mixture of deuterium and krypton in Sahand Filippov type plasma focus facility

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, M.A., E-mail: mohammadidorbash@yahoo.com [Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Sobhanian, S. [Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Rawat, R.S. [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University (Singapore)

    2011-08-01

    This Letter reports the order of magnitude enhancement in neutron yield from Sahand plasma focus device with krypton seeded deuterium operation. The highest average neutron yield of 2.2x10{sup 9} neutrons per shot was achieved at 1.00 Torr deuterium with 3% krypton which is higher than the best average neutron yield of 3.18x10{sup 8} neutrons per shot for pure deuterium operation. Estimation of average neutron energy showed that the maximum and minimum average energies are 2.98±0.6 MeV at 16 kV in 0.25 Torr deuterium with 3% Kr and 2.07±0.2 MeV at 18 kV operation in 0.5 Torr deuterium with 3% Kr, respectively. The anisotropy of neutron emission from Sahand DPF showed that the neutrons are produced mainly by beam-target mechanisms. -- Highlights: → The highest average neutron yield of 2.2x10{sup 9} neutrons per shot was achieved at mixture of deuterium and krypton. → In the krypton seeding of deuterium also anisotropy of neutron emission deuterium is found. → The krypton seeding of deuterium made the neutron emission more reliable over wider operating pressure ranges.

  4. Neutron counter based on beryllium activation

    Energy Technology Data Exchange (ETDEWEB)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  5. Neutron counter based on beryllium activation

    Science.gov (United States)

    Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.

    2014-08-01

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  6. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Croci, G.; Tardocchi, M. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Rebai, M.; Cippo, E. Perelli; Gorini, G. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Cazzaniga, C. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano (Italy); Palma, M. Dalla; Pasqualotto, R.; Tollin, M. [Consorzio RFX - Associazione Euratom-Enea sulla Fusione, Padova (Italy); Grosso, G.; Muraro, A. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Murtas, F.; Claps, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Roma) (Italy); Cavenago, M. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy)

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  7. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    Science.gov (United States)

    Croci, G.; Rebai, M.; Cazzaniga, C.; Palma, M. Dalla; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Pasqualotto, R.; Cippo, E. Perelli; Tardocchi, M.; Tollin, M.; Cavenago, M.; Gorini, G.

    2014-08-01

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  8. Photon and fast neutron dosimetry using aluminium oxide thermoluminescence dosemeters.

    Science.gov (United States)

    Santos, J P; Fernandes, A C; Gonçalves, I C; Marques, J G; Carvalho, A F; Santos, L; Cardoso, J; Osvay, M

    2006-01-01

    Al(2)O(3):Mg,Y thermoluminescence (TL) dosemeters were used to measure photon and fast neutron doses in a fast neutron beam recently implemented at the Portuguese Research Reactor, Nuclear and Technological Institute, Portugal. The activation of Al(2)O(3):Mg,Y by fast neutrons provides information about the fast neutron component by measuring the activity of the reaction products and the self-induced TL signal. Additionally, the first TL reading after irradiation determines the photon dose. The elemental composition of the dosemeters was determined by instrumental neutron activation analysis and by particle induced X-ray emission. Results demonstrate that Al(2)O(3):Mg,Y is an adequate material to discriminate photon and fast neutron fields for reactor dosimetry purposes.

  9. Gadolinium loaded plastic scintillators for high efficiency neutron detection

    Science.gov (United States)

    Ovechkina, Lena; Riley, Kent; Miller, Stuart; Bell, Zane; Nagarkar, Vivek

    2009-08-01

    Gadolinium has the highest thermal neutron absorption cross section of any naturally occurring element, and emits conversion electrons as well as atomic X-rays in over 50% of its neutron captures, which makes it a useful dopant in scintillators for detecting thermal neutrons. Gadolinium isopropoxide was studied as a possible dopant for styrene-based plastic scintillators as a convenient and inexpensive method to produce high-efficiency thermal neutron detectors. Plastic scintillators with gadolinium weight concentrations of up to 3% were transparent, uniform and defect-free and were characterized with spectral measurements performed under x-ray and neutron irradiation. The new material has the same characteristic emission of styrene with a maximum at approximately 425 nm, and a light output of 76% relative to the undoped plastic. A 13 mm thick sample containing 0.5% gadolinium by weight detected 46% of incident thermal neutrons, which makes this an attractive material for a variety of applications.

  10. Neutron anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, G.E. [Univ. of Sheffield (United Kingdom)

    1994-12-31

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.

  11. Conceptual design of the BRIKEN detector: A hybrid neutron-gamma detection system for nuclear physics at the RIB facility of RIKEN

    CERN Document Server

    Tarifeño-Saldivia, A; Domingo-Pardo, C; Calviño, F; Cortes, G; Phong, V H; Riego, A

    2016-01-01

    BRIKEN is a complex detection system to be installed at the RIB-facility of the RIKEN Nishina Center. It is aimed at the detection of heavy-ion implants, $\\beta$-particles, $\\gamma$-rays and $\\beta$-delayed neutrons. The whole detection setup involves the Advanced Implantation Detection Array (AIDA), two HPGe Clover detectors and a large set of 166 counters of 3He embedded in a high-density polyethylene matrix. This article reports on a novel methodology developed for the conceptual design and optimisation of the 3He-tubes array, aiming at the best possible performance in terms of neutron detection. The algorithm is based on a geometric representation of two selected parameters of merit, namely, average neutron detection efficiency and efficiency flatness, as a function of a reduced number of geometric variables. The response of the detection system itself, for each configuration, is obtained from a systematic MC-simulation implemented realistically in Geant4. This approach has been found to be particularly u...

  12. Neutrino Processes in Neutron Stars

    Science.gov (United States)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be

  13. Imaging with Scattered Neutrons

    OpenAIRE

    Ballhausen, H.; Abele, H.; Gaehler, R.; Trapp, M.; Van Overberghe, A.

    2006-01-01

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-re...

  14. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  15. Advanced neutron absorber materials

    Science.gov (United States)

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  16. DIANE: Advanced system for mobile neutron radiology

    Science.gov (United States)

    Dance, W. E.; Huriet, J. R.; Cluzeau, S.; Mast, H.-U.; Albisu, F.

    1989-04-01

    Development of a new neutron radiology system, DIANE, is underway which will provide a ten-fold improvement in image-acquisition speed over presently operating mobile systems, insuring greater inspection throughput for production applications. Based on a 10 12 n/s sealed-tube (D-T) neutron generator under development by Sodern, on LTV's neutron moderator/collimator and electronic imaging systems and on robotic and safety systems being developed by IABG and Sener, the DIANE concept is that of a complete facility for on-site neutron radiography or radioscopy. The LTV components, which provide film or electronic imaging, including digital processing of 12-bit images, have been demonstrated in three basic systems now operating with Kaman A-711 neutron generators, including one operating in IABG's facilities. Sodern has fabricated a prototype neutron generator tube, the TN 46, for emission of 10 11 n/s over 1000 to 1500 hours, at 250 kV and 2 mA in the ion beam.

  17. Neutron-powered precursors of kilonovae

    CERN Document Server

    Metzger, Brian D; Goriely, Stephane; Kasen, Daniel

    2014-01-01

    The merger of binary neutron stars (NSs) ejects a small quantity of neutron rich matter, the radioactive decay of which powers a day to week long thermal transient known as a kilonova. Most of the ejecta remains sufficiently dense during its expansion that all neutrons are captured into nuclei during the r-process. However, recent general relativistic merger simulations by Bauswein and collaborators show that a small fraction of the ejected mass (a few per cent, or ~1e-4 Msun) expands sufficiently rapidly for most neutrons to avoid capture. This matter originates from the shocked-heated interface between the merging NSs. Here we show that the beta-decay of these free neutrons in the outermost ejecta powers a `precursor' to the main kilonova emission, which peaks on a timescale of a few hours following merger at U-band magnitude ~22 (for an assumed distance of 200 Mpc). The high luminosity and blue colors of the neutron precursor render it a potentially important counterpart to the gravitational wave source, t...

  18. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  19. Grazing Incidence Neutron Optics

    Science.gov (United States)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  20. Neutron scatter camera

    Science.gov (United States)

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  1. Reducing background neutron rates in NERO

    Science.gov (United States)

    Pellegrini, Eric

    2003-10-01

    The experimental study of neutron rich nuclei can provide important data to better model the production and abundances of heavy elements from the r-process. In order to measure low emission rates of neutrons in certain nuclei, efforts have been made to reduce background rates in NERO (1). Simulations were done to calculate effective passive shielding and testing was carried out to evaluate it. Also, an active shielding system was designed to detect cosmic ray muons in an effort to create a veto in the data acquisition. The results of these efforts are presented here. 1. http://www.nscl.msu.edu/tech/devices/nero/

  2. Free fall onto magnetized neutron stars

    Science.gov (United States)

    Salpeter, E. E.

    Some compact X-ray sources show evidence of cyclotron line radiation from excited electron Landau orbits, powered by hydrogen and helium falling onto a neutron star atmosphere along the magnetic field. The slowing of the incident matter is discussed, including the spread in energy loss due to Coulomb scattering and direct nuclear reactions for disintegrating the α particles. The α disintegrations, followed by neutron capture, lead to nuclear γ rays; the γ-ray intensity is (indirectly) coupled to the Coulomb energy loss and the cyclotron line emission.

  3. Characterization of neutron yield and x-ray spectra of a High Flux Neutron Generator (HFNG)

    Science.gov (United States)

    Nnamani, Nnaemeka; HFNG Collaboration

    2015-04-01

    The High Flux Neutron Generator (HFNG) is a DD plasma-based source, with a self-loading target intended for fundamental science and engineering applications, including 40 Ar/39 Ar geochronology, neutron cross section measurements, and radiation hardness testing of electronics. Our first estimate of the neutron yield, based on the population of the 4.486 hour 115 In isomer gave a neutron yield of the order 108 n/sec; optimization is ongoing to achieve the design target of 1011 n/sec. Preliminary x-ray spectra showed prominent energy peaks which are likely due to atomic line-emission from back-streaming electrons accelerated up to 100 keV impinging on various components of the HFNG chamber. Our x-ray and neutron diagnostics will aid us as we continue to evolve the design to suppress back-streaming electrons, necessary to achieve higher plasma beam currents, and thus higher neutron flux. This talk will focus on the characterization of the neutron yield and x-ray spectra during our tests. A collimation system is being installed near one of the chamber ports for improved observation of the x-ray spectra. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and the UC Office of the President Award 12-LR-238745.

  4. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    DEFF Research Database (Denmark)

    Muhrer, G.; Schonfeldt, T.; Iverson, E. B.

    2016-01-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired......, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability...... of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains...

  5. Advances in neutron tomography

    Indian Academy of Sciences (India)

    W Treimer

    2008-11-01

    In the last decade neutron radiography (NR) and tomography (NCT) have experienced a number of improvements, due to the well-known properties of neutrons interacting with matter, i.e. the low attenuation by many materials, the strong attenuation by hydrogenous constituent in samples, the wavelength-dependent attenuation in the neighbourhood of Bragg edges and due to better 2D neutron detectors. So NR and NCT were improved by sophisticated techniques that are based on the attenuation of neutrons or on phase changes of the associated neutron waves if they pass through structured materials. Up to now the interaction of the neutron spin with magnetic fields in samples has not been applied to imaging techniques despite the fact that it was proposed many years ago. About ten years ago neutron depolarization as imaging signal for neutron radiography or tomography was demonstrated and in principle it works. Now one can present much improved test experiments using polarized neutrons for radiographic imaging. For this purpose the CONRAD instrument of the HMI was equipped with polarizing and analysing benders very similar to conventional scattering experiments using polarized neutrons. Magnetic fields in different coils and in samples (superconductors) at low temperatures could be visualized. In this lecture a summary about standard signals (attenuation) and the more `sophisticated' imaging signals as refraction, small angle scattering and polarized neutrons will be given.

  6. X-ray Measurements of a Thermo Scientific P385 DD Neutron Generator

    Energy Technology Data Exchange (ETDEWEB)

    E.H. Seabury; D.L. Chichester; A.J. Caffrey; J. Simpson; M. Lemchak; C.J. Wharton

    2001-08-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X-rays are a normal byproduct from a neutron generator and depending on their intensity and energy they can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x-rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and the x-ray emission appears to be axially symmetric within the neutron generator.

  7. Rapidly rotating neutron star progenitors

    CERN Document Server

    Postnov, K A; Kolesnikov, D A; Popov, S B; Porayko, N K

    2016-01-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, $\\tau_c$. The validity of this approach is checked by direct MESA calculations ...

  8. Neutronic Reactor Shield

    Science.gov (United States)

    Fermi, Enrico; Zinn, Walter H.

    The argument of the present Patent is a radiation shield suitable for protection of personnel from both gamma rays and neutrons. Such a shield from dangerous radiations is achieved to the best by the combined action of a neutron slowing material (a moderator) and a neutron absorbing material. Hydrogen is particularly effective for this shield since it is a good absorber of slow neutrons and a good moderator of fast neutrons. The neutrons slowed down by hydrogen may, then, be absorbed by other materials such as boron, cadmium, gadolinium, samarium or steel. Steel is particularly convenient for the purpose, given its effectiveness in absorbing also the gamma rays from the reactor (both primary gamma rays and secondary ones produced by the moderation of neutrons). In particular, in the present Patent a shield is described, made of alternate layers of steel and Masonite (an hydrolized ligno-cellulose material). The object of the present Patent is not discussed in any other published paper.

  9. The Neutron's Discovery - 80 Years on

    Science.gov (United States)

    Rogers, John D.

    A brief review is given of selected highlights in scientific developments from the birth of modern nuclear physics at the end of the 19th century to the discovery of the neutron in 1932. This is followed by some important milestones in neutron and reactor physics that have led to our current understanding and implementation of nuclear technologies. The beginnings can be traced back to the discovery of X-rays by Roentgen, the identification of natural radioactivity by Becquerel and the discovery of the electron by Thomson, towards the end of the 19th Century. Rutherford was a key figure in experimental physics who determined the structure of the atom and who inspired his students at McGill, Manchester and Cambridge Universities (many of whom would become Nobel laureates) in the pursuit of their physics research. One of Rutherford's students, James Chadwick, had studied the work carried out by Bothe and Becker on alpha particle-induced disintegration of light elements which had led to their observation of high energy penetrating radiation that neither they nor the Joliot-Curies could identify. Chadwick knew that the only possible explanation was the emission of a neutron in the nuclear reaction. He carried out tests in the Cavendish Laboratory and submitted his now classical paper identifying the neutron to the periodical Nature in 1932. The discovery of the neutron and of nuclear fission in 1939 opened up new areas for scientific investigation, in, for example, astrophysics, geology, neutron and nuclear physics. The prospects for nuclear power in particular appeared to be unlimited and both civil and military applications have been actively pursued. Many new experimental facilities have been designed and built to provide intense sources of neutrons for research purposes. Work carried out in such centres is included in the programme of the 7th International Topical Meeting on Neutron Radiography, an important forum for discussion of the latest research work of this

  10. Comparing neutron and X-ray images from NIF implosions

    Directory of Open Access Journals (Sweden)

    Wilson D.C.

    2013-11-01

    Full Text Available Directly laser driven and X-radiation driven DT filled capsules differ in the relationship between neutron and X-ray images. Shot N110217, a directly driven DT-filled glass micro-balloon provided the first neutron images at the National Ignition Facility. As seen in implosions on the Omega laser, the neutron image can be enclosed inside time integrated X-ray images. HYDRA simulations show the X-ray image is dominated by emission from the hot glass shell while the neutron image arises from the DT fuel it encloses. In the absence of mix or jetting, X-ray images of a cryogenically layered THD fuel capsule should be dominated by emission from the hydrogen rather than the cooler plastic shell that is separated from the hot core by cold DT fuel. This cool, dense DT, invisible in X-ray emission, shows itself by scattering hot core neutrons. Germanium X-ray emission spectra and Ross pair filtered X-ray energy resolved images suggest that germanium doped plastic emits in the torus shaped hot spot, probably reducing the neutron yield.

  11. Neutron-rich gamma-ray burst flows: dynamics and particle creation in neutron - proton collisions

    CERN Document Server

    Koers, H B J; Koers, Hylke B. J.; Giannios, Dimitrios

    2007-01-01

    We consider gamma-ray burst outflows with a substantial neutron component that are either dominated by thermal energy (fireballs) or by magnetic energy. In the latter case, we focus on the recently introduced `AC' model which relies on magnetic reconnection to accelerate the flow and power the prompt emission. For both the fireball and the AC model, we investigate the dynamical importance of neutrons on the outflow. We study particle creation in inelastic neutron - proton collisions and find that in both models the resulting neutrino emission is too weak to be detectable. The inelastic collisions also produce gamma-rays, which create pairs in interactions with soft photons carried with the flow. In magnetically driven outflows, the energy of these pairs is radiated away as synchrotron emission. The bulk of the emission takes place at a few hundred keV, which makes it difficult to disentangle this signal from the prompt emission. In fireballs, however, pair cascading leads to the emission of gamma-rays with ob...

  12. The Neutron Star Zoo

    Science.gov (United States)

    Harding, Alice K.

    2014-01-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission. XXX Neutron stars are found in a wide variety of sources, displaying an amazing array of behavior. They can be isolated or in binary systems, accreting, heating, cooling, spinning down, spinning up, pulsing, flaring and bursting. The one property that seems to determine their behavior most strongly is their magnetic field strength, structure and evolution. The hot polar caps, bursts and flares of magnetars are likely due to the rapid decay and twisting of their superstrong magnetic fields, whose very existence requires some kind of early dynamo activity. The intermediate-strength magnetic fields of RPPs determines their spin-down behavior and radiation properties. However, the overlap of the magnetar and RPP populations is not understood at present. Why don't high-field RPPs burst or flare? Why don't lower-field magnetars sometimes behave more like RPPs? INS may be old magnetars whose high fields have decayed, but they do not account for the existence of younger RPPs with magnetar-strength fields. Not only the strength of the magnetic field but also its configuration may be important in making a NS a magnetar or a RPP. Magnetic field decay is a critical link between other NS populations as well. "Decay" of the magnetic field is necessary for normal RPPs to evolve into MSPs through accretion and spin up in LMXBs. Some kind of accretion-driven field reduction is the most likely mechanism, but it is controversial since it is not

  13. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  14. Prompt neutron multiplicity distribution for 235U(n,f) at incident energies up to 20 MeV

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-Jing; LIU Ting-Jin

    2011-01-01

    For the n+U fission reaction, the total excitation energy partition of the fission fragments, the average neutron kinetic energy (A) and the total average energies E(A) removed by γ rays as a function of fission fragment mass are given at incident energies up to 20 MeV. The prompt neutron multiplicity as a function of the fragment mass, ν(A), for neutron-induced fission of U at different incident neutron energies is calculated. The calculated results are checked with the total average prompt neutron multiplicities ν and compared with the experimental and evaluated data. Some prompt neutron and γ emission mechanisms are discussed.

  15. Neutrino-pair bremsstrahlung in a neutron star crust

    CERN Document Server

    Ofengeim, D D; Yakovlev, D G

    2014-01-01

    Based on the formalism by Kaminker et al. (Astron. Astrophys. 343 (1999) 1009) we derive an analytic approximation for neutrino-pair bremsstrahlung emissivity due to scattering of electrons by atomic nuclei in the neutron star crust of any realistic composition. The emissivity is expressed through generalized Coulomb logarithm which we fit by introducing an effective potential of electron-nucleus scattering. In addition, we study the conditions at which the neutrino bremsstrahlung in the crust is affected by strong magnetic fields. The results can be applied for modelling of many phenomena in neutron stars, such as thermal relaxation in young isolated neutron stars and in accreting neutron stars with overheated crust in soft X-ray transients.

  16. Impact of the first-forbidden $\\beta$ decay on the production of $A \\sim 195$ r-process peak

    CERN Document Server

    Nishimura, Nobuya; Fang, Dong-Liang; Suzuki, Toshio

    2016-01-01

    We investigated the effects of first-forbidden transitions in $\\beta$ decays on the production of the r-process $A \\sim 195$ peak. The theoretical calculated $\\beta$-decay rates with $\\beta$-delayed neutron emission were examined using several astrophysical conditions. As the first-borbidden decay is dominant in $N \\sim 126$ neutron-rich nuclei, their inclusion shortens $\\beta$-decay lifetimes and shifts the abundance peak towards higher masses. Additionally, the inclusion of the $\\beta$-delayed neutron emission results in a wider abundance peak, and smoothens the mass distribution by removing the odd-even mass staggering. The effects are commonly seen in the results of all adopted astrophysical models. Nevertheless there are quantitative differences, indicating that remaining uncertainty in the determination of half-lives for $N=126$ nuclei is still significant in order to determine the production of the r-process peak.

  17. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  18. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  19. Observational Constraints on Neutron Star Masses and Radii

    CERN Document Server

    Miller, M Coleman

    2016-01-01

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star -- black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method...

  20. Rotational and magnetic field instabilities in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kokkotas, Kostas D. [Theoretical Astrophysics, IAAT, Eberhard Karls University of Tübingen, Tübingen 72076 (Germany)

    2014-01-14

    In this short review we present recent results on the dynamics of neutron stars and their magnetic fields. We discuss the progress that has been made, during the last 5 years, in understanding the rotational instabilities with emphasis to the one due to the f-mode, the possibility of using gravitational wave detection in constraining the parameters of neutron stars and revealing the equation of state as well as the detectability of gravitational waves produced during the unstable phase of a neutron star’s life. In addition we discuss the dynamics of extremely strong magnetic fields observed in a class of neutron stars (magnetars). Magnetic fields of that strength are responsible for highly energetic phenomena (giant flares) and we demonstrate that the analysis of the emitted electromagnetic radiation can lead in constraining the parameters of neutron stars. Furthermore, we present our results from the study of such violent phenomena in association with the emission of gravitational radiation.

  1. Observational constraints on neutron star masses and radii

    Energy Technology Data Exchange (ETDEWEB)

    Coleman Miller, M. [University of Maryland, Department of Astronomy and Joint Space-Science Institute, College Park, MD (United States); Lamb, Frederick K. [University of Illinois at Urbana-Champaign, Center for Theoretical Astrophysics and Department of Physics, Urbana, IL (United States); University of Illinois at Urbana-Champaign, Department of Astronomy, Urbana, IL (United States)

    2016-03-15

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method. (orig.)

  2. NSMAXG: A new magnetic neutron star spectral model in XSPEC

    CERN Document Server

    Ho, Wynn C G

    2013-01-01

    The excellent sensitivity of X-ray telescopes, such as Chandra and XMM-Newton, is ideal for the study of cooling neutron stars, which can emit at these energies. In order to exploit the wealth of information contained in the high quality data, a thorough knowledge of the radiative properties of neutron star atmospheres is necessary. A key factor affecting photon emission is magnetic fields, and neutron stars are known to have strong surface magnetic fields. Here I briefly describe our latest work on constructing magnetic (B >= 10^10 G) atmosphere models of neutron stars and the NSMAXG implementation of these models in XSPEC. Our results allow for more robust extractions of neutron star parameters from observations.

  3. Thin Film Polymer Composite Scintillators for Thermal Neutron Detection

    Directory of Open Access Journals (Sweden)

    Andrew N. Mabe

    2013-01-01

    Full Text Available Thin film polystyrene composite scintillators containing LiF6 and organic fluors have been fabricated and tested as thermal neutron detectors. Varying fluorescence emission intensities for different compositions are interpreted in terms of the Beer-Lambert law and indicate that the sensitivity of fluorescent sensors can be improved by incorporating transparent particles with refractive index different than that of the polymer matrix. Compositions and thicknesses were varied to optimize the fluorescence and thermal neutron response and to reduce gamma-ray sensitivity. Neutron detection efficiency and neutron/gamma-ray discrimination are reported herein as functions of composition and thickness. Gamma-ray sensitivity is affected largely by changing thickness and unaffected by the amount of LiF6 in the film. The best neutron/gamma-ray discrimination characteristics are obtained for film thicknesses in the range 25–150 μm.

  4. Low-level measuring techniques for neutrons: High accuracy neutron source strength determination and fluence rate measurement at an underground laboratory

    Science.gov (United States)

    Zimbal, Andreas; Degering, Detlev; Reginatto, Marcel; Schuhmacher, Helmut; Wiegel, Burkhard; Zuber, Kai

    2013-08-01

    We report on measuring techniques for neutrons that have been developed at the Physikalisch-Technische Bundesanstalt (PTB), the German National Metrology Institute. PTB has characterized radioactive sources used in the BOREXINO and XENON100 experiments. For the BOREXINO experiment, a 228Th gamma radiation source was required which would not emit more than 10 neutrons per second. The determination of the neutron emission rate of this specially designed 228Th source was challenging due to the low neutron emission rate and because the ratio of neutron to gamma radiation was expected to be extremely low, of the order of 10-6. For the XENON100 detector, PTB carried out a high accuracy measurement of the neutron emission rate of an AmBe source. PTB has also done measurements in underground laboratories. A two month measurement campaign with a set of 3He-filled proportional counters was carried out in PTB's former UDO underground laboratory at the Asse salt mine. The aim of the campaign was to determine the intrinsic background of detectors, which is needed for the analysis of data taken in lowintensity neutron fields. At a later time, PTB did a preliminary measurement of the neutron fluence rate at the underground laboratory Felsenkeller operated by VKTA. By taking into account data from UDO, Felsenkeller, and detector calibrations made at the PTB facility, it was possible to estimate the neutron fluence rate at the Felsenkeller underground laboratory.

  5. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    Science.gov (United States)

    Muhrer, G.; Schönfeldt, T.; Iverson, E. B.; Mocko, M.; Baxter, D. V.; Hügle, Th.; Gallmeier, F. X.; Klinkby, E. B.

