WorldWideScience

Sample records for beta zeolite catalysts

  1. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    Science.gov (United States)

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.

  2. Zr-zeolite beta: a new heterogeneous catalyst system for the highly selective cascade transformation of citral to (+/-)-menthol.

    Science.gov (United States)

    Nie, Yuntong; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2009-01-01

    The transformation of citral to menthols involves hydrogenation steps as well as cyclisation of the intermediate, citronellal. The ability of Zr-zeolite beta to catalyse the cyclisation with high diastereoselectivity to (+/-)-isopulegol is the critical step in this cascade transformation. Bifunctional catalysts containing nickel or rhodium supported on Zr-zeolite beta gave menthols in yields of 87-89% and an excellent diastereoselectivity of 94% for the desired (+/-)-menthol. Dual catalyst systems of Zr-zeolite beta and nano-dispersed Ni on an MCM-41 support were equally effective and have the added advantage that the rates of the acid- and hydrogenation-catalysed steps can be independently varied. By applying a pressure ramp of 0.2-2 MPa, the yield of menthols could be increased to 95%, with 94% diastereoselectivity for (+/-)-menthol. The low initial pressure minimises the rates of competing hydrogenation reactions to byproducts such as citronellol and 3,7-dimethyloctanol. PMID:19132702

  3. Hydrodewaxing with mixed zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chester, A.W.; McHale, W.D.; Yen, J.H.

    1986-03-11

    A process is described for catalytically dewaxing a hydrocarbon lubricating oil feedstock comprising contacting the feedstock with a dewaxing catalyst, the dewaxing catalyst comprising, in combination: (a) a zeolite catalyst having a Constraint Index not less than 1, (b) an acidic catalytic material selected from the group consisting of Mordenite, TEA Mordenite, Dealuminized Y, Ultrastable Y, Rare Earth Y, amorphous silica-alumina chlorinated alumina, ZSM-4 and ZSM-20, and (c) a hydrogenation component, and recovering a dewaxed product. A process is also described for catalytically dewaxing a hydrocarbon lubricating oil feedstock comprising contacting the feedstock with a dewaxing catalyst, the dewaxing catalyst comprising, in combinations: (a) a first zeolite catalyst selected from the group consisting of ZSM-5, ZMS-11, ZSM-12, ZSM-22, ZSM-23, ZSM-34, ZSM-35, ZSM-38, ZSM-48, TMA Offretite and Erionite, (b) a second catalyst selected from the group consisting of ZSM-12, ZSM-22, ZSM-38 and ZSM-48, the second zeolite catalyst being different from the first zeolite catalyst, and (c) a hydrogenation component, and recovering a dewaxed product.

  4. Synthesis of Novel Perfluoroalkylglucosides on Zeolite and Non-Zeolite Catalysts

    Directory of Open Access Journals (Sweden)

    Janusz Nowicki

    2015-04-01

    Full Text Available Perfluoroalkylglucosides comprise a very important class of fluorine-containing surfactants. These compounds can be synthesized by using the Fisher reaction, starting directly from glucose and the required perfluoroalcohols. We wish to report on the use of zeolite catalysts of different structure and composition for the synthesis of perfluoroalkylglucosides when using glucose and 1-octafluoropentanol as substrates. Zeolites of different pore architecture have been chosen (ZSM-5, ZSM-12, MCM-22 and Beta. Zeolites were characterized by XRD, nitrogen sorption, scanning electron microscopy (SEM and solid-state 27Al MAS NMR spectroscopy. The activity of the zeolite catalysts in the glycosidation reaction was studied in a batch reactor at 100 °C below atmospheric pressure. The performance of zeolites was compared to other catalysts, an ion-exchange resin (Purolite and a montmorillonite-type layered aluminosilicate. The catalytic performance of zeolite Beta was the highest among the zeolites studied and the results were comparable to those obtained over Purolite and montmorillonite type catalysts.

  5. Synthesis of novel perfluoroalkylglucosides on zeolite and non-zeolite catalysts.

    Science.gov (United States)

    Nowicki, Janusz; Mokrzycki, Łukasz; Sulikowski, Bogdan

    2015-01-01

    Perfluoroalkylglucosides comprise a very important class of fluorine-containing surfactants. These compounds can be synthesized by using the Fisher reaction, starting directly from glucose and the required perfluoroalcohols. We wish to report on the use of zeolite catalysts of different structure and composition for the synthesis of perfluoroalkylglucosides when using glucose and 1-octafluoropentanol as substrates. Zeolites of different pore architecture have been chosen (ZSM-5, ZSM-12, MCM-22 and Beta). Zeolites were characterized by XRD, nitrogen sorption, scanning electron microscopy (SEM) and solid-state 27Al MAS NMR spectroscopy. The activity of the zeolite catalysts in the glycosidation reaction was studied in a batch reactor at 100 °C below atmospheric pressure. The performance of zeolites was compared to other catalysts, an ion-exchange resin (Purolite) and a montmorillonite-type layered aluminosilicate. The catalytic performance of zeolite Beta was the highest among the zeolites studied and the results were comparable to those obtained over Purolite and montmorillonite type catalysts.

  6. Enhanced Activity of Nanocrystalline Beta Zeolite for Acylation of Veratrole with Acetic Anhydride.

    Science.gov (United States)

    Aisha Mahmood Abdulkareem, Al-Turkustani; Selvin, Rosilda

    2016-04-01

    Friedel-Craft acylation of veratrole using homogeneous acid catalysts such as AlCl3, FeCl3, ZnCl2, and HF etc. produces acetoveratrone, (3',4'-dimethoxyacetophenone), which is the intermediate for synthesis of papavarine alkaloids. The problems associated with these homogeneous catalysts can be overcome by using heterogeneous solid catalysts. Since acetoveratrone is a larger molecule, large pore Beta zeolites with smaller particle sizes are beneficial for the liquid-phase acylation of veratrole, for easy diffusion of reactants and products. The present study aims in the acylation of veratrole with acetic anhydride using nanocrystalline Beta Zeolite catalyst. A systematic investigation of the effects of various reaction parameters was done. The catalysts were characterized for their structural features by using XRD, TEM and DLS analyses. The catalytic activity of nanocrystalline Beta zeolite was compared with commercial Beta zeolite for the acylation and was found that nanocrystalline Beta zeolite possessed superior activity.

  7. Preparation of catalyst composition comprising a boron containing crystalline material having the structure of zeolites ZSM-5, ZSM-11, ZSM-12, Beta or NU-1

    Energy Technology Data Exchange (ETDEWEB)

    Kuehl, G.H.

    1987-04-28

    A method is described for preparing a catalyst composition for processing high nitrogen-containing oils comprising a boron-containing crystalline material having the structure of zeolite ZSM-5, ZSM-11, ZSM-12, Beta or Nu-1. The sequential steps of synthesizing a boron-containing crystalline material having the structure of zeolite ZSM-5, ZSM-11, ZSM-12, Beta or Nu-1 are: drying the crystalline material at a temperature of from about ambient to less than about 170/sup 0/C; calcining the dried crystalline material in an oxygen- and water-free environment of anhydrous ammonia, anhydrous nitrogen, other anhydrous inert gases or a mixture thereof at a temperature of from about 200/sup 0/ to about 600/sup 0/C to minimize hydrolysis of boron in the boron-containing crystalline material; adsorbing ammonia on the calcined crystalline material; contacting the crystalline material with an ion-exchange solution at a pH of from about 7 to about 11; compositing the ion-exchange solution contacted crystalline material with an inorganic oxide material; drying the composite at a temperature of from about ambient to less than about 170/sup 0/C and calcining the dried composite at a temperature of from about 200/sup 0/ to about 600/sup 0/C.

  8. Catalytic Acylation of Ethylidenecyclohexane over Zeolite Catalysts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Some environmentally friendly catalysts such as HY and H-β zeolites,various cation-exchanged β zeolites,and some other solids have been used in the acylation reaction of ethylidenecyclohexane with acetic anhydride at room temperature to synthesize 3-(1-cyclohexenyl)-2-butanone instead of conventional catalysts.The effect of the amount of HY zeolite used on the acylation reaction was investigated.The yield of the acylated product was 72% in the case of n(ethylidenecyclohexane)∶n(acetic anhydride)∶m(HY zeolite)=1 mmol∶10 mmol∶0.100 g,reaction temperature:25 ℃,and reaction time:2 h.The regenerated HY zeolite showed almost the same catalytic activity as the fresh zeolite.

  9. Chemical Imaging of Catalyst Deactivation during the Conversion of Renewables at the Single Particle Level: The Etherification of Biomass-based Polyols with Alkenes over H-Beta Zeolites

    Energy Technology Data Exchange (ETDEWEB)

    A Parvulescu; D Mores; E Stavitski; C Teodorescu; P Bruijnicx; R Klein Gebbing; B Weckhuysen

    2011-12-31

    The etherification of biomass-based alcohols with various linear {alpha}-olefins under solvent-free conditions was followed in a space- and time-resolved manner on 9 {micro}m large H-Beta zeolite crystals by confocal fluorescence microscopy. This allowed us to visualize the interaction with the substrate and distribution of the coke products into the catalyst at the level of an individual zeolite crystal during the etherification process. The spectroscopic information obtained on the micrometer-scale zeolite was in line with the results obtained with bulk characterization techniques and further confirmed by the catalytic results obtained both for micrometer-scale and nanoscale zeolites. This allowed us to explain the influence of the substrate type (glycerol, glycols, and alkenes) and zeolite properties (Si/Al ratio and particle size) on the etherification activity. The etherification of the biomass-based alcohols takes place mainly on the external surface of the zeolite particles. The gradual blockage of the external surface of the zeolite results in a partial or total loss of etherification activity. The deactivation could be attributed to olefin oligomerization. The high conversions obtained in the etherification of 1,2-propylene glycol with long linear alkenes (up to 80%) and the pronounced deactivation of the zeolite observed in the etherification of glycerol with long linear alkenes (max. 20% conversion) were explained by the spectroscopic measurements and is due to differences in the adsorption, i.e., in the center of the zeolite particle for glycerol and on the external surface in the case of glycols.

  10. Dimerization of norbornene on zeolite catalysts

    Institute of Scientific and Technical Information of China (English)

    N. G. Grigor’eva; S. V. Bubennov; L. M. Khalilov; B. I. Kutepov

    2015-01-01

    The high activity and selectivity of H‐Beta and H‐ZSM‐12 zeolites in the dimerization of norbornene was established. The norbornene conversion reached 100%in chlorinated paraffin and argon gas medium, with a selectivity of dimer formation of 88%–98%. Four stereo‐isomers of the bis‐2,2’‐norbornylidene structure were identified in the dimer fraction, with the (Z)‐anti‐bis‐2,2’‐norbornylidene prevailing over the others.

  11. Chemical interactions in multimetal/zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sachtler, W.M.H.

    1992-02-07

    Mechanistic explanations have been found for the migration of atoms and ions through the zeolite channels leading to specific distribution of ions and the metal clusters. In this report, we summarize the state of understanding attained on a number of topics in the area of mono- and multimetal/zeolite systems, to which our recent research has made significant contributions. The following topics are discussed: (1) Formation of isolated metal atoms in sodalite cages; (2) differences of metal/zeolite systems prepared by ion reduction in channels or via isolated atoms; (3) rejuvenation of Pd/NaY and Pd/HY catalysts by oxidative redispersion of the metal; (4) formation of mono- or bimetal particles in zeolites by programmed reductive decomposition of volatile metal complexes; (5) cation-cation interaction as a cause of enhanced reducibility; (6) formation of palladium carbonyl clusters in supercages; (7) enhanced catalytic activity of metal particle-proton complexes for hydrocarbon conversion reactions; (8) stereoselectivity of catalytic reactions due to geometric constraints of particles in cages.

  12. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites

    DEFF Research Database (Denmark)

    Christensen, Christina Hviid; Johannsen, Kim; Toernqvist, Eric;

    2007-01-01

    During the last years, several new routes to produce zeolites with controlled mesoporosity have appeared. Moreover, an improved catalytic performance of the resulting mesoporous zeolites over conventional zeolites has been demonstrated in several reactions. In most cases, the mesoporous zeolites...... exhibit higher catalytic activity, but in some cases also improved selectivity and longer catalyst lifetime has been reported. The beneficial effects of introducing mesopores into the zeolites has in most instances been attributed to improved mass transport to and from the active sites located...... in the zeolite micropores. Here, we briefly discuss the most important ways of introducing mesopores into zeolites and, for the first time, we show experimentally that the presence of mesopores dramatically increases the rate of diffusion in zeolite catalysts. This is done by studying the elution of iso...

  13. Polypropylene obtained through zeolite supported catalysts

    Directory of Open Access Journals (Sweden)

    Queli C. Bastos

    2004-01-01

    Full Text Available Propylene polymerizations were carried out with f2C(Flu(CpZrCl2 and SiMe2(Ind2ZrCl2 catalysts supported on silica, zeolite sodic mordenite (NaM and acid mordenite (HM. The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]. The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f2C(Flu(CpZrCl2, SiO2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereoregularity.

  14. Polypropylene obtained through zeolite supported catalysts

    International Nuclear Information System (INIS)

    Propylene polymerizations were carried out with φ2C(Flu)(Cp)ZrCl2 and SiMe2(Ind)2ZrCl2 catalysts supported on silica, zeolite sodic mordenite (NaM) and acid mordenite (HM). The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]). The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f2C(Flu)(Cp)ZrCl2, SiO2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereo regularity. (author)

  15. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    International Nuclear Information System (INIS)

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  16. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Ferreira, Glaucio B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Quimica; Mota, Claudio J.A., E-mail: cmota@iq.ufrj.br [INCT Energia e Ambiente, Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2013-01-15

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  17. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. © 2014 American Chemical Society.

  18. Nonionic emulsion-mediated synthesis of zeolite beta

    Indian Academy of Sciences (India)

    Yuguo Shen; Ying Zhang; Chao Jin; Ying Cao; Wei Gao; Lishan Cui

    2011-07-01

    Zeolite beta synthesis was first carried out in a newly developed emulsion system containing nonionic polyoxyethylated alkylphenol surfactant, which showed interesting non-conventional features. Compared to the conventional hydrothermal synthesis of zeolite beta, the reported nonionic emulsion system showed a faster nucleation rate. Furthermore, the emulsion system could stabilize the beta product and retarded its further transformation to ZSM-5 even under the high crystallization temperature at 453 K. Additionally, the beta particle size could be tuned by the adoption of different lengths of alkyl chain in the surfactant and cosurfactant. Control experiments showed each emulsion component played a crucial role in the zeolite beta growth. The approach proposed in this paper might be extended to apply for the syntheses of other types of zeolites with particle size under control.

  19. Formulation of cracking catalyst based on zeolite and natural clays

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, R.R.; Lupina, M.I.

    1995-11-01

    Domestically manufactured cracking catalysts are based on a synthetic amorphous aluminosilicate matrix and Y zeolite. A multistage {open_quotes}gel{close_quotes} technology is used in manufacturing the catalysts. The process includes mixing solutions of sodium silicate and acidic aluminum sulfate, forming, syneresis, and activation of the beaded gel. In the manufacture of bead catalysts, the next steps in the process are washing, drying, and calcining; in the manufacture of microbead catalysts, the next steps are dispersion and formation of a hydrogel slurry, spray-drying, and calcining. The Y zeolite is either introduced into the alumina-silica sol in the stage of forming the beads, or introduced in the dispersion stage. With the aim of developing an active and selective cracking catalyst based on Y zeolite and natural clays, with improved physicomechanical properties, the authors carried out a series of studies, obtaining results that are set forth in the present article.

  20. Advanced NMR characterization of zeolite catalysts

    Science.gov (United States)

    Welsh, L. B.

    1985-04-01

    The program discussed in this report is a two-year two-phase joint UOP-University of Illinois study of the application of improved high resolution solid state nuclear magnetic resonance (NMR) techniques to the characterization of zeolite catalysts. During the first phase of this program very pure, and in some cases isotopically enriched faujasites will be prepared and studied by magic angle sample spinning NMR (MASS NMR) and variable engine sample spinning NMR (VASS NMR) on 500 and 360 MHz (proton frequency) NMR spectrometers. The NMR techniques that will be emphasized are the measurement and analysis of the (17)O NMR properties, (27)Al NMR intensity quantitation, and (27)Al and (29)Si NMR relaxation rates. During the second phase of this program these NMR techniques will be used to study the effects of impurity concentration, dealumination treatments and cation exchange on the NMR properties of faujasites. The initial emphasis of this program during Phase I is on the preparation and measurement of the NMR properties of (17)O enriched Na-Y faujasties.

  1. Methane dehydroaromatisation and methanol activation over zeolite catalysts: an overview

    OpenAIRE

    J.S.J. Hargreaves

    2016-01-01

    A brief overview of methane dehydroaromatisation over MoO3/H-ZSM-5 derived catalysts, the deposition of carbonaceous residues from methanol over H-mordenite and the role of binders in zeolite catalysed reactions is presented. The selective poisoning of methane cracking catalysts is proposed as a potential strategy for the development of methane dehydroaromatisation catalysts. In the case of methanol conversion over H-mordenite, evidence is presented for the formation of larger alkylated aroma...

  2. Catalytic transformation of methyl benzenes over zeolite catalysts

    KAUST Repository

    Al-Khattaf, S.

    2011-02-01

    Catalytic transformation of three methyl benzenes (toluene, m-xylene, and 1,2,4-trimethyl benzene) has been investigated over ZSM-5, TNU-9, mordenite and SSZ-33 catalysts in a novel riser simulator at different operating conditions. Catalytic experiments were carried out in the temperature range of 300-400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction conditions on the isomerization to disproportionation product ratio, distribution of trimethylbenzene (TMB) isomers, and p-xylene/o-xylene ratios are reported. The sequence of reactivity of the three alkyl benzenes depends upon the pore structure of zeolites. The zeolite structure controls primarily the diffusion of reactants and products while the acidity of these zeolites is of a secondary importance. In the case of medium pore zeolites, the order of conversion was m-xylene > 1,2,4-TMB > toluene. Over large pore zeolites the order of reactivity was 1,2,4-TMB > m-xylene > toluene for SSZ-33 catalyst, and m-xylene ∼ 1,2,4-TMB > toluene over mordenite. Significant effect of pore size between ZSM-5 and TNU-9 was observed; although TNU-9 is also 3D 10-ring channel system, its slightly larger pores compared with ZSM-5 provide sufficient reaction space to behave like large-pore zeolites in transformation of aromatic hydrocarbons. We have also carried out kinetic studies for these reactions and activation energies for all three reactants over all zeolite catalysts under study have been calculated. © 2011 Elsevier B.V.

  3. Catalytic Fast Pyrolysis of Cellulose Using Nano Zeolite and Zeolite/Matrix Catalysts in a GC/Micro-Pyrolyzer.

    Science.gov (United States)

    Lee, Kyong-Hwan

    2016-05-01

    Cellulose, as a model compound of biomass, was catalyzed over zeolite (HY,.HZSM-5) and zeolite/matrix (HY/Clay, HM/Clay) in a GC/micro-pyrolyzer at 500 degrees C, to produce the valuable products. The catalysts used were pure zeolite and zeolite/matrix including 20 wt% matrix content, which were prepared into different particle sizes (average size; 0.1 mm, 1.6 mm) to study the effect of the particle size of the catalyst for the distribution of product yields. Catalytic pyrolysis had much more volatile products as light components and less content of sugars than pyrolysis only. This phenomenon was strongly influenced by the particle size of the catalyst in catalytic fast pyrolysis. Also, in zeolite and zeolite/matrix catalysts the zeolite type gave the dominant impact on the distribution of product yields.

  4. Zeolite catalysts and their use in selective catalytic reduction of NOx

    NARCIS (Netherlands)

    Seijger, G.B.F.; Van den Bleek, C.M.; Calis, H.P.A.

    2003-01-01

    The invention is directed to catalyst compositions comprising a zeolite, as well as to processes for the reduction of nitrogen oxides (NOx) employing these catalyst compositions. The catalyst compositions of the invention comprise a zeolite of the ferrierite type (FER), which zeolite is ion exchange

  5. Influence of the aluminium impregnation [ Al(NO33] in the beta zeolite over its acidity

    Directory of Open Access Journals (Sweden)

    Francisco José Sánchez Castellanos

    2010-04-01

    Full Text Available Beta zeolite was impregnated with [ Al(NO33], increasing the aluminium content in increments of 0.05% from 0.00% to 0.25%. A parallel treatment with 0.05% sulphuric acid was also performed; in both cases, methanol was used as solvent (disperse phase. Cation exchange capacity (CEC, ammonia chemisorption, infrared spectroscopy (FIT-IR, scanning electronic microscopy (SEM, X-Ray powder diffraction (XRD, atomic absorption spectroscopy (AAS, titration with sodium hydroxide and nitrogen physisorption at 77K were used to carry out the physical and chemical characterization of the catalysts. Futhermore, the catalysts were employed in the esterification of ethanol with acetic acid, to quantify the effect of aluminium impregnation over the beta zeolite.

  6. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    KAUST Repository

    Al-Khattaf, Sulaiman

    2008-11-19

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported. The USY catalyst (FCC-Y) was modified by steaming to form a significantly lower acidity catalyst (FCC-SY). The current study shows that the FCC-SY catalyst favors EB disproportionation more than cracking. A comparison has been made between the results of EB conversion over the lowly acidic catalyst (FCC-SY) and the highly acidic catalyst (FCC-Y) under identical conditions. It was observed that increase in catalyst acidity favored cracking of EB at the expense of disproportionation. Kinetic parameters for EB disappearance during disproportionation reaction over the FCC-SY catalyst were calculated using the catalyst activity decay function based on time on stream (TOS). © 2008 American Chemical Society.

  7. Mordenite - Type Zeolite SCR Catalysts with Iron or Copper

    DEFF Research Database (Denmark)

    2012-01-01

    Cu/mordenite catalysts were found to be highly active for the SCR of NO with NH3 and exhibited high resistance to alkali poisoning. Redox and acidic properties of Cu/mordenite were well preserved after poisoning with potassium unlike that of vanadium catalysts. Fe-mordenite catalysts also revealed...... much higher alkali resistivity than that of commercial V2O5/WO3-TiO2 (VWT) SCR catalyst which is currently used for NOx abatement in stationary installations. Unique support properties like high surface area and surface acidity, which are not available in the commercial VWT catalyst, seem...... to be essential requirements for the high alkali resistance. Mordenite-type zeolite based catalysts could therefore be attractive alternatives to conventional SCR catalysts for biomass fired power plant flue gas treatment....

  8. ASETILASI PADA FENOL DAN ANISOL MENGGUNAKAN ANHIDRIDA ASAM ASETAT BERKATALIS Zr4+-ZEOLIT BETA

    Directory of Open Access Journals (Sweden)

    DA Retnoningrum

    2015-07-01

    Full Text Available Zeolit beta pada umumnya memiliki keasaman tinggi dan berpotensi aktif sebagai katalis heterogen dalam asilasi Friedel-Crafts senyawa aromatik. Untuk meningkatkan stabilitas dan selektivitasnya, zeolit beta perlu diaktivasi dan dimodifikasi terlebih dahulu dengan mengembankan logam aktif zirkonium dengan metode pertukaran ion. Karakterisasi katalis meliputi analisis kristalinitas katalis dengan XRD, sifat permukaan katalis dengan Surface Area Analyzer dan uji keasaman dengan pengadsorbsi piridin. Dalam penelitian ini, dipelajari aktivitas dan selektivitas katalis Zr4+-zeolit beta dalam reaksi asetilasi fenol dan anisol. Reaksi dilakukan pada berbagai variasi suhu yaitu 100 dan 130C dengan waktu reaksi yaitu pada jam ke 4, 8 dan 12. Hasil asetilasi kemudian dianalisis menggunakan GC, FTIR dan analisis produk menggunakan GC-MS. Asetilasi fenol dengan katalis Zr4+-zeolit beta menghasilkan produk fenil etanoat dengan kadar 95,87% dan selektivitas 100%. Hasil ini didapatkan pada suhu reaksi 130C dan waktu reaksi 8 jam. Asetilasi pada cincin benzena baik pada fenol maupun anