WorldWideScience

Sample records for beta-band frequencies slows

  1. Boosting Cortical Activity at Beta-Band Frequencies Slows Movement in Humans

    Science.gov (United States)

    Pogosyan, Alek; Gaynor, Louise Doyle; Eusebio, Alexandre; Brown, Peter

    2009-01-01

    Summary Neurons have a striking tendency to engage in oscillatory activities. One important type of oscillatory activity prevalent in the motor system occurs in the beta frequency band, at about 20 Hz. It is manifest during the maintenance of tonic contractions and is suppressed prior to and during voluntary movement [1–7]. This and other correlative evidence suggests that beta activity might promote tonic contraction, while impairing motor processing related to new movements [3, 8, 9]. Hence, bursts of beta activity in the cortex are associated with a strengthening of the motor effects of sensory feedback during tonic contraction and with reductions in the velocity of voluntary movements [9–11]. Moreover, beta activity is increased when movement has to be resisted or voluntarily suppressed [7, 12, 13]. Here we use imperceptible transcranial alternating-current stimulation to entrain cortical activity at 20 Hz in healthy subjects and show that this slows voluntary movement. The present findings are the first direct evidence of causality between any physiological oscillatory brain activity and concurrent motor behavior in the healthy human and help explain how the exaggerated beta activity found in Parkinson's disease can lead to motor slowing in this illness [14]. PMID:19800236

  2. Frequency domain beamforming of magnetoencephalographic beta band activity in epilepsy patients with focal cortical dysplasia.

    Science.gov (United States)

    Heers, Marcel; Hirschmann, Jan; Jacobs, Julia; Dümpelmann, Matthias; Butz, Markus; von Lehe, Marec; Elger, Christian E; Schnitzler, Alfons; Wellmer, Jörg

    2014-09-01

    Spike-based magnetoencephalography (MEG) source localization is an established method in the presurgical evaluation of epilepsy patients. Focal cortical dysplasias (FCDs) are associated with focal epileptic discharges of variable morphologies in the beta frequency band in addition to single epileptic spikes. Therefore, we investigated the potential diagnostic value of MEG-based localization of spike-independent beta band (12-30Hz) activity generated by epileptogenic lesions. Five patients with FCD IIB underwent MEG. In one patient, invasive EEG (iEEG) was recorded simultaneously with MEG. In two patients, iEEG succeeded MEG, and two patients had MEG only. MEG and iEEG were evaluated for epileptic spikes. Two minutes of iEEG data and MEG epochs with no spikes as well as MEG epochs with epileptic spikes were analyzed in the frequency domain. MEG oscillatory beta band activity was localized using Dynamic Imaging of Coherent Sources. Intralesional beta band activity was coherent between simultaneous MEG and iEEG recordings. Continuous 14Hz beta band power correlated with the rate of interictal epileptic discharges detected in iEEG. In cases where visual MEG evaluation revealed epileptic spikes, the sources of beta band activity localized within <2cm of the epileptogenic lesion as shown on magnetic resonance imaging. This result held even when visually marked epileptic spikes were deselected. When epileptic spikes were detectable in iEEG but not MEG, MEG beta band activity source localization failed. Source localization of beta band activity has the potential to contribute to the identification of epileptic foci in addition to source localization of visually marked epileptic spikes. Thus, this technique may assist in the localization of epileptic foci in patients with suspected FCD. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Slow light in a semiconductor waveguide at gigahertz frequencies

    DEFF Research Database (Denmark)

    Mørk, Jesper; Kjær, Rasmus; Poel, Mike van der

    2005-01-01

    We experimentally demonstrate slow-down of light by a factor of three in a 100 µm long semiconductor waveguide at room temperature and at a record-high frequency of 16.7 GHz. It is shown that the group velocity can be controlled all-optically as well as through an applied bias voltage. A semi...... limitations in the application of light slowdown due to coherent population oscillations....

  4. Beta-Band Functional Connectivity Influences Audiovisual Integration in Older Age: An EEG Study

    Directory of Open Access Journals (Sweden)

    Luyao Wang

    2017-08-01

    Full Text Available Audiovisual integration occurs frequently and has been shown to exhibit age-related differences via behavior experiments or time-frequency analyses. In the present study, we examined whether functional connectivity influences audiovisual integration during normal aging. Visual, auditory, and audiovisual stimuli were randomly presented peripherally; during this time, participants were asked to respond immediately to the target stimulus. Electroencephalography recordings captured visual, auditory, and audiovisual processing in 12 old (60–78 years and 12 young (22–28 years male adults. For non-target stimuli, we focused on alpha (8–13 Hz, beta (13–30 Hz, and gamma (30–50 Hz bands. We applied the Phase Lag Index to study the dynamics of functional connectivity. Then, the network topology parameters, which included the clustering coefficient, path length, small-worldness global efficiency, local efficiency and degree, were calculated for each condition. For the target stimulus, a race model was used to analyze the response time. Then, a Pearson correlation was used to test the relationship between each network topology parameters and response time. The results showed that old adults activated stronger connections during audiovisual processing in the beta band. The relationship between network topology parameters and the performance of audiovisual integration was detected only in old adults. Thus, we concluded that old adults who have a higher load during audiovisual integration need more cognitive resources. Furthermore, increased beta band functional connectivity influences the performance of audiovisual integration during normal aging.

  5. Differential beta-band event-related desynchronization during categorical action sequence planning.

    Science.gov (United States)

    Park, Hame; Kim, June Sic; Chung, Chun Kee

    2013-01-01

    A primate study reported the existence of neurons from the dorso-lateral prefrontal cortex which fired prior to executing categorical action sequences. The authors suggested these activities may represent abstract level information. Here, we aimed to find the neurophysiological representation of planning categorical action sequences at the population level in healthy humans. Previous human studies have shown beta-band event-related desynchronization (ERD) during action planning in humans. Some of these studies showed different levels of ERD according to different types of action preparation. Especially, the literature suggests that variations in cognitive factors rather than physical factors (force, direction, etc) modulate the level of beta-ERD. We hypothesized that the level of beta-band power will differ according to planning of different categorical sequences. We measured magnetoencephalography (MEG) from 22 subjects performing 11 four-sequence actions--each consisting of one or two of three simple actions--in 3 categories; 'Paired (ooxx)', 'Alternative (oxox)' and 'Repetitive (oooo)' ('o' and 'x' each denoting one of three simple actions). Time-frequency representations were calculated for each category during the planning period, and the corresponding beta-power time-courses were compared. We found beta-ERD during the planning period for all subjects, mostly in the contralateral fronto-parietal areas shortly after visual cue onset. Power increase (transient rebound) followed ERD in 20 out of 22 subjects. Amplitudes differed among categories in 20 subjects for both ERD and transient rebound. In 18 out of 20 subjects 'Repetitive' category showed the largest ERD and rebound. The current result suggests that beta-ERD in the contralateral frontal/motor/parietal areas during planning is differentiated by the category of action sequences.

  6. Slow Light at High Frequencies in an Amplifying Semiconductor Waveguide

    DEFF Research Database (Denmark)

    Öhman, Filip; Yvind, Kresten; Mørk, Jesper

    2006-01-01

    We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz.......We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz....

  7. Motor System Interactions in the Beta Band Decrease during Loss of Consciousness.

    Science.gov (United States)

    Swann, Nicole C; de Hemptinne, Coralie; Maher, Ryan B; Stapleton, Catherine A; Meng, Lingzhong; Gelb, Adrian W; Starr, Philip A

    2016-01-01

    Communication between brain areas and how they are influenced by changes in consciousness are not fully understood. One hypothesis is that brain areas communicate via oscillatory processes, utilizing network-specific frequency bands, that can be measured with metrics that reflect between-region interactions, such as coherence and phase amplitude coupling (PAC). To evaluate this hypothesis and understand how these interactions are modulated by state changes, we analyzed electrophysiological recordings in humans at different nodes of one well-studied brain network: the basal ganglia-thalamocortical loops of the motor system during loss of consciousness induced by anesthesia. We recorded simultaneous electrocorticography over primary motor cortex (M1) with local field potentials from subcortical motor regions (either basal ganglia or thalamus) in 15 movement disorder patients during anesthesia (propofol) induction as a part of their surgery for deep brain stimulation. We observed reduced coherence and PAC between M1 and the subcortical nuclei, which was specific to the beta band (∼18-24 Hz). The fact that this pattern occurs selectively in beta underscores the importance of this frequency band in the motor system and supports the idea that oscillatory interactions at specific frequencies are related to the capacity for normal brain function and behavior.

  8. Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under "Cocktail-Party" Listening Conditions.

    Science.gov (United States)

    Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang

    2017-01-01

    Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated "cocktail-party" listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the "cocktail-party" listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process.

  9. Experimental Demonstration and Theoretical Analysis of Slow Light in a Semiconductor Waveguide at GHz Frequencies

    DEFF Research Database (Denmark)

    Mørk, Jesper; Kjær, Rasmus; Poel, Mike van der

    2005-01-01

    Experimental demonstration and theoretical analysis of slow light in a semiconductor waveguide at GHz frequencies slow-down of light by a factor of two in a semiconductor waveguide at room temperature with a bandwidth of 16.7 GHz using the effect of coherent pulsations of the carrier density...

  10. Beta-band intermuscular coherence: a novel biomarker of upper motor neuron dysfunction in motor neuron disease.

    Science.gov (United States)

    Fisher, Karen M; Zaaimi, Boubker; Williams, Timothy L; Baker, Stuart N; Baker, Mark R

    2012-09-01

    In motor neuron disease, the focus of therapy is to prevent or slow neuronal degeneration with neuroprotective pharmacological agents; early diagnosis and treatment are thus essential. Incorporation of needle electromyographic evidence of lower motor neuron degeneration into diagnostic criteria has undoubtedly advanced diagnosis, but even earlier diagnosis might be possible by including tests of subclinical upper motor neuron disease. We hypothesized that beta-band (15-30 Hz) intermuscular coherence could be used as an electrophysiological marker of upper motor neuron integrity in such patients. We measured intermuscular coherence in eight patients who conformed to established diagnostic criteria for primary lateral sclerosis and six patients with progressive muscular atrophy, together with 16 age-matched controls. In the primary lateral sclerosis variant of motor neuron disease, there is selective destruction of motor cortical layer V pyramidal neurons and degeneration of the corticospinal tract, without involvement of anterior horn cells. In progressive muscular atrophy, there is selective degeneration of anterior horn cells but a normal corticospinal tract. All patients with primary lateral sclerosis had abnormal motor-evoked potentials as assessed using transcranial magnetic stimulation, whereas these were similar to controls in progressive muscular atrophy. Upper and lower limb intermuscular coherence was measured during a precision grip and an ankle dorsiflexion task, respectively. Significant beta-band coherence was observed in all control subjects and all patients with progressive muscular atrophy tested, but not in the patients with primary lateral sclerosis. We conclude that intermuscular coherence in the 15-30 Hz range is dependent on an intact corticospinal tract but persists in the face of selective anterior horn cell destruction. Based on the distributions of coherence values measured from patients with primary lateral sclerosis and control

  11. Different roles of alpha and beta band oscillations in anticipatory sensorimotor gating

    NARCIS (Netherlands)

    Buchholz, V.N.; Jensen, O.; Medendorp, W.P.

    2014-01-01

    Alpha (8-12 Hz) and beta band (18-30 Hz) oscillations have been implicated in sensory anticipation and motor preparation. Here, using magneto-encephalography, we tested whether they have distinct functional roles in a saccade task that induces a remapping between sensory and motor reference frames.

  12. Auditory cortical areas activated by slow frequency-modulated sounds in mice.

    Directory of Open Access Journals (Sweden)

    Yuusuke Honma

    Full Text Available Species-specific vocalizations in mice have frequency-modulated (FM components slower than the lower limit of FM direction selectivity in the core region of the mouse auditory cortex. To identify cortical areas selective to slow frequency modulation, we investigated tonal responses in the mouse auditory cortex using transcranial flavoprotein fluorescence imaging. For differentiating responses to frequency modulation from those to stimuli at constant frequencies, we focused on transient fluorescence changes after direction reversal of temporally repeated and superimposed FM sweeps. We found that the ultrasonic field (UF in the belt cortical region selectively responded to the direction reversal. The dorsoposterior field (DP also responded weakly to the reversal. Regarding the responses in UF, no apparent tonotopic map was found, and the right UF responses were significantly larger in amplitude than the left UF responses. The half-max latency in responses to FM sweeps was shorter in UF compared with that in the primary auditory cortex (A1 or anterior auditory field (AAF. Tracer injection experiments in the functionally identified UF and DP confirmed that these two areas receive afferent inputs from the dorsal part of the medial geniculate nucleus (MG. Calcium imaging of UF neurons stained with fura-2 were performed using a two-photon microscope, and the presence of UF neurons that were selective to both direction and direction reversal of slow frequency modulation was demonstrated. These results strongly suggest a role for UF, and possibly DP, as cortical areas specialized for processing slow frequency modulation in mice.

  13. Characterizing Thalamocortical Disturbances in Cervical Spondylotic Myelopathy: Revealed by Functional Connectivity under Two Slow Frequency Bands.

    Directory of Open Access Journals (Sweden)

    Fuqing Zhou

    Full Text Available Recent advanced MRI studies on cervical spondylotic myelopathy (CSM revealed alterations of sensorimotor cortex, but the disturbances of large-scale thalamocortical systems remains elusive. The purpose of this study was to characterizing the CSM-related thalamocortical disturbances, which were associated with spinal cord structural injury, and clinical measures.A total of 17 patients with degenerative CSM and well-matched control subjects participated. Thalamocortical disturbances were quantified using thalamus seed-based functional connectivity in two distinct low frequencies bands (slow-5 and slow-4, with different neural manifestations. The clinical measures were evaluated by Japanese Orthopaedic Association (JOA score system and Neck Disability Index (NDI questionnaires.Decreased functional connectivity was found in the thalamo-motor, -somatosensory, and -temporal circuits in the slow-5 band, indicating impairment of thalamo-cortical circuit degeneration or axon/synaptic impairment. By contrast, increased functional connectivity between thalami and the bilateral primary motor (M1, primary and secondary somatosensory (S1/S2, premotor cortex (PMC, and right temporal cortex was detected in the slow-4 band, and were associated with higher fractional anisotropy values in the cervical cord, corresponding to mild spinal cord structural injury.These thalamocortical disturbances revealed by two slow frequency bands inform basic understanding and vital clues about the sensorimotor dysfunction in CSM. Further work is needed to evaluate its contribution in central functional reorganization during spinal cord degeneration.

  14. Slow slip rate and excitation efficiency of deep low-frequency tremors beneath southwest Japan

    Science.gov (United States)

    Daiku, Kumiko; Hiramatsu, Yoshihiro; Matsuzawa, Takanori; Mizukami, Tomoyuki

    2018-01-01

    We estimated the long-term average slip rate on the plate interface across the Nankai subduction zone during 2002-2013 using deep low-frequency tremors as a proxy for short-term slow slip events based on empirical relations between the seismic moment of short-term slow slip events and tremor activities. The slip rate in each region is likely to compensate for differences between the convergence rate and the slip deficit rate of the subducting Philippine Sea plate estimated geodetically, although the uncertainty is large. This implies that the strain because of the subduction of the plate is partially stored as the slip deficit and partially released by slow slip events during the interseismic period. The excitation efficiency of the tremors for the slow slip events differs among regions: it is high in the northern Kii region. Some events in the western Shikoku region show a somewhat large value. Antigorite serpentinite of two types exists in the mantle wedge beneath southwest Japan. Slips with more effective excitation of tremors presumably occur in high-temperature conditions in the antigorite + olivine stability field. Other slip events with low excitation efficiency are distributed in the antigorite + brucite stability field. Considering the formation reactions of these minerals and their characteristic structures, events with high excitation efficiency can be correlated with a high pore fluid pressure condition. This result suggests that variation in pore fluid pressure on the plate interface affects the magnitude of tremors excited by slow slip events.

  15. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission

    Science.gov (United States)

    Yang, Jieun; Lee, Joong Seok; Lee, Hyeong Rae; Kang, Yeon June; Kim, Yoon Young

    2018-02-01

    Sound transmission reduction is typically governed by the mass law, requiring thicker panels to handle lower frequencies. When open holes must be inserted in panels for heat transfer, ventilation, or other purposes, the efficient reduction of sound transmission through holey panels becomes difficult, especially in the low-frequency ranges. Here, we propose slow-wave metamaterial open panels that can dramatically lower the working frequencies of sound transmission loss. Global resonances originating from slow waves realized by multiply inserted, elaborately designed subwavelength rigid partitions between two thin holey plates contribute to sound transmission reductions at lower frequencies. Owing to the dispersive characteristics of the present metamaterial panels, local resonances that trap sound in the partitions also occur at higher frequencies, exhibiting negative effective bulk moduli and zero effective velocities. As a result, low-frequency broadened sound transmission reduction is realized efficiently in the present metamaterial panels. The theoretical model of the proposed metamaterial open panels is derived using an effective medium approach and verified by numerical and experimental investigations.

  16. Populations of striatal medium spiny neurons encode vibrotactile frequency in rats: modulation by slow wave oscillations.

    Science.gov (United States)

    Hawking, Thomas G; Gerdjikov, Todor V

    2013-01-01

    Dorsolateral striatum (DLS) is implicated in tactile perception and receives strong projections from somatosensory cortex. However, the sensory representations encoded by striatal projection neurons are not well understood. Here we characterized the contribution of DLS to the encoding of vibrotactile information in rats by assessing striatal responses to precise frequency stimuli delivered to a single vibrissa. We applied stimuli in a frequency range (45-90 Hz) that evokes discriminable percepts and carries most of the power of vibrissa vibration elicited by a range of complex fine textures. Both medium spiny neurons and evoked potentials showed tactile responses that were modulated by slow wave oscillations. Furthermore, medium spiny neuron population responses represented stimulus frequency on par with previously reported behavioral benchmarks. Our results suggest that striatum encodes frequency information of vibrotactile stimuli which is dynamically modulated by ongoing brain state.

  17. Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under “Cocktail-Party” Listening Conditions

    Science.gov (United States)

    Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang

    2017-01-01

    Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated “cocktail-party” listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the “cocktail-party” listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process. PMID:28239344

  18. Low frequency sound attenuation in a flow duct using a thin slow sound material.

    Science.gov (United States)

    Aurégan, Yves; Farooqui, Maaz; Groby, Jean-Philippe

    2016-05-01

    A thin subwavelength material that can be flush mounted in a duct and that gives an attenuation band at low frequencies in air flow channels is presented. To decrease the material thickness, the sound is slowed in the material using folded side branch tubes. The impedance of the material is compared to the optimal value given by the Cremer condition, which can differ greatly from the air characteristic impedance. Grazing flow on this material increases the losses at the interface between the flow and the material.

  19. Coupling of slow waves near the lower hybrid frequency in large tokamaks

    International Nuclear Information System (INIS)

    Moreau, D.; Nguyen, T.K.

    1985-01-01

    The linear (2-D) coupling theory of slow waves near the lower hybrid frequency is generalized for relatively high density plasmas facing the antenna and different coupling regimes are distinguished. A multipolar theory of juxtaposed waveguide arrays (Grills) is then developed and new r.f. structures derived from the principle of the Grill are studied in order to make the extrapolation of this principle to large tokamaks and to reactor easier. These ''compact structures'' allow the design of modular antennae, so called ''E-plane multijunction antennae'', and the electromagnetic theory of such ''multijunctions'' is presented. We have studied the physical properties of the slow wave antennae so obtained, as far as coupling the r.f. power to plasma waves is concerned, with the aid of a computer code (S.W.A.N.) and we present many numerical results. In particular, we point out an interesting ''self-adaptation'' phenomenon which should allow a good matching of ''progressive wave multijunction antennae'' (current drive) in a large range of edge plasma parameters. Reflection coefficients less than 1% could be considered with the potential consequence of reducing a lot the cost of the r.f. power transmission lines. To conclude, we relate very briefly the ''proof of principle'' experiments performed on PETULA-B and we show ''experimental spectra'' of radiated power which can be obtained from r.f. measurements through the SWAN code [fr

  20. Convergent BOLD and Beta-Band Activity in Superior Temporal Sulcus and Frontolimbic Circuitry Underpins Human Emotion Cognition

    Science.gov (United States)

    Jabbi, Mbemba; Kohn, Philip D.; Nash, Tiffany; Ianni, Angela; Coutlee, Christopher; Holroyd, Tom; Carver, Frederick W.; Chen, Qiang; Cropp, Brett; Kippenhan, J. Shane; Robinson, Stephen E.; Coppola, Richard; Berman, Karen F.

    2015-01-01

    The processing of social information in the human brain is widely distributed neuroanatomically and finely orchestrated over time. However, a detailed account of the spatiotemporal organization of these key neural underpinnings of human social cognition remains to be elucidated. Here, we applied functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in the same participants to investigate spatial and temporal neural patterns evoked by viewing videos of facial muscle configurations. We show that observing the emergence of expressions elicits sustained blood oxygenation level–dependent responses in the superior temporal sulcus (STS), a region implicated in processing meaningful biological motion. We also found corresponding event-related changes in sustained MEG beta-band (14–30 Hz) oscillatory activity in the STS, consistent with the possible role of beta-band activity in visual perception. Dynamically evolving fearful and happy expressions elicited early (0–400 ms) transient beta-band activity in sensorimotor cortex that persisted beyond 400 ms, at which time it became accompanied by a frontolimbic spread (400–1000 ms). In addition, individual differences in sustained STS beta-band activity correlated with speed of emotion recognition, substantiating the behavioral relevance of these signals. This STS beta-band activity showed valence-specific coupling with the time courses of facial movements as they emerged into full-blown fearful and happy expressions (negative and positive coupling, respectively). These data offer new insights into the perceptual relevance and orchestrated function of the STS and interconnected pathways in social–emotion cognition. PMID:24464944

  1. Convergent BOLD and Beta-Band Activity in Superior Temporal Sulcus and Frontolimbic Circuitry Underpins Human Emotion Cognition.

    Science.gov (United States)

    Jabbi, Mbemba; Kohn, Philip D; Nash, Tiffany; Ianni, Angela; Coutlee, Christopher; Holroyd, Tom; Carver, Frederick W; Chen, Qiang; Cropp, Brett; Kippenhan, J Shane; Robinson, Stephen E; Coppola, Richard; Berman, Karen F

    2015-07-01

    The processing of social information in the human brain is widely distributed neuroanatomically and finely orchestrated over time. However, a detailed account of the spatiotemporal organization of these key neural underpinnings of human social cognition remains to be elucidated. Here, we applied functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in the same participants to investigate spatial and temporal neural patterns evoked by viewing videos of facial muscle configurations. We show that observing the emergence of expressions elicits sustained blood oxygenation level-dependent responses in the superior temporal sulcus (STS), a region implicated in processing meaningful biological motion. We also found corresponding event-related changes in sustained MEG beta-band (14-30 Hz) oscillatory activity in the STS, consistent with the possible role of beta-band activity in visual perception. Dynamically evolving fearful and happy expressions elicited early (0-400 ms) transient beta-band activity in sensorimotor cortex that persisted beyond 400 ms, at which time it became accompanied by a frontolimbic spread (400-1000 ms). In addition, individual differences in sustained STS beta-band activity correlated with speed of emotion recognition, substantiating the behavioral relevance of these signals. This STS beta-band activity showed valence-specific coupling with the time courses of facial movements as they emerged into full-blown fearful and happy expressions (negative and positive coupling, respectively). These data offer new insights into the perceptual relevance and orchestrated function of the STS and interconnected pathways in social-emotion cognition. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  2. Alpha- and beta-band oscillations subserve different processes in reactive control of limb movements

    Directory of Open Access Journals (Sweden)

    Pierpaolo ePani

    2014-11-01

    Full Text Available The capacity to rapidly suppress a behavioral act in response to sudden instruction to stop is a key cognitive function. This function, called reactive control, is tested in experimental settings using the stop signal task, which requires subjects to generate a movement in response to a go signal or suppress it when a stop signal appears. The ability to inhibit this movement fluctuates over time: sometimes, subjects can stop their response, and at other times, they can not. To determine the neural basis of this fluctuation, we recorded local field potentials (LFPs in the alpha (6-12 Hz and beta (13-35 Hz bands from the dorsal premotor cortex of 2 nonhuman primates that were performing the task. The ability to countermand a movement after a stop signal was predicted by the activity of both bands, each purportedly representing a distinct neural process. The beta band represents the level of movement preparation; higher beta power corresponds to a lower level of movement preparation, whereas the alpha band supports a proper phasic, reactive inhibitory response: movements are inhibited when alpha band power increases immediately after a stop signal. Our findings support the function of LFP bands in generating the signatures of various neural computations that are multiplexed in the brain.

  3. Slow frequency repetitive transcranial magnetic stimulation affects reaction times, but not priming effects, in a masked prime task.

    NARCIS (Netherlands)

    Schlaghecken, F.; Munchau, A.; Bloem, B.R.; Rothwell, J.C.; Eimer, M.

    2003-01-01

    OBJECTIVE: Slow frequency repetitive transcranial magnetic stimulation (rTMS) reduces motor cortex excitability, but it is unclear whether this has behavioural consequences in healthy subjects. METHODS: We examined the effects of 1 Hz rTMS (train of 20 min; stimulus intensity 80% of active motor

  4. Beta-band functional connectivity is reorganized in mild cognitive impairment after combined computerized physical and cognitive training

    Directory of Open Access Journals (Sweden)

    Manousos eKlados

    2016-02-01

    Full Text Available Physical and cognitive idleness constitute significant risk factors for the clinical manifestation of age-related neurodegenerative diseases. In contrast, a physically and cognitively active lifestyle may restructure age-declined neuronal networks enhancing neuroplasticity. The present study, investigated the changes of brain’s functional network in a group of elderly individuals at risk for dementia that were induced by a combined cognitive and physical intervention scheme. Fifty seniors meeting Petersen’s criteria of Mild Cognitive Impairment were equally divided into an experimental (LLM, and an active control (AC group. Resting state electroencephalogram (EEG was measured before and after the intervention. Functional networks were estimated by computing the magnitude square coherence between the time series of all available cortical sources as computed by standardized low resolution brain electromagnetic tomography (sLORETA. A statistical model was used to form groups’ characteristic weighted graphs. The introduced modulation was assessed by networks' density and nodes’ strength. Results focused on the beta band (12-30 Hz in which the difference of the two networks' density is maximum, indicating that the structure of the LLM cortical network changes significantly due to the intervention, in contrast to the network of AC. The node strength of LLM participants in the beta band presents a higher number of bilateral connections in the occipital, parietal, temporal and prefrontal regions after the intervention. Our results show that the combined training scheme reorganizes the beta-band functional connectivity of MCI patients.

  5. Validation of HFCS-I on Calculation of High-Frequency Parameters of Helical Slow-Wave Structures

    Science.gov (United States)

    Zhu, Xiaofang; Yang, Zhonghai; Li, Bin; Li, Jianqing; Xu, Li

    2010-02-01

    To validate HFCS-I, a newly developed design tool for high frequency circuits of microwave tubes, the high-frequency parameters (including dispersion, interaction impedance and attenuation constant) of a typical helical slow-wave structure (SWS) for millimetre wave travelling-wave tube are calculated by HFCS-I and MAFIA. Both the direct calculation method and the Non-Resonant Perturbation (NRP) technique are adopted to get the interaction impedance. The obtained high-frequency parameters from HFCS-I and MAFIA are compared in detail and the consistency has proved the reliability and validity of HFCS-I.

  6. Beta-Band Functional Connectivity is Reorganized in Mild Cognitive Impairment after Combined Computerized Physical and Cognitive Training.

    Science.gov (United States)

    Klados, Manousos A; Styliadis, Charis; Frantzidis, Christos A; Paraskevopoulos, Evangelos; Bamidis, Panagiotis D

    2016-01-01

    Physical and cognitive idleness constitute significant risk factors for the clinical manifestation of age-related neurodegenerative diseases. In contrast, a physically and cognitively active lifestyle may restructure age-declined neuronal networks enhancing neuroplasticity. The present study, investigated the changes of brain's functional network in a group of elderly individuals at risk for dementia that were induced by a combined cognitive and physical intervention scheme. Fifty seniors meeting Petersen's criteria of Mild Cognitive Impairment were equally divided into an experimental (LLM), and an active control (AC) group. Resting state electroencephalogram (EEG) was measured before and after the intervention. Functional networks were estimated by computing the magnitude square coherence between the time series of all available cortical sources as computed by standardized low resolution brain electromagnetic tomography (sLORETA). A statistical model was used to form groups' characteristic weighted graphs. The introduced modulation was assessed by networks' density and nodes' strength. Results focused on the beta band (12-30 Hz) in which the difference of the two networks' density is maximum, indicating that the structure of the LLM cortical network changes significantly due to the intervention, in contrast to the network of AC. The node strength of LLM participants in the beta band presents a higher number of bilateral connections in the occipital, parietal, temporal and prefrontal regions after the intervention. Our results show that the combined training scheme reorganizes the beta-band functional connectivity of MCI patients. ClinicalTrials.gov Identifier: NCT02313935 https://clinicaltrials.gov/ct2/show/NCT02313935.

  7. Determination of the hydrogen vibrational frequency in titonium hydride by inelastic slow neutron scattering

    International Nuclear Information System (INIS)

    Mestnik Filho, J.; Freitas, A.C. de; Rizzati, M.R.; Jesus, M.M.S.

    1990-01-01

    The vibrational motions of hydrogen in titanium hydride have been studied by slow neutron inelastic scattering utilizing a berilium filter-time of flight spectrometer. An isolated peak was observed from the experiment, corresponding to the energy transfer of 156 ± 1 MeV, which was attributed to a localized vibration of hydrogen atoms relative to the four neighbor titanium atoms arranjed accordingly a regular tetrahedrom. (author)

  8. Frequency unlimited optical delay lines based on slow and fast light in SOAs

    DEFF Research Database (Denmark)

    Berger, Perrine; Bourderionnet, Jérôme; Pu, Minhao

    2011-01-01

    We experimentally demonstrate that up-converted coherent population oscillations (CPO) in SOA open the possibility to conceive integrated optical tunable delay lines beyond the carrier lifetime limit, up to THz frequencies.......We experimentally demonstrate that up-converted coherent population oscillations (CPO) in SOA open the possibility to conceive integrated optical tunable delay lines beyond the carrier lifetime limit, up to THz frequencies....

  9. Time delay generation at high frequency using SOA based slow and fast light.

    Science.gov (United States)

    Berger, Perrine; Bourderionnet, Jérôme; Bretenaker, Fabien; Dolfi, Daniel; Alouini, Mehdi

    2011-10-24

    We show how Up-converted Coherent Population Oscillations (UpCPO) enable to get rid of the intrinsic limitation of the carrier lifetime, leading to the generation of time delays at any high frequencies in a single SOA device. The linear dependence of the RF phase shift with respect to the RF frequency is theoretically predicted and experimentally evidenced at 16 and 35 GHz. © 2011 Optical Society of America

  10. Cross-frequency synchronization connects networks of fast and slow oscillations during visual working memory maintenance.

    Science.gov (United States)

    Siebenhühner, Felix; Wang, Sheng H; Palva, J Matias; Palva, Satu

    2016-09-26

    Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha-gamma and between alpha and beta-gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions.

  11. Modulation of Beta-Band Activity in the Subgenual Anterior Cingulate Cortex during Emotional Empathy in Treatment-Resistant Depression.

    Science.gov (United States)

    Merkl, Angela; Neumann, Wolf-Julian; Huebl, Julius; Aust, Sabine; Horn, Andreas; Krauss, Joachim K; Dziobek, Isabel; Kuhn, Jens; Schneider, Gerd-Helge; Bajbouj, Malek; Kühn, Andrea A

    2016-06-01

    Deep brain stimulation (DBS) is a promising approach in treatment-resistant depression (TRD). TRD is associated with problems in interpersonal relationships, which might be linked to impaired empathy. Here, we investigate the influence of DBS in the subgenual anterior cingulate cortex (sgACC) on empathy in patients with TRD and explore the pattern of oscillatory sgACC activity during performance of the multifaceted empathy test. We recorded local field potential activity directly from sgACC via DBS electrodes in patients. Based on previous behavioral findings, we expected disrupted empathy networks. Patients showed increased empathic involvement ratings toward negative stimuli as compared with healthy subjects that were significantly reduced after 6 months of DBS. Stimulus-related oscillatory activity pattern revealed a broad desynchronization in the beta (14-35 Hz) band that was significantly larger during patients' reported emotional empathy for negative stimuli than when patients reported to have no empathy. Beta desynchronization for empathic involvement correlated with self-reported severity of depression. Our results indicate a "negativity bias" in patients that can be reduced by DBS. Moreover, direct recordings show activation of the sgACC area during emotional processing and propose that changes in beta-band oscillatory activity in the sgACC might index empathic involvement of negative emotion in TRD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Long-Term Evolution Electromagnetic Fields Exposure Modulates the Resting State EEG on Alpha and Beta Bands.

    Science.gov (United States)

    Yang, Lei; Chen, Qinghua; Lv, Bin; Wu, Tongning

    2017-05-01

    Long-term evolution (LTE) wireless telecommunication systems are widely used globally, which has raised a concern that exposure to electromagnetic fields (EMF) emitted from LTE devices can change human neural function. To date, few studies have been conducted on the effect of exposure to LTE EMF. Here, we evaluated the changes in electroencephalogram (EEG) due to LTE EMF exposure. An LTE EMF exposure system with a stable power emission, which was equivalent to the maximum emission from an LTE mobile phone, was used to radiate the subjects. Numerical simulations were conducted to ensure that the specific absorption rate in the subject's head was below the safety limits. Exposure to LTE EMF reduced the spectral power and the interhemispheric coherence in the alpha and beta bands of the frontal and temporal brain regions. No significant change was observed in the spectral power and the inter-hemispheric coherence in different timeslots during and after the exposure. These findings also corroborated those of our previous study using functional magnetic resonant imaging.

  13. High frequency of NAT2 slow acetylator alleles in the Malay population of Indonesia: an awareness to the anti-tuberculosis drug induced liver injury and cancer

    Directory of Open Access Journals (Sweden)

    Retno W. Susilowati

    2017-05-01

    Full Text Available Background: Arylamine N-acetyltransferase 2 (NAT2 polymorphism was previously reported to have association with the risk of drug toxicities and the development of various diseases. Previous research on the Indonesian population, especially Javanese and Sundanese, showed that there were 33% NAT2 slow acetylator phenotype. The aim of this study was to map the NAT2 variation in the Malay ethnic to gain a deeper insight into NAT2 haplotypic composition in this ethnic.Methods: 50 healthy samples from the Indonesian Malay ethnic were obtained. They were interviewed about their ethnic backgrounds for the last three generations. DNA was extracted from peripheral blood and NAT2 genotyping was done using the PCR direct Sequencing. Data were compiled according to the genotype and allele frequencies estimated from the observed numbers of each specific allele. Haplotype reconstruction was performed using PHASE v2.1.1 software.Results: We found 7 haplotypes consisting of 6 SNPs and 14 NAT2 genotype variations in Indonesian Malay population. The most frequent allele was NAT2*6A (38% which was classified as a slow acetylator allele. According to bimodal distribution, the predicted phenotype of the Malay population was composed of 62% rapid acetylator and 38% slow acetylator. According to trimodal distribution, the predicted phenotypes for rapid, intermediate and slow acetylators were 10%, 52% and 38% respectively.Conclusion: Our result indicates the presence of the allelic distribution and revealed the most frequent acetylator status and phenotype for the Indonesian Malay population. The result of this study will be helpful for future epidemiological or clinical studies and for understanding the genetic basis of acetylation polymorphism in Indonesia.

  14. Low-frequency earthquakes reveal punctuated slow slip on the deep extent of the Alpine Fault, New Zealand

    Science.gov (United States)

    Chamberlain, Calum J.; Shelly, David R.; Townend, John; Stern, T.A.

    2014-01-01

    We present the first evidence of low-frequency earthquakes (LFEs) associated with the deep extension of the transpressional Alpine Fault beneath the central Southern Alps of New Zealand. Our database comprises a temporally continuous 36 month-long catalog of 8760 LFEs within 14 families. To generate this catalog, we first identify 14 primary template LFEs within known periods of seismic tremor and use these templates to detect similar events in an iterative stacking and cross-correlation routine. The hypocentres of 12 of the 14 LFE families lie within 10 km of the inferred location of the Alpine Fault at depths of approximately 20–30 km, in a zone of high P-wave attenuation, low P-wave speeds, and high seismic reflectivity. The LFE catalog consists of persistent, discrete events punctuated by swarm-like bursts of activity associated with previously and newly identified tremor periods. The magnitudes of the LFEs range between ML – 0.8 and ML 1.8, with an average of ML 0.5. We find that the frequency-magnitude distribution of the LFE catalog both as a whole and within individual families is not consistent with a power law, but that individual families' frequency-amplitude distributions approximate an exponential relationship, suggestive of a characteristic length-scale of failure. We interpret this LFE activity to represent quasi-continuous slip on the deep extent of the Alpine Fault, with LFEs highlighting asperities within an otherwise steadily creeping region of the fault.

  15. Analysis of the frequency response of a TeO{sub 2} slow shear wave acousto-optic cell exposed to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Erteza, I.A.

    1995-04-01

    Radiation testing of photonic components is not new, however component level testing to date has not completely addressed quantities which are important to system behavior. One characteristic that is of particular importance for optical processing systems is the frequency response. In this report, we present the analysis of data from an experiment designed to provide a preliminary understanding of the effects of radiation on the frequency response of acousto-optic devices. The goal of the analysis is to describe possible physical mechanisms responsible for the radiation effects and to discuss the effects on signal processing functionality. The experiment discussed in this report was designed by Sandia National Laboratories and performed by Sandia and Phillips Laboratory personnel at White Sands Missile Range (WSMR). In the experiment, a TeO{sub 2} slow shear wave acousto-optic cell was exposed to radiation from the WSMR linear accelerator. The TeO{sub 2} cell was placed in an experimental configuration which allowed swept frequency diffracted power measurements to be taken during radiation exposure and recovery. A series of exposures was performed. Each exposure consisted of between 1 to 800, 1{mu}sec radiation pulses (yielding exposures of 2.25 kRad(Si) to 913 kRad(Si)), followed by recovery time. At low total and cumulative doses, the bandshape of the frequency response (i.e. diffracted power vs. frequency) remained almost identical during and after radiation. At the higher exposures, however, the amplitude and width of the frequency response changed as the radiation continued, but returned to the original shape slowly after the radiation stopped and recovery proceeded. It is interesting to note that the location of the Bragg degeneracy does not change significantly with radiation. In this report, we discuss these effects from the perspective of anisotropic Bragg diffraction and momentum mismatch, and we discuss the effect on the signal processing functionality.

  16. Focal mechanisms and inter-event times of low-frequency earthquakes reveal quasi-continuous deformation and triggered slow slip on the deep Alpine Fault

    Science.gov (United States)

    Baratin, Laura-May; Chamberlain, Calum J.; Townend, John; Savage, Martha K.

    2018-02-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the stresses acting on a major transpressive margin prior to an anticipated great (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault late in its typical ∼300-yr seismic cycle. We analyse a continuous seismic dataset recorded between 2009 and 2016 using a network of 10-13 short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine, allowing the detection of similar signals corresponding to LFE families sharing common locations. This yields an 8-yr catalogue containing 10,000 LFEs that are combined for each of the 14 LFE families using phase-weighted stacking to produce signals with the highest possible signal-to-noise ratios. We show that LFEs occur almost continuously during the 8-yr study period and highlight two types of LFE distributions: (1) discrete behaviour with an inter-event time exceeding 2 min; (2) burst-like behaviour with an inter-event time below 2 min. We interpret the discrete events as small-scale frequent deformation on the deep extent of the Alpine Fault and LFE bursts (corresponding in most cases to known episodes of tremor or large regional earthquakes) as brief periods of increased slip activity indicative of slow slip. We compute improved non-linear earthquake locations using a 3-D velocity model. LFEs occur below the seismogenic zone at depths of 17-42 km, on or near the hypothesised deep extent of the Alpine Fault. The first estimates of LFE focal mechanisms associated with continental faulting, in conjunction with recurrence intervals, are consistent with quasi-continuous shear faulting on the deep extent of the Alpine Fault.

  17. Slow Magnetic Relaxations in Cobalt(II) Tetranitrate Complexes. Studies of Magnetic Anisotropy by Inelastic Neutron Scattering and High-Frequency and High-Field EPR Spectroscopy.

    Science.gov (United States)

    Chen, Lei; Cui, Hui-Hui; Stavretis, Shelby E; Hunter, Seth C; Zhang, Yi-Quan; Chen, Xue-Tai; Sun, Yi-Chen; Wang, Zhenxing; Song, You; Podlesnyak, Andrey A; Ouyang, Zhong-Wen; Xue, Zi-Ling

    2016-12-19

    Three mononuclear cobalt(II) tetranitrate complexes (A) 2 [Co(NO 3 ) 4 ] with different countercations, Ph 4 P + (1), MePh 3 P + (2), and Ph 4 As + (3), have been synthesized and studied by X-ray single-crystal diffraction, magnetic measurements, inelastic neutron scattering (INS), high-frequency and high-field EPR (HF-EPR) spectroscopy, and theoretical calculations. The X-ray diffraction studies reveal that the structure of the tetranitrate cobalt anion varies with the countercation. 1 and 2 exhibit highly irregular seven-coordinate geometries, while the central Co(II) ion of 3 is in a distorted-dodecahedral configuration. The sole magnetic transition observed in the INS spectroscopy of 1-3 corresponds to the zero-field splitting (2(D 2 + 3E 2 ) 1/2 ) from 22.5(2) cm -1 in 1 to 26.6(3) cm -1 in 2 and 11.1(5) cm -1 in 3. The positive sign of the D value, and hence the easy-plane magnetic anisotropy, was demonstrated for 1 by INS studies under magnetic fields and HF-EPR spectroscopy. The combined analyses of INS and HF-EPR data yield the D values as +10.90(3), +12.74(3), and +4.50(3) cm -1 for 1-3, respectively. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements reveal the slow magnetization relaxation in 1 and 2 at an applied dc field of 600 Oe, which is a characteristic of field-induced single-molecule magnets (SMMs). The electronic structures and the origin of magnetic anisotropy of 1-3 were revealed by calculations at the CASPT2/NEVPT2 level.

  18. Slow Meteors

    Science.gov (United States)

    Dubs, Martin; Sposetti, Stefano; Spinner, Roger; Booz, Beat

    2017-04-01

    Slow meteors are studied with video observations and spectroscopy. A comparison of their orbits and spectra points to a common origin. Although they do not belong to some meteor stream, they deserve to be studied in more detail. The present paper tries to make a first attempt to characterize the common properties of this class of meteors.

  19. Slow-Wave Phase Shifters, Based on Thin Ferroelectric Films, for Reflectarray Antennas. Frequency-Agile Radio: Systems and Technlogies, WMG 139

    Science.gov (United States)

    Romanofsky, Robert R.

    2006-01-01

    We have developed relatively broadband K- and Ka-band phase shifters using synthetic (slow-wave) transmission lines employing coupled microstripline "varactors". The tunable coupled microstripline circuits are based on laser ablated BaSrTiO films on lanthanum aluminate substrates. A model and design criteria for these novel circuits will be presented, along with measured performance including anomalous phase delay characteristics. The critical role of phase shifter loss and transient response in reflectarray antennas will be emphasized.

  20. Study of Slow Beam Extraction Through the Third Order Resonance with Transverse Phase Space Manipulation by a Mono-Frequency RFKO

    CERN Document Server

    Miyamoto, Atsushi; Hinode, Fujio; Kawai, Masayuki; Shinto, Katsuhiro; Tanaka, Takumi

    2005-01-01

    An electron pulse-stretcher ring (STB ring) has a function which converts a pulse beam generated by RF linac into a quasi-continuous beam. Circulating beam in the ring is extracted by the third order resonance. Since there is no accelerating field in the ring, the beam approaches a transverse resonance condition due to synchrotron radiation loss with finite chromaticity. The extracted beam from the ring has some spread in time and space corresponding to injected beam from linac even if the injected beam is perfectly matched to the ring optics. However, the extracted beam emittance can be reduced by applying a phase space manipulation using an RF shaker. Under the influence of perturbation using an RF shaker driven by a mono-frequency, the betatron amplitude of circulating beam can be controlled in order to reduce the extracted beam emittance. The experimental results will be reported in this conference.

  1. TOPOLOGY OF FUNCTIONAL CONNECTIVITY AND HUB DYNAMICS IN THE BETA BAND AS TEMPORAL PRIOR FOR NATURAL VISION IN THE HUMAN BRAIN.

    Science.gov (United States)

    Betti, Viviana; Corbetta, Maurizio; de Pasquale, Francesco; Wens, Vincent; Della Penna, Stefania

    2018-03-19

    Networks hubs represent points of convergence for the integration of information across many different nodes and systems. While a great deal is known on the topology of hub regions in the human brain, little is known about their temporal dynamics. Here, we examine the static and dynamic centrality of hub regions when measured in the absence of a task (rest) or during the observation of natural or synthetic visual stimuli. We used Magnetoencephalography (MEG) in humans (both sexes) to measure static and transient regional and network-level interaction in α and β band limited power (BLP) in three conditions: visual fixation (rest), viewing of movie clips (natural vision), and time-scrambled versions of the same clips (scrambled vision). As compared to rest, we observed in both movie conditions a robust decrement of α band BLP connectivity. Moreover, both movie conditions caused a significant reorganization of connections in the α band, especially between-networks. In contrast, β band BLP connectivity was remarkably similar between rest and natural vision. Not only the topology did not change, but the joint dynamics of hubs in a core network during natural vision was predicted by similar fluctuations in the resting state. We interpret these findings by suggesting that slow varying fluctuations of integration occurring in higher order regions in the β band may be a mechanism to anticipate and predict slow-varying temporal patterns of the visual environment. SIGNIFICANCE STATEMENT A fundamental question in neuroscience concerns the function of spontaneous brain connectivity. We test the hypothesis that topology of intrinsic brain connectivity and its dynamics might predict those observed during natural vision. Using MEG, we tracked the static and time-varying brain functional connectivity when observers were either fixating or watching different movie clips. The spatial distribution of connections and the dynamics of centrality of a set of regions were similar

  2. FROM SLOW FOOD TO SLOW TOURISM

    Directory of Open Access Journals (Sweden)

    Bac Dorin Paul

    2014-12-01

    Full Text Available One of the effects of globalization is the faster pace of our lives. This rhythm can be noticed in all aspects of life: travel, work, shopping, etc. and it has serious negative effects. It has become common knowledge that stress and speed generate serious medical issues. Food and eating habits in the modern world have taken their toll on our health. However, some people took a stand and argued for a new kind of lifestyle. It all started in the field of gastronomy, where a new movement emerged – Slow Food, based on the ideas and philosophy of Carlo Petrini. Slow Food represents an important adversary to the concept of fast food, and is promoting local products, enjoyable meals and healthy food. The philosophy of the Slow Food movement developed in several directions: Cittaslow, slow travel and tourism, slow religion and slow money etc. The present paper will account the evolution of the concept and its development during the most recent years. We will present how the philosophy of slow food was applied in all the other fields it reached and some critical points of view. Also we will focus on the presence of the slow movement in Romania, although it is in a very early stage of development. The main objectives of the present paper are: to present the chronological and ideological evolution of the slow movement; to establish a clear separation of slow travel and slow tourism, as many mistake on for the other; to review the presence of the slow movement in Romania. Regarding the research methodology, information was gathered from relevant academic papers and books and also from interviews and discussions with local entrepreneurs. The research is mostly theoretical and empirical, as slow food and slow tourism are emerging research themes in academic circles.

  3. New Concept of PLC Modems: Multi-Carrier System for Frequency Selective Slow-Fading Channels Based on Layered SCCC Turbocodes

    Directory of Open Access Journals (Sweden)

    J. Zavrtalek

    2015-09-01

    Full Text Available The article introduces a novel concept of a PLC modem as a complement to the existing G3 and PRIME standards for communications using medium- or high-voltage overhead or cable lines. The proposed concept is based on the fact that the levels of impulse noise and frequency selectivity are lower on high-voltage lines than on low-voltage ones. Also, the demands for “cost-effective” circuitry design are not so crucial as in the case of modems for low-voltage level. In contract to these positive conditions, however, there is the need to overcome much longer distances and to take into account low SNR on the receiving side. With respect to the listed reasons, our concept makes use of MCM, instead of OFDM. The assumption of low SNR is compensated through the use of an efficient channel coding based on a serially concatenated turbo code. In addition, MCM offers lower latency and PAPR compared to OFDM. Therefore, when using MCM, it is possible to excite the line with higher power. The proposed concept has been verified during experimental transmission of testing data over a real, 5 km long, 22kV overhead line.

  4. Pulsar slow-down epochs

    International Nuclear Information System (INIS)

    Heintzmann, H.; Novello, M.

    1981-01-01

    The relative importance of magnetospheric currents and low frequency waves for pulsar braking is assessed and a model is developed which tries to account for the available pulsar timing data under the unifying aspect that all pulsars have equal masses and magnetic moments and are born as rapid rotators. Four epochs of slow-down are distinguished which are dominated by different braking mechanisms. According to the model no direct relationship exists between 'slow-down age' and true age of a pulsar and leads to a pulsar birth-rate of one event per hundred years. (Author) [pt

  5. Prostaglandin regulation of gastric slow waves and peristalsis

    OpenAIRE

    Forrest, Abigail S.; Hennig, Grant W.; Jokela-Willis, Sari; Park, Chong Doo; Sanders, Kenton M.

    2009-01-01

    Gastric emptying depends on functional coupling of slow waves between the corpus and antrum, to allow slow waves initiated in the gastric corpus to propagate to the pyloric sphincter and generate gastric peristalsis. Functional coupling depends on a frequency gradient where slow waves are generated at higher frequency in the corpus and drive the activity of distal pacemakers. Simultaneous intracellular recording from corpus and antrum was used to characterize the effects of PGE2 on slow waves...

  6. Analysis of EEG activity in response to binaural beats with different frequencies.

    Science.gov (United States)

    Gao, Xiang; Cao, Hongbao; Ming, Dong; Qi, Hongzhi; Wang, Xuemin; Wang, Xiaolu; Chen, Runge; Zhou, Peng

    2014-12-01

    When two coherent sounds with nearly similar frequencies are presented to each ear respectively with stereo headphones, the brain integrates the two signals and produces a sensation of a third sound called binaural beat (BB). Although earlier studies showed that BB could influence behavior and cognition, common agreement on the mechanism of BB has not been reached yet. In this work, we employed Relative Power (RP), Phase Locking Value (PLV) and Cross-Mutual Information (CMI) to track EEG changes during BB stimulations. EEG signals were acquired from 13 healthy subjects. Five-minute BBs with four different frequencies were tested: delta band (1 Hz), theta band (5 Hz), alpha band (10 Hz) and beta band (20 Hz). We observed RP increase in theta and alpha bands and decrease in beta band during delta and alpha BB stimulations. RP decreased in beta band during theta BB, while RP decreased in theta band during beta BB. However, no clear brainwave entrainment effect was identified. Connectivity changes were detected following the variation of RP during BB stimulations. Our observation supports the hypothesis that BBs could affect functional brain connectivity, suggesting that the mechanism of BB-brain interaction is worth further study. Copyright © 2014. Published by Elsevier B.V.

  7. Maturation trajectories of cortical resting-state networks depend on the mediating frequency band.

    Science.gov (United States)

    Khan, Sheraz; Hashmi, Javeria A; Mamashli, Fahimeh; Michmizos, Konstantinos; Kitzbichler, Manfred G; Bharadwaj, Hari; Bekhti, Yousra; Ganesan, Santosh; Garel, Keri-Lee A; Whitfield-Gabrieli, Susan; Gollub, Randy L; Kong, Jian; Vaina, Lucia M; Rana, Kunjan D; Stufflebeam, Steven M; Hämäläinen, Matti S; Kenet, Tal

    2018-02-17

    The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13-30 Hz) and gamma (31-80 Hz) bands. More specifically, gamma band mediated networks followed an expected asymptotic trajectory, but beta band mediated networks followed a linear trajectory. Network integration increased with age in gamma band mediated networks, while local segregation increased with age in beta band mediated networks. Spatially, the hubs that changed in importance with age in the beta band mediated networks had relatively little overlap with those that showed the greatest changes in the gamma band mediated networks. These findings are relevant for our understanding of the neural mechanisms of cortical maturation, in both typical and atypical development. Copyright © 2018. Published by Elsevier Inc.

  8. Slow electrons kill the ozone

    International Nuclear Information System (INIS)

    Maerk, T.

    2001-01-01

    A new method and apparatus (Trochoidal electron monochromator) to study the interactions of electrons with atoms, molecules and clusters was developed. Two applications are briefly reported: a) the ozone destruction in the atmosphere is caused by different reasons, a new mechanism is proposed, that slow thermal electrons are self added to the ozone molecule (O 3 ) with a high frequency, then O 3 is destroyed ( O 3 + e - → O - + O 2 ); b) another application is the study of the binding energy of the football molecule C60. (nevyjel)

  9. Human gamma oscillations during slow wave sleep.

    Directory of Open Access Journals (Sweden)

    Mario Valderrama

    Full Text Available Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS. At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz and high (60-120 Hz frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern, confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern. This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.

  10. SPS slow extraction septa

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    SPS long straight section (LSS) with a series of 5 septum tanks for slow extraction (view in the direction of the proton beam). There are 2 of these: in LSS2, towards the N-Area; in LSS6 towards the W-Area. See also Annual Report 1975, p.175.

  11. Fast wave current drive above the slow wave density limit

    International Nuclear Information System (INIS)

    McWilliams, R.; Sheehan, D.P.; Wolf, N.S.; Edrich, D.

    1989-01-01

    Fast wave and slow wave current drive near the mean gyrofrequency were compared in the Irvine Torus using distinct phased array antennae of similar principal wavelengths, frequencies, and input powers. The slow wave current drive density limit was measured for 50ω ci ≤ω≤500ω ci and found to agree with trends in tokamaks. Fast wave current drive was observed at densities up to the operating limit of the torus, demonstrably above the slow wave density limit

  12. Traditional Procurement is too Slow

    Directory of Open Access Journals (Sweden)

    Ann Kong

    2012-11-01

    Full Text Available This paper reports on an exploratory interview survey of construction project participants aimed at identifying the reasons for the decrease in use of the traditional, lump-sum, procurement system in Malaysia. The results show that most people believe it is too slow. This appears to be in part due to the contiguous nature of the various phase and stages of the process and especially the separation of the design and construction phases. The delays caused by disputes between the various parties are also seen as a contributory factor - the most prominent cause being the frequency of variations, with design and scope changes being a particular source of discontent. It is concluded that an up scaling of the whole of the time related reward/penalty system may be the most appropriate measure for the practice in future.

  13. Dynamics of slow and fast systems on complex networks

    Indian Academy of Sciences (India)

    .35(green), 0.5(blue). Region 2, where = 0 corre- sponds to AD. are coupled to form the network, the emergent frequency may depend also on the number of slow systems m. ... slow (red) systems, while fast (green) systems show large.

  14. Slow-transit Constipation.

    Science.gov (United States)

    Bharucha, Adil E.; Philips, Sidney F.

