Sample records for beta-aminoethyl isothiourea

  1. Inhibition of. beta. -bungarotoxin binding to brain membranes by mast cell degranulating peptide, toxin I, and ethylene glycol bis(. beta. -aminoethyl ether)-N,N,N',N'-tetraacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.R.; Betz, H.; Rehm, H.


    The presynaptically active snake venom neurotoxin ..beta..-bungarotoxin (..beta..-Butx) is known to affect neurotransmitter release by binding to a subtype of voltage-activated K/sup +/ channels. Here the authors show that mast cell degranulating (MCD) peptide from bee venom inhibits the binding of /sup 125/I-labeled ..beta..-Butx to chick and rat brain membranes with apparent K/sub i/ values of 180 nM and 1100 nM, respectively. The mechanisms of inhibition of MCD peptide is noncompetitive, as is inhibition of /sup 125/I-..beta..-Butx binding by the protease inhibitor homologue from mamba venom, toxin I. ..beta..-Butx and its binding antagonists thus bind to different sites of the same membrane protein. Removal of Ca/sup 2 +/ by ethylene glycol bis(..beta..-aminoethyl ether)-N,N,N',N'-tetraacetic acid inhibits the binding of /sup 125/I-..beta..-Butx by lowering its affinity to brain membranes.

  2. Differential trace labeling of calmodulin: investigation of binding sites and conformational states by individual lysine reactivities. Effects of beta-endorphin, trifluoperazine, and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Giedroc, D.P.; Sinha, S.K.; Brew, K.; Puett, D.


    The CaS -dependent association of beta-endorphin and trifluoperazine with porcine testis calmodulin, as well as the effects of removing CaS by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) treatment, were investigated by the procedure of differential kinetic labeling. This technique permitted determination of the relative rates of acylation of each of the epsilon-amino groups of the seven lysyl residues on calmodulin by (TH)acetic anhydride under the different conditions. In all cases, less than 0.52 mol of lysyl residue/mol of calmodulin was modified, thus ensuring that the labeling pattern reflects the microenvironments of these groups in the native protein. Lysines 75 and 94 were found to be the most reactive amino groups in CaS -saturated calmodulin. In the presence of CaS and under conditions where beta-endorphin and calmodulin were present at a molar ratio of 2.5:1, the amino groups of lysines 75 and 148 were significantly reduced in reactivity compared to calmodulin alone. At equimolar concentrations of peptides and proteins, essentially the same result was obtained except that the magnitudes of the perturbation of these two lysines were less pronounced. With trifluoperazine, at a molar ratio to calmodulin of 2.5:1, significant perturbations of lysines 75 and 148, as well as Lys 77, were also found. These results further substantiate previous observations of a commonality between phenothiazine and peptide binding sites on calmodulin. Lastly, an intriguing difference in CaS -mediated reactivities between lysines 75 and 77 of calmodulin is demonstrated. In the CaS -saturated form of the protein, both lysines are part of the long connecting helix between the two homologous halves of the protein.

  3. Syntheses of some Bunte's salts, isothiourea derivatives and thioethers, potential radioprotective agents. Part 40

    International Nuclear Information System (INIS)

    Tulecki, J.; Kalinowska Torz, J.; Musial, E.; Nacewicz-Anjedani, H.; Senczuk, L.; Skwarski, D.; Sobolewski, H.


    By reacting respective halogen-derivatives with sodium or potassium thiosulphate there were obtained sodium or potassium salts of S-thiosulphates of 1-ureidocarbonyl-1-butyl, 3,4-dihydroxyphenacyl, carbophenoxymethyl, 2-hydroxyphenacyl, /N-(4-iodophenyl) carbamyl/methyl, /N-(4-iodophenyl) carbamyl/ethyl, /N-(2-iodophenyl) carbamyl/-methyl, /N-(2-iodophenyl) carbamyl/ethyl, /N-(6-carbomethoxybenzothiazolyl-2)-carbamyl/methyl, (2,4-dihydroxy-6-methylpyrimidyl-5)-methyl and (2,4-dihydroxypyrimidyl-5)-methyl. Reactions of thiourea with respective halogen-derivatives yielded hydrochlorides of 1-methyl-02-amidinothiomethylbenzimidazole, 1-ethyl-2-amidinothiomethylbenzimidazole, S-/N-(2-iodophenyl) carbamylethyl/ isothiourea, 5-amidinothiomethyl-6-methyl-2,4-dihydroxypyrimide and 5-amidinothiomethyl-2,4-dihydroxypyrimidine. Reactions of 4-chloroquinoline N-oxide with respective mercaptanes afforded thioether derivatives of quinoline N-oxide: 4-(p-chlorophenylthio)-4-(t-butylthio)-, 4-(3-naphtylthio)-, 4-(3-naphtylaminoacetylthio), 4-(benzimidazolythio)-, 4-(benzothiazolylthio) - and 4-benzoxalylthio. (author)

  4. Vasoactive and radioprotective properties of isothiourea derivatives having NOS-inhibitory activity

    Energy Technology Data Exchange (ETDEWEB)

    Filimonova, Marina V.; Shevchenko, Ludmila I.; Ulyanenko, Stepan E.; Makarchuk, Victorya M.; Kuznetsova, Mary N.; Shevchuk, Aza S.; Lushnikova, Galina A.; Chesnakova, Ekaterina A. [Medical Radiological Research Center Health Ministry of Russia, 4, Korolev street, Obninsk, 249036, Kaluga region (Russian Federation)


    We studied vasoactive and radioprotective properties of new original N-acyl, S-alkyl isothiourea derivatives which are potent inhibitors of nitric oxide synthases (preferably eNOS and iNOS). These compounds have a moderate toxicity (LD50 - 400-550 mg/kg), and are stable in aqueous solutions. In hemodynamic studies, these compounds exhibited high vasotropic activity. The use of these compounds in doses of 5-15 mg/kg (0,01-0,03 LD{sub 50}) in the experimental animals in a state of the severe hemorrhagic or endo-toxic shock causes a potent vasopressor effect, accompanied by a significant and continuous rise in blood pressure. The increasing of vascular tone developed over 2-5 min after injection and persisted for at least 60-90 minutes, excelling at least 3-5 times the duration of α1-adreno-mimetic vasopressor action. The rapid increase in vascular tone under the influence of these compounds in normo-tonic animals caused protective baroreflex to prevent high blood pressure. At doses of 10-15 mg/kg the reflex reaction was mild, but at higher doses (30-40 mg/kg) the reaction was fierce and prolonged, and was accompanied by severe bradycardia, decreasing of the cardiac output and a significant weakening of the peripheral blood flow. In all cases, the hemodynamic response was reflexive and easily eliminated by atropine. The ability of these compounds to induce circulatory hypoxia was the basis for the study of their radioprotective properties. The study of radioprotective effect on the survival of animals exposed to lethal doses of γ-radiation (10 Gy) and on the survival of hematopoietic clonogenic cells showed that these compounds in doses of 80-150 mg/kg (0,2-0,3 LD50) have considerable radioprotective action, which is comparable with the protective effect of the maximum tolerated dose of cystamine. The factor of change in dose for γ-radiation, estimated by the LD{sub 50}, was 1,42-1,58. We also investigated the ability of the test compounds, due to their hypoxic

  5. Nature of isomerism of solid isothiourea salts, inhibitors of nitric oxide synthases, as studied by 1H-14N nuclear quadrupole double resonance, X-ray, and density functional theory/quantum theory of atoms in molecules. (United States)