    2016-09-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  6. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Muhrer, G. [European Spallation Source, Lund (Sweden); Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States); Schönfeldt, T. [Center for Nuclear Technologies, Technical University of Denmark, Roskilde (Denmark); European Spallation Source, Lund (Sweden); Iverson, E.B., E-mail: iversoneb@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mocko, M. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN (United States); Hügle, Th.; Gallmeier, F.X. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Klinkby, E.B. [Center for Nuclear Technologies, Technical University of Denmark, Roskilde (Denmark); European Spallation Source, Lund (Sweden)

    2016-09-11

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  7. HERSCHEL AND SPITZER OBSERVATIONS OF SLOWLY ROTATING, NEARBY ISOLATED NEUTRON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Posselt, B.; Pavlov, G. G. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Popov, S. [Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Wachter, S., E-mail: posselt@psu.edu [Max Planck Institute for Astronomy, Königsstuhl 17, D-69117 Heidelberg (Germany)

    2014-11-01

    Supernova fallback disks around neutron stars have been suspected to influence the evolution of the diverse neutron star populations. Slowly rotating neutron stars are the most promising places to find such disks. Searching for the cold and warm debris of old fallback disks, we carried out Herschel PACS (70 μm, 160 mu m) and Spitzer IRAC (3.6 μm, 4.5 μm) observations of eight slowly rotating (P ≈ 3-11 s) nearby (<1 kpc) isolated neutron stars. Herschel detected 160 μm emission (>5σ) at locations consistent with the positions of the neutron stars RX J0806.4-4123 and RX J2143.0+0654. No other significant infrared emission was detected from the eight neutron stars. We estimate probabilities of 63%, 33%, and 3% that, respectively, none, one, or both Herschel PACS 160 μm detections are unrelated excess sources due to background source confusion or an interstellar cirrus. If the 160 μm emission is indeed related to cold (10-22 K) dust around the neutron stars, this dust is absorbing and re-emitting ∼10% to ∼20% of the neutron stars' X-rays. Such high efficiencies would be at least three orders of magnitude larger than the efficiencies of debris disks around nondegenerate stars. While thin dusty disks around the neutron stars can be excluded as counterparts of the 160 μm emission, dusty asteroid belts constitute a viable option.

  8. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2014-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  9. Neutron conversion and cascaded cooling in paramagnetic systems for a high-flux source of very cold neutrons

    Science.gov (United States)

    Zimmer, Oliver

    2016-03-01

    A new neutron-cooling mechanism is proposed with potential benefits for novel intense sources of very cold neutrons with wavelengths >2 nm, and for enhancing the production of ultracold neutrons. It employs inelastic magnetic scattering in weakly absorbing, cold paramagnetic systems. Kinetic energy is removed from the neutron stepwise in constant decrements determined by the Zeeman energy of paramagnetic atoms or ions in an external magnetic field, or by zero-field level splittings in magnetic molecules. The stationary neutron transport equation is analyzed for an infinite, homogeneous medium with Maxwellian neutron sources, using inelastic scattering cross sections derived in an appendix. Nonmagnetic inelastic scattering processes are neglected. The solution therefore still underestimates very cold neutron densities that should be achievable in a real medium. Molecular oxygen with its triplet ground state appears particularly promising, notably as a host in fully deuterated O2-clathrate hydrate. Other possibilities are dry O2-4He van der Waals clusters and O2 intercalated in fcc-C60. For conversion of cold to ultracold neutrons, where an incident neutron imparts only a single energy quantum to the medium, the paramagnetic scattering in the clathrate system is found to be stronger, by more than an order of magnitude, than the single-phonon emission in superfluid helium, when evaluated for an incident neutron spectrum with the optimum temperature for the respective medium. Moreover, the multistep paramagnetic cooling cascade leads to further strong enhancements of very cold neutron densities, e.g., by a factor 14 (57) for an initial neutron temperature of 30 K (100 K ), for the moderator held at about 1.3 K . Due to a favorable Bragg cutoff of the O2 clathrate, the cascade-cooling can take effect in a moderator with linear extensions smaller than a meter.

  10. Overview of Ignitor Neutronics and Activation

    Science.gov (United States)

    Rollet, S.; Batistoni, P.; Forrest, R.

    1999-11-01

    The Ignitor experiment is designed to produce D-T plasmas where ignition can take place and the physics of α-particles can be studied. After a first period of operation without significant neutron production, a second phase in deuterium with 2.5 MeV neutron production rate up to 10^17 n/s is planned. This will be followed by operations at increasing percentages of tritium, leading to short, but intense 14 MeV neutron production, up to ≈ 3 × 10^19 n/s. To calculate the neutron fluxes in all the machine components, including the streaming through the ports, a detailed description of the actual Ignitor machine is implemented in the MCNP-4B Monte Carlo code. These fluxes are then used as input for the FISPACT-97 code for the analysis of the activation at the end of life (EOL) and at intermediate times for safety assessment purposes. The estimated neutron emission pulse results in rather modest neutron fluences (≈ 10^18 n/cm^2 on the first wall at EOL). Therefore, radiation damage in the device components is not a concern, with the possible exception of the toroidal magnet insulator. On the other hand, the neutron flux on the first wall can be as high as that of a demonstration reactor (≈ 10^14 n/s/cm^2), inducing, in the absence of a blanket, considerable activation. The shielding strategy and possible solutions to prevent/reduce the activation of the cryostat are presented.

  11. Thermal radiation from magnetic neutron star surfaces

    CERN Document Server

    Pérez-Azorin, J F; Pons, J A

    2005-01-01

    We investigate the thermal emission from magnetic neutron star surfaces in which the cohesive effects of the magnetic field have produced the condensation of the atmosphere and the external layers. This may happen for sufficiently cool atmospheres with moderately intense magnetic fields. The thermal emission from an isothermal bare surface of a neutron star shows no remarkable spectral features, but it is significantly depressed at energies below some threshold energy. However, since the thermal conductivity is very different in the normal and parallel directions to the magnetic field lines, the presence of the magnetic field is expected to produce a highly anisotropic temperature distribution, depending on the magnetic field geometry. In this case, the observed flux of such an object looks very similar to a BB spectrum, but depressed in a nearly constant factor at all energies. This results in a systematic underestimation of the area of the emitter (and therefore its size) by a factor 5-10 (2-3).

  12. SUPERNOVAE, NEUTRON STARS, AND TWO KINDS OF NEUTRINO

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, H.Y.

    1962-08-15

    The role of neutrinos in the core of a star that has undergone a supernova explosion is discussed. The existence of neutron stars, the Schwarzchild singularity in general relativity, and the meaning of conservation of baryons in the neighborhood of a Schwarzchild singularity are also considered. The problem of detection of neutron stars is discussed. It is concluded that neutron stars are the most plausible alternative for the remnant of the core of a supernova. The neutrino emission processes are divided into two groups: the neutrino associated with the meson (mu) and the production of electron neutrinos. (C.E.S.)

  13. ROLE OF NUCLEONIC FERMI SURFACE DEPLETION IN NEUTRON STAR COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J. M.; Zuo, W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Lombardo, U. [Universita di Catania and Laboratori Nazionali del Sud (INFN), Catania I-95123 (Italy); Zhang, H. F. [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2016-01-20

    The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties that determine the neutron star (NS) thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions are calculated within the Brueckner–Hartree–Fock approach, employing the AV18 two-body force supplemented by a microscopic three-body force. Neutrino emissivity, heat capacity, and in particular neutron {sup 3}PF{sub 2} superfluidity, turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young NSs are significantly slowed.

  14. A collimated neutron detector for RFP plasmas in MST

    Science.gov (United States)

    Capecchi, W. J.; Anderson, J. K.; Bonofiglo, P. J.; Kim, J.; Sears, S.

    2016-11-01

    The neutron emissivity profile in the Madison Symmetric Torus is being reconstructed through the use of a collimated neutron detector. A scintillator-photomultiplier tube (PMT) system is employed to detect the fusion neutrons with the plasma viewing volume defined by a 55 cm deep, 5 cm diameter aperture. Effective detection of neutrons from the viewing volume is achieved through neutron moderation using 1300 lbs of high density polyethylene shielding, which modeling predicts attenuates the penetrating flux by a factor of 104 or more. A broad spectrum of gamma radiation is also present due to the unconfined fusion proton bombardment of the thick aluminum vacuum vessel. A 15 cm cylindrical liquid scintillator of 3.8 cm diameter is used to further increase directional sensitivity. A fast (5 ns rise time) preamplifier and digitization at 500 MHz prevent pulse pile-up even at high count rates (˜104/s). The entire neutron camera system is situated on an adjustable inclining base which provides the differing plasma viewing volumes necessary for reconstruction of the neutron emissivity profile. This profile, directly related to the fast-ion population, allows for an investigation of the critical fast-ion pressure gradient required to destabilize a neutral beam driven Alfvénic mode which has been shown to transport fast ions.

  15. Role of magnetic interactions in neutron stars

    CERN Document Server

    Adhya, Souvik Priyam

    2016-01-01

    In this work, we present a calculation of the non-Fermi liquid correction to the specific heat of magnetized degenerate quark matter present at the core of the neutron star. The role of non-Fermi liquid corrections to the neutrino emissivity has been calculated beyond leading order. We extend our result to the evaluation of the pulsar kick velocity and cooling of the star due to such anomalous corrections and present a comparison with the simple Fermi liquid case.

  16. Neutrino Flavor Evolution in Binary Neutron Star Merger Remnants

    CERN Document Server

    Frensel, Maik; Volpe, Cristina; Perego, Albino

    2016-01-01

    We study the neutrino flavor evolution in the neutrino-driven wind from a binary neutron star merger remnant consisting of a massive neutron star surrounded by an accretion disk. With the neutrino emission characteristics and the hydrodynamical profile of the remnant consistently extracted from a three-dimensional simulation, we compute the flavor evolution by taking into account neutrino coherent forward scattering off ordinary matter and neutrinos themselves. We employ a "single-trajectory" approach to investigate the dependence of the flavor evolution on the neutrino emission location and angle. We also show that the flavor conversion in the merger remnant can affect the (anti-)neutrino absorption rates on free nucleons and may thus impact the $r$-process nucleosynthesis in the wind. We discuss the sensitivity of such results on the change of neutrino emission characteristics, also from different neutron star merger simulations.

  17. Theoretical Models of Superbursts on Accreting Neutron Stars

    CERN Document Server

    Cooper, R L; Cooper, Randall L.; Narayan, Ramesh

    2004-01-01

    We carry out a general-relativistic global linear stability analysis of the amassed carbon fuel on the surface of an accreting neutron star to determine the conditions under which superbursts occur. By comparing our results with observations, we are able to set constraints on neutron star parameters such as the stellar radius and neutrino cooling mechanism in the core, as well as the composition of the ashes where superbursts are triggered. Specifically, we find that accreting neutron stars with ordered crusts and highly efficient neutrino emission in their cores produce extremely energetic superbursts which are inconsistent with observations. Also, because of pycnonuclear burning of carbon, they do not have superbursts in the range of accretion rates at which superbursts are actually observed. Stars with less efficient neutrino emission produce bursts that agree better with observations. Stars with highly inefficient neutrino emission in their cores produce bursts that agree best with observations. Furthermo...

  18. High-Energy Neutrons from the Moon

    Science.gov (United States)

    Maurice, S.; Feldman, W. C.; Lawrence, D. J.; Elphic, R. E.; Gasnault, O.; dUston, C.; Lucey, P. G.

    1999-01-01

    Galactic cosmic rays that impact the lunar soil produce neutrons with energies from fractions of eV's to about 100 MeV. The high-energy band from 0.6 to 8.0 MeV is referred as the "fast neutron" band, which is measured by Lunar Prospector (LP) Gamma Ray Spectrometer. Fast neutrons play an important role in neutron spectroscopy that may be summarized as follows: Fast neutrons define the total neutron input to the moderating process toward low-energy populations, so that epithermal and thermal neutron leakage currents must be normalized to the leakage of fast neutrons; they allow the determination of the burial depth of H, a measure necessary to understand characteristics of water deposits; they provide information on the surface content in heavy elements, such as Ti and Fe; and they provide a direct insight into the evaporation process. As discussed hereafter, fast neutrons may yield information on other oxides, such as Si02. missing data. Mare have numerous features, that are resolved in fast neutrons. For instance, the region extending northwest of Aristarchus (23.7 deg N, 47.4 W) is clearly separated from Montes Harbinger (27.0N, 41.0W) by a high-emission channel, and Mare Vaporum (13.3 N, 3.6 E) is separated from Sinus Aestuun (10.9N, 8.8W) by a low-emission area. We present a new technique to extract information on soil composition from the fast-neutron measurements. The analysis is applied to the central mare region. There are two steps for the development of the technique. 1. For the first step, which has been fully completed, we assume that variations of fast-neutron counting rates are due solely to TiO. and FeO. Upon this assumption, we correlate Clementine Spectral Reflectance Fe and Ti oxide maps with fast measurements. Above 16.5% of FeO, effects of Ti02 variations show in LP data. Below 6.5% of FeO, Fe cannot be discriminated; this is the region of most highland terrains. Under assumption of only two oxides to modulate the signal, we show that fast

  19. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant.

    Science.gov (United States)

    Ho, Wynn C G; Heinke, Craig O

    2009-11-05

    The surface of hot neutron stars is covered by a thin atmosphere. If there is accretion after neutron-star formation, the atmosphere could be composed of light elements (H or He); if no accretion takes place or if thermonuclear reactions occur after accretion, heavy elements (for example, Fe) are expected. Despite detailed searches, observations have been unable to confirm the atmospheric composition of isolated neutron stars. Here we report an analysis of archival observations of the compact X-ray source in the centre of the Cassiopeia A supernova remnant. We show that a carbon atmosphere neutron star (with low magnetic field) produces a good fit to the spectrum. Our emission model, in contrast with others, implies an emission size consistent with theoretical predictions for the radius of neutron stars. This result suggests that there is nuclear burning in the surface layers and also identifies the compact source as a very young ( approximately 330-year-old) neutron star.

  20. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  1. Development of Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S. (and others)

    2007-06-15

    Neutron spectrometers which are used in the basic researches such as physics, chemistry and materials science and applied in the industry were developed at the horizontal beam port of HANARO reactor. In addition, the development of core components for neutron scattering and the upgrade of existing facilities are also performed. The vertical neutron reflectometer was fabricated and installed at ST3 beam port. The performance test of the reflectometer was completed and the reflectometer was opened to users. The several core parts and options were added in the polarized neutron spectrometer. The horizontal neutron reflectometer from Brookhaven National Laboratory was moved to HANARO and installed, and the performance of the reflectometer was examined. The HIPD was developed and the performance test was completed. The base shielding for TAS was fabricated. The soller collimator, Cu mosaic monochromator, Si BPC monochromator and position sensitive detector were developed and applied in the neutron spectrometer as part of core component development activities. In addition, the sputtering machine for mirror device are fabricated and the neutron mirror is made using the sputtering machine. The FCD was upgraded and the performance of the FCD are improved over the factor of 10. The integration and upgrade of the neutron detection system were also performed.

  2. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  3. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  4. Neutrino emissivity under neutral kaon condensation

    OpenAIRE

    Kubis, Sebastian

    2005-01-01

    Neutrino emissivity from neutron star matter with neutral kaon condensate is considered. It is shown that a new cooling channel is opened, and what is more, all previously known channels acquire the greater emissivity reaching the level of the direct URCA cycle in normal matter.

  5. Neutrino emissivity under neutral kaon condensation

    CERN Document Server

    Kubis, S

    2006-01-01

    Neutrino emissivity from neutron star matter with neutral kaon condensate is considered. It is shown that a new cooling channel is opened, and what is more, all previously known channels acquire the greater emissivity reaching the level of the direct URCA cycle in normal matter.

  6. Enhancing Neutron Beam Production with a Convoluted Moderator

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, Erik B [ORNL; Baxter, David V [Center for the Exploration of Energy and Matter, Indiana University; Muhrer, Guenter [Los Alamos National Laboratory (LANL); Ansell, Stuart [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Gallmeier, Franz X [ORNL; Dalgliesh, Robert [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Lu, Wei [ORNL; Kaiser, Helmut [Center for the Exploration of Energy and Matter, Indiana University

    2014-10-01

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally-enhanced neutron beam source, improving beam effectiveness over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  7. Pocked surface neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  8. THERMAL NEUTRON BACKSCATTER IMAGING.

    Energy Technology Data Exchange (ETDEWEB)

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  9. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  10. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  11. Optical polarizing neutron devices designed for pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Kurahashi, K.; Endoh, Y. [Tohoku Univ, Sendai (Japan); Itoh, S. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  12. Active detection of shielded SNM with 60-keV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C; Dietrich, D; Hall, J; Kerr, P; Nakae, L; Newby, R; Rowland, M; Snyderman, N; Stoeffl, W

    2008-07-08

    Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimental results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.

  13. Methodology for the use of proportional counters in pulsed fast neutron yield measurements

    CERN Document Server

    Tarifeño-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo

    2011-01-01

    This paper introduces in full detail a methodology for the measurement of neutron yield and the necessary efficiency calibration, to be applied to the intensity measurement of neutron bursts where individual neutrons are not resolved in time, for any given moderated neutron proportional counter array. The method allows efficiency calibration employing the detection neutrons arising from an isotopic neutron source. Full statistical study of the procedure is descripted, taking into account contributions arising from counting statistics, piling-up statistics of real detector pulse-height spectra and background fluctuations. The useful information is extracted from the net waveform area of the signal arising from the electric charge accumulated inside the detector tube. Improvement of detection limit is gained, therefore this detection system can be used in detection of low emission neutron pulsed sources with pulses of duration from nanoseconds to up. The application of the methodology to detection systems to be...

  14. Neutrino Processes in Neutron Stars

    Directory of Open Access Journals (Sweden)

    Kolomeitsev E.E.

    2010-10-01

    Full Text Available The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities. The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong

  15. Magnetised Neutron Stars An Overview

    CERN Document Server

    Goyal, A

    2003-01-01

    In the presence of strong magnetic field reported to have been observed on the surface of some neutron stars and on what are called Magnetars, a host of physical phenomenon from the birth of a neutron star to free streaming neutrino cooling phase will be modified. In this review I will discuss the effect of magnetic field on the equation of state of high density nuclear matter by including the anomalous magnetic moment of the nucleons into consideration. I would then go over to discuss the neutrino interaction processes in strong as well as in weak magnetic fields. The neutrino processes are important in studying the propagation of neutrinos and in studying the energy loss, Their study is a prerequisite for the understanding of actual dynamics of supernova explosion and on the stabilization of radial pulsation modes through the effect on bulk viscosity. The anisotropy introduced in the neutrino emission and through the modification of the shape of the neutrino sphere may explain the observed pulsar kicks.

  16. Axion Cooling of Neutron Stars

    CERN Document Server

    Sedrakian, Armen

    2015-01-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting X-ray sources puts constraints on the properties of axions, and by extension of any light pseudo-scalar dark matter particles, whose existence has been postulated to solve the strong-CP problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by $S$- and $P$-wave nucleonic condensates in a benchmark code for cooling simulations as well as provide fit formulae for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring non-accreted iron and accreted light element envelopes, and a range of nucleon-axion coupling. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the tempe...

  17. Density effect of the neutron halo nucleus induced reactions in intermediate energy heavy ion collisions

    Institute of Scientific and Technical Information of China (English)

    CAO Xi-Guang; CHEN Jin-Gen; MA Yu-Gang; FANG De-Qing; TIAN Wen-Dong; YAN Ting-Zhi; CAI Xiang-Zhou

    2009-01-01

    Using an isospin-dependent quantum molecular dynamics (IQMD) model, we study the 15C induced reactions from 30-120 MeV/nucleon systematically. Here the valence neutron of 15C is assigned at both 1d5/2 and 2s1/2 states respectively in order to study the density effect of reaction mechanism. It is. believed that the existent neutron halo structure at the 2s1/2 state of 15C will affect the light particle emission evidently.In our calculation, the different density distributions of 15C at two states are calculated by relativistic mean field (RMF) model and introduced in the initiation of IQMD model, respectively. It is found that some observables such as emission fragmentation multiplicity, emission neutron/proton ratio and emission neutrons'kinetic energy spectrum are sensitive to the initial density distribution.

  18. Neutron scattering in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Barocchi, F. [Florence Univ. (Italy). Ist. di Fisica

    1996-12-31

    Together with X-rays, thermal neutrons are the ideal probe to study the microscopic structure of condensed matter, however the precision attainable usually with neutrons for the measurement of atomic position correlation functions in liquids is, at least, one order of magnitude better than for X-rays. In order to measure properly the microscopic dynamics a wide range of momentum transfer with corresponding energy transfer must be available in the range of liquid state excitations. This again is only attainable, with good resolution, with neutrons. (author) 7 figs., 3 refs.

  19. Neutrons in soft matter

    CERN Document Server

    Imae, Toyoko; Furusaka, Michihiro; Torikai, Naoya

    2011-01-01

    Neutron and synchrotron facilities, which are beyond the scale of the laboratory, and supported on a national level in countries throughout the world.  These tools for probing micro- and nano-structure research and on fast dynamics research of atomic location in materials have been key in the development of new polymer-based materials. Different from several existing professional books on neutron science, this book focuses on theory, instrumentation, an applications. The book is divided into five parts: Part 1 describes the underlying theory of neutron scattering. Part 2 desc

  20. A novel design approach for a neutron measurement station for burnt fuel

    Science.gov (United States)

    Dietler, Rodolfo; Hursin, Mathieu; Perret, Gregory; Jordan, Kelly; Chawla, Rakesh

    2012-11-01

    The design and characterization of a passive neutron measurement station for highly burnt fuel has been undertaken at the Paul Scherrer Institute (PSI). The measurement station aims at the determination of the total neutron emission rate of full-length light water reactor (LWR) fuel rods, as also the corresponding axial distributions. It is intended that the measurement station be introduced into the hot cells available at PSI to allow measuring the neutron emission of spent fuel rods provided by the Swiss nuclear power plants. In addition, the neutron emission of a large set of burnt fuel samples that have been previously characterized by post-irradiation examination (PIE) will be measured, in order to relate neutron emission to the burnup and isotopic composition of different fuel types. The design of the measurement station is presented in this article. A post-processing algorithm is introduced to improve the spatial resolution of the "measured" axial profile. In order to quantify the accuracy of the reconstructed neutron source distribution, a figure-of-merit (FOM) is defined and adapted to the detection procedure. With the optimized measurement station and procedure, it is estimated that the neutron emission distribution of a highly burnt, full-length fuel rod would be measurable with acceptable accuracy in about 20 min.

  1. A novel design approach for a neutron measurement station for burnt fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dietler, Rodolfo, E-mail: rodolfo.dietler@axpo.ch [Axpo AG Kernenergie, CH-5401 Baden (Switzerland); Hursin, Mathieu, E-mail: mathieu.hursin@psi.ch [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Perret, Gregory, E-mail: gregory.perret@psi.ch [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Jordan, Kelly, E-mail: kjordan@mse.ufl.edu [University of Florida, 180 Rhines Hall, PO Box 116400, Gainesville, FL 32611-6400 (United States); Chawla, Rakesh, E-mail: rakesh.chawla@epfl.ch [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2012-11-21

    The design and characterization of a passive neutron measurement station for highly burnt fuel has been undertaken at the Paul Scherrer Institute (PSI). The measurement station aims at the determination of the total neutron emission rate of full-length light water reactor (LWR) fuel rods, as also the corresponding axial distributions. It is intended that the measurement station be introduced into the hot cells available at PSI to allow measuring the neutron emission of spent fuel rods provided by the Swiss nuclear power plants. In addition, the neutron emission of a large set of burnt fuel samples that have been previously characterized by post-irradiation examination (PIE) will be measured, in order to relate neutron emission to the burnup and isotopic composition of different fuel types. The design of the measurement station is presented in this article. A post-processing algorithm is introduced to improve the spatial resolution of the 'measured' axial profile. In order to quantify the accuracy of the reconstructed neutron source distribution, a figure-of-merit (FOM) is defined and adapted to the detection procedure. With the optimized measurement station and procedure, it is estimated that the neutron emission distribution of a highly burnt, full-length fuel rod would be measurable with acceptable accuracy in about 20 min.

  2. Study of calculated and measured time dependent delayed neutron yields. [TX, for calculating delayed neutron yields; MATINV, for matrix inversion; in FORTRAN for LSI-II minicomputer

    Energy Technology Data Exchange (ETDEWEB)

    Waldo, R.W.

    1980-05-01

    Time-dependent delayed neutron emission is of interest in reactor design, reactor dynamics, and nuclear physics studies. The delayed neutrons from neutron-induced fission of /sup 232/U, /sup 237/Np, /sup 238/Pu, /sup 241/Am, /sup 242m/Am, /sup 245/Cm, and /sup 249/Cf were studied for the first time. The delayed neutron emission from /sup 232/Th, /sup 233/U, /sup 235/U, /sup 238/U, /sup 239/Pu, /sup 241/Pu, and /sup 242/Pu were measured as well. The data were used to develop an empirical expression for the total delayed neutron yield. The expression gives accurate results for a large variety of nuclides from /sup 232/Th to /sup 252/Cf. The data measuring the decay of delayed neutrons with time were used to derive another empirical expression predicting the delayed neutron emission with time. It was found that nuclides with similar mass-to-charge ratios have similar decay patterns. Thus the relative decay pattern of one nuclide can be established by any measured nuclide with a similar mass-to-charge ratio. A simple fission product yield model was developed and applied to delayed neutron precursors. It accurately predicts observed yield and decay characteristics. In conclusion, it is possible to not only estimate the total delayed neutron yield for a given nuclide but the time-dependent nature of the delayed neutrons as well. Reactors utilizing recycled fuel or burning actinides are likely to have inventories of fissioning nuclides that have not been studied until now. The delayed neutrons from these nuclides can now be incorporated so that their influence on the stability and control of reactors can be delineated. 8 figures, 39 tables.

  3. Fission decay properties of ultra neutron-rich uranium isotopes

    Indian Academy of Sciences (India)

    L Satpathy; S K Patra; R K Choudhury

    2008-01-01

    The fission decay of highly neutron-rich uranium isotopes is investigated which shows interesting new features in the barrier properties and neutron emission characteristics in the fission process. 233U and 235U are the nuclei in the actinide region in the beta stability valley which are thermally fissile and have been mainly used in reactors for power generation. The possibility of occurrence of thermally fissile members in the chain of neutron-rich uranium isotopes is examined here. The neutron number = 162 or 164 has been predicted to be magic in numerous theoretical studies carried out over the years. The series of uranium isotopes around it with = 154-172 are identified to be thermally fissile on the basis of the fission barrier and neutron separation energy systematics; a manifestation of the close shell nature of = 162 (or 164). We consider here the thermal neutron fission of a typical representative 249U nucleus in the highly neutron-rich region. Semiempirical study of fission barrier height and width shows that 250U nucleus is stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. On the basis of the calculation of the probability of fragment mass yields and the microscopic study in relativistic mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neutron fission (multi-fragmentation fission) whereby a number of prompt scission neutrons are expected to be simultaneously released along with the two heavy fission fragments. Such properties will have important implications in stellar evolution involving -process nucleosynthesis.