    2001-08-01

    Idiopathic slow-transit constipation is a clinical syndrome predominantly affecting women, characterized by intractable constipation and delayed colonic transit. This syndrome is attributed to disordered colonic motor function. The disorder spans a spectrum of variable severity, ranging from patients who have relatively mild delays in transit but are otherwise indistinguishable from irritable bowel syndrome to patients with colonic inertia or chronic megacolon. The diagnosis is made after excluding colonic obstruction, metabolic disorders (hypothyroidism, hypercalcemia), drug-induced constipation, and pelvic floor dysfunction (as discussed by Wald ). Most patients are treated with one or more pharmacologic agents, including dietary fiber supplementation, saline laxatives (milk of magnesia), osmotic agents (lactulose, sorbitol, and polyethylene glycol 3350), and stimulant laxatives (bisacodyl and glycerol). A subtotal colectomy is effective and occasionally is indicated for patients with medically refractory, severe slow-transit constipation, provided pelvic floor dysfunction has been excluded or treated.

  15. Slowing Military Change

    Science.gov (United States)

    2008-10-01

    subjective. More objective measurements, such as statistics on youth crime, teenage pregnancy , drug use, literacy, and educational achievement...SLOWING MILITARY CHANGE Zhivan J. Alach October 2008 This publication is a work of the U.S. Government as defined in Title 17, United States Code...those of the author and do not necessarily reflect the official policy or position of the New Zealand Defence Force, the New Zealand Government , the

  16. Toward standardization of slow earthquake catalog -Development of database website-

    Science.gov (United States)

    Kano, M.; Aso, N.; Annoura, S.; Arai, R.; Ito, Y.; Kamaya, N.; Maury, J.; Nakamura, M.; Nishimura, T.; Obana, K.; Sugioka, H.; Takagi, R.; Takahashi, T.; Takeo, A.; Yamashita, Y.; Matsuzawa, T.; Ide, S.; Obara, K.

    2017-12-01

    Slow earthquakes have now been widely discovered in the world based on the recent development of geodetic and seismic observations. Many researchers detect a wide frequency range of slow earthquakes including low frequency tremors, low frequency earthquakes, very low frequency earthquakes and slow slip events by using various methods. Catalogs of the detected slow earthquakes are open to us in different formats by each referring paper or through a website (e.g., Wech 2010; Idehara et al. 2014). However, we need to download catalogs from different sources, to deal with unformatted catalogs and to understand the characteristics of different catalogs, which may be somewhat complex especially for those who are not familiar with slow earthquakes. In order to standardize slow earthquake catalogs and to make such a complicated work easier, Scientific Research on Innovative Areas "Science of Slow Earthquakes" has been developing a slow earthquake catalog website. In the website, we can plot locations of various slow earthquakes via the Google Maps by compiling a variety of slow earthquake catalogs including slow slip events. This enables us to clearly visualize spatial relations among slow earthquakes at a glance and to compare the regional activities of slow earthquakes or the locations of different catalogs. In addition, we can download catalogs in the unified format and refer the information on each catalog on the single website. Such standardization will make it more convenient for users to utilize the previous achievements and to promote research on slow earthquakes, which eventually leads to collaborations with researchers in various fields and further understanding of the mechanisms, environmental conditions, and underlying physics of slow earthquakes. Furthermore, we expect that the website has a leading role in the international standardization of slow earthquake catalogs. We report the overview of the website and the progress of construction. Acknowledgment: This

  17. Prostaglandin regulation of gastric slow waves and peristalsis

    Science.gov (United States)

    Forrest, Abigail S.; Hennig, Grant W.; Jokela-Willis, Sari; Park, Chong Doo; Sanders, Kenton M.

    2009-01-01

    Gastric emptying depends on functional coupling of slow waves between the corpus and antrum, to allow slow waves initiated in the gastric corpus to propagate to the pyloric sphincter and generate gastric peristalsis. Functional coupling depends on a frequency gradient where slow waves are generated at higher frequency in the corpus and drive the activity of distal pacemakers. Simultaneous intracellular recording from corpus and antrum was used to characterize the effects of PGE2 on slow waves in the murine stomach. PGE2 increased slow-wave frequency, and this effect was mimicked by EP3, but not by EP2, receptor agonists. Chronotropic effects were due to EP3 receptors expressed by intramuscular interstitial cells of Cajal because these effects were not observed in W/WV mice. Although the integrated chronotropic effects of EP3 receptor agonists were deduced from electrophysiological experiments, no clear evidence of functional uncoupling was observed with two-point electrical recording. Gastric peristalsis was also monitored by video imaging and spatiotemporal maps to study the impact of chronotropic agonists on propagating contractions. EP3 receptor agonists increased the frequency of peristaltic contractions and caused ectopic sites of origin and collisions of peristaltic waves. The impact of selective regional application of chronotropic agonists was investigated by use of a partitioned bath. Antral slow waves followed enhanced frequencies induced by stimulation of the corpus, and corpus slow waves followed when slow-wave frequency was elevated in the antrum. This demonstrated reversal of slow-wave propagation with selective antral chronotropic stimulation. These studies demonstrate the impact of chronotropic agonists on regional intrinsic pacemaker frequency and integrated gastric peristalsis. PMID:19359421

  18. Prostaglandin regulation of gastric slow waves and peristalsis.

    Science.gov (United States)

    Forrest, Abigail S; Hennig, Grant W; Jokela-Willis, Sari; Park, Chong Doo; Sanders, Kenton M

    2009-06-01

    Gastric emptying depends on functional coupling of slow waves between the corpus and antrum, to allow slow waves initiated in the gastric corpus to propagate to the pyloric sphincter and generate gastric peristalsis. Functional coupling depends on a frequency gradient where slow waves are generated at higher frequency in the corpus and drive the activity of distal pacemakers. Simultaneous intracellular recording from corpus and antrum was used to characterize the effects of PGE(2) on slow waves in the murine stomach. PGE(2) increased slow-wave frequency, and this effect was mimicked by EP(3), but not by EP(2), receptor agonists. Chronotropic effects were due to EP(3) receptors expressed by intramuscular interstitial cells of Cajal because these effects were not observed in W/W(V) mice. Although the integrated chronotropic effects of EP(3) receptor agonists were deduced from electrophysiological experiments, no clear evidence of functional uncoupling was observed with two-point electrical recording. Gastric peristalsis was also monitored by video imaging and spatiotemporal maps to study the impact of chronotropic agonists on propagating contractions. EP(3) receptor agonists increased the frequency of peristaltic contractions and caused ectopic sites of origin and collisions of peristaltic waves. The impact of selective regional application of chronotropic agonists was investigated by use of a partitioned bath. Antral slow waves followed enhanced frequencies induced by stimulation of the corpus, and corpus slow waves followed when slow-wave frequency was elevated in the antrum. This demonstrated reversal of slow-wave propagation with selective antral chronotropic stimulation. These studies demonstrate the impact of chronotropic agonists on regional intrinsic pacemaker frequency and integrated gastric peristalsis.

  19. Slow Food arjessa : Case Slow Food ruokakurssi Kristiinankaupungin Kansalaisopistossa

    OpenAIRE

    Mäenpää, Minna-Maria

    2015-01-01

    Opinnäytetyössäni esittelen Slow Food -järjestön toimintaa kansainvälisesti ja Slow Food -henkistä toimintaa Kristiinankaupungissa. Yhdistin teoriaosuuteen yhdessä Kristiinankaupungin kansalaisopiston ja Perunaelinkeinoalan kehittämishankkeen kanssa Kristiinankaupungissa järjestämäni Slow Food arjessa -kurssin. Tutkimuksen ongelmana oli luoda kurssikonsepti, jossa Slow Food -henkinen tiedottaminen esimerkiksi alueemme ruoantuottajista yhdistettiin varsinaiseen ruoan valmistamiseen. Keräsin tä...

  20. Go, Slow, and Whoa Foods

    Science.gov (United States)

    ... tips for seasonal health, safety and fun Go, Slow, and Whoa Foods Past Issues / Summer 2007 Table of Contents For ... Inc. 2002 Food Group GO Almost anytime foods SLOW Sometimes foods WHOA Once in a while foods Vegetables Almost ...

  1. Off-resonance slow light

    Science.gov (United States)

    Shakhmuratov, R. N.; Odeurs, J.

    2008-12-01

    We consider the propagation of a light pulse in a medium with a single resonance. If the frequency of the pulse is tuned far from resonance and the pulse duration is much shorter than the lifetime of the excited state of the resonant particles in the medium (atoms in a gas, impurity ions in a solid, etc.), the group velocity of the pulse is appreciably reduced. It is shown that the slowing down of the group velocity of the pulse is accompanied with a pulse chirp, which produces a pulse broadening in time. It is proposed to use two samples in sequence with opposite chirps (up chirp and down chirp or vice versa) compensating the pulse broadening. Then the pulse can be delayed with almost no losses, distortion, and broadening. However, there is a maximum distance, beyond which the pulse experiences corruption. Pumping with an auxiliary laser beam can control the delay time of the light pulse in the medium. Conditions to eliminate the contribution of the dephasing processes in the pulse propagation are considered.

  2. Plant domestication slows pest evolution.

    Science.gov (United States)

    Turcotte, Martin M; Lochab, Amaneet K; Turley, Nash E; Johnson, Marc T J

    2015-09-01

    Agricultural practices such as breeding resistant varieties and pesticide use can cause rapid evolution of pest species, but it remains unknown how plant domestication itself impacts pest contemporary evolution. Using experimental evolution on a comparative phylogenetic scale, we compared the evolutionary dynamics of a globally important economic pest - the green peach aphid (Myzus persicae) - growing on 34 plant taxa, represented by 17 crop species and their wild relatives. Domestication slowed aphid evolution by 13.5%, maintained 10.4% greater aphid genotypic diversity and 5.6% higher genotypic richness. The direction of evolution (i.e. which genotypes increased in frequency) differed among independent domestication events but was correlated with specific plant traits. Individual-based simulation models suggested that domestication affects aphid evolution directly by reducing the strength of selection and indirectly by increasing aphid density and thus weakening genetic drift. Our results suggest that phenotypic changes during domestication can alter pest evolutionary dynamics. © 2015 John Wiley & Sons Ltd/CNRS.

  3. Coaxial slow source

    International Nuclear Information System (INIS)

    Brooks, R.D.; Jarboe, T.R.

    1990-01-01

    Field reversed configurations (FRCs) are a class of compact toroid with not toroidal field. The field reversed theta pinch technique has been successfully used for formation of FRCs since their inception in 1958. In this method an initial bias field is produced. After ionization of the fill gas, the current in the coil is rapidly reversed producing the radial implosion of a current sheath. At the ends of the coil the reversed field lines rapidly tear and reconnect with the bias field lines until no more bias flux remains. At this point, vacuum reversed field accumulates around the configuration which contracts axially until an equilibrium is reached. When extrapolating the use of such a technique to reactor size plasmas two main shortcomings are found. First, the initial bias field, and hence flux in a given device, which can be reconnected to form the configuration is limited from above by destructive axial dynamics. Second, the voltages required to produce rapid current reversal in the coil are very large. Clearly, a low voltage formation technique without limitations on flux addition is desirable. The Coaxial Slow Source (CSS) device was designed to meet this need. It has two coaxial theta pinch coils. Coaxial coil geometry allows for the addition of as much magnetic flux to the annular plasma between them as can be generated inside the inner coil. Furthermore the device can be operated at charging voltages less than 10 kV and on resistive diffusion, rather than implosive time scales. The inner coil is a novel, concentric, helical design so as to allow it to be cantilevered on one end to permit translation of the plasma. Following translation off the inner coil the Annular Field Reversed Configuration would be re-formed as a true FRC. In this paper we investigate the formation process in the new parallel configuration., CSSP, in which the inner and outer coils are connected in parallel to the main capacitor bank

  4. Brain oscillatory activity during motor preparation: Effect of directional uncertainty on beta, but not alpha, frequency band

    Directory of Open Access Journals (Sweden)

    Charidimos eTzagarakis

    2015-07-01

    Full Text Available In time-constraint activities, such as sports, it is advantageous to be prepared to act even before knowing precisely what action will be needed. Here, we studied the relation between neural oscillations during motor preparation and amount of uncertainty about the direction of the upcoming target. Ten right-handed volunteers participated in a cued center-out task. A brief visual cue identified the region of space in which the target would appear. Three cue sizes were used to vary the amount of information about the direction of the upcoming target. The target appeared at a random location within the region indicated by the cue, and the participants moved a joystick-controlled cursor towards it. Time-frequency analyses showed phasic increases of power in low (delta/theta: 30 Hz frequency-bands in relation to the onset of visual stimuli and of the motor response. More importantly in regard to motor preparation, there was a tonic reduction of power in the alpha (8-12 Hz and beta (14-30 Hz bands during the period between cue presentation and target onset. During motor preparation, the main source of change of power of the alpha band was localized over the contralateral sensorimotor region and both parietal cortices, whereas for the beta-band the main source was the contralateral sensorimotor region. During cue presentation, the reduction of power of the alpha-band in the occipital lobe showed a brief differentiation of condition: the wider the visual cue, the more the power of the alpha-band decreased. However during motor preparation, only the power of the beta-band was dependent on directional uncertainty: the less the directional uncertainty, the more the power of the beta-band decreased. In conclusion, the results indicate that the power in the alpha-band is associated briefly with cue size, but is otherwise an undifferentiated indication of neural activation, whereas the power of the beta-band reflects the level of motor preparation.

  5. Birth control - slow release methods

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007555.htm Birth control - slow release methods To use the sharing features on this page, please enable JavaScript. Certain birth control methods contain man-made forms of hormones. ...

  6. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Directory of Open Access Journals (Sweden)

    Michele eBellesi

    2014-10-01

    Full Text Available Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex, a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep enhancement.

  7. Slow and fast light in semiconductors

    Science.gov (United States)

    Sedgwick, Forrest Grant

    Slow and fast light are the propagation of optical signals at group velocities below and above the speed of light in a given medium. There has been great interest in the use of nonlinear optics to engineer slow and fast light dispersion for applications in optical communications and radio-frequency or microwave photonics. Early results in this field were primarily confined to dilute atomic systems. While these results were impressive, they had two major barriers to practical application. First, the wavelengths were not compatible with fiber optic telecommunications. More importantly, the bandwidth obtainable in these experiments was inherently low; 100 kHz or less. Within the last five years slow and fast light effects have been observed and engineered in a much wider variety of systems. In this work, we detail our efforts to realize slow and fast light in semiconductor systems. There are three primary advantages of semiconductor systems: fiber-compatible wavelengths, larger bandwidth, and simplification of integration with other optical components. In this work we will explore three different types of physical mechanisms for implementing slow and fast light. The first is electromagnetically induced transparency (EIT). In transporting this process to semiconductors, we initially turn our attention to quantum dots or "artificial atoms". We present simulations of a quantum dot EIT-based device within the context of an optical communications link and we derive results which are generally applicable to a broad class of slow light devices. We then present experimental results realizing EIT in quantum wells by using long-lived electron spin coherence. The second mechanism we will explore is coherent population oscillations (CPO), also known as carrier density pulsations (CDP). We examine for the first time how both slow and fast light may be achieved in a quantum well semiconductor optical amplifier (SOA) while operating in the gain regime. Again, we simulate the device

  8. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Clinton B McCracken

    Full Text Available High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS, is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP, the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD. We performed simultaneous multi-site local field potential (LFP recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective, low-frequency (LF, 15 Hz; ineffective and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR, ventroanterior thalamus (VA, primary motor cortex (M1, and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic

  9. Slow high-frequency effects in mechanics: problems, solutions, potentials

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2005-01-01

    and compared: The Method of Direct Separation of Motions, the Method of Averaging, and the Method of Multiple Scales. The tutorial concludes by suggesting that more vibration experts, researchers and students should know about HFE effects, for the benefit not only of general vibration troubleshooting, but also...

  10. Slow manifold and Hannay angle in the spinning top

    Energy Technology Data Exchange (ETDEWEB)

    Berry, M V [H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Shukla, P [Department of Physics, Indian Institute of Technology, Kharagpur (India)

    2011-01-15

    The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at graduate-student level, of the general dynamical concept of the slow manifold. For this case, the slow manifold can be calculated exactly, and expanded as a series of reaction forces (of magnetic type) in powers of slowness, corresponding to a modified precession frequency. The forces correspond to a series for the Hannay angle for the fast motion, describing the location of a point on the top.

  11. The Potential of/for 'Slow': Slow Tourists and Slow Destinations

    Directory of Open Access Journals (Sweden)

    J. Guiver

    2016-05-01

    Full Text Available Slow tourism practices are nothing new; in fact, they were once the norm and still are for millions of people whose annual holiday is spent camping, staying in caravans, rented accommodation, with friends and relations or perhaps in a second home, who immerse themselves in their holiday environment, eat local food, drink local wine and walk or cycle around the area. So why a special edition about slow tourism? Like many aspects of life once considered normal (such as organic farming or free-range eggs, the emergence of new practices has highlighted differences and prompted a re-evaluation of once accepted practices and values. In this way, the concept of ‘slow tourism’ has recently appeared as a type of tourism that contrasts with many contemporary mainstream tourism practices. It has also been associated with similar trends already ‘branded’ slow: slow food and cittaslow (slow towns and concepts such as mindfulness, savouring and well-being.

  12. Slow rupture of frictional interfaces

    Science.gov (United States)

    Bar Sinai, Yohai; Brener, Efim A.; Bouchbinder, Eran

    2012-02-01

    The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not completely understood. We show that slow rupture is an intrinsic and robust property of simple non-monotonic rate-and-state friction laws. It is associated with a new velocity scale cmin, determined by the friction law, below which steady state rupture cannot propagate. We further show that rupture can occur in a continuum of states, spanning a wide range of velocities from cmin to elastic wave-speeds, and predict different properties for slow rupture and ordinary fast rupture. Our results are qualitatively consistent with recent high-resolution laboratory experiments and may provide a theoretical framework for understanding slow rupture phenomena along frictional interfaces.

  13. Using Nonuniform Fiber to Generate Slow Light via SBS

    Directory of Open Access Journals (Sweden)

    Wenhai Li

    2008-01-01

    Full Text Available The data pulse delay based on slow light induced by stimulated Brillouin scattering (SBS in a nonuniform dispersion decreasing fiber (DDF is demonstrated experimentally, and the distortions of data pulses at different beat frequencies are studied. We found that a delay exceeding a pulse width can be achieved at particular beat frequency, and the DDF has larger delay versus gain slope coefficient with much better output pulse quality than single-mode fiber.

  14. Penetration of slow waves into an overdense plasma

    International Nuclear Information System (INIS)

    Motley, R.W.; Bernabei, S.; Hooke, W.M.; McWilliams, R.; Olson, L.

    1978-06-01

    Probe measurements are reported of the propagation of a 2.45 GHz slow wave launched into a linear, overdense test plasma by a phased double waveguide. We find that waves in the frequency interval omega/sub LH/ < omega < omega/sub pe/ penetrate to the plasma interior only if they satisfy the accessibility criterion

  15. Optical signal processing using slow and fast light technologies

    DEFF Research Database (Denmark)

    Capmany, J.; Sales, Salvador; Xue, Weiqi

    2009-01-01

    microwave or millimeter-wave frequency bands, we present one scheme to increase the achievable RF phase shift by enhancing light slow-down or speed-up. As a real application in microwave photonics, a widely tunable microwave photonic notch filter with 100% fractional tuning range is also proposed...

  16. The dynamics of slow manifolds

    NARCIS (Netherlands)

    Verhulst, F.; Bakri, T.

    2006-01-01

    Invited lecture at Konferensi Nasional Matematika XIII, Semarang, 24-27 juli, 2006; to be publ. in J. Indones. Math. Soc. (2007) After reviewing a number of results from geometric singular perturbation theory, we discuss several approaches to obtain periodic solutions in a slow manifold.

  17. Intracranial current density (LORETA) differences in QEEG frequency bands between depressed and non-depressed alcoholic patients.

    Science.gov (United States)

    Coutin-Churchman, Pedro; Moreno, Rocío

    2008-04-01

    To assess possible differences in intracranial source distribution of surface QEEG power between depressed and non-depressed alcoholic patients in order to find any symptom-related topographic features of physiopathologic relevance. Low-Resolution Electromagnetic Tomography (LORETA) for the delta, theta, alpha and beta bands of EEG spectra was estimated from 38 alcoholic patients, 20 with and 18 without clinical depression, in which QEEG showed decreased slow and increased beta activity diffusely. Statistical non-parametric mapping was used to compare depressed and non-depressed groups. Measures of intracranial current density in individual patients at areas of significant differences were correlated with BDI scores. Patients with clinical depression showed areas of significantly lower current density than non-depressed patients in delta band at left anterior temporal, left midtemporal (including amygdala and hippocampus), and both frontopolar cortices mostly on the right; and in theta band at bilateral parietal lobe, anterior cingulate and medial frontal cortex. No differences were found at alpha and beta band. Intracranial current density in delta band at left parahippocampal, left midfrontal cortex and right frontopolar cortex was negatively correlated with BDI score. Theta band also showed negative correlations with BDI at sites of significant differences. Diffusely decreased delta and theta activity in the surface QEEG of alcoholic patients has a different intracranial distribution linked to the presence or not of clinical depression that seems to reveal a dysfunctional neuronal state at several specific limbic and other cortical locations that have been related to a specific clinical disorder such as depression. These results provided further evidence on the effects of depression in the context of alcohol dependence, in this case decreased slow activity as a possible marker of neuronal damage secondary to alcohol toxicity, clinically expressed as depressive

  18. Slow extraction control system of HIRFL-CSR

    International Nuclear Information System (INIS)

    Liu Wufeng; Qiao Weimin; Yuan Youjin; Mao Ruishi; Zhao Tiecheng

    2013-01-01

    For heavy-ion radiotherapy, HIRFL-CSR (Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring) needs a long term uniform ion beam extraction from HIRFL-CSR main ring to high energy beam transport line to meet the requirement of heavy-ion radiotherapy's ion beam. Slow extraction control system uses the synchronous signal of HIRFL-CSR control system's timing system to realize process control. When the synchronous event data of HIRFL-CSR control system's timing system trigger controlling and changing data (frequency value, tune value, voltage value), the waveform generator will generate waveform by frequency value, tune value and voltage value, and will amplify the generated waveform by power amplifier to electrostatic deflector to achieve RF-KO slow extraction. The synchronous event receiver of slow extraction system is designed by using FPGA and optical fiber interface to keep high transmission speed and anti-jamming. HIRFL-CSR's running for heavy-ion radiotherapy and ten thousand seconds long period slow extraction experiments show that slow extraction control system is workable and can meet the requirement of heavy-ion radiotherapy's ion beam. (authors)

  19. The unappreciated slowness of conventional tourism

    Directory of Open Access Journals (Sweden)

    G.R. Larsen

    2016-05-01

    Full Text Available Most tourists are not consciously engaging in ‘slow travel’, but a number of travel behaviours displayed by conventional tourists can be interpreted as slow travel behaviour. Based on Danish tourists’ engagement with the distances they travel across to reach their holiday destination, this paper explores unintended slow travel behaviours displayed by these tourists. None of the tourists participating in this research were consciously doing ‘slow travel’, and yet some of their most valued holiday memories are linked to slow travel behaviours. Based on the analysis of these unintended slow travel behaviours, this paper will discuss the potential this insight might hold for promotion of slow travel. If unappreciated and unintentional slow travel behaviours could be utilised in the deliberate effort of encouraging more people to travel slow, ‘slow travel’ will be in a better position to become integrated into conventional travel behaviour.

  20. Hunting for shallow slow-slip events at Cascadia

    Science.gov (United States)

    Tan, Y. J.; Bletery, Q.; Fan, W.; Janiszewski, H. A.; Lynch, E.; McCormack, K. A.; Phillips, N. J.; Rousset, B.; Seyler, C.; French, M. E.; Gaherty, J. B.; Regalla, C.

    2017-12-01

    The discovery of slow earthquakes at subduction zones is one of the major breakthroughs of Earth science in the last two decades. Slow earthquakes involve a wide spectrum of fault slip behaviors and seismic radiation patterns, such as tremor, low-frequency earthquakes, and slow-slip events. The last of these are particularly interesting due to their large moment releases accompanied by minimal ground shaking. Slow-slip events have been reported at various subduction zones ; most of these slow-slip events are located down-dip of the megathrust seismogenic zone, while a few up-dip cases have recently been observed at Nankai and New Zealand. Up-dip slow-slip events illuminate the structure of faulting environments and rupture mechanisms of tsunami earthquakes. Their possible presence and location at a particular subduction zone can help assess earthquake and tsunami hazard for that region. However, their typical location distant from the coast requires the development of techniques using offshore instrumentation. Here, we investigate the absolute pressure gauges (APG) of the Cascadia Initiative, a four year amphibious seismic experiment, to search for possible shallow up-dip slow-slip events in the Cascadia subduction zone. These instruments are collocated with ocean bottom seismometers (OBS) and located close to buoys and onshore GPS stations, offering the opportunity to investigate the utility of multiple datasets. Ultimately, we aim to develop a protocol to analyze APG data for offshore shallow slow-slip event detections and quantify uncertainties, with direct applications to understanding the up-dip subduction interface system in Cascadia.

  1. Logarithmically slow onset of synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Benkoe, Gil; Jensen, Henrik Jeldtoft [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, South Kensington Campus, SW7 2PG, London (United Kingdom)], E-mail: g.benkoe@imperial.ac.uk, E-mail: h.jensen@imperial.ac.uk

    2010-04-23

    The transient of a synchronizing system is investigated, considering synchronization as a relaxation phenomenon. The stepwise establishment of synchronization is studied in the system of dynamically coupled maps introduced by Ito and Kaneko (2001 Phys. Rev. Lett. 88 028701, 2003 Phys. Rev. E 67 046226), where the plasticity of dynamical couplings might be relevant in the context of neuroscience. Logarithmically slow dynamics in the transient of a fully deterministic dynamical system are shown to occur.

  2. Slow extraction at the SSC

    International Nuclear Information System (INIS)

    Colton, E.P.

    1985-01-01

    Resonant slow extraction at the SSC will permit fixed-target operation. Stochastic extraction appears to be a promising technique for achieving spill times of the order of 1000 s. However, systematic sextupole error fields in the SSC dipoles must be reduced a factor of twenty from the design values; otherwise the extraction process will be perturbed or suppressed. In addition, good regulation of the SSC power supplies is essential for smooth extraction over the spill period. 10 refs., 1 fig

  3. Synchronisation in the beta frequency-band--the bad boy of parkinsonism or an innocent bystander?

    Science.gov (United States)

    Eusebio, Alexandre; Brown, Peter

    2009-05-01

    Excessive synchronisation of basal ganglia neuronal activity in the beta frequency band has been implicated in Parkinson's disease. In a recent issue of Experimental Neurology, Bronte-Stewart, H., Barberini, C., Koop, M.M., Hill, B.C., Henderson, J.M., Wingeier, B., 2009. The STN beta-band profile in Parkinson's disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp. Neurol. 215, 20-28. demonstrate that such activity is consistent over time and provide further evidence that deep brain stimulation is associated with its suppression. However, the extent to which beta synchrony has a mechanistic (rather than epiphenomenal) role in parkinsonism remains unclear, and the suppression of this activity by deep brain stimulation is contentious. This commentary discusses the evidence for and against a role for excessive beta synchrony in mediating the parkinsonian phenotype and in providing a possible mechanism to explain the therapeutic effects of deep brain stimulation in Parkinson's disease.

  4. Characteristics of broadband slow earthquakes explained by a Brownian model

    Science.gov (United States)

    Ide, S.; Takeo, A.

    2017-12-01

    Brownian slow earthquake (BSE) model (Ide, 2008; 2010) is a stochastic model for the temporal change of seismic moment release by slow earthquakes, which can be considered as a broadband phenomena including tectonic tremors, low frequency earthquakes, and very low frequency (VLF) earthquakes in the seismological frequency range, and slow slip events in geodetic range. Although the concept of broadband slow earthquake may not have been widely accepted, most of recent observations are consistent with this concept. Then, we review the characteristics of slow earthquakes and how they are explained by BSE model. In BSE model, the characteristic size of slow earthquake source is represented by a random variable, changed by a Gaussian fluctuation added at every time step. The model also includes a time constant, which divides the model behavior into short- and long-time regimes. In nature, the time constant corresponds to the spatial limit of tremor/SSE zone. In the long-time regime, the seismic moment rate is constant, which explains the moment-duration scaling law (Ide et al., 2007). For a shorter duration, the moment rate increases with size, as often observed for VLF earthquakes (Ide et al., 2008). The ratio between seismic energy and seismic moment is constant, as shown in Japan, Cascadia, and Mexico (Maury et al., 2017). The moment rate spectrum has a section of -1 slope, limited by two frequencies corresponding to the above time constant and the time increment of the stochastic process. Such broadband spectra have been observed for slow earthquakes near the trench axis (Kaneko et al., 2017). This spectrum also explains why we can obtain VLF signals by stacking broadband seismograms relative to tremor occurrence (e.g., Takeo et al., 2010; Ide and Yabe, 2014). The fluctuation in BSE model can be non-Gaussian, as far as the variance is finite, as supported by the central limit theorem. Recent observations suggest that tremors and LFEs are spatially characteristic

  5. Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities.

    Science.gov (United States)

    Du, Peng; Calder, Stefan; Angeli, Timothy R; Sathar, Shameer; Paskaranandavadivel, Niranchan; O'Grady, Gregory; Cheng, Leo K

    2017-01-01

    Gastrointestinal (GI) motility is regulated in part by electrophysiological events called slow waves, which are generated by the interstitial cells of Cajal (ICC). Slow waves propagate by a process of "entrainment," which occurs over a decreasing gradient of intrinsic frequencies in the antegrade direction across much of the GI tract. Abnormal initiation and conduction of slow waves have been demonstrated in, and linked to, a number of GI motility disorders. A range of mathematical models have been developed to study abnormal slow waves and applied to propose novel methods for non-invasive detection and therapy. This review provides a general outline of GI slow wave abnormalities and their recent classification using multi-electrode (high-resolution) mapping methods, with a particular emphasis on the spatial patterns of these abnormal activities. The recently-developed mathematical models are introduced in order of their biophysical scale from cellular to whole-organ levels. The modeling techniques, main findings from the simulations, and potential future directions arising from notable studies are discussed.

  6. The CUORE slow monitoring systems

    Science.gov (United States)

    Gladstone, L.; Biare, D.; Cappelli, L.; Cushman, J. S.; Del Corso, F.; Fujikawa, B. K.; Hickerson, K. P.; Moggi, N.; Pagliarone, C. E.; Schmidt, B.; Wagaarachchi, S. L.; Welliver, B.; Winslow, L. A.

    2017-09-01

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay in 130Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.

  7. Corpuscular slow-roll inflation

    Science.gov (United States)

    Casadio, Roberto; Giugno, Andrea; Giusti, Andrea

    2018-01-01

    We show that a corpuscular description of gravity can lead to an inflationary scenario similar to Starobinsky's model without requiring the introduction of the inflaton field. All relevant properties are determined by the number of gravitons in the cosmological condensate or, equivalently, by their Compton length. In particular, the relation between the Hubble parameter H and its time derivative H ˙ required by cosmic microwave background observations at the end of inflation, as well as the (minimum) initial value of the slow-roll parameter, are naturally obtained from the Compton size of the condensate.

  8. Blowup for flat slow manifolds

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall

    2017-01-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a......) the regularization of piecewise smooth systems by tanh, (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b)....

  9. Blowup for flat slow manifolds

    Science.gov (United States)

    Kristiansen, K. U.

    2017-05-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a) the regularization of piecewise smooth systems by \\tanh , (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b).

  10. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  11. Integrated Photonics Enabled by Slow Light

    DEFF Research Database (Denmark)

    Mørk, Jesper; Chen, Yuntian; Ek, Sara

    2012-01-01

    In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources.......In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources....

  12. Don't Forget the Slow Learner.

    Science.gov (United States)

    Watson, Daniel L.; Rangel, Lyle

    1989-01-01

    Advocates cooperative learning as an effective tool for reaching slow learners, by bridging the gaps between the learning styles of slow learners and the teaching requirements of the classroom, resulting in improved academic performance for both slow learners and high achievers. (SR)

  13. The TTI slowness surface approximation

    KAUST Repository

    Stovas, A.

    2011-01-01

    The relation between the vertical and horizontal slownesses, better known as the dispersion relation, for a transversely isotropic media with titled symmetry axis {left parenthesis, less than bracket}TTI{right parenthesis, greater than bracket} requires solving a quartic polynomial, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the dispersion relation that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for small tilt in the symmetry angle. © 2011 Society of Exploration Geophysicists.

  14. Rapamycin slows aging in mice.

    Science.gov (United States)

    Wilkinson, John E; Burmeister, Lisa; Brooks, Susan V; Chan, Chi-Chao; Friedline, Sabrina; Harrison, David E; Hejtmancik, James F; Nadon, Nancy; Strong, Randy; Wood, Lauren K; Woodward, Maria A; Miller, Richard A

    2012-08-01

    Rapamycin increases lifespan in mice, but whether this represents merely inhibition of lethal neoplastic diseases, or an overall slowing in multiple aspects of aging is currently unclear. We report here that many forms of age-dependent change, including alterations in heart, liver, adrenal glands, endometrium, and tendon, as well as age-dependent decline in spontaneous activity, occur more slowly in rapamycin-treated mice, suggesting strongly that rapamycin retards multiple aspects of aging in mice, in addition to any beneficial effects it may have on neoplastic disease. We also note, however, that mice treated with rapamycin starting at 9 months of age have significantly higher incidence of testicular degeneration and cataracts; harmful effects of this kind will guide further studies on timing, dosage, and tissue-specific actions of rapamycin relevant to the development of clinically useful inhibitors of TOR action. © 2012 The Authors. Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  15. Slow molecular recognition by RNA.

    Science.gov (United States)

    Gleitsman, Kristin R; Sengupta, Raghuvir N; Herschlag, Daniel

    2017-12-01

    Molecular recognition is central to biological processes, function, and specificity. Proteins associate with ligands with a wide range of association rate constants, with maximal values matching the theoretical limit set by the rate of diffusional collision. As less is known about RNA association, we compiled association rate constants for all RNA/ligand complexes that we could find in the literature. Like proteins, RNAs exhibit a wide range of association rate constants. However, the fastest RNA association rates are considerably slower than those of the fastest protein associations and fall well below the diffusional limit. The apparently general observation of slow association with RNAs has implications for evolution and for modern-day biology. Our compilation highlights a quantitative molecular property that can contribute to biological understanding and underscores our need to develop a deeper physical understanding of molecular recognition events. © 2017 Gleitsman et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. A slow gravity compensated atom laser

    DEFF Research Database (Denmark)

    Kleine Büning, G.; Will, J.; Ertmer, W.

    2010-01-01

    We report on a slow guided atom laser beam outcoupled from a Bose–Einstein condensate of 87Rb atoms in a hybrid trap. The acceleration of the atom laser beam can be controlled by compensating the gravitational acceleration and we reach residual accelerations as low as 0.0027 g. The outcoupling...... mechanism allows for the production of a constant flux of 4.5×106 atoms per second and due to transverse guiding we obtain an upper limit for the mean beam width of 4.6 μm. The transverse velocity spread is only 0.2 mm/s and thus an upper limit for the beam quality parameter is M 2=2.5. We demonstrate...... the potential of the long interrogation times available with this atom laser beam by measuring the trap frequency in a single measurement. The small beam width together with the long evolution and interrogation time makes this atom laser beam a promising tool for continuous interferometric measurements....

  17. Synchronisation in the beta frequency-band — The bad boy of parkinsonism or an innocent bystander?

    Science.gov (United States)

    Eusebio, Alexandre; Brown, Peter

    2009-01-01

    Excessive synchronisation of basal ganglia neuronal activity in the beta frequency band has been implicated in Parkinson's disease. In a recent issue of Experimental Neurology, Bronte-Stewart, H., Barberini, C., Koop, M.M., Hill, B.C., Henderson, J.M., Wingeier, B., 2009. The STN beta-band profile in Parkinson's disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp. Neurol. 215, 20–28. demonstrate that such activity is consistent over time and provide further evidence that deep brain stimulation is associated with its suppression. However, the extent to which beta synchrony has a mechanistic (rather than epiphenomenal) role in parkinsonism remains unclear, and the suppression of this activity by deep brain stimulation is contentious. This commentary discusses the evidence for and against a role for excessive beta synchrony in mediating the parkinsonian phenotype and in providing a possible mechanism to explain the therapeutic effects of deep brain stimulation in Parkinson's disease. PMID:19233172

  18. Epileptic interictal discharges are more frequent during NREM slow wave downstates.

    Science.gov (United States)

    Ujma, Péter Przemyslaw; Halász, Péter; Kelemen, Anna; Fabó, Dániel; Erőss, Loránd

    2017-09-29

    Epileptiform activity in various but not all epilepsy and recording types and cerebral areas is more frequent in NREM sleep, and especially during sleep periods with high-amplitude EEG slow waves. Slow waves synchronize high-frequency oscillations: physiological activity from the theta through the gamma band usually appears during scalp-positive upstates while epileptiform activity occurs at transitory phases and the scalp-negative downstate. It has been proposed that interictal discharges (IIDs) are facilitated by the high degree of neuronal firing synchrony during slow wave transitory and downstates. This would suggest that their occurrence increases as a function of slow wave synchronization, indicated by greater amplitude, steeper slopes and higher EEG signal synchronization. We investigated the occurrence of IIDs during NREM sleep slow waves in epileptic patients undergoing presurgical electrophysiological monitoring. Intracranially registered IIDs preferentially occurred during the scalp-negative downstates of frontal scalp slow waves in all subjects. IID occurrence was more frequent during larger slow waves in the pooled sample and a subset of subjects. However, slow wave slope steepness and EEG signal synchronization between two frontal scalp channels was not significantly associated with IID occurrence. Our results indicate that IIDs indeed do not occur at the same slow wave phase as physiological rhythms, but contrary to previous hypotheses their occurrence is not strongly affected by EEG synchronization. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Applications of Slow Light in Telecommunications

    National Research Council Canada - National Science Library

    Boyd, Robert W; Gauthier, Daniel J; Gaeta, Alexander L

    2006-01-01

    .... Now, optical scientists are turning their attention toward developing useful applications of slow light, including controllable optical delay lines, optical buffers and true time delay methods...

  20. Electroencephalographic slow waves prior to sleepwalking episodes.

    Science.gov (United States)

    Perrault, Rosemarie; Carrier, Julie; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2014-12-01

    Recent studies have suggested that the onset of sleepwalking episodes may be preceded by fluctuations in slow-wave sleep electroencephalographic characteristics. However, whether or not such fluctuations are specific to sleepwalking episodes or generalized to all sleep-wake transitions in sleepwalkers remains unknown. The goal of this study was to compare spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) as well as slow oscillation density before the onset of somnambulistic episodes versus non-behavioral awakenings recorded from the same group of sleepwalkers. A secondary aim was to describe the time course of observed changes in slow-wave activity and slow oscillations during the 3 min immediately preceding the occurrence of somnambulistic episodes. Twelve adult sleepwalkers were investigated polysomnographically during the course of one night. Slow-wave activity and slow oscillation density were significantly greater prior to patients' somnambulistic episodes as compared with non-behavioral awakenings. However, there was no evidence for a gradual increase over the 3 min preceding the episodes. Increased slow-wave activity and slow oscillation density appear to be specific to sleepwalking episodes rather than generalized to all sleep-wake transitions in sleepwalkers. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Observing and modeling the spectrum of a slow slip event: Constraints on the scaling of slow slip and tremor

    Science.gov (United States)

    Hawthorne, J. C.; Bartlow, N. M.; Ghosh, A.

    2017-12-01

    We estimate the normalized moment rate spectrum of a slow slip event in Cascadia and then attempt to reproduce it. Our goal is to further assess whether a single physical mechanism could govern slow slip and tremor events, with durations that span 6 orders of magnitude, so we construct the spectrum by parameterizing a large slow slip event as the sum of a number of subevents with various durations. The spectrum estimate uses data from three sources: the GPS-based slip inversion of Bartlow et al (2011), PBO borehole strain measurements, and beamforming-based tremor moment estimates of Ghosh et al (2009). We find that at periods shorter than 1 day, the moment rate power spectrum decays as frequencyn, where n is between 0.7 and 1.4 when measured from strain and between 1.2 and 1.4 when inferred from tremor. The spectrum appears roughly flat at periods of 1 to 10 days, as both the 1-day-period strain and tremor data and the 6-day-period slip inversion data imply a moment rate power of 0.02 times the the total moment squared. We demonstrate one way to reproduce this spectrum: by constructing the large-scale slow slip event as the sum of a series of subevents. The shortest of these subevents could be interpreted as VLFEs or even LFEs, while longer subevents might represent the aseismic slip that drives rapid tremor reverals, streaks, or rapid tremor migrations. We pick the subevent magnitudes from a Gutenberg-Richter distribution and place the events randomly throughout a 30-day interval. Then we assign each subevent a duration that scales with its moment to a specified power. Finally, we create a moment rate function for each subevent and sum all of the moment rates. We compute the summed slow slip moment rate spectra with two approaches: a time-domain numerical computation and a frequency-domain analytical summation. Several sets of subevent parameters can allow the constructed slow slip event to match the observed spectrum. One allowable set of parameters is of

  2. Slow slip hidden in the noise: the intermittence of tectonic release

    Science.gov (United States)

    Frank, W.

    2016-12-01

    Referred to as slow slip events, the transient aseismic slip that occurs along plate boundaries can be indirectly characterized through colocated seismicity, such as tectonic tremor and low-frequency earthquakes (LFEs). Using the timing of cataloged LFE and tremor activity in Guerrero, Mexico and northern Cascadia, I decompose the inter-aseismic GPS displacement, defined as the surface deformation between previously detected slow slip events, into separate regimes of tectonic loading and release. In such a way, previously undetected slow slip events that produce on average less than a millimeter of surface deformation are extracted from the geodetic noise. These new observations demonstrate that the inter-aseismic period is not quiescent and that slow slip occurs much more often than previously thought. This suggests that the plate interface where slow slip and tremor occur is in fact strongly coupled and undergoes rapid cycles of stress accumulation and release.

  3. Logarithmically Slow Relaxation in Quasiperiodically Driven Random Spin Chains

    Science.gov (United States)

    Dumitrescu, Philipp T.; Vasseur, Romain; Potter, Andrew C.

    2018-02-01

    We simulate the dynamics of a disordered interacting spin chain subject to a quasiperiodic time-dependent drive, corresponding to a stroboscopic Fibonacci sequence of two distinct Hamiltonians. Exploiting the recursive drive structure, we can efficiently simulate exponentially long times. After an initial transient, the system exhibits a long-lived glassy regime characterized by a logarithmically slow growth of entanglement and decay of correlations analogous to the dynamics at the many-body delocalization transition. Ultimately, at long time scales, which diverge exponentially for weak or rapid drives, the system thermalizes to infinite temperature. The slow relaxation enables metastable dynamical phases, exemplified by a "time quasicrystal" in which spins exhibit persistent oscillations with a distinct quasiperiodic pattern from that of the drive. We show that in contrast with Floquet systems, a high-frequency expansion strictly breaks down above fourth order, and fails to produce an effective static Hamiltonian that would capture the prethermal glassy relaxation.

  4. Resonant absorption of the slow sausage wave in the slow continuum

    Science.gov (United States)

    Yu, D. J.; Van Doorsselaere, T.; Goossens, M.

    2017-06-01

    Aims: General analytical formulas for the damping rate by resonant absorption of slow sausage modes in the slow (cusp) continuum are derived and the resonant damping of the slow surface mode under photospheric conditions is investigated. Methods: The connection formula across the resonant layer is used to derive the damping rate for the slow sausage mode in the slow continuum by assuming a thin boundary. Results: It is shown that the effect of the resonant damping on the slow surface sausage mode in the slow continuum, which has been underestimated in previous interpretations, could be efficient under magnetic pore conditions. A simplified analytical formula for the damping rate of slow surface mode in the long wavelength limit is derived. This formula can be useful for a rough estimation of the damping rate due to resonant absorption for observational wave damping.

  5. Slow Movement/Slow University: Critical Engagements. Introduction to the Thematic Section

    Directory of Open Access Journals (Sweden)

    Maggie O'Neill

    2014-09-01

    Full Text Available This thematic section emerged from two seminars that took place at Durham University in England in November 2013 and March 2014 on the possibilities for thinking through what a change movement towards slow might mean for the University. Slow movements have emerged in relation to a number of topics: Slow food, Citta slow and more recently, slow science. What motivated us in the seminars was to explore how far these movements could help us address the acceleration and intensification of work within our own and other universities, and indeed, what new learning, research, philosophies, practices, structures and governance might emerge. This editorial introduction presents the concept of the "slow university" and introduces our critical engagements with slow. The articles presented here interrogate the potentialities, challenges, problems and pitfalls of the slow university in an era of corporate culture and management rationality. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1403166

  6. Slow-light vortices in periodic waveguides

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Ha, Sangwoo; Desyatnikov, Anton S.

    2009-01-01

    We reveal that the reduction of the group velocity of light in periodic waveguides is generically associated with the presence of vortex energy flows. We show that the energy flows are gradually frozen for slow-light at the Brillouin zone edge, whereas vortices persist for slow-light states having...

  7. 49 CFR 236.813 - Speed, slow.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Speed, slow. 236.813 Section 236.813 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, slow. A speed not exceeding 20 miles per hour. ...

  8. Response of electret dosemeter to slow neutrons

    International Nuclear Information System (INIS)

    Ghilardi, A.J.P.; Pela, C.A.; Zimmerman, R.L.

    1987-01-01

    The response of electret dosemeter to slow neutrons exposure is cited, mentioning the preparation and the irradiation of dosemeter with Am-Be source. Some theory considerations about the response of electret dosemeter to slow and fast neutrons are also presented. (C.G.C.) [pt

  9. VERY SLOW SPEED AXIAL MOTION RELUCTANCE MOTOR

    African Journals Online (AJOL)

    Dr Obe

    1984-09-01

    Sep 1, 1984 ... VERY SLOW SPEED AXIAL MOTION RELUCTANCE MOTOR by. L. A. Agu. Electrical Engineering Department. University of Nigeria, Nsukka. ABSTRACT. This paper presents the scheme for a very slow speed linear machine which uses conventional laminations and with which speeds of the same low.

  10. Can fast and slow intelligence be differentiated?

    NARCIS (Netherlands)

    Partchev, I.; de Boeck, P.

    2012-01-01

    Responses to items from an intelligence test may be fast or slow. The research issue dealt with in this paper is whether the intelligence involved in fast correct responses differs in nature from the intelligence involved in slow correct responses. There are two questions related to this issue: 1.

  11. Tandem queue with server slow-down

    NARCIS (Netherlands)

    Miretskiy, D.I.; Scheinhardt, W.R.W.; Mandjes, M.R.H.

    2007-01-01

    We study how rare events happen in the standard two-node tandem Jackson queue and in a generalization, the socalled slow-down network, see [2]. In the latter model the service rate of the first server depends on the number of jobs in the second queue: the first server slows down if the amount of

  12. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding

    DEFF Research Database (Denmark)

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R

    2009-01-01

    in a marked and widespread increase in EEG theta (4-8 Hz) activity. During wake, tSOS did not enhance consolidation of memories when applied after learning, but improved encoding of hippocampus-dependent memories when applied during learning. We conclude that the EEG frequency and related memory processes......The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation...

  13. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  14. Spinor Slow Light and Two-Color Qubits

    Science.gov (United States)

    Yu, Ite; Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriasov, Viaceslav; Chang, Kao-Fang; Cho, Hung-Wen; Juzeliunas, Gediminas; Yu, Ite A.

    2015-05-01

    We report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. SSL can be used to achieve high conversion efficiencies in the sum frequency generation and is a better method than the widely-used double- Λ scheme. On the basis of the stored light, our data showed that the DT scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. Furthermore, the single-photon SSL can be considered as the qubit with the superposition state of two frequency modes or, simply, as the two-color qubit. We experimentally demonstrated a possible application of the DT scheme as quantum memory/rotator for the two-color qubit. This work opens up a new direction in the EIT/slow light research. yu@phys.nthu.edu.tw

  15. Multiple slow waves in metaporous layers for broadband sound absorption

    International Nuclear Information System (INIS)

    Yang, Jieun; Kim, Yoon Young; Lee, Joong Seok

    2017-01-01

    Sound absorption for a broad frequency range requires sound dissipation. The mechanics of acoustic metamaterials for non-dissipative applications has been extensively studied, but sound absorption using dissipative porous metamaterials has been less explored because of the complexity resulting from the coupling of its dissipative mechanism and metamaterial behavior. We investigated broadband sound absorption by engineering dissipative metaporous layers, which absorb sound by the mechanism of multiple slow waves, and combined local and global resonance phenomena. A set of rigid partitions of varying lengths was elaborately inserted in a hard-backed porous layer of a finite thickness. An effective medium theory was used to explain the physics involved; high performance at a low-frequency range was found to be mainly due to the formation of global resonances caused by multiple slow waves over the thickness of the metaporous layer, while enhancement at a high-frequency range was attributed to the combined effects of the global resonances and the local resonances directly related to the sizes of the inserted partitions. (paper)

  16. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  17. Slow rheological mode in glycerol and glycerol–water mixtures

    DEFF Research Database (Denmark)

    Jensen, Mikkel Hartmann; Gainaru, Catalin; Alba-Simionesco, Christiane

    2018-01-01

    counterpart and disappears with increased water concentration. We propose that the hydrogen-bonded network formed between glycerol molecules is responsible for the observed slow mode and that water acts as a plasticizer for the overall dynamics and as a lubricant softening the hydrogen-bonding contribution......Glycerol–water mixtures were studied at molar concentrations ranging from xgly = 1 (neat glycerol) to xgly = 0.3 using shear mechanical spectroscopy. We observed a low frequency mode in neat glycerol, similar to what has been reported for monohydroxy alcohols. This mode has no dielectric...

  18. KEK-IMSS Slow Positron Facility

    Science.gov (United States)

    Hyodo, T.; Wada, K.; Yagishita, A.; Kosuge, T.; Saito, Y.; Kurihara, T.; Kikuchi, T.; Shirakawa, A.; Sanami, T.; Ikeda, M.; Ohsawa, S.; Kakihara, K.; Shidara, T.

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps-). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a 22Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  19. The cryogenic source of slow monochromatic positrons

    International Nuclear Information System (INIS)

    Meshkov, I.N.; Pavlov, V.N.; Sidorin, A.O.; Yakovenko, S.L.

    2008-01-01

    The cryogenic source of slow monochromatic positrons based on the 22 Na isotope has been designed and constructed at JINR. Positrons emitted from radioactive source 22 Na have a very broad energy spectrum up to 0.5 MeV. To generate monochromatic beam of slow positrons the solid neon is used as a moderator. The solid neon allows forming slow positron beam of the energy of 1.2 eV at the spectrum width of 1 eV. The efficiency of moderation is 1 % of total positron flux

  20. Slow light vortices in periodic waveguides

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Ha, Sangwoo; Desyatnikov, Anton S.

    2009-01-01

    We reveal that the reduction of the group velocity of light in periodic waveguides is generically associated with the presence of vortex energy flows. We show that the energy flows are gradually frozen for slow-light at the Brillouin zone edge, whereas vortices persist for slow-light states having...... non-vanishing phase velocity inside the Brillouin zone. We also demonstrate that presence of vortices can be linked to the absence of slow-light at the zone edge, and present calculations illustrating these general results....

  1. Systematic Design of Slow Light Waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen

    Light can propagate much slower in photonic crystal waveguides and plasmonic waveguides than in vacuum. Slow light propagation in waveguides shows broad prospects in the terabit communication systems. However, it causes severe signal distortions and displays large propagation loss. Moreover...... the same bandwidth. The first optimization formulation is further employed to design slow light metal- dielectric-metal plasmonic waveguides. It is shown that dispersionless slow light propagation is achieved in the optimized plasmonic waveguide. Further study reveals that the loss in metal can...

  2. Dystonia Associated with Idiopathic Slow Orthostatic Tremor

    Directory of Open Access Journals (Sweden)

    Christopher Kobylecki

    2016-02-01

    Full Text Available Background: We aimed to characterize the clinical and electrophysiological features of patients with slow orthostatic tremor.Case Report: The clinical and neurophysiological data of patients referred for lower limb tremor on standing were reviewed. Patients with symptomatic or primary orthostatic tremor were excluded. Eight patients were identified with idiopathic slow 4–8 Hz orthostatic tremor, which was associated with tremor and dystonia in cervical and upper limb musculature. Coherence analysis in two patients showed findings different to those seen in primary orthostatic tremor.Discussion: Slow orthostatic tremor may be associated with dystonia and dystonic tremor.

  3. Higher frequency network activity flow predicts lower frequency node activity in intrinsic low-frequency BOLD fluctuations.

    Science.gov (United States)

    Bajaj, Sahil; Adhikari, Bhim Mani; Dhamala, Mukesh

    2013-01-01

    The brain remains electrically and metabolically active during resting conditions. The low-frequency oscillations (LFO) of the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI) coherent across distributed brain regions are known to exhibit features of this activity. However, these intrinsic oscillations may undergo dynamic changes in time scales of seconds to minutes during resting conditions. Here, using wavelet-transform based time-frequency analysis techniques, we investigated the dynamic nature of default-mode networks from intrinsic BOLD signals recorded from participants maintaining visual fixation during resting conditions. We focused on the default-mode network consisting of the posterior cingulate cortex (PCC), the medial prefrontal cortex (mPFC), left middle temporal cortex (LMTC) and left angular gyrus (LAG). The analysis of the spectral power and causal flow patterns revealed that the intrinsic LFO undergo significant dynamic changes over time. Dividing the frequency interval 0 to 0.25 Hz of LFO into four intervals slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), slow-3 (0.073-0.198 Hz) and slow-2 (0.198-0.25 Hz), we further observed significant positive linear relationships of slow-4 in-out flow of network activity with slow-5 node activity, and slow-3 in-out flow of network activity with slow-4 node activity. The network activity associated with respiratory related frequency (slow-2) was found to have no relationship with the node activity in any of the frequency intervals. We found that the net causal flow towards a node in slow-3 band was correlated with the number of fibers, obtained from diffusion tensor imaging (DTI) data, from the other nodes connecting to that node. These findings imply that so-called resting state is not 'entirely' at rest, the higher frequency network activity flow can predict the lower frequency node activity, and the network activity flow can reflect underlying structural

  4. Slow and Fast Light, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to the NASA Small Business Innovation Research (SBIR) Program 2015 Phase I Solicitation S3.08: Slow and Fast Light, Torch Technologies in partnership...

  5. Experimental demonstration of spinor slow light

    Science.gov (United States)

    Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; JuzeliÅ«nas, Gediminas; Yu, Ite A.

    2016-03-01

    Over the last decade there has been a continuing interest in slow and stored light based on the electromagnetically induced transparency (EIT) effect, because of their potential applications in quantum information manipulation. However, previous experimental works all dealt with the single-component slow light which cannot be employed as a qubit. In this work, we report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The oscillations between the two components, similar to the Rabi oscillation of a two-level system or a qubit, were observed. Single-photon SSL can be considered as two-color qubits. We experimentally demonstrated a possible application of the DT scheme as quantum memory and quantum rotator for the two-color qubits. This work opens up a new direction in the slow light research.

  6. Slow and fast light in semiconductor waveguides

    DEFF Research Database (Denmark)

    Mørk, Jesper; Hansen, Per Lunnemann; Xue, Weiqi

    2010-01-01

    transparency and coherent population oscillations. While electromagnetically induced transparency has been the most important effect in realizing slowdown effects in atomic gasses, progress has been comparatively slow in semiconductors due to inherent problems of fast dephasing times and inhomogeneous...

  7. Elastic scattering of slow positrons by helium

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Cherepkov, N.A.; Chernysheva, L.V.; Shapiro, S.G.

    1976-01-01

    The s-, p-, d- and f-wave phaseshifts for elastic scattering of slow positrons by He are calculated using a simplified version of the random phase approximation with exchange, with virtual positronium formation effect taken into account. (author)

  8. Electrocorticography and the early maturation of high-frequency suppression within the default mode network.

    Science.gov (United States)

    Weaver, Kurt E; Poliakov, Andrew; Novotny, Edward J; Olson, Jared D; Grabowski, Thomas J; Ojemann, Jeffrey G

    2018-02-01

    OBJECTIVE The acquisition and refinement of cognitive and behavioral skills during development is associated with the maturation of various brain oscillatory activities. Most developmental investigations have identified distinct patterns of low-frequency electrophysiological activity that are characteristic of various behavioral milestones. In this investigation, the authors focused on the cross-sectional developmental properties of high-frequency spectral power from the brain's default mode network (DMN) during goal-directed behavior. METHODS The authors contrasted regionally specific, time-evolving high gamma power (HGP) in the lateral DMN cortex between 3 young children (age range 3-6 years) and 3 adults by use of electrocorticography (ECoG) recordings over the left perisylvian cortex during a picture-naming task. RESULTS Across all participants, a nearly identical and consistent response suppression of HGP, which is a functional signature of the DMN, was observed during task performance recordings acquired from ECoG electrodes placed over the lateral DMN cortex. This finding provides evidence of relatively early maturation of the DMN. Furthermore, only HGP relative to evoked alpha and beta band power showed this level of consistency across all participants. CONCLUSIONS Regionally specific, task-evoked suppression of the high-frequency components of the cortical power spectrum is established early in brain development, and this response may reflect the early maturation of specific cognitive and/or computational mechanisms.

  9. Simulation and Comparison Between Slow and Fast FH/BPSK Spread Spectrum Using Matlab

    Directory of Open Access Journals (Sweden)

    Sanaa Said Kadhim

    2018-02-01

    Full Text Available This paper investigates the properties and applications of Frequency Hopping Spread Spectrum (FHSS.  FHSS is radio communication technique by which the sender of information sends the data on a radio channel, which changes the frequency of transmission based on a predetermined sequence of code. The FHSS has many advantages over traditional modulation methods, it can overcome fading, multipath channels and interferences. Hence the interception becomes difficult. This security feature makes FHSS more preferable for  military applications. At the receiver side, the signal is demodulated by the same carrier signal for which frequency changes by the same code sequences used by the sender. This paper presents two types of FHSS, slow and fast. The  simulation procedures of both types were  implemented and applied on   Frequency Hopping /Binary Phase Shift Keying (FH/BPSK spread spectrum system using MATLAB. The simulation sequences for fast and slow frequency hopping is the same in number  and frequencies of spreading carriers and both used BPSK traditional modulation type. The  comparison  results  based on their power spectral density   show that the fast frequency hopping is more resistive to noise the slow one.

  10. Frequency standards

    CERN Document Server

    Riehle, Fritz

    2006-01-01

    Of all measurement units, frequency is the one that may be determined with the highest degree of accuracy. It equally allows precise measurements of other physical and technical quantities, whenever they can be measured in terms of frequency.This volume covers the central methods and techniques relevant for frequency standards developed in physics, electronics, quantum electronics, and statistics. After a review of the basic principles, the book looks at the realisation of commonly used components. It then continues with the description and characterisation of important frequency standards

  11. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical–Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings

    Science.gov (United States)

    Rivolta, Davide; Heidegger, Tonio; Scheller, Bertram; Sauer, Andreas; Schaum, Michael; Birkner, Katharina; Singer, Wolf; Wibral, Michael; Uhlhaas, Peter J.

    2015-01-01

    Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13–30 Hz) and gamma (30–90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30–90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits. PMID:25987642

  12. Magnetic-field-dependent slow light in strontium atom-cavity system

    Science.gov (United States)

    Liu, Zeng-Xing; Wang, Bao; Kong, Cui; Xiong, Hao; Wu, Ying

    2018-03-01

    Realizing and controlling a long-lived slow light is of fundamental importance in physics and may find applications in quantum router and quantum information processing. In this work, we propose a feasible scheme to realize the slow light in a strontium atom-cavity system, in which the value of group delay can be continuously adjusted within a range of different Zeeman splittings and vacuum Rabi frequencies by varying the applied static magnetic field and the atom number instead of a strong coherent field. In our scheme, the major limitations of the slow-light structure, namely, dispersion and loss, can be effectively resolved, and so our scheme may help to achieve the practical application of slow light relevant to the optical communication network.

  13. Frequency Synthesiser

    NARCIS (Netherlands)

    Drago, Salvatore; Sebastiano, Fabio; Leenaerts, Dominicus M.W.; Breems, Lucien J.; Nauta, Bram

    2016-01-01

    A low power frequency synthesiser circuit (30) for a radio transceiver, the synthesiser circuit comprising: a digital controlled oscillator configured to generate an output signal having a frequency controlled by an input digital control word (DCW); a feedback loop connected between an output and an

  14. Frequency synthesiser

    NARCIS (Netherlands)

    Drago, S.; Sebastiano, Fabio; Leenaerts, Dominicus Martinus Wilhelmus; Breems, Lucien Johannes; Nauta, Bram

    2010-01-01

    A low power frequency synthesiser circuit (30) for a radio transceiver, the synthesiser circuit comprising: a digital controlled oscillator configured to generate an output signal having a frequency controlled by an input digital control word (DCW); a feedback loop connected between an output and an

  15. Magnon Inflation: Slow Roll with Steep Potentials

    CERN Document Server

    Adshead, Peter; Burgess, C P; Hayman, Peter; Patil, Subodh P

    2016-01-01

    We find multi-scalar effective field theories (EFTs) that can achieve a slow inflationary roll despite having a scalar potential that does not satisfy the usual slow-roll condition (d V)^2 << V^2/Mp^2. They evade the usual slow-roll conditions on $V$ because their kinetic energies are dominated by single-derivative terms rather than the usual two-derivative terms. Single derivatives dominate during slow roll and so do not require a breakdown of the usual derivative expansion that underpins calculational control in much of cosmology. The presence of such terms requires some sort of UV Lorentz-symmetry breaking during inflation (besides the usual cosmological breaking). Chromo-natural inflation provides an example of a UV theory that can generate the multi-field single-derivative terms we consider, and we argue that the EFT we find indeed captures the slow-roll conditions for the background evolution for Chromo-natural inflation. We also show that our EFT can be understood as a multi-field generalization ...

  16. Reciprocal Influence of Slow Waves Extracted in Intracranial Pressure, Arterial Pressure and Cerebral Blood Velocity Signals

    National Research Council Canada - National Science Library

    Cervenansky, F

    2001-01-01

    ...), and arterial blood pressure (ABP). To clarify the links, we compared two frequency methods based on coherence function to estimate the influence of ICP, ABP, and CBV on couples, respectively CBV-ABP, ICP-CBV and ICP-ABP, of slow waves...

  17. Slow and fast light effects in semiconductor waveguides for applications in microwave photonics

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Öhman, Filip

    2009-01-01

    at different microwave or millimeter-wave frequency bands, we present several schemes to increase the achievable RF phase shift by enhancing light slow-down or speed-up. These schemes include integrating gain and absorption sections, optical filtering and the exploitation of the initial chirp effects...

  18. Belief Propagation for Probabilistic Slow Feature Analysis

    Science.gov (United States)

    Omori, Toshiaki; Sekiguchi, Tomoki; Okada, Masato

    2017-08-01

    Slow feature analysis (SFA) is a time-series analysis method for extracting slowly-varying latent features from multi-dimensional data. A recent study proposed a probabilistic framework of SFA using the Bayesian statistical framework. However, the conventional probabilistic framework of SFA can not accurately extract the slow feature in noisy environments since its marginal likelihood function was approximately derived under the assumption that there exists no observation noise. In this paper, we propose a probabilistic framework of SFA with rigorously derived marginal likelihood function. Here, we rigorously derive the marginal likelihood function of the probabilistic framework of SFA by using belief propagation. We show using numerical data that the proposed probabilistic framework of SFA can accurately extract the slow feature and underlying parameters for the latent dynamics simultaneously even under noisy environments.

  19. Kinetic slow mode-type solitons

    Directory of Open Access Journals (Sweden)

    K. Baumgärtel

    2005-01-01

    Full Text Available One-dimensional hybrid code simulations are presented, carried out in order both to study solitary waves of the slow mode branch in an isotropic, collisionless, medium-β plasma (βi=0.25 and to test the fluid based soliton interpretation of Cluster observed strong magnetic depressions (Stasiewicz et al., 2003; Stasiewicz, 2004 against kinetic theory. In the simulations, a variety of strongly oblique, large amplitude, solitons are seen, including solitons with Alfvenic polarization, similar to those predicted by the Hall-MHD theory, and robust, almost non-propagating, solitary structures of slow magnetosonic type with strong magnetic field depressions and perpendicular ion heating, which have no counterpart in fluid theory. The results support the soliton-based interpretation of the Cluster observations, but reveal substantial deficiencies of Hall-MHD theory in describing slow mode-type solitons in a plasma of moderate beta.

  20. Transplanckian energy production and slow roll inflation

    International Nuclear Information System (INIS)

    Danielsson, Ulf H.

    2005-01-01

    In this paper we investigate how the energy density due to a nonstandard choice of initial vacuum affects the expansion of the universe during inflation. To do this we introduce source terms in the Friedmann equations making sure that we respect the relation between gravity and thermodynamics. We find that the energy production automatically implies a slow rolling cosmological constant. Hence we also conclude that there is no well defined value for the cosmological constant in the presence of sources. We speculate that a nonstandard vacuum can provide slow roll inflation on its own

  1. Frequency-Specific Alternations in the Amplitude of Low-Frequency Fluctuations in Chronic Tinnitus

    Directory of Open Access Journals (Sweden)

    Yu-Chen eChen

    2015-10-01

    Full Text Available Tinnitus, a phantom ringing, buzzing or hissing sensation with potentially debilitating consequences, is thought to arise from aberrant spontaneous neural activity at one or more sites within the central nervous system; however, the location and specific features of these oscillations are poorly understood with respect to specific tinnitus features. Recent resting-state functional magnetic resonance imaging (fMRI studies suggest that aberrant fluctuations in spontaneous low-frequency oscillations (LFO of the blood oxygen level-dependent (BOLD signal may be an important factor in chronic tinnitus; however, the role that frequency-specific components of LFO play in subjective tinnitus remains unclear. A total of 39 chronic tinnitus patients and 41 well-matched healthy controls participated in the resting-state fMRI scans. The LFO amplitudes were investigated using the amplitude of low-frequency fluctuation (ALFF and fractional ALFF (fALFF in two different frequency bands (slow-4: 0.027-0.073 Hz and slow-5: 0.01-0.027 Hz. We observed significant differences between tinnitus patients and normal controls in ALFF/fALFF in the two bands (slow-4 and slow-5 in several brain regions including the superior frontal gyrus (SFG, inferior frontal gyrus, middle temporal gyrus, angular gyrus, supramarginal gyrus, and middle occipital gyrus. Across the entire subject pool, significant differences in ALFF/fALFF between the two bands were found in the midbrain, basal ganglia, hippocampus and cerebellum (Slow 4>Slow 5, and in the middle frontal gyrus, supramarginal gyrus, posterior cingulate cortex, and precuneus (Slow 5>Slow 4. We also observed significant interaction between frequency bands and patient groups in the orbitofrontal gyrus. Furthermore, tinnitus distress was positively correlated with the magnitude of ALFF in right SFG and the magnitude of fALFF slow-4 band in left SFG, whereas tinnitus duration was positively correlated with the magnitude of ALFF in

  2. Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling

    Science.gov (United States)

    Abramov, R. V.

    2011-12-01

    Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger chaotic system would result in general increase of chaos at the slow variables.

  3. Response of electret dosemeter to slow neutrons

    International Nuclear Information System (INIS)

    Ghilardi, A.J.P.; Pela, C.A.; Zimmerman, R.L.

    1987-01-01

    The response of the electret dosemeter to exposition of slow neutrons is studied. Different external coatings are used on the dosemeter (polyethylene, alminium, polyethylene + boron, aluminium + boron) and exposure curves (with and without water) are compared. (M.A.C.) [pt

  4. Slowed ageing, welfare, and population problems.

    Science.gov (United States)

    Wareham, Christopher

    2015-10-01

    Biological studies have demonstrated that it is possible to slow the ageing process and extend lifespan in a wide variety of organisms, perhaps including humans. Making use of the findings of these studies, this article examines two problems concerning the effect of life extension on population size and welfare. The first--the problem of overpopulation--is that as a result of life extension too many people will co-exist at the same time, resulting in decreases in average welfare. The second--the problem of underpopulation--is that life extension will result in too few people existing across time, resulting in decreases in total welfare. I argue that overpopulation is highly unlikely to result from technologies that slow ageing. Moreover, I claim that the problem of underpopulation relies on claims about life extension that are false in the case of life extension by slowed ageing. The upshot of these arguments is that the population problems discussed provide scant reason to oppose life extension by slowed ageing.

  5. Analysis of the neutron slowing down equation

    International Nuclear Information System (INIS)

    Sengupta, A.; Karnick, H.

    1978-01-01

    The infinite series solution of the elementary neutron slowing down equation is studied using the theory of entire functions of exponential type and nonharmonic Fourier series. It is shown from Muntz--Szasz and Paley--Wiener theorems, that the set of exponentials ]exp(ilambda/sub n/u) ]/sup infinity//sub n/=-infinity, where ]lambda/sub n/]/sup infinity//sub n/=-infinity are the roots of the transcendental equation in slowing down theory, is complete and forms a basis in a lethargy interval epsilon. This distinctive role of the maximum lethargy change per collision is due to the Fredholm character of the slowing down operator which need not be quasinilpotent. The discontinuities in the derivatives of the collision density are examined by treating the slowing down equation in its differential-difference form. The solution (Hilbert) space is the union of a countable number of subspaces L 2 (-epsilon/2, epsilon/2) over each of which the exponential functions are complete

  6. Holographic Gratings for Slow-Neutron Optics

    Science.gov (United States)

    Klepp, Juergen; Pruner, Christian; Tomita, Yasuo; Geltenbort, Peter; Drevenšek-Olenik, Irena; Gyergyek, Saso; Kohlbrecher, Joachim; Fally, Martin

    2012-01-01

    Recent progress in the development of holographic gratings for neutron-optics applications is reviewed. We summarize the properties of gratings recorded in deuterated (poly)methylmethacrylate, holographic polymer-dispersed liquid crystals and nanoparticle-polymer composites revealed by diffraction experiments with slow neutrons. Existing and anticipated neutron-optical instrumentations based on holographic gratings are discussed.

  7. Preliminary characterization of slow growing rhizobial strains ...

    African Journals Online (AJOL)

    In this paper, we did some preliminary characterization of six slow growing rhizobial strains, isolated from Retama monosperma (L.) Boiss. root nodules sampled from 3 sites along the coast of Oran (CapeFalcon, Bousfer and MersElHadjadj) in Northwestern Algeria. Results of this study showed that all strains had a very ...

  8. Probabilistic Slow Features for Behavior Analysis

    NARCIS (Netherlands)

    Zafeiriou, Lazaros; Nicolaou, Mihalis A.; Zafeiriou, Stefanos; Nikitidis, Symeon; Pantic, Maja

    A recently introduced latent feature learning technique for time-varying dynamic phenomena analysis is the so-called slow feature analysis (SFA). SFA is a deterministic component analysis technique for multidimensional sequences that, by minimizing the variance of the first-order time derivative

  9. Learning slow features for behavior analysis

    NARCIS (Netherlands)

    Zafeiriou, Lazaros; Nicolaou, Mihalis A.; Zafeiriou, Stefanos; Nikitids, Symeon; Pantic, Maja

    2013-01-01

    A recently introduced latent feature learning technique for time varying dynamic phenomena analysis is the socalled Slow Feature Analysis (SFA). SFA is a deterministic component analysis technique for multi-dimensional sequences that by minimizing the variance of the first order time derivative

  10. A slow component of classic Stroop interference

    NARCIS (Netherlands)

    Phaf, R. Hans; Horsman, Hark H.; van der Moolen, Bas; Roos, Yvo B. W. E. M.; Schmand, Ben

    2010-01-01

    The interference in colour naming may extend beyond critical Stroop trials. This "slow'' effect was first discovered in emotional Stroop tasks, but is extended here to classical Stroop. In two experiments, meaningless coloured letter strings followed a colour word or neutral word. Student

  11. Slow evaporation method and enhancement in photoluminescence ...

    Indian Academy of Sciences (India)

    MS received 31 May 2015; accepted 1 February 2016. Abstract. The series of Bi3+ co-doped YPO4 : Eu3+ nanophosphors were successfully synthesized by the slow evaporation method. Bi3+-doped and un-doped YPO4 : Eu3+ phosphors were characterized by using powder X-ray diffraction, Fourier transform infrared ...

  12. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism.

    Science.gov (United States)

    Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio

    2010-11-01

    STUDY OBJECTIVIES: several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. the specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined.

  13. Influence of tungsten fiber’s slow drift on the measurement of G with angular acceleration method

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jie; Wu, Wei-Huang; Zhan, Wen-Ze [School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074 (China); Xue, Chao [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Physics and Astronomy, Sun Yat-sen University, Guangzhou 510275 (China); Shao, Cheng-Gang, E-mail: cgshao@mail.hust.edu.cn; Wu, Jun-Fei [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Milyukov, Vadim [Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow 119992 (Russian Federation)

    2016-08-15

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.

  14. Slow Activity in Focal Epilepsy During Sleep and Wakefulness

    DEFF Research Database (Denmark)

    Pellegrino, Giovanni; Tombini, Mario; Curcio, Giuseppe

    2017-01-01

    was the delta band during the first 2 sleep cycles (sleep cycle 1, P = .014; sleep cycle 2, P = .002). During wakefulness, patients showed higher delta/theta activity over the affected regions compared with controls. Conclusions Patients with focal epilepsy showed a pattern of power increases characterized......Introduction We aimed to test differences between healthy subjects and patients with respect to slow wave activity during wakefulness and sleep. Methods Fifteen patients affected by nonlesional focal epilepsy originating within temporal areas and fourteen matched controls underwent a 24-hour EEG...... recording. We studied the EEG power spectral density during wakefulness and sleep in delta (1-4 Hz), theta (5-7 Hz), alpha (8-11 Hz), sigma (12-15 Hz), and beta (16-20 Hz) bands. Results During sleep, patients with focal epilepsy showed higher power from delta to beta frequency bands compared with controls...

  15. Self-collimated slow sound in sonic crystals

    International Nuclear Information System (INIS)

    Kaya, Olgun Adem; Cicek, Ahmet; Ulug, Bulent

    2012-01-01

    Self-collimated slow-sound propagation in a two-dimensional rectangular sonic crystal composed of elliptical scatterers in air is numerically demonstrated. The group velocity at the centre and the edges of the fourth acoustic band is reduced to 45 m s -1 and 30 m s -1 , corresponding to 1/8 and 1/12 of the speed of sound in air, respectively. Elimination of omni-directional reflections encountered in linear waveguides and the reduction of group-velocity dispersion at the mid-band frequencies lead to preservation of pulse shape and amplitude upon traversal of the sonic crystal. Wave transmission is increased from approximately -20 to -2.5 dB, with almost an order of magnitude enhancement, via injector layers optimized through a pattern search algorithm. Self-collimating performance of the system is not degraded under oblique incidence, except for pulse broadening due to increased effective source width.

  16. Tailoring the slow light behavior in terahertz metasurfaces

    International Nuclear Information System (INIS)

    Manjappa, Manukumara; Cong, Longqing; Singh, Ranjan; Chiam, Sher-Yi; Bettiol, Andrew A.; Zhang, Weili

    2015-01-01

    We experimentally study the effect of near field coupling on the transmission of light in terahertz metasurfaces. Our results show that tailoring the coupling between the resonators modulates the amplitude of resulting electromagnetically induced transmission, probed under different types of asymmetries in the coupled system. Observed change in the transmission amplitude is attributed to the change in the amount of destructive interference between the resonators in the vicinity of strong near field coupling. We employ a two-particle model to theoretically study the influence of the coupling between bright and quasi-dark modes on the transmission properties of the system and we find an excellent agreement with our observed results. Adding to the enhanced transmission characteristics, our results provide a deeper insight into the metamaterial analogues of atomic electromagnetically induced transparency and offer an approach to engineer slow light devices, broadband filters, and attenuators at terahertz frequencies

  17. Effects of body mass index on gastric slow wave: a magnetogastrographic study

    International Nuclear Information System (INIS)

    Somarajan, S; Cassilly, S; Obioha, C; Bradshaw, L A; Richards, W O

    2014-01-01

    We measured gastric slow wave activity simultaneously with magnetogastrogram (MGG), mucosal electromyogram (EMG) and electrogastrogram (EGG) in human subjects with varying body mass index (BMI) before and after a meal. In order to investigate the effect of BMI on gastric slow wave parameters, each subject's BMI was calculated and divided into two groups: subjects with BMI ≤ 27 and BMI > 27. Signals were processed with Fourier spectral analysis and second-order blind identification (SOBI) techniques. Our results showed that increased BMI does not affect signal characteristics such as frequency and amplitude of EMG and MGG. Comparison of the postprandial EGG power, on the other hand, showed a statistically significant reduction in subjects with BMI > 27 compared with BMI ≤ 27. In addition to the frequency and amplitude, the use of SOBI-computed propagation maps from MGG data allowed us to visualize the propagating slow wave and compute the propagation velocity in both BMI groups. No significant change in velocity with increasing BMI or meal was observed in our study. In conclusion, multichannel MGG provides an assessment of frequency, amplitude and propagation velocity of the slow wave in subjects with differing BMI categories and was observed to be independent of BMI. (paper)

  18. Slow and fast light effects in semiconductor waveguides for applications in microwave photonics

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Öhman, Filip

    2009-01-01

    at different microwave or millimeter-wave frequency bands, we present several schemes to increase the achievable RF phase shift by enhancing light slow-down or speed-up. These schemes include integrating gain and absorption sections, optical filtering and the exploitation of the initial chirp effects......We review the theory of slow and fast light effects due to coherent population oscillations in semiconductor waveguides, and potential applications of these effects in microwave photonic systems as RF phase shifters. In order to satisfy the application requirement of 360º RF phase shift...

  19. The role of cadence on the VO2 slow component in cycling and running in triathletes.

    Science.gov (United States)

    Billat, V L; Mille-Hamard, L; Petit, B; Koralsztein, J P

    1999-10-01

    The purpose of this study was to compare the effect of two different types of cyclic severe exercise (running and cycling) on the VO2 slow component. Moreover we examined the influence of cadence of exercise (freely chosen [FF] vs. low frequency [LF]) on the hypothesis that: 1) a stride frequency lower than optimal and 2) a pedalling frequency lower than FF one could induce a larger and/or lower VO2 slow component. Eight triathletes ran and cycled to exhaustion at a work-rate corresponding to the lactate threshold + 50% of the difference between the work-rate associated with VO2max and the lactate threshold (delta 50) at a freely chosen (FF) and low frequency (LF: - 10 % of FF). The time to exhaustion was not significantly different for both types of exercises and both cadences (13 min 39 s, 15 min 43 s, 13 min 32 s, 15 min 05 s for running at FF and LF and cycling at FF and LF, respectively). The amplitude of the VO2 slow component (i.e. difference between VO2 at the last and the 3rd min of the exercise) was significantly smaller during running compared with cycling, but there was no effect of cadence. Consequently, there was no relationship between the magnitude of the VO2 slow component and the time to fatigue for a severe exercise (r = 0.20, p = 0.27). However, time to fatigue was inversely correlated with the blood lactate concentration for both modes of exercise and both cadences (r = - 0.42, p = 0.01). In summary, these data demonstrate that: 1) in subjects well trained for both cycling and running, the amplitude of the VO2 slow component at fatigue was larger in cycling and that it was not significantly influenced by cadence; 2) the VO2 slow component was not correlated with the time to fatigue. If the nature of the linkage between the VO2 slow component and the fatigue process remains unclear, the type of contraction regimen depending on exercise biomechanic characteristics seems to be determinant in the VO2 slow component phenomenon for a same level of

  20. Polymeric membrane studied using slow positron beam

    International Nuclear Information System (INIS)

    Hung, W.-S.; Lo, C.-H.; Cheng, M.-L.; Chen Hongmin; Liu Guang; Chakka, Lakshmi; Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y.; Sun Yiming; Yu Changcheng; Zhang Renwu; Jean, Y.C.

    2008-01-01

    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes

  1. A tilted transversely isotropic slowness surface approximation

    KAUST Repository

    Stovas, A.

    2012-05-09

    The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle. © 2012 European Association of Geoscientists & Engineers.

  2. Testing algorithms for critical slowing down

    Directory of Open Access Journals (Sweden)

    Cossu Guido

    2018-01-01

    Full Text Available We present the preliminary tests on two modifications of the Hybrid Monte Carlo (HMC algorithm. Both algorithms are designed to travel much farther in the Hamiltonian phase space for each trajectory and reduce the autocorrelations among physical observables thus tackling the critical slowing down towards the continuum limit. We present a comparison of costs of the new algorithms with the standard HMC evolution for pure gauge fields, studying the autocorrelation times for various quantities including the topological charge.

  3. SOFTWARE Manual for VMM3 Slow Control

    CERN Document Server

    Guth, Manuel

    2017-01-01

    For the New Small Wheel upgrade of the ATLAS detector a new readout chip, called VMM3(a), was developed. In order to provide this new technology to a larger community, the RD51 collaboration is integrating the VMM3 in their scalable readout system (SRS). For this purpose, a new slow control and calibration tool is necessary. This new software was developed and improved within a CERN Summer Student project.

  4. Slow movement execution in event-related potentials (P300).

    Science.gov (United States)

    Naruse, Kumi; Sakuma, Haruo; Hirai, Takane

    2002-02-01

    We examined whether slow movement execution has an effect on cognitive and information processing by measuring the P300 component. 8 subjects performed a continuous slow forearm rotational movement using 2 task speeds. Slow (a 30-50% decrease from the subject's Preferred speed) and Very Slow (a 60-80% decrease). The mean coefficient of variation for rotation speed under Very Slow was higher than that under Slow, showing that the subjects found it difficult to perform the Very Slow task smoothly. The EEG score of alpha-1 (8-10 Hz) under Slow Condition was increased significantly more than under the Preferred Condition; however, the increase under Very Slow was small when compared with Preferred. After performing the task. P300 latency under Very Slow increased significantly as compared to that at pretask. Further, P300 amplitude decreased tinder both speed conditions when compared to that at pretask, and a significant decrease was seen under the Slow Condition at Fz, whereas the decrease under the Very Slow Condition was small. These differences indicated that a more complicated neural composition and an increase in subjects' attention might have been involved when the task was performed under the Very Slow Condition. We concluded that slow movement execution may have an influence on cognitive function and may depend on the percentage of decrease from the Preferred speed of the individual.

  5. Broadband slow light in one-dimensional logically combined photonic crystals.

    Science.gov (United States)

    Alagappan, G; Png, C E

    2015-01-28

    Here, we demonstrate the broadband slow light effects in a new family of one dimensional photonic crystals, which are obtained by logically combining two photonic crystals of slightly different periods. The logical combination slowly destroys the original translational symmetries of the individual photonic crystals. Consequently, the Bloch modes of the individual photonic crystals with different wavevectors couple with each other, creating a vast number of slow modes. Specifically, we describe a photonic crystal architecture that results from a logical "OR" mixture of two one dimensional photonic crystals with a periods ratio of r = R/(R - 1), where R > 2 is an integer. Such a logically combined architecture, exhibits a broad region of frequencies in which a dense number of slow modes with varnishing group velocities, appear naturally as Bloch modes.

  6. The impact of laxative use upon symptoms in patients with proven slow transit constipation

    Directory of Open Access Journals (Sweden)

    Dinning Phil G

    2011-11-01

    Full Text Available Abstract Background Constipation severity is often defined by symptoms including feelings of complete evacuation, straining, stool frequency and consistency. These descriptors are mostly obtained in the absence of laxative use. For many constipated patients laxative usage is ubiquitous and long standing. Our aim was to determine the impact of laxative use upon the stereotypic constipation descriptors. Methods Patients with confirmed slow transit constipation completed 3-week stool diaries, detailing stool frequency and form, straining, laxative use and pain and bloating scores. Each diary day was classified as being under laxative affect (laxative affected days or not (laxative unaffected days. Unconditional logistic regression was used to assess the affects of laxatives on constipation symptoms. Results Ninety four patients with scintigraphically confirmed slow transit constipation were enrolled in the study. These patients reported a stool frequency of 5.6 ± 4.3 bowel motions/week, only 21 patients reported P P Conclusions The reporting of frequent and loose stools with abdominal pain and/or bloating is common in patients with slow transit constipation. While laxative use is a significant contributor to altering stool frequency and form, laxatives have no apparent affect on pain or bloating or upon a patients feeling of complete evacuation. These factors need to be taken into account when using constipation symptoms to define this population.

  7. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder.

    Science.gov (United States)

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2016-01-01

    Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants' brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5-16 Hz) and slow-frequency spindle activity (10.5-12.5 Hz). Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep.

  8. Streptomycin decreases the functional shift to a slow phenotype induced by electrical stimulation in engineered muscle.

    Science.gov (United States)

    Khodabukus, Alastair; Baar, Keith

    2015-03-01

    Chronic low-frequency stimulation (CLFS) has long been used to induce a fast-to-slow phenotype shift in skeletal muscle. In this study, we explore the role of frequency (10 and 20 Hz), active time (15-60%), and streptomycin in inducing a fast-to-slow shift in engineered muscle. We found that C2C12 engineered muscle could respond to CLFS with an adult-like active time of 60% and found that a constant 10 Hz train of 0.6 s, followed by 0.4 s rest, induced a partial fast-to-slow phenotype shift. Following 2 weeks of CLFS, time-to-peak tension (TPT) (control [CTL]=40.9±0.2 ms; 10 Hz=58.5±3.5 ms; 20 Hz=48.2±2.7 ms) and half-relaxation time (1/2RT) (CTL=50.4±0.6 ms; 10 Hz=76.1±3.3 ms; 20 Hz=66.6±2.3 ms) slowed significantly in frequency, but not in an active time-dependent manner. Streptomycin significantly blunted the slowing of TPT and 1/2RT induced by CLFS by minimizing the fast-to-slow shift in SERCA isoform. Streptomycin (Nonstim=-42.8%±2.5%; Stim=-38.1%±3.6%) significantly prevented the improvement in fatigue resistance seen in CTL constructs (Nonstim=-58.4%±3.6%; Stim=-27.8%±1.7%). Streptomycin reduced the increase seen in GLUT4 protein following CLFS (CTL=89.4%±6.7%; STREP=41.0%±4.3%) and prevented increases in the mitochondrial proteins succinate dehydrogenase (SDH) and ATP synthase. These data demonstrate that streptomycin significantly blunts the fast-to-slow shift induced by CLFS. In the absence of streptomycin, CLFS induced slowing of contractile dynamics and improved fatigue resistance and suggests that this model can be used to study the mechanisms underlying CLFS-induced adaptations in muscle phenotype.

  9. The contribution of different frequency bands in class separability of covert speech tasks for BCIs.

    Science.gov (United States)

    Jahangiri, Amir; Sepulveda, Francisco

    2017-07-01

    Several recent studies demonstrate the possibility of using user initiated covert speech mental tasks in brain computer interfaces with varying degrees of success, but details of the best frequency features had not been investigated. In this work, ten volunteers in the age range of 22-70 years participated in the experiment. Eight of them were neurologically healthy, one user was dyslexic, and another was autistic. The four words "back", "forward", "left", and "right" were shortened into "BA", "FO", "LE", and "RY", which are phonetically dissimilar and cognitively relevant directional commands. Participants were asked to covertly speak each as soon as the letters appeared on a screen. Volunteers completed five recording runs. During each run the four words were presented in random succession to avoid sequence bias. The recorded EEG data from the ten users were analysed to discover the best features within a Gabor Transform of the signals, i.e., those yielding the highest word-pair classification accuracy for this specific type of linguistic mental activity. Using this BCI, suitable class separability of covert speech tasks is confirmed for all, including disabled users, with consistently high classification accuracy from 72% to 88% in all cases. Like motor imagery tasks, Alpha and Beta band activity were found to contain 12% and 31% of the most important features respectively. Gamma band activity, which indicates high mental functions, contains 57% of the most important features in this study.

  10. Submillimeter Wave Antenna With Slow Wave Feed Line

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Krozer, Viktor; Kotiranta, Mikko

    2009-01-01

    Submillimeter wave radiation, which is also referred to as terahertz radiation, has not been extensively explored until recently due to a lack of reliable components and devices in this frequency range. Current advances in technology have made it possible to explore this portion of the electromag......Submillimeter wave radiation, which is also referred to as terahertz radiation, has not been extensively explored until recently due to a lack of reliable components and devices in this frequency range. Current advances in technology have made it possible to explore this portion...... of the electromagnetic spectrum, and to create innovative imaging and sensing techniques that hold enormous potential in biomedical, metrological and security applications. Considering that realization of submillimeter wave components and antennas is still heavily constrained by problems arising from technological...... limitations and the necessity of having extremely miniaturized circuit elements, the design process remains quite challenging. In this paper, a design of a submillimeter wave antenna fed by a slow wave structure is described. The antenna is useful in high-power THz applications because of its ability...

  11. Numerical Simulations of Slow Stick Slip Events with PFC, a DEM Based Code

    Science.gov (United States)

    Ye, S. H.; Young, R. P.

    2017-12-01

    Nonvolcanic tremors around subduction zone have become a fascinating subject in seismology in recent years. Previous studies have shown that the nonvolcanic tremor beneath western Shikoku is composed of low frequency seismic waves overlapping each other. This finding provides direct link between tremor and slow earthquakes. Slow stick slip events are considered to be laboratory scaled slow earthquakes. Slow stick slip events are traditionally studied with direct shear or double direct shear experiment setup, in which the sliding velocity can be controlled to model a range of fast and slow stick slips. In this study, a PFC* model based on double direct shear is presented, with a central block clamped by two side blocks. The gauge layers between the central and side blocks are modelled as discrete fracture networks with smooth joint bonds between pairs of discrete elements. In addition, a second model is presented in this study. This model consists of a cylindrical sample subjected to triaxial stress. Similar to the previous model, a weak gauge layer at a 45 degrees is added into the sample, on which shear slipping is allowed. Several different simulations are conducted on this sample. While the confining stress is maintained at the same level in different simulations, the axial loading rate (displacement rate) varies. By varying the displacement rate, a range of slipping behaviour, from stick slip to slow stick slip are observed based on the stress-strain relationship. Currently, the stick slip and slow stick slip events are strictly observed based on the stress-strain relationship. In the future, we hope to monitor the displacement and velocity of the balls surrounding the gauge layer as a function of time, so as to generate a synthetic seismogram. This will allow us to extract seismic waveforms and potentially simulate the tremor-like waves found around subduction zones. *Particle flow code, a discrete element method based numerical simulation code developed by

  12. Slow Wave Sleep and Long Duration Spaceflight

    Science.gov (United States)

    Whitmire, Alexandra; Orr, Martin; Arias, Diana; Rueger, Melanie; Johnston, Smith; Leveton, Lauren

    2012-01-01

    While ground research has clearly shown that preserving adequate quantities of sleep is essential for optimal health and performance, changes in the progression, order and /or duration of specific stages of sleep is also associated with deleterious outcomes. As seen in Figure 1, in healthy individuals, REM and Non-REM sleep alternate cyclically, with stages of Non-REM sleep structured chronologically. In the early parts of the night, for instance, Non-REM stages 3 and 4 (Slow Wave Sleep, or SWS) last longer while REM sleep spans shorter; as night progresses, the length of SWS is reduced as REM sleep lengthens. This process allows for SWS to establish precedence , with increases in SWS seen when recovering from sleep deprivation. SWS is indeed regarded as the most restorative portion of sleep. During SWS, physiological activities such as hormone secretion, muscle recovery, and immune responses are underway, while neurological processes required for long term learning and memory consolidation, also occur. The structure and duration of specific sleep stages may vary independent of total sleep duration, and changes in the structure and duration have been shown to be associated with deleterious outcomes. Individuals with narcolepsy enter sleep through REM as opposed to stage 1 of NREM. Disrupting slow wave sleep for several consecutive nights without reducing total sleep duration or sleep efficiency is associated with decreased pain threshold, increased discomfort, fatigue, and the inflammatory flare response in skin. Depression has been shown to be associated with a reduction of slow wave sleep and increased REM sleep. Given research that shows deleterious outcomes are associated with changes in sleep structure, it is essential to characterize and mitigate not only total sleep duration, but also changes in sleep stages.

  13. "Slow-scanning" in Ground-based Mid-infrared Observations

    Science.gov (United States)

    Ohsawa, Ryou; Sako, Shigeyuki; Miyata, Takashi; Kamizuka, Takafumi; Okada, Kazushi; Mori, Kiyoshi; Uchiyama, Masahito S.; Yamaguchi, Junpei; Fujiyoshi, Takuya; Morii, Mikio; Ikeda, Shiro

    2018-04-01

    Chopping observations with a tip-tilt secondary mirror have conventionally been used in ground-based mid-infrared observations. However, it is not practical for next generation large telescopes to have a large tip-tilt mirror that moves at a frequency larger than a few hertz. We propose an alternative observing method, a "slow-scanning" observation. Images are continuously captured as movie data, while the field of view is slowly moved. The signal from an astronomical object is extracted from the movie data by a low-rank and sparse matrix decomposition. The performance of the "slow-scanning" observation was tested in an experimental observation with Subaru/COMICS. The quality of a resultant image in the "slow-scanning" observation was as good as in a conventional chopping observation with COMICS, at least for a bright point-source object. The observational efficiency in the "slow-scanning" observation was better than that in the chopping observation. The results suggest that the "slow-scanning" observation can be a competitive method for the Subaru telescope and be of potential interest to other ground-based facilities to avoid chopping.

  14. Theoretical analysis and experiment performance of slow-light based on stimulated Brillouin scattering (SBS)

    International Nuclear Information System (INIS)

    Zhou Hongyan; Zhong Kun; Zhang Ru; Lang Peilin

    2011-01-01

    Slow light technology will play a key role in future all-optical communication. The slow-light technology based on stimulated Brillouin scattering has become a research highlight because of its additional advantages, such as compatibility of the devices with existing telecommunication systems, room-temperature operation, and tunable at arbitrary wavelengths. According to the propagation of a cw pulse through a Brillouin fiber amplifier, whose frequency is near the Stokes resonance, via three-wave coupling equations, both pump depletion and fiber losses taken into consideration, the principle of how slow-light effect based on stimulated Brillouin scattering produced and the mathematical expression of time delay are strictly deduced. A delay of 8 ns is obtained when the input Stokes pulse is 200ns and the SBS (stimulated Brillouin scattering) gain G is ∼18 in our designed experiment of SBS slow-light system. Then the extent of transformation from pump waves to Stokes waves is measured using MATLAB numerical simulation according to the experiment dates, based on the relation between output pump light power and input pump light power and also the relation between output Stokes light power and input pump light power. And the relation between the input light power and propagation distance is discussed as well. Finally the relation between slow light pulse delay and SBS gain is also obtained.

  15. Quasistatic modelling of the coaxial slow source

    International Nuclear Information System (INIS)

    Hahn, K.D.; Pietrzyk, Z.A.; Vlases, G.C.

    1986-01-01

    A new 1-D Lagrangian MHD numerical code in flux coordinates has been developed for the Coaxial Slow Source (CSS) geometry. It utilizes the quasistatic approximation so that the plasma evolves as a succession of equilibria. The P=P (psi) equilibrium constraint, along with the assumption of infinitely fast axial temperature relaxation on closed field lines, is incorporated. An axially elongated, rectangular plasma is assumed. The axial length is adjusted by the global average condition, or assumed to be fixed. In this paper predictions obtained with the code, and a limited amount of comparison with experimental data are presented

  16. Hot big bang or slow freeze?

    Science.gov (United States)

    Wetterich, C.

    2014-09-01

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze - a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple ;crossover model; without a big bang singularity. In the infinite past space-time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  17. Lead Slowing Down Spectrometer Status Report

    International Nuclear Information System (INIS)

    Warren, Glen A.; Anderson, Kevin K.; Bonebrake, Eric; Casella, Andrew M.; Danon, Yaron; Devlin, M.; Gavron, Victor A.; Haight, R.C.; Imel, G.R.; Kulisek, Jonathan A.; O'Donnell, J.M.; Weltz, Adam

    2012-01-01

    This report documents the progress that has been completed in the first half of FY2012 in the MPACT-funded Lead Slowing Down Spectrometer project. Significant progress has been made on the algorithm development. We have an improve understanding of the experimental responses in LSDS for fuel-related material. The calibration of the ultra-depleted uranium foils was completed, but the results are inconsistent from measurement to measurement. Future work includes developing a conceptual model of an LSDS system to assay plutonium in used fuel, improving agreement between simulations and measurement, design of a thorium fission chamber, and evaluation of additional detector techniques.

  18. Counting graphene layers with very slow electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Ludĕk; Mikmeková, Eliška; Müllerová, Ilona [Institute of Scientific Instruments AS CR, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Lejeune, Michaël [Laboratoire de Physique de la Matière Condensée, Faculté des Sciences d' Amiens, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 2 (France)

    2015-01-05

    The study aimed at collection of data regarding the transmissivity of freestanding graphene for electrons across their full energy scale down to the lowest energies. Here, we show that the electron transmissivity of graphene drops with the decreasing energy of the electrons and remains below 10% for energies below 30 eV, and that the slow electron transmissivity value is suitable for reliable determination of the number of graphene layers. Moreover, electrons incident below 50 eV release adsorbed hydrocarbon molecules and effectively clean graphene in contrast to faster electrons that decompose these molecules and create carbonaceous contamination.

  19. Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Beermann, J.; Boltasseva, Alexandra

    2008-01-01

    Resonant scattering by gold nanostrip antennas due to constructive interference of counterpropagating slow surface plasmon polaritons (SPPs) is analyzed, including the quasistatic limit of ultrasmall antennas, and experimentally demonstrated. The phase of slow SPP reflection by strip ends is foun...

  20. Sustainable Development of Slow Fashion Businesses: Customer Value Approach

    Directory of Open Access Journals (Sweden)

    Sojin Jung

    2016-06-01

    Full Text Available As an alternative to the prevalent fast fashion model, slow fashion has emerged as a way of enhancing sustainability in the fashion industry, yet how slow fashion can enhance profitability is still largely unknown. Based on a customer value creation framework, this study empirically tested a structural model that specified the slow fashion attributes that contribute to creating perceived customer value, which subsequently increases a consumer’s intention to buy and pay a price premium for slow fashion products. An analysis of 221 U.S. consumer data revealed that delivering exclusive product value is significantly critical in creating customer value for slow fashion, and customer value, in turn, positively affects consumers’ purchase intentions. Further analysis also revealed that different slow fashion attributes distinctively affect customer value. This provides potential strategies on which slow fashion businesses can focus to secure an economically sustainable business model, thereby continuously improving environmental and social sustainability with the slow fashion ideal.

  1. Conversion frequence

    International Nuclear Information System (INIS)

    Sauteret, C.

    1987-03-01

    The experimental evidence of short wavelength for laser inertial confinement has strongly increased the interest in high efficiency harmonic conversion of powerful Nd: glass lasers. This work describes our high power harmonic conversion experiments performed using the same laser apparatus for doubling, tripling the three high power 1064 nm P102, OCTAL and PHEBUS lasers. In addition to the understanding the physics of harmonic conversion, this work includes the basic concepts allows us to improve the technique such as non colinear schemes, to extend this method to other frequencies (fourth generation) and to predict some physical limits [fr

  2. Specific frequency bands of amplitude low-frequency oscillation encodes personality.

    Science.gov (United States)

    Wei, Luqing; Duan, Xujun; Zheng, Chunyan; Wang, Shanshan; Gao, Qing; Zhang, Zhiqiang; Lu, Guangming; Chen, Huafu

    2014-01-01

    The biological model of extraversion and neuroticism identified by Eysenck has stimulated increasing interest in uncovering neurobiological substrate of the two fundamental dimensions. Here we aim to explore brain disturbances underlying extraversion and neuroticism in 87 healthy individuals using fractional amplitude of low-frequency fluctuations (LFF) on resting-state functional magnetic resonance imaging. Two different frequency bands, Slow-5 (0.01-0.027 Hz) exhibiting higher power and involving larger brain regions, and Slow-4 (0.027-0.073 Hz) exhibiting less power and emerging locally, were analyzed. Our results showed a positive correlation between LFF amplitude at Slow-5 and extraversion in medial prefrontal cortex and precuneus, important portions of the default mode network, thus suggesting a link between default network activity and personality traits. LFF amplitude at Slow-5 was correlated positively with neuroticism in right posterior portion of the frontal lobe, further validating neuroticism with frontal lateralization. In addition, LFF amplitude at Slow-4 was negatively associated with extraversion and neuroticism in left hippocampus (HIP) and bilateral superior temporal cortex (STC) respectively, supporting the hypothesized (inverse) relationship between extraversion and resting arousal, also implying neural circuit underlying emotional process influencing on personality. Overall, these findings suggest the important relationships, between personality and LFF amplitude dynamic, depend on specific frequency bands. Copyright © 2012 Wiley Periodicals, Inc.

  3. Slow-light effects in photonic crystal membrane lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa

    2015-01-01

    In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted.......In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted....

  4. Elevated variance in heart rate during slow-wave sleep after late-night physical activity.

    Science.gov (United States)

    Bulckaert, Arnoud; Exadaktylos, Vasileios; Haex, Bart; De Valck, Elke; Verbraecken, Johan; Berckmans, Daniel

    2011-04-01

    This study investigates the effect of mild physical activity before bedtime on the sleep pattern and heart rate during the night. Nine healthy subjects underwent a habituation night, a reference night, and a physical induction night. The physical induction night did not alter the sleep pattern. Physical activity before bedtime resulted in higher heart rate variance during slow-wave sleep. The low-frequency/high-frequency component (LF/HF) ratio during slow-wave sleep in the physical induction night was significantly higher than during the reference night. Increased mean heart rate and higher LF/HF ratio are related to decreased parasympathetic dominance. Exercise up to 1 h before bedtime thus seems to modify the quality of sleep.

  5. Geophysics. Migrating tremor off southern Kyushu as evidence for slow slip of a shallow subduction interface.

    Science.gov (United States)

    Yamashita, Y; Yakiwara, H; Asano, Y; Shimizu, H; Uchida, K; Hirano, S; Umakoshi, K; Miyamachi, H; Nakamoto, M; Fukui, M; Kamizono, M; Kanehara, H; Yamada, T; Shinohara, M; Obara, K

    2015-05-08

    Detection of shallow slow earthquakes offers insight into the near-trench part of the subduction interface, an important region in the development of great earthquake ruptures and tsunami generation. Ocean-bottom monitoring of offshore seismicity off southern Kyushu, Japan, recorded a complete episode of low-frequency tremor, lasting for 1 month, that was associated with very-low-frequency earthquake (VLFE) activity in the shallow plate interface. The shallow tremor episode exhibited two migration modes reminiscent of deep tremor down-dip of the seismogenic zone in some other subduction zones: a large-scale slower propagation mode and a rapid reversal mode. These similarities in migration properties and the association with VLFEs strongly suggest that both the shallow and deep tremor and VLFE may be triggered by the migration of episodic slow slip events. Copyright © 2015, American Association for the Advancement of Science.

  6. Circadian regulation of slow waves in human sleep: Topographical aspects.

    Science.gov (United States)

    Lazar, Alpar S; Lazar, Zsolt I; Dijk, Derk-Jan

    2015-08-01

    Slow waves (SWs, 0.5-4Hz) in field potentials during sleep reflect synchronized alternations between bursts of action potentials and periods of membrane hyperpolarization of cortical neurons. SWs decline during sleep and this is thought to be related to a reduction of synaptic strength in cortical networks and to be central to sleep's role in maintaining brain function. A central assumption in current concepts of sleep function is that SWs during sleep, and associated recovery processes, are independent of circadian rhythmicity. We tested this hypothesis by quantifying all SWs from 12 EEG derivations in 34 participants in whom 231 sleep periods were scheduled across the circadian cycle in a 10-day forced-desynchrony protocol which allowed estimation of the separate circadian and sleep-dependent modulation of SWs. Circadian rhythmicity significantly modulated the incidence, amplitude, frequency and the slope of the SWs such that the peaks of the circadian rhythms in these slow-wave parameters were located during the biological day. Topographical analyses demonstrated that the sleep-dependent modulation of SW characteristics was most prominent in frontal brain areas whereas the circadian effect was similar to or greater than the sleep-dependent modulation over the central and posterior brain regions. The data demonstrate that circadian rhythmicity directly modulates characteristics of SWs thought to be related to synaptic plasticity and that this modulation depends on topography. These findings have implications for the understanding of local sleep regulation and conditions such as ageing, depression, and neurodegeneration which are associated with changes in SWs, neural plasticity and circadian rhythmicity. Copyright © 2015. Published by Elsevier Inc.

  7. Polymers having slow release function and their applications

    International Nuclear Information System (INIS)

    Kaetsu, Isao; Yamada, Akio.

    1982-01-01

    The research of giving slow releasing property to drugs by compounding them with suitable matrices and forming has been carried out actively in order to minimize the adverse effect, to reduce the frequency of administration and to improve the bioavailability of such drugs. The slow release function of drugs may be acquired by the copolymerization with synthetic and natural polymers. Drugs are mixed with monomers, and the mixture is polymerized by means of heat, light or radiation (gamma ray or electron beam). Various physical and chemical factors influencing on the rate of release are shown. The compound capsules of drugs and polymers may be used for chemotherapy, enzyme and hormone therapy, immunotherapy, artificial organs, medical and pharmaceutical applications in the form of suppositary, and administration by mucous membrane, subcutaneous and intra-fascia contact or burying. Mytomycin (MMC) of 1.6 mg/kg (LD 50 of i.v. injection) or 3.2 mg/kg (LD 50 x 2) was implanted in the abdomen of dogs. The release of MMC from the implanted capsules was relatively localized to the vicinity of implantation. More hydrophilic polymer (39 % water retention, for example, hydroxyethylmetacrylate polymer) gave more death (toxicity) cases than less hydrophilic one (2 % water retention, for example, diethylglycoldimetacrylate polymer) in the mice with Ehrlich ascites cancer cells, 5 x 10 6 cells/0.2 ml. Because of the nature of locally limited release of the drug, the capsules of anti-cancer drugs, analgesics, antibiotics, hormone, etc. should be delivered to disease foci by means of a fiber scope technique, or intravascular microcapsules. (Yamashita, S.)

  8. Excitation of surface plasma waves over corrugated slow-wave ...

    Indian Academy of Sciences (India)

    Abstract. A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between ...

  9. Slow features nonnegative matrix factorization for temporal data decomposition

    NARCIS (Netherlands)

    Zafeiriou, Lazaros; Nikitidis, Symeon; Zafeiriou, Stefanos; Pantic, Maja

    2014-01-01

    In this paper, we combine the principles of temporal slowness and nonnegative parts-based learning into a single framework that aims to learn slow varying parts-based representations of time varying sequences. We demonstrate that the proposed algorithm arises naturally by embedding the Slow Features

  10. Good, Clean, Fair: The Rhetoric of the Slow Food Movement

    Science.gov (United States)

    Schneider, Stephen

    2008-01-01

    This article outlines the origins of the Slow Food movement before examining the ways in which Slow Food rhetoric seeks to redefine gastronomy and combat the more deleterious effects of globalization. In articulating a new gastronomy, Slow Food founder Carlo Petrini attempts to reconstruct the gastronomy of Jean Anthelme Brillat-Savarin, at once…

  11. Slow Photons for Photocatalysis and Photovoltaics.

    Science.gov (United States)

    Liu, Jing; Zhao, Heng; Wu, Min; Van der Schueren, Benoit; Li, Yu; Deparis, Olivier; Ye, Jinhua; Ozin, Geoffrey A; Hasan, Tawfique; Su, Bao-Lian

    2017-05-01

    Solar light is widely recognized as one of the most valuable renewable energy sources for the future. However, the development of solar-energy technologies is severely hindered by poor energy-conversion efficiencies due to low optical-absorption coefficients and low quantum-conversion yield of current-generation materials. Huge efforts have been devoted to investigating new strategies to improve the utilization of solar energy. Different chemical and physical strategies have been used to extend the spectral range or increase the conversion efficiency of materials, leading to very promising results. However, these methods have now begun to reach their limits. What is therefore the next big concept that could efficiently be used to enhance light harvesting? Despite its discovery many years ago, with the potential for becoming a powerful tool for enhanced light harvesting, the slow-photon effect, a manifestation of light-propagation control due to photonic structures, has largely been overlooked. This review presents theoretical as well as experimental progress on this effect, revealing that the photoreactivity of materials can be dramatically enhanced by exploiting slow photons. It is predicted that successful implementation of this strategy may open a very promising avenue for a broad spectrum of light-energy-conversion technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Factors Contributing Decreased Performance Of Slow Learners

    Directory of Open Access Journals (Sweden)

    Dr. L. Kannan

    2015-03-01

    Full Text Available Back ground Even experienced teaching faculty and administrators can be challenged by learners who have not able to perform up to expected need in their annual performance of their students these students are called as slow learnersStruggle learners. There should be a designed study to foster discussion about diagnosing particular problems that contribute with meeting objectives of slow learners. Methodology The study was performed on the entire current first year of Medical students were all the three internal assessments of 250 students performance is taken in to consideration for the study. This study is of cross section type.After obtaining the list of all students marks in internal examination from medical education unit supporting mentors are contacted to meet the students and confidentiality is maintained throughout the study. After obtaining informed consent a questionnaire was administered to the students by the investigator. The questionnaire contains the following sections. Section I will be on the background characteristics of the student name age sex type of family. Section II will be on the details of their learning capabilities. Section III will focus on the awareness of the slow learners in which the precipitating factors contributing to them. Results The prevalence of slow learners as low achievers were contributed to be 32.4 percentages.The performance of the students is based on combination of all three internal assessment marks including theory and practical performance. In this the students age ranges from 17 to 21 years the mean age of student was contributed to be 17.81 and majority of the students were in the age group of 18 years which contributed to be 16867.2.In the present study majority were males 13252.8 compared to females 11847.2.but when study is compared to percentage of attendance majority of the individual 15177 scored more than 50 percentage of marks have more than 80 percentage of attendance but when

  13. Slow waves in microchannel metal waveguides and application to particle acceleration

    OpenAIRE

    L. C. Steinhauer; W. D. Kimura

    2003-01-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong ex...

  14. Analysis of waves in the plasma guided by a periodical vane-type slow wave structure

    International Nuclear Information System (INIS)

    Wu, T.J.; Kou, C.S.

    2005-01-01

    In this study, the dispersion relation has been derived to characterize the propagation of the waves in the plasma guided by a periodical vane-type slow wave structure. The plasma is confined by a quartz plate. Results indicate that there are two different waves in this structure. One is the plasma mode that originates from the plasma surface wave propagating along the interface between the plasma and the quartz plate, and the other is the guide mode that originally travels along the vane-type slow wave structure. In contrast to its original slow wave characteristics, the guide mode becomes a fast wave in the low-frequency portion of the passband, and there exists a cut-off frequency for the guide mode. The vane-type guiding structure has been shown to limit the upper frequency of the passband of the plasma mode, compared with that of the plasma surface wave. In addition, the passband of the plasma mode increases with the plasma density while it becomes narrower for the guide mode. The influences of the parameters of the guiding structure and plasma density on the propagation of waves are also presented

  15. Transverse-electric and transverse-magnetic mode slow light propagation in a two-dimensional photonic crystal waveguide.