    Latosińska, J N; Latosińska, M; Seliger, J; Žagar, V; Maurin, J K; Kazimierczuk, Z


    Isothioureas, inhibitors of nitric oxide synthases, have been studied experimentally in solid state by nuclear quadrupole double resonance (NQDR) and X-ray methods and theoretically by the quantum theory of atoms in molecules/density functional theory. Resonance frequencies on (14)N have been detected and assigned to particular nitrogen sites in each molecule. The crystal packings of (S)-3,4-dichlorobenzyl-N-methylisothiouronium chloride with the disordered chlorine positions in benzene ring and (S)-butyloisothiouronium bromide have been resolved in X-ray diffraction studies. (14)N NQDR spectra have been found good indicators of isomer type and strength of intra- or intermolecular N-H···X (X = Cl, Br) interactions. From among all salts studied, only for (S)-2,3,4,5,6-pentabromobenzylisothiouronium chloride are both nitrogen sites equivalent, which has been explained by the slow exchange. This unique structural feature can be a key factor in the high biological activity of (S)-2,3,4,5,6-pentabromobenzylisothiouronium salts.

  6. The effect of immobilization and 3 (beta-aminoethyl)-1, 2, 4 triazol on the calcium content in gastric tissues of guinea pigs during the formation of experimental ulcers (United States)

    Grechishkin, L. L.; Ritling, K.


    A sharp fall in the concentration of calcium in gastric tissues upon immobilization and after administration of the histamine analog was recorded. Similar shifts were seen to occur in the blood plasma as well. This implies that under the effect of different action, tissue dystrophy develops by following a common mechanism involving not only the adenyl cyclase system, but that of calcium ion metabolism as well. The calcium ion content in the blood plasma and gastric tissues were measured by atomic absorption spectrophotometry.

  7. Effect of sulfur analogue of lysine on bacterial protein biosynthesis

    International Nuclear Information System (INIS)

    Tanaka, Hidehiko; Soda, Kenji.


    S-(beta-Aminoethyl)-L-cysteine, a sulfur analogue of lysine inhibited strongly growth of Escherichia coli A-19, and weakly that of Corynebacterium sp. isolated from soil, but did not inhibit growth of Aerobacter aerogenes. In Corynebacterium sp. the inhibitory effect was markedly enhanced in the presence of L-threonine. The inhibition of growth by S-(beta-aminoethyl)-L-cysteine was rapidly reversed by the addition of L-lysine. S-(beta-Aminoethyl)-L-cysteine inhibited protein synthesis and the activity of lysyl-tRNA synthetase from E. coli and A. aerogenes. All the other lysine analogues tested inhibited the activity of enzyme, but S-(beta-aminoethyl)-L-cysteine derivatives, S-(beta-N-acetyl-aminoethyl)-L-cysteine and S-(beta-aminoethyl)-alpha-N-acetyl-L-cysteine were not effective. (auth.)

  8. Synthesis of thiocarbamide derivatives of β-alanine and aminalon and study of their antiradiation action

    International Nuclear Information System (INIS)

    Golubev, A.A.; Shlykov, Yu.V.; Mandrugin, A.A.; Semenenko, M.N.; Fedoseev, V.M.; Dontsova, G.V.; Rakhmanina, O.N.; Konstantinova, M.M.


    The authors have synthesized the carboxyl derivatives of S-(2-Amino-ethyl)isothiourea (AET) and S-(3-Aminopropyl)isothiourea (3-APT), the dihydrobromides of S-(1-carboxy-2-aminoethyl)- and S-(1-carboxy-3-aminopropyl)isothioureas, and studied their toxicity and antiradiation effectiveness. Their work is based on data for the high radiation-protective activity of the corresponding aminoalkylisothioureas and on the fact that the introduction of the carboxylic group into the molecule influences the pharmacological properties of a compound. The starting compound for the preparation of S(1-carboxy-2-aminoethyl)isothiourea was beta-alanine. Mice were used in the investigations and in determining the toxicity of the compounds, the amounts of LD 16 , LD 50 , and LD 84 are given. In studying the anti-radiation activity, the mice were subjected to the action of 60 Co-gamma rays

  9. 45Ca distribution and transport in saponin skinned vascular smooth muscle

    International Nuclear Information System (INIS)

    Stout, M.A.; Diecke, F.P.


    45 Ca distribution and transport were studied in chemically skinned strips of caudal artery from Kyoto Wistar rats. Sarcolemmal membranes were made hyperpermeable by exposure for 60 min to solutions containing 0.1 mg/ml of saponin. Skinned helical strips responded with graded contractions to changes in ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid buffered free Ca solutions (10(-7) to 10(-5) M) and were sensitive to the Mg-ATP concentration. Tissues loaded in the presence of 10(-7) M Ca contracted in response to 10 mM caffeine. These experiments indicate the strips are skinned and possess a functional regulatory and contractile system and an intact Ca sequestering system. 45 Ca distributes in three compartments in skinned caudal artery strips. The Ca contents of two components are linear functions of the Ca-ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid concentration and desaturate at rapid rates. They correspond to the extracellular and cytoplasmic spaces. A significantly smaller component releases Ca at comparatively slower rates. 45 Ca uptake by the slow component consists of an ATP-dependent and an ATP-independent fraction. The 45 Ca content of the ATP-dependent fraction is a function of the free Ca concentration and is independent of the Ca-ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid concentration. Its content was enhanced by oxalate and was abolished by Triton X-100 skinning solutions. The ATP-independent component was not affected by Triton X-100 skinning and may represent Ca binding to cytoplasmic molecules and structures. The sequestered Ca was released with caffeine or Ca but not by epinephrine. The observations indicate that the sarcoplasmic reticulum and mitochondria of vascular smooth muscle strips skinned with saponin retain their functional integrity after saponin skinning

  10. Obtención y Caracterización de Revestimientos Protectores a Base de Silanos para la Protección de Aceros Galvanizados Obtention and Characterization of Silane based Films for the Protection of Galvanized Steel


    Sandra R Kunst; José F Matos; Matias A Korb; Célia F Malfatti


    Se presenta un estudio del comportamiento de películas de silanos Gamma-Aminopropyl tirethoxysilano y del N-(Beta-Aminoethyl)-Gamma-Aminopropyl trimethoxysilano aplicados por el proceso de revestimiento por inmersión (dip-coating) sobre el acero galvanizado. Se usan los mecanismos de curado térmico y curado por irradiación ultravioleta. Los substratos y revestimientos a base de zinc reciben normalmente un tratamiento de superficie para mejorar la resistencia a la corrosión, pero usan cromo he...

  11. Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O


    or without ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] and DIDS were not additive. In the absence of chloride, basal renin release was suppressed and the stimulatory effect of DIDS was abolished. The DIDS-induced enhancement of renin release was not dependent on bicarbonate....... Norepinephrine (5 x 10(-7)-1 x 10(-6) M) and angiotensin II (1 x 10(-8)-10(-6) M) evoked reversible and dose-dependent contractions of microperfused rabbit afferent arterioles. DIDS (0.5 mM) did not affect the basal diameter of the arterioles but strongly inhibited the response to angiotensin II and attenuated...

  12. Functional assay of the alternative complement pathway of rat serum

    International Nuclear Information System (INIS)

    Coonrod, J.D.; Jenkins, S.D.