  4. Binary neutron star merger simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruegmann, Bernd [Jena Univ. (Germany)

    2016-11-01

    Our research focuses on the numerical tools necessary to solve Einstein's equations. In recent years we have been particularly interested in spacetimes consisting of two neutron stars in the final stages of their evolution. Because of the emission of gravitational radiation, the objects are driven together to merge; the emitted gravitational wave signal is visualized. This emitted gravitational radiation carries energy and momentum away from the system and contains information about the system. Late last year the Laser Interferometer Gravitational-wave Observatory (LIGO) began searches for these gravitational wave signals at a sensitivity at which detections are expected. Although such systems can radiate a significant amount of their total mass-energy in gravitational waves, the gravitational wave signals one expects to receive on Earth are not strong, since sources of gravitational waves are often many millions of light years away. Therefore one needs accurate templates for the radiation one expects from such systems in order to be able to extract them out of the detector's noise. Although analytical models exist for compact binary systems when the constituents are well separated, we need numerical simulation to investigate the last orbits before merger to obtain accurate templates and validate analytical approximations. Due to the strong nonlinearity of the equations and the large separation of length scales, these simulations are computationally demanding and need to be run on large supercomputers. When matter is present the computational cost as compared to pure black hole (vacuum) simulations increases even more due to the additional matter fields. But also more interesting astrophysical phenomena can happen. In fact, there is the possibility for a strong electromagnetic signal from the merger (e.g., a short gamma-ray burst or lower-energy electromagnetic signatures from the ejecta) and significant neutrino emission. Additionally, we can expect that

  5. Nuclear Equation of State and Neutron Star Cooling

    CERN Document Server

    Lim, Yeunhwan; Lee, Chang-Hwan

    2015-01-01

    We investigate the effects of the nuclear equation of state (EoS) to the neutron star cooling. New era for nuclear EoS has begun after the discovery of $\\sim 2\\msun$ neutron stars PSR J1614$-$2230 and PSR J0348$+$0432 [1, 2]. Also recent works on the mass and radius of neutron stars from low-mass X-ray binaries [3] strongly constrain the EoS of nuclear matter. On the other hand, observations of the neutron star in Cassiopeia A (Cas A) more than 10 years confirmed the existence of nuclear superfluidity [4, 5]. Nuclear superfluidity reduces the heat capacities as well as neutrino emissivities. With nuclear superfluidity the neutrino emission processes are highly suppressed, and the existence of superfluidity makes the cooling path quite different from that of the standard cooling process. Superfluidity also allows new neutrino emission process, which is called `Pair Breaking and Formation'(PBF). PBF is a fast cooling process and can explain the fast cooling rate of neutron star in Cas A. Therefore, it is essent...

  6. Methods and Instruments for Fast Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Reeder, Paul L.; Cooper, Matthew W.; McCormick, Kathleen R.; Peurrung, Anthony J.; Warren, Glen A.

    2005-05-01

    Pacific Northwest National Laboratory evaluated the performance of a large-area (~0.7 m2) plastic scintillator time-of-flight (TOF) sensor for direct detection of fast neutrons. This type of sensor is a readily area-scalable technology that provides broad-area geometrical coverage at a reasonably low cost. It can yield intrinsic detection efficiencies that compare favorably with moderator-based detection methods. The timing resolution achievable should permit substantially more precise time windowing of return neutron flux than would otherwise be possible with moderated detectors. The energy-deposition threshold imposed on each scintillator contributing to the event-definition trigger in a TOF system can be set to blind the sensor to direct emission from the neutron generator. The primary technical challenge addressed in the project was to understand the capabilities of a neutron TOF sensor in the limit of large scintillator area and small scintillator separation, a size regime in which the neutral particle’s flight path between the two scintillators is not tightly constrained.

  7. Temperature of neutron stars

    Science.gov (United States)

    Tsuruta, Sachiko

    2016-07-01

    We start with a brief introduction to the historical background in the early pioneering days when the first neutron star thermal evolution calculations predicted the presence of neutron stars hot enough to be observable. We then report on the first detection of neutron star temperatures by ROSAT X-ray satellite, which vindicated the earlier prediction of hot neutron stars. We proceed to present subsequent developments, both in theory and observation, up to today. We then discuss the current status and the future prospect, which will offer useful insight to the understanding of basic properties of ultra-high density matter beyond the nuclear density, such as the possible presence of such exotic particles as pion condensates.

  8. Decoherence Free Neutron Interferometry

    CERN Document Server

    Pushin, Dmitry A; Cory, David G

    2016-01-01

    Perfect single-crystal neutron interferometers are adversely sensitive to environmental disturbances, particularly mechanical vibrations. The sensitivity to vibrations results from the slow velocity of thermal neutrons and the long measurement time that are encountered in a typical experiment. Consequently, to achieve a good interference solutions for reducing vibration other than those normally used in optical experiments must be explored. Here we introduce a geometry for a neutron interferometer that is less sensitive to low-frequency vibrations. This design may be compared with both dynamical decoupling methods and decoherence-free subspaces that are described in quantum information processing. By removing the need for bulky vibration isolation setups, this design will make it easier to adopt neutron interferometry to a wide range of applications and increase its sensitivity.

  9. Neutron signal transfer analysis

    CERN Document Server

    Pleinert, H; Lehmann, E

    1999-01-01

    A new method called neutron signal transfer analysis has been developed for quantitative determination of hydrogenous distributions from neutron radiographic measurements. The technique is based on a model which describes the detector signal obtained in the measurement as a result of the action of three different mechanisms expressed by signal transfer functions. The explicit forms of the signal transfer functions are determined by Monte Carlo computer simulations and contain only the distribution as a variable. Therefore an unknown distribution can be determined from the detector signal by recursive iteration. This technique provides a simple and efficient tool for analysis of this type while also taking into account complex effects due to the energy dependency of neutron interaction and single and multiple scattering. Therefore this method provides an efficient tool for precise quantitative analysis using neutron radiography, as for example quantitative determination of moisture distributions in porous buil...

  10. The intense neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.B

    1966-07-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through {mu}-, {pi}- and K-meson production. Isotope production enters many fields of applied research. (author)

  11. Neutron Stars Recent Developments

    CERN Document Server

    Heiselberg, H

    1999-01-01

    Recent developments in neutron star theory and observation are discussed. Based on modern nucleon-nucleon potentials more reliable equations of state for dense nuclear matter have been constructed. Furthermore, phase transitions such as pion, kaon and hyperon condensation, superfluidity and quark matter can occur in cores of neutron stars. Specifically, the nuclear to quark matter phase transition and its mixed phases with intriguing structures is treated. Rotating neutron stars with and without phase transitions are discussed and compared to observed masses, radii and glitches. The observations of possible heavy $\\sim 2M_\\odot$ neutron stars in X-ray binaries and QPO's require relatively stiff equation of states and restrict strong phase transitions to occur at very high nuclear densities only.

  12. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility

    Science.gov (United States)

    Guler, N.; Volegov, P.; Favalli, A.; Merrill, F. E.; Falk, K.; Jung, D.; Tybo, J. L.; Wilde, C. H.; Croft, S.; Danly, C.; Deppert, O.; Devlin, M.; Fernandez, J.; Gautier, D. C.; Geissel, M.; Haight, R.; Hamilton, C. E.; Hegelich, B. M.; Henzlova, D.; Johnson, R. P.; Schaumann, G.; Schoenberg, K.; Schollmeier, M.; Shimada, T.; Swinhoe, M. T.; Taddeucci, T.; Wender, S. A.; Wurden, G. A.; Roth, M.

    2016-10-01

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at the laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ˜5 × 109 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5-35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ˜1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. These experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical work into the

  13. Introduction to neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.

  14. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  15. Decay spectroscopy of exotic fission products

    Science.gov (United States)

    Rykaczewski, Krzysztof

    2014-09-01

    The beta decay studies of exotic fission products have been performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The scientific program was focused on the beta-strength function measurements and resulting new half-lives and beta-delayed neutron properties. These observables are important for nuclear structure analysis and modeling of the nucleosynthesis within rapid neutron capture process. The highlights include ten new beta half-lives and several Pn branching ratios including an observation of beta-delayed two-neutron emitter 86Ga. In addition, the measurements of the beta-strength within beta-gamma emission window were performed using a Modular Total Absorption Spectrometer for 22 fission products. These MTAS results are also important for the analysis of reactor anti-neutrino anomaly. The beta decay studies of exotic fission products have been performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The scientific program was focused on the beta-strength function measurements and resulting new half-lives and beta-delayed neutron properties. These observables are important for nuclear structure analysis and modeling of the nucleosynthesis within rapid neutron capture process. The highlights include ten new beta half-lives and several Pn branching ratios including an observation of beta-delayed two-neutron emitter 86Ga. In addition, the measurements of the beta-strength within beta-gamma emission window were performed using a Modular Total Absorption Spectrometer for 22 fission products. These MTAS results are also important for the analysis of reactor anti-neutrino anomaly. Supported by the U.S. DOE Office of Nuclear Physics under Contracts DE-AC05-00R22725 (ORNL), DE-FG02-96ER40983 (UTK).

  16. Model Atmospheres for X-ray Bursting Neutron Stars

    CERN Document Server

    Medin, Zach; Calder, Alan C; Fontes, Christopher J; Fryer, Chris L; Hungerford, Aimee L

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where X-ray bursts occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  17. GEM detectors development for radiation environment: neutron tests and simulations

    Science.gov (United States)

    Chernyshova, Maryna; Jednoróg, Sławomir; Malinowski, Karol; Czarski, Tomasz; Ziółkowski, Adam; Bieńkowska, Barbara; Prokopowicz, Rafał; Łaszyńska, Ewa; Kowalska-Strzeciwilk, Ewa; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Wojeński, Andrzej; Krawczyk, Rafał D.; Linczuk, Paweł; Potrykus, Paweł; Bajdel, Barcel

    2016-09-01

    One of the requests from the ongoing ITER-Like Wall Project is to have diagnostics for Soft X-Ray (SXR) monitoring in tokamak. Such diagnostics should be focused on tungsten emission measurements, as an increased attention is currently paid to tungsten due to a fact that it became a main candidate for the plasma facing material in ITER and future fusion reactor. In addition, such diagnostics should be able to withstand harsh radiation environment at tokamak during its operation. The presented work is related to the development of such diagnostics based on Gas Electron Multiplier (GEM) technology. More specifically, an influence of neutron radiation on performance of the GEM detectors is studied both experimentally and through computer simulations. The neutron induced radioactivity (after neutron source exposure) was found to be not pronounced comparing to an impact of other secondary neutron reaction products (during the exposure).

  18. Neutron Nucleic Acid Crystallography.

    Science.gov (United States)

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  19. Coded source neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Philip R [ORNL; Santos-Villalobos, Hector J [ORNL

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  20. Coded source neutron imaging

    Science.gov (United States)

    Bingham, Philip; Santos-Villalobos, Hector; Tobin, Ken

    2011-03-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100μm) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100μm and 10μm aperture hole diameters show resolutions matching the hole diameters.

  1. Neutron scattering in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  2. Neutron response study using poly allyl diglycol carbonate

    Indian Academy of Sciences (India)

    Basma A El-Badry; M F Zaki; Tarek M Hegazy; A Ahmed Morsy

    2007-10-01

    The results of an experimental work aimed at improving the performance of the CR-39 nuclear track detector for neutron dosimetry applications are reported. A set of CR-39 plastic detectors was exposed to 252Cf neutron source, which has the emission rate of 0.68 × 108 s-1, and neutron dose equivalent rate 1 m apart from the source is equal to 3.8 mrem/h. The detection of fast neutrons performed with CR-39 detector foils, subsequent chemical etching and evaluation of the etched tracks by an automatic track counting system was studied. It is found that the track density increases with the increase of neutron dose and etching time. The track density in the detector is directly proportional to the neutron fluence producing the recoil tracks, provided the track density is in the countable range. This fact plays an important role in determining the equivalent dose in the field of neutron dosimetry. These results are compared with previous work. It is found that our results are in good agreement with their investigations.

  3. Characterization of an INVS Model IV Neutron Counter for High Precision ($\\gamma,n$) Cross-Section Measurements

    CERN Document Server

    Arnold, C W; Karwowski, H J; Rich, G C; Tompkins, J R; Howell, C R

    2010-01-01

    A neutron counter designed for assay of radioactive materials has been adapted for beam experiments at TUNL. The cylindrical geometry and 64% maximum efficiency make it well suited for ($\\gamma,n$) cross-section measurements near the neutron emission threshold. A high precision characterization of the counter has been made using neutrons from several sources. Using a combination of measurements and simulations, the absolute detection efficiency of the neutron counter was determined to an accuracy of $\\pm$ 3% in the neutron energy range between 0.1 and 1 MeV. It is shown that this efficiency characterization is generally valid for a wide range of targets.

  4. Energy dependence of collective flow of neutrons and protons in [sup 197]Au + [sup 197]Au collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, D.; Blaich, T.; Elze, T.W.; Emling, H.; Freiesleben, H.; Grimni, K.; Henning, W.; Holzmann, R.; Keller, J.G.; Klingler, H.; Kratz, J.V.; Kulessa, R.; Lange, S.; Leifels, Y.; Lubkiewicz, E.; Moore, E.F.; Prokopowicz, W.; Schmidt, R.; Schuetter, C.; Spies, H.; Stelzer, K.; Stroth, J.; Wajda, E.; Walus, W.; Zinser, M.; Zude, E.; Alard, J.P.; Basrak, Z.; Bastid, N.; Belayev, I.M.; Bini, M.; Bock, R.; Buta, A.; Caplar, R.; Cerruti, C.; Cindro, N.; Coffin, J.P.; Crouau, M.; Dupieux, P.; Eroe, J.; Fan, Z.G.; Fintz, P.; Fodor, Z.; Freifelder, R.; Fraysse, L.; Frolov, S.; Gobbi, A.; Grigorian, Y.; Guillaume, G.; Herrmann, N.; Hildenbrand, K.D.; Hoelbling, S.; Houari, O.; Jeong, S.C.; Jorio, M.; Jundt, F.; Kecskemeti, J.; Koncz, P.; Korchagin, Y.; Kotte, R.; Kraemer, M.; Kuhn, C.; Legrand, I.; Lebedev, A.; Maguire, C.; Manko, V.; Matulewicz, T.; Mgebrishvili, G.; Moesner, J.; Moisa, D.; Montarou, G.; Morel, P.; Neubert, W.; Olmi, A.; Pasquali, G.; Pelte, D.; Petrovici, M.; Poggi, G.; FOPI-collaboration

    1994-11-01

    We investigate the beam energy dependence of neutron and proton squeeze-out in collisions of [sup 197]Au + [sup 197]Au at E/A=400-800 MeV. The azimuthal anisotropy that describes the enhanced emission of mid-rapidity neutrons perpendicular to the reaction plane rises strongly with the transverse momentum of the neutrons. This dependence of the azimuthal anisotropy follows a universal curve - independent of beam energy - if the neutron momenta are measured in fractions of the projectile momentum per mass unit. Analogously, the kinetic energy spectra of mid-rapidity neutrons exhibit a universal behaviour as a function of the kinetic energy of the projectile. (orig.)

  5. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  6. Quiescent X-ray emission from Cen X-4: a variable thermal component

    NARCIS (Netherlands)

    E.M. Cackett; E.F. Brown; J.M. Miller; R. Wijnands

    2010-01-01

    The nearby neutron star low-mass X-ray binary, Cen X-4, has been in a quiescent state since its last outburst in 1979. Typically, quiescent emission from these objects consists of thermal emission (presumably from the neutron star surface) with an additional hard power-law tail of unknown nature. Va

  7. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    Science.gov (United States)

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations.

  8. Fundamental neutron physics at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  9. Simultaneous measurement of fission fragments and prompt neutrons for thermal neutron-induced fission of U-235

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Yamamoto, Hideki; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)

    1997-03-01

    Simultaneous measurement of fission fragments and prompt neutrons following the thermal neutron induced fission of U-235 has been performed in order to obtain the neutron multiplicity (v) and its emission energy ({eta}) against the specified mass (m{sup *}) and the total kinetic energy (TKE). The obtained value of -dv/dTKE(m{sup *}) showed a saw-tooth distribution. The average neutron energy <{eta}>(m{sup *}) had a distribution with a reflection symmetry around the half mass division. The measurement also gave the level density parameters of the specified fragment, a(m{sup *}), and this parameters showed a saw-tooth trend too. The analysis by a phenomenological description of this parameters including the shell and collective effects suggested the existence of a collective motion of the fission fragments. (author)

  10. Evaluating the 239Pu Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons

    Science.gov (United States)

    Neudecker, D.; Talou, P.; Kawano, T.; Kahler, A. C.; Rising, M. E.; White, M. C.

    2016-03-01

    We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  11. Evaluating the 239Pu Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons

    Directory of Open Access Journals (Sweden)

    Neudecker D.

    2016-01-01

    Full Text Available We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  12. Radiography with polarised neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael L.

    2010-08-20

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni{sub 3}Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T{sub C} on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with

  13. First Measurement of Several β-Delayed Neutron Emitting Isotopes Beyond N=126.

    Science.gov (United States)

    Caballero-Folch, R; Domingo-Pardo, C; Agramunt, J; Algora, A; Ameil, F; Arcones, A; Ayyad, Y; Benlliure, J; Borzov, I N; Bowry, M; Calviño, F; Cano-Ott, D; Cortés, G; Davinson, T; Dillmann, I; Estrade, A; Evdokimov, A; Faestermann, T; Farinon, F; Galaviz, D; García, A R; Geissel, H; Gelletly, W; Gernhäuser, R; Gómez-Hornillos, M B; Guerrero, C; Heil, M; Hinke, C; Knöbel, R; Kojouharov, I; Kurcewicz, J; Kurz, N; Litvinov, Yu A; Maier, L; Marganiec, J; Marketin, T; Marta, M; Martínez, T; Martínez-Pinedo, G; Montes, F; Mukha, I; Napoli, D R; Nociforo, C; Paradela, C; Pietri, S; Podolyák, Zs; Prochazka, A; Rice, S; Riego, A; Rubio, B; Schaffner, H; Scheidenberger, Ch; Smith, K; Sokol, E; Steiger, K; Sun, B; Taín, J L; Takechi, M; Testov, D; Weick, H; Wilson, E; Winfield, J S; Wood, R; Woods, P; Yeremin, A

    2016-07-01

    The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.

  14. Herschel and Spitzer Observations of Slowly Rotating, Nearby Isolated Neutron Stars

    Science.gov (United States)

    Posselt, B.; Pavlov, G. G.; Popov, S.; Wachter, S.

    2014-11-01

    Supernova fallback disks around neutron stars have been suspected to influence the evolution of the diverse neutron star populations. Slowly rotating neutron stars are the most promising places to find such disks. Searching for the cold and warm debris of old fallback disks, we carried out Herschel PACS (70 μm, 160 μm) and Spitzer IRAC (3.6 μm, 4.5 μm) observations of eight slowly rotating (P ≈ 3-11 s) nearby (5σ) at locations consistent with the positions of the neutron stars RX J0806.4-4123 and RX J2143.0+0654. No other significant infrared emission was detected from the eight neutron stars. We estimate probabilities of 63%, 33%, and 3% that, respectively, none, one, or both Herschel PACS 160 μm detections are unrelated excess sources due to background source confusion or an interstellar cirrus. If the 160 μm emission is indeed related to cold (10-22 K) dust around the neutron stars, this dust is absorbing and re-emitting ~10% to ~20% of the neutron stars' X-rays. Such high efficiencies would be at least three orders of magnitude larger than the efficiencies of debris disks around nondegenerate stars. While thin dusty disks around the neutron stars can be excluded as counterparts of the 160 μm emission, dusty asteroid belts constitute a viable option.

  15. General relativistic neutron stars with twisted magnetosphere

    CERN Document Server

    Pili, A G; Del Zanna, L

    2014-01-01

    Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars are extreme manifestations of the most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral properties strongly support the idea that the magnetospheres of these astrophysical objects are tightly twisted in the vicinity of the star. Previous studies on equilibrium configurations have so far focused on either the internal or the external magnetic field configuration, without considering a real coupling between the two fields. Here we investigate numerical equilibrium models of magnetized neutron stars endowed with a confined twisted magnetosphere, solving the general relativistic Grad-Shafranov equation both in the interior and in the exterior of the compact object. A comprehensive study of the parameters space is provided to investigate the effects of different current distributions on the overall magnetic field structure.

  16. Development of the environmental neutron detection system

    CERN Document Server

    Kume, K

    2002-01-01

    Environmental neutron detection system was proposed and developed. The main goal of this system was set to detect fast and thermal neutrons with the identical detectors setup without degraders. This system consists of a sup 1 sup 0 B doped liquid scintillator for n detection and CsI scintillators for simultaneous gamma emission from sup 1 sup 0 B doped in the liquid scintillator after the n capture reaction. The first setup was optimized for the thermal n detection, while the second setup was for the fast n detection. It was shown that the thermal n flux was obtained in the first setup by using the method of the gamma coincidence method with the help of the Monte Carlo calculation. The second setup was designed to improve the detection efficiency for the fast n, and was shown qualitatively that both the pulse shape discrimination and the coincidence methods are efficient. There will be more improvements, particularly for the quantitative discussion.

  17. Pycnonuclear burning and accreting neutron stars

    CERN Document Server

    Yakovlev, D G

    2002-01-01

    We outline the phenomenon of deep crustal heating in transiently accreting neutron stars. It is produced by nuclear transformations (mostly, by pycnonuclear reactions) in accreted matter while this matter sinks to densities rho > 10^{10} g/cc under the weight of freshly accreted material. We consider then thermal states of transiently accreting neutron stars (with mean mass accretion rates \\dot{M}=(10^{-14}-10^{-9}) M_\\odot/yr) determined by deep crustal heating. In a simplified fashion we study how the thermal flux emergent from such stars depends on the properties of superdense matter in stellar interiors. We analyze the most important regulators of the thermal flux: strong superfluidity in the cores of low-mass stars and fast neutrino emission (in nucleon, pion-condensed, kaon-condensed, or quark phases of dense matter) in the cores of high-mass stars. We compare the results with observations of soft X-ray transients in quiescent states.

  18. Neutron-Induced Failures in Semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  19. Neutron drip transition in accreting and nonaccreting neutron star crusts

    CERN Document Server

    Chamel, N; Zdunik, J L; Haensel, P

    2015-01-01

    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density $\\rho_\\textrm{drip}$. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.

  20. Device for Writing the Time Tail from Spallation Neutron Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Langan, P. (Paul); Schoenborn, Benno P.; Langan, P. (Paul); Schoenborn, Benno P.; Daemen, L. L. (Luc L.)

    2001-01-01

    Recent work at Los Alamos Neutron Science Center (LANSCE), has shown that there are large gains in neutron beam intensity to be made by using coupled moderators at spallation neutron sources. Most of these gains result from broadening the pulse-width in time. However the accompanying longer exponential tail at large emission times can be a problem in that it introduces relatively large beam-related backgrounds at high resolutions. We have designed a device that can reshape the moderated neutron beam by cutting the time-tail so that a sharp time resolution can be re-established without a significant loss in intensity. In this work the basic principles behind the tail-cutter and some initial results of Monte Carlo simulations are described. Unwanted neutrons in the long time-tail are diffracted out of the transmitted neutron beam by a nested stack of aperiodic multi-layers, rocking at the same frequency as the source. Nested aperiodic multi-layers have recently been used at X-ray sources and as band-pass filters in quasi-Laue neutron experiments at reactor neutron sources. Optical devices that rock in synchronization with a pulsed neutron beam are relatively new but are already under construction at LANSCE. The tail-cutter described here is a novel concept that uses existing multi-layer technology in a new way for spallation neutrons. Coupled moderators in combination with beam shaping devices offer the means of increasing flux whilst maintaining a sharp time distribution. A prototype device is being constructed for the protein crystallography station at LANSCE. The protein crystallography station incorporates a water moderator that has been judiciously coupled in order to increase the flux over neutron energies that are important to structural biology (3-80meV). This development in moderator design is particularly important because protein crystallography is flux limited and because conventional ambient water and cold hydrogen moderators do not provide relatively

  1. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  2. Neutron counting with cameras

    Energy Technology Data Exchange (ETDEWEB)

    Van Esch, Patrick; Crisanti, Marta; Mutti, Paolo [Institut Laue Langevin, Grenoble (France)

    2015-07-01

    A research project is presented in which we aim at counting individual neutrons with CCD-like cameras. We explore theoretically a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher counting rates. As such, the hope is to combine the good background rejection properties of standard neutron counting detectors with the absence of dead time of integrating neutron imaging cameras as well as their very good spatial resolution. Compared to Xray detection, the essence of thermal neutron detection is the nuclear conversion reaction. The released energies involved are of the order of a few MeV, while X-ray detection releases energies of the order of the photon energy, which is in the 10 KeV range. Thanks to advances in camera technology which have resulted in increased quantum efficiency, lower noise, as well as increased frame rate up to 100 fps for CMOS-type cameras, this more than 100-fold higher available detection energy implies that the individual neutron detection light signal can be significantly above the noise level, as such allowing for discrimination and individual counting, which is hard to achieve with X-rays. The time scale of CMOS-type cameras doesn't allow one to consider time-of-flight measurements, but kinetic experiments in the 10 ms range are possible. The theory is next confronted to the first experimental results. (authors)

  3. Neutron whispering gallery

    Science.gov (United States)

    Nesvizhevsky, Valery V.; Voronin, Alexei Yu.; Cubitt, Robert; Protasov, Konstantin V.

    2010-02-01

    The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for atoms and neutrons. For matter waves, it would include a new feature: a massive particle would be settled in quantum states, with parameters depending on its mass. Here, we present for the first time the quantum whispering-gallery effect for cold neutrons. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to the recently discovered gravitationally bound quantum states of neutrons . These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a pure quantum state. Deeply bound whispering-gallery states are long-living and weakly sensitive to surface potential; highly excited states are short-living and very sensitive to the wall potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects.

  4. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  5. Experimental Evaluation of Neutron Induced Noise on Gated X-ray Framing Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, N; Stone, G; Hagmann, C; Sorce, C; Bradley, D K; Moran, M; Landen, O L; Stoeffl, W; Springer, P; Tommasini, R; Hermann, H W; Kyrala, G A; Glebov, V Y; Sangster, T C; Koch, J A

    2009-10-08

    A micro-channel plate based temporally-gated x-ray camera (framing camera) is one of the most versatile diagnostic tools of inertial confinement fusion experiments; particularly for observation of the shape of x-ray self emission from compressed core of imploded capsules. However, components used in an x-ray framing camera have sensitivity to neutrons induced secondary radiations. On early low-yield capsule implosions at the National Ignition Facility (NIF), the expected neutron production is about 5 x 10{sup 14}. Therefore, the expected neutron fluence at a framing camera located {approx} 150 cm from the object is 2 x 10{sup 9} neutrons/cm{sup 2}. To obtain gated x-ray images in such harsh neutron environments, quantitative understanding of neutron-induced backgrounds is crucial.

  6. Effect of Gamma Rays on Fast Neutron Registration in CR-39

    CERN Document Server

    Kobzev, A P; El-Halem, A A; Abdul-Ghaphar, U S; Salama, T A

    2002-01-01

    A set of CR-39 plastic detectors with front PE radiator was exposed to Am-Be neutron source, which has an emission rate of 0.86\\cdot 10^{7} sec^{-1}, and the neutron dose equivalent rate 1 m apart from the source is equal to 11 mrem/hr. Another set of samples was irradiated by a neutron dose of 4 rem, then exposed to different gamma-ray doses using ^{60}Co source. It was found that the track density grows with the increase of neutron dose and etching time. It was also found that the bulk etching rate V_{B}, the track diameter and the sensitivity of the CR-39 plastic detector with respect to the neutron irradiation increased with increasing gamma-ray dose in the range 1?10 Mrad. These results show that CR-39 can be considered as a promising fast neutron dosimeter and gamma-ray dosimeter.

  7. Gravitational waves from rapidly rotating neutron stars

    CERN Document Server

    Haskell, Brynmor; D`Angelo, Caroline; Degenaar, Nathalie; Glampedakis, Kostas; Ho, Wynn C G; Lasky, Paul D; Melatos, Andrew; Oppenoorth, Manuel; Patruno, Alessandro; Priymak, Maxim

    2014-01-01

    Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed as an interesting source of gravitational waves. In this chapter we present estimates of the gravitational wave emission for various scenarios, given the (electromagnetically) observed characteristics of these systems. First of all we focus on the r-mode instability and show that a 'minimal' neutron star model (which does not incorporate exotica in the core, dynamically important magnetic fields or superfluid degrees of freedom), is not consistent with observations. We then present estimates of both thermally induced and magnetically sustained mountains in the crust. In general magnetic mountains are likely to be detectable only if the buried magnetic field of the star is of the order of $B\\approx 10^{12}$ G. In the thermal mountain case we find that gravitational wave emission from persistent systems may be detected by ground based interferometers. Finally we re-asses the idea that gravitational wave emission may be balancing the ac...

  8. SIXTH ERDA WORKSHOP ON PERSONNEL NEUTRON DOSIMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Vallario, E. J.; Hankins, D. E.; Bramson, P. E.

    1977-07-11

    This workshop was the sixth of a series and was held on July 11 and 12, 1977, at the Oak Ridge National Laboratory in Oak Ridge, Tennessee. Those presenting papers at the Sixth Workshop prepared summary reports of their recent work for inclusion in this document. The reports are reproduced here as submitted by the participants, with only minor editing. This year's Workshop took a decidedly international flavor, with participants from seven countries in addition to the United States. The significance of this group's contributions has raised the possibility that the next Neutron Dosimetry Workshop may be held in Europe. Of particular interest at the Workshop was the keynote address by Dr. Harald Rossi. He commented that there is evidence that 1) accepted values of RBE for low absorbed doses of neutrons may be low by an order of magnitude or more and 2) the risk of leukemia is significant at 0.5 rad to the bone narrow. A reduction of the limit for permissible neutron exposure, which could result from consideration of this information, would necessitate major improvements in our "middle ages" neutron dosimetry. A number of participants reported conversions to thermoluminescent dosimeter (TLD) systems. This move has not been unanimous, however, as there were several reports of apparently satisfactory fission fragment, activation foil, and NTA film dosimeters. While thementionof NTA film resulted in the usual discussion of energy cut off and humidity effects, it seems the use of NTA in accelerator environments still has some merit. Discussion of fission fragment dosimeters centered around track etching techniques, which have shown some improvement. Of particular interest was Tommasino's report on the use of polycarbonate centrifuge tubes as the sensitive element. Thermally stimulated exoelectron emission (TSEE), never very popular for personnel dosimetry, has lost additional ground with the report that the neutron/gamma response ratio is much less than

  9. Emission Trading

    OpenAIRE

    2009-01-01

    The work concerns Emission Trading Scheme from perspektive of taxes and accounting. I should show problems with emission trading. The work concerns practical example of trading with emission allowance.

  10. Multiplicity and energy of neutrons from {sup 233}U(n{sub th},f) fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)

    1998-03-01

    The correlation between fission fragments and prompt neutrons from the reaction {sup 233}U(n{sub th},f) was measured with improved accuracy. The results determined the neutron multiplicity and emission energy as a function of fragment mass and total kinetic energy. The average energy as a function of fragment mass followed a nearly symmetric distribution centered about the equal mass-split and formed a remarkable contrast with the saw-tooth distribution of the average neutron multiplicity. The neutron multiplicity from the specified fragment decreases linearly with total kinetic energy, and the slope of multiplicity with kinetic energy had the minimum value at about 130 u. The level density parameter versus mass determined from the neutron data showed a saw-tooth structure with the pronounced minimum at about 128 and generally followed the formula by Gilbert and Cameron, suggesting that the neutron emission process was very much affected by the shell-effect of the fission fragment. (author)

  11. Gravitational wave background from rotating neutron stars

    Science.gov (United States)

    Rosado, Pablo A.

    2012-11-01

    produce a stronger emission of gravitational radiation. Considering the most optimistic (in terms of the detection of gravitational waves) of these models, an upper limit for the background produced by magnetars is obtained; it could be detected by ET, but not by BBO or DECIGO. Simple approximate formulas to characterize both the total and the unresolvable backgrounds are given for the ensemble of rotating neutron stars, and, for completion, also for the ensemble of binary star systems.

  12. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  13. Neutron absorbing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masayuki

    1998-12-04

    The neutron absorbing alloy of the present invention comprises Ti or an alloy thereof as a mother material, to which from 2 to 40% by weight of Hf and Gd within a range of from 4 to 50% by weight in total are added respectively. Ti is excellent in specific strength, corrosion resistance and workability, and produces no noxious intermetallic compound with Hf and Gd. In addition, since the alloy can incorporate a great quantity of Hf and Gd, a neutron absorbing material having excellent neutron absorbing performance than usual and excellent in specific strength, corrosion resistance and workability can be manufactured conveniently and economically not by a special manufacturing method. (T.M.)

  14. Direction sensitive neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Ahlen, Steven; Fisher, Peter; Dujmic, Denis; Wellenstein, Hermann F.; Inglis, Andrew

    2017-01-31

    A neutron detector includes a pressure vessel, an electrically conductive field cage assembly within the pressure vessel and an imaging subsystem. A pressurized gas mixture of CF.sub.4, .sup.3He and .sup.4He at respective partial pressures is used. The field cage establishes a relatively large drift region of low field strength, in which ionization electrons generated by neutron-He interactions are directed toward a substantially smaller amplification region of substantially higher field strength in which the ionization electrons undergo avalanche multiplication resulting in scintillation of the CF.sub.4 along scintillation tracks. The imaging system generates two-dimensional images of the scintillation patterns and employs track-finding to identify tracks and deduce the rate and direction of incident neutrons. One or more photo-multiplier tubes record the time-profile of the scintillation tracks permitting the determination of the third coordinate.

  15. Carbon neutron star atmospheres

    CERN Document Server

    Suleimanov, V F; Pavlov, G G; Werner, K

    2013-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.

  16. Uniformly rotating neutron stars

    CERN Document Server

    Boshkayev, Kuantay

    2016-01-01

    In this chapter we review the recent results on the equilibrium configurations of static and uniformly rotating neutron stars within the Hartle formalism. We start from the Einstein-Maxwell-Thomas-Fermi equations formulated and extended by Belvedere et al. (2012, 2014). We demonstrate how to conduct numerical integration of these equations for different central densities ${\\it \\rho}_c$ and angular velocities $\\Omega$ and compute the static $M^{stat}$ and rotating $M^{rot}$ masses, polar $R_p$ and equatorial $R_{\\rm eq}$ radii, eccentricity $\\epsilon$, moment of inertia $I$, angular momentum $J$, as well as the quadrupole moment $Q$ of the rotating configurations. In order to fulfill the stability criteria of rotating neutron stars we take into considerations the Keplerian mass-shedding limit and the axisymmetric secular instability. Furthermore, we construct the novel mass-radius relations, calculate the maximum mass and minimum rotation periods (maximum frequencies) of neutron stars. Eventually, we compare a...

  17. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  18. Pixelated neutron image plates

    Science.gov (United States)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  19. Atmospheres around Neutron Stars

    Science.gov (United States)

    Fryer, Chris L.; Benz, Willy

    1994-12-01

    Interest in the behavior of atmospheres around neutron stars has grown astronomically in the past few years. Some of this interest arrived in the wake of the explosion of Supernova 1987A and its elusive remnant; spawning renewed interest in a method to insure material ``fall-back'' onto the adolescent neutron star in an effort to transform it into a silent black hole. However, the bulk of the activity with atmospheres around neutron stars is concentrated in stellar models with neutron star, rather than white dwarf, cores; otherwise known as Thorne-Zytkow objects. First a mere seed in the imagination of theorists, Thorne-Zytkow objects have grown into an observational reality with an ever-increasing list of formation scenarios and observational prospects. Unfortunately, the analytic work of Chevalier on supernova fall-back implies that, except for a few cases, the stellar simulations of Thorne-Zytkow objects are missing an important aspect of physics: neutrinos. Neutrino cooling removes the pressure support of these atmospheres, allowing accretion beyond the canonical Eddington rate for these objects. We present here the results of detailed hydrodynamical simulations in one and two dimensions with the additional physical effects of neutrinos, advanced equations of state, and relativity over a range of parameters for our atmosphere including entropy and chemical composition as well as a range in the neutron star size. In agreement with Chevalier, we find, under the current list of formation scenarios, that the creature envisioned by Thorne and Zytkow will not survive the enormous appetite of a neutron star. However, neutrino heating (a physical effect not considered in Chevalier's analysis) can play an important role in creating instabilities in some formation schemes, leading to an expulsion of matter rather than rapid accretion. By placing scrutiny upon the formation methods, we can determine the observational prospects for each.

  20. Observation of Neutrons with a Gadolinium Doped Water Cerenkov Detector

    CERN Document Server

    Dazeley, S; Bowden, N S; Svoboda, R

    2008-01-01

    Spontaneous and induced fission in Special Nuclear Material (SNM) such as 235U and 239Pu results in the emission of neutrons and high energy gamma-rays. The multiplicities of and time correlations between these particles are both powerful indicators of the presence of fissile material. Detectors sensitive to these signatures are consequently useful for nuclear material monitoring, search, and characterization. In this article, we demonstrate sensitivity to both high energy gamma-rays and neutrons with a water Cerenkov based detector. Electrons in the detector medium, scattered by gamma-ray interactions, are detected by their Cerenkov light emission. Sensitivity to neutrons is enhanced by the addition of a gadolinium compound to the water in low concentrations. Cerenkov light is similarly produced by an 8 MeV gamma-ray cascade following neutron capture on the gadolinium. The large solid angle coverage and high intrinsic efficiency of this detection approach can provide robust and low cost neutron and gamma-ray...

  1. FAST NEUTRONIC REACTOR

    Science.gov (United States)

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  2. New compact neutron polarizer

    Science.gov (United States)

    Krist, Th; Kennedy, S. J.; Hicks, T. J.; Mezei, F.

    A new type of a neutron polarizing bender was developed in co-operation with BENSC and ANSTO. It is based upon bent thin silicon wafers coated on one side with SiFeCo polarizing supermirrors and on the other side with Gd. Initial tests at BENSC in a 300 Oe magnetic field yielded a transmission of spin-up neutrons of about 55% over an angle range of 0.75° and flipping ratios > 30. Subsequent tests at ANSTO at 1200 Oe yielded a transmission of 48% with a flipping ratio > 45.

  3. Helium 3 neutron precision polarimetry

    Science.gov (United States)

    Menard, Christopher

    2009-10-01

    Measuring neutron polarization to a high degree of precision is critical for the next generation of neutron decay correlation experiments. Polarized neutrons are also used in experiments to probe the hadronic weak interaction which contributes a small portion (˜10-7) of the force between nucleons. Using a beam of cold neutrons at Los Alamos Neutron Science Center (LANSCE), we polarized neutrons and measured their absolute polarization to ˜0.1%. Neutrons were polarized by passing them through a ^3He spin filter, relying on the maximally spin dependent 3He neutron absorption cross section. The neutron polarization can be determined by measuring the wavelength-dependent neutron transmission through the ^3He cell. An independent measurement of the neutron polarization was also obtained by passing the polarized beam through an RF spin flipper and a second polarized ^3He cell, used as an analyzer. To measure the efficiency of the spin flipper, the same measurements were made after reversing the ^3He polarization in the polarizer by using NMR techniques (adiabatic fast passage). We will show the consistency of these two measurements and the resulting precision of neutron polarimetry using these techniques.

  4. Neutron storage time measurement for the neutron EDM experiment

    Science.gov (United States)

    Griffith, W. Clark; Ito, Takeyasu; Ramsey, John; Makela, Mark; Clayton, Steven; Hennings-Yeomans, Raul; Saidur Rahaman, M.; Currie, Scott; Womack, Todd; Sondheim, Walter; Cooper, Martin

    2010-11-01

    A new experiment to search for the neutron electric dipole moment (nEDM) is under development for installation at the Spallation Neutron Source (SNS) at Oakridge National Laboratory. The experiment will use ultra-cold neutrons (UCN) stored in superfluid helium, along with ^3He atoms acting as a neutron spin analyzer and comagnetometer. One crucial factor affecting the ultimate sensitivity of the experiment is the neutron storage time that can be obtained in the acrylic measurement cell. The acrylic cell walls will be coated with deuterated polystyrene (dPS), which is expected to give a wall loss factor of ˜room temperature and below 20 K.

  5. Neutron beam imaging at neutron spectrometers at Dhruva

    Science.gov (United States)

    Desai, Shraddha S.; Rao, Mala N.

    2012-06-01

    A low efficiency, 2-Dimensional Position Sensitive Neutron Detector based on delay line position encoding is developed. It is designed to handle beam flux of 106-107 n/cm2/s and for monitoring intensity profiles of neutron beams. The present detector can be mounted in transmission mode, as the hardware allows maximum neutron transmission in sensitive region. Position resolution of 1.2 mm in X and Y directions, is obtained. Online monitoring of beam images and intensity profile of various neutron scattering spectrometers at Dhruva are presented. It shows better dynamic range of intensity over commercial neutron camera and is also time effective over the traditionally used photographic method.

  6. Role of magnetic interactions in neutron stars

    Directory of Open Access Journals (Sweden)

    Adhya Souvik Priyam

    2015-01-01

    Full Text Available In this work, we present a calculation of the non-Fermi liquid correction to the specific heat of magnetized degenerate quark matter present at the core of the neutron star. The role of non-Fermi liquid corrections to the neutrino emissivity has been calculated beyond leading order. We extend our result to the evaluation of the pulsar kick velocity and cooling of the star due to such anomalous corrections and present a comparison with the simple Fermi liquid case.

  7. Some Implications of Neutron Mirror Neutron Oscillation

    CERN Document Server

    Mohapatra, Rabindra N; Nussinov, S

    2005-01-01

    We comment on a recently discussed possibility of oscillations between neutrons and degenerate mirror neutrons in the context of mirror models for particles and forces. It has been noted by Bento and Berezhiani that if these oscillations occurred at a rate of $\\tau^{-1}_{NN'}\\sim sec^{-1}$, it would help explain putative super GKZ cosmic ray events provided the temperature of the mirror radiation is $\\sim 0.3-0.4$ times that of familiar cosmic microwave background radiation. We discuss how such oscillation time scales can be realized in mirror models and find that the simplest nonsupersymmetric model for this idea requires the existence of a low mass (30-3000 GeV) color triplet scalar or vector boson. A supersymmetric model, where this constraint can be avoided is severely constrained by the requirement of maintaining a cooler mirror sector. We also find that the reheat temperature after inflation in generic models that give fast $n-n'$ oscillation be less than about 100 GeV in order to maintain the required ...

  8. Analysis methods of neutrons induced resonances in the transmission experiments by time-of-flight and automation of these methods on IBM 7094 II computer; Methode d'analyse des resonances induites par les neutrons dans les experiences de transmission par temps-de-vol et automatisation de ces methodes sur ordinateur IBM-7094 II

    Energy Technology Data Exchange (ETDEWEB)

    Corge, C

    1967-07-01

    The neutron induced resonances analysis aims to determine the neutrons characteristics, leading to the excitation energies, de-excitation probabilities by gamma radiation emission, by neutron emission or by fission, their spin, their parity... This document describes the methods developed, or adapted, the calculation schemes and the algorithms implemented to realize such analysis on a computer, from data obtained during time-of-flight experiments on the linear accelerator of Saclay. (A.L.B.)

  9. Neutronic studies of the coupled moderators for spallation neutron sources

    Institute of Scientific and Technical Information of China (English)

    Yin Wen; Liang Jiu-Qing

    2005-01-01

    We investigate the neutronic performance of coupled moderators to be implemented in spallation neutron sources by Monte-Carlo simulation and give the slow neutron spectra for the cold and thermal moderators. CH4 moderator can provide slow neutrons with highly desirable characteristics and will be used in low-power spallation neutron soureces. The slow neutron intensity extracted from different angles has been calculated. The capability of moderation of liquid H2 is lower than H2O and liquid CH4 due to lower atomic number density of hydrogen but we can compensate for this disadvantage by using a premoderator. The H2O premoderator of 2cm thickness can reduce the heat deposition in the cold moderator by about 33% without spoiling the neutron pulse.

  10. Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation

    DEFF Research Database (Denmark)

    Holm, Sonja Lindahl

    are a unique probe for studying the atomic and molecular structure and dynamics of materials. Even though neutrons are very expensive to produce, the advantages neutrons provide overshadow the price. As neutrons interact weakly with materials compared to many other probes, e.g. electrons or photons......, it is possible to make a neutron scattering experiment through sample environment equipment like cryostats or pressure cells. Another advantage of neutron experiments is that the wavelength and energy of the neutron match the inter-atomic distances and basic excitations of solid materials. The scattering cross...... is not taken into account in previous reports on the field effect of magnetic scattering, since usually only L 0 is probed. A paper draft submitted for publication describing the results of elastic and inelastic neutron scattering experiments performed on the oxygen-doped La2CuO4+y HTSC is appended (Tc 40 K...

  11. Principles and status of neutron-based inspection technologies

    Science.gov (United States)

    Gozani, Tsahi

    2011-06-01

    Nuclear based explosive inspection techniques can detect a wide range of substances of importance for a wide range of objectives. For national and international security it is mainly the detection of nuclear materials, explosives and narcotic threats. For Customs Services it is also cargo characterization for shipment control and customs duties. For the military and other law enforcement agencies it could be the detection and/or validation of the presence of explosive mines, improvised explosive devices (IED) and unexploded ordnances (UXO). The inspection is generally based on the nuclear interactions of the neutrons (or high energy photons) with the various nuclides present and the detection of resultant characteristic emissions. These can be discrete gamma lines resulting from the thermal neutron capture process (n,γ) or inelastic neutron scattering (n,n'γ) occurring with fast neutrons. The two types of reactions are generally complementary. The capture process provides energetic and highly penetrating gamma rays in most inorganic substances and in hydrogen, while fast neutron inelastic scattering provides relatively strong gamma-ray signatures in light elements such as carbon and oxygen. In some specific important cases unique signatures are provided by the neutron capture process in light elements such as nitrogen, where unusually high-energy gamma ray is produced. This forms the basis for key explosive detection techniques. In some cases the elastically scattered source (of mono-energetic) neutrons may provide information on the atomic weight of the scattering elements. The detection of nuclear materials, both fissionable (e.g., 238U) and fissile (e.g., 235U), are generally based on the fissions induced by the probing neutrons (or photons) and detecting one or more of the unique signatures of the fission process. These include prompt and delayed neutrons and gamma rays. These signatures are not discrete in energy (typically they are continua) but temporally

  12. Measurement of the 238U neutron-capture cross section and gamma-emission spectra from 10 eV to 100 keV using the DANCE detector at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John L [Los Alamos National Laboratory; Couture, A J [Los Alamos National Laboratory; Keksis, A L [Los Alamos National Laboratory; Vieira, D J [Los Alamos National Laboratory; O' Donnell, J M [Los Alamos National Laboratory; Jandel, M [Los Alamos National Laboratory; Haight, R C [Los Alamos National Laboratory; Rundberg, R S [Los Alamos National Laboratory; Kawano, T [Los Alamos National Laboratory; Chyzh, A [NORTH CAROLINA STATE UNIV; Baramsai, B [NORTH CAROLINA STATE UNIV; Wu, C Y [LLNL; Mitchell, G E [NORTH CAROLINA STATE UNIV; Becker, J A [LLNL; Krticka, M [CHARLES UNIV

    2010-01-01

    A careful new measurement of the {sup 238}U(n,{gamma}) cross section from 10 eV to 100 keV has been made using the DANCE detector at LANSCE. DANCE is a 4{pi} calorimetric scintillator array consisting of 160 BaF{sub 2} crystals. Measurements were made on a 48 mg/cm{sup 2} depleted uranium target. The cross sections are in general good agreement with previous measurements. The gamma-ray emission spectra, as a function of gamma multiplicity, were also measured and compared to model calculations.

  13. Realization of two light particle correlation experiments: behaviour to very low relative momenta (measurement with a magnetic spectrometer) and influence of the violence of reaction on the emission sources (measured by the neutron detector ORION); Mise en oeuvre de deux experiences de correlations de particules legeres: comportement a tres faibles impulsions relatives (mesure avec un spectrometre magnetique) et influence de la violence de reaction sur les sources d`emission (mesuree avec le detecteur de neutrons ORION)

    Energy Technology Data Exchange (ETDEWEB)

    Sezac, L. [Grenoble-1 Univ., 38 (France)

    1993-01-20

    The correlation measurements between light particles emitted during heavy ion collisions allow to estimate the time-space extension of the emitting sources. This report about the preliminaries of two correlation experiments is split into two parts. The first one describes a test experiment, performed to study the feasibility of a correlation experiment at very low relative momenta with the help of a magnetic spectrometer. The results will allow to determine the still unknown relative effects from the final state interaction and the combination of both Coulomb interaction and quantum statistics. A correlation study without experimental selection of the impact parameter gives unclear answers about the sizes and the temporal characteristics of the emitting systems. The second part analyses the sources of the alpha particles detected in the reaction chamber of the multidetector ORION used as a violence of the reaction filter. The results show that it is possible to consider as a good filter a fast information called `prompt peak` (correlated to the neutron multiplicity detected with ORION). Under such conditions a study of two particle correlations from equilibrated systems with a reasonable statistics becomes thinkable. The results obtained allow to characterize the emitting sources (speed, intensity, temperature) as a function of the violence of the reaction for the system {sup 208} Pb + {sup 93} Nb at 29 MeV/u. (author) 85 refs.

  14. Neutron detection efficiency determinations for the TUNL neutron-neutron and neutron-proton scattering-length measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, D.E. Gonzalez [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: crowell@tunl.duke.edu; Meneses, F. Salinas [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Crowell, A.S.; Howell, C.R. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Schmidt, D. [Physikalisch-Technische Bundesanstalt, D-38116, Braunschweig (Germany); Walter, R.L. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2009-02-11

    The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the {sup 1}S{sub 0} neutron-neutron and neutron-proton scattering lengths a{sub nn} and a{sub np}, respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E{sub n}=13MeV.

  15. Neutron proton crystallography station (PCS)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Zoe [Los Alamos National Laboratory; Kovalevsky, Andrey [Los Alamos National Laboratory; Johnson, Hannah [Los Alamos National Laboratory; Mustyakimov, Marat [Los Alamos National Laboratory

    2009-01-01

    The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

  16. A review on neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Soo; Lee, Chang Hee; Shim, Hae Seop; Seong, Baek Seok

    1999-03-01

    This report contains principle and characteristic of neutron reflectometry. Therefore, in case of operating neutron reflectometer at HANARO in future, it will be a reference to the user who wishes to use the instrument effectively. Also, the current situation of neutron reflectometer operating in the world was examined. The detail of neutron reflectometer such as GANS(MURR), ADAM(ILL), POSY II(ANL), ROG(IRI) was described. The recent research situation on neutron reflectometry was also examined and it helps us to determine research field. (author)

  17. Cooling of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Grigorian H.

    2010-10-01

    Full Text Available We introduce the theoretical basis for modeling the cooling evolution of compact stars starting from Boltzmann equations in curved space-time. We open a discussion on observational verification of different neutron star models by consistent statistics. Particular interest has the question of existence of quark matter deep inside of compact object, which has to have a specific influence on the cooling history of the star. Besides of consideration of several constraints and features of cooling evolution, which are susceptible of being critical for internal structure of hot compact stars we have introduced a method of extraction of the mass distribution of the neutron stars from temperature and age data. The resulting mass distribution has been compared with the one suggested by supernove simulations. This method can be considered as an additional checking tool for the consistency of theoretical modeling of neutron stars. We conclude that the cooling data allowed existence of neutron stars with quark cores even with one-flavor quark matter.

  18. New Neutron Dosimeter

    CERN Multimedia

    2001-01-01

    CERN has been operating an Individual Dosimetry Service for neutrons for about 35 years. The service was based on nuclear emulsions in the form of film packages which were developed and scanned in the Service. In 1999, the supplier of theses packages informed CERN that they will discontinue production of this material. TIS-RP decided to look for an external service provider for individual neutron dosimetry. After an extensive market survey and an invitation for tender, a supplier that met the stringent technical requirements set up by CERN's host states for personal dosimeters was identified. The new dosimeter is based on a track-etching technique. Neutrons have the capability of damaging plastic material. The microscopic damage centres are revealed by etching them in a strong acid. The resulting etch pits can be automatically counted and their density is proportional to dose equivalent from neutrons. On the technical side, the new dosimeter provides an improved independence of its response from energy and th...

  19. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  20. Precision Measurement of Parity Violation in Polarized Cold Neutron Capture on the Proton the NPD $\\gamma$ Experiment

    CERN Document Server

    Lauss, Bernhard; Carlini, R D; Chupp, T E; Chen, W; Corvig, S; Dabaghyan, M; Desai, D; Freedman, S J; Gentile, T R; Gericke, M T; Gillis, R C; Greene, G L; Hersman, F W; Ino, T; Ito, T; Jones, G L; Kandes, M; Leuschner, M; Lozowski, B; Mahurin, R; Mason, M; Masuda, Y; Mei, J; Mitchell, G S; Muto, S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Santra, S; Seo, P -N; Sharapov, E I; Smith, T B; Snow, W M; Wilburn, W S; Yuan, V; Zhu, H; Bernhard, Lauss

    2006-01-01

    The NPDGamma experiment at the Los Alamos Neutron Science Center (LANSCE) is dedicated to measure with high precision the parity violating asymmetry in the $\\gamma$ emission after capture of spin polarized cold neutrons in para-hydrogen. The measurement will determine unambiguously the weak pion-nucleon-nucleon ($\\pi NN$) coupling constant {\\it f$^1_{\\pi}$}