    Science.gov (United States)

    Wang, Donglin; Yu, Zhongyuan; Liu, Yumin; Guo, Xiaotao; Shu, Changgan; Zhou, Shuai

    2013-09-10

    A two-dimensional photonic crystal waveguide structure is designed for both TE- and TM-mode slow light propagation. The minimum group index of the waveguide for TE and TM modes can reach to 137.8 and 126.4, and the two polarizations have the same slow light frequency region. The designed structure can provide a large bandwidth range with very low group velocity dispersion for both TE and TM modes. The transmission property investigation for a suspended two-dimensional slab photonic crystal waveguide (PCW) indicates that such slow light character may be retained when perfect reflectors can be fixed on the horizontal surfaces of the slab. Such high group index for both TE and TM modes in two-dimensional PCWs is, to the best of our knowledge, first reported here, and may provide some useful guides for slow light research in theory.

  16. Slow Progress in Dune (Left Front Wheel)

    Science.gov (United States)

    2005-01-01

    The left front wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's front hazard identification camera over a period of several days. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.

  17. Slow Progress in Dune (Left Rear Wheel)

    Science.gov (United States)

    2005-01-01

    The left rear wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's rear hazard identification camera over a period of several days. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.

  18. Slow Progress in Dune (Right Rear Wheel)

    Science.gov (United States)

    2005-01-01

    The right rear wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's rear hazard identification camera over a period of several days. The wheel is largely hidden by a cable bundle. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.

  19. Slow Progress in Dune (Right Front Wheel)

    Science.gov (United States)

    2005-01-01

    The right front wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's front hazard identification camera over a period of several days. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.

  20. Slow creep in soft granular packings.

    Science.gov (United States)

    Srivastava, Ishan; Fisher, Timothy S

    2017-05-14

    Transient creep mechanisms in soft granular packings are studied numerically using a constant pressure and constant stress simulation method. Rapid compression followed by slow dilation is predicted on the basis of a logarithmic creep phenomenon. Characteristic scales of creep strain and time exhibit a power-law dependence on jamming pressure, and they diverge at the jamming point. Microscopic analysis indicates the existence of a correlation between rheology and nonaffine fluctuations. Localized regions of large strain appear during creep and grow in magnitude and size at short times. At long times, the spatial structure of highly correlated local deformation becomes time-invariant. Finally, a microscale connection between local rheology and local fluctuations is demonstrated in the form of a linear scaling between granular fluidity and nonaffine velocity.

  1. Hot big bang or slow freeze?

    International Nuclear Information System (INIS)

    Wetterich, C.

    2014-01-01

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe

  2. Hot big bang or slow freeze?

    Energy Technology Data Exchange (ETDEWEB)

    Wetterich, C.

    2014-09-07

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  3. Hot big bang or slow freeze?

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2014-09-01

    Full Text Available We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  4. Reflection of Slow Electrons from Solid Surface

    Science.gov (United States)

    Mustafaev, Alexander; Ainov, Matsak; Kaganovich, Igor; Demidov, Vladimir

    2013-09-01

    Given that progress of future plasma technologies depends on control of electron coefficient reflection r0, the development of methods of measurement and control of r0 is of great importance. Published experimental data on r0 for slow electrons are inconsistent and sometime give large values up to r0 ~ 0 , 8 and even higher. This talk presents a technique for r0 measurements in low pressure plasmas in the presence of transverse magnetic field. It is found that for poly-crystal surface, effective reflection coefficient can really reach value of 0.8. It is demonstrated that it is connected to additional reflection from potential barrier near the surfaces. The contribution of electron reflection from the barrier and the surface has been divided and studied. The data have been confirmed at different mono-crystal surfaces. This work was supported by DoE Fusion Energy Sciences contract DE-SC0001939 and Education Ministry of the RF.

  5. Dynamic analysis of the conditional oscillator underlying slow waves in thalamocortical neurons

    Directory of Open Access Journals (Sweden)

    Francois eDavid

    2016-02-01

    Full Text Available During non-REM sleep the EEG shows characteristics waves that are generated by the dynamic interactions between cortical and thalamic oscillators. In thalamic neurons, low-threshold T-type Ca2+ channels play a pivotal role in almost every type of neuronal oscillations, including slow (<1 Hz waves, sleep spindles and delta waves. The transient opening of T channels gives rise to the low threshold spikes (LTSs, and associated high frequency bursts of action potentials, that are characteristically present during sleep spindles and delta waves, whereas the persistent opening of a small fraction of T channels, (i.e. ITwindow is responsible for the membrane potential bistability underlying sleep slow oscillations. Surprisingly thalamocortical (TC neurons express a very high density of T channels that largely exceed the amount required to generate LTSs and therefore, to support certain, if not all, sleep oscillations. Here, to clarify the relationship between T current density and sleep oscillations, we systematically investigated the impact of the T conductance level on the intrinsic rhythmic activities generated in TC neurons, combining in vitro experiments and TC neuron simulation. Using bifurcation analysis, we provide insights into the dynamical processes taking place at the transition between slow and delta oscillations. Our results show that although stable delta oscillations can be evoked with minimal T conductance, the full range of slow oscillation patterns, including groups of delta oscillations separated by Up states (grouped-delta slow waves requires a high density of T channels. Moreover, high levels of T conductance ensure the robustness of different types of slow oscillations.

  6. Precursory slow crustal deformation before short-term slow slip event in January 2006, recorded at Shingu borehole station southern Kii Peninsula

    Science.gov (United States)

    Fukuda, M.; Sagiya, T.

    2007-12-01

    In January 2006, a deep low frequency tremor activity and an associated short-term slow slip event occurred in the eastern Kii Peninsula and this coupled activity migrated to the northeast at a rate of 10km/day. We are monitoring crustal deformation at Shingu borehole station in the southeastern Kii peninsula. The Shingu borehole site is located about 100km landward from the Nankai Trough axis, and close to the epicenter of the 1944 Tonankai Earthquake. The borehole is 500 m deep and is equipped with an integrated multi-component borehole monitoring system developed by Ishii et al. (2002), consisting of 6 strain sensors (4 in horizontal, 2 in vertical), 2 pendulum tilt sensors, a magnetic direction finder, and a quartz thermometer. Each signal is originally recorded with a sampling frequency of 50 Hz. We decimated the original data into hourly data, which we decomposed into tidal response, barometric response, smoothed trend and random noise component by applying BAYTAP-G software [Tamura et al., 1991]. In the trend component from November 2005 to March 2006, we did not found deformation signal at the time of the Jan. 2006 tremor event. However, we found three significant slow strain changes from the processed records. Two of them coincide with the occurrence of the tremor activities in the southern Kii Peninsula, and are characterized by N-S contraction (0.019-0.031 ppm) and E-W extension (0.025-0.038 ppm). These are the first evidence of the short-term slow slip event in this area. The third change is characterized by NW-SE extension (0.026 ppm), N-S contraction (0.012 ppm), E-W extension (0.022 ppm), and southwestward tilting (0.23 micro rad). It occurred from December 29, 2005 to January 2, 2006, just before the tremor and slip event in January 2006, but was not accompanied by any tremor activity. We conducted a series of inversion analysis to infer the source of this possible slow slip event. We assumed that the slow slip event was caused by a reverse fault

  7. Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans

    DEFF Research Database (Denmark)

    Groppa, S; Bergmann, T O; Siems, C

    2010-01-01

    Constant transcranial direct stimulation (c-tDCS) of the primary motor hand area (M1(HAND)) can induce bidirectional shifts in motor cortical excitability depending on the polarity of tDCS. Recently, anodal slow oscillation stimulation at a frequency of 0.75 Hz has been shown to augment intrinsic...

  8. Demand as frequency controlled reserve

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Togeby, M.; OEstergaard, J.

    2008-09-15

    Using demand as frequency controlled reserve (DFR) is an emerging technology which allow demand to participate actively in maintaining the system operation without reducing the energy service delivered to the customer and without need of user interaction. The basic premise is that traditional frequency controlled reserves from power plants and interconnections with neighbouring systems can be costly, slow and not fulfil the need for future power grids with a high share of wind power and fewer central power plants, and an intention to perform flexible operation such as is landing. Electricity demands, on the other hand, have advantages as frequency reserve including fast activation speed, smooth linear activation, low expected costs, and well-dispersed in the distribution grid. The main challenge of DFR is new methods for monitoring the available capacity. This project has investigated the technology of using electricity demands for providing frequency reserve to power systems. Within the project the potential and economy of DFR compatible loads in Denmark has been investigated, control logic has been designed, power system impact has been investigated, potential business models has been evaluated and an implementation strategy has been suggested. The tasks and goals of the project have been successfully accomplished based on which the conclusion and future recommendation are made. This project has developed the DFR technology that enables electricity demands to autonomously disconnect or reconnect to the grid in response to system frequency variations. The developed DFR technology is proved to be a promising technology from several perspectives. Technically, using DFR is feasible to provide reserves and enhance power system frequency control, while fulfilling technical requirements such as linear activation (or reconnection) according to frequency (or time). Environmentally, the DFR technology is pollution free in contrast to traditional reserves from generation

  9. A theoretical analysis of anatomical and functional intestinal slow wave re-entry.

    Science.gov (United States)

    Du, Peng; O'Grady, Gregory; Cheng, Leo K

    2017-07-21

    Intestinal bioelectrical slow waves are a key regulator of intestinal motility. Peripheral pacemakers, ectopic initiations and sustained periods of re-entrant activities have all been experimentally observed to be important factors in setting the frequency of intestinal slow waves, but the tissue-level mechanisms underpinning these activities are unclear. This theoretical analysis aimed to define the initiation, maintenance, and termination criteria of two classes of intestinal re-entrant activities: anatomical re-entry and functional re-entry. Anatomical re-entry was modeled in a three-dimensional (3D) cylindrical model, and functional rotor was modeled in a 2D rectangle model. A single-pulse stimulus was used to invoke an anatomical re-entry and a prolonged refractory block was used to invoke the rotor. In both cases, the simulated re-entrant activities operated at frequencies above the baseline entrainment frequency. The anatomical re-entry simulation results demonstrated that a temporary functional refractory block would be required to initiate the re-entrant activity in a single direction around the cylindrical model. The rotor could be terminated by a single-pulse stimulus delivered around the core of the rotor. In conclusion, the simulation results provide the following new insights into the mechanisms of intestinal re-entry: (i) anatomical re-entry is only maintained within a specific range of velocities, outside of which the re-entrant activities become either an ectopic activity or simultaneous activations of the intestinal wall; (ii) a maintained rotor entrained slow waves faster in the antegrade direction than in the retrograde direction. Simulations are shown to be a valuable tool for achieving novel insights into the mechanisms of intestinal slow wave dysrhythmia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Construction report of the PF slow-positron source. 1

    International Nuclear Information System (INIS)

    Enomoto, Atsushi; Kurihara, Toshikazu; Kobayashi, Hitoshi

    1993-12-01

    The slow positron source utilizing the electron beam of the 2.5 GeV electron beam accelerator which is the synchrotron radiation injector is being constructed. The outline of the project and the present state of construction are reported. As of November, 1993, by injecting the electron beam of about 10 W to the targets for producing positrons, the slow positrons of 4 x 10 4 e + /s has been obtained in the laboratory. Finally, with the electron beam of 30 kW, it is aimed at to obtain the slow positron beam of 2 x 10 9 e + /s. In the slow positron source, the electron beam from the 2.5 GeV linear accelerator is used as the primary beam. This beam is led to the target with electromagnets. Radiation shields were strengthened, and the electrostatic lens system was attached to efficiently extract and send out slow positrons. The conveying system for slow positrons is explained. Primary electron beam, target and moderator for producing slow positrons, the change to continuous current of pulsed slow positron beam and the heightening of luminance of slow positron beam, and the experiment on the utilization of slow positron beam, and the control system for positron conveyance path are reported. (K.I.)

  11. [Topographic mapping of slow cortical response in guinea pigs].

    Science.gov (United States)

    Zhang, Y; Jiang, S; Gu, R

    1997-06-01

    Auditory slow cortical responses (SCR) were studied in 10 awake guinea pigs using topographic mapping techniques. Fourteen electrodes were installed through the guinea pig skull and fixed with dental cement. Auditory SCRs were recorded via 13 leads and brain maps were realized on a concerto system. The results showed that SCRs were relatively stable at the temporal lobe, with a stable positivity (31.25-37.50 ms TP) followed by a negativity (62.50-72.50 ms TN). Variability was seen at other leads. The foci of maximum positivity and negativity were seen at the temporal cortex. The results suggest that there are multiple contributions to SCRs which partially overlap in time, and that auditory cortex contribute significantly more than other sources. SCRs also received auditory information in parallel from the brainstem. The focus of AM-evoked SCRs was seen located at temporal lobe while that of FM-evoked SCRs at temporal and frontal lobes. It suggests that intensity analysis is essentially completed at the temporal cortex whereas precise frequency discrimination relies on function of higher integrating centers.

  12. The 2012 Mw5.6 earthquake in Sofia seismogenic zone - is it a slow earthquake

    Science.gov (United States)

    Raykova, Plamena; Solakov, Dimcho; Slavcheva, Krasimira; Simeonova, Stela; Aleksandrova, Irena

    2017-04-01

    Recently our understanding of tectonic faulting has been shaken by the discoveries of seismic tremor, low frequency earthquakes, slow slip events, and other models of fault slip. These phenomenas represent models of failure that were thought to be non-existent and theoretically impossible only a few years ago. Slow earthquakes are seismic phenomena in which the rupture of geological faults in the earth's crust occurs gradually without creating strong tremors. Despite the growing number of observations of slow earthquakes their origin remains unresolved. Studies show that the duration of slow earthquakes ranges from a few seconds to a few hundred seconds. The regular earthquakes with which most people are familiar release a burst of built-up stress in seconds, slow earthquakes release energy in ways that do little damage. This study focus on the characteristics of the Mw5.6 earthquake occurred in Sofia seismic zone on May 22nd, 2012. The Sofia area is the most populated, industrial and cultural region of Bulgaria that faces considerable earthquake risk. The Sofia seismic zone is located in South-western Bulgaria - the area with pronounce tectonic activity and proved crustal movement. In 19th century the city of Sofia (situated in the centre of the Sofia seismic zone) has experienced two strong earthquakes with epicentral intensity of 10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK64).The 2012 quake occurs in an area characterized by a long quiescence (of 95 years) for moderate events. Moreover, a reduced number of small earthquakes have also been registered in the recent past. The Mw5.6 earthquake is largely felt on the territory of Bulgaria and neighbouring countries. No casualties and severe injuries have been reported. Mostly moderate damages were observed in the cities of Pernik and Sofia and their surroundings. These observations could be assumed indicative for a

  13. Genetic factors associated with slow progression of HIV among perinatally-infected Indian children.

    Science.gov (United States)

    Chaudhuri, Riya Pal; Neogi, Ujjwal; Rao, Shwetha D; Shet, Anita

    2014-10-01

    To study the association between common AIDS restriction genes and slow disease progression among perinatally-infected children in India. ART-naïve children were identified and selected host factors including CCR5-∆32, SDF1-3'A, CCR5-59029G, HLA-B*27, B*57 were studied using allele-specific PCR-RFLP and SSPGo HLA typing kits. Among 165 children, 10 (6%) long-term non-progressors and 8 (5%) slow progressors were identified. For comparison, 12 children with normal progression of HIV were included. The frequencies of CCR5-∆32 deletion, SDF1-3'A and CCR5-59029G did not differ significantly. HLA-B*27 and B*57 were observed only in long-term non-progressors or slow progressors, who also harbored either SDF1-3'A and/or CCR5-59029G. There is an association between host genetic factors and slow disease progression in this population.

  14. Slow-roll approximation in loop quantum cosmology

    International Nuclear Information System (INIS)

    Luc, Joanna; Mielczarek, Jakub

    2017-01-01

    The slow-roll approximation is an analytical approach to study dynamical properties of the inflationary universe. In this article, systematic construction of the slow-roll expansion for effective loop quantum cosmology is presented. The analysis is performed up to the fourth order in both slow-roll parameters and the parameter controlling the strength of deviation from the classical case. The expansion is performed for three types of the slow-roll parameters: Hubble slow-roll parameters, Hubble flow parameters and potential slow-roll parameters. An accuracy of the approximation is verified by comparison with the numerical phase space trajectories for the case with a massive potential term. The results obtained in this article may be helpful in the search for the subtle quantum gravitational effects with use of the cosmological data.

  15. Slow positron beam at the JINR, Dubna

    Directory of Open Access Journals (Sweden)

    Horodek Paweł

    2015-12-01

    Full Text Available The Low Energy Positron Toroidal Accumulator (LEPTA at the Joint Institute for Nuclear Research (JINR proposed for generation of positronium in flight has been adopted for positron annihilation spectroscopy (PAS. The positron injector generates continuous slow positron beam with positron energy range between 50 eV and 35 keV. The radioactive 22Na isotope is used. In distinction to popular tungsten foil, here the solid neon is used as moderator. It allows to obtain the beam intensity of about 105 e+/s width energy spectrum characterized by full width at half maximum (FWHM of 3.4 eV and a tail to lower energies of about 30 eV. The paper covers the characteristic of variable energy positron beam at the LEPTA facility: parameters, the rule of moderation, scheme of injector, and transportation of positrons into the sample chamber. Recent status of the project and its development in the field of PAS is discussed. As an example, the measurement of the positron diffusion length in pure iron is demonstrated.

  16. Predictors of slow colonic transit in children.

    Science.gov (United States)

    Ridha, Zainab; Quinn, Rakesh; Croaker, Geoffrey David Hain

    2015-02-01

    Slow transit constipation (STC) and functional fecal retention (FFR) are two forms of severe intractable constipation in childhood diagnosed by nuclear transit studies (NTS). This retrospective study aims to identify the predicting factors for STC and FFR by looking at the association with neuropsychiatric disorders (NPD), obesity, family history of constipation and atopic disease. A retrospective chart review was conducted on children with intractable constipation referred for NTS between 1st April 2003 and 1st April 2014. Comparisons were made between STC, FFR and normal transit patients with regards to NPD, obesity (BMI z score >95th percentile), family history of constipation in first and second-degree relatives and atopic disease which included food allergy, asthma and eczema. Between 2003 and 2014, 97 patients were referred for a NTS. Out of 36 patients with NPD, 21 (58.3 %) had STC and 13 (36.1 %) had FFR (p < 0.05). 15.8 % of patients with constipation were obese, compared to 6.4 % in the general Australian paediatric population (p < 0.05). There was no significant association between constipation and atopic disease or family history. Neuropsychiatric disorders, in particular autism, are useful predictors of STC and FFR in children. Obesity may be associated with a higher risk of developing chronic constipation.

  17. Slow beam raster system at CEBAF

    International Nuclear Information System (INIS)

    Yan, C.; Beaufait, J.; Carlini, R.; Cuevas, C.; Vulcan, W.; Wines, R.

    1994-01-01

    A bedstead air-core raster magnet is being installed now, it will be used at CEBAF to scan the beam on the Hall C polarized target and the beam dump with fixed frequency 60 Hz in horizontal, 103.4 Hz in vertical. The x and y raster magnets are driven by Variac transformer and SUMIT-OMO inverter respectively. Both of them provide an approximate sine current waveform with peak current 20 A, corresponding to a maximum deflection angle 1 mr

  18. PRINCIPLES OF SLOW TRAVEL APPLIED TO TOURIST LEISURE CONTEMPORARY

    OpenAIRE

    Bauer, Rafael Chequer; Netto, Alexandre Panosso

    2014-01-01

    The article shows the concept of Slow Travel, a travel’s modality based in a new perspective of touristic use considering a slowdown style. In this way, the paper analyses the context of growing and development about Slow Travel, including its ideological matrix based in industrial revolution’s contestation, specially about the acceleration noted at contemporary society and its application inside the leisure and travel universes. At least, shows the main characteristics of Slow Travel, and it...

  19. Slow waves in microchannel metal waveguides and application to particle acceleration

    Directory of Open Access Journals (Sweden)

    L. C. Steinhauer

    2003-06-01

    Full Text Available Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO_{2} lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ∼0.6  mm. The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  20. REM sleep behaviour disorder is associated with lower fast and higher slow sleep spindle densities.

    Science.gov (United States)

    O'Reilly, Christian; Godin, Isabelle; Montplaisir, Jacques; Nielsen, Tore

    2015-12-01

    To investigate differences in sleep spindle properties and scalp topography between patients with rapid eye movement sleep behaviour disorder (RBD) and healthy controls, whole-night polysomnograms of 35 patients diagnosed with RBD and 35 healthy control subjects matched for age and sex were compared. Recordings included a 19-lead 10-20 electroencephalogram montage and standard electromyogram, electrooculogram, electrocardiogram and respiratory leads. Sleep spindles were automatically detected using a standard algorithm, and their characteristics (amplitude, duration, density, frequency and frequency slope) compared between groups. Topological analyses of group-discriminative features were conducted. Sleep spindles occurred at a significantly (e.g. t34 = -4.49; P = 0.00008 for C3) lower density (spindles ∙ min(-1) ) for RBD (mean ± SD: 1.61 ± 0.56 for C3) than for control (2.19 ± 0.61 for C3) participants. However, when distinguishing slow and fast spindles using thresholds individually adapted to the electroencephalogram spectrum of each participant, densities smaller (31-96%) for fast but larger (20-120%) for slow spindles were observed in RBD in all derivations. Maximal differences were in more posterior regions for slow spindles, but over the entire scalp for fast spindles. Results suggest that the density of sleep spindles is altered in patients with RBD and should therefore be investigated as a potential marker of future neurodegeneration in these patients. © 2015 European Sleep Research Society.

  1. Slow waves in microchannel metal waveguides and application to particle acceleration

    Science.gov (United States)

    Steinhauer, L. C.; Kimura, W. D.

    2003-06-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  2. The Persistence of a Slow Manifold with Bifurcation

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall; Palmer, P.; Robert, M.

    2012-01-01

    his paper considers the persistence of a slow manifold with bifurcation in a slow-fast two degree of freedom Hamiltonian system. In particular, we consider a system with a supercritical pitchfork bifurcation in the fast space which is unfolded by the slow coordinate. The model system is motivated...... by tethered satellites. It is shown that an almost full measure subset of a neighborhood of the slow manifold's normally elliptic branches persists in an adiabatic sense. We prove this using averaging and a blow-up near the bifurcation....

  3. Threshold Characteristics of Slow-Light Photonic Crystal Lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa

    2016-01-01

    The threshold properties of photonic crystal quantum dot lasers operating in the slow-light regime are investigated experimentally and theoretically. Measurements show that, in contrast to conventional lasers, the threshold gain attains a minimum value for a specific cavity length. The experimental...... results are explained by an analytical theory for the laser threshold that takes into account the effects of slow light and random disorder due to unavoidable fabrication imperfections. Longer lasers are found to operate deeper into the slow-light region, leading to a trade-off between slow-light induced...

  4. Finding flicker: critical differences in temporal frequency capture attention.

    Science.gov (United States)

    Cass, John; Van der Burg, Erik; Alais, David

    2011-01-01

    Rapid visual flicker is known to capture attention. Here we show slow flicker can also capture attention under reciprocal temporal conditions. Observers searched for a target line (vertical or horizontal) among tilted distractors. Distractor lines were surrounded by luminance modulating annuli, all flickering sinusoidally at 1.3 or 12.1 Hz, while the target's annulus flickered at frequencies within this range. Search times improved with increasing target/distractor frequency differences. For target-distractor frequency separations >5 Hz reaction times were minimal with high-frequency targets correctly identified more rapidly than low frequency targets (~400 ms). Critically, however, at these optimal frequency separations search times for low and high-frequency targets were unaffected by set size (slow flicker popped out from high flicker, and vice versa), indicating parallel and symmetric search performance when searching for high or low frequency targets. In a "cost" experiment using 1.3 and 12.1 Hz flicker, the unique flickering annulus sometimes surrounded a distractor and, on other trials, surrounded the target. When centered on a distractor, the unique frequency produced a clear and symmetrical search cost. Together, these symmetric pop-out and search costs demonstrate that temporal frequency is a pre-attentive visual feature capable of capturing attention, and that it is relative rather than absolute frequencies that are critical. The shape of the search functions strongly suggest that early visual temporal frequency filters underlie these effects.

  5. Rapid identification of slow healing wounds.

    Science.gov (United States)

    Jung, Kenneth; Covington, Scott; Sen, Chandan K; Januszyk, Michael; Kirsner, Robert S; Gurtner, Geoffrey C; Shah, Nigam H

    2016-01-01

    Chronic nonhealing wounds have a prevalence of 2% in the United States, and cost an estimated $50 billion annually. Accurate stratification of wounds for risk of slow healing may help guide treatment and referral decisions. We have applied modern machine learning methods and feature engineering to develop a predictive model for delayed wound healing that uses information collected during routine care in outpatient wound care centers. Patient and wound data was collected at 68 outpatient wound care centers operated by Healogics Inc. in 26 states between 2009 and 2013. The dataset included basic demographic information on 59,953 patients, as well as both quantitative and categorical information on 180,696 wounds. Wounds were split into training and test sets by randomly assigning patients to training and test sets. Wounds were considered delayed with respect to healing time if they took more than 15 weeks to heal after presentation at a wound care center. Eleven percent of wounds in this dataset met this criterion. Prognostic models were developed on training data available in the first week of care to predict delayed healing wounds. A held out subset of the training set was used for model selection, and the final model was evaluated on the test set to evaluate discriminative power and calibration. The model achieved an area under the curve of 0.842 (95% confidence interval 0.834-0.847) for the delayed healing outcome and a Brier reliability score of 0.00018. Early, accurate prediction of delayed healing wounds can improve patient care by allowing clinicians to increase the aggressiveness of intervention in patients most at risk. © 2015 by the Wound Healing Society.

  6. Automated selective disruption of slow wave sleep.

    Science.gov (United States)

    Ooms, Sharon J; Zempel, John M; Holtzman, David M; Ju, Yo-El S

    2017-04-01

    Slow wave sleep (SWS) plays an important role in neurophysiologic restoration. Experimentally testing the effect of SWS disruption previously required highly time-intensive and subjective methods. Our goal was to develop an automated and objective protocol to reduce SWS without affecting sleep architecture. We developed a custom Matlab™ protocol to calculate electroencephalogram spectral power every 10s live during a polysomnogram, exclude artifact, and, if measurements met criteria for SWS, deliver increasingly louder tones through earphones. Middle-aged healthy volunteers (n=10) each underwent 2 polysomnograms, one with the SWS disruption protocol and one with sham condition. The SWS disruption protocol reduced SWS compared to sham condition, as measured by spectral power in the delta (0.5-4Hz) band, particularly in the 0.5-2Hz range (mean 20% decrease). A compensatory increase in the proportion of total spectral power in the theta (4-8Hz) and alpha (8-12Hz) bands was seen, but otherwise normal sleep features were preserved. N3 sleep decreased from 20±34 to 3±6min, otherwise there were no significant changes in total sleep time, sleep efficiency, or other macrostructural sleep characteristics. This novel SWS disruption protocol produces specific reductions in delta band power similar to existing methods, but has the advantage of being automated, such that SWS disruption can be performed easily in a highly standardized and operator-independent manner. This automated SWS disruption protocol effectively reduces SWS without impacting overall sleep architecture. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The slow collisional E×B ion drift characterized as the major instability mechanism of a poorly magnetized plasma column with an inward-directed radial electric field

    Energy Technology Data Exchange (ETDEWEB)

    Pierre, Thiéry [Centre National de la Recherche Scientifique, UMR 7345 Laboratoire PIIM, Aix*Marseille University, Marseille (France)

    2016-04-15

    The low-frequency instability of a cylindrical poorly magnetized plasma with an inward-directed radial electric field is studied changing the gas pressure and the ion cyclotron frequency. The unstable frequency always decreases when the gas pressure is increased indicating collisional effects. At a fixed pressure, the unstable frequency increases with the magnetic field when the B-field is low and decreases at larger magnetic field strength. We find that the transition between these two regimes is obtained when the ion cyclotron frequency equals the ion-neutrals collision frequency. This is in agreement with the theory of the slow-ion drift instability induced by the collisional slowing of the electric ion drift [A. Simon, Phys. Fluids 6, 382 (1963)].

  8. Slow GABAA mediated synaptic transmission in rat visual cortex

    Directory of Open Access Journals (Sweden)

    Sceniak Michael P

    2008-01-01

    Full Text Available Abstract Background Previous reports of inhibition in the neocortex suggest that inhibition is mediated predominantly through GABAA receptors exhibiting fast kinetics. Within the hippocampus, it has been shown that GABAA responses can take the form of either fast or slow response kinetics. Our findings indicate, for the first time, that the neocortex displays synaptic responses with slow GABAA receptor mediated inhibitory postsynaptic currents (IPSCs. These IPSCs are kinetically and pharmacologically similar to responses found in the hippocampus, although the anatomical specificity of evoked responses is unique from hippocampus. Spontaneous slow GABAA IPSCs were recorded from both pyramidal and inhibitory neurons in rat visual cortex. Results GABAA slow IPSCs were significantly different from fast responses with respect to rise times and decay time constants, but not amplitudes. Spontaneously occurring GABAA slow IPSCs were nearly 100 times less frequent than fast sIPSCs and both were completely abolished by the chloride channel blocker, picrotoxin. The GABAA subunit-specific antagonist, furosemide, depressed spontaneous and evoked GABAA fast IPSCs, but not slow GABAA-mediated IPSCs. Anatomical specificity was evident using minimal stimulation: IPSCs with slow kinetics were evoked predominantly through stimulation of layer 1/2 apical dendritic zones of layer 4 pyramidal neurons and across their basal dendrites, while GABAA fast IPSCs were evoked through stimulation throughout the dendritic arborization. Many evoked IPSCs were also composed of a combination of fast and slow IPSC components. Conclusion GABAA slow IPSCs displayed durations that were approximately 4 fold longer than typical GABAA fast IPSCs, but shorter than GABAB-mediated inhibition. The anatomical and pharmacological specificity of evoked slow IPSCs suggests a unique origin of synaptic input. Incorporating GABAA slow IPSCs into computational models of cortical function will help

  9. Right frontal gamma and beta band enhancement while solving a spatial puzzle with insight.

    Science.gov (United States)

    Rosen, A; Reiner, M

    2017-12-01

    Solving a problem with an "a-ha" effect is known as insight. Unlike incremental problem solving, insight is sudden and unique, and the question about its distinct brain activity, intrigues many researchers. In this study, electroencephalogram signals were recorded from 12 right handed, human participants before (baseline) and while they solved a spatial puzzle known as the '10 coin puzzle' that could be solved incrementally or by insight. Participants responded as soon as they reached a solution and reported whether the process was incremental or by sudden insight. EEG activity was recorded from 19 scalp locations. We found significant differences between insight and incremental solvers in the Gamma and Beta 2 bands in frontal areas (F8) and in the alpha band in right temporal areas (T6). The right-frontal gamma indicates a process of restructuring which leads to an insight solution, in spatial problems, further suggesting a universal role of gamma in restructuring. These results further suggest that solving a spatial puzzle via insight requires exclusive brain areas and neurological-cognitive processes which may be important for meta-cognitive components of insight solutions, including attention and monitoring of the solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Resting EEG in Alpha and Beta Bands Predicts Individual Differences in Attentional Blink Magnitude

    Science.gov (United States)

    MacLean, Mary H.; Arnell, Karen M.; Cote, Kimberly A.

    2012-01-01

    Accuracy for a second target (T2) is reduced when it is presented within 500 ms of a first target (T1) in a rapid serial visual presentation (RSVP)--an attentional blink (AB). There are reliable individual differences in the magnitude of the AB. Recent evidence has shown that the attentional approach that an individual typically adopts during a…

  11. Withholding planned speech is reflected in synchronized beta-band oscillations

    Directory of Open Access Journals (Sweden)

    Vitória ePiai

    2015-10-01

    Full Text Available When engaged in a conversation, speakers sometimes have to withhold a planned response, for example, before it is their turn to speak. In the present study, using magnetoencephalography outside of a conversational setting, we investigate the oscillatory brain mechanisms involved in the process of withholding a planned verbal response until it is time to speak. Our participants viewed a sequence of four random consonant strings and one pseudoword, which they had to pronounce when the fifth string (the imperative stimulus was presented. The pseudoword appeared either as the fourth or fifth stimulus in the sequence, creating two conditions. In the withhold condition, the pseudoword was the fourth string and the verbal response was withheld until the imperative stimulus was presented. In the control condition, the fifth string was the pseudoword, so no response was withheld. We compared oscillatory responses to the withhold relative to the control condition in the time period preceding speech. Alpha-beta power (8-30Hz decreased over occipital sensors in the withhold condition relative to the control condition. Source-level analysis indicated a posterior source (i.e., occipital cortex associated with the alpha-beta power decreases. This occipital alpha-beta desynchronization likely reflects attentional allocation to the upcoming imperative stimulus. Moreover, beta (12-20Hz power increased over frontal sensors. Source-level analysis indicated a frontal source (i.e., middle and superior frontal gyri associated with the beta-power increases. We interpret the frontal beta synchronization to reflect a mechanism aiding the maintenance of the current motor or cognitive state. Our results provide a window into a possible oscillatory mechanism implementing the ability of speakers to withhold a planned verbal response until they have to speak.

  12. Photonic linear chirped microwave signal generation based on the ultra-compact spectral shaper using the slow light effect

    DEFF Research Database (Denmark)

    Yan, Siqi; Gao, Shengqian; Zhou, Feng

    2017-01-01

    A novel concept to generate a linear chirped microwave signal is proposed and experimentally demonstrated. The frequency to time mapping method is employed, where the photonic crystal waveguide Mach-Zehnder interferometer structure acts as the spectral shaper thanks to the slow light effect. By o....... The utilization of the slow light effect brings in significant advantages, including the ultra-small footprint of 0.096 mm(2) and simple structure to our scheme, which may be of great importance towards its potential applications. (C) 2017 Optical Society of America...

  13. Theoretical analysis of wave dispersion in the slow-wave structure such as a coaxial ribbed line

    Science.gov (United States)

    Yelizarov, A. A.; Pchelnikov, Yu. N.; Shaymardanov, R. V.

    2017-08-01

    The wave dispersion in the slow-wave structure such as a coaxial ribbed line has been analyzed. For the case of the excitation of an axially symmetric wave in this structure, the generalized dispersion equation has been obtained using the method of sewing the conductivities. The particular cases of a solution of the dispersion equation have been analyzed, as well as its solutions for relatively high and low frequencies, since these cases are of practical interest. The parameters of a coaxial ribbed line have been simulated and the dependences of the slowing coefficient and the wave impedance of the structure on its geometrical dimensions have been obtained.

  14. Reducing Black Carbon May Be the Fastest Strategy for Slowing ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Reducing Black Carbon May Be the Fastest Strategy for Slowing Climate Change. Reducing Black Carbon May Be the Fastest Strategy for Slowing Climate Change. IGSD/INECE Climate Briefing Note June 2009. A drastic reduction of black-carbon emissions could ...

  15. Experimental determination of the slow-neutron wavelength distribution

    DEFF Research Database (Denmark)

    Lebech, Bente; Mikke, K.; Sledziewska-Blocka, D.

    1970-01-01

    Different experiments for determining the slow-neutron wavelength distribution in the region 227-3 meV have been carried out, and the results compared. It is concluded that the slow-neutron wave-length distribution can be determined accurately by elastic scattering on a pure incoherent or a pure ...

  16. Slow Release Of Reagent Chemicals From Gel Matrices

    Science.gov (United States)

    Debnam, William J.; Barber, Patrick G.; Coleman, James

    1988-01-01

    Procedure developed for slow release of reagent chemicals into solutions. Simple and inexpensive and not subject to failure of equipment. Use of toothpaste-type tube or pump dispenser conceivably provides more controlled technique for storage and dispensation of gel matrix. Possible uses include controlled, slow release of reagents in chemical reactions, crystal growth, space-flight experiments, and preformed gel medications from packets.

  17. The Localizing Value Of Focal Delta Slowing In Temporal Lobe ...

    African Journals Online (AJOL)

    Slow wave EEG had a higher marginal probability than neuropsychological assessment of predicting the focus, and was equally effective as other investigative methods. Conclusion These results suggest that focal temporal delta slowing is useful in the localization of epileptogenic foci. There was no discordance with the ...

  18. The Geometry of Slow Manifolds near a Folded Node

    NARCIS (Netherlands)

    Desroches, M.; Krauskopf, B.; Osinga, H.M.

    2008-01-01

    This paper is concerned with the geometry of slow manifolds of a dynamical system with one fast and two slow variables. Specifically, we study the dynamics near a folded-node singularity, which is known to give rise to so-called canard solutions. Geometrically, canards are intersection curves of

  19. Development of compact long-term broadband ocean bottom seismometer for seafloor observation of slow earthquakes

    Science.gov (United States)

    Yamashita, Y.; Shinohara, M.; Yamada, T.; Shiobara, H.

    2017-12-01

    It is important to understand coupling between plates in a subduction zone for studies of earthquake generation. Recently low frequency tremor and very low frequency earthquake (VLFE) were discovered in plate boundary near a trench. These events (slow earthquakes) in shallow plate boundary should be related to slow slip on a plate boundary. For observation of slow earthquakes, Broad Band Ocean Bottom Seismometer (BBOBS) is useful, however a number of BBOBSs are limited due to cost. On the other hand, a number of Long-term OBSs (LT-OBSs) with recording period of one year are available. However, the LT-OBS has seismometer with a natural period of 1 second. Therefore frequency band of observation is slightly narrow for slow earthquakes. Therefore we developed a compact long-term broad-band OBS by replacement of the seismic sensor of the LT-OBSs to broadband seismometer.We adopted seismic sensor with natural period of 20 seconds (Trillium Compact Broadband Seismometer, Nanometrics). Because tilt of OBS on seafloor can not be controlled due to free-fall, leveling system for seismic sensor is necessary. The broadband seismic senor has cylinder shape with diameter of 90 mm and height of 100 mm, and the developed levelling system can mount the seismic sensor with no modification of shape. The levelling system has diameter of 160 mm and height of 110 mm, which is the same size as existing levelling system of the LT-OBS. The levelling system has two horizontal axes and each axis is driven by motor. Leveling can be performed up to 20 degrees by using micro-processor (Arduino). Resolution of levelling is less than one degree. The system immediately starts leveling by the power-on of controller. After levelling, the the seismic senor is powered and the controller records angles of levelling to SD RAM. Then the controller is shut down to consume no power. Compact long-term broadband ocean bottom seismometer is useful for observation of slow earthquakes on seafloor. In addition

  20. On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind

    International Nuclear Information System (INIS)

    Verscharen, Daniel; Chen, Christopher H. K.; Wicks, Robert T.

    2017-01-01

    Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.

  1. The Arctic Plate Boundary: Seismotectonics at Ultra-slow Spreading

    Science.gov (United States)

    Engen, $; Eldholm, O.; Bungum, H.

    2002-12-01

    Earthquakes reveal the dynamics of the Arctic midocean ridge (MOR) system between the Knipovich Ridge and the Laptev Sea continental margin, where the Eurasian and North American plates separate by 1.5-0.5 cm/a. By assessing location errors and network detectabilities we have evaluated and quality sorted earthquake reports north of 72°N from 1955-99. Sorting the earthquakes by number of recording stations has yielded a catalog dominated by post-1995 events, with epicenter location errors of ~15 km and Ms 4.4 completeness threshold. Hence, the catalog is suitable for studying spatial and temporal earthquake patterns, including the regional segmentation of the Arctic plate boundary. From integration of seismicity with available focal mechanism solutions, bathymetry and potential field data we suggest at least nine transform faults and four structural plate boundary provinces: The Spitsbergen Transform System characterized by distinct, short ridge and transform segments, the West Gakkel Ridge with an accentuated topography and high magnetic amplitudes, the East Gakkel Ridge with more subdued topography and geophysical character, and the continental Laptev Sea Rift System. The ocean-continent transition at the Laptev Sea continental margin is less than 60 km wide and encompasses a sheared margin segment with 150-200 km offset. Landward there are two distinct seismicity trends in a migrating rift system. In the oceanic domain the earthquakes occur in interplate swarms, of which a 209-event swarm on the East Gakkel Ridge in 1999 is the largest recorded. There are no significant seismicity gaps, thus magmatic accretion episodes occur along the entire ultra-slow spreading MOR system. The earthquake magnitude-frequency relationships in each structural province show that source-area stress is highest in the Spitsbergen Transform System and decreases with spreading rate along the Gakkel Ridge.

  2. Slow wave structures integrated with ferromagnetic and ferro-electric thin films for smart RF applications

    Science.gov (United States)

    Rahman, B. M. Farid

    Modern communications systems are following a common trend to increase the operational frequency, level of integration and number of frequency bands. Although 90-95% components in a cell phone are passives which take 80% of the total board area. High performance RF passive components play limited role and are desired towards this technological advancement. Slow wave structure is one of the most promising candidates to design compact RF and mm-Wave passive components. Slow wave structures are the specially designed transmission line realized by placing the alternate narrow and wide signal conductors in order to reduce the physical size of the components. This dissertation reports multiband slow wave structures integrated with ferromagnetic and ferroelectric thin films and their RF applications. A comparative study on different types of coplanar wave-guide (CPW) slow wave structures (SWS) has been demonstrated for the first time. Slow wave structures with various shapes have been investigated and optimized with various signal conductor shapes, ground conductor shapes and pitch of the sections. Novel techniques i.e. the use of the defected ground structure and the different signal conductor length has been implemented to achieve higher slow wave effect with minimum loss. The measured results have shown the reduction of size over 43.47% and 37.54% in the expense of only 0.27dB and 0.102dB insertion loss respectively which can reduce the area of a designed branch line coupler by 68% and 61% accordingly. Permalloy (Py) is patterned on top of the developed SWS for the first time to further increase the slow wave effect and provide tunable inductance value. High frequency applications of Py are limited by its ferro-magnetic resonance frequency since the inductance value decreases beyond that. Sub-micrometer patterning of Py has increased FMR frequency until 6.3GHz and 3.2GHz by introducing the shape anisotropy. For the SWS with patterned Py, the size of the quarter

  3. Unexpected diversity of slow lorises (Nycticebus spp.) within the Javan pet trade: implications for slow loris taxonomy

    NARCIS (Netherlands)

    Nekaris, K.A.I.; Jaffe, S.

    2007-01-01

    Since the 1950s, Sundaland (Borneo, Java, Sumatra and their surrounding islands) was thought to be inhabited by a single slow loris species, the greater slow loris Nycticebus coucang. Early taxonomies as well as recent morphological and genetic studies, however, point to at least three species

  4. Effects of ion cyclotron harmonic damping on current drive in the lower hybrid frequency range

    International Nuclear Information System (INIS)

    Wong, K.L.; Ono, M.

    1983-11-01

    We investigate the ion cyclotron harmonic damping effects on slow and fast waves in the lower hybrid frequency range for tokamak reactor parameters. Inclusion of the higher order terms in the hot plasma dielectric tensor introduces ion cyclotron harmonic damping; these terms also contribute to the real part of the dispersion relation and affect the wave trajectories. However, wave absorption by 15 keV deuterium and tritium ions can be avoided by choosing the slow wave frequency above the lower hybrid frequency and the fast wave frequency below the lower hybrid frequency. But preliminary estimates show that energetic alpha particles tend to absorb both the slow and the fast waves. This absorption may become a serious obstacle for fusion-reactor current drive in the lower hybrid frequency range

  5. Frequency noise in frequency swept fiber laser

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2013-01-01

    This Letter presents a measurement of the spectral content of frequency shifted pulses generated by a lightwave synthesized frequency sweeper. We found that each pulse is shifted in frequency with very high accuracy. We also discovered that noise originating from light leaking through the acousto...

  6. [Demography: can growth be slowed down?].

    Science.gov (United States)

    1990-01-01

    The UN Fund for Population Activities report on the status of world population in 1990 is particularly unsettling because it indicates that fertility is not declining as rapidly as had been predicted. The world population of some 5.3 billion is growing by 90-100 million per year. 6 years ago the growth rate appeared to be declining everywhere except in Africa and some regions of South Asia. Hopes that the world population would stabilize at around 10.2 billion by the end of the 21st century now appear unrealistic. Some countries such as the Philippines, India, and Morocco which had some success in slowing growth in the 1960s and 70s have seen a significant deceleration in the decline. Growth rates in several African countries are already 2.7% per year and increasing. It is projected that Africa's population will reach 1.581 billion by 2025. Already there are severe shortages of arable land in some overwhelmingly agricultural countries like Rwanda and Burundi, and malnutrition is widespread on the continent. Between 1979-81 and 1986- 87, cereal production declined in 25 African countries out of 43 for which the Food and Agriculture Organization has data. The urban population of developing countries is increasing at 3.6%/year. It grew from 285 million in 1950 to 1.384 billion today and is projected at 4.050 billion in 2050. Provision of water, electricity, and sanitary services will be very difficult. From 1970-88 the number of urban households without portable water increased from 138 million to 215 million. It is not merely the quality of life that is menaced by constant population growth, but also the very future of the earth as a habitat, because of the degradation of soils and forests and resulting global warming. 6-7 million hectares of agricultural land are believed to be lost to erosion each year. Deforestation is a principal cause of soil erosion. Each year more than 11 million hectares of tropical forest and forested zones are stripped, in addition to some

  7. Impact of slow-light enhancement on optical propagation in active semiconductor photonic crystal waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2015-01-01

    We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission properties of active semiconductor photonic crystal waveguides. In such devices, slow-light propagation can be used to enhance the material gain per unit length, enabling, for example......, the realization of short optical amplifiers compatible with photonic integration. The coupled wave analysis is compared to numerical approaches based on the Fourier modal method and a frequency domain finite element technique. The presence of material gain leads to the build-up of a backscattered field, which...

  8. Adaptive frequency decomposition of EEG with subsequent expert system analysis.

    Science.gov (United States)

    Herrmann, C S; Arnold, T; Visbeck, A; Hundemer, H P; Hopf, H C

    2001-11-01

    We present a hybrid system for automatic analysis of clinical routine EEG, comprising a spectral analysis and an expert system. EEG raw data are transformed into the time-frequency domain by the so-called adaptive frequency decomposition. The resulting frequency components are converted into pseudo-linguistic facts via fuzzification. Finally, an expert system applies symbolic rules formulated by the neurologist to evaluate the extracted EEG features. The system detects artefacts, describes alpha rhythm by frequency, amplitude, and stability and after artefact rejection detects pathologic slow activity. All results are displayed as linguistic terms, numerical values and maps of temporal extent, giving an overview about the clinical routine EEG.

  9. Frequency-dependent changes of local resting oscillations in sleep-deprived brain.

    Directory of Open Access Journals (Sweden)

    Lei Gao

    Full Text Available Sleep deprivation (SD adversely affects brain function and is accompanied by frequency dependent changes in EEG. Recent studies have suggested that BOLD fluctuations pertain to a spatiotemporal organization with different frequencies. The present study aimed to investigate the frequency-dependent SD-related brain oscillatory activity by using the amplitude of low-frequency fluctuation (ALFF analysis. The ALFF changes were measured across different frequencies (Slow-4: 0.027-0.073 Hz; Slow-5: 0.01-0.027 Hz; and Typical band: 0.01-0.08 Hz in 24 h SD as compared to rested wakeful during resting-state fMRI. Sixteen volunteers underwent two fMRI sessions, once during rested wakefulness and once after 24 h of SD. SD showed prominently decreased ALFF in the right inferior parietal lobule (IPL, bilateral orbitofrontal cortex (OFC and dorsolateral prefrontal cortex (DLPFC, while increased ALFF in the visual cortex, left sensorimotor cortex and fusiform gyrus. Across the Slow-4 and Slow-5, results differed significantly in the OFC, DLPFC, thalamus and caudate in comparison to typical frequency band; and Slow-4 showed greater differences. In addition, negative correlations of behavior performance and ALFF patterns were found mainly in the right IPL across the typical frequency band. These observations provided novel insights about the physiological responses of SD, identified how it disturbs the brain rhythms, and linked SD with frequency-dependent alterations in amplitude patterns.

  10. Theory of neutron slowing down in nuclear reactors

    CERN Document Server

    Ferziger, Joel H; Dunworth, J V

    2013-01-01

    The Theory of Neutron Slowing Down in Nuclear Reactors focuses on one facet of nuclear reactor design: the slowing down (or moderation) of neutrons from the high energies with which they are born in fission to the energies at which they are ultimately absorbed. In conjunction with the study of neutron moderation, calculations of reactor criticality are presented. A mathematical description of the slowing-down process is given, with particular emphasis on the problems encountered in the design of thermal reactors. This volume is comprised of four chapters and begins by considering the problems

  11. Slow Food: por um alimento bom, limpo e justo

    OpenAIRE

    Porazzi, Fabiele

    2012-01-01

    REVIEW:PETRINI, Carlo. Slow Food: princípios da nova gastronomia. Trad. de Renata Lúcia Botina. São Paulo: Editora Senac, 2009. 245 p. RESEÑA:PETRINI, Carlo. Slow Food: princípios da nova gastronomia. Trad. de Renata Lúcia Botina. São Paulo: Editora Senac, 2009. 245 p. http://dx.doi.org/10.5007/1807-1384.2012v9n1p384 RESENHA:PETRINI, Carlo. Slow Food: princípios da nova gastronomia. Trad. de Renata Lúcia Botina. São Paulo: Editora Senac, 2009. 245 p.

  12. Slow light invisibility, teleportation, and other mysteries of light

    CERN Document Server

    Perkowitz, Sidney

    2011-01-01

    Slow Light is a popular treatment of today's astonishing breakthroughs in the science of light. Even though we don't understand light's quantum mysteries, we can slow it to a stop and speed it up beyond its Einsteinian speed limit, 186,000 miles/sec; use it for quantum telecommunications; teleport it; manipulate it to create invisibility; and perhaps generate hydrogen fusion power with it. All this is lucidly presented for non-scientists who wonder about teleportation, Harry Potter invisibility cloaks, and other fantastic outcomes. Slow Light shows how the real science and the fantasy inspire

  13. Implication of the Slow-5 Oscillations in the Disruption of the Default-Mode Network in Healthy Aging and Stroke.

    Science.gov (United States)

    La, Christian; Nair, Veena A; Mossahebi, Pouria; Young, Brittany M; Chacon, Marcus; Jensen, Matthew; Birn, Rasmus M; Meyerand, Mary E; Prabhakaran, Vivek

    2016-07-01

    The processes of normal aging and aging-related pathologies subject the brain to an active re-organization of its brain networks. Among these, the default-mode network (DMN) is consistently implicated with a demonstrated reduction in functional connectivity within the network. However, no clear stipulation on the underlying mechanisms of the de-synchronization has yet been provided. In this study, we examined the spectral distribution of the intrinsic low-frequency oscillations (LFOs) of the DMN sub-networks in populations of young normals, older subjects, and acute and subacute ischemic stroke patients. The DMN sub-networks were derived using a mid-order group independent component analysis with 117 eyes-closed resting-state functional magnetic resonance imaging (rs-fMRI) sessions from volunteers in those population groups, isolating three robust components of the DMN among other resting-state networks. The posterior component of the DMN presented noticeable differences. Measures of amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) of the network component demonstrated a decrease in resting-state cortical oscillation power in the elderly (normal and patient), specifically in the slow-5 (0.01-0.027 Hz) range of oscillations. Furthermore, the contribution of the slow-5 oscillations during the resting state was diminished for a greater influence of the slow-4 (0.027-0.073 Hz) oscillations in the subacute stroke group, not only suggesting a vulnerability of the slow-5 oscillations to disruption but also indicating a change in the distribution of the oscillations within the resting-state frequencies. The reduction of network slow-5 fALFF in the posterior DMN component was found to present a potential association with behavioral measures, suggesting a brain-behavior relationship to those oscillations, with this change in behavior potentially resulting from an altered network integrity induced by a weakening of the slow-5 oscillations during

  14. Excitation of slow waves in front of an ICRF antenna in a basic plasma experiment

    Science.gov (United States)

    Soni, Kunal; van Compernolle, Bart; Crombe, Kristel; van Eester, Dirk

    2017-10-01

    Recent results of ICRF experiments at the Large Plasma Device (LAPD) indicate parasitic coupling to the slow wave by the fast wave antenna. Plasma parameters in LAPD are similar to the scrape-off layer of current fusion devices. The machine has a 17 m long, 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B0 1000 G. It was found that coupling to the slow mode occurs when the plasma density in front of the antenna is low enough such that the lower hybrid resonance is present in the plasma. The radial density profile is tailored to allow for fast mode propagation in the high density core and slow mode propagation in the low density edge region. Measurements of the wave fields clearly show two distinct modes, one long wavelength m=1 fast wave mode in the core and a short wavelength backward propagating mode in the edge. Perpendicular wave numbers compare favorably to the predicted values. The experiment was done for varying frequencies, ω /Ωi = 25 , 6 and 1.5. Future experiments will investigate the dependence on antenna tilt angle with respect to the magnetic field, with and without Faraday screen. This work is performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF.

  15. Slow sleep spindle activity, declarative memory, and general cognitive abilities in children.

    Science.gov (United States)

    Hoedlmoser, Kerstin; Heib, Dominik P J; Roell, Judith; Peigneux, Philippe; Sadeh, Avi; Gruber, Georg; Schabus, Manuel

    2014-09-01

    Functional interactions between sleep spindle activity, declarative memory consolidation, and general cognitive abilities in school-aged children. Healthy, prepubertal children (n = 63; mean age 9.56 ± 0.76 y); ambulatory all-night polysomnography (2 nights); investigating the effect of prior learning (word pair association task; experimental night) versus nonlearning (baseline night) on sleep spindle activity; general cognitive abilities assessed using the Wechsler Intelligence Scale for Children-IV (WISC-IV). Analysis of spindle activity during nonrapid eye movement sleep (N2 and N3) evidenced predominant peaks in the slow (11-13 Hz) but not in the fast (13-15 Hz) sleep spindle frequency range (baseline and experimental night). Analyses were restricted to slow sleep spindles. Changes in spindle activity from the baseline to the experimental night were not associated with the overnight change in the number of recalled words reflecting declarative memory consolidation. Children with higher sleep spindle activity as measured at frontal, central, parietal, and occipital sites during both baseline and experimental nights exhibited higher general cognitive abilities (WISC-IV) and declarative learning efficiency (i.e., number of recalled words before and after sleep). Slow sleep spindles (11-13 Hz) in children age 8-11 y are associated with inter-individual differences in general cognitive abilities and learning efficiency. © 2014 Associated Professional Sleep Societies, LLC.

  16. Production of ultra slow antiprotons, its application to atomic collisions and atomic spectroscopy-ASACUSA project

    CERN Document Server

    Yamazaki, Y

    1999-01-01

    The atomic spectroscopy and collisions using slow antiprotons (ASACUSA) project aims at studying collision dynamics with slow antiprotons and high precision spectroscopy of antiprotonic atoms. To realize these purposes, the $9 production of high quality ultra slow antiproton beams is essential, which is achieved by the combination of antiproton decelerator (AD) from 3 GeV to 5 MeV, a radio frequency quadrupole (RFQ) decelerator from 5 MeV to 50 keV, and $9 finally an electromagnetic trap from 50 keV to 10 eV. From the atomic physics point of view, an antiproton is an extremely heavy electron and/or a negatively charged proton, i.e., the antiproton is a unique tool to shed light on $9 collision dynamics from the other side of the world. In addition to this fundamentally important feature, the antiproton has also a big practical advantage, i.e., it annihilates with the target nuclei emitting several energetic $9 pions, which provides high detection efficiency with very good time resolution. Many-body effects wh...

  17. The beam slow extraction from a magnetic ring of Moscow meson facility

    International Nuclear Information System (INIS)

    Gusev, O.A.; Malitsky, N.D.; Severgin, Yu.P.; Titov, V.A.; Shukeilo, I.A.; Aseev, V.N.; Grachev, M.I.; Lobashev, V.M.; Ostroumov, P.N.; Ponomaryov, O.V.

    1990-01-01

    The beam slow extraction from the circular accelerators or stretcher rings is generally realized by the resonant excitation of betratron oscillations. A precise betatron frequency control is proved to be quite necessary for high-efficient slow ejection. The Coulomb field turns out to have a significant influence upon the slow extraction from the high-current medium energy proton storage rings. It prevents resonant excitation at a reasonable rate and reduces the ejection efficiency. The proton storage ring of Moscow meson facility is an example of a stretcher with a noticeable beam space charge. The detailed investigation of the resonant ejection, having been performed for our stretcher, resulted in the conclusion that extracted beam average current should be limited by the value of 50 mA, which is only 10% of the linac design current. The search for the alternative version to the resonant ejection made us to analyze in details and to develop an old-fashioned method, based on the radial betatron oscillation excitation while the beam is being gradually shifted onto the thin target. (author) 5 refs., 4 figs

  18. Electrical stimulation therapy for slow transit constipation in children: a systematic review.

    Science.gov (United States)

    Lu, Ming-Liang; He, Jin; Lu, Shifeier

    2015-05-01

    Slow transit constipation is a common disorder in children, which often does not respond well to ordinary treatments. We have conducted a systematic review of reported studies in order to better define the current state of knowledge about electrical stimulation treatment of slow transit constipation in children. We searched PubMed, Embase, Cochrane Library, BioMed Central, and ISI Web of Knowledge with relevant terms; six studies, all from one center, met the criteria for inclusion. Two trials were randomized clinical trials, and four were prospective studies. The number of subjects included in the studies was 8 to 39, with ages 3 to 18 years. Treatment sessions varied from 20 to 30 min 3 times per week to 1 h daily, and duration of therapy varied from 3 weeks to 6 months. Statistically significant improvements after electrical stimulation therapy were recorded in one to four outcome measures in each of the studies: frequency of defecation, soiling, Bristol Stool Scale, radionuclear transit studies, and quality of life; however, the improvements were of modest degree and of uncertain clinical significance. Quality assessment of the studies found various levels of bias, with attrition bias and reporting bias in all six. This systemic review found moderate support for the effectiveness of electrical stimulation therapy in slow transit constipation in children. However, better-designed studies, with larger and more diverse patient populations followed for longer time periods, will be needed in order to reliably determine the efficacy of electrical stimulation therapy in the treatment of this disorder.

  19. Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity.

    Science.gov (United States)

    Wolansky, Trish; Clement, Elizabeth A; Peters, Steven R; Palczak, Michael A; Dickson, Clayton T

    2006-06-07

    State-dependent EEG in the hippocampus (HPC) has traditionally been divided into two activity patterns: theta, a large-amplitude, regular oscillation with a bandwidth of 3-12 Hz, and large-amplitude irregular activity (LIA), a less regular signal with broadband characteristics. Both of these activity patterns have been linked to the memory functions subserved by the HPC. Here we describe, using extracellular field recording techniques in naturally sleeping and urethane-anesthetized rats, a novel state present during deactivated stages of sleep and anesthesia that is characterized by a prominent large-amplitude and slow frequency (sink-source alternations in stratum lacunosum-moleculare of CA1. This, along with correlated slow oscillatory field and multiunit activity in superficial entorhinal cortex suggests that the hippocampal SO may be coordinated with slow neocortical activity through input arriving via the temporo-ammonic pathway. This novel state may present a favorable milieu for synchronization-dependent synaptic plasticity within and between hippocampal and neocortical ensembles.

  20. Slow wave sleep in the chronically fatigued: Power spectra distribution patterns in chronic fatigue syndrome and primary insomnia.

    Science.gov (United States)

    Neu, Daniel; Mairesse, Olivier; Verbanck, Paul; Le Bon, Olivier

    2015-10-01

    To investigate slow wave sleep (SWS) spectral power proportions in distinct clinical conditions sharing non-restorative sleep and fatigue complaints without excessive daytime sleepiness (EDS), namely the chronic fatigue syndrome (CFS) and primary insomnia (PI). Impaired sleep homeostasis has been suspected in both CFS and PI. We compared perceived sleep quality, fatigue and sleepiness symptom-intensities, polysomnography (PSG) and SWS spectral power distributions of drug-free CFS and PI patients without comorbid sleep or mental disorders, with a good sleeper control group. Higher fatigue without EDS and impaired perceived sleep quality were confirmed in both patient groups. PSG mainly differed in sleep fragmentation and SWS durations. Spectral analysis revealed a similar decrease in central ultra slow power (0.3-0.79Hz) proportion during SWS for both CFS and PI and an increase in frontal power proportions of faster frequencies during SWS in PI only. The latter was correlated to affective symptoms whereas lower central ultra slow power proportions were related to fatigue severity and sleep quality impairment. In combination with normal (PI) or even increased SWS durations (CFS), we found consistent evidence for lower proportions of slow oscillations during SWS in PI and CFS. Observing normal or increased SWS durations but lower proportions of ultra slow power, our findings suggest a possible quantitative compensation of altered homeostatic regulation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Increased electroencephalographic high frequencies during the sleep onset period in patients with restless legs syndrome.

    Science.gov (United States)

    Ferri, Raffaele; Cosentino, Filomena I I; Manconi, Mauro; Rundo, Francesco; Bruni, Oliviero; Zucconi, Marco

    2014-08-01

    To analyze the electroencephalographic (EEG) spectral content in untreated patients with restless legs syndrome (RLS) during the sleep onset period (SOP) and during the quiet wakefulness preceding sleep, in order to test the hypothesis that a state of hyperarousal might be present during the SOP with RLS. Sleep Research Centre. Twenty-seven untreated consecutive patients with RLS (mean age = 53.6 y), 11 untreated consecutive patients with primary insomnia (mean age = 58.9 y), and 14 normal controls (mean age = 50.3 y). SOP was defined as the 10-min period centered with the occurrence of the first sleep spindle in the EEG, and then subdivided into SOP-1 (period of 5 min before the first spindle) and SOP-2 (period of 5 min following). Leg movements occurring during SOP were counted and used as a covariate in the statistical analysis. Also, one period of 1 min of artifact-free quiet wakefulness after lights off was identified. EEG spectral analysis was run during these periods using the C3/A2 or C4/A1 channel. Increased EEG alpha and beta bands and/or beta/delta ratio in RLS versus normal controls, during both wakefulness preceding sleep and SOP (both parts SOP-1 and SOP-2) were found, which were, however, smaller than the increases found in patients with insomnia. The results of this study support the hypothesis of the presence of a state of hyperarousal in restless legs syndrome (RLS) during the sleep onset period. Treatment for RLS might need to take these findings into consideration. Ferri R, Cosentino FI, Manconi M, Rundo F, Bruni O, Zucconi M. Increased electroencephalographic high frequencies during the sleep onset period in patients with restless legs syndrome.

  2. Human Growth Hormone (HGH): Does It Slow Aging?

    Science.gov (United States)

    Healthy Lifestyle Healthy aging Human growth hormone is described by some as the key to slowing the aging ... about proven ways to improve your health. Remember, healthy lifestyle choices — such as eating a healthy diet and ...

  3. Slow light enhancement and limitations in periodic media

    DEFF Research Database (Denmark)

    Grgic, Jure

    Properties of periodic dielectric media have attracted a big interest in the last two decades due to numerous exciting physical phenomena that cannot occur in homogeneous media. Due to their strong dispersive properties, the speed of light can be significantly slowed down in periodic structures....... When light velocity is much smaller than the speed of light in a vacuum, we describe this phenomena as slow light. In this thesis, we analyze important properties of slow light enhancement and limitations in periodic structures. We analyze quantitatively and qualitatively different technologies...... and significant structures with numerical and analytical methods. By analyzing different structures, we show very general properties for limitation and enhancement in the slow light regime. Inherent imperfections of fabricated structures such as a material loss and structural disorder have a strong influence...

  4. On the use of slow light for enhancing waveguide properties

    DEFF Research Database (Denmark)

    Mørk, Jesper; Nielsen, Torben Roland

    2010-01-01

    On the basis of a general analysis of waveguides containing a dispersive material, we identify conditions under which slow-light propagation may enhance the gain, absorption, or phase change. The enhancement is shown to depend on the slow-light mechanism and the translational symmetry of the wave...... of the waveguide. A combination of material and waveguide dispersion may strongly enhance the control of light speed, e.g., using electromagnetically induced transparency in quantum dots embedded in a photonic crystal waveguide.......On the basis of a general analysis of waveguides containing a dispersive material, we identify conditions under which slow-light propagation may enhance the gain, absorption, or phase change. The enhancement is shown to depend on the slow-light mechanism and the translational symmetry...

  5. Critical slowing down and error analysis in lattice QCD simulations

    International Nuclear Information System (INIS)

    Schaefer, Stefan; Sommer, Rainer; Virotta, Francesco

    2010-09-01

    We study the critical slowing down towards the continuum limit of lattice QCD simulations with Hybrid Monte Carlo type algorithms. In particular for the squared topological charge we find it to be very severe with an effective dynamical critical exponent of about 5 in pure gauge theory. We also consider Wilson loops which we can demonstrate to decouple from the modes which slow down the topological charge. Quenched observables are studied and a comparison to simulations of full QCD is made. In order to deal with the slow modes in the simulation, we propose a method to incorporate the information from slow observables into the error analysis of physical observables and arrive at safer error estimates. (orig.)

  6. Critical slowing down and error analysis in lattice QCD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Stefan [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Sommer, Rainer; Virotta, Francesco [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2010-09-15

    We study the critical slowing down towards the continuum limit of lattice QCD simulations with Hybrid Monte Carlo type algorithms. In particular for the squared topological charge we find it to be very severe with an effective dynamical critical exponent of about 5 in pure gauge theory. We also consider Wilson loops which we can demonstrate to decouple from the modes which slow down the topological charge. Quenched observables are studied and a comparison to simulations of full QCD is made. In order to deal with the slow modes in the simulation, we propose a method to incorporate the information from slow observables into the error analysis of physical observables and arrive at safer error estimates. (orig.)

  7. Compounding of slow-release niacinamide capsules: feasibility and characterization.

    Science.gov (United States)

    Radojkovic, Branko; Milić, Jela; Calija, Bojan

    2012-01-01

    The purpose of this study was to assess the feasibility of extemporaneous compounding of slow-release oral dosage form of niacinamide and to evaluate its release kinetics. The model formulation (preparation) was developed in the form of powder-filled hard gelatin capsules. Two slow-release preparations with different ratios of hypromellose have been prepared and evaluated in comparison with an immediate-release preparation. The dissolution tests were performed as per United States Pharmacopoeia requirements: Type I Apparatus, over 7 hours. Both slow-release preparations, containing 40% and 60% v/v hypromellose, respectively, have showed slow release kinetics. The dissolution profiles were significantly different, with similarity factor f2niacinamide capsules can be successfully compounded using hypromellose as a sole release rate modifier, and that the release mechanism is comparable to hydrophilic polymer matrix-based systems.

  8. Very Slow Speed Axial Motion Reluctance Motor | Agu | Nigerian ...

    African Journals Online (AJOL)

    Abstract. This paper presents the scheme for a very slow speed linear machine which uses conventional laminations and with which speeds of the same low order as that of the screw-thread motor can be obtained.

  9. Damping of Slow Magnetoacoustic Waves in an Inhomogeneous ...

    Indian Academy of Sciences (India)

    Aschwanden. 2004b; Nakariakov 2003). In this paper, we will study the dissipation of slow MHD waves in an inhomogeneous, compressible, and low-β coronal loop plasma through viscosity and thermal conduction. The paper is organized as follows.

  10. Preparation and characterization of Slow Release Formulations of ...

    African Journals Online (AJOL)

    alginate beads and characterize the resulting slow release formulations (SRFs) using scanning electron microscopy (SEM), and Fourier Transform infrared spectroscopy (FTIR). Two sets of formulations were made by extrusion into 0.25 M calcium ...

  11. Population Suppression of Subterranean Termites by Slow-Acting Toxicants

    Science.gov (United States)

    Nan-Yao Su; Rudolf H. Scheffrahn

    1991-01-01

    Historic background and the concept of slow-acting toxicants for population suppression of subterranean termites are reviewed. Information needed for development of bait-toxicants and studies needed to generate such information are summarized.

  12. Exploring carrier dynamics in semiconductors for slow light

    DEFF Research Database (Denmark)

    Mørk, Jesper; Xue, Weiqi; Chen, Yaohui

    2009-01-01

    We give an overview of recent results on slow and fast light in active semiconductor waveguides. The cases of coherent population oscillations as well as electromagnetically induced transparency are covered, emphasizing the physics and fundamental limitations.......We give an overview of recent results on slow and fast light in active semiconductor waveguides. The cases of coherent population oscillations as well as electromagnetically induced transparency are covered, emphasizing the physics and fundamental limitations....

  13. Perceptions of the Slow Food Cultural Trend among the Youth

    OpenAIRE

    Lelia Voinea; Anca Atanase; Ion Schileru

    2016-01-01

    As they become increasingly aware of the importance of healthy eating and of the serious food imbalance caused by the overconsumption of industrial, ultra-processed and superorganoleptic food, consumers are now beginning to turn their attention to food choices guaranteeing both individual health and also of the environment . Thus, in recent years we are witnessing the rise of a cultural trend ‒ Slow Food. Slow Food has become an international movement that advocates for satisfying culinary pl...

  14. Temporal Heterogeneity and the Value of Slowness in Robotic Systems

    Science.gov (United States)

    2015-11-01

    seasonal changes. Contrast this to the more common agricultural robotics approach, where larger machines conduct these operations periodically rather than...Abstract— Robot teaming is a well-studied area, but little research to date has been conducted on the fundamental benefits of heterogeneous...aspect of robot ecosystems consisting of fast and slow robots (SlowBots) working together, including the bio-inspiration for such systems. I

  15. Apparatus for laser slowing and cooling of molecules

    Science.gov (United States)

    2016-10-09

    SECURITY CLASSIFICATION OF: This is the final report for our DURIP grant entitled "Apparatus for Laser Slowing and cooling of Molecules". We have... cooling of a new molecular species, TlF. We have also successfully acquired and assembled the parts for a custom laser system, which produces long...Distribution Unlimited UU UU UU UU 09-10-2016 1-Sep-2012 31-Aug-2014 Final Report: Apparatus for laser slowing and cooling of molecules The views

  16. Slow and fast light in semiconductor structures: physics and applications

    DEFF Research Database (Denmark)

    Mørk, Jesper; Nielsen, Torben Roland; Xue, Weiqi

    We discuss the physics and applications of slow light in semiconductor waveguides. In particular we introduce methods for enhancing the degree of light speed control considering both electromagnetically induced transparency as well as coherent population oscillations.......We discuss the physics and applications of slow light in semiconductor waveguides. In particular we introduce methods for enhancing the degree of light speed control considering both electromagnetically induced transparency as well as coherent population oscillations....

  17. Boosting Slow Oscillatory Activity Using tDCS during Early Nocturnal Slow Wave Sleep Does Not Improve Memory Consolidation in Healthy Older Adults.

    Science.gov (United States)

    Paßmann, Sven; Külzow, Nadine; Ladenbauer, Julia; Antonenko, Daria; Grittner, Ulrike; Tamm, Sascha; Flöel, Agnes

    2016-01-01

    Previous studies have demonstrated an enhancement of hippocampal-dependent declarative memory consolidation, associated slow wave sleep (SWS) and slow wave activity (SWA) after weak slow oscillatory stimulation (so-tDCS) during early non-rapid eye movement sleep (NREM) in young adults. Recent studies in older individuals could not confirm these findings. However, it remained unclear if this difference was due to variations in study protocol or to the age group under study. Here, we asked if so-tDCS promotes neurophysiological events and associated sleep-dependent memory in the visuo-spatial domain in older adults, using a stimulation protocol that closely resembled the one employed in young adults. In a randomized, placebo-controlled single-blind (participant) crossover study so-tDCS (0.75 Hz; max. current density 0.522 mA/cm(2)) vs. sham stimulation was applied over the frontal cortex of 21 healthy older subjects. Impact of stimulation on frequency band activity (linear mixed models), two declarative and one procedural memory tasks (repeated measures ANOVA) and percentage of sleep stages (comparison of means) was assessed. so-tDCS, as compared to sham, increased SWA and spindle activity immediately following stimulation, accompanied by significantly impaired visuo-spatial memory consolidation. Furthermore, verbal and procedural memory remained unchanged, while percentage of NREM sleep stage 4 was decreased over the entire night (uncorrected). so-tDCS increased SWA and spindle activity in older adults, events previously associated with stimulation-induced improved consolidation of declarative memories in young subjects. However, consolidation of visuo-spatial (primary outcome) and verbal memories was not beneficially modulated, possibly due to decline in SWS over the entire night that may have prevented and even reversed immediate beneficial effects of so-tDCS on SWA. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Slow-wave sleep estimation on a load-cell-installed bed: a non-constrained method

    International Nuclear Information System (INIS)

    Choi, Byung Hun; Chung, Gih Sung; Lee, Jin-Seong; Jeong, Do-Un; Park, Kwang Suk

    2009-01-01

    Polysomnography (PSG) involves simultaneous and continuous monitoring of relevant normal and abnormal physiological activity during sleep. At present, an electroencephalography-based rule is generally used for classifying sleep stages. However, scoring the PSG record is quite laborious and time consuming. In this paper, movement and cardiac activity were measured unobtrusively by a load-cell-installed bed, and sleep was classified into two stages: slow-wave sleep and non-slow-wave sleep. From the measured cardiac activity, we extracted heartbeat data and calculated heart rate variability parameters: standard deviation of R–R intervals SDNN, low frequency-to-high frequency ratio, alpha of detrended fluctuation analysis and correlation coefficient of R–R interval. The developed system showed a substantial concordance with PSG results when compared using a contingency test. The mean epoch-by-epoch agreement between the proposed method and PSG was 92.5% and Cohen's kappa was 0.62

  19. Transcranial alternating current stimulation at beta frequency: lack of immediate effects on excitation and interhemispheric inhibition of the human motor cortex

    Directory of Open Access Journals (Sweden)

    Viola Rjosk

    2016-11-01

    Full Text Available Transcranial alternating current stimulation (tACS is a form of noninvasive brain stimulation and is capable of influencing brain oscillations and cortical networks. In humans, the endogenous oscillation frequency in sensorimotor areas peaks at 20 Hz. This beta-band typically occurs during maintenance of tonic motor output and seems to play a role in interhemispheric coordination of movements. Previous studies showed that tACS applied in specific frequency bands over primary motor cortex (M1 or the visual cortex modulates cortical excitability within the stimulated hemisphere. However, the particular impact remains controversial because effects of tACS were shown to be frequency, duration and location specific. Furthermore, the potential of tACS to modulate cortical interhemispheric processing, like interhemispheric inhibition (IHI, remains elusive. Transcranial magnetic stimulation (TMS is a noninvasive and well-tolerated method of directly activating neurons in superficial areas of the human brain and thereby a useful tool for evaluating the functional state of motor pathways. The aim of the present study was to elucidate the immediate effect of 10 min tACS in the β-frequency band (20 Hz over left M1 on IHI between M1s in 19 young, healthy, right-handed participants. A series of TMS measurements (MEP size, RMT, IHI from left to right M1 and vice versa was performed before and immediately after tACS or sham using a double-blinded, cross-over design. We did not find any significant tACS-induced modulations of intracortical excitation (as assessed by MEP size and RMT and/or interhemispheric inhibition (IHI. These results indicate that 10 min of 20 Hz tACS over left M1 seems incapable of modulating immediate brain activity or inhibition. Further studies are needed to elucidate potential aftereffects of 20 Hz tACS as well as frequency-specific effects of tACS on intracortical excitation and interhemispheric inhibition.

  20. Acoustic and Slow Sausage Oscillations in the Stratified Solar Photosphere: Hinode Observations and Phase Relationships

    Science.gov (United States)

    Tsap, Y. T.; Stepanov, A. V.; Kopylova, Y. G.

    2016-11-01

    Based on the linearized magnetohydrodynamic (MHD) equations within the framework of the thin flux tube approximation, the phase relationships between the disturbed quantities of evanescent acoustic and slow sausage MHD modes excited in the adiabatically stratified solar atmosphere are considered. It has been shown that the sign of the phase differences (equal to ±π/2) between the velocity and other disturbed quantities such as pressure, density, magnetic field, and temperature, depends on the wave frequency ω. The obtained phase relationships agree well with SOT/ Hinode observations obtained by Fujimura and Tsuneta ( Astrophys. J. 702, 1443, 2009) when ω≈ωc, where ωc is the cutoff frequency. The role of various modes excited in the solar atmosphere in the light of the chromospheric and coronal heating problems are discussed.

  1. Beneficial Effects of Slow Steaming in Bulk Freight Markets

    Directory of Open Access Journals (Sweden)

    Sarah Boone

    2017-12-01

    Full Text Available Slow steaming has recently been adopted into normal practice by many maritime shipping companies for the fuel and monetary savings it offers. The practice also offers savings in Greenhouse Gas (GHG emissions. With regulations coming into play such as the 2020 sulfur cap, slow steaming may be the least costly option for some maritime companies to adjust their operations. While some have accepted the new practice, there are still companies and vessels that see this exercise as a loss of revenue due to the extra time it takes to deliver goods to their destination. This paper reviews how the method of rating ships by their GHG emissions per nautical mile can be directly related to slow steaming. We propose that ships with poor ratings (E, F, G find mandatory regulations to slow steam or improve their CO2 output in some way. Those with superior ratings (A, B, C, D would benefit from incentives packages tied to their implementation of slow steaming practices. It will also examine how slow steaming benefits maritime businesses both economically and environmentally to find ways to lower their emissions and discusses the possible chain reaction that may occur if these eco-friendly shipping practices are observed.

  2. Slow Earthquakes in the Alaska-Aleutian Subduction Zone Detected by Multiple Mini Seismic Arrays

    Science.gov (United States)

    LI, B.; Ghosh, A.; Thurber, C. H.; Lanza, F.

    2017-12-01

    The Alaska-Aleutian subduction zone is one of the most seismically and volcanically active plate boundaries on earth. Compared to other subduction zones, the slow earthquakes, such as tectonic tremors (TTs) and low frequency earthquakes (LFEs), are relatively poorly studied due to the limited data availability and difficult logistics. The analysis of two-months of continuous data from a mini array deployed in 2012 shows abundant tremor and LFE activities under Unalaska Island that is heterogeneously distributed [Li & Ghosh, 2017]. To better study slow earthquakes and understand their physical characteristics in the study region, we deployed a hybrid array of arrays, consisting of three well-designed mini seismic arrays and five stand alone stations, in the Unalaska Island in 2014. They were operational for between one and two years. Using the beam back-projection method [Ghosh et al., 2009, 2012], we detect continuous tremor activities for over a year when all three arrays are running. The sources of tremors are located south of the Unalaska and Akutan Islands, at the eastern and down-dip edge of the rupture zone of the 1957 Mw 8.6 earthquake, and they are clustered in several patches, with a gap between the two major clusters. Tremors show multiple migration patterns with propagation in both along-strike and dip directions and a wide range of velocities. We also identify tens of LFE families and use them as templates to search for repeating LFE events with the matched-filter method. Hundreds to thousands of LFEs for each family are detected and their activities are spatiotemporally consistent with tremor activities. The array techniques are revealing a near-continuous tremor activity in this area with remarkable spatiotemporal details. It helps us to better recognize the physical properties of the transition zone, provides new insights into the slow earthquake activities in this area, and explores their relation with the local earthquakes and the potential slow

  3. Does Physiological Stress Slow Down Wound Healing in Patients With Diabetes?

    Science.gov (United States)

    Razjouyan, Javad; Grewal, Gurtej Singh; Talal, Talal K; Armstrong, David G; Mills, Joseph L; Najafi, Bijan

    2017-07-01

    Poor healing is an important contributing factor to amputation among patients with diabetic foot ulcers (DFUs). Physiological stress may slow wound healing and increase susceptibility to infection. The objective was to examine the association between heart rate variability (HRV) as an indicator of physiological stress response and healing speed (Heal Speed ) among outpatients with active DFUs. Ambulatory patients with diabetes with DFUs (n = 25, age: 59.3 ± 8.3 years) were recruited. HRV during pre-wound dressing was measured using a wearable sensor attached to participants' chest. HRVs were quantified in both time and frequency domains to assess physiological stress response and vagal tone (relaxation). Change in wound size between two consecutive visits was used to estimate Heal Speed . Participants were then categorized into slow healing and fast healing groups. Between the two groups, comparisons were performed for demographic, clinical, and HRV derived parameters. Associations between different descriptors of HRV and Heal Speed were also assessed. Heal Speed was significantly correlated with both vagal tone ( r = -.705, P = .001) and stress response ( r = .713, P = .001) extracted from frequency domain. No between-group differences were observed except those from HRV-derived parameters. Models based on HRVs were the highest predictors of slow/fast Heal Speed (AUC > 0.90), while models based on demographic and clinical information had poor classification performance (AUC = 0.44). This study confirms an association between stress/vagal tone and wound healing in patients with DFUs. In particular, it highlights the importance of vagal tone (relaxation) in expediting wound healing. It also demonstrates the feasibility of assessing physiological stress responses using wearable technology in outpatient clinic during routine clinic visits.

  4. Multiple Frequency Parametric Sonar

    Science.gov (United States)

    2015-09-28

    300003 1 MULTIPLE FREQUENCY PARAMETRIC SONAR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...a method for increasing the bandwidth of a parametric sonar system by using multiple primary frequencies rather than only two primary frequencies...2) Description of Prior Art [0004] Parametric sonar generates narrow beams at low frequencies by projecting sound at two distinct primary

  5. Cross-hemispheric Alternating Current Stimulation During a Nap Disrupts Slow Wave Activity and Associated Memory Consolidation.

    Science.gov (United States)

    Garside, Peter; Arizpe, Joseph; Lau, Chi-Ieong; Goh, Crystal; Walsh, Vincent

    2015-01-01

    Slow Wave Activity (SWA), the low frequency (nap however. We applied transcranial alternating current stimulation (tACS) - which, with a cross-hemispheric electrode montage (F3 and F4 - International 10:20 EEG system), is able to disrupt brain oscillations-to determine if disruption of low frequency oscillation generation during afternoon nap is causally related to disruption in declarative memory consolidation. Eight human subjects each participated in stimulation and sham nap sessions. A verbal paired associate learning (PAL) task measured memory changes. During each nap period, five 5-min stimulation (0.75 Hz cross-hemispheric frontal tACS) or sham intervals were applied with 1-min post-stimulation intervals (PSI's). Spectral EEG power for Slow (0.7-0.8 Hz), Delta (1.0-4.0 Hz), Theta (4.0-8.0 Hz), Alpha (8.0-12.0 Hz), and Spindle-range (12.0-14.0) frequencies was analyzed during the 1-min preceding the onset of stimulation and the 1-min PSI's. As hypothesized, power reduction due to stimulation positively correlated with reduction in word-pair recall post-nap specifically for Slow (P nap. Published by Elsevier Inc.

  6. Slow-Slip Scaling Laws Inferred from Cascadia Tremor Swarms

    Science.gov (United States)

    Creager, K. C.; Wech, A.; Vidale, J. E.

    2010-12-01

    Episodic tremor and slip (ETS) events, each with geodetically determined moment magnitudes in the mid-6 range, repeat about every 15 months under the Olympic Peninsula/southern Vancouver Island region. We have applied an automatic waveform envelope cross-correlation and clustering (WECC) algorithm to seven Cascadia-wide subarrays to search for non-volcanic tremor in 5-minute, 50% overlapping, time windows, revealing 70,000 tremor epicenters. The tremor epicenters cluster in time and space into nearly 200 tremor swarms. The number of hours of tremor per swarm ranges from about 1 to 470 hours. The smaller (inter-ETS) tremor swarms generally locate along the downdip side of the larger ETS swarms and occur much more frequently. In northern Washington, which is currently best monitored, the ETS events, as well as the larger inter-ETS tremor swarms initiate downdip and propagate updip. For the large ETS events, tremor swarm duration is proportional to geodetically determined seismic moment. We consider tremor swarms to be a proxy for slow slip for the smaller events as well, even though slip would be below current geodetic detection thresholds. An interpretation of the observed transition from longer duration, less frequent tremor swarms up dip to smaller more frequent tremor swarms down-dip, in terms of fault strength is the subject of a presentation by Wech. The combined inter-ETS and ETS swarms follow a power law relationship such that the number of swarms, N, exceeding duration τ is given by τ -0.66. If we assume that seismic moment is proportional to τ, as proposed by Ide et al. [Nature, 2007], we find that the tremor swarms follow a standard Gutenberg-Richter logarithmic frequency-magnitude relation, log10 N ≈ -bMw, with b = 1.0, which lies in the range for normal earthquake catalogs. Finally, crude estimates of the spatial dimensions of tremor swarms L suggest that L ≈ τ 1/n where n is between 2 and 3. A value of 2 is consistent with slip propagation rates

  7. Association between restless leg syndrom and slow coronary flow.

    Science.gov (United States)

    Erden, İsmail; Çakcak Erden, Emine; Durmuş, Hacer; Tıbıllı, Hakan; Tabakçı, Mustafa; Kalkan, Mehmet Emin; Türker, Yasin; Akçakoyun, Mustafa

    2014-11-01

    Restless legs syndrome (RLS) is a common sleep disorder in which patients feel unpleasent leg sensations and urge to move the legs during rest, especially at night, and symptoms are improved by leg movement. Prior studies analyzing the associations between cardiovascular disease and restless legs syndrome has shown controversial results. The goal of the study was to estimate the relationship between restless legs syndrome and slow coronary flow (SCF). The present study was cross-sectional and observational and consists of 176 individuals who underwent coronary angiography and had angiographically normal coronary arteries of varying coronary flow rates. The study included 86 patients with isolated SCF and 90 control participants with normal coronary flow (NCF). RLS was assessed the day after the coronry flow was evaluated, using a self-administered questionnaire based on the International Restless Legs Study Group criteria. The following question was asked: "Do you have unpleasant leg sensations (like crawling, paraesthesia, or pain) combined with motor restlessness and an urge to move?" The possible responses were as follows: no, less than once/month, 2-4 times/month, 5-14 times/month, and 15 or more times per month. Those who answered that they had these feelings were asked the following two more questions: 1) "Do these symptoms occur only at rest and does moving improve them?" and 2) "Are these symptoms worsen in the evening/at night compared with the morning?" RLS is considered to be probable if the participant has answered "yes" for all three of the above questions, and has a frequency of ≥5 times/month. Student's t-test, Mann-Whitney U test, multiple logistic regression analysis were used for statistical analysis. The prevalence of restless legs syndrome was 48 (27%) and increased significantly with age. Patients with SCF have more likely had RLS than the control group (p<0.001). The age-adjusted prevalence odds of SCF were 3.11 times higher (95% CI: 1

  8. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-03-10

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected for the device based on the natural frequency. Additionally, a second voltage amplitude of a second source of excitation can be selected for the device, and the first and second sources of excitation can be applied to the device. After applying the first and second sources of excitation, a frequency of the second source of excitation can be swept. Using the methods of multi- frequency excitation described herein, new operating frequencies, operating frequency ranges, resonance frequencies, resonance frequency ranges, and/or resonance responses can be achieved for devices and systems.

  9. Frequency selectivity at very low centre frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Marquardt, Torsten

    2010-01-01

    measurements based on OAE suppression techniques and notched-noise masking data psychophysically measured for centre frequencies in the range 50-125 Hz, this study examines how individual differences in frequency selectivity, as well as in masking, may occur at very low CFs due to individual differences...

  10. A theoretical study of the influence of barrier thickness variations on optical properties of a semiconductor multiple quantum well slow light device

    Science.gov (United States)

    Abdolhosseini, S.; Kaatuzian, H.; Kohandani, R.; Choupanzadeh, B.

    2018-01-01

    The influence of barrier thickness variations on the operation of GaAs/AlGaAs multiple quantum well (MQW) slow light devices based on coherence population oscillations (CPOs) is explained. The variations are shown to affect the slow down factor (SDF) and bandwidth of these devices. Bloch equations and the analytical model in fractional dimension are used to analyse and simulate the slow light device. It is shown that other physical parameters of MQW structures (QW width and barrier alloy concentration) affect significantly the optical properties of the device. The presented approaches make it possible to achieve suitable values of SDF and focal energy by adjusting the barrier thickness, QW width and aluminium content. The maximum range of the centre frequency tuning is estimated to be about 1 THz in our calculations, while the slow down factor can reach a high value of 8.5 × 104.

  11. Critical slowing down governs the transition to neuron spiking.

    Directory of Open Access Journals (Sweden)

    Christian Meisel

    2015-02-01

    Full Text Available Many complex systems have been found to exhibit critical transitions, or so-called tipping points, which are sudden changes to a qualitatively different system state. These changes can profoundly impact the functioning of a system ranging from controlled state switching to a catastrophic break-down; signals that predict critical transitions are therefore highly desirable. To this end, research efforts have focused on utilizing qualitative changes in markers related to a system's tendency to recover more slowly from a perturbation the closer it gets to the transition--a phenomenon called critical slowing down. The recently studied scaling of critical slowing down offers a refined path to understand critical transitions: to identify the transition mechanism and improve transition prediction using scaling laws. Here, we outline and apply this strategy for the first time in a real-world system by studying the transition to spiking in neurons of the mammalian cortex. The dynamical system approach has identified two robust mechanisms for the transition from subthreshold activity to spiking, saddle-node and Hopf bifurcation. Although theory provides precise predictions on signatures of critical slowing down near the bifurcation to spiking, quantitative experimental evidence has been lacking. Using whole-cell patch-clamp recordings from pyramidal neurons and fast-spiking interneurons, we show that 1 the transition to spiking dynamically corresponds to a critical transition exhibiting slowing down, 2 the scaling laws suggest a saddle-node bifurcation governing slowing down, and 3 these precise scaling laws can be used to predict the bifurcation point from a limited window of observation. To our knowledge this is the first report of scaling laws of critical slowing down in an experiment. They present a missing link for a broad class of neuroscience modeling and suggest improved estimation of tipping points by incorporating scaling laws of critical slowing

  12. The Terceira Rift as hyper-slow, hotspot-dominated oblique spreading axis: A comparison with other slow-spreading plate boundaries

    Science.gov (United States)

    Vogt, P. R.; Jung, W. Y.

    2004-01-01

    We suggest the 550 km long Terceira Rift (TR, Azores Plateau) is the world's slowest-spreading (hyper-slow, 4 mm/a plate separation; 2.3-3.8 mm/a perpendicular to oblique axial segments) organized accreting plate boundary. In its slightly sinuous (ca. 300 km radius of curvature) axial trace, its oblique spreading angles (ca. 40°-65°), and in frequency and first motions of earthquakes, the TR resembles better-known 'ultra-' or 'super-' slow spreading ridges (e.g. Gakkel and Southwest Indian ridges). Interpreted simply as volcanically 'unfilled' rift valley segments, the inter-island basins (e.g. the 3200 m deep Hirondelle Basin) are slightly wider (30-60 km), but not significantly deeper (1000-2200 m) than the Mid-Atlantic Ridge (MAR) median valley (20-28 mm/a; 10°N-53°N). However, along-axis segmentation wavelengths (ca. 100 km) are double those along the central MAR, but make TR comparable to the 'ultra-slow' (15-16 mm/a) Southwest Indian and Gakkel (7-13 mm/a) ridges. If this segmentation wavelength reflects Rayleigh-Taylor instabilities, the viscosity contrast between the overlying axial lithosphere and the partial melt zones is about an order of magnitude greater at ca. 4-16 mm/a than at 20-30 mm/a. The TR differs dramatically from ultra-slow ridges only in the large amplitude of along-strike topography (2000-4000 m; 4200 m total variation) owing perhaps to a copious melt flux from the Azores 'hotspot', combined with a spreading-rate-determined greater axial flexural strength and plate thickness, and slower export of volcanics from the rift axis. The probable TR youth (ca. 1 Ma?, requiring less than 4 km new oceanic crust) suggests lack of steady-state spreading conditions, which may explain the published gravity evidence against TR spreading. Absolute plate motions support the creation of the Azores Plateau by successive NE jumps of the rift axis to maintain its position over a fixed 'hotspot'.

  13. Slow oscillating transcranial direct current stimulation during sleep has a sleep-stabilizing effect in chronic insomnia: a pilot study.

    Science.gov (United States)

    Saebipour, Mohammad R; Joghataei, Mohammad T; Yoonessi, Ali; Sadeghniiat-Haghighi, Khosro; Khalighinejad, Nima; Khademi, Soroush

    2015-10-01

    Recent evidence suggests that lack of slow-wave activity may play a fundamental role in the pathogenesis of insomnia. Pharmacological approaches and brain stimulation techniques have recently offered solutions for increasing slow-wave activity during sleep. We used slow (0.75 Hz) oscillatory transcranial direct current stimulation during stage 2 of non-rapid eye movement sleeping insomnia patients for resonating their brain waves to the frequency of sleep slow-wave. Six patients diagnosed with either sleep maintenance or non-restorative sleep insomnia entered the study. After 1 night of adaptation and 1 night of baseline polysomnography, patients randomly received sham or real stimulation on the third and fourth night of the experiment. Our preliminary results show that after termination of stimulations (sham or real), slow oscillatory transcranial direct current stimulation increased the duration of stage 3 of non-rapid eye movement sleep by 33 ± 26 min (P = 0.026), and decreased stage 1 of non-rapid eye movement sleep duration by 22 ± 17.7 min (P = 0.028), compared with sham. Slow oscillatory transcranial direct current stimulation decreased stage 1 of non-rapid eye movement sleep and wake time after sleep-onset durations, together, by 55.4 ± 51 min (P = 0.045). Slow oscillatory transcranial direct current stimulation also increased sleep efficiency by 9 ± 7% (P = 0.026), and probability of transition from stage 2 to stage 3 of non-rapid eye movement sleep by 20 ± 17.8% (P = 0.04). Meanwhile, slow oscillatory transcranial direct current stimulation decreased transitions from stage 2 of non-rapid eye movement sleep to wake by 12 ± 6.7% (P = 0.007). Our preliminary results suggest a sleep-stabilizing role for the intervention, which may mimic the effect of sleep slow-wave-enhancing drugs. © 2015 European Sleep Research Society.

  14. Perceptions of the Slow Food Cultural Trend among the Youth

    Directory of Open Access Journals (Sweden)

    Lelia Voinea

    2016-11-01

    Full Text Available As they become increasingly aware of the importance of healthy eating and of the serious food imbalance caused by the overconsumption of industrial, ultra-processed and superorganoleptic food, consumers are now beginning to turn their attention to food choices guaranteeing both individual health and also of the environment . Thus, in recent years we are witnessing the rise of a cultural trend ‒ Slow Food. Slow Food has become an international movement that advocates for satisfying culinary pleasure, protects biological and cultural diversity, spread taste education, links "green" producers to consumers and believes that gastronomy intersects with politics, agriculture and ecology. Slow Food proposes a holistic approach to food problem, where the economic, sociocultural and environmental aspects are interlinked, being pursued as part of an overall strategy. In order to highlight the manner in which the principles of this cultural trend are perceived by the representatives of the new generation of consumers in Romania, exploratory research marketing was conducted among the students in the second year of the master’s program Quality Management, Expertise and Consumer Protection, from the Faculty of Business and Tourism from the Buchares t University of Economic Studies . The results of this research have shown an insufficient knowledge of Slow Food phenomenon and, especially, the Slow Food network activity in Romania. To show that the Slow Food type of food is a healthier option towards which the future consumer demand should be guided, especially those belonging to the younger generation, an antithetical comparative analysis of the nutritional value of two menus was performed: a suggestive one for the Slow Food feeding style and other one, specific to the fast food style. Slow Food style was considered antithetical to the fast food because many previous studies have shown a preference of the young for the fast-food type products, despite the

  15. Optimizing detection and analysis of slow waves in sleep EEG.

    Science.gov (United States)

    Mensen, Armand; Riedner, Brady; Tononi, Giulio

    2016-12-01

    Analysis of individual slow waves in EEG recording during sleep provides both greater sensitivity and specificity compared to spectral power measures. However, parameters for detection and analysis have not been widely explored and validated. We present a new, open-source, Matlab based, toolbox for the automatic detection and analysis of slow waves; with adjustable parameter settings, as well as manual correction and exploration of the results using a multi-faceted visualization tool. We explore a large search space of parameter settings for slow wave detection and measure their effects on a selection of outcome parameters. Every choice of parameter setting had some effect on at least one outcome parameter. In general, the largest effect sizes were found when choosing the EEG reference, type of canonical waveform, and amplitude thresholding. Previously published methods accurately detect large, global waves but are conservative and miss the detection of smaller amplitude, local slow waves. The toolbox has additional benefits in terms of speed, user-interface, and visualization options to compare and contrast slow waves. The exploration of parameter settings in the toolbox highlights the importance of careful selection of detection METHODS: The sensitivity and specificity of the automated detection can be improved by manually adding or deleting entire waves and or specific channels using the toolbox visualization functions. The toolbox standardizes the detection procedure, sets the stage for reliable results and comparisons and is easy to use without previous programming experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A taste of ethical consumption at a slow food festival.

    Science.gov (United States)

    Williams, Lauren T; Germov, John; Fuller, Sascha; Freij, Maria

    2015-08-01

    This paper examines the motives and experiences of attendees at a Slow Food festival to gain an understanding of how people engage with ethical consumer projects. Slow Food is a global social movement aimed at promoting food that is regionally, ethically, and sustainably produced, and convivially consumed. The movement uses culinary tourist events, such as food festivals and farmers' markets, to promote its philosophy and attract new members. There have been no empirical studies of ethical consumption using a Slow Food event as a case study. This study uses an ethnographic approach and a framework of virtue ethics to explore the views of people attending a major Slow Food festival in the city of Melbourne, Australia. Semi-structured interviews were conducted in situ with 33 participants (19 consumers and 14 stallholders) to discover their rationales for attending the festival, and their perspectives on ethical consumption. Transcripts were coded and thematically analysed, resulting in three themes reflecting varying degrees of public virtues (altruistic motivations) and private virtues (personal wellbeing): the quest for virtuous lifestyles through ethical consumption, the importance of co-production, and the challenges of putting ethical consumer projects like Slow Food into daily practice. The findings reveal the manner in which virtue ethics affects foodways and highlights the contingent and challenging nature of practising ethical eating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Differential responses of fast- and slow-conducting pyramidal tract neurons to changes in accuracy demands during locomotion

    Science.gov (United States)

    Stout, Erik E; Beloozerova, Irina N

    2013-01-01

    Most movements need to be accurate. The neuronal mechanisms controlling accuracy during movements are poorly understood. In this study we compare the activity of fast- and slow-conducting pyramidal tract neurons (PTNs) of the motor cortex in cats as they walk over both a flat surface, a task that does not require accurate stepping and can be accomplished without the motor cortex, as well as along a horizontal ladder, a task that requires accuracy and the activity of the motor cortex to be successful. Fast- and slow-conducting PTNs are known to have distinct biophysical properties as well as different afferent and efferent connections. We found that while the activity of all PTNs changes substantially upon transition from simple locomotion to accurate stepping on the ladder, slow-conducting PTNs respond in a much more concerted manner than fast-conducting ones. As a group, slow-conducting PTNs increase discharge rate, especially during the late stance and early swing phases, decrease discharge variability, have a tendency to shift their preferred phase of the discharge into the swing phase, and almost always produce a single peak of activity per stride during ladder locomotion. In contrast, the fast-conducting PTNs do not display such concerted changes to their activity. In addition, upon transfer from simple locomotion to accurate stepping on the ladder slow-conducting PTNs more profoundly increase the magnitude of their stride-related frequency modulation compared with fast-conducting PTNs. We suggest that slow-conducting PTNs are involved in control of accuracy of locomotor movements to a greater degree than fast-conducting PTNs. PMID:23381901

  18. Modeling fast and slow earthquakes at various scales.

    Science.gov (United States)

    Ide, Satoshi

    2014-01-01

    Earthquake sources represent dynamic rupture within rocky materials at depth and often can be modeled as propagating shear slip controlled by friction laws. These laws provide boundary conditions on fault planes embedded in elastic media. Recent developments in observation networks, laboratory experiments, and methods of data analysis have expanded our knowledge of the physics of earthquakes. Newly discovered slow earthquakes are qualitatively different phenomena from ordinary fast earthquakes and provide independent information on slow deformation at depth. Many numerical simulations have been carried out to model both fast and slow earthquakes, but problems remain, especially with scaling laws. Some mechanisms are required to explain the power-law nature of earthquake rupture and the lack of characteristic length. Conceptual models that include a hierarchical structure over a wide range of scales would be helpful for characterizing diverse behavior in different seismic regions and for improving probabilistic forecasts of earthquakes.

  19. Slow dynamics in translation-invariant quantum lattice models

    Science.gov (United States)

    Michailidis, Alexios A.; Žnidarič, Marko; Medvedyeva, Mariya; Abanin, Dmitry A.; Prosen, Tomaž; Papić, Z.

    2018-03-01

    Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations.

  20. Simplified slow anti-coincidence circuit for Compton suppression systems

    Energy Technology Data Exchange (ETDEWEB)

    Al-Azmi, Darwish [Department of Applied Sciences, College of Technological Studies, Public Authority for Applied Education and Training, P.O. Box 42325, Shuwaikh 70654 (Kuwait)], E-mail: ds.alazmi@paaet.edu.kw

    2008-08-15

    Slow coincidence circuits for the anti-coincidence measurements have been considered for use in Compton suppression technique. The simplified version of the slow circuit has been found to be fast enough, satisfactory and allows an easy system setup, particularly with the advantage of the automatic threshold setting of the low-level discrimination. A well-type NaI detector as the main detector surrounded by plastic guard detector has been arranged to investigate the performance of the Compton suppression spectrometer using the simplified slow circuit. The system has been tested to observe the improvement in the energy spectra for medium to high-energy gamma-ray photons from terrestrial and environmental samples.

  1. Neurogenetics of slow axonal transport: from cells to animals.

    Science.gov (United States)

    Sadananda, Aparna; Ray, Krishanu

    2012-09-01

    Slow axonal transport is a multivariate phenomenon implicated in several neurodegenerative disorders. Recent reports have unraveled the molecular basis of the transport of certain slow component proteins, such as the neurofilament subunits, tubulin, and certain soluble enzymes such as Ca(2+)/calmodulin-dependent protein kinase IIa (CaM kinase IIa), etc., in tissue cultured neurons. In addition, genetic analyses also implicate microtubule-dependent motors and other housekeeping proteins in this process. However, the biological relevance of this phenomenon is not so well understood. Here, the authors have discussed the possibility of adopting neurogenetic analyses in multiple model organisms to correlate molecular level measurements of the slow transport phenomenon to animal behavior, thus facilitating the investigation of its biological efficacy.

  2. Enhancing physics demos using iPhone slow motion

    Science.gov (United States)

    Lincoln, James

    2017-12-01

    Slow motion video enhances our ability to perceive and experience the physical world. This can help students and teachers especially in cases of fast moving objects or detailed events that happen too quickly for the eye to follow. As often as possible, demonstrations should be performed by the students themselves and luckily many of them will already have this technology in their pockets. The "S" series of iPhone has the slow motion video feature standard, which also includes simultaneous sound recording (somewhat unusual among slow motion cameras). In this article I share some of my experiences using this feature and provide advice on how to successfully use this technology in the classroom.

  3. The condition for classical slow rolling in new inflation

    International Nuclear Information System (INIS)

    Sasaki, Misao; Nambu, Yasusada; Nakao, Ken-ichi.

    1988-02-01

    By means of the stochastic description of inflation, we investigate the dynamics of a fixed comoving domain in a continuously inflating universe on the global scale, both analytically and numerically. A particular attention is paid to the condition for a domain to enter the classical slow rolling phase. New inflationary universe models with the potential form, V(φ) ∼ V 0 - cφ 2n at φ ∼ 0 are considered. The critical value of the scalar field beyond which the field slowly rolls down the potential hill is estimated. We find, for all models under consideration, the condition for classical slow rolling is a sufficient condition for the expected amplitude of density perturbations to be smaller than unity. In other words, the density perturbation amplitude at the later Friedmann stage is always smaller than unity if the universe experienced the classical slow roll-over phase. (author)

  4. The Adaptive Organization and Fast-slow Systems

    DEFF Research Database (Denmark)

    Andersen, Torben Juul; Hallin, Carina Antonia

    2016-01-01

    organizational opportunities and forward-looking analytics. The fast and emergent processes performed by local managers at the frontline observe and respond to environmental stimuli and the slow processes initiated by decision makers interpret events and reasons about updated strategic actions. Current......Contemporary organizations operate under turbulent business conditions and must adapt their strategies to ongoing changes. This article argues that sustainable organizational performance is achieved when top management directs and coordinates interactive processes anchored in emerging...... experiential insights from the fast response processes can be aggregated systematically from frontline employees and fed into the slow process of reasoning. When the fast and slow processes interact they form a dynamic system that adapts organizational activities to the changing conditions which identifies...

  5. Instability of a Traffic Jam Induced by Slowing Down

    Science.gov (United States)

    Nagatani, Takashi

    1997-07-01

    A traffic jam induced by slowing down is investigated using the optimal velocity model of the car following models. When cars are decelerated in the presence of hindrances, two kinds of traffic jam occur behind the hindrance: one is an oscillating jam and the other is a homogeneous jam. When the slowing down is small, the oscillating jam occurs. If the slowing down is large, the jam is homogeneous over space and time. The linear stability theory is applied to the traffic jam. The critical line and critical mode of the instability are found. It is shown that the boundary between the oscillating and homogeneous jams is consistent with the critical line of the linear stability. The periods of the oscillating jam are about two times and four times the critical mode estimated by the linear stability theory.

  6. Simplified slow anti-coincidence circuit for Compton suppression systems

    International Nuclear Information System (INIS)

    Al-Azmi, Darwish

    2008-01-01

    Slow coincidence circuits for the anti-coincidence measurements have been considered for use in Compton suppression technique. The simplified version of the slow circuit has been found to be fast enough, satisfactory and allows an easy system setup, particularly with the advantage of the automatic threshold setting of the low-level discrimination. A well-type NaI detector as the main detector surrounded by plastic guard detector has been arranged to investigate the performance of the Compton suppression spectrometer using the simplified slow circuit. The system has been tested to observe the improvement in the energy spectra for medium to high-energy gamma-ray photons from terrestrial and environmental samples

  7. Table incremental slow injection CE-CT in lung cancer

    International Nuclear Information System (INIS)

    Yoshida, Shoji; Maeda, Tomoho; Morita, Masaru

    1988-01-01

    The purpose of this study is to evaluate tumor enhancement in lung cancer under the table incremental study with slow injection of contrast media. The early serial 8 sliced images during the slow injection (1.5 ml/sec) of contrant media were obtained. Following the early images, delayed 8 same sliced images were taken in 2 minutes later. Chacteristic enhanced patterns of the primary cancer and metastatic mediastinal lymphnode were recognized in this study. Enhancement of the primary lesion was classified in 4 patterns, irregular geographic pattern, heterogeneous pattern, homogeneous pattern and rim-enhanced pattern. In mediastinal metastatic lymphadenopathy, three enhanced patterns were obtained, heterogeneous, homogeneous and ring enhanced pattern. Some characteristic enhancement patterns according to the histopathological finding of the lung cancer were obtained. With using this incremental slow injection CE-CT, precise information about the relationship between lung cancer and adjacent mediastinal structure, and obvious staining patterns of the tumor and mediastinal lymphnode were recognized. (author)

  8. Slow cooling protocol improves fatigue life of zirconia crowns.

    Science.gov (United States)

    Paula, Vitor G; Lorenzoni, Fabio C; Bonfante, Estevam A; Silva, Nelson R F A; Thompson, Van P; Bonfante, Gerson

    2015-02-01

    To compare the fatigue life and damage modes of zirconia crowns fabricated with and without framework design modification when porcelain veneered using a fast or slow cooling protocol. Composite resin replicas of a first molar full crown preparation were fabricated. Zirconia copings were milled as conventional (0.5mm even thickness, Zr-C, n=20,) or modified (lingual margin of 1.0mm thickness, 2.0mm height connected to two proximal struts of 3.5mm height, Zr-M, n=20). These groups were subdivided (n=10 each) according to the veneer cooling protocol employed: fast cooling (Zr-CFast and Zr-MFast) and slow cooling (Zr-CSlow and Zr-MSlow). Crowns were cemented and fatigued for 10(6) cycles in water. The number of cycles to failure was recorded and used to determine the interval databased 2-parameter probability Weibull distribution parameter Beta (β) and characteristic life value Eta (η). 2-parameter Weibull calculation presented β=5.53 and β=4.38 for Zr-MFast and Zr-CFast, respectively. Slow cooled crowns did not fail by completion of 10(6) cycles, thereby Weibayes calculation was applied. Increased fatigue life was observed for slow cooled crowns compared to fast cooled ones. Groups Zr-MFast and Zr-MSlow presented no statistical difference. Porcelain cohesive fractures were mainly observed in fast cooled groups. Slow cooled crowns presented in some instances inner cone cracks not reaching the zirconia/veneer interface. Improved fatigue life in tandem with the absence of porcelain fractures were observed in slow cooled crowns, regardless of framework design. Crowns fast cooled chiefly failed by porcelain cohesive fractures. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Separating fast and slow modes in coupled chaotic systems

    Directory of Open Access Journals (Sweden)

    M. Peña

    2004-01-01

    Full Text Available We test a simple technique based on breeding to separate fast and slow unstable modes in coupled systems with different time scales of evolution and variable amplitudes. The technique takes advantage of the earlier saturation of error growth rate of the fastest mode and of the lower value of the saturation amplitude of perturbation of either the fast or the slow modes. These properties of the coupled system allow a physically-based selection of the rescaling time interval and the amplitude of initial perturbations in the 'breeding' of unstable modes (Toth and Kalnay, 1993, 1996, 1997; Aurell et al., 1997; Boffetta et al., 1998 to isolate the desired mode. We perform tests in coupled models composed of fast and slow versions of the Lorenz (1963 model with different strengths of coupling. As examples we present first a coupled system which we denote 'weather with convection', with a slow, large amplitude model coupled with a fast, small amplitude model, second an 'ENSO' system with a 'tropical atmosphere' strongly coupled with a 'tropical ocean', and finally a triply coupled system denoted 'tropical-extratropical' in which a fast model (representing the 'extratropical atmosphere' is loosely coupled to the 'ENSO' system. We find that it is always possible to isolate the fast modes by taking the limit of small amplitudes and short rescaling intervals, in which case, as expected, the results are the same as the local Lyapunov growth obtained with the linear tangent model. In contrast, slow modes cannot be isolated with either Lyapunov or Singular vectors, since the linear tangent and adjoint models are dominated by the fast modes. Breeding is successful in isolating slow modes if rescaling intervals and amplitudes are chosen from physically appropriate scales.

  10. Frequency dependence of sonophoresis.

    Science.gov (United States)

    Tezel, A; Sens, A; Tuchscherer, J; Mitragotri, S

    2001-12-01

    Application of low-frequency ultrasound has been shown to increase skin permeability, thereby facilitating delivery of macromolecules (low-frequency sonophoresis). In this study, we sought to determine the dependence of low-frequency sonophoresis on ultrasound frequency, intensity and energy density. Pig skin was exposed to low-frequency ultrasound over a range of ultrasound frequency and intensity conditions. The degree of skin permeabilization was measured using its conductivity. Imaging experiments were also carried out to visualize the transport pathways created by ultrasound. The data showed that for each frequency (in the range of 19.6-93.4 kHz), there exists a threshold intensity below which no detectable conductivity enhancement was observed. The threshold intensity increased with frequency. It is feasible to achieve the desired conductivity (permeability) enhancement regardless of the choice of frequency, although the necessary energy density is higher at higher frequencies. Low frequencies (approximately 20 kHz) induced localized transport compared to a more dispersed effect seen with higher frequencies (approximately 58.9 kHz). This study provides a quantitative understanding of the effects of low-frequency ultrasound on skin permeability.

  11. Estimation and Coordination of Sequence Patterns for Frequency Hopping Dynamic Spectrum Access Networks

    Science.gov (United States)

    2014-03-27

    23 3.1.1 System Development . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.1.1 Gold’s Algorithm VHDL Design...141 Appendix: VHDL code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 References...Frequency Hopping SMREM Suggested Master REM SPSFH sub-packet slow frequency hopping TTR Time-to-Rendezvous VHDL Very High Speed Integrated Circuit Hardware

  12. On the Capacity of a GSM Frequency Hopping network with Intelligent Underlayer-Overlayer

    DEFF Research Database (Denmark)

    Nielsen, Thomas Toftegaard; Wigard, Jeroen; Mogensen, Preben Elgaard

    1997-01-01

    . By combining this reuse partitioning with frequency hopping, an increase in the network capacity in terms of carried traffic per cell is achieved. Simulations have indicated that for slow moving mobiles a gain of approximately 35% is achieved by this new feature when compared with a frequency hopping network...

  13. Brain-wide slowing of spontaneous alpha rhythms in mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Pilar eGarcés

    2013-12-01

    Full Text Available The neurophysiological changes associated with Alzheimer’s Disease (AD and Mild Cognitive Impairment (MCI include an increase in low frequency activity, as measured with electroencephalography or magnetoencephalography (MEG. A relevant property of spectral measures is the alpha peak, which corresponds to the dominant alpha rhythm. Here we studied the spatial distribution of MEG resting state alpha peak frequency and amplitude values in a sample of 27 MCI patients and 24 age-matched healthy controls. Power spectra were reconstructed in source space with linearly constrained minimum variance beamformer. Then, 88 Regions of Interest (ROIs were defined and an alpha peak per ROI and subject was identified. Statistical analyses were performed at every ROI, accounting for age, sex and educational level. Peak frequency was significantly decreased (p< 0.05 in MCIs in many posterior ROIs. The average peak frequency over all ROIs was 9.68±0.71 Hz for controls and 9.05±0.90 Hz for MCIs and the average normalized amplitude was (2.57±0.59•10-2 for controls and (2.70±0.49•10-2 for MCIs. Age and gender were also found to play a role in the alpha peak, since its frequency was higher in females than in males in posterior ROIs and correlated negatively with age in frontal ROIs. Furthermore, we examined the dependence of peak parameters with hippocampal volume, which is a commonly used marker of early structural AD-related damage. Peak frequency was positively correlated with hippocampal volume in many posterior ROIs. Overall, these findings indicate a pathological alpha slowing in MCI.

  14. Slow Drift-Oscillations of a Ship in Irregular Waves

    Directory of Open Access Journals (Sweden)

    Odd M. Faltinsen

    1980-10-01

    Full Text Available A procedure to calculate horizontal slow drift excitation forces on an infinitely long horizontal cylinder in irregular beam sea waves is presented. The hydrodynamic boundary-value problem is solved correctly to second order in wave amplitude. Results in the form of second order transfer functions are presented for different, two-dimensional shapes. It is concluded that Newman's approximative method is a practical way to calculate slow drift excitation forces on a ship in beam sea and it is suggested that it may be used in a more general case. Applications of the results for moored ships are discussed.

  15. Efficiency evaluation of slow extraction from the synchrotron

    International Nuclear Information System (INIS)

    Kazarinov, N.Yu.; Mikhajlov, V.A.

    1986-01-01

    Analytical calculation of slow extraction of the beam out of the JINR synchrotron is made. The formulae for evaluation of the sextupole amplitudes and phases, quadrupole lens gradient range are obtained, the connection with circulated and extracted beam parameters is shown. The formulae for calculating optimal position of the septum-magnet or electrostatic septum are presented. On this basis the formula for estimating the efficiency of beam slow extraction out of the synchrotron is obtained under assumption that in the septum region during the extraction a quasistationary distribution of the beam density occurs

  16. Scaling and noise in slow combustion of paper

    Science.gov (United States)

    Myllys; Maunuksela; Alava; Ala-Nissila; Timonen

    2000-02-28

    We present results of high resolution experiments on kinetic roughening of slow combustion fronts in paper, focusing on short length and time scales. Using three different grades of paper, we find that the combustion fronts show apparent spatial and temporal multiscaling at short scales. The scaling exponents decrease as a function of the order of the corresponding correlation functions. The noise affecting the fronts reveals short range temporal and spatial correlations, and non-Gaussian noise amplitudes. Our results imply that the overall behavior of slow combustion fronts cannot be explained by standard theories of kinetic roughening.

  17. Passive integrated circuits utilizing slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Têtu, Amélie; Yang, Lirong

    2006-01-01

    We report thorough investigations of photonic crystal waveguide properties in the slow light regime. The transmission and the group index near the cutoff wavelengths oscillate in phase in close analogy with the ID photonic crystal behavior. The influence of having a finite number of periods...... in the photonic crystal waveguide is addressed to explain the spiky character of both the transmission and group index spectra. The profile of the slow-light modes is stretched out into the first and second rows of the holes closest to the waveguide channel. One of our strategies to ameliorate the design...

  18. Computation of saddle-type slow manifolds using iterative methods

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall

    2015-01-01

    This paper presents an alternative approach for the computation of trajectory segments on slow manifolds of saddle type. This approach is based on iterative methods rather than collocation-type methods. Compared to collocation methods, which require mesh refinements to ensure uniform convergence...... with respect to , appropriate estimates are directly attainable using the method of this paper. The method is applied to several examples, including a model for a pair of neurons coupled by reciprocal inhibition with two slow and two fast variables, and the computation of homoclinic connections in the Fitz...

  19. Wide-band slow-wave systems simulation and applications

    CERN Document Server

    Staras, Stanislovas

    2012-01-01

    The field of electromagnetics has seen considerable advances in recent years, based on the wide applications of numerical methods for investigating electromagnetic fields, microwaves, and other devices. Wide-Band Slow-Wave Systems: Simulation and Applications presents new technical solutions and research results for the analysis, synthesis, and design of slow-wave structures for modern electronic devices with super-wide pass-bands. It makes available, for the first time in English, significant research from the past 20 years that was previously published only in Russian and Lithuanian. The aut

  20. Solution of neutron slowing down equation including multiple inelastic scattering

    International Nuclear Information System (INIS)

    El-Wakil, S.A.; Saad, A.E.

    1977-01-01

    The present work is devoted the presentation of an analytical method for the calculation of elastically and inelastically slowed down neutrons in an infinite non absorbing homogeneous medium. On the basis of the Central limit theory (CLT) and the integral transform technique the slowing down equation including inelastic scattering in terms of the Green function of elastic scattering is solved. The Green function is decomposed according to the number of collisions. A formula for the flux at any lethargy O (u) after any number of collisions is derived. An equation for the asymptotic flux is also obtained

  1. Consumption of polyphenol plants may slow aging and associated diseases.

    Science.gov (United States)

    Uysal, Utku; Seremet, Sila; Lamping, Jeffrey W; Adams, Jerome M; Liu, Deede Y; Swerdlow, Russell H; Aires, Daniel J

    2013-01-01

    Slowing aging is a widely shared goal. Plant-derived polyphenols, which are found in commonly consumed food plants such as tea, cocoa, blueberry and grape, have been proposed to have many health benefits, including slowing aging. In-vivo studies have demonstrated the lifespan-extending ability of six polyphenol-containing plants. These include five widely consumed foods (tea, blueberry, cocoa, apple, pomegranate) and a flower commonly used as a folk medicine (betony). These and multiple other plant polyphenols have been shown to have beneficial effects on aging-associated changes across a variety of organisms from worm and fly to rodent and human.

  2. Lunch frequency among adolescents

    DEFF Research Database (Denmark)

    Pedersen, Trine Pagh; Holstein, Bjørn E; Krølner, Rikke

    2016-01-01

    OBJECTIVE: To investigate: (i) how lunch frequency of adolescents varies between schools and between classes within schools; (ii) the associations between frequency of lunch and individual sociodemographic factors and school characteristics; and (iii) if any observed associations between lunch...

  3. Modeling Frequency Comb Sources

    Directory of Open Access Journals (Sweden)

    Li Feng

    2016-06-01

    Full Text Available Frequency comb sources have revolutionized metrology and spectroscopy and found applications in many fields. Stable, low-cost, high-quality frequency comb sources are important to these applications. Modeling of the frequency comb sources will help the understanding of the operation mechanism and optimization of the design of such sources. In this paper,we review the theoretical models used and recent progress of the modeling of frequency comb sources.

  4. Frequency reference in VSAT

    Science.gov (United States)

    Cheah, Jonathon Y. C.

    1994-02-01

    A low cost technique of frequency reference distribution within a VSAT network is discussed. This technique allows the use of a modestly frequency stable oscillator as the master frequency reference in the hub of a star-connected VSAT network. The need for extremely frequency stable OCXOs in VSATs is completely avoided. This technique was successfully incorporated in the early commercial VSAT networks. It contributes partially to the low cost nature of some of the VSAT networks available today.

  5. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  6. Eastern Frequency Response Study

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N.W.; Shao, M.; Pajic, S.; D' Aquila, R.

    2013-05-01

    This study was specifically designed to investigate the frequency response of the Eastern Interconnection that results from large loss-of-generation events of the type targeted by the North American Electric Reliability Corp. Standard BAL-003 Frequency Response and Frequency Bias Setting (NERC 2012a), under possible future system conditions with high levels of wind generation.

  7. Making Sense of Frequency.

    Science.gov (United States)

    Larsen-Freeman, Diane

    2002-01-01

    Responds to Ellis (2002), which focuses on frequency in language processing, language use, and language acquisition. Contextualizes the frequency factor in terms of the evolution of second language acquisition (SLA) research. Suggests that although relevant and important, the frequency factor requires greater definition and qualification.…

  8. An active learning mammalian skeletal muscle lab demonstrating contractile and kinetic properties of fast- and slow-twitch muscle.

    Science.gov (United States)

    Head, S I; Arber, M B

    2013-12-01

    The fact that humans possess fast- and slow-twitch muscle in the ratio of ∼50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic properties of fast- and slow-twitch mammalian skeletal muscle. This laboratory illustrates the major differences in contractile properties and fatigue profiles exhibited by the two muscle types. Students compare and contrast twitch kinetics, fused tetanus characteristics, force-frequency relationships, and fatigue properties of fast- and slow-twitch muscles. Examples of results collected by students during class are used to illustrate the type of data collected and analysis performed. During the laboratory, students are encouraged to connect factual information from their skeletal muscle lectures to their laboratory findings. This enables student learning in an active fashion; in particular, the isolated muscle preparation demonstrates that much of what makes muscle fast or slow is myogenic and not the product of the nervous or circulatory systems. This has far-reaching implications for motor control and exercise behavior and therefore is a crucial element in exercise science, with its focus on power and endurance sport activities. To measure student satisfaction with this active learning technique, a questionnaire was administered after the laboratory; 96% of the comments were positive in their support of active versus passive learning strategies.

  9. Geochemistry of abyssal peridotites from the super slow-spreading ...

    Indian Academy of Sciences (India)

    Meanwhile, Rb, Ba, U, Pb, Sr, Li anomalies and the Ce/Pb ratio suggest that these serpentinites have been strongly altered by seawater. 1. Introduction. At present, it is generally accepted that mantle peridotites are widely exposed on the seafloor at slow-to-intermediate spreading ridges (e.g., Dick et al. 1984; Cannat et al.

  10. Structural looseness investigation in slow rotating permanent magnet generators

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Mijatovic, Nenad; Sweeney, Christian Walsted

    2016-01-01

    Structural looseness in electric machines is a condition influencing the alignment of the machine and thus the overall bearing health. In this work, assessment of the above mentioned failure mode is tested on a slow rotating (running speed equal to 0.7Hz) permanent magnet generator (PMG), while...

  11. Slow diuron release formulations based on clay-phosphatidylcholine complexes

    Czech Academy of Sciences Publication Activity Database

    Undabeytia, T.; Recio, E.; Maqueda, C.; Sanchez-Verdejo, T.; Balek, Vladimír

    2012-01-01

    Roč. 55, JAN (2012), s. 53-61 ISSN 0169-1317 R&D Projects: GA MŠk(CZ) LC523 Institutional support: RVO:61388980 Keywords : Diuron * Phosphatidylcholine * Clay mineral * Leaching * Bioactivity * Slow release Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 2.342, year: 2012

  12. Responsive demand to mitigate slow recovery voltage sags

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; da Silva, Luiz Carlos Pereira; Xu, Zhao

    2012-01-01

    can be provided by thermostatically controlled loads as well as other types of load. This technology has proven to be effective in distribution systems with a large composition of induction motors, when voltage sags present slow recovery characteristics because of the deceleration of the motors during...

  13. Persisting zones of slow impulse conduction in developing chicken hearts

    NARCIS (Netherlands)

    de Jong, F.; Opthof, T.; Wilde, A. A.; Janse, M. J.; Charles, R.; Lamers, W. H.; Moorman, A. F.

    1992-01-01

    We performed a correlative electrophysiological and immunohistochemical study of embryonic chicken hearts during the septational period (Hamburger and Hamilton stages 13-31 [2-7 days of incubation]). The analyses yield conclusive evidence for slow conduction, up to 7 days of development, in the

  14. Slow Manifold and Hannay Angle in the Spinning Top

    Science.gov (United States)

    Berry, M. V.; Shukla, P.

    2011-01-01

    The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at…

  15. On loneliness and the value of slow reflection

    Directory of Open Access Journals (Sweden)

    Karin van Marle

    2009-09-01

    Full Text Available In this article, the author considers the relationship of law, morality and reconciliation. Intrigued by the political and ethical stances taken by Arendt and McCarthy, the author supports notions of detachment, slowness and social reconciliation concerning contemporary political and ethical questions.

  16. Effects of melatonin implantation during the slow period of cashmere ...

    African Journals Online (AJOL)

    This study was conducted to investigate the effects of melatonin implantation during the slow period of cashmere growth on fibre production in Inner Mongolian cashmere goats. It was found that melatonin implantation had no effect on the growth rate of cashmere, except from February to March when the rate of treated goats ...

  17. Grating-assisted superresolution of slow waves in Fourier space

    DEFF Research Database (Denmark)

    Thomas, N. Le; Houdré, R.; Frandsen, Lars Hagedorn

    2007-01-01

    with a high numerical aperture Fourier space imaging set-up. A high-resolution spectroscopy of the far-field emission diagram allows us to accurately and efficiently determine the dispersion curve and the group-index dispersion of planar photonic waveguides operating in the slow light regime....

  18. Depth profiling of aluminium metal using slow positron beam ...

    African Journals Online (AJOL)

    Slow positron beam Doppler-broadening technique was used to study depth profiling of aluminium metals sample. The variation of the line-shape parameters with incident positron energy was studied. Also, the depth profile of the S parameter was investigated. The positron implantation profile and backscattering fraction for ...

  19. Thermodynamics of Gases: Combustion Processes, Analysed in Slow Motion

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter

    2013-01-01

    We present a number of simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature relatively slow combustion processes of pure hydrogen as well as fast reactions involving oxy-hydrogen in a stoichiometric mixture. (Contains 4 figures.)

  20. Pathological and molecular characterizations of slow leaf rusting in ...

    African Journals Online (AJOL)

    Fifteen (15) wheat genotypes which also included multiple crosses with the aim to characterize pyramid resistance genes, including slow rusting genes like Lr46 and Lr50 were evaluated for disease severity percent, latent period and incubation period under field conditions. Detached leaf assay was also performed with ...

  1. One Size Fits All? Slow Cortical Potentials Neurofeedback: A Review

    Science.gov (United States)

    Mayer, Kerstin; Wyckoff, Sarah N.; Strehl, Ute

    2013-01-01

    Objective: The intent of this manuscript was to review all published studies on slow cortical potentials (SCP) neurofeedback for the treatment of ADHD, with emphasis on neurophysiological rationale, study design, protocol, outcomes, and limitations. Method: For review, PubMed, MEDLINE, ERIC, and Google Scholar searches identified six studies and…

  2. Investigating the critical slowing down of QCD simulations

    International Nuclear Information System (INIS)

    Schaefer, Stefan

    2009-12-01

    Simulations of QCD are known to suffer from serious critical slowing down towards the continuum limit. This is particularly prominent in the topological charge. We investigate the severeness of the problem in the range of lattice spacings used in contemporary simulations and propose a method to give more reliable error estimates. (orig.)

  3. Enhancing Physics Demos Using iPhone Slow Motion

    Science.gov (United States)

    Lincoln, James

    2017-01-01

    Slow motion video enhances our ability to perceive and experience the physical world. This can help students and teachers especially in cases of fast moving objects or detailed events that happen too quickly for the eye to follow. As often as possible, demonstrations should be performed by the students themselves and luckily many of them will…

  4. Parameter regimes for slow, intermediate and fast MHD shocks

    NARCIS (Netherlands)

    Delmont, P.; Keppens, R.

    2011-01-01

    We investigate under which parameter regimes the magnetohydrodynamic (MHD) Rankine-Hugoniot conditions, which describe discontinuous solutions to the MHD equations, allow for slow, intermediate and fast shocks. We derive limiting values for the upstream and downstream shock parameters for which

  5. Reduction in slow intercompartmental clearance of urea during dialysis

    International Nuclear Information System (INIS)

    Bowsher, D.J.; Krejcie, T.C.; Avram, M.J.; Chow, M.J.; Del Greco, F.; Atkinson, A.J. Jr.

    1985-01-01

    The kinetics of urea and inulin were analyzed in five anesthetized dogs during sequential 2-hour periods before, during, and after hemodialysis. The distribution of both compounds after simultaneous intravenous injection was characterized by three-compartment models, and the total volumes of urea (0.66 +/- 0.05 L/kg) and inulin (0.19 +/- 0.01 L/kg) distribution were similar to expected values for total body water and extravascular space, respectively. Intercompartmental clearances calculated before dialysis were used to estimate blood flows to the fast and slow equilibrating compartments. In agreement with previous results, the sum of these flows was similar to cardiac output, averaging 101% of cardiac output measured before dialysis (range 72% to 135%). Dialysis was accompanied by reductions in the slow intercompartmental clearances of urea (81%) and inulin (47%), which reflected a 90% attenuation in blood flow supplying the slow equilibrating compartments. This was estimated to result in a 10% average reduction in the efficiency with which urea was removed by dialysis (range 2.0% to 16.4%). Mean arterial pressure fell by less than 5% during dialysis, but total peripheral resistance increased by 47% and cardiac output fell by 35%. In the postdialysis period, total peripheral resistance and cardiac output returned toward predialysis values, but blood flow to the slow equilibrating peripheral compartment was still reduced by 80%. These changes parallel activation of the renin-angiotensin system, but further studies are required to establish causality

  6. Schrodinger cat state generation using a slow light

    International Nuclear Information System (INIS)

    Ham, B. S.; Kim, M. S.

    2003-01-01

    We show a practical application of giant Kerr nonlinearity to quantum information processing based on superposition of two distinct macroscopic states- Schrodinger cat state. The giant Kerr nonlinearity can be achieved by using electromagnetically induced transparency, in which light propagation should be slowed down so that a pi-phase shift can be easily obtained owing to increased interaction time.

  7. The orange roughy Hoplostethus atlanticus is a long- lived, slow ...

    African Journals Online (AJOL)

    denise

    The orange roughy Hoplostethus atlanticus is a long- lived, slow-growing trachichthyid fish, that has a world- wide distribution at depths of 500–1 500 m. There are major stocks off New Zealand and smaller stocks south- east of Australia, along the Mid-Atlantic Ridge, on the. Namibian shelf and in the southern Indian Ocean.

  8. AN ALTERNATIVE APPROACH IN SUSTAINABLE PLANNING: SLOW URBANISM.

    Directory of Open Access Journals (Sweden)

    Ilknur Turkseven Dogrusoy

    2011-03-01

    Full Text Available The "speed" concept, as being one of the significant phenomena that shaped industrial cities, creates a significant obstacle for sustainability. The speed that was gained with mechanization and industrialization resulted in disintegration in urban environment, disrupted the relation between place and the individual, and caused the rapid transformation of cultural and environmental values that once belonged to the place. At this point, "slowing down" emerges as a significant concept in the quest for sustainability and for regaining the relationship between the urban environment and the individual. This study puts forward Slow Urbanism as an alternative approach in sustainable planning as it forms the antithesis of "speed" and confronts the deformations of global culture shaped by fast consumption. Following a brief discussion of the transformations caused by "speed" in built environments; this study aims to draw attention to new challenges of "Slow Urbanization" model by highlighting its adaptability and flexibility through focusing on three different slow city experiences: Midden-Delfland (The Netherlands, Hersbruck (Germany and Seferihisar (Turkey. The evaluation of these cases displayed that the adaptability and flexibility of the model makes it unique as it can be implemented in settlements that have different characteristics. The findings also revealed that the model focuses on originality, diversity, heterogeneity, a sense of belonging and appropriation instead of homogeneity, monotony, and uniformity. It replaces the "destroy and construct" philosophy of consumption culture with "re-explore and reconstruct" approach and in this way encourages cities to use and develop their distinctive social, economic and cultural potentials.

  9. A New Approach to Charged Particle Slowing Down and Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, David E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-24

    The process by which super-thermal ions slow down against background Coulomb potentials arises in many fields of study. In particular, this is one of the main mechanisms by which the mass and energy from the reaction products of fusion reactions is deposited back into the background. Many of these fields are characterized by length and time scales that are the same magnitude as the range and duration of the trajectory of these particles, before they thermalize into the background. This requires numerical simulation of this slowing down process through numerically integrating the velocities and energies of these particles. This paper first presents a simple introduction to the required plasma physics, followed by the description of the numerical integration used to integrate a beam of particles. This algorithm is unique in that it combines in an integrated manner both a second-order integration of the slowing down with the particle beam dispersion. These two processes are typically computed in isolation from each other. A simple test problem of a beam of alpha particles slowing down against an inert background of deuterium and tritium with varying properties of both the beam and the background illustrate the utility of the algorithm. This is followed by conclusions and appendices. The appendices define the notation, units, and several useful identities.

  10. Slow light and pulse propagation in semiconductor waveguides

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann

    of the model as well as the underlying physical mechanisms are analysed and discussed. A method to achieve slow light by electromagnetically induced transparency (EIT) in an inhomogeneously broadened quantum dot medium is proposed. The basic principles of EIT are assessed and the main dissimilarities between...

  11. Topology optimization of slow light coupling to photonic crystal waveguides

    DEFF Research Database (Denmark)

    Yang, Lirong; Lavrinenko, Andrei; Frandsen, Lars Hagedorn

    2007-01-01

    The slow light coupling efficiency in photonic crystal waveguides is enhanced by using the topology optimisation method. As much as 5 dB improvement in transmission can be achieved in the proximity of the spectrum cutoff. Moreover, the resemblance of the resulting two optimised spectra from...

  12. Concordance of MRI and EEG Focal Slowing in Nonsyndromic Epilepsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-04-01

    Full Text Available Investigators at the Kangwon National University, Korea, and The Epilepsy Center, Lurie Children’s Hospital of Chicago, USA studied the correlation and significance of EEG focal slowing and focal MRI abnormalities in 253 children with nonsyndromic epilepsy.

  13. First Observation of the Slow Dragonet Callionymus aagilis Fricke ...

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science ... The slow dragonet is a rare marine species of the family Callionymidae, and is endemic to Reunion and Mauritius and possibly the other Mascarene Islands. ... The fish was found amongst detritus, with coarse coral sand and debris largely overgrown by coralline algae.

  14. Understanding Bifurcation of Slow Versus Fast Cyber-Attackers

    NARCIS (Netherlands)

    van Wieren, Maarten; Doerr, Christian; Jacobs, Vivian; Pieters, Wolter; Livraga, Giovanni; Torra, Vicenç; Aldini, Alessandro; Martinelli, Fabio; Suri, Neeraj

    2016-01-01

    Anecdotally, the distinction between fast “Smash-and-Grab‿ cyber-attacks on the one hand and slow attacks or “Advanced Persistent Threats‿ on the other hand is well known. In this article, we provide an explanation for this phenomenon as the outcome of an optimization from the perspective of the

  15. Preparation and characterization of slow release formulations of ...

    African Journals Online (AJOL)

    *

    Slow release (SR) of pesticides is an interesting approach in Integrated Pest. Management (IPM) ... particles - and in spite of its low water solubility, it has been reported as a surface water pollutant6. Even though it has .... double sided carbon tapes) and sputter coated with gold (20 nm) on an Edwards Pirani 501 Scan Coat.

  16. Group-index limitations in slow-light photonic crystals

    DEFF Research Database (Denmark)

    Grgic, Jure; Pedersen, Jesper Goor; Xiao, Sanshui

    2010-01-01

    radiation, and in-plane leakage. Often, the different mechanisms are playing in concert, leading to attenuation and scattering of electromagnetic modes. The very same broadening mechanisms also limit the attainable slow-down which we mimic by including a small imaginary part to the otherwise real...

  17. Spatial ability of slow learners based on Hubert Maier theory

    Science.gov (United States)

    Permatasari, I.; Pramudya, I.; Kusmayadi, T. A.

    2018-03-01

    Slow learners are children who have low learning achievement (under the average of normal children) in one or all of the academic field, but they are not classified as a mentally retarded children. Spatial ability developed according to age and level of knowledge possessed, both from the neighborhood and formal education. Analyzing the spatial ability of students is important for teachers, as an effort to improve the quality of learning for slow learners. Especially on the implementation of inclusion school which is developing in Indonesia. This research used a qualitative method and involved slow learner students as the subject. Based on the data analysis it was found the spatial ability of slow learners, there were: spatial perception, students were able to describe the other shape of object when its position changed; spatial visualisation, students were able to describe the materials that construct an object; mental rotation, students cannot describe the object being rotated; spatial relation, students cannot describe the relations of same objects; spatial orientation, students were able to describe object from the others perspective.

  18. Slow light in quantum dot photonic crystal waveguides

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    A theoretical analysis of pulse propagation in a semiconductor quantum dot photonic crystal waveguide in the regime of electromagnetically induced transparency is presented. The slow light mechanism considered here is based on both material and waveguide dispersion. The group index n...

  19. Slow light based on material and waveguide dispersion

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    We study slow light pulse propagation in a photonic crystal structure consisting of a dispersive and absorptive dielectric material and compare it with the constant wave case. The group index and the trasmission are investigated for the example of an ensemble of semiconductor quantum dots embedded...

  20. Frequency-dependent changes in the amplitude of low-frequency fluctuations in subcortical ischemic vascular disease (SIVD): a resting-state fMRI study.

    Science.gov (United States)

    Li, Chuanming; Liu, Chen; Yin, Xuntao; Yang, Jun; Gui, Li; Wei, Luqing; Wang, Jian

    2014-11-01

    Resting-state functional magnetic resonance imaging (RS-fMRI) allowed researchers to detect intrinsic brain activity during rest and has been considered an analytical tool for evaluation of dementia. Previously, subcortical ischemic vascular disease (SIVD) has been found decreased amplitude low-frequency fluctuations (ALFF) in a widely frequency range (0.01-0.08Hz) in the bilateral precuneus and increased ALFF values in the bilateral anterior cingulate cortex (ACC), left insula and hippocampus, which showed significant correlations with the cognitive performance. In this study we analyzed the ALFF of 30 patients with SIVD in two different frequency bands (slow-5: 0.01-0.027Hz; slow-4: 0.027-0.073Hz). In the slow-5 band, SIVD patients compared with controls exhibited significant higher ALFF in the bilateral anterior cingulate cortex, right putamen and right supplementary motor area, while lower ALFF in the right precuneus and right angular gyrus. A close correlation was found between the ALFF value of the right angular gyrus and ADL scores. In the slow-4 band, SIVD patients only exhibited increased ALFF in the bilateral anterior cingulate cortex, right putamen, left fusiform gyrus, and no correlation with cognitive scores was found. Our data demonstrate that SIVD patients have widespread abnormal intrinsic neural oscillations, which are dependent on specific frequency bands. ALFF of right angular gyrus at slow-5 band is more specific for SIVD and may be a useful tool to help SIVD diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: from modeling to clinical application.

    Science.gov (United States)

    Harada, Daisuke; Asanoi, Hidetsugu; Takagawa, Junya; Ishise, Hisanari; Ueno, Hiroshi; Oda, Yoshitaka; Goso, Yukiko; Joho, Shuji; Inoue, Hiroshi

    2014-10-15

    Influences of slow and deep respiration on steady-state sympathetic nerve activity remain controversial in humans and could vary depending on disease conditions and basal sympathetic nerve activity. To elucidate the respiratory modulation of steady-state sympathetic nerve activity, we modeled the dynamic nature of the relationship between lung inflation and muscle sympathetic nerve activity (MSNA) in 11 heart failure patients with exaggerated sympathetic outflow at rest. An autoregressive exogenous input model was utilized to simulate entire responses of MSNA to variable respiratory patterns. In another 18 patients, we determined the influence of increasing tidal volume and slowing respiratory frequency on MSNA; 10 patients underwent a 15-min device-guided slow respiration and the remaining 8 had no respiratory modification. The model predicted that a 1-liter, step increase of lung volume decreased MSNA dynamically; its nadir (-33 ± 22%) occurred at 2.4 s; and steady-state decrease (-15 ± 5%), at 6 s. Actually, in patients with the device-guided slow and deep respiration, respiratory frequency effectively fell from 16.4 ± 3.9 to 6.7 ± 2.8/min (P steady-state MSNA was decreased by 31% (P steady-state MSNA. Thus slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with high levels of resting sympathetic tone as in heart failure. Copyright © 2014 the American Physiological Society.

  2. Dynamic optical absorption characteristics of blood after slow and fast heating.

    Science.gov (United States)

    Jia, Hao; Chen, Bin; Li, Dong

    2017-04-01

    Laser treatment is the most effective therapy in dermatology for vascular skin disorders, such as port-wine stains (PWS). Changes in heat-induced absorbance in blood must be determined for accurate numerical simulation and implementation of multi-pulse laser therapy for treatment of PWS. Thermally induced absorbance changes in hemoglobin in blood were compared in vitro between slow water bath heating and fast heating irradiated by using sub-millisecond Nd:YAG laser. Blood composition at different temperatures was calculated by comparing blood absorption spectra with those of pure HbO 2 , Hb, and metHb at room temperature. Blood absorbance to heat energy were categorized into three stages distinguished by metHb and coagulation points, which are the validity and security thresholds of the optimized therapy, respectively. Rapid laser heating can distinctively enhance blood absorbance by photochemically induced strong instability compared with slow heating at a constant temperature. Slow heating facilitates metHb point at 70 °C and coagulation point at 75 °C as the temperature of the water bath increases. However, the temperature at which metHb or coagulation point shifts to higher than 10 °C when pulses and fluence in laser irradiation change. Laser fluence less than 20 J/cm 2 and more than 50 J/cm 2 is unsuitable for laser treatment because of its low probability to coagulate vascular hyperplasia and high probability to damage normal tissues adjacent to target lesions, respectively. Few bubbles formed after mediate fluence is beneficial to minimize adverse side-effects. Considering blood absorbance, temperature evolution, and bubble formation, we recommend 30-40 J/cm 2 and 2-4 Hz frequency as the optimal laser parameters in sub-millisecond Nd:YAG laser.

  3. Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations.

    Science.gov (United States)

    Wei, Yina; Krishnan, Giri P; Bazhenov, Maxim

    2016-04-13

    Sleep is critical for regulation of synaptic efficacy, memories, and learning. However, the underlying mechanisms of how sleep rhythms contribute to consolidating memories acquired during wakefulness remain unclear. Here we studied the role of slow oscillations, 0.2-1 Hz rhythmic transitions between Up and Down states during stage 3/4 sleep, on dynamics of synaptic connectivity in the thalamocortical network model implementing spike-timing-dependent synaptic plasticity. We found that the spatiotemporal pattern of Up-state propagation determines the changes of synaptic strengths between neurons. Furthermore, an external input, mimicking hippocampal ripples, delivered to the cortical network results in input-specific changes of synaptic weights, which persisted after stimulation was removed. These synaptic changes promoted replay of specific firing sequences of the cortical neurons. Our study proposes a neuronal mechanism on how an interaction between hippocampal input, such as mediated by sharp wave-ripple events, cortical slow oscillations, and synaptic plasticity, may lead to consolidation of memories through preferential replay of cortical cell spike sequences during slow-wave sleep. Sleep is critical for memory and learning. Replay during sleep of temporally ordered spike sequences related to a recent experience was proposed to be a neuronal substrate of memory consolidation. However, specific mechanisms of replay or how spike sequence replay leads to synaptic changes that underlie memory consolidation are still poorly understood. Here we used a detailed computational model of the thalamocortical system to report that interaction between slow cortical oscillations and synaptic plasticity during deep sleep can underlie mapping hippocampal memory traces to persistent cortical representation. This study provided, for the first time, a mechanistic explanation of how slow-wave sleep may promote consolidation of recent memory events. Copyright © 2016 the authors 0270-6474/16/364231-17$15.00/0.

  4. Continuous neutron slowing down theory applied to resonances

    International Nuclear Information System (INIS)

    Segev, M.

    1977-01-01

    Neutronic formalisms that discretize the neutron slowing down equations in large numerical intervals currently account for the bulk effect of resonances in a given interval by the narrow resonance approximation (NRA). The NRA reduces the original problem to an efficient numerical formalism through two assumptions: resonance narrowness with respect to the scattering bands in the slowing down equations and resonance narrowness with respect to the numerical intervals. Resonances at low energies are narrow neither with respect to the slowing down ranges nor with respect to the numerical intervals, which are usually of a fixed lethargy width. Thus, there are resonances to which the NRA is not applicable. To stay away from the NRA, the continuous slowing down (CSD) theory of Stacey was invoked. The theory is based on a linear expansion in lethargy of the collision density in integrals of the slowing down equations and had notable success in various problems. Applying CSD theory to the assessment of bulk resonance effects raises the problem of obtaining efficient quadratures for integrals involved in the definition of the so-called ''moderating parameter.'' The problem was solved by two approximations: (a) the integrals were simplified through a rationale, such that the correct integrals were reproduced for very narrow or very wide resonances, and (b) the temperature-broadened resonant line shapes were replaced by nonbroadened line shapes to enable analytical integration. The replacement was made in such a way that the integrated capture and scattering probabilities in each resonance were preserved. The resulting formalism is more accurate than the narrow-resonance formalisms and is equally as efficient

  5. Ultra Slow Muon Microscopy for Nano-science

    International Nuclear Information System (INIS)

    Miyake, Y; Shimomura, K; Ikedo, Y; Kawamura, N; Strasser, P; Makimura, S; Fujimori, H; Nakahara, K; Koda, A; Kobayashi, Y; Nishiyama, K; Kadono, R; Nishida, N; Yoshino, J; Higemoto, W; Ogitsu, T; Makida, Y; Sasaki, K; Torikai, E; Adachi, T

    2011-01-01

    The 'surface' muon beam which has been used for the studies of condensed matter physics or chemistry is conventionally obtained from the decay of positive pions (π + ) stopped near the surface of the pion production target in the proton beam line and has large energy broadening with an implantation depth of 0.1 to 1 mm. Despite the name of 'surface' muon, it is used as a probe of bulk phenomena rather than surface phenomena. In these two decades, the new method to generate ultra-slow muon beam with energy 0.2 eV has been developed and successfully obtained by KEK and RIKEN group. When the production of intense ultra-slow muon source will be realized, the use of its short-range penetration depth will allow muon science to be expanded towards a variety of new nano-scientific fields, which we call 'Ultra Slow Muon Microscope' such as, 1) Surface/boundary magnetism utilizing its spin polarization and unique time-window. 2) Surface chemistry, utilizing a feature of a light isotope of hydrogen; such as catalysis reactions. 3) Muon Microscopy, utilizing a feature of micron meter beam size, when ultra slow muon is accelerated. 4) Precise atomic physics testing QED, since Mu is the simplest lepton pair consisting μ + and e - . 5) Ion sources for- 'g-2' experiment, and towards μ + μ - collider experiments in high-energy physics. Int this paper, the latest status of the intense low-emittance ultra slow muon source and its scientific prospects will be reported.

  6. Impaired slow wave sleep downscaling in patients with infantile spasms.

    Science.gov (United States)

    Fattinger, Sara; Schmitt, Bernhard; Bölsterli Heinzle, Bigna K; Critelli, Hanne; Jenni, Oskar G; Huber, Reto

    2015-03-01

    West syndrome is a severe epileptic encephalopathy of infancy, characterized by infantile spasms, global retardation, and a severely abnormal electroencephalogram (EEG) pattern known as hypsarrhythmia, which is most prominent during slow waves sleep. The restorative function of slow wave sleep has been linked to downscaling, a neuronal process ensuring a balance of global synaptic strength, which is important for normal cortical functioning and development. A key electrophysiological marker for this downscaling is the reduction of the slope of slow waves across the night. We retrospectively compared the slope of slow waves between 14 untreated patients with infantile spasms and healthy age and gender matched controls. Patients were examined in one all-night sleep EEG before treatment, and in two follow-up nap recordings, under and after treatment with corticosteroids. In patients with infantile spasms the overnight reduction in the slope of slow waves was significantly diminished compared to controls (p = 0.009). Moreover, untreated patients revealed overall steeper slopes. During corticosteroid treatment the slope was reduced compared to controls (p = 0.001). After successful treatment the slope was similar between patients and controls. Our results provide evidence for reduced downscaling in patients with infantile spasms. Moreover, the marked reduction of the slope during corticosteroid treatment may reflect a loss of synaptic connections due to the effect of glucocorticoids. This altered sleep dependent regulation of synaptic strength in infantile spasms may contribute the underlying pathomechanism of the developmental regression. Furthermore the normalization of synaptic strength due to corticosteroids might provide a potential mechanistic explanation for this treatment strategy. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  7. A Simple Slow-Sand Filter for Drinking Water Purification

    Directory of Open Access Journals (Sweden)

    K. O. Yusuf

    2017-04-01

    Full Text Available Water-borne diseases are commonly encountered when pathogen-contaminated water is consumed. In rural areas, water is usually obtained from ponds, open shallow wells, streams and rain water during rainy season. Rain water is often contaminated by pathogens due to unhygienic of physical and chemical conditions of the roofs thereby making it unsafe for consumption. A simple slow sand filter mechanism was designed and fabricated for purification of water in rural areas where electricity is not available to power water purification devices. Rain water samples were collected from aluminum roof, galvanized roof and thatched roof. The waters samples were allowed to flow through the slow sand filter. The values of turbidity, total dissolved solids, calcium, nitrite, faecal coliform and total coliform from unfiltered water through thatched roof were 0.92 NTU, 27.23 mg/l, 6 mg/l, 0.16 mg/l, 5cfu/100ml and 6.0 cfu/100ml, respectively while the corresponding values for slow sand filter from thatched roof were 0.01 NTU, 0.23 mg/l, 2.5 mg/l, 0.1 mg/l, 0 cfu/100ml and 0 cfu/100ml, respectively. The values of turbidity, total dissolved solid, nitrite, calcium, faecal coliform and total coliform from unfiltered water for aluminum roof were 0.82 NTU, 23.68 mg/l, 2.70 mg/l, 1.0 mg/l, 4 cfu/100ml and 4cfu/100ml, respectively while the corresponding values for slow sand filter were 0.01 NTU, 0.16 mg/l, 0.57 mg/l, 0.2 mg/l, 0 cfu/100ml and 0 cfu/100ml, respectively. The values obtained for galvanized roof were also satisfactory. The slow sand filter is recommended for used in rural areas for water purification to prevent risk of water-borne diseases.

  8. Efficient accumulation of antiprotons and positrons, production of slow mono-energetic beams, and their applications

    CERN Document Server

    Yamazaki, Yasunori

    2004-01-01

    Recent progress of ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) project, particularly the antiproton trapping and slow antiproton production, is discussed. An RFQD (Radio Frequency Quadrupole Decelerator) installed in the ASACUSA beam line has an excellent deceleration efficiency of 25% providing 10-130keV antiprotons, which improves the final accumulation efficiency at least one and half orders of magnitude. The decelerated antiprotons are then injected in a large volume multiring trap, stored, and electron-cooled. About 1 million antiprotons are successfully accumulated per one AD shot and 10-500eV antiprotons are extracted as a mono-energetic beam. A UHV compatible positron accumulation is newly developed combining electron plasma and an ion cloud, which yields an accumulation rate as high as 400e **+s/mCi, two and a half orders of magnitude higher than other UHV compatible schemes. A new scheme to synthesize a spin-polarized antihydrogen beam is also discussed, which will play a vit...

  9. Inhalation/Exhalation ratio modulates the effect of slow breathing on heart rate variability and relaxation.

    Science.gov (United States)

    Van Diest, Ilse; Verstappen, Karen; Aubert, André E; Widjaja, Devy; Vansteenwegen, Debora; Vlemincx, Elke

    2014-12-01

    Slow breathing is widely applied to improve symptoms of hyperarousal, but it is unknown whether its beneficial effects relate to the reduction in respiration rate per se, or, to a lower inhalation/exhalation (i/e) ratio. The present study examined the effects of four ventilatory patterns on heart rate variability and self-reported dimensions of relaxation. Thirty participants were instructed to breathe at 6 or 12 breaths/min, and with an i/e ratio of 0.42 or 2.33. Participants reported increased relaxation, stress reduction, mindfulness and positive energy when breathing with the low compared to the high i/e ratio. A lower compared to a higher respiration rate was associated only with an increased score on positive energy. A low i/e ratio was also associated with more power in the high frequency component of heart rate variability, but only for the slow breathing pattern. Our results show that i/e ratio is an important modulator for the autonomic and subjective effects of instructed ventilatory patterns.

  10. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    International Nuclear Information System (INIS)

    French, David M.; Shiffler, Don

    2016-01-01

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  11. Children with Dyslexia Are Slow Writers Because They Pause More Often and Not Because They Are Slow at Handwriting Execution

    Science.gov (United States)

    Sumner, Emma; Connelly, Vincent; Barnett, Anna L.

    2013-01-01

    It is commonly assumed that children with dyslexia are slower at handwriting than other children. However, evidence of slow handwriting in children with dyslexia is very mixed. Thirty-one children with dyslexia, aged 9 years, were compared to both age-matched children and younger spelling-ability matched children. Participants completed an…

  12. The activation of classical vibro-rotational resonances in diatom molecules through slow collision processes

    International Nuclear Information System (INIS)

    Ruiz, Antonia; Palao, Jose P.; Heller, Eric J.

    2011-01-01

    Classical atom-diatom collisions at low velocities can be considered as a transient perturbation to the (integrable) diatomic system. We present an analysis that makes explicit the contributions of the terms of the Fourier expansion of the interaction potential to the changes in the molecular actions due to the collision process. Each term is associated with a resonance condition between the vibrational and rotational molecular frequencies, and leads to a vibrational, rotational or vibrotational contribution to the total action changes. The analysis is applied to the system Li 2 * -Ne. -- Highlights: → Resonances determine vibrotational energy transfer in slow atom-diatom collisions. → We obtain the molecular action changes from the Fourier expansion of the interaction. → Vibrotational correlations depend on collision velocity and initial molecular state. → The application to classical Li 2 -Ne collisions explains experimental observations.

  13. Deficiency of slow skeletal muscle troponin T causes atrophy of type I slow fibres and decreases tolerance to fatigue

    Science.gov (United States)

    Wei, Bin; Lu, Yingru; Jin, J-P

    2014-01-01

    The total loss of slow skeletal muscle troponin T (ssTnT encoded by TNNT1 gene) due to a nonsense mutation in codon Glu180 causes a lethal form of recessively inherited nemaline myopathy (Amish nemaline myopathy, ANM). To investigate the pathogenesis and muscle pathophysiology of ANM, we studied the phenotypes of partial and total loss of ssTnT in Tnnt1 gene targeted mice. An insertion of neomycin resistance cassette in intron 10 of Tnnt1 gene caused an approximately 60% decrease in ssTnT protein expression whereas cre-loxP-mediated deletion of exons 11–13 resulted in total loss of ssTnT, as seen in ANM muscles. In diaphragm and soleus muscles of the knockdown and knockout mouse models, we demonstrated that ssTnT deficiency resulted in significantly decreased levels of other slow fibre-specific myofilament proteins whereas fast fibre-specific myofilament proteins were increased correspondingly. Immunohistochemical studies revealed that ssTnT deficiency produced significantly smaller type I slow fibres and compensatory growth of type II fast fibres. Along with the slow fibre atrophy and the changes in myofilament protein isoform contents, ssTnT deficiency significantly reduced the tolerance to fatigue in soleus muscle. ssTnT-deficient soleus muscle also contains significant numbers of small-sized central nuclei type I fibres, indicating active regeneration. The data provide strong support for the essential role of ssTnT in skeletal muscle function and the causal effect of its loss in the pathology of ANM. This observation further supports the hypothesis that the function of slow fibres can be restored in ANM patients if a therapeutic supplement of ssTnT is achieved. PMID:24445317

  14. Radio frequency detection assembly and method for detecting radio frequencies

    Science.gov (United States)

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  15. Waveform frequency notching

    Science.gov (United States)

    Doerry, Armin W.; Andrews, John

    2017-05-09

    The various technologies presented herein relate to incorporating one or more notches into a radar spectrum, whereby the notches relate to one or more frequencies for which no radar transmission is to occur. An instantaneous frequency is monitored and if the frequency is determined to be of a restricted frequency, then a radar signal can be modified. Modification can include replacing the signal with a signal having a different instantaneous amplitude, a different instantaneous phase, etc. The modification can occur in a WFS prior to a DAC, as well as prior to a sin ROM component and/or a cos ROM component. Further, the notch can be dithered to enable formation of a deep notch. The notch can also undergo signal transitioning to enable formation of a deep notch. The restricted frequencies can be stored in a LUT against which an instantaneous frequency can be compared.

  16. LOW FREQUENCY DAMPER

    Directory of Open Access Journals (Sweden)

    Radu BOGATEANU

    2009-09-01

    Full Text Available The low frequency damper is an autonomous equipment for damping vibrations with the 1-20Hz range.Its autonomy enables the equipment to be located in various mechanical systems, without requiring special hydraulic installations.The low frequency damper was designed for damping the low frequency oscillations occurring in the circuit controls of the upgraded IAR-99 Aircraft.The low frequency damper is a novelty in the aerospace field ,with applicability in several areas as it can be built up in an appropriate range of dimensions meeting the requirements of different beneficiaries. On this line an equipment able to damp an extended frequency range was performed for damping oscillations in the pipes of the nuclear power plants.This damper, tested in INCAS laboratories matched the requirements of the beneficiary.The low frequency damper is patented – the patent no. 114583C1/2000 is held by INCAS.

  17. Lack of Critical Slowing Down Suggests that Financial Meltdowns Are Not Critical Transitions, yet Rising Variability Could Signal Systemic Risk.

    Science.gov (United States)

    Guttal, Vishwesha; Raghavendra, Srinivas; Goel, Nikunj; Hoarau, Quentin

    2016-01-01

    Complex systems inspired analysis suggests a hypothesis that financial meltdowns are abrupt critical transitions that occur when the system reaches a tipping point. Theoretical and empirical studies on climatic and ecological dynamical systems have shown that approach to tipping points is preceded by a generic phenomenon called critical slowing down, i.e. an increasingly slow response of the system to perturbations. Therefore, it has been suggested that critical slowing down may be used as an early warning signal of imminent critical transitions. Whether financial markets exhibit critical slowing down prior to meltdowns remains unclear. Here, our analysis reveals that three major US (Dow Jones Index, S&P 500 and NASDAQ) and two European markets (DAX and FTSE) did not exhibit critical slowing down prior to major financial crashes over the last century. However, all markets showed strong trends of rising variability, quantified by time series variance and spectral function at low frequencies, prior to crashes. These results suggest that financial crashes are not critical transitions that occur in the vicinity of a tipping point. Using a simple model, we argue that financial crashes are likely to be stochastic transitions which can occur even when the system is far away from the tipping point. Specifically, we show that a gradually increasing strength of stochastic perturbations may have caused to abrupt transitions in the financial markets. Broadly, our results highlight the importance of stochastically driven abrupt transitions in real world scenarios. Our study offers rising variability as a precursor of financial meltdowns albeit with a limitation that they may signal false alarms.

  18. A role for TREK1 in generating the slow afterhyperpolarization in developing starburst amacrine cells.

    Science.gov (United States)

    Ford, Kevin J; Arroyo, David A; Kay, Jeremy N; Lloyd, Eric E; Bryan, Robert M; Sanes, Joshua R; Feller, Marla B

    2013-05-01

    Slow afterhyperpolarizations (sAHPs) play an important role in establishing the firing pattern of neurons that in turn influence network activity. sAHPs are mediated by calcium-activated potassium channels. However, the molecular identity of these channels and the mechanism linking calcium entry to their activation are still unknown. Here we present several lines of evidence suggesting that the sAHPs in developing starburst amacrine cells (SACs) are mediated by two-pore potassium channels. First, we use whole cell and perforated patch voltage clamp recordings to characterize the sAHP conductance under different pharmacological conditions. We find that this conductance was calcium dependent, reversed at EK, blocked by barium, insensitive to apamin and TEA, and activated by arachidonic acid. In addition, pharmacological inhibition of calcium-activated phosphodiesterase reduced the sAHP. Second, we performed gene profiling on isolated SACs and found that they showed strong preferential expression of the two-pore channel gene kcnk2 that encodes TREK1. Third, we demonstrated that TREK1 knockout animals exhibited an altered frequency of retinal waves, a frequency that is set by the sAHPs in SACs. With these results, we propose a model in which depolarization-induced decreases in cAMP lead to disinhibition of the two-pore potassium channels and in which the kinetics of this biochemical pathway dictate the slow activation and deactivation of the sAHP conductance. Our model offers a novel pathway for the activation of a conductance that is physiologically important.

  19. Periodic Density Structures and the Origin of the Slow Solar Wind

    Science.gov (United States)

    Viall-Kepko, Nicholeen M.; Vourlidas, Angelos

    2015-01-01

    The source of the slow solar wind has challenged scientists for years. Periodic density structures (PDSs), observed regularly in the solar wind at 1 AU (Astronomical Unit), can be used to address this challenge. These structures have length scales of hundreds to several thousands of megameters and frequencies of tens to hundreds of minutes. Two lines of evidence indicate that PDSs are formed in the solar corona as part of the slow solar wind release and/or acceleration processes. The first is corresponding changes in compositional data in situ, and the second is PDSs observed in the inner Heliospheric Imaging data on board the Solar Terrestrial Relations Observatory (STEREO)/Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) suite. The periodic nature of these density structures is both a useful identifier as well as an important physical constraint on their origin. In this paper, we present the results of tracking periodic structures identified in the inner Heliospheric Imager in SECCHI back in time through the corresponding outer coronagraph (COR2) images. We demonstrate that the PDSs are formed around or below 2.5 solar radii-the inner edge of the COR2 field of view. We compute the occurrence rates of PDSs in 10 days of COR2 images both as a function of their periodicity and location in the solar corona, and we find that this set of PDSs occurs preferentially with a periodicity of approximately 90 minutes and occurs near streamers. Lastly, we show that their acceleration and expansion through COR2 is self-similar, thus their frequency is constant at distances beyond 2.5 solar radii.

  20. Differing Patterns of Altered Slow-5 Oscillations in Healthy Aging and Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Christian eLa

    2016-04-01

    Full Text Available The ‘default-mode’ network (DMN has been investigated in the presence of various disorders, such as Alzheimer’s disease and Autism spectrum disorders. More recently, this investigation has expanded to include patients with ischemic injury. Here, we characterized the effects of ischemic injury in terms of its spectral distribution of resting-state low-frequency oscillations and further investigated whether those specific disruptions were unique to the DMN, or rather more general, affecting the global cortical system. With 43 young healthy adults, 42 older healthy adults, 14 stroke patients in their early stage (< 7 days after stroke onset, and 16 stroke patients in their later stage (between 1-6 months after stroke onset, this study showed that patterns of cortical system disruption may differ between healthy aging and following the event of an ischemic stroke. The stroke group in the later stage demonstrated a global reduction in the amplitude of the slow-5 oscillations (0.01-0.027 Hz in the DMN as well as in the primary visual and sensorimotor networks, two ‘task-positive’ networks. In comparison to the young healthy group, the older healthy subjects presented a decrease in the amplitude of the slow-5 oscillations specific to the components of the DMN, while exhibiting an increase in oscillation power in the task-positive networks. These two processes of a decrease DMN and an increase in ‘task-positive’ slow-5 oscillations may potentially be related, with a deficit in DMN inhibition, leading to an elevation of oscillations in non-DMN systems. These findings also suggest that disruptions of the slow-5 oscillations in healthy aging may be more specific to the DMN while the disruptions of those oscillations following a stroke through remote (diaschisis effects may be more widespread, highlighting a non-specificity of disruption on the DMN in stroke population. The mechanisms underlying those differing modes of network disruption need

  1. Frequency Response Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    Etingov, Pavel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kosterev, Dmitry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dai, T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of North American Electricity Reliability Corporation (NERC) BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. This report is prepared to describe the details of the work conducted by Pacific Northwest National Laboratory (PNNL) in collaboration with the Bonneville Power Administration and Western Electricity Coordinating Council (WECC) Joint Synchronized Information Subcommittee (JSIS) to develop a frequency response analysis tool (FRAT). The document provides the details on the methodology and main features of the FRAT. The tool manages the database of under-frequency events and calculates the frequency response baseline. Frequency response calculations are consistent with frequency response measure (FRM) in NERC BAL-003-1 for an interconnection and balancing authority. The FRAT can use both phasor measurement unit (PMU) data, where available, and supervisory control and data acquisition (SCADA) data. The tool is also capable of automatically generating NERC Frequency Response Survey (FRS) forms required by BAL-003-1 Standard.

  2. Nonlinear Frequency Compression

    Science.gov (United States)

    Scollie, Susan; Glista, Danielle; Seelisch, Andreas

    2013-01-01

    Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality. PMID:23539261

  3. Frequency Selective Reflector Antenna

    Data.gov (United States)

    National Aeronautics and Space Administration — Frequency Selective Surfaces (FSS) are an electromagnetic structure where a relatively thin, periodic, conductive material is designed as a spatial filter of...