    Two functional assays of the alternative pathway of complement activation in rat serum were developed. In the first assay, conditions were established for titration of alternative pathway activity by use of the 50% hemolytic end-point of rabbit red blood cells (RaRBC) in serum treated with ethyleneglycol-bis-(beta-aminoethyl ether)-N, N'-tetraacetic acid (EGTA). The second assay of alternative pathway activity was based on the opsonization of heat-killed radiolabeled pneumococci of serotype 25 (Pn25). Opsonization of Pn25 was shown to proceed entirely via the alternative pathway in rat serum. There was excellent correlation between the results obtained with the RaRBC lysis test and those obtained with the opsonization test. Because of its technical simplicity, the RaRBC lysis test appeared to be the single most useful test of alternative pathway activity in rat serum. (Auth.)

  13. Effects of secretagogues on ATP levels and protein carboxyl methylation in rat brain synaptosomes

    International Nuclear Information System (INIS)

    Bjorndahl, J.M.; Rutledge, C.O.


    The influence of various substances which are known to alter free intracellular calcium concentrations on protein carboxyl methyltransferase (PCM) activity was investigated in rat brain synaptosomes. The synaptosomes were labeled with L-[ 3 H]methionine and the 3 H-methyl esters of proteins were formed from the methyl donor S-[ 3 H]adenosyl-L-methionine ([ 3 H]AdoMet). The calcium ionophore A23187 and ouabain decreased PCM activity and the decrease produced by A23187 was antagonized by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid and MnCl 2 . On the other hand, ruthenium red, an inhibitor of calcium uptake, stimulated PCM activity. These data suggest that PCM activity is inversely related to the free cytoplasmic calcium concentration. Veratridine, A23187 and elevated potassium ions decreased the levels of ATP and [ 3 H]AdoMet. The A23187-mediated decrease in ATP levels and the reduced [ 3 H]AdoMet formation was antagonized by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid and MnCl 2 . Inhibition of metabolic activity of the synaptosomes by NaCN led to: decreased ATP levels; inhibition of [3H]AdoMet formation; and inhibition of PCM activity. These data suggest that the decrease in protein methylation produced by secretagogues is associated with an increase in the concentration of free intracellular calcium which results in a decrease in the metabolically active pool of ATP. This leads to a decreased rate of AdoMet formation, a cosubstrate for PCM and a resultant decrease in PCM activity

  14. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips (United States)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.


    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  15. Varying effects of calcium on the oxidation of palmitate and alpha-ketoglutarate in isolated rat liver mitochondria incubated in KCl-based and sucrose-based media. (United States)

    Borrebaek, B; Dolva, K; Singh, B


    Isolated mitochondria from rat liver were incubated in the presence of [U-14C]palmitate, ATP, CoA, carnitine, EGTA (ethylene glycol bis (beta-aminoethyl ether) N,N'-tetraacetic acid) and varying amounts of calcium. When a KC1-based incubation medium was used, the oxidation of palmitate was inhibited when the concentration of free calcium was increased from about 0.1-10 microM. When a sucrose-based incubation medium was used, the basal rate of palmitate oxidation was about half of that observed with the KC1-medium and calcium had a stimulatory effect. With the KC1-medium the rate of oxygen consumption was inhibited by calcium with alpha-ketoglutarate as well as palmitate as the respiratory substrate. No inhibitory effect of calcium was observed with succinate or beta-hydroxybutyrate. With the KC1-medium and with alpha-ketoglutarate as the respiratory substrate, state 3 respiration but not state 4 respiration was inhibited by calcium. When the sucrose-medium was used, state 3 respiration was first inhibited by calcium, but this inhibition was gradually relieved and the respiratory rate finally became higher than it was before calcium addition.

  16. Further investigations on the inorganic phosphate binding site of beef heart mitochondrial F1-ATPase

    International Nuclear Information System (INIS)

    Pougeois, R.; Lauquin, G.J.


    The possibility that 4-azido-2-nitrophenyl phosphate (ANPP), a photoreactive derivative of inorganic phosphate (P /sub i/ ), could mimic ATP was investigated. ANPP was hydrolyzed in the dark by sarcoplasmic reticulum Ca 2+ -ATPase in the presence of Ca 2+ but not in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. ANPP was not hydrolyzed by purified mitochondrial F1-ATPase; however, ADP and ATP protected F1-ATPase against ANPP photoinactivation. On the other hand, the trinitrophenyl nucleotide analogues (TNP-ADP, TNP-ATP, and TNP-AMP-PNP), which bind specifically at the two catalytic sites of F1-ATPase, abolished P /sub i/ binding on F1-ATPase; they do not protect F1-ATPase against ANPP photoinactivation. Furthermore, ANPP-photoinactivated F1-ATPase binds the TNP analogues in the same way as the native enzyme. The Pi binding site of F1-ATPase, which is shown to be photolabeled by ANPP, does not appear to be at the gamma-phosphate position of the catalytic sites

  17. Parvalbumin, a cross-reactive fish allergen, contains IgE-binding epitopes sensitive to periodate treatment and Ca2+ depletion. (United States)

    Bugajska-Schretter, A; Elfman, L; Fuchs, T; Kapiotis, S; Rumpold, H; Valenta, R; Spitzauer, S


    Type I allergy to fish is a severe health problem in countries in which a large percentage of the population derive income from fishing. The aim of the study was to characterize cross-reactive IgE-binding components in six different fish species (cod, tuna, salmon, perch, carp, and eel). The effect of reducing extraction conditions, periodate treatment, and depletion of Ca2+ on binding of IgE to the allergens was investigated. Extracts were prepared under nonreducing and reducing conditions. IgE-binding components were characterized by IgE immunoblotting, and cross-reactive epitopes were studied by IgE-immunoblot inhibition experiments. To reveal calcium-sensitive or carbohydrate-containing epitopes, nitrocellulose-blotted extracts were exposed to ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and periodate. Sera from all patients allergic to fish (n = 30) displayed IgE reactivity to parvalbumin, a 12 kd protein present in fish extracts from six different species. Reducing extraction conditions had no effect on IgE binding to parvalbumins, whereas periodate treatment and depletion of protein-bound calcium led to a substantial reduction of IgE binding. Parvalbumins from six different species contained cross-reactive IgE epitopes. Parvalbumin represents a cross-reactive fish allergen. It contains IgE epitopes that are sensitive to periodate treatment and Ca2+-depletion.

  18. The rapid isolation of vacuoles from leaves of crassulacean Acid metabolism plants. (United States)

    Kringstad, R; Kenyon, W H; Black, C C


    A technique is presented for the isolation of vacuoles from Sedum telephium L. leaves. Leaf material is digested enzymically to produce protoplasts rapidly which are partially lysed by gentle osmotic shock and the inclusion of 5 millimolar ethyleneglycol-bis (beta-aminoethyl ether)N,N'-tetraacetic acid in the wash medium. Vacuoles are isolated from the partially lysed protoplasts by brief centrifugation on a three-step Ficoll-400 gradient consisting of 5, 10, and 15% (w/v) Ficoll-400. A majority of the vacuoles accumulate at the 5 to 10% Ficoll interface, whereas a smaller proportion sediments at the 10 to 15% Ficoll-400 interface. The total time required for vacuole isolation is 2 to 2.5 hours, beginning from leaf harvest.The yield of vacuoles is approximately 44%. The major vacuole layer is 15 hours when left in Ficoll; however, dispersion into media of various osmotic concentrations resulted in decreased stability. Addition of mercaptobenzothiazole, CaCl(2), MgCl(2), bovine serum albumin, ethylenediaminetetraacetic acid, polyethylene glycol 600, and KH(2)PO(4) to the vacuole isolation media did not increase the stability of the isolated vacuoles.THIS TECHNIQUE WITH ONLY SLIGHT MODIFICATIONS HAS BEEN USED TO ISOLATE LEAF CELL VACUOLES FROM THE FOLLOWING CRASSULACEAN ACID METABOLISM PLANTS: pineapple, Kalanchoë fedtschenkoi, and Echeveria elegans. Spinach leaves also were used successfully.