  4. Frequency and function in the basal ganglia: the origins of beta and gamma band activity.

    Science.gov (United States)

    Blenkinsop, Alexander; Anderson, Sean; Gurney, Kevin

    2017-07-01

    movement, respectively, consistent with experimental local field potentials. This new model predicts that the pallido-striatum connection has a key role in the generation of beta band activity, and that the gamma band activity associated with motor task performance has its origins in the pallido-subthalamic feedback loop. The network's functionality as a selection mechanism also occurs as an emergent property, and closer fits to the data gave better selection properties. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the BG and therefore lays the foundation for an integrated approach to study BG pathologies such as Parkinson's disease in silico. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  5. Laminar wave train structure of collisionless magnetic slow shocks

    Science.gov (United States)

    Coroniti, F. V.

    1970-01-01

    The laminar wave train structure of collisionless magnetic slow shocks is investigated using two fluid hydromagnetics with ion cyclotron radius dispersion. For shock strengths less than the maximally strong switch-off shock, in the shock leading edge dispersive steepening forms a magnetic field gradient, while in the downstream flow dispersive propagation forms a trailing wave train; dispersion scale lengths are the ion inertial length if beta is smaller than 1 and the ion cyclotron radius if beta is greater than 1. In the switch-off slow shock leading edge, dispersion only produced rotations of the magnetic field direction; the gradient of the magnetic field magnitude, and hence the shock steepening length, is determined solely by resistive diffusion. The switch-off shock structure consists of a long trailing of magnetic rotations which are gradually damped by resistivity.

  6. Slow journalism in the “infoxication” era

    Directory of Open Access Journals (Sweden)

    Samia Benaissa Pedriza

    2017-11-01

    Full Text Available Slow journalism appears as a response to the information overload generated by the acceleration of the news production cycle in a digital era marked by the emergence of new operators (social networks, news aggregators. Both the study of cases practiced and the reflection on the function that the so-called “slow journalism” must exert today indicate that this type of journalism is still useful to improve the quality of information products. On the other hand, the existence of an increasing demand of multimedia contents that analyze the facts in depth is confirmed. That need is being covered by companies that are independent of the mainstream media, which are more interested in developing other mass demand markets such as latest news.

  7. Inflammatory response during slow- and fast-twitch muscle regeneration.

    Science.gov (United States)

    Zimowska, Malgorzata; Kasprzycka, Paulina; Bocian, Katarzyna; Delaney, Kamila; Jung, Piotr; Kuchcinska, Kinga; Kaczmarska, Karolina; Gladysz, Daria; Streminska, Wladyslawa; Ciemerych, Maria Anna

    2017-03-01

    Skeletal muscles are characterized by their unique ability to regenerate. Injury of a so-called fast-twitch muscle, extensor digitorum longus (EDL), results in efficient regeneration and reconstruction of the functional tissue. In contrast, slow-twitch muscle (soleus) fails to properly reconstruct and develops fibrosis. This study focuses on soleus and EDL muscle regeneration and associated inflammation. We determined differences in the activity of neutrophils and M1 and M2 macrophages using flow cytometry and differences in the levels of proinflammatory cytokines using Western blotting and immunolocalization at different times after muscle injury. Soleus muscle repair is accompanied by increased and prolonged inflammation, as compared to EDL. The proinflammatory cytokine profile is different in the soleus and ED muscles. Muscle repair efficiency differs by muscle fiber type. The inflammatory response affects the repair efficiency of slow- and fast-twitch muscles. Muscle Nerve 55: 400-409, 2017. © 2016 Wiley Periodicals, Inc.

  8. Slow light enhanced gas sensing in photonic crystals

    Science.gov (United States)

    Kraeh, Christian; Martinez-Hurtado, J. L.; Popescu, Alexandru; Hedler, Harry; Finley, Jonathan J.

    2018-02-01

    Infrared spectroscopy allows for highly selective and highly sensitive detection of gas species and concentrations. Conventional gas spectrometers are generally large and unsuitable for on-chip applications. Long absorption path lengths are usually required and impose a challenge for miniaturization. In this work, a gas spectrometer is developed consisting of a microtube photonic crystal structure. This structure of millimetric form factors minimizes the required absorption path length due to slow light effects. The microtube photonic crystal allows for strong transmission in the mid-infrared and, due to its large void space fraction, a strong interaction between light and gas molecules. As a result, enhanced absorption of light increases the gas sensitivity of the device. Slow light enhanced gas absorption by a factor of 5.8 in is experimentally demonstrated at 5400 nm. We anticipate small form factor gas sensors on silicon to be a starting point for on-chip gas sensing architectures.

  9. MA nuclear data measurement with lead slowing-down spectrometers

    International Nuclear Information System (INIS)

    Kobayashi, Katsuhei

    2000-01-01

    This paper reviews the minor actinide (MA) nuclear data measured with lead slowing-down spectrometers. The Kyoto University Lead Slowing-down Spectrometer (KULS) at the Research Reactor Institute, Kyoto University has been applied to the measurements of (1) the fission cross sections of Np-237, Am-241, Am-242m and Am-243 in the energy range from 0.1 eV to 10 keV and (2) the capture cross section of Np-237 at energies between 0.01 eV and 1 keV. The results are compared with the existing experimental and the evaluated nuclear data (ENDF/B-VI, JENDL-3.2 and JEF-2.2). The recent MA nuclear data, which were measured with the Rensselaer Intense Neutron Spectrometer (RINS) at the Rensselaer Polytechnic Institute and the spectrometer at the Kurchatov Institute, are also introduced. (author)

  10. Identifying Slow Molecular Motions in Complex Chemical Reactions.

    Science.gov (United States)

    Piccini, GiovanniMaria; Polino, Daniela; Parrinello, Michele

    2017-09-07

    We have studied the cyclization reaction of deprotonated 4-chloro-1-butanethiol to tetrahydrothiophene by means of well-tempered metadynamics. To properly select the collective variables, we used the recently proposed variational approach to conformational dynamics within the framework of metadyanmics. This allowed us to select the appropriate linear combinations from a set of collective variables representing the slow degrees of freedom that best describe the slow modes of the reaction. We performed our calculations at three different temperatures, namely, 300, 350, and 400 K. We show that the choice of such collective variables allows one to easily interpret the complex free-energy surface of such a reaction by univocal identification of the conformers belonging to reactants and product states playing a fundamental role in the reaction mechanism.

  11. Delta-slow solution to explain B supergiant stars' winds

    Science.gov (United States)

    Haucke, M.; Araya, I.; Arcos, C.; Curé, M.; Cidale, L.; Kanaan, S.; Venero, R.; Kraus, M.

    2015-01-01

    A new radiation-driven wind solution called δ-slow was found by Curé et al. (2011) and it predicts a mass-loss rate and terminal velocity slower than the fast solution (m-CAK, Pauldrach et al. 1986). In this work, we present our first synthetic spectra based on the δ-slow solution for the wind of B supergiant (BSG) stars. We use the output of our hydrodynamical code HYDWIND as input in the radiative transport code FASTWIND (Puls et al. 2005). In order to obtain stellar and wind parameters, we try to reproduce the observed Hα, Hβ, Hγ, Hδ, Hei 4471, Hei 6678 and Heii 4686 lines. The synthetic profiles obtained with the new hydrodynamical solutions are in good agreement with the observations and could give us clues about the parameters involved in the radiation force.

  12. Systematic design of loss-engineered slow-light waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Mørk, Jesper

    2012-01-01

    This paper employs topology optimization to systematically design free-topology loss-engineered slow-light waveguides with enlarged group index bandwidth product (GBP). The propagation losses of guided modes are evaluated by the imaginary part of eigenvalues in complex band structure calculations......, where the scattering losses due to manufacturing imperfections are represented by an edge-related effective dissipation. The loss engineering of slow-light waveguides is realized by minimizing the propagation losses of design modes. Numerical examples illustrate that the propagation losses of free......-topology dispersion-engineered waveguides can be significantly suppressed by loss engineering. Comparisons between fixed- and free-topology loss-engineered waveguides demonstrate that the GBP can be enhanced significantly by the free-topology loss-engineered waveguides with a small increase of the propagation losses....

  13. Spin-label Order Parameter Calibrations for Slow Motion

    DEFF Research Database (Denmark)

    Marsh, Derek

    2018-01-01

    Calibrations are given to extract orientation order parameters from pseudo-powder electron paramagnetic resonance line shapes of 14N-nitroxide spin labels undergoing slow rotational diffusion. The nitroxide z-axis is assumed parallel to the long molecular axis. Stochastic-Liouville simulations...... (Formula presented.) which characterizes fluctuations of the long molecular axis. This results in empirical expressions for order parameter and isotropic hyperfine coupling: (Formula presented.) and (Formula presented.), respectively. Values of the calibration constants (Formula presented.), (Formula...... presented.), (Formula presented.), (Formula presented.) and (Formula presented.) are given for different values of (Formula presented.) in fast and slow motional regimes. The calibrations are relatively insensitive to anisotropy of rotational diffusion (Formula presented.), and corrections are less...

  14. The phase transition to slow-roll eternal inflation

    International Nuclear Information System (INIS)

    Creminelli, P.; Dubovsky, S.; Nicolis, A.; Senatore, L.; Zaldarriaga, M.

    2008-01-01

    For slow-roll inflation we study the phase transition to the eternal regime. Starting from a finite inflationary volume, we consider the volume of the universe at reheating as order parameter. We show that there exists a critical value for the classical inflation speed, φ-dot 2 /H 4 = 3/(2 π 2 ), where the probability distribution for the reheating volume undergoes a sharp transition. In particular, for sub-critical inflation speeds all distribution moments become infinite. We show that at the same transition point the system develops a non-vanishing probability of having a strictly infinite reheating volume, while retaining a finite probability for finite values. Our analysis represents the exact quantum treatment of the system at lowest order in the slow-roll parameters and H 2 /M Pl 2 . (author)

  15. The resonance escape probability during the neutron slowing down

    International Nuclear Information System (INIS)

    Jehouani, A.; Ghassoun, J.; Aboubeker, A.

    1994-01-01

    Three different methods were used to calculate the neutron resonance escape probability during neutron slowing down in homogeneous media : two Monte Carlo simulations and a determinist method. The first simulation is based on a natural process intervening in neutron transport, the second is a nonanalog simulation while the determinist method is based on an iterative solution of the neutron slowing down equation. The results are in a good agreement for the three methods . The second simulation was found to be more efficient than the first one for high dilutions . In fact we have attained a better figure of merite ( FOM = 1/ (sigma sup 2 ) T) by the second simulation than by the first one . 2 figs. ; 2 refs ( author )

  16. Can power spectrum observations rule out slow-roll inflation?

    Science.gov (United States)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2018-01-01

    The spectral index of scalar perturbations is an important observable that allows us to learn about inflationary physics. In particular, a detection of a significant deviation from a constant spectral index could enable us to rule out the simplest class of inflation models. We investigate whether future observations could rule out canonical single-field slow-roll inflation given the parameters allowed by current observational constraints. We find that future measurements of a constant running (or running of the running) of the spectral index over currently available scales are unlikely to achieve this. However, there remains a large region of parameter space (especially when considering the running of the running) for falsifying the assumed class of slow-roll models if future observations accurately constrain a much wider range of scales.

  17. Developing organizational and learning skills of a slow learner

    OpenAIRE

    Mauko, Katja

    2016-01-01

    Slow learners are individuals with below average cognitive abilities. In general they are more immature and show problems in areas such as concentration, short-term and long-term memory, metacognition, motivation, social integration, executive functions and some others. One of the problematic areas is also organization. Well-developed organizational skills are very important because they affect many aspects of our lives. They enable us to cope with everyday tasks, as well as more complex task...

  18. Modeling slow deformation of polygonal particles using DEM

    OpenAIRE

    Pena, Andres A.; Lind, Pedro G.; Herrmann, Hans J.

    2007-01-01

    We introduce two improvements in the numerical scheme to simulate collision and slow shearing of irregular particles. First, we propose an alternative approach based on simple relations to compute the frictional contact forces. The approach improves efficiency and accuracy of the Discrete Element Method (DEM) when modeling the dynamics of the granular packing. We determine the proper upper limit for the integration step in the standard numerical scheme using a wide range of material parameter...

  19. Excitation of simple atoms by slow magnetic monopoles

    International Nuclear Information System (INIS)

    Kroll, N.M.; Parke, S.J.; Ganapathi, V.; Drell, S.D.

    1984-01-01

    We present a theory of excitation of simple atoms by slow moving massive monopoles. Previously presented results for a monopole of Dirac strength on hydrogen and helium are reviewed. The hydrogen theory is extended to include arbitrary integral multiples of the Dirac pole strength. The excitation of helium by double strength poles and by dyons is also discussed. It is concluded that a helium proportional counter is a reliable and effective detector for monopoles of arbitrary strength, and for negatively charged dyons

  20. Coherent perfect absorption and reflection in slow-light waveguides.

    Science.gov (United States)

    Gutman, Nadav; Sukhorukov, Andrey A; Chong, Y D; de Sterke, C Martijn

    2013-12-01

    We identify a family of unusual slow-light modes occurring in lossy multimode grating waveguides, for which either the forward or backward mode components, or both, are degenerate. In the fully degenerate case, the response can be modulated between coherent perfect absorption (zero reflection) and perfect reflection by varying the wave amplitudes in a uniform input waveguide. The perfectly absorbed wave has anomalously short absorption length, scaling as the inverse one-third power of the absorptivity.

  1. Proposal for an intense slow positron beam facility at PSI

    International Nuclear Information System (INIS)

    Waeber, W.B.; Taqqu, D.; Zimmermann, U.; Solt, G.

    1990-05-01

    In the domain of condensed matter physics and materials sciences monoenergetic slow positrons in the form of highest intensity beams are demonstrated to be extreamly useful and considered to be highly needed. This conclusion has been reached and the scientific relevance of the positron probe has been highlighted at an international workshop in November 1989 at PSI, where the state of the art and the international situation on slow positron beams, the fields of application of intense beams and the technical possibilities at PSI for installing intense positron sources have been evaluated. The participants agreed that a high intensity beam as a large-scale user facility at PSI would serve fundamental and applied research. The analysis of responses given by numerous members of a widespread positron community has revealed a large research potential in the domain of solid-state physics, atomic physics and surface, thin-film and defect physics, for example. The excellent feature of slow positron beams to be a suitable probe also for lattice defects near surfaces or interfaces has attracted the interest not only of science but also of industry.In this report we propose the installation of an intense slow positron beam facility at PSI including various beam lines of different qualities and based on the Cyclotron production of β + emitting source material and on a highest efficiency moderation scheme which exceeds standard moderation efficiencies by two orders of magnitude. In its proposed form, the project is estimated to be realizable in the nineties and costs will amount to between 15 and 20 MSFr. (author) 10 figs., 6 tabs., 78 refs

  2. Emerging diversity of hydrothermal systems on slow spreading ocean ridges

    Science.gov (United States)

    Rona, Peter A.

    The development of seafloor hydrothermal research has followed a classic scientific progression in which discoveries were initially interpreted as special cases until further exploration revealed their more general significance. The first high-temperature seafloor hydrothermal system was found at the Atlantis II Deep of the slow spreading Red Sea in 1963. At that time, the hydrothermal activity was largely discounted as an anomaly associated with continental rifting rather than as part of an early stage of opening of an ocean basin that could continue with the development of ocean ridges as in the Atlantic. When high-temperature black smoker hydrothermal venting was found on the East Pacific Rise in 1979, the scientific consensus then held that the relatively high rate of magma supply at intermediate to fast spreading rates was required for such activity. Accordingly, high-temperature hydrothermal activity could not occur on the slow spreading half of the global ocean ridge system. High-temperature black smokers like those on the East Pacific Rise were first discovered on a slow spreading ocean ridge at the TAG hydrothermal field on the Mid-Atlantic Ridge in 1985. The scientific consensus then ruled out the possibility for such activity on the ultraslow portion of the ocean ridge system. Plumes indicative of active high-temperature black smokers were found on the ultraslow spreading Gakkel Ridge in the Arctic in 2001, and active black smokers were found on the Southwest Indian Ridge in 2006. A diversity of high-temperature hydrothermal systems remains to be found on ocean ridges, particularly at slow spreading rates.

  3. Effective Fault-Tolerant Quantum Computation with Slow Measurements

    International Nuclear Information System (INIS)

    DiVincenzo, David P.; Aliferis, Panos

    2007-01-01

    How important is fast measurement for fault-tolerant quantum computation? Using a combination of existing and new ideas, we argue that measurement times as long as even 1000 gate times or more have a very minimal effect on the quantum accuracy threshold. This shows that slow measurement, which appears to be unavoidable in many implementations of quantum computing, poses no essential obstacle to scalability

  4. Ergodicity and slow diffusion in a supercooled liquid

    OpenAIRE

    Bidhoodi, Neeta; Das, Shankar P.

    2015-01-01

    A model for the slow dynamics of the supercooled liquid is formulated in terms of the standard equations of fluctuating nonlinear hydrodynamics (FNH) with the inclusion of an extra diffusive mode for the collective density fluctuations. If the compressible nature of the liquid is completely ignored, this diffusive mode sets the longest relaxation times in the supercooled state and smooths off a possible sharp ergodicity-nonergodicity (ENE) transition predicted in a mode coupling theory. The s...

  5. Time coder for slow neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Grashilin, V.A.; Ofengenden, R.G.

    1988-01-01

    Time coder for slow neutron time-of-flight spectrometer is described. The time coder is of modular structure, is performed in the CAMAC standard and operates on line with DVK-2 computer. The main coder units include supporting generator, timers, time-to-digital converter, memory unit and crate controller. Method for measuring background symmetrically to the effect is proposed for a more correct background accounting. 4 refs.; 1 fig

  6. Cell proliferation of Paramecium tetraurelia on a slow rotating clinostat

    Science.gov (United States)

    Sawai, Satoe; Mogami, Yoshihiro; Baba, Shoji A.

    Paramecium is known to proliferate faster under microgravity conditions, and slower under hypergravity. Experiments using axenic culture medium have demonstrated that hypergravity affected directly on the proliferation of Paramecium itself. In order to assess the mechanisms underlying the physiological effects of gravity on cell proliferation, Paramecium tetraurelia was grown under clinorotation (2.5 rpm) and the time course of the proliferation was investigated in detail on the basis of the logistic analysis. On the basis of the mechanical properties of Paramecium, this slow rate of the rotation appears to be enough to simulate microgravity in terms of the randomization of the cell orientation with respect to gravity. P. tetraurelia was cultivated in a closed chamber in which cells were confined without air bubbles, reducing the shear forces and turbulences under clinorotation. The chamber is made of quartz and silicone rubber film; the former is for the optically-flat walls for the measurement of cell density by means of a non-invasive laser optical-slice method, and the latter for gas exchange. Because of the small dimension for culture space, Paramecium does not accumulate at the top of the chamber in spite of its known negative gravitactic behavior. We measured the cell density at regular time intervals without breaking the configuration of the chamber, and analyzed the proliferation parameters by fitting the data to a logistic equation. As a result, P. tetraurelia showed reduced proliferation under slow clinorotation. The saturation of the cell density as well as the maximum proliferation rate decreased, although we found no significant changes on the half maximal time for proliferation. We also found that the mean swimming velocity decreased under slow clinorotation. These results were not consistent with those under microgravity and fast rotating clinostat. This may suggest that randomization of the cell orientation performed by slow rotating clinostat has

  7. Slow ventricular response atrial fibrillation related to mad honey poisoning

    Science.gov (United States)

    Osken, A.; Yaylacı, S.; Aydın, E.; Kocayigit, İ; Cakar, M.A.; Tamer, A.; Gündüz, H.

    2012-01-01

    Mad honey poisoning which is induced by Grayanotoxin (Andromedotoxin), is also known to have adverse effects in the cardiovascular system leading to different clinical entities. This toxin is produced by a member of the Rhododendron genus of plants of two R. Luteum and R. Panticum. In this article, we presented a case of slow ventricular response atrial fibrillation complaints with nausea, vomiting, dizziness and chest pain about an hour after eating honey produced in the Black Sea Region. PMID:22923947

  8. Slow ventricular response atrial fibrillation related to mad honey poisoning

    OpenAIRE

    Osken, A.; Yaylacı, S.; Aydın, E.; Kocayigit, İ; Cakar, M.A.; Tamer, A.; Gündüz, H.

    2012-01-01

    Mad honey poisoning which is induced by Grayanotoxin (Andromedotoxin), is also known to have adverse effects in the cardiovascular system leading to different clinical entities. This toxin is produced by a member of the Rhododendron genus of plants of two R. Luteum and R. Panticum. In this article, we presented a case of slow ventricular response atrial fibrillation complaints with nausea, vomiting, dizziness and chest pain about an hour after eating honey produced in the Black Sea Region.

  9. Effect of Strontium Nitrate on Extremely Slow Strobe Compositions

    Science.gov (United States)

    2017-01-01

    describes the evaluation of the slow strobe’s pulse rate, based on the mesh size of the metal powder and the effect of the variation of strontium...nitrate and potassium nitrate concentration . Small test pellets of this less-toxic strobe mixture, containing only 10 g of pyrotechnic composition, had...blood and kidneys (5). The perchlorate ion is known to be stable and nonreactive in aqueous systems, which leads to a high persistency in groundwater

  10. Constraint effect on the slow crack growth in polyethylene

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Zouhar, Michal; Nezbedová, E.; Sadílek, J.; Žídek, J.; Náhlík, Luboš; Knésl, Zdeněk

    2012-01-01

    Roč. 2, č. 3 (2012), s. 118-126 ISSN 1757-9864 R&D Projects: GA ČR GD106/09/H035; GA ČR GA106/09/0279; GA ČR GC101/09/J027 Institutional support: RVO:68081723 Keywords : slow crack growth * polyethylene * constraint Subject RIV: JL - Materials Fatigue, Friction Mechanics

  11. Can power spectrum observations rule out slow-roll inflation?

    OpenAIRE

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2017-01-01

    The spectral index of scalar perturbations is an important observable that allows us to learn about inflationary physics. In particular, a detection of a significant deviation from a constant spectral index could enable us to rule out the simplest class of inflation models. We investigate whether future observations could rule out canonical single-field slow-roll inflation given the parameters allowed by current observational constraints. We find that future measurements of a constant running...

  12. Logarithmically Slow Expansion of Hot Bubbles in Gases

    OpenAIRE

    Meerson, Baruch; Sasorov, Pavel V.; Sekimoto, Ken

    1999-01-01

    We report logarithmically slow expansion of hot bubbles in gases in the process of cooling. A model problem first solved, when the temperature has compact support. Then temperature profile decaying exponentially at large distances is considered. The periphery of the bubble is shown to remain essentially static ("glassy") in the process of cooling until it is taken over by a logarithmically slowly expanding "core". An analytical solution to the problem is obtained by matched asymptotic expansi...

  13. Slow light based on material and waveguide dispersion

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    We study slow light pulse propagation in a photonic crystal structure consisting of a dispersive and absorptive dielectric material and compare it with the constant wave case. The group index and the trasmission are investigated for the example of an ensemble of semiconductor quantum dots embedded...... in a photonic crystal waveguide by FDTD Maxwell-Bloch simulations. The total group index scales linearly with the material based group index whicle the transmission has a power dependency on the material based absorption coefficient....

  14. Does time really slow down during a frightening event?

    Directory of Open Access Journals (Sweden)

    Chess Stetson

    2007-12-01

    Full Text Available Observers commonly report that time seems to have moved in slow motion during a life-threatening event. It is unknown whether this is a function of increased time resolution during the event, or instead an illusion of remembering an emotionally salient event. Using a hand-held device to measure speed of visual perception, participants experienced free fall for 31 m before landing safely in a net. We found no evidence of increased temporal resolution, in apparent conflict with the fact that participants retrospectively estimated their own fall to last 36% longer than others' falls. The duration dilation during a frightening event, and the lack of concomitant increase in temporal resolution, indicate that subjective time is not a single entity that speeds or slows, but instead is composed of separable subcomponents. Our findings suggest that time-slowing is a function of recollection, not perception: a richer encoding of memory may cause a salient event to appear, retrospectively, as though it lasted longer.

  15. Does Time Really Slow Down during a Frightening Event?

    Science.gov (United States)

    Stetson, Chess; Fiesta, Matthew P.; Eagleman, David M.

    2007-01-01

    Observers commonly report that time seems to have moved in slow motion during a life-threatening event. It is unknown whether this is a function of increased time resolution during the event, or instead an illusion of remembering an emotionally salient event. Using a hand-held device to measure speed of visual perception, participants experienced free fall for 31 m before landing safely in a net. We found no evidence of increased temporal resolution, in apparent conflict with the fact that participants retrospectively estimated their own fall to last 36% longer than others' falls. The duration dilation during a frightening event, and the lack of concomitant increase in temporal resolution, indicate that subjective time is not a single entity that speeds or slows, but instead is composed of separable subcomponents. Our findings suggest that time-slowing is a function of recollection, not perception: a richer encoding of memory may cause a salient event to appear, retrospectively, as though it lasted longer. PMID:18074019

  16. Multisteps Global Kinetic Analysis of MSW Slow Pyrolysis

    Directory of Open Access Journals (Sweden)

    Dwi Aries Himawanto

    2013-12-01

    Full Text Available The goal of this research is to find relationships between single components slow pyrolysis characteristics and mixed component slow pyrolysis characteristics of segregated municipal solid wastes (MSW. The material of this research consists of organic wastes (bamboo wastes and banana leaves wastes and inorganic wastes (styrofoam wastes and snack wrapping wastes. The materials which used to study were the unprosessing waste. The samples were collected, dried and crushed until passing 20 mesh shieves then characterized in self manufactured macro balance. The thermogravimetry analyses were done to find the MSW slow pyrolysis characteristics. The 20 gram sample was placed in the furnace whose temperature is increased with 10 0C/min heating rate until reached 400 0 final temperature and held for 30 minutes before the sample is cooled into room temperature. One hundred ml/min nitrogen introduced from the bottom of furnace as a swept gas. The results of the research show that the global kinetic method could be used to predict the MSW single component activation energy but it should be modified to calculate the mixed sample activation energy . The predictive activation energy values which calculated based on weighed sum of single component have 18.5 % deviations if compared with experimental result.

  17. Nitrous oxide-induced slow and delta oscillations.

    Science.gov (United States)

    Pavone, Kara J; Akeju, Oluwaseun; Sampson, Aaron L; Ling, Kelly; Purdon, Patrick L; Brown, Emery N

    2016-01-01

    Switching from maintenance of general anesthesia with an ether anesthetic to maintenance with high-dose (concentration >50% and total gas flow rate >4 liters per minute) nitrous oxide is a common practice used to facilitate emergence from general anesthesia. The transition from the ether anesthetic to nitrous oxide is associated with a switch in the putative mechanisms and sites of anesthetic action. We investigated whether there is an electroencephalogram (EEG) marker of this transition. We retrospectively studied the ether anesthetic to nitrous oxide transition in 19 patients with EEG monitoring receiving general anesthesia using the ether anesthetic sevoflurane combined with oxygen and air. Following the transition to nitrous oxide, the alpha (8-12 Hz) oscillations associated with sevoflurane dissipated within 3-12 min (median 6 min) and were replaced by highly coherent large-amplitude slow-delta (0.1-4 Hz) oscillations that persisted for 2-12 min (median 3 min). Administration of high-dose nitrous oxide is associated with transient, large amplitude slow-delta oscillations. We postulate that these slow-delta oscillations may result from nitrous oxide-induced blockade of major excitatory inputs (NMDA glutamate projections) from the brainstem (parabrachial nucleus and medial pontine reticular formation) to the thalamus and cortex. This EEG signature of high-dose nitrous oxide may offer new insights into brain states during general anesthesia. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Contracture of Slow Striated Muscle during Calcium Deprivation

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1963-01-01

    When deprived of calcium the slow striated muscle fibers of the frog develop reversible contractures in either hypertonic or isotonic solutions. While calcium deprivation continues because of a flowing calcium-free solution the muscles relax slowly and completely. Restoration of calcium during contracture relaxes the muscle promptly to initial tension. When relaxed during calcium lack the return of calcium does not change tension and the muscle stays relaxed. When contractures are induced by solutions containing small amounts of calcium relaxation does not occur or requires several hours. The rate of tension development depends upon the rate at which calcium moves outward since the contractures develop slower in low concentrations of calcium and are absent or greatly slowed in a stagnant calcium-free solution. Withdrawal of calcium prevents the contractile responses to ACh, KCl, or electrical stimulation through the nerve. Muscles return to their original excitability after calcium is restored. Origin of the contractures is unrelated to nerve activity since they are maximal during transmission failure from calcium lack, occur in denervated muscles, and are not blocked by high concentrations of d-tubocurarine, procaine, or atropine. The experiments also indicate that the contractures do not originate from repetitive activity of muscle membranes. The findings are most simply explained by relating the outward movement of calcium as a link for initiating contraction in slow type striated muscle. PMID:14065284

  19. Sevoflurane Induces Coherent Slow-Delta Oscillations in Rats

    Directory of Open Access Journals (Sweden)

    Jennifer A. Guidera

    2017-07-01

    Full Text Available Although general anesthetics are routinely administered to surgical patients to induce loss of consciousness, the mechanisms underlying anesthetic-induced unconsciousness are not fully understood. In rats, we characterized changes in the extradural EEG and intracranial local field potentials (LFPs within the prefrontal cortex (PFC, parietal cortex (PC, and central thalamus (CT in response to progressively higher doses of the inhaled anesthetic sevoflurane. During induction with a low dose of sevoflurane, beta/low gamma (12–40 Hz power increased in the frontal EEG and PFC, PC and CT LFPs, and PFC–CT and PFC–PFC LFP beta/low gamma coherence increased. Loss of movement (LOM coincided with an abrupt decrease in beta/low gamma PFC–CT LFP coherence. Following LOM, cortically coherent slow-delta (0.1–4 Hz oscillations were observed in the frontal EEG and PFC, PC and CT LFPs. At higher doses of sevoflurane sufficient to induce loss of the righting reflex, coherent slow-delta oscillations were dominant in the frontal EEG and PFC, PC and CT LFPs. Dynamics similar to those observed during induction were observed as animals emerged from sevoflurane anesthesia. We conclude that the rat is a useful animal model for sevoflurane-induced EEG oscillations in humans, and that coherent slow-delta oscillations are a correlate of sevoflurane-induced behavioral arrest and loss of righting in rats.

  20. Energy and energy flux in axisymmetric slow and fast waves

    Science.gov (United States)

    Moreels, M. G.; Van Doorsselaere, T.; Grant, S. D. T.; Jess, D. B.; Goossens, M.

    2015-06-01

    Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations. Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes. Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions. Appendix A is available in electronic form at http://www.aanda.org

  1. Slow Motion and Zoom in HD Digital Videos Using Fractals

    Directory of Open Access Journals (Sweden)

    Maurizio Murroni

    2009-01-01

    Full Text Available Slow motion replay and spatial zooming are special effects used in digital video rendering. At present, most techniques to perform digital spatial zoom and slow motion are based on interpolation for both enlarging the size of the original pictures and generating additional intermediate frames. Mainly, interpolation is done either by linear or cubic spline functions or by motion estimation/compensation which both can be applied pixel by pixel, or by partitioning frames into blocks. Purpose of this paper is to present an alternative technique combining fractals theory and wavelet decomposition to achieve spatial zoom and slow motion replay of HD digital color video sequences. Fast scene change detection, active scene detection, wavelet subband analysis, and color fractal coding based on Earth Mover's Distance (EMD measure are used to reduce computational load and to improve visual quality. Experiments show that the proposed scheme achieves better results in terms of overall visual quality compared to the state-of-the-art techniques.

  2. Slow Cooling Cryopreservation Optimized to Human Pluripotent Stem Cells.

    Science.gov (United States)

    Miyazaki, Takamichi; Suemori, Hirofumi

    2016-01-01

    Human pluripotent stem cells (hPSCs) have the potential for unlimited expansion and differentiation into cells that form all three germ layers. Cryopreservation is one of the key processes for successful applications of hPSCs, because it allows semi-permanent preservation of cells and their easy transportation. Most animal cell lines, including mouse embryonic stem cells, are standardly cryopreserved by slow cooling; however, hPSCs have been difficult to preserve and their cell viability has been extremely low whenever cryopreservation has been attempted.Here, we investigate the reasons for failure of slow cooling in hPSC cryopreservation. Cryopreservation involves a series of steps and is not a straightforward process. Cells may die due to various reasons during cryopreservation. Indeed, hPSCs preserved by traditional methods often suffer necrosis during the freeze-thawing stages, and the colony state of hPSCs prior to cryopreservation is a major factor contributing to cell death.It has now become possible to cryopreserve hPSCs using conventional cryopreservation methods without any specific equipment. This review summarizes the advances in this area and discusses the optimization of slow cooling cryopreservation for hPSC storage.

  3. Frequency Mapping for the Operational Frequency Manager

    Science.gov (United States)

    2008-03-01

    and stationary computers. 1990s Late in the decade, Virtual Private Networks ( VPNs ) based on the Layer 2 Tunneling Protocol (L2TP) and IPSEC ...L2TP – Layer Two Tunnel Protocol LBNL – Lawrence Berkeley National Lab MHZ – Megahertz MIO – Maritime Interdiction Operations NOC – Network...Vehicle UHF – Ultra-High Frequency VPN – Virtual Private Network xvii ACKNOWLEDGMENTS First and foremost, we would like to thank our spouses Fatima

  4. Fast fundamental frequency estimation

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm; Jensen, Jesper Rindom

    2017-01-01

    Modelling signals as being periodic is common in many applications. Such periodic signals can be represented by a weighted sum of sinusoids with frequencies being an integer multiple of the fundamental frequency. Due to its widespread use, numerous methods have been proposed to estimate the funda...

  5. Electrothermal frequency reference

    NARCIS (Netherlands)

    Makinwa, K.A.A.; Kashmiri, S.M.

    2011-01-01

    An electrothermal frequency-locked loop (EFLL) circuit is described. This EFLL circuit includes an oscillator in a feedback loop. A drive circuit in the EFLL circuit generates a first signal having a fundamental frequency, and an electrothermal filter (ETF) in the EFLL circuit provides a second

  6. Single frequency intracavity SRO

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2000-01-01

    Summary form only given. A single resonance optical parametric oscillator (SRO) is inserted intracavity to a CW high power, single frequency, and ring Nd:YVO4 laser. We obtain a stable single frequency CW SRO with output at 1.7-1.9 μm (idler) and a resonating signal at 2.3-2.6 μm. The behavior...

  7. Microfabricated ion frequency standard

    Science.gov (United States)

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  8. The kinetics of slow-binding and slow, tight-binding inhibition: the effects of substrate depletion.

    Science.gov (United States)

    Waley, S G

    1993-08-15

    Inhibitors with dissociation constants in the micromolar to nanomolar range are important, but hard to characterize kinetically, especially when the substrate concentration in the assay is less than Km. When inhibition increases during the course of the assay (slow-binding inhibition) the concentration of substrate may decrease appreciably. Methods that take substrate depletion into account are described for analysing experiments in which the initial substrate concentration is below Km. Fitting progress curves gives the rate constants for the second (slow) step in a two-step mechanism. An approximate value for the overall dissociation constant may be determined from measurements of rates when the reaction is treated as a first-order process. When the concentrations of inhibitor and enzyme are comparable numerical methods are required. Procedures, suitable for implementation on a microcomputer, for the solution of the differential equations and the fitting of progress curves are described.

  9. Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like memory in rats.

    Science.gov (United States)

    Oyanedel, Carlos N; Binder, Sonja; Kelemen, Eduard; Petersen, Kimberley; Born, Jan; Inostroza, Marion

    2014-12-15

    Our previous experiments showed that sleep in rats enhances consolidation of hippocampus dependent episodic-like memory, i.e. the ability to remember an event bound into specific spatio-temporal context. Here we tested the hypothesis that this enhancing effect of sleep is linked to the occurrence of slow oscillatory and spindle activity during slow wave sleep (SWS). Rats were tested on an episodic-like memory task and on three additional tasks covering separately the where (object place recognition), when (temporal memory), and what (novel object recognition) components of episodic memory. In each task, the sample phase (encoding) was followed by an 80-min retention interval that covered either a period of regular morning sleep or sleep deprivation. Memory during retrieval was tested using preferential exploration of novelty vs. familiarity. Consistent with previous findings, the rats which had slept during the retention interval showed significantly stronger episodic-like memory and spatial memory, and a trend of improved temporal memory (although not significant). Object recognition memory was similarly retained across sleep and sleep deprivation retention intervals. Recall of episodic-like memory was associated with increased slow oscillatory activity (0.85-2.0Hz) during SWS in the retention interval. Spatial memory was associated with increased proportions of SWS. Against our hypothesis, a relationship between spindle activity and episodic-like memory performance was not detected, but spindle activity was associated with object recognition memory. The results provide support for the role of SWS and slow oscillatory activity in consolidating hippocampus-dependent memory, the role of spindles in this process needs to be further examined. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Improvements of the beam timing structure during a slow extraction from the 70 GeV IFVE accelerator

    International Nuclear Information System (INIS)

    Vorob'ev, V.K.; Levin, A.V.; Mojzhes, L.L.; Myznikov, K.P.; Tatarenko, V.M.; Fedotov, Yu.S.

    1977-01-01

    To improve the density uniformity of an extracted beam in the slow extraction system of the IFVE accelerator a correlation analysis of a timing structure of a proton beam is developed. A passive filter for a power supply system of an annular electromagnet is reconstructed by introduction of a double-loop circuit to reduce pulsations of 600 Hz main frequency and higher harmonics. To suppress accelerator field pulsations of subharmonic components from 50 to 300 Hz an active filter was introduced, where high Q qualities band filters were inserted. Using the above methods of pulsation suppression permits to improve the density uniformity of the extracted beam

  11. The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Öhman, Filip

    2009-01-01

    We experimentally investigate the initial chirp dependence of slow and fast light effects in a semiconductor optical amplifier followed by an optical filter. It is shown that the enhancement of the phase shift due to optical filtering strongly depends on the chirp of the input optical signal. We...... demonstrate ~120º phase delay as well as ~170º phase advance at a microwave frequency of 19 GHz for different optimum values of the input chirp. The experimental results are shown to be in good agreement with numerical results based on a four-wave mixing model. Finally, a simple physical explanation based...

  12. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics.

    Science.gov (United States)

    Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai

    2016-01-01

    Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid.

  13. Breakfast frequency among adolescents

    DEFF Research Database (Denmark)

    Pedersen, Trine Pagh; Holstein, Bjørn E; Damsgaard, Mogens Trab

    2016-01-01

    OBJECTIVE: To investigate (i) associations between adolescents' frequency of breakfast and family functioning (close relations to parents, quality of family communication and family support) and (ii) if any observed associations between breakfast frequency and family functioning vary by sociodemo......OBJECTIVE: To investigate (i) associations between adolescents' frequency of breakfast and family functioning (close relations to parents, quality of family communication and family support) and (ii) if any observed associations between breakfast frequency and family functioning vary...... by sociodemographic factors. DESIGN: School-based cross-sectional study. Students completed a web-based questionnaire. Associations were estimated by multilevel multivariate logistic regression. SETTING: Danish arm of the Health Behaviour in School-aged Children study, 2014. SUBJECTS: Adolescents aged 13 and 15 years...... (n 3054) from a random sample of forty-one schools. RESULTS: Nearly one-quarter of the adolescents had low breakfast frequency. Low breakfast frequency was associated with low family functioning measured by three dimensions. The OR (95 % CI) of low breakfast frequency was 1·81 (1·40, 2...

  14. Frequency comb swept lasers.

    Science.gov (United States)

    Tsai, Tsung-Han; Zhou, Chao; Adler, Desmond C; Fujimoto, James G

    2009-11-09

    We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free spectral range frequency comb filter in the swept lasers causes the lasers to generate a series of well defined frequency steps. The narrow bandwidth (0.015nm) of the frequency comb filter enables a approximately -1.2dB sensitivity roll off over approximately 3mm range, compared to conventional swept source and FDML lasers which have -10dB and -5dB roll offs, respectively. Measurements at very long ranges are possible with minimal sensitivity loss, however reflections from outside the principal measurement range of 0-3mm appear aliased back into the principal range. In addition, the frequency comb output from the lasers are equally spaced in frequency (linear in k-space). The filtered laser output can be used to self-clock the OCT interference signal sampling, enabling direct fast Fourier transformation of the fringe signals, without the need for fringe recalibration procedures. The design and operation principles of FC swept lasers are discussed and designs for short cavity lasers for OCT and interferometric measurement applications are proposed.

  15. Return-map for low-frequency fluctuations in semiconductor lasers with optical feedback

    DEFF Research Database (Denmark)

    Mørk, Jesper; Sabbatier, H.; Sørensen, Mads Peter

    1999-01-01

    We show that the phenomenon of low-frequency fluctuations (LFF) , commonly observed in semiconductor lasers with optical feedback, can be explained by a simple return-map, implying a tremendous simplification in the description of the slow time-scale dynamics of the system. Experimentally observed...... parameter dependencies are simply explained by the calculated return-maps. Our approach partly decouples the slow and the fast time-scale behaviour. The latter is often described in terms of chaotic itinerary, but this does not provide an explanation for the low-frequency fluctuations themselves....

  16. Efficiency of conscious access improves with coupling of slow and fast neural oscillations.

    Science.gov (United States)

    Nakatani, Chie; Raffone, Antonino; van Leeuwen, Cees

    2014-05-01

    Global workspace access is considered as a critical factor for the ability to report a visual target. A plausible candidate mechanism for global workspace access is coupling of slow and fast brain activity. We studied coupling in EEG data using cross-frequency phase-amplitude modulation measurement between delta/theta phases and beta/gamma amplitudes from two experimental sessions, held on different days, of a typical attentional blink (AB) task, implying conscious access to targets. As the AB effect improved with practice between sessions, theta-gamma and theta-beta coupling increased generically. Most importantly, practice effects observed in delta-gamma and delta-beta couplings were specific to performance on the AB task. In particular, delta-gamma coupling showed the largest increase in cases of correct target detection in the most challenging AB conditions. All these practice effects were observed in the right temporal region. Given that the delta band is the main frequency of the P3 ERP, which is a marker of global workspace activity for conscious access, and because the gamma band is involved in visual object processing, the current results substantiate the role of phase-amplitude modulation in conscious access to visual target representations.

  17. Slow-wave sleep and the risk of type 2 diabetes in humans

    Science.gov (United States)

    Tasali, Esra; Leproult, Rachel; Ehrmann, David A.; Van Cauter, Eve

    2008-01-01

    There is convincing evidence that, in humans, discrete sleep stages are important for daytime brain function, but whether any particular sleep stage has functional significance for the rest of the body is not known. Deep non-rapid eye movement (NREM) sleep, also known as slow-wave sleep (SWS), is thought to be the most “restorative” sleep stage, but beneficial effects of SWS for physical well being have not been demonstrated. The initiation of SWS coincides with hormonal changes that affect glucose regulation, suggesting that SWS may be important for normal glucose tolerance. If this were so, selective suppression of SWS should adversely affect glucose homeostasis and increase the risk of type 2 diabetes. Here we show that, in young healthy adults, all-night selective suppression of SWS, without any change in total sleep time, results in marked decreases in insulin sensitivity without adequate compensatory increase in insulin release, leading to reduced glucose tolerance and increased diabetes risk. SWS suppression reduced delta spectral power, the dominant EEG frequency range in SWS, and left other EEG frequency bands unchanged. Importantly, the magnitude of the decrease in insulin sensitivity was strongly correlated with the magnitude of the reduction in SWS. These findings demonstrate a clear role for SWS in the maintenance of normal glucose homeostasis. Furthermore, our data suggest that reduced sleep quality with low levels of SWS, as occurs in aging and in many obese individuals, may contribute to increase the risk of type 2 diabetes. PMID:18172212

  18. A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure

    Science.gov (United States)

    Jiang, Tao; He, Jun-Tao; Zhang, Jian-De; Li, Zhi-Qiang; Ling, Jun-Pu

    2016-12-01

    In order to enhance the power capacity, an improved Ku-band magnetically insulated transmission line oscillator (MILO) with overmoded slow-wave-structure (SWS) is proposed and investigated numerically and experimentally. The analysis of the dispersion relationship and the resonant curve of the cold test indicate that the device can operate at the near π mode of the TM01 mode, which is useful for mode selection and control. In the particle simulation, the improved Ku-band MILO generates a microwave with a power of 1.5 GW and a frequency of 12.3 GHz under an input voltage of 480 kV and input current of 42 kA. Finally, experimental investigation of the improved Ku-band MILO is carried out. A high-power microwave (HPM) with an average power of 800 MW, a frequency of 12.35 GHz, and pulse width of 35 ns is generated under a diode voltage of 500 kV and beam current of 43 kA. The consistency between the experimental and simulated far-field radiation pattern confirms that the operating mode of the improved Ku-band MILO is well controlled in π mode of the TM01 mode. Project supported partly by the National Natural Science Foundation of China (Grant No. 61171021).

  19. RF empty bucket channelling combined with a betatron core to improve slow extraction in medical synchrotrons

    CERN Document Server

    Crescenti, M

    1998-01-01

    The uniformity of a slow-extracted beam from a synchrotron is degraded by ripples from the power converters of the magnetic elements. This effect can be reduced by making the beam particles cross more quickly from the stable to the unstable region. Among the various methods that have been proposed for this purpose, RF bucket channelling seems to be a good candidate for compensating low frequency ripples in spills of the order of one second. The method is based on the technique of RF phase displacement acceleration. In the configuration studied, a coasting beam is accelerated slowly into a third-order resonance by a betatron core. The acceleration rate set by the betatron core determines the spill length. Empty buckets are then created at the resonance frequency and adjusted with a phase angle that would decelerate any trapped beam by an equal and opposite amount. The main RF system can be used for this purpose. The empty buckets cause an obstruction in phase space and the beam particles are forced to channel ...

  20. Automatic detection of periods of slow wave sleep based on intracranial depth electrode recordings.

    Science.gov (United States)

    Reed, Chrystal M; Birch, Kurtis G; Kamiński, Jan; Sullivan, Shannon; Chung, Jeffrey M; Mamelak, Adam N; Rutishauser, Ueli

    2017-04-15

    An automated process for sleep staging based on intracranial EEG data alone is needed to facilitate research into the neural processes occurring during slow wave sleep (SWS). Current manual methods for sleep scoring require a full polysomnography (PSG) set-up, including electrooculography (EOG), electromyography (EMG), and scalp electroencephalography (EEG). This set-up can be technically difficult to place in the presence of intracranial EEG electrodes. There is thus a need for a method for sleep staging based on intracranial recordings alone. Here we show a reliable automated method for the detection of periods of SWS solely based on intracranial EEG recordings. The method utilizes the ratio of spectral power in delta, theta, and spindle frequencies relative to alpha and beta frequencies to classify 30-s segments as SWS or not. We evaluated this new method by comparing its performance against visually scored patients (n=9), in which we also recorded EOG and EMG simultaneously. Our method had a mean positive predictive value of 64% across all nights. Also, an ROC analysis of the performance of our algorithm compared to manually labeled nights revealed a mean average area under the curve of 0.91 across all nights. Our method had an average kappa score of 0.72 when compared to visual sleep scoring by an independent blinded sleep scorer. This shows that this simple method is capable of differentiating between SWS and non-SWS epochs reliably based solely on intracranial EEG recordings. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. High-quality-factor planar optical cavities with laterally stopped, slowed, or reversed light.

    Science.gov (United States)

    Byrnes, Steven J; Khorasaninejad, Mohammadreza; Capasso, Federico

    2016-08-08

    In a planar optical cavity, the resonance frequencies increase as a function of in-plane wavevector according to a standard textbook formula. This has well-known consequences in many different areas of optics, from the shifts of etalon peaks at non-normal angles, to the properties of transverse modes in laser diodes, to the effective mass of microcavity photons, and so on. However, this standard formula is valid only when the reflection phase of each cavity mirror is approximately independent of angle. There is a certain type of mirror-a subwavelength dielectric grating near a guided mode resonance-with not only a strongly angle-dependent reflection phase, but also very high reflectance and low losses. Simulations show that by using such mirrors, high-quality-factor planar cavities can be designed that break all these textbook rules, leading to resonant modes that are slow, stopped or even backward-propagating in the in-plane direction. In particular, we demonstrate experimentally high-Q planar cavities whose resonance frequency is independent of in-plane wavevector-i.e., the resonant modes have zero in-plane group velocity, for one polarization but both in-plane directions. We discuss potential applications in various fields including lasers, quantum optics, and exciton-polariton condensation.

  2. Slow spontaneous hemodynamic oscillations during sleep measured with near-infrared spectroscopy

    Science.gov (United States)

    Virtanen, Jaakko; Näsi, Tiina; Noponen, Tommi; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.

    2011-07-01

    Spontaneous cerebral hemodynamic oscillations below 100 mHz reflect the level of cerebral activity, modulate hemodynamic responses to tasks and stimuli, and may aid in detecting various pathologies of the brain. Near-infrared spectroscopy (NIRS) is ideally suited for both measuring spontaneous hemodynamic oscillations and monitoring sleep, but little research has been performed to combine these two applications. We analyzed 30 all-night NIRS-electroencephalography (EEG) sleep recordings to investigate spontaneous hemodynamic activity relative to sleep stages determined by polysomnography. Signal power of hemodynamic oscillations in the low-frequency (LF, 40-150 mHz) and very-low-frequency (VLF, 3-40 mHz) bands decreased in slow-wave sleep (SWS) compared to light sleep (LS) and rapid-eye-movement (REM) sleep. No statistically significant (p sleep in line with earlier studies with other modalities. These results increase our knowledge of the physiology of sleep, complement EEG data, and demonstrate the applicability of NIRS to studying spontaneous hemodynamic fluctuations during sleep.

  3. Home-Based Transabdominal Interferential Electrical Stimulation for Six Months Improves Paediatric Slow Transit Constipation (STC).

    Science.gov (United States)

    Yik, Yee Ian; Hutson, John; Southwell, Bridget

    2017-11-22

    Transcutaneous electrical stimulation (TES) for one to two months has produced some improvement in treatment-resistant slow-transit constipation (STC) in children. Optimal parameters for treatment are not known. It is possible that more improvement would occur with stimulation for longer. This study examined the effectiveness of stimulation for six months. Children with STC confirmed by nuclear transit study (NTS) were enrolled prospectively. All had chronic constipation for greater than two years and had failed medical treatment. TES was performed for one hour/day for six months using the INF 4160 (Fuji Dynamics) portable stimulator and 4 cm × 4 cm electrodes near the belly button and on the back. Families kept bowel diaries and completed PEDSQLCore QOL (4.0) questionnaires before and at end of treatment. Sixty-two children (34 females; seven years, 2-16 year) with STC were studied. Defecation frequency increased in 57/62 (91%, mean ± SEM pre- 1.49 ± 0.20 vs. post- 3.25 ± 0.25 defecation/week, p interferential current across the abdomen when given daily for many months. Battery operated stimulators allowed stimulation at home for an hour each day. Stimulation for six months produced clinically significant improvement in defecation frequency, soiling, abdominal pain, urge to defecate, and quality of life in half of these chronic patients. © 2017 International Neuromodulation Society.

  4. System Frequency as Information Carrier in AC Power Systems

    DEFF Research Database (Denmark)

    Douglass, Philip James; Heussen, Kai; You, Shi

    2015-01-01

    to carry information: First, a protocol for dispatching blocks of FS- DER that is suitable for systems restricted to relatively slow rates of change of frequency (ROCOF). Second, for systems that allow higher ROCOF values, the feasibility of using power generation resources as a power line communication......Power generators contain control systems able to regulate system frequency, but the frequency setpoint values are only rarely modified from nominal values. This paper describes design considerations for a communication system from generators to frequency sensitive distributed energy resourc es (FS...... transmitter is shown. Data from an operating islanded power system with diesel gen- erators is analyzed to demonstrate the feasibility of the proposed communication system in systems fed by rotating machines. The feasibility of the proposed communication system in systems fed by voltage source inverters...

  5. Tuning of Human Modulation Filters Is Carrier-Frequency Dependent

    Science.gov (United States)

    Simpson, Andrew J. R.; Reiss, Joshua D.; McAlpine, David

    2013-01-01

    Recent studies employing speech stimuli to investigate ‘cocktail-party’ listening have focused on entrainment of cortical activity to modulations at syllabic (5 Hz) and phonemic (20 Hz) rates. The data suggest that cortical modulation filters (CMFs) are dependent on the sound-frequency channel in which modulations are conveyed, potentially underpinning a strategy for separating speech from background noise. Here, we characterize modulation filters in human listeners using a novel behavioral method. Within an ‘inverted’ adaptive forced-choice increment detection task, listening level was varied whilst contrast was held constant for ramped increments with effective modulation rates between 0.5 and 33 Hz. Our data suggest that modulation filters are tonotopically organized (i.e., vary along the primary, frequency-organized, dimension). This suggests that the human auditory system is optimized to track rapid (phonemic) modulations at high sound-frequencies and slow (prosodic/syllabic) modulations at low frequencies. PMID:24009759

  6. Particle-in-cell studies of fast-ion slowing-down rates in cool tenuous magnetized plasma

    Science.gov (United States)

    Evans, Eugene S.; Cohen, Samuel A.; Welch, Dale R.

    2018-04-01

    We report on 3D-3V particle-in-cell simulations of fast-ion energy-loss rates in a cold, weakly-magnetized, weakly-coupled plasma where the electron gyroradius, ρe, is comparable to or less than the Debye length, λDe, and the fast-ion velocity exceeds the electron thermal velocity, a regime in which the electron response may be impeded. These simulations use explicit algorithms, spatially resolve ρe and λDe, and temporally resolve the electron cyclotron and plasma frequencies. For mono-energetic dilute fast ions with isotropic velocity distributions, these scaling studies of the slowing-down time, τs, versus fast-ion charge are in agreement with unmagnetized slowing-down theory; with an applied magnetic field, no consistent anisotropy between τs in the cross-field and field-parallel directions could be resolved. Scaling the fast-ion charge is confirmed as a viable way to reduce the required computational time for each simulation. The implications of these slowing down processes are described for one magnetic-confinement fusion concept, the small, advanced-fuel, field-reversed configuration device.

  7. Spontaneous K-Complex Density in Slow-Wave Sleep.

    Directory of Open Access Journals (Sweden)

    Md Dilshad Manzar

    Full Text Available To study spontaneous K-complex (KC densities during slow-wave sleep. The secondary objective was to estimate intra-non-rapid eye movement (NREM sleep differences in KC density.It is a retrospective study using EEG data included in polysomnographic records from the archive at the sleep research laboratory of the Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, India. The EEG records of 4459 minutes were used. The study presents a manual identification investigation of KCs in 17 healthy young adult male volunteers (age = 23.82±3.40 years and BMI = 23.42±4.18 kg/m2.N3 had a higher KC density than N2 (Z = -2.485, p = 0.013 for all of the probes taken together. Four EEG probes had a higher probe-specific KC density during N3. The inter-probe KC density differed significantly during N2 (χ2 = 67.91, p < .001, N3 (χ2 = 70.62, p < .001 and NREM (χ2 = 68.50, p < .001. The percent distribution of KC decreased uniformly with sleep cycles.The inter-probe differences during N3 establish the fronto-central dominance of the KC density regardless of sleep stage. This finding supports one local theory of KC generation. The significantly higher KC density during N3 may imply that the neuro-anatomical origin of slow-wave activity and KC is the same. This temporal alignment with slow-wave activity supports the sleep-promoting function of the KC.

  8. Spontaneous K-Complex Density in Slow-Wave Sleep.

    Science.gov (United States)

    Manzar, Md Dilshad; Rajput, Mohammad Muntafa; Zannat, Wassilatul; Pandi-Perumal, Seithikurippu R; BaHammam, Ahmed S; Hussain, M Ejaz

    2016-01-01

    To study spontaneous K-complex (KC) densities during slow-wave sleep. The secondary objective was to estimate intra-non-rapid eye movement (NREM) sleep differences in KC density. It is a retrospective study using EEG data included in polysomnographic records from the archive at the sleep research laboratory of the Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, India. The EEG records of 4459 minutes were used. The study presents a manual identification investigation of KCs in 17 healthy young adult male volunteers (age = 23.82±3.40 years and BMI = 23.42±4.18 kg/m2). N3 had a higher KC density than N2 (Z = -2.485, p = 0.013) for all of the probes taken together. Four EEG probes had a higher probe-specific KC density during N3. The inter-probe KC density differed significantly during N2 (χ2 = 67.91, p < .001), N3 (χ2 = 70.62, p < .001) and NREM (χ2 = 68.50, p < .001). The percent distribution of KC decreased uniformly with sleep cycles. The inter-probe differences during N3 establish the fronto-central dominance of the KC density regardless of sleep stage. This finding supports one local theory of KC generation. The significantly higher KC density during N3 may imply that the neuro-anatomical origin of slow-wave activity and KC is the same. This temporal alignment with slow-wave activity supports the sleep-promoting function of the KC.

  9. Cyclosporin A preferentially attenuates skeletal slow-twitch muscle regeneration

    Directory of Open Access Journals (Sweden)

    Miyabara E.H.

    2005-01-01

    Full Text Available Calcineurin, a Ca2+/calmodulin-dependent phosphatase, is associated with muscle regeneration via NFATc1/GATA2-dependent pathways. However, it is not clear whether calcineurin preferentially affects the regeneration of slow- or fast-twitch muscles. We investigated the effect of a calcineurin inhibitor, cyclosporin A (CsA, on the morphology and fiber diameter of regenerating slow- and fast-twitch muscles. Adult Wistar rats (259.5 ± 9 g maintained under standard conditions were treated with CsA (20 mg/kg body weight, ip for 5 days, submitted to cryolesion of soleus and tibialis anterior (TA muscles on the 6th day, and then treated with CsA for an additional 21 days. The muscles were removed, weighed, frozen, and stored in liquid nitrogen. Cryolesion did not alter the body weight gain of the animals after 21 days of regeneration (P = 0.001 and CsA significantly reduced the body weight gain (15.5%; P = 0.01 during the same period. All treated TA and soleus muscles showed decreased weights (17 and 29%, respectively, P < 0.05. CsA treatment decreased the cross-sectional area of both soleus and TA muscles of cryoinjured animals (TA: 2108 ± 930 vs 792 ± 640 µm²; soleus: 2209 ± 322 vs 764 ± 439 m²; P < 0.001. Histological sections of both muscles stained with Toluidine blue revealed similar regenerative responses after cryolesion. In addition, CsA was able to minimize these responses, i.e., centralized nuclei and split fibers, more efficiently so in TA muscle. These results indicate that calcineurin preferentially plays a role in regeneration of slow-twitch muscle.

  10. Critical slowing down and error analysis in lattice QCD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Virotta, Francesco

    2012-02-21

    In this work we investigate the critical slowing down of lattice QCD simulations. We perform a preliminary study in the quenched approximation where we find that our estimate of the exponential auto-correlation time scales as {tau}{sub exp}(a){proportional_to}a{sup -5}, where a is the lattice spacing. In unquenched simulations with O(a) improved Wilson fermions we do not obtain a scaling law but find results compatible with the behavior that we find in the pure gauge theory. The discussion is supported by a large set of ensembles both in pure gauge and in the theory with two degenerate sea quarks. We have moreover investigated the effect of slow algorithmic modes in the error analysis of the expectation value of typical lattice QCD observables (hadronic matrix elements and masses). In the context of simulations affected by slow modes we propose and test a method to obtain reliable estimates of statistical errors. The method is supposed to help in the typical algorithmic setup of lattice QCD, namely when the total statistics collected is of O(10){tau}{sub exp}. This is the typical case when simulating close to the continuum limit where the computational costs for producing two independent data points can be extremely large. We finally discuss the scale setting in N{sub f}=2 simulations using the Kaon decay constant f{sub K} as physical input. The method is explained together with a thorough discussion of the error analysis employed. A description of the publicly available code used for the error analysis is included.

  11. Development of lead slowing down spectrometer for isotopic fissile assay

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Park, Chang Je; Ahn, Sang Joon; Kim, Ho Dong

    2014-01-01

    A lead slowing down spectrometer (LSDS) is under development for analysis of isotopic fissile material contents in pyro-processed material, or spent fuel. Many current commercial fissile assay technologies have a limitation in accurate and direct assay of fissile content. However, LSDS is very sensitive in distinguishing fissile fission signals from each isotope. A neutron spectrum analysis was conducted in the spectrometer and the energy resolution was investigated from 0.1eV to 100keV. The spectrum was well shaped in the slowing down energy. The resolution was enough to obtain each fissile from 0.2eV to 1keV. The detector existence in the lead will disturb the source neutron spectrum. It causes a change in resolution and peak amplitude. The intense source neutron production was designed for ∼E12 n's/sec to overcome spent fuel background. The detection sensitivity of U238 and Th232 fission chamber was investigated. The first and second layer detectors increase detection efficiency. Thorium also has a threshold property to detect the fast fission neutrons from fissile fission. However, the detection of Th232 is about 76% of that of U238. A linear detection model was set up over the slowing down neutron energy to obtain each fissile material content. The isotopic fissile assay using LSDS is applicable for the optimum design of spent fuel storage to maximize burnup credit and quality assurance of the recycled nuclear material for safety and economics. LSDS technology will contribute to the transparency and credibility of pyro-process using spent fuel, as internationally demanded.

  12. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  13. Acute phase reactants in patients with coronary slow flow phenomenon.

    Science.gov (United States)

    Madak, Nihat; Nazlı, Yunus; Mergen, Haluk; Aysel, Süleyman; Kandaz, Muhammet; Yanık, Ekrem; Cekdemir, Demet; Tavlı, Talat

    2010-10-01

    In this study, we sought to investigate the serum levels of high sensitivity C-reactive protein (Hs-CRP), N-terminal pro-brain natriuretic peptide (NT proBNP), erythrocyte sedimentation rate, leukocyte, thyroid hormone and fibrinogen levels in patients with coronary slow flow phenomenon (CSFP). A total of 82 patients with angiographically proven normal coronary arteries and slow coronary flow in all three coronary vessels (45 males and 37 females, mean age 59±11 years) and 34 patients with normal coronary arteries and normal coronary flow (19 males and 15 females, mean age 56±10 years) with similar risk profiles were included in this cross-sectional observational study. Coronary flow rates of all patients and control subjects were documented by Thrombolysis In Myocardial Infarction (TIMI) frame count, serum level of Hs-CRP, NT proBNP, sedimentation, leukocyte, free triiodothyronine (FT3), free thyroxine (FT4), thyroid stimulating hormone (TSH) and fibrinogen levels were measured. Statistical analysis was performed using t test for independent samples, Chi-square test and Pearson correlation analysis. Hs-CRP (0.88±0.86 vs 0.36±0.35 mg/L, p=0.001) and NT proBNP (117.83±163.2 vs 47.33±30.6 ng/ml, p=0.01) were found to be significantly higher in patients with coronary slow flow compared with normal control group. There were no significant differences regarding thyroid hormones, fibrinogen, sedimentation rate and leukocyte count between two groups. The mean TIMI frame counts were positively correlated (r=0.454, p=0.001 and r=0.554, p=0.001, respectively) with plasma Hs-CRP levels and NT-proBNP levels. Hs-CRP and NT proBNP are significantly higher in patients with coronary slow flow compared with normal control group. Their increased levels are positively correlated with TIMI frame count.

  14. Slow dynamics at critical points: the field-theoretical perspective

    International Nuclear Information System (INIS)

    Gambassi, Andrea

    2006-01-01

    The dynamics at a critical point provides a simple instance of slow collective evolution, characterised by aging phenomena and by a violation of the fluctuation-dissipation relation even for long times. By virtue of the universality in critical phenomena it is possible to provide quantitative predictions for some aspects of these behaviours by field-theoretical methods. We review some of the theoretical results that have been obtained in recent years for the relevant (universal) quantities, such as the fluctuation-dissipation ratio, associated with the non-equilibrium critical dynamics

  15. Thinking in a foreign language, fast and slow

    Directory of Open Access Journals (Sweden)

    Turula Anna

    2016-06-01

    Full Text Available Several studies (Keysar et al., 2012; Lazar et al., 2014 suggest that decisions made in a foreign language are more rational. The authors imply that when thinking in a language which is not our native tongue, analytical, slow, deep-thinking is activated. The question that underlies the present article is whether this is a characteristic of every mental operation in the foreign medium. Studies carried out by Costa et al. (2014, Geipel et al. (2015 and Hadjichristidis et al. (2015 suggest the issue is much more complex than it may seem.

  16. Slow DNA transport through nanopores in hafnium oxide membranes.

    Science.gov (United States)

    Larkin, Joseph; Henley, Robert; Bell, David C; Cohen-Karni, Tzahi; Rosenstein, Jacob K; Wanunu, Meni

    2013-11-26

    We present a study of double- and single-stranded DNA transport through nanopores fabricated in ultrathin (2-7 nm thick) freestanding hafnium oxide (HfO2) membranes. The high chemical stability of ultrathin HfO2 enables long-lived experiments with 50 000 DNA translocations with no detectable pore expansion. Mean DNA velocities are slower than velocities through comparable silicon nitride pores, providing evidence that HfO2 nanopores have favorable physicochemical interactions with nucleic acids that can be leveraged to slow down DNA in a nanopore.

  17. The slow control system of the HADES RPC wall

    International Nuclear Information System (INIS)

    Gil, A.; Blanco, A.; Castro, E.; Díaz, J.; Garzón, J.A.; Gonzalez-Diaz, D.; Fouedjio, L.; Kolb, B.W.; Palka, M.; Traxler, M.; Trebacz, R.; Zumbruch, P.

    2012-01-01

    The control and monitoring system for the new HADES RPC time of flight wall installed at GSI Helmholtzzentrum für Schwerionenforschung GmbH (Darmstadt, Germany), is described. The slow control system controls/monitors about 6000 variables from different physical devices via a distributed architecture, which uses intensively the 1-wire ® bus. The software implementation is based on the Experimental Physics and Industrial Control System (EPICS) software tool kit providing low cost, reliability and adaptability without requiring large hardware resources. The control and monitoring system attends five different subsystems: front-end electronics, low voltage, high voltage, gases, and detector.

  18. Using Updated Climate Accounting to Slow Global Warming Before 2035

    Science.gov (United States)

    Schultz, T.

    2015-12-01

    The current and projected worsening of climate impacts make clear the urgency of limiting the global mean temperature to 2°C over preindustrial levels. But while mitigation policy today may slow global warming at the end of the century, it will not keep global warming within these limits. This failure arises in large part from the climate accounting system used to inform this policy, which does not factor in several scientific findings from the last two decades, including: The urgent need to slow global warming before 2035. This can postpone the time the +1.5°C limit is passed, and is the only way to avoid the most serious long-term climate disruptions. That while it may mitigate warming by the end of the century, reducing emissions of CO2 alone, according to UNEP/WMO[1], will do "little to mitigate warming over the next 20-30 years," and "may temporarily enhance near-term warming as sulfate [cooling] is reduced." That the only emissions reductions that can slow warming before 2035 are focused on short-lived climate pollutants. A small increase in current mitigation funding could fund these projects, the most promising of which target emissions in regional climate "hot spots" like the Arctic and India.[2] To ensure policies can effectively slow global warming before 2035, a new climate accounting system is needed. Such an updated system is being standardized in the USA,[3] and has been proposed for use in ISO standards. The key features of this updated system are: consideration of all climate pollutants and their multi-faceted climate effects; use of time horizons which prioritize mitigation of near-term warming; a consistent and accurate accounting for "biogenic" CO2; protocols ensuring that new scientific findings are incorporated; and a distinct accounting for emissions affecting regional "hot spots". This accounting system also considers environmental impacts outside of climate change, a feature necessary to identify "win-win" projects with climate benefits

  19. Slow solitary waves in multi-layered magnetic structures

    International Nuclear Information System (INIS)

    Ruderman, M.S.; Roberts, B.; Pelinovsky, E.N.; Petrukhin, N.S.

    2001-01-01

    The propagation of slow sausage surface waves in a multi-layered magnetic configuration is considered. The magnetic configuration consists of a central magnetic slab sandwiched between two identical magnetic slabs (with equilibrium quantities different from those in the central slab) which in turn are embedded between two identical semi-infinite regions. The dispersion equation is obtained in the linear approximation. The nonlinear governing equation describing waves with a characteristic wavelength along the central slab much larger than the slab thickness is derived. Solitary wave solutions to this equation are obtained in the case where these solutions deviate only slightly from the algebraic soliton of the Benjamin-Ono equation

  20. A low-neutron background slow-positron source

    International Nuclear Information System (INIS)

    White, M. M.

    1998-01-01

    The addition of a thermionic rf gun [1] and a photocathode rf gun will allow the Advanced Photon Source (APS) linear accelerator (linac) [2] [3] to become a free-electron laser (FEL) driver [4]. As the FEL project progresses, the existing high-charge DC thermionic gun will no longer be critical to APS operation and could be used to generate high-energy or low-energy electrons to drive a slow-positron source. We investigated possibilities to create a useful low-energy source that could operate semi-independently and would have a low neutron background

  1. The superconductor revolutions and the (slow) applications evolution

    International Nuclear Information System (INIS)

    Foner, S.

    1990-01-01

    The discovery in the 1960's of type 2 superconductors with high critical current densities in high magnetic fields (and the development of NbTi in particular) led to the first revolution. The discovery of high temperature superconductors (HTS) started the second revolution. At this stage ceramists became involved with superconductors. I will assess the status of various superconductor applications, progress of HTS and their possible applications at 4.2K, and near-term needs for superconducting materials operating at 30T in specialized facilities. Reasons for the slow growth of superconductor applications will be reviewed

  2. MODELLING SLOW EXTRACTION INDUCED RADIOACTIVITY IN SPS LSS2

    CERN Document Server

    Araujo Martinez, Aurora Cecilia; CERN. Geneva. TE Department

    2017-01-01

    The Accelerator and Beam Transfer (ABT) group is investigating the impact of recent proposals to extract higher proton intensities to Fixed Target experiments at the SPS. The 400 GeV high-energy proton beam is typically extracted over a few seconds using a resonant slow-extraction technique that induces small but unavoidable beam losses on the extraction equipment in SPS LSS2. In this report, the induced radioactivity for 2016-2017 is used to predict future activation levels and cool-down times, using a past intervention as a reference to predict dose to the personnel carrying-out maintenance of the accelerator.

  3. Design of a polarimeter for slow e sup + beams

    CERN Document Server

    Kumita, T; Hamatsu, R; Hirose, M; Hirose, T; Irako, M; Kawasaki, N; Yang, J

    2000-01-01

    A polarimeter which utilizes ortho-positronium quenching in a magnetic field is used to measure polarization of slow positron beams. This polarimeter is employed for a polarization measurement at an e sup + beam system where the beam is provided from the beta sup + decay of sup 2 sup 7 Si produced via the sup 2 sup 7 Al(p,n) sup 2 sup 7 Si reaction caused by proton irradiation. The beam polarization is determined to be 38.4+-4.0(statistical)+-8.7(systematic)%.

  4. Improving the Material Response for Slow Heat of Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, A L

    2010-03-08

    The goal of modern high explosive slow heat cookoff modeling is to understand the level of mechanical violence. This requires understanding the coupled thermal-mechanical-chemical system that such an environment creates. Recent advances have improved our ability to predict the time to event, and we have been making progress on predicting the mechanical response. By adding surface tension to the product gas pores in the high explosive, we have been able to reduce the current model's tendency to overpressurize confinement vessels. We describe the model and demonstrate how it affects a LX-10 STEX experiment. Issues associated with current product gas equations of state are described and examined.

  5. Slowing the Next Pandemic: Survey of Community Mitigation Strategies

    Centers for Disease Control (CDC) Podcasts

    2008-04-15

    During the next influenza pandemic, it will take time to develop a vaccine and there may be limited medication to treat or prevent illness. To slow the spread of disease, CDC and other public health officials will likely ask Americans to decrease contact with others through altering work schedules, school dismissals and other measures. Researchers recently surveyed the public to see whether people could follow those recommendations and what kind of impact they might have.  Created: 4/15/2008 by Emerging Infectious Diseases.   Date Released: 4/29/2008.

  6. Radiative capture of slow electrons by tungsten surface

    International Nuclear Information System (INIS)

    Artamonov, O.M.; Belkina, G.M.; Samarin, S.N.; Yakovlev, I.I.

    1987-01-01

    Isochromatic spectra of radiation capture of slow electrons by the surface of mono- and polycrystal tungsten recorded on 322 and 405 nm wave lengths are presented. The effect of oxygen adsorption on isochromates of the (110) face of tungsten monocrystal is investigated. The obtained isochromatic spectra are compared with energy band structure of tungsten. Based on the analysis of the obtained experimental results it is assumed that optical transition to the final state at the energy of 7.3 eV relatively to Fermi level is conditioned by surface states of the tungsten face (110)

  7. Slow recombination centers in cadmium selenide monocrystalline films

    International Nuclear Information System (INIS)

    Smyntyna, V.A.

    1983-01-01

    As a result of annealing when concentration of selenium Vacancies decreases due to their diffusion towards the surface, show recombination K-centers begin to influence the photoelectric properties of monocrystalline cadmium selenide layers. Energy levels of K-centers are located by 0.23-0.25 eV over the valent zone ceiling. The nature of K-centers is determined by the presence in the cadmium selenide layer structure of intrisic defects-cadmium vacancies in contrast to r-centers of slow recombination which are bound with impurities in a semiconductor material

  8. Proactive restoration of slow-failures in optical networks

    DEFF Research Database (Denmark)

    Siracusa, Domenico; Pederzolli, Federico; Salvadori, Elio

    2014-01-01

    , which leads to traffic losses while such operation completes. In this paper we propose a technique, applicable to optical networks with centralized control, to better handle failures with slow transients. The idea is to proactively perform the backup lightpath's setup, triggered by either a fixed...... or an adaptive threshold. The latter is chosen so as to balance the need of offsetting the setup time with the need of preventing unnecessary setups. Simulations show that the adaptive threshold provides better performance than the fixed one, in terms of both timely restorations and unnecessary setup operations....

  9. Topology and slowing down of high energy ion orbits

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, L.G. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Porcelli, F. [Politecnico di Torino, Turin (Italy); Berk, H.L. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1994-07-01

    An analysis of nonstandard guiding centre orbits is presented, which is relevant to MeV ions in a Tokamak. The orbit equation has been simplified from the start, allowing to present an analytic classification of the possible orbits. The topological transitions of the orbits during collisional slowing down are described. In particular, the characteristic equations reveal the existence of a single fixed point in the relevant phase plane, and the presence of a bifurcation curve corresponding to the locus of the pinch orbits. A significant particle inward pinch has been discovered. (authors). 7 figs.

  10. [Italy's Slow Medicine: a new paradigm in medicine].

    Science.gov (United States)

    Bonaldi, Antonio; Vernero, Sandra

    2015-02-01

    Italy's Slow Medicine was founded in 2011 as a movement aimed to promote processes of care based on appropriateness, but within a relation of listening, dialogue and decision sharing with the patient. The mission of Slow Medicine is synthetized by three key words: measured, because it acts with moderation, gradually and without waste; respectful, because it is careful in preserving the dignity and values of each person; and equitable, because it is committed to ensuring access to appropriate care for all. In a short time, the association spreads at national and international level, gathering the needs of change of a growing number of health professionals, patients and citizens, committed to manage health problems with a new cultural and methodological paradigm. Medicine is soaked with inappropriateness, wastes, conflicts of interest, and many clichés induce professionals and patients to consume more and more healthcare services in the illusion that it is always better doing more for improving health. Moreover, the dominant reductionist cultural model, on which the concept of health and disease is based today, considers man as a machine, investigated by a growing number of specialists, particularly interested in the pathophysiological mechanisms of diseases. The interest is mainly focused on technologies, while the person along with the relations with his/her family and the social environment are completely neglected. The systemic approach adopted by Slow Medicine, on the contrary, teaches us that health and disease are complex phenomena and the life of a person is more than the sum of the chemical reactions that occur in its cells. At different levels of complexity, in fact, new and unexpected properties appear, such as thinking, emotions, pleasure, health. These properties are not detectable in the individual elements and can only be studied using methods of analysis and knowledge belonging to other domains of knowledge, such as humanity sciences: philosophy

  11. Can Lionel Messi's brain slow down time passing?

    Science.gov (United States)

    Jafari, Sajad; Smith, Leslie Samuel

    2016-01-01

    It seems that seeing others in slow-motion by heroes does not belong only to movies. When Lionel Messi plays football, you can hardly see anything from him that other players cannot do. Then why he is not stoppable really? It seems the answer may be that opponents do not have enough time to do what they want; because in Messi's neural system, time passes slower. In differential equations that model a single neuron, this speed can be generated by multiplying an equal term in all equations. Or maybe interactions between neurons and the structure of neural networks play this role.

  12. Sensorimotor and cognitive slowing in schizophrenia as measured by the Symbol Digit Substitution Test

    NARCIS (Netherlands)

    Morrens, M.; Hulstijn, W.; Hecke, J. van; Peuskens, J.; Sabbe, B.G.C.

    2006-01-01

    Objectives A vast amount of studies demonstrates the presence of psychomotor slowing in schizophrenia. The objective of the present study was to investigate whether this overall psychomotor slowing can be divided into distinct processes that differentially affect cognitive functioning in

  13. Phase and frequency structure of superradiance pulses generated by relativistic Ka-band backward-wave oscillator

    International Nuclear Information System (INIS)

    Rostov, V. V.; Romanchenko, I. V.; Elchaninov, A. A.; Sharypov, K. A.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.

    2016-01-01

    Phase and frequency stability of electromagnetic oscillations in sub-gigawatt superradiance (SR) pulses generated by an extensive slow-wave structure of a relativistic Ka-band backward-wave oscillator were experimentally investigated. Data on the frequency tuning and radiation phase stability of SR pulses with a variation of the energy and current of electron beam were obtained.

  14. A Comparative Study of Dispersion Characteristics Determination of a Trapezoidally Corrugated Slow Wave Structure Using Different Techniques

    International Nuclear Information System (INIS)

    Saber, Md. Ghulam; Sagor, Rakibul Hasan; Amin, Md. Ruhul

    2016-01-01

    The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency range. The dispersion relation is solved by utilizing the Rayleigh–Fourier method by expressing the radial function in terms of the Fourier series. A highly accurate synthetic technique is also applied to determine the complete dispersion characteristics from experimentally measured resonances (cold test). Periodic structures resonate at specific frequencies when the terminals are shorted appropriately. The dispersion characteristics obtained from numerical calculation, synthetic technique and cold test are compared, and an excellent agreement is achieved. (paper)

  15. Centrally located GLP-1 receptors modulate gastric slow waves and cardiovascular function in ferrets consistent with the induction of nausea.

    Science.gov (United States)

    Lu, Zengbing; Yeung, Chi-Kong; Lin, Ge; Yew, David T W; Andrews, P L R; Rudd, John A

    2017-10-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are indicated for the treatment of Type 2 diabetes and obesity, but can cause nausea and emesis in some patients. GLP-1 receptors are distributed widely in the brain, where they contribute to mechanisms of emesis, reduced appetite and aversion, but it is not known if these centrally located receptors also contribute to a modulation of gastric slow wave activity, which is linked causally to nausea. Our aim was to investigate the potential of the GLP-1 receptor agonist, exendin-4, administered into the 3rd ventricle to modulate emesis, feeding and gastric slow wave activity. Thermoregulation and cardiovascular parameters were also monitored, as they are disturbed during nausea. Ferrets were used as common laboratory rodents do not have an emetic reflex. A guide cannula was implanted into the 3rd ventricle for delivering a previously established dose of exendin-4 (10nmol), which had been shown to induce emesis and behaviours indicative of 'nausea'. Radiotelemetry recorded gastric myoelectric activity (GMA; slow waves), blood pressure and heart rate variability (HRV), and core temperature; food intake and behaviour were also assessed. Exendin-4 (10nmol, i.c.v.) decreased the dominant frequency of GMA, with an associated increase in the percentage of bradygastric power (lasting ~4h). Food intake was inhibited in all animals, with 63% exhibiting emesis. Exendin-4 also increased blood pressure (lasting ~24h) and heart rate (lasting ~7h), decreased HRV (lasting ~24h), and caused transient hyperthermia. None of the above parameters were emesis-dependent. The present study shows for the first time that gastric slow waves may be modulated by GLP-1 receptors in the brain through mechanisms that appear independent from emesis. Taken together with a reduction in HRV, the findings are consistent with changes associated with the occurrence of nausea in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Dynamic modulation of wideband slow light with continuous group index in polymer-filled photonic crystal waveguide.

    Science.gov (United States)

    Yan, Chongqing; Li, Changhong; Wan, Yong

    2017-12-10

    The dynamic modulation of wide bandwidth and low-dispersion slow light with continuous variation of group index n g is realized in a polymer-filled photonic crystal waveguide (PF-PCW) with optimal structure. By adjusting the unified radius of air holes under a different refractive index of polymer in the first two rows of holes adjacent to the defect, the structure optimization of PF-PCW is first studied, then the fixed optimal structure is obtained. In the optimal photonic crystal waveguide with hole radius r 0 =0.328a, a fixed refractive index n 1 =1.74 of polymer in the first-row holes, and by adjusting refractive index n 2 , the flattened wideband slow light with large normalized delay bandwidth product of group index from 17.15 to 55.65 has been demonstrated. Then, by filling polymer with electro-optic effect into the second-row holes, the dynamic modulation of the optimized slow light in PF-PCW is investigated. The simulation shows that the center operating frequency slightly shifts linearly to a higher one, and the average group index increases exponentially from 33.943 to 75.546 with a normalized delay bandwidth product larger than 0.3089 as the applied voltage increases. The modulation sensitivity of the average group index is about 0.3467/V when applied voltages vary from 0 V to 120 V. These results open the possibility for the dynamic control of slow light according to the practical requirements of flexibility and tunability.

  17. Adaptation in the visual cortex: influence of membrane trajectory and neuronal firing pattern on slow afterpotentials.

    Directory of Open Access Journals (Sweden)

    Vanessa F Descalzo

    Full Text Available The input/output relationship in primary visual cortex neurons is influenced by the history of the preceding activity. To understand the impact that membrane potential trajectory and firing pattern has on the activation of slow conductances in cortical neurons we compared the afterpotentials that followed responses to different stimuli evoking similar numbers of action potentials. In particular, we compared afterpotentials following the intracellular injection of either square or sinusoidal currents lasting 20 seconds. Both stimuli were intracellular surrogates of different neuronal responses to prolonged visual stimulation. Recordings from 99 neurons in slices of visual cortex revealed that for stimuli evoking an equivalent number of spikes, sinusoidal current injection activated a slow afterhyperpolarization of significantly larger amplitude (8.5 ± 3.3 mV and duration (33 ± 17 s than that evoked by a square pulse (6.4 ± 3.7 mV, 28 ± 17 s; p<0.05. Spike frequency adaptation had a faster time course and was larger during plateau (square pulse than during intermittent (sinusoidal depolarizations. Similar results were obtained in 17 neurons intracellularly recorded from the visual cortex in vivo. The differences in the afterpotentials evoked with both protocols were abolished by removing calcium from the extracellular medium or by application of the L-type calcium channel blocker nifedipine, suggesting that the activation of a calcium-dependent current is at the base of this afterpotential difference. These findings suggest that not only the spikes, but the membrane potential values and firing patterns evoked by a particular stimulation protocol determine the responses to any subsequent incoming input in a time window that spans for tens of seconds to even minutes.

  18. Laminar analysis of the slow wave activity in the somatosensory cortex of anesthetized rats.

    Science.gov (United States)

    Fiáth, Richárd; Kerekes, Bálint Péter; Wittner, Lucia; Tóth, Kinga; Beregszászi, Patrícia; Horváth, Domonkos; Ulbert, István

    2016-08-01

    Rhythmic slow waves characterize brain electrical activity during natural deep sleep and under anesthesia, reflecting the synchronous membrane potential fluctuations of neurons in the thalamocortical network. Strong evidence indicates that the neocortex plays an important role in the generation of slow wave activity (SWA), however, contributions of individual cortical layers to the SWA generation are still unclear. The anatomically correct laminar profiles of SWA were revealed under ketamine/xylazine anesthesia, with combined local field potential recordings, multiple-unit activity (MUA), current source density (CSD) and time-frequency analyses precisely co-registered with histology. The up-state related negative field potential wave showed the largest amplitude in layer IV, the CSD was largest in layers I and III, whereas MUA was maximal in layer V, suggesting spatially dissociated firing and synaptic/transmembrane processes in the rat somatosensory cortex. Up-state related firing could start in virtually any layers (III-VI) of the cortex, but were most frequently initiated in layer V. However, in a subset of experiments, layer IV was considerably active in initiating up-state related MUA even in the absence of somatosensory stimulation. Somatosensory stimulation further strengthened up-state initiation in layer IV. Our results confirm that cortical layer V firing may have a major contribution to the up-state generation of ketamine/xylazine-induced SWA, however, thalamic influence through the thalamorecipient layer IV can also play an initiating role, even in the absence of sensory stimulation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance.

    Science.gov (United States)

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Ghandi, Khashayar

    2015-08-14

    The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-μSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect.

  20. Improving slowness estimate stability and visualization using limited sensor pair correlation on seismic arrays

    Science.gov (United States)

    Gibbons, Steven J.; Näsholm, S. P.; Ruigrok, E.; Kværna, T.

    2018-04-01

    Seismic arrays enhance signal detection and parameter estimation by exploiting the time-delays between arriving signals on sensors at nearby locations. Parameter estimates can suffer due to both signal incoherence, with diminished waveform similarity between sensors, and aberration, with time-delays between coherent waveforms poorly represented by the wave-front model. Sensor-to-sensor correlation approaches to parameter estimation have an advantage over direct beamforming approaches in that individual sensor-pairs can be omitted without necessarily omitting entirely the data from each of the sensors involved. Specifically, we can omit correlations between sensors for which signal coherence in an optimal frequency band is anticipated to be poor or for which anomalous time-delays are anticipated. In practice, this usually means omitting correlations between more distant sensors. We present examples from International Monitoring System seismic arrays with poor parameter estimates resulting when classical f-k analysis is performed over the full array aperture. We demonstrate improved estimates and slowness grid displays using correlation beamforming restricted to correlations between sufficiently closely spaced sensors. This limited sensor-pair correlation (LSPC) approach has lower slowness resolution than would ideally be obtained by considering all sensor-pairs. However, this ideal estimate may be unattainable due to incoherence and/or aberration and the LSPC estimate can often exploit all channels, with the associated noise-suppression, while mitigating the complications arising from correlations between very distant sensors. The greatest need for the method is for short-period signals on large aperture arrays although we also demonstrate significant improvement for secondary regional phases on a small aperture array. LSPC can also provide a robust and flexible approach to parameter estimation on three-component seismic arrays.

  1. RF generated currents in a magnetized plasma using a slow wave structure

    International Nuclear Information System (INIS)

    Poole, B.R.; Cheo, B.R.; Kuo, S.P.; Tang, M.G.

    1983-01-01

    The generation of a dc current in a plasma by using RF waves is of importance for the operation of steadystate toroidal devices. An experimental investigation in the use of unidirectional, low frequency RF waves to drive currents has been made. Instead of using a natural plasma wave a slow wave guiding structure is used along the entire length of the plasma. When the RF wave is injected an increase in ionization and T/sub e/, and hence the background current is observed. However, the change depends on wave direction: The +k/sub z/ excitation yields a much larger electron current compared with the -k/sub z/ excitation indicating a net wave driven current. The measured modification in electron density and T/sub e/ is independent of wave direction. The current with a standing wave excitation generally falls at the average of the travelling wave (+ or - k/sub z/) driven currents. The net wave driven current is proportional to the feed power at approx. = 10 mA/kW. No saturation of the current is observed with feed powers up to 1 kW. Since the exciting structure is only 1 wavelength long, its k/sub z/ spectrum is relatively broad and hence no sharp resonances are observed as various plasma parameters and B/sub O/ are changed. There is no measurable difference between the power absorbed by the load resistors and the input power to the slow wave structure. Thus the current is driven by the wave field exclamation E exclamation 2 rather than the power absorbed in the plasma. The theoretical background and the physical mechanism is presented

  2. Slow-release urea in supplement fed to beef steers

    Directory of Open Access Journals (Sweden)

    Ana Paula Gonçalves

    2015-02-01

    Full Text Available Replacing regular urea (RU by slow-release urea (SRU at two levels of non-protein nitrogen (NPN in concentrate, offered with low-quality roughage, was evaluated in beef steers on dry matter intake (DMI, ruminal fermentation parameters, plasma urea nitrogen (PUN, total tract apparent digestibility of diets and in situ degradability of nitrogen sources. Eight ruminally cannulated steers were allocated into two 4x4 Latin squares, totalizing four treatments: 40 NPN/0 SRU: 40% of concentrate crude protein (CP as NPN, resulting from 0% of SRU and 100% of RU; 40 NPN/50 SRU: 40% of concentrate CP as NPN, resulting from 50% of SRU and 50% of RU; 40 NPN/100 SRU: 40% of concentrate CP as NPN, resulting from 100% of SRU and 0% of RU; 80 NPN/100 SRU: 80% of concentrate CP as NPN, resulting from 100% of SRU and 0% of RU. Results showed that partial substitution of regular urea by slow-release urea did not alter dry matter intake, pattern of ruminal fermentation or plasma urea nitrogen concentrations and increased the total tract apparent digestibility of crude protein in steers diets. The increase in non-protein nitrogen content in crude protein of the concentrate could compromise feed intake and the efficiency of nutrient utilization in the steers fed complete diets based on low quality forage.

  3. Water-Transfer Slows Aging in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Aviv Cohen

    Full Text Available Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR, the unfolded protein response (UPR and the endoplasmic reticulum-associated protein degradation (ERAD, was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.

  4. Water-Transfer Slows Aging in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cohen, Aviv; Weindling, Esther; Rabinovich, Efrat; Nachman, Iftach; Fuchs, Shai; Chuartzman, Silvia; Gal, Lihi; Schuldiner, Maya; Bar-Nun, Shoshana

    2016-01-01

    Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR), the unfolded protein response (UPR) and the endoplasmic reticulum-associated protein degradation (ERAD), was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.

  5. Conventional slow freezing cryopreserves mouflon spermatozoa better than vitrification.

    Science.gov (United States)

    Pradiee, J; Esteso, M C; Castaño, C; Toledano-Díaz, A; Lopez-Sebastián, A; Guerra, R; Santiago-Moreno, J

    2017-04-01

    This work examines the effectiveness of a TCG (Tris, citric acid, glucose, 6% egg yolk and 5% glycerol) and a TEST (TES, Tris, glucose, 6% egg yolk and 5% glycerol) sperm extender in the freezing of mouflon spermatozoa at slow cooling rates, using different pre-freezing equilibration times (2-3 hr). It also examines the tolerance of mouflon spermatozoa to different concentrations of cryoprotectants (5, 10, 20% glycerol; 5%, 10%, 20% dimethyl sulfoxide; 6% polyvinylpyrrolidone) and/or sucrose (100, 300, 500 mm). The highest quality (p spermatozoa were obtained when using the TEST extender and an equilibration time of 3 hr. Sperm motility and membrane integrity were strongly reduced when using rapid freezing rates (60-85°C min -1 ), independent of the concentration of cryoprotectants. The lowest sucrose concentration (100 mm) provided the highest (p spermatozoa and live spermatozoa with an intact acrosome. Vitrified-warmed sperm variables were at their best when the spermatozoa was diluted in TCG-6% egg yolk + 100 mm sucrose and warmed at 60°C. Slow warming at 37°C strongly reduced (p < .05) sperm motility and viability. However, sperm vitrification returned lower fertility, sperm motility and sperm viability values than conventional sperm freezing. © 2016 Blackwell Verlag GmbH.

  6. Medical aspects of boron-slow neutron capture therapy

    International Nuclear Information System (INIS)

    Sweet, W.H.

    1986-01-01

    Earlier radiations of patients with cerebral tumors disclosed the need: (1) to find a carrier of the boron compound which would leave the blood and concentrate in the tumor, (2) to use a more penetrating neutron beam, and (3) to develop a much faster method for assaying boron in blood and tissue. To some extent number1 has been accomplished in the form of Na 2 B 12 H 11 SH, number2 has yet to be achieved, and number3 has been solved by the measurement of the 478-keV gamma ray when the 10 B atom disintegrates following its capture of a slow neutron. The hitherto unreported data in this paper describe through the courtesy of Professor Hiroshi Hatanaka his studies on the pharmacokinetics and quality control of Na 2 B 12 H 11 SH based on 96 boron infusions in 86 patients. Simultaneous blood and tumor data are plotted here for 30 patients with glioblastomas (Grade III-IV gliomas), illustrating remarkable variability. Detailed autopsy findings on 18 patients with BNCT showed radiation injury in only 1. Clinical results in 12 of the most favorably situated glioblastomas reveal that 5 are still alive with a 5-year survival rate of 58% and the excellent Karnofsky performance rating of 87%. For the first time evidence is presented that slow-growing astrocytomas may benefit from BNCT. 10 references, 8 figures, 5 tables

  7. Book reviews: Daniel Kahneman - Thinking, Fast and Slow

    Directory of Open Access Journals (Sweden)

    Cristian Uta

    2016-09-01

    Full Text Available Although he has won the Nobel Prize for Economy (for his works on the decision theory, Daniel Kahneman is, surprisingly, a psychologist. Thinking, Fast and Slow presents us ideas and theories regarding the way in which the mind works and how this thing affects us when making a decision. In his opinion, the human thinking is a dual process, duality presented from three different perspec-tives. First (as the title suggests it, there are highlighted the differences between the fast and the slow thinking. Then the distinction between econs (rational agents of the classical economic theory and of the importance of economic schools of Chicago and humans (real people, which are not irrational but to whom the rational model does not fit is argued. Finally, the author presents us the conflicts between the remembering self and the experiencing self in respect to the way in which these selves perceive the wellbeing.   The volume contains 38 chapters structured in five parts. At the end, there is a Conclusions section and there are attached two articles written by Kahneman together with his friend Amos Tversky which present the contributions that have been cited by the Nobel committee for justifying the award given in 2002 (Tversky died in 1996 and he could not be awarded the Nobel Prize, although he would have deserved it.

  8. Slow-Equilibration Approximation in Kinetic Size Exclusion Chromatography.

    Science.gov (United States)

    Cherney, Leonid T; Krylov, Sergey N

    2016-04-05

    Kinetic size exclusion chromatography with mass spectrometry detection (KSEC-MS) is a solution-based label-free approach for studying kinetics of reversible binding of a small molecule to a protein. Extraction of kinetic data from KSEC-MS chromatograms is greatly complicated by the lack of separation between the protein and protein-small molecule complex. As a result, a sophisticated time-consuming numerical approach was used for the determination of rate constants in the proof-of-principle works on KSEC-MS. Here, we suggest the first non-numerical (analytical) approach for finding rate constants of protein-small molecule interaction from KSEC-MS data. The approach is based on the slow-equilibration approximation, which is applicable to KSEC-MS chromatograms that reveal two peaks. The analysis of errors shows that the slow-equilibration approximation guarantees that the errors in the rate constants are below 20% if the ratio between the characteristic separation and equilibration times does not exceed 0.1. The latter condition can typically be satisfied for specific interactions such as receptor-ligand or protein-drug. The suggested analytical solution equips analytical scientists with a simple and fast tool for processing KSEC-MS data. Moreover, a similar approach can be potentially developed for kinetic analysis of protein-small molecule binding by other kinetic-separation methods such as nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM).

  9. Slow roll in simple non-canonical inflation

    Science.gov (United States)

    Barenboim, Gabriela; Kinney, William H.

    2007-03-01

    We consider inflation using a class of non-canonical Lagrangians for which the modification to the kinetic term depends on the field, but not its derivatives. We generalize the standard Hubble slow roll expansion to the non-canonical case and derive expressions for observables in terms of the generalized slow roll parameters. We apply the general results to the illustrative case of 'slinky' inflation, which has a simple, exactly solvable, non-canonical representation. However, when transformed into a canonical basis, slinky inflation consists of a field oscillating on a multi-valued potential. We calculate the power spectrum of curvature perturbations for slinky inflation directly in the non-canonical basis, and show that the spectrum is approximately a power law on large scales, with a 'blue' power spectrum. On small scales, the power spectrum exhibits strong oscillatory behaviour. This is an example of a model in which the widely used solution of Garriga and Mukhanov gives the wrong answer for the power spectrum.

  10. Emergence of Slow-Switching Assemblies in Structured Neuronal Networks.

    Science.gov (United States)

    Schaub, Michael T; Billeh, Yazan N; Anastassiou, Costas A; Koch, Christof; Barahona, Mauricio

    2015-07-01

    Unraveling the interplay between connectivity and spatio-temporal dynamics in neuronal networks is a key step to advance our understanding of neuronal information processing. Here we investigate how particular features of network connectivity underpin the propensity of neural networks to generate slow-switching assembly (SSA) dynamics, i.e., sustained epochs of increased firing within assemblies of neurons which transition slowly between different assemblies throughout the network. We show that the emergence of SSA activity is linked to spectral properties of the asymmetric synaptic weight matrix. In particular, the leading eigenvalues that dictate the slow dynamics exhibit a gap with respect to the bulk of the spectrum, and the associated Schur vectors exhibit a measure of block-localization on groups of neurons, thus resulting in coherent dynamical activity on those groups. Through simple rate models, we gain analytical understanding of the origin and importance of the spectral gap, and use these insights to develop new network topologies with alternative connectivity paradigms which also display SSA activity. Specifically, SSA dynamics involving excitatory and inhibitory neurons can be achieved by modifying the connectivity patterns between both types of neurons. We also show that SSA activity can occur at multiple timescales reflecting a hierarchy in the connectivity, and demonstrate the emergence of SSA in small-world like networks. Our work provides a step towards understanding how network structure (uncovered through advancements in neuroanatomy and connectomics) can impact on spatio-temporal neural activity and constrain the resulting dynamics.

  11. A Slow Streamer Blowout at the Sun and Ulysses

    Science.gov (United States)

    Seuss, S. T.; Bemporad, A.; Poletto, G.

    2004-01-01

    On 10 June 2000 a streamer on the southeast limb slowly disappeared from LASCO/C2 over approximately 10 hours. A small CME was reported in C2. A substantial interplanetary CME (ICME) was later detected at Ulysses, which was at quadrature with the Sun and SOHO at the time. This detection illustrates the properties of an ICME for a known solar source and demonstrates that the identification can be done even beyond 3 AU. Slow streamer blowouts such as this have long been known but are little studied. We report on the SOHO observation of a coronal mass ejection (CME) on the solar limb and the subsequent in situ detection at Ulysses, which was near quadrature at the time, above the location of the CME. SOHO-Ulysses quadrature was 13 June, when Ulysses was 3.36 AU from the Sun and 58.2 degrees south of the equator off the east limb. The slow streamer blowout was on 10 June, when the SOHO-Sun-Ulysses angle was 87 degrees.

  12. Physical condition for the slowing down of cosmic acceleration

    Science.gov (United States)

    Zhang, Ming-Jian; Xia, Jun-Qing

    2018-04-01

    The possible slowing down of cosmic acceleration was widely studied. However, judgment on this effect in different dark energy parameterizations was very ambiguous. Moreover, the reason of generating these uncertainties was still unknown. In the present paper, we analyze the derivative of deceleration parameter q‧ (z) using the Gaussian processes. This model-independent reconstruction suggests that no slowing down of acceleration is presented within 95% C.L. from the Union2.1 and JLA supernova data. However, q‧ (z) from the observational H (z) data is a little smaller than zero at 95% C.L., which indicates that future H (z) data may have a potential to test this effect. From the evolution of q‧ (z), we present an interesting constraint on the dark energy and observational data. The physical constraint clearly solves the problem of why some dark energy models cannot produce this effect in previous work. Comparison between the constraint and observational data also shows that most of current data are not in the allowed regions. This implies a reason of why current data cannot convincingly measure this effect.

  13. Slow bank system of SINP-Tokamak: A short report

    International Nuclear Information System (INIS)

    Ray, R.; Ranjan, P.; Chowdhury, S.; Bose, S.

    1997-01-01

    SINP Tokamak was made operational in July, 1987. The power supply system of the tokamak at that time was designed for a plasma duration of around 2 ms for a peak plasma current of 75 kA. Efforts were directed to increase this duration to 20 ms with the help of a slow bank system designed to work in conjunction with the original fast bank system. The design aspects of the system were completed and the system has been partially executed. Subsequent to this partial implementation, efforts were directed to incorporate the necessary control system and interface facilities between the existing fast bank and the developed slow bank systems. The significant features of the control circuits are that they work according to a well thought out sequences of logic and are designed to guard against possible failures in the existing or the developed power supplies. Efforts have been put to make the operation of the system as much user-friendly as could be worked out within certain practical constraints. The control circuit and interface facilities have been put to extensive tests and are found to work satisfactorily. The entire power supply system is now in active use for different research programmes in the group. (author)

  14. Data assimilation on the exponentially accurate slow manifold.

    Science.gov (United States)

    Cotter, Colin

    2013-05-28

    I describe an approach to data assimilation making use of an explicit map that defines a coordinate system on the slow manifold in the semi-geostrophic scaling in Lagrangian coordinates, and apply the approach to a simple toy system that has previously been proposed as a low-dimensional model for the semi-geostrophic scaling. The method can be extended to Lagrangian particle methods such as Hamiltonian particle-mesh and smooth-particle hydrodynamics applied to the rotating shallow-water equations, and many of the properties will remain for more general Eulerian methods. Making use of Hamiltonian normal-form theory, it has previously been shown that, if initial conditions for the system are chosen as image points of the map, then the fast components of the system have exponentially small magnitude for exponentially long times as ε→0, and this property is preserved if one uses a symplectic integrator for the numerical time stepping. The map may then be used to parametrize initial conditions near the slow manifold, allowing data assimilation to be performed without introducing any fast degrees of motion (more generally, the precise amount of fast motion can be selected).

  15. Simulating the Evolving Behavior of Secondary Slow Slip Fronts

    Science.gov (United States)

    Peng, Y.; Rubin, A. M.

    2017-12-01

    High-resolution tremor catalogs of slow slip events reveal secondary slow slip fronts behind the main front that repetitively occupy the same source area during a single episode. These repetitive fronts are most often observed in regions with high tremor density. Their recurrence intervals gradually increase from being too short to be tidally modulated (tens of minutes) to being close to tidal periods (about 12 or 24 hours). This could be explained by a decreasing loading rate from creep in the surrounding regions (with few or no observable tremor events) as the main front passes by. As the recurrence intervals of the fronts increase, eventually they lock in on the tidal periods. We attempt to simulate this numerically using a rate-and-state friction law that transitions from velocity-weakening at low slip speeds to velocity strengthening at high slip speeds. Many small circular patches with a cutoff velocity an order of magnitude higher than that of the background are randomly placed on the fault, in order to simulate the average properties of the high-density tremor zone. Preliminary results show that given reasonable parameters, this model produces similar propagation speeds of the forward-migrating main front inside and outside the high-density tremor zone, consistent with observations. We will explore the behavior of the secondary fronts that arise in this model, in relation to the local density of the small tremor-analog patches, the overall geometry of the tremor zone and the tides.

  16. Physical condition for the slowing down of cosmic acceleration

    Directory of Open Access Journals (Sweden)

    Ming-Jian Zhang

    2018-04-01

    Full Text Available The possible slowing down of cosmic acceleration was widely studied. However, judgment on this effect in different dark energy parameterizations was very ambiguous. Moreover, the reason of generating these uncertainties was still unknown. In the present paper, we analyze the derivative of deceleration parameter q′(z using the Gaussian processes. This model-independent reconstruction suggests that no slowing down of acceleration is presented within 95% C.L. from the Union2.1 and JLA supernova data. However, q′(z from the observational H(z data is a little smaller than zero at 95% C.L., which indicates that future H(z data may have a potential to test this effect. From the evolution of q′(z, we present an interesting constraint on the dark energy and observational data. The physical constraint clearly solves the problem of why some dark energy models cannot produce this effect in previous work. Comparison between the constraint and observational data also shows that most of current data are not in the allowed regions. This implies a reason of why current data cannot convincingly measure this effect.

  17. The Calcium-Activated Slow AHP: Cutting Through the Gordian Knot

    Directory of Open Access Journals (Sweden)

    Rodrigo eAndrade

    2012-10-01

    Full Text Available The phenomenon known as the slow afterhyperpolarization (sAHP was originally described more than 30 years ago in pyramidal cells as a slow, Ca2+-dependent afterpotential controlling spike frequency adaptation. Subsequent work showed that similar sAHPs were widely expressed in the brain and were mediated by a Ca2+-activated potassium current that was voltage independent, insensitive to most potassium channel blockers, and strongly modulated by neurotransmitters. However the molecular basis for this current has remained poorly understood. The sAHP was initially imagined to reflect the activation of a potassium channel directly gated by Ca2+ but recent studies have begun to question this idea. The sAHP is distinct from the Ca2+-dependent fast and medium AHPs in that it appears to sense cytoplasmic [Ca2+]i and recent evidence implicates proteins of the neuronal calcium sensor family as diffusible cytoplasmic Ca2+ sensors for the sAHP. Translocation of Ca2+-bound sensor to the plasma membrane would then be an intermediate step between Ca2+ and the sAHP channels. Parallel studies strongly suggest that the sAHP current is carried by different potassium channel types depending on the cell type. Finally, the sAHP current is dependent on membrane PtdIns(4,5P2 and Ca2+ appears to gate this current by increasing PtdIns(4,5P2 levels. Because membrane PtdIns(4,5P2 is essential for the activity of many potassium channels, these finding have led us to hypothesize that the sAHP reflects a transient Ca2+-induced increase in the local availability of PtdIns(4,5P2 which then activates a variety of potassium channels. If this view is correct, the sAHP current would not represent a unitary ionic current but the embodiment of a generalized potassium channel gating mechanism. This model can potentially explain the cardinal features of the sAHP, including its cellular heterogeneity, slow kinetics, dependence on cytoplasmic [Ca2+], high temperature-dependence, and

  18. Utilizing the slowing-down-time technique for benchmarking neutron thermalization in graphite

    International Nuclear Information System (INIS)

    Zhou, T.; Hawari, A. I.; Wehring, B. W.

    2007-01-01

    Graphite is the moderator/reflector in the Very High Temperature Reactor (VHTR) concept of Generation IV reactors. As a thermal reactor, the prediction of the thermal neutron spectrum in the VHTR is directly dependent on the accuracy of the thermal neutron scattering libraries of graphite. In recent years, work has been on-going to benchmark and validate neutron thermalization in 'reactor grade' graphite. Monte Carlo simulations using the MCNP5 code were used to design a pulsed neutron slowing-down-time experiment and to investigate neutron slowing down and thermalization in graphite at temperatures relevant to VHTR operation. The unique aspect of this experiment is its ability to observe the behavior of neutrons throughout an energy range extending from the source energy to energies below 0.1 eV. In its current form, the experiment is designed and implemented at the Oak Ridge Electron Linear Accelerator (ORELA). Consequently, ORELA neutron pulses are injected into a 70 cm x 70 cm x 70 cm graphite pile. A furnace system that surrounds the pile and is capable of heating the graphite to a centerline temperature of 1200 K has been designed and built. A system based on U-235 fission chambers and Li-6 scintillation detectors surrounds the pile. This system is coupled to multichannel scaling instrumentation and is designed for the detection of leakage neutrons as a function of the slowing-down-time (i.e., time after the pulse). To ensure the accuracy of the experiment, careful assessment was performed of the impact of background noise (due to room return neutrons) and pulse-to-pulse overlap on the measurement. Therefore, the entire setup is surrounded by borated polyethylene shields and the experiment is performed using a source pulse frequency of nearly 130 Hz. As the basis for the benchmark, the calculated time dependent reaction rates in the detectors (using the MCNP code and its associated ENDF-B/VI thermal neutron scattering libraries) are compared to measured

  19. Activity of the anticonvulsant lacosamide in experimental and human epilepsy via selective effects on slow Na+channel inactivation.

    Science.gov (United States)

    Holtkamp, Dominik; Opitz, Thoralf; Niespodziany, Isabelle; Wolff, Christian; Beck, Heinz

    2017-01-01

    In human epilepsy, pharmacoresistance to antiepileptic drug therapy is a major problem affecting ~30% of patients with epilepsy. Many classical antiepileptic drugs target voltage-gated sodium channels, and their potent activity in inhibiting high-frequency firing has been attributed to their strong use-dependent blocking action. In chronic epilepsy, a loss of use-dependent block has emerged as a potential cellular mechanism of pharmacoresistance for anticonvulsants acting on voltage-gated sodium channels. The anticonvulsant drug lacosamide (LCM) also targets sodium channels, but has been shown to preferentially affect sodium channel slow inactivation processes, in contrast to most other anticonvulsants. We used whole-cell voltage clamp recordings in acutely isolated cells to investigate the effects of LCM on transient Na + currents. Furthermore, we used whole-cell current clamp recordings to assess effects on repetitive action potential firing in hippocampal slices. We show here that LCM exerts its effects primarily via shifting the slow inactivation voltage dependence to more hyperpolarized potentials in hippocampal dentate granule cells from control and epileptic rats, and from patients with epilepsy. It is important to note that this activity of LCM was maintained in chronic experimental and human epilepsy. Furthermore, we demonstrate that the efficacy of LCM in inhibiting high-frequency firing is undiminished in chronic experimental and human epilepsy. Taken together, these results show that LCM exhibits maintained efficacy in chronic epilepsy, in contrast to conventional use-dependent sodium channel blockers such as carbamazepine. They also establish that targeting slow inactivation may be a promising strategy for overcoming target mechanisms of pharmacoresistance. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  20. Hg(+) Frequency Standards

    Science.gov (United States)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2000-01-01

    In this paper we review the development of Hg(+) microwave frequency standards for use in high reliability and continuous operation applications. In recent work we have demonstrated short-term frequency stability of 3 x 10(exp -14)/nu(sub tau) when a cryogenic oscillator of stability 2-3 x 10(exp 15) was used a the local oscillator. The trapped ion frequency standard employs a Hg-202 discharge lamp to optically pump the trapped Hg(+)-199 clock ions and a helium buffer gas to cool the ions to near room temperature. We describe a small Hg(+) ion trap based frequency standard with an extended linear ion trap (LITE) architecture which separates the optical state selection region from the clock resonance region. This separation allows the use of novel trap configurations in the resonance region since no optical pumping is carried out there. A method for measuring the size of an ion cloud inside a linear trap with a 12-rod trap is currently being investigated. At approx. 10(exp -12), the 2nd order Doppler shift for trapped mercury ion frequency standards is one of the largest frequency offsets and its measurement to the 1% level would represent an advance in insuring the very long-term stability of these standards to the 10(exp -14) or better level. Finally, we describe atomic clock comparison experiments that can probe for a time variation of the fine structure constant, alpha = e(exp 2)/2(pi)hc, at the level of 10(exp -20)/year as predicted in some Grand Unified String Theories.