  19. Purification of a toxic metalloprotease produced by the pathogenic Photobacterium damselae subsp. piscicida isolated from cobia (Rachycentron canadum). (United States)

    Liu, Ping-Chung; Chuang, Wen-Hsiao; Lee, Kuo-Kau


    The aim of the present study was to purify and characterize a toxic protease secreted by the pathogenic Photobacterium damselae subsp. piscicida strain CP1 originally isolated from diseased cobia (Rachycentron canadum). The toxin isolated by anion exchange chromatography, was a metalloprotease, inhibited by L-cysteine, ethylenediaminetetraacetic acid (EDTA), ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA), 1,10-phenanthroline, N-tosyl-L-phenylalanine-chloromethyl ketone (TPCK), and N-alpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK), and showed maximal activity at pH 6.0-8.0 and an apparent molecular mass of about 34.3 kDa. The toxin was also completely inhibited by HgCl2, and partially by sodium dodecyl sulfate (SDS) and CuCl2. The extracellular products and the partially purified protease were lethal to cobia with LD50 values of 1.26 and 6.8 microg protein/g body weight, respectively. The addition of EDTA completely inhibited the lethal toxicity of the purified protease, indicating that this metalloprotease was a lethal toxin produced by the bacterium.

  20. Mucorales species activation of a serum leukotactic factor. (United States)

    Marx, R S; Forsyth, K R; Hentz, S K


    Previous studies have suggested that the focal accumulation of phagocytic leukocytes is an important feature of the host response in mucormycosis. To ascertain the basis for this influx of inflammatory cells, we evaluated the effect of members of the order Mucorales, including species from the genera Rhizopus, Absidia, and Mucor, on the chemotactic activity of normal human serum for neutrophils and monocytes. Both hyphae and spores produced concentration-dependent chemotaxigenesis in serum to a maximum level equivalent to that produced by zymosan activation of serum. Chemotactic activity was similar for live and heat-killed hyphae. No leukotactic activity was demonstrated in the absence of serum. The pretreatment of serum with anti-C3 antibody, heating at 56 degrees C, or 0.01 M EDTA abolished the activity. The pretreatment of serum with 0.01 M ethylene glycol-bis(beta-aminoethyl ether)-N,N-tetraacetic acid did not abolish the activity. These data provide evidence that the leukotactic activity of Mucorales species is generated through the alternative complement pathway. PMID:6759409

  1. Sensing of EGTA Mediated Barrier Tissue Disruption with an Organic Transistor

    Directory of Open Access Journals (Sweden)

    Scherrine Tria


    Full Text Available Barrier tissue protects the body against external factors by restricting the passage of molecules. The gastrointestinal epithelium is an example of barrier tissue with the primary purpose of allowing the passage of ions and nutrients, while restricting the passage of pathogens and toxins. It is well known that the loss of barrier function can be instigated by a decrease in extracellular calcium levels, leading to changes in protein conformation and an increase in paracellular transport. In this study, ethylene glycol-bis(beta-aminoethyl ether-N,N,N',N'-tetra acetic acid (EGTA, a calcium chelator, was used to disrupt the gastrointestinal epithelial barrier. The effect of EGTA on barrier tissue was monitored by a novel label-free method based on an organic electrochemical transistor (OECT integrated with living cells and validated against conventional methods for measuring barrier tissue integrity. We demonstrate that the OECT can detect breaches in barrier tissue upon exposure to EGTA with the same sensitivity as existing methods but with increased temporal resolution. Due to the potential of low cost processing techniques and the flexibility in design associated with organic electronics, the OECT has great potential for high-throughput, disposable sensing and diagnostics.

  2. Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls (United States)

    Spalding, E. P.; Cosgrove, D. J.


    A large, transient depolarization of the plasma membrane precedes the rapid blue-light (BL)-induced growth suppression in etiolated seedlings of Cucumis sativus L. The mechanism of this voltage transient was investigated by applying inhibitors of ion channels and the plasma-membrane H(+)-ATPase, by manipulating extracellular ion concentrations, and by measuring cell input resistance and ATP levels. The depolarizing phase was not affected by Ca(2+)-channel blockers (verapamil, La3+) or by reducing extracellular free Ca2+ by treatment with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). However, these treatments did reduce the rate of repolarization, indicating an inward movement of Ca2+ is involved. No effects of the K(+)-channel blocker tetraethylammonium (TEA+) were detected. Vanadate and KCN, used to inhibit the H(+)-ATPase, reduced or completely inhibited the BL-induced depolarization. Levels of ATP increased by 11-26% after 1-2 min of BL. Input resistance of trichrome cells, measured with double-barreled microelectrodes, remained constant during the onset of the depolarization but decreased as the membrane voltage became more positive than -90 mV. The results indicate that the depolarization mechanism initially involves inactivation of the H(+)-ATPase with subsequent transient activation of one or more types of ion channels.

  3. Growth-related variations in the glycosaminoglycan synthesis of ultraviolet light-induced murine cutaneous fibrosarcoma cells

    International Nuclear Information System (INIS)

    Piepkorn, M.; Carney, H.; Linker, A.


    Glycosaminoglycan synthesis was studied in cell populations of ultraviolet light-induced murine cutaneous fibrosarcoma cells under conditions of varying growth rates in vitro. After labeling with the precursors, 3 H-glucosamine and 35 SO 4 , sulfated glycosaminoglycans recoverable by direct proteolysis of the culture monolayers increased approximately 5-fold on a per cell basis from sparsely populated, exponential cell cultures (greater than 85% of cells in S, G2, or M phases) to stationary cultures inhibited by high cell density (greater than 50% of cells in G1). Within this cell surface-associated material, the relative ratio of heparan sulfate to the chondroitin sulfates was approximately 60/40% under conditions of exponential growth; in the growth-arrested cultures, the reverse ratio was found. The substratum attached material, obtained from the flask surface after ethyl glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA)-mediated detachment of the monolayers, contained relatively more hyaluronic acid, heparan sulfate, and chondroitin sulfates in the most actively proliferating cultures compared with the growth-inhibited cell populations. Furthermore, heparan sulfate and the chondroitin sulfates, which were enriched in the substratum material and in the cell pellet of exponential cultures, showed a relative shift to the cell surface-associated compartment (releasable by mild trypsinization after EGTA-mediated cell detachment) and to the compartment loosely associated with the pericellular matrix (i.e., released into the supernatant during detachment of the monolayers in the presence of EGTA)

  4. S-omega carboxamidinoalkyl isothiurea compounds. VI. Radioprotective testing on E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Minkova, M; Pantev, T [Nauchno-Izsledovatelski Inst. po Radiologiya i Radiatsionna Khigiena, Sofia (Bulgaria)


    The radioprotective effect of eight newly synthesized potential radioprotectors from the group of the S-omega carboxamidinoalkyl isothiourea compounds is studied. The protective activity of these compounds is evaluated according to the ability of E. coli B to form colonies. Exponential culture of this strain were exposed to 20, 40, 60, 80, 100, and 120 kR of gamma rays (Cobalt 60) in the presence of the tested compounds administered in experimentally established nontoxic concentrations 15 minutes before irradiation. Five of the eight compounds tested showed radioprotective effect which was more prominent at the higher doses. As a result of this, cell survival was increased by one order.

  5. Viscosity of crystalline proteins in solution, when irradiated with 60 Co

    International Nuclear Information System (INIS)

    Bernardes, D.M.L.; Mastro, N.L. del


    In order to study 60 Co radiation effects on proteins, an aqueous solution of bovine crystalline was irradiated with doses from O to 25,000 Gy. Changes in viscosity were followed whether in the presence or absence of radiation response modifiers: glutathione (GSH), amino ethyl isothiourea (AET), mercapto ethyl alanine (MEA) e dimethyl sulfoxide (DMSO). Viscosity data at different temperature revealed that aggregate formation was the predominant process induced by radiation. The results showed also that in presence of those substances the radiation effects was diminished. (author)

  6. Probing the Inhibitor versus Chaperone Properties of sp2-Iminosugars towards Human β-Glucocerebrosidase: A Picomolar Chaperone for Gaucher Disease

    Directory of Open Access Journals (Sweden)

    Teresa Mena-Barragán


    Full Text Available A series of sp2-iminosugar glycomimetics differing in the reducing or nonreducing character, the configurational pattern (d-gluco or l-ido, the architecture of the glycone skeleton, and the nature of the nonglycone substituent has been synthesized and assayed for their inhibition properties towards commercial glycosidases. On the basis of their affinity and selectivity towards GH1 β-glucosidases, reducing and nonreducing bicyclic derivatives having a hydroxylation profile of structural complementarity with d-glucose and incorporating an N′-octyl-isourea or -isothiourea segment were selected for further evaluation of their inhibitory/chaperoning potential against human glucocerebrosidase (GCase. The 1-deoxynojirimycin (DNJ-related nonreducing conjugates behaved as stronger GCase inhibitors than the reducing counterparts and exhibited potent chaperoning capabilities in Gaucher fibroblasts hosting the neuronopathic G188S/G183W mutation, the isothiourea derivative being indeed one of the most efficient chaperone candidates reported up to date (70% activity enhancement at 20 pM. At their optimal concentration, the four selected compounds promoted mutant GCase activity enhancements over 3-fold; yet, the inhibitor/chaperoning balance became unfavorable at much lower concentration for nonreducing as compared to reducing derivatives.

  7. Alcohol enhances oxysterol-induced apoptosis in human endothelial cells by a calcium-dependent mechanism. (United States)

    Spyridopoulos, I; Wischhusen, J; Rabenstein, B; Mayer, P; Axel, D I; Fröhlich, K U; Karsch, K R


    Controversy exists about the net effect of alcohol on atherogenesis. A protective effect is assumed, especially from the tannins and phenolic compounds in red wine, owing to their inhibition of low density lipoprotein (LDL) oxidation. However, increased atherogenesis occurs in subjects with moderate to heavy drinking habits. The purpose of this study was to investigate the influence of alcohol in combination with oxysterols on the endothelium. Cultured human arterial endothelial cells (HAECs) served as an in vitro model to test the cellular effects of various oxysterols. Oxysterols (7beta-hydroxycholesterol, 7-ketocholesterol, and cholesterol-5,6-epoxides), which are assumed to be the most toxic constituents of oxidized LDL, induced apoptosis in HAECs through calcium mobilization followed by activation of caspase-3. Ethanol, methanol, isopropanol, tert-butanol, and red wine all potentiated oxysterol-induced cell death up to 5-fold, paralleled by further induction of caspase-3. The alcohol effect occurred in a dose-dependent manner and reached a plateau at 0.05% concentration. Alcohol itself did not affect endothelial cell viability, nor did other solvents such as dimethyl sulfoxide mimic the alcohol effect. So far as the physiologically occurring oxysterols are concerned, this effect was apparent only for oxysterols oxidized at the steran ring. The possibility of alcohol facilitating the uptake of oxysterols into the cell was not supported by the data from an uptake study with radiolabeled compounds. Finally, alcohol in combination with oxysterols did cause a dramatic increase in cytosolic calcium influx. Blockage of calcium influx by the calcium channel blocker aurintricarboxylic acid or the calcium chelator ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid abrogated the alcohol-mediated enhancement of oxysterol toxicity. We describe for the first time a mechanistic concept explaining possible adverse effects of alcohol in conjunction with

  8. Palmitic acid-labeled lipids selectively incorporated into platelet cytoskeleton during aggregation

    International Nuclear Information System (INIS)

    Packham, M.A.; Guccione, M.A.; Bryant, N.L.; Livne, A.


    Previous experiments showed that during the early stages (20-30 seconds) of aggregation induced by adenosine diphosphate (ADP, 2 microM) or thrombin (0.1 U/mL) of rabbit or human platelets prelabeled with [3H]palmitic acid, labeled lipid became associated with the cytoskeleton isolated after lysis with 1% Triton X-100, 5 mM EGTA [ethylene glycol-bis-(beta-aminoethyl ether)]-N,N,N',N'-tetra-acetic acid. The association appeared to be related to the number of sites of contact and was independent of the release of granule contents. We have now investigated the nature of the labeled lipids by thin-layer and column chromatography and found differences between the distribution of the label in intact platelets (both stimulated and unstimulated) and the isolated cytoskeletons. In both species, and with either ADP or thrombin as aggregating agent, 70-85% of the label in both intact platelets and in the cytoskeletons was in phospholipids. The distribution of label among the phospholipids in the cytoskeletons was similar to that in intact platelets except that the percentage of label in phosphatidylcholine was significantly higher in the cytoskeletons of human platelets than in the intact platelets, and the percentage of label in phosphatidylserine/phosphatidylinositol was significantly lower in the cytoskeletons of rabbit platelets and thrombin-aggregated human platelets than in intact platelets. The cytoskeletons contained a lower percentage of label in triacylglycerol, diacylglycerol, and cholesterol ester than the intact platelets. Contrary to a report in the literature, we found no evidence for the incorporation of diacylglycerol and palmitic acid into the cytoskeleton

  9. Nuclear Medicine Technology. Progress report for quarter ending September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Jr., F. F.


    A unique class of radiopharmaceuticals labeled with the /sup 117m/Sn nuclide has been developed. The attractive properties of /sup 117m/Sn include a 14-day physical half-life and the emission of a single ..gamma..-photon with an optimal energy of 159 keV. A specialized apparatus was designed for the conversion of metallic /sup 117m/Sn to /sup 117m/SnCl/sub 4/ which was subsequently converted to a variety of useful /sup 117m/Sn-labeled organotin intermediates. The availability of this unique approach will now make possible the synthesis of a wide variety of /sup 117m/Sn-labeled compounds of biological interest. Such tissue-specific /sup 117m/Sn-labeled agents may represent a new class of useful radiopharmaceuticals. Continuing studies involving the preparation and testing of radiopharmaceuticals labeled with /sup 11/C, /sup 195m/Pt, and /sup 75/Se are also described. Several /sup 11/C-labeled amino acids including /sup 11/C-DL-tryptophan, /sup 11/C-1-aminocyclobutanecarboxylic acid (ACBC), and /sup 11/C-1-aminocyclopentanecarboxylic acid (ACPC) were prepared, and patient studies have demonstrated ACBC to be superior to ACPC for tumor localization. Studies with /sup 195m/Pt have recently been directed toward attempting to prepare high specific activity /sup 195m/Pt by the Szilard--Chalmers process. Progress is also reported in the development of an in vivo diffusion chamber assay technique that is being used to investigate the cytotoxicity of cyclophosphamide and cis-dichlorodiammineplatinum(II) on the growth of KB tumor cells. More recent studies with /sup 75/Se-labeled ..beta..-aminoethyl selenosulfate have demonstrated the significant pancreatic uptake of this agent. (ERB)

  10. Characterization of sodium dodecyl sulfate-resistant proteolytic activity in the hyperthermophilic archaebacterium Pyrococcus furiosus

    Energy Technology Data Exchange (ETDEWEB)

    Blumentals, I.I.; Robinson, A.S.; Kelly, R.M. (Johns Hopkins Univ., Baltimore, MD (USA))


    Cell extracts from Pyrococcus furiosus were found to contain five proteases, two of which (S66 and S102) are resistant to sodium dodecyl sulfate (SDS) denaturation. Cell extracts incubated at 98{degree}C in the presence of 1% SDS for 24 h exhibited substantial cellular proteolysis such that only four proteins could be visualized by amido black-Coomassie brilliant blue staining of SDS-polyacrylamide gels. The SDS-treated extract retained 19% of the initial proteolytic activity as represented by two proteases, S66 (66 kilodaltons (kDa)) and S102 (102 kDa). Immunoblot analysis with guinea pig sera containing antibodies against protease S66 indicated that S66 is related neither to S102 nor to the other proteases. The results of this analysis also suggest that S66 might be the hydrolysis product of a 200-kDa precursor which does not have proteolytic activity. The 24-h SDS-treated extract showed unusually thermostable proteolytic activity; the measured half-life at 98{degree}C was found to be 33 h. Proteases S66 and S102 were also resistant to denaturation by 8 M urea, 80 mM dithiothreitol, and 5% {beta}-mercaptoethanol. Purified protease S66 was inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate but not by EDTA, ethylene glycol-bis({beta}-aminoethyl ether)-N,N,N{prime},N{prime}-tetraacetic acid, or iodoacetic acid. These results indicate that S66 is a serine protease. Amino acid ester hydrolysis studies showed that protease S66 was hydrolytically active towards N-benzoyl-L-arginine ethyl ester.

  11. S-omega-carboxyl-amidinoalkyl isothiocarbamides. VI. Radioprotective assay on E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Minkova, M; Pantev, T [Nauchno-Izsledovatelski Inst. po Radiologiya i Radiatsionna Khigiena, Sofia (Bulgaria)


    The radioprotective properties of newly synthesized compounds, members of S-omega-carboxamidino-alkyl-isothiourea are studied. Protective activity is evaluated by the colony-forming capacity of Escherichia coli. Exponential cultures of this strain are irradiated with gamma rays within the 20-120 kr span, in the presence of the compounds submitted to the study. The dose reduction factors are estimated by correlating the regression coefficients of the dose-effect curves obtained in the presence or absence of protection. Five of the eight preparations studied showed radioprotective effect, more conspicuous with the use of higher doses. The dose-reduction factors are lower than those of cysteamine. The relation between chemical structure and effectiveness of the compounds is investigated.

  12. KB-R7943, an inhibitor of the reverse Na+/Ca2+ exchanger, blocks N-methyl-D-aspartate receptor and inhibits mitochondrial complex I (United States)

    Brustovetsky, Tatiana; Brittain, Matthew K; Sheets, Patrick L; Cummins, Theodore R; Pinelis, Vsevolod; Brustovetsky, Nickolay


    BACKGROUND AND PURPOSE An isothiourea derivative (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methane sulfonate (KB-R7943), a widely used inhibitor of the reverse Na+/Ca2+ exchanger (NCXrev), was instrumental in establishing the role of NCXrev in glutamate-induced Ca2+ deregulation in neurons. Here, the effects of KB-R7943 on N-methyl-D-aspartate (NMDA) receptors and mitochondrial complex I were tested. EXPERIMENTAL APPROACH Fluorescence microscopy, electrophysiological patch-clamp techniques and cellular respirometry with Seahorse XF24 analyzer were used with cultured hippocampal neurons; membrane potential imaging, respirometry and Ca2+ flux measurements were made in isolated rat brain mitochondria. KEY RESULTS KB-R7943 inhibited NCXrev with IC50= 5.7 ± 2.1 µM, blocked NMDAR-mediated ion currents, and inhibited NMDA-induced increase in cytosolic Ca2+ with IC50= 13.4 ± 3.6 µM but accelerated calcium deregulation and mitochondrial depolarization in glutamate-treated neurons. KB-R7943 depolarized mitochondria in a Ca2+-independent manner. Stimulation of NMDA receptors caused NAD(P)H oxidation that was coupled or uncoupled from ATP synthesis depending on the presence of Ca2+ in the bath solution. KB-R7943, or rotenone, increased NAD(P)H autofluorescence under resting conditions and suppressed NAD(P)H oxidation following glutamate application. KB-R7943 inhibited 2,4-dinitrophenol-stimulated respiration of cultured neurons with IC50= 11.4 ± 2.4 µM. With isolated brain mitochondria, KB-R7943 inhibited respiration, depolarized organelles and suppressed Ca2+ uptake when mitochondria oxidized complex I substrates but was ineffective when mitochondria were supplied with succinate, a complex II substrate. CONCLUSIONS AND IMPLICATIONS KB-R7943, in addition to NCXrev, blocked NMDA receptors in cultured hippocampal neurons and inhibited complex I in the mitochondrial respiratory chain. These findings are critical for the correct interpretation of experimental

  13. Fungal lectin of Peltigera canina induces chemotropism of compatible Nostoc cells by constriction-relaxation pulses of cyanobiont cytoskeleton. (United States)

    Díaz, Eva Maria; Vicente-Manzanares, Miguel; Sacristan, Mara; Vicente, Carlos; Legaz, Maria-Estrella


    A glycosylated arginase acting as a fungal lectin from Peltigera canina is able to produce recruitment of cyanobiont Nostoc cells and their adhesion to the hyphal surface. This implies that the cyanobiont would develop organelles to motility towards the chemoattractant. However when visualized by transmission electron microscopy, Nostoc cells recently isolated from P. canina thallus do not reveal any motile, superficial organelles, although their surface was covered by small spindles and serrated layer related to gliding. The use of S-(3,4-dichlorobenzyl)isothiourea, blebbistatin, phalloidin and latrunculin A provide circumstantial evidence that actin microfilaments rather than MreB, the actin-like protein from prokaryota, and, probably, an ATPase which develops contractile function similar to that of myosin II, are involved in cell motility. These experimental facts, the absence of superficial elements (fimbriae, pili or flagellum) related to cell movement, and the appearance of sunken cells during of after movement verified by scanning electron microscopy, support the hypothesis that the motility of lichen cyanobionts could be achieved by contraction-relaxation episodes of the cytoskeleton induced by fungal lectin act as a chemoattractant.

  14. Validation of FRET Assay for the Screening of Growth Inhibitors of Escherichia coli Reveals Elongasome Assembly Dynamics (United States)

    van der Ploeg, René; Goudelis, Spyridon Theodoros; den Blaauwen, Tanneke


    The increase in antibiotic resistant bacteria demands the development of new antibiotics against preferably new targets. The common approach is to test compounds for their ability to kill bacteria or to design molecules that inhibit essential protein activities in vitro. In the first case, the mode of action of the drug is unknown and in the second case, it is not known whether the compound will pass the impermeable barrier of the bacterial envelope. We developed an assay that detects the target of a compound, as well as its ability to pass the membrane(s) simultaneously. The Escherichia coli cytoskeletal protein MreB recruits protein complexes (elongasomes) that are essential for cell envelope growth. An in cell Förster Resonance Energy Transfer (FRET) assay was developed to detect the interaction between MreB molecules and between MreB and the elongasome proteins RodZ, RodA and PBP2. Inhibition of the polymerization of MreB by S-(3,4-dichlorobenzyl) isothiourea (A22) or of the activity of PBP2 by mecilinam resulted in loss or reduction of all measured interactions. This suggests that the interactions between the elongasome proteins are governed by a combination of weak affinities and substrate availability. This validated in cell FRET assay can be used to screen for cell envelope growth inhibitors. PMID:26263980

  15. Exploring the A22-Bacterial Actin MreB Interaction through Molecular Dynamics Simulations. (United States)

    Awuni, Yaw; Jiang, Shimin; Robinson, Robert C; Mu, Yuguang


    MreB is an actin-like cytoskeleton protein that plays a vital role in the maintenance of the rod-shaped morphology of many bacteria. S-(3,4-Dichlorobenzyl) isothiourea (A22) is an antibiotic-like small molecule that perturbs the rod cell shape and has been suggested to inhibit MreB by targeting ATP hydrolysis. However, without the elucidation of the structure of the ATP-bound state of MreB in the presence of A22, the mechanism of A22 inhibition is still not clear. Here we apply conventional molecular dynamics simulations to explore the dynamics of the active site of MreB in complex with A22 and different nucleotides. We observe that hydrogen bonding between A22 and the catalytic Glu140 residue is not favored in the ATP-A22-bound state of MreB. Water dynamics analysis in the MreB active site reveals that in the presence of A22 water molecules are able to occupy positions suitable for ATP hydrolysis. Overall, our results are consistent with a mechanism in which A22 affects MreB polymerization/depolymerization dynamics in part through slowing phosphate release rather than by inhibiting ATP hydrolysis. These data can be incorporated in the design/development of the next generation of MreB inhibitors.

  16. Validation of FRET Assay for the Screening of Growth Inhibitors of Escherichia coli Reveals Elongasome Assembly Dynamics

    Directory of Open Access Journals (Sweden)

    René van der Ploeg


    Full Text Available The increase in antibiotic resistant bacteria demands the development of new antibiotics against preferably new targets. The common approach is to test compounds for their ability to kill bacteria or to design molecules that inhibit essential protein activities in vitro. In the first case, the mode of action of the drug is unknown and in the second case, it is not known whether the compound will pass the impermeable barrier of the bacterial envelope. We developed an assay that detects the target of a compound, as well as its ability to pass the membrane(s simultaneously. The Escherichia coli cytoskeletal protein MreB recruits protein complexes (elongasomes that are essential for cell envelope growth. An in cell Förster Resonance Energy Transfer (FRET assay was developed to detect the interaction between MreB molecules and between MreB and the elongasome proteins RodZ, RodA and PBP2. Inhibition of the polymerization of MreB by S-(3,4-dichlorobenzyl isothiourea (A22 or of the activity of PBP2 by mecilinam resulted in loss or reduction of all measured interactions. This suggests that the interactions between the elongasome proteins are governed by a combination of weak affinities and substrate availability. This validated in cell FRET assay can be used to screen for cell envelope growth inhibitors.

  17. Combining NMR and X-ray crystallography in fragment-based drug discovery: discovery of highly potent and selective BACE-1 inhibitors. (United States)

    Wyss, Daniel F; Wang, Yu-Sen; Eaton, Hugh L; Strickland, Corey; Voigt, Johannes H; Zhu, Zhaoning; Stamford, Andrew W


    Fragment-based drug discovery (FBDD) has become increasingly popular over the last decade. We review here how we have used highly structure-driven fragment-based approaches to complement more traditional lead discovery to tackle high priority targets and those struggling for leads. Combining biomolecular nuclear magnetic resonance (NMR), X-ray crystallography, and molecular modeling with structure-assisted chemistry and innovative biology as an integrated approach for FBDD can solve very difficult problems, as illustrated in this chapter. Here, a successful FBDD campaign is described that has allowed the development of a clinical candidate for BACE-1, a challenging CNS drug target. Crucial to this achievement were the initial identification of a ligand-efficient isothiourea fragment through target-based NMR screening and the determination of its X-ray crystal structure in complex with BACE-1, which revealed an extensive H-bond network with the two active site aspartate residues. This detailed 3D structural information then enabled the design and validation of novel, chemically stable and accessible heterocyclic acylguanidines as aspartic acid protease inhibitor cores. Structure-assisted fragment hit-to-lead optimization yielded iminoheterocyclic BACE-1 inhibitors that possess desirable molecular properties as potential therapeutic agents to test the amyloid hypothesis of Alzheimer's disease in a clinical setting.

  18. KB-R7943, a plasma membrane Na(+)/Ca(2+) exchanger inhibitor, blocks opening of the mitochondrial permeability transition pore. (United States)

    Wiczer, Brian M; Marcu, Raluca; Hawkins, Brian J


    The isothiourea derivative, KB-R7943, inhibits the reverse-mode of the plasma membrane sodium/calcium exchanger and protects against ischemia/reperfusion injury. The mechanism through which KB-R7943 confers protection, however, remains controversial. Recently, KB-R7943 has been shown to inhibit mitochondrial calcium uptake and matrix overload, which may contribute to its protective effects. While using KB-R7943 for this purpose, we find here no evidence that KB-R7943 directly blocks mitochondrial calcium uptake. Rather, we find that KB-R7943 inhibits opening of the mitochondrial permeability transition pore in permeabilized cells and isolated liver mitochondria. Furthermore, we find that this observation correlates with protection against calcium ionophore-induced mitochondrial membrane potential depolarization and cell death, without detrimental effects to basal mitochondrial membrane potential or complex I-dependent mitochondrial respiration. Our data reveal another mechanism through which KB-R7943 may protect against calcium-induced injury, as well as a novel means to inhibit the mitochondrial permeability transition pore. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Presynaptic inhibition of spontaneous acetylcholine release induced by adenosine at the mouse neuromuscular junction. (United States)

    De Lorenzo, Silvana; Veggetti, Mariela; Muchnik, Salomón; Losavio, Adriana


    1. At the mouse neuromuscular junction, adenosine (AD) and the A(1) agonist 2-chloro-N(6)-cyclopentyl-adenosine (CCPA) induce presynaptic inhibition of spontaneous acetylcholine (ACh) release by activation of A(1) AD receptors through a mechanism that is still unknown. To evaluate whether the inhibition is mediated by modulation of the voltage-dependent calcium channels (VDCCs) associated with tonic secretion (L- and N-type VDCCs), we measured the miniature end-plate potential (mepp) frequency in mouse diaphragm muscles. 2. Blockade of VDCCs by Cd(2+) prevented the effect of the CCPA. Nitrendipine (an L-type VDCC antagonist) but not omega-conotoxin GVIA (an N-type VDCC antagonist) blocked the action of CCPA, suggesting that the decrease in spontaneous mepp frequency by CCPA is associated with an action on L-type VDCCs only. 3. As A(1) receptors are coupled to a G(i/o) protein, we investigated whether the inhibition of PKA or the activation of PKC is involved in the presynaptic inhibition mechanism. Neither N-(2[p-bromocinnamylamino]-ethyl)-5-isoquinolinesulfonamide (H-89, a PKA inhibitor), nor 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine (H-7, a PKC antagonist), nor phorbol 12-myristate 13-acetate (PHA, a PKC activator) modified CCPA-induced presynaptic inhibition, suggesting that these second messenger pathways are not involved. 4. The effect of CCPA was eliminated by the calmodulin antagonist N-(6-aminohexil)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7) and by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid-acetoxymethyl ester epsilon6TDelta-BM, which suggests that the action of CCPA to modulate L-type VDCCs may involve Ca(2+)-calmodulin. 5. To investigate the action of CCPA on diverse degrees of nerve terminal depolarization, we studied its effect at different external K(+) concentrations. The effect of CCPA on ACh secretion evoked by 10 mm K(+) was prevented by the P/Q-type VDCC antagonist omega-agatoxin IVA. 6. CCPA failed to

  20. Inhibition of the cardiac inward rectifier potassium currents by KB-R7943. (United States)

    Abramochkin, Denis V; Alekseeva, Eugenia I; Vornanen, Matti


    KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium-calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K(+) currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6×10(-6) M and 3.5×10(-6) M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2×10(-7) M for rat and 2.5×10(-7) M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9-3×10(-6) M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1~INCXrectifier potassium currents, in particular IKACh, should be taken into account when interpreting the data with this inhibitor from in vivo and in vitro experiments in both mammalian and fish models. © 2013.

  1. Chemopreventive effects of PBI-Se, a selenium-containing analog of PBIT, on AOM-induced aberrant crypt foci in F344 rats. (United States)

    Janakiram, Naveena B; Mohammed, Altaf; Ravillah, Durgadevi; Choi, Chang In; Zhang, Yuting; Desai, Dhimant; Amin, Shantu; Rao, Chinthalapally V


    Inducible nitric oxide synthase (iNOS) is a potential target for the treatment of inflammation and cancer. Previously, we showed that the selective iNOS inhibitor S,S'-1,4-phenylenebis(1,2-ethanediyl)bis-isothiourea (PBIT) caused significant inhibition of colon carcinogenesis induced by azoxymethane (AOM), although it did not completely abrogate NO production due to the exogenous bioavailability of NO and NO generation by eNOS in tumor tissues. To create an iNOS-targeting molecule that may have additional benefits, a novel isosteric analog of PBIT, PBI-Se, was developed, in which sulfur was replaced with selenium. Chemopreventive efficacy of PBI-Se was evaluated in an AOM-induced rat colon carcinogenesis model using aberrant crypt foci (ACF) as the endpoint. At 7 weeks of age, rats (12/group) were fed the control diet (AIN 76A) and then colonic ACF were induced with two AOM treatments. Three days later, rats were fed diets containing PBI-Se (0-20 ppm) for 8 weeks, and then ACF were evaluated histopathologically. Dietary administration of 10 or 20 ppm of PBI-Se significantly suppressed AOM-induced total colonic ACF formation (32 or 41%, pPBI-Se was dose-dependent and was half the dose of PBIT for inhibiting total ACF in rats. Both PBIT and PBI-Se induced dose-dependent apoptosis in CaCo2 cells and caused a significant decrease in the cell cycle proteins cyclin D1 (70%, pPBI-Se (2 and 4  µM) significantly decreased the LPS-induced cytokine interleukin-6 level. Incorporation of selenium into the structure of PBIT provided the agent with additional novel cytotoxic and immunologic properties. Results from the in vitro and in vivo bioassays suggest that PBI-Se could be developed further for the prevention and treatment of colon cancer.

  2. Inhibition of the cardiac ATP-dependent potassium current by KB-R7943. (United States)

    Abramochkin, Denis V; Vornanen, Matti


    KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium-calcium exchanger (NCX) with potential experimental and therapeutic use. However, in cardiomyocytes KB-R7943 also effectively blocks several K(+) currents including the delayed rectifier, IKr, and background inward rectifier, IK1. In the present study we analyze the effects of KB-R7943 on the ATP-dependent potassium current (IKATP) recorded by whole-cell patch-clamp in ventricular cardiomyocytes from a mammal (mouse) and a fish (crucian carp). IKATP was induced by external application of a mitochondrial uncoupler CCCP (3×10(-7) M) and internal perfusion of the cell with ATP-free pipette solution. A weakly inwardly rectifying current with a large outward component, recorded in the presence of CCCP, was blocked with 10(-5) M glibenclamide by 56.1±4.6% and 56.9±3.6% in crucian carp and mouse ventricular myocytes, respectively. In fish cardiomyocytes IKATP was blocked by KB-R7943 with an IC50 value of 3.14×10(-7) M, while in mammalian cells IC50 was 2.8×10(-6) M (PKB-R7943 inhibited CCCP-induced IKATP by 99.9±0.13% and 97.5±1.2% in crucian carp and mouse ventricular myocytes, respectively. In crucian carp the IKATP is about an order of magnitude more sensitive to KB-R7943 than the background IK1, but in mammals IKATP and IK1 are almost equally sensitive to KB-R7943. Therefore, the ability of KB-R7943 to block IKATP should be taken into account together with INCX inhibition when investigating possible cardioprotective effects of this compound. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. High potency inhibition of hERG potassium channels by the sodium–calcium exchange inhibitor KB-R7943 (United States)

    Cheng, Hongwei; Zhang, Yihong; Du, Chunyun; Dempsey, Christopher E; Hancox, Jules C


    BACKGROUND AND PURPOSE KB-R7943 is an isothiourea derivative that is used widely as a pharmacological inhibitor of sodium–calcium exchange (NCX) in experiments on cardiac and other tissue types. This study investigated KB-R7943 inhibition of hERG (human ether-à-go-go-related gene) K+ channels that underpin the cardiac rapid delayed rectifier potassium current, IKr. EXPERIMENTAL APPROACH Whole-cell patch-clamp measurements were made of hERG current (IhERG) carried by wild-type or mutant hERG channels and of native rabbit ventricular IKr. Docking simulations utilized a hERG homology model built on a MthK-based template. KEY RESULTS KB-R7943 inhibited both IhERG and native IKr rapidly on membrane depolarization with IC50 values of ∼89 and ∼120 nM, respectively, for current tails at −40 mV following depolarizing voltage commands to +20 mV. Marked IhERG inhibition also occurred under ventricular action potential voltage clamp. IhERG inhibition by KB-R7943 exhibited both time- and voltage-dependence but showed no preference for inactivated over activated channels. Results of alanine mutagenesis and docking simulations indicate that KB-R7943 can bind to a pocket formed of the side chains of aromatic residues Y652 and F656, with the compound's nitrobenzyl group orientated towards the cytoplasmic side of the channel pore. The structurally related NCX inhibitor SN-6 also inhibited IhERG, but with a markedly reduced potency. CONCLUSIONS AND IMPLICATIONS KB-R7943 inhibits IhERG/IKr with a potency that exceeds that reported previously for acute cardiac NCX inhibition. Our results also support the feasibility of benzyloxyphenyl-containing NCX inhibitors with reduced potential, in comparison with KB-R7943, to inhibit hERG. PMID:21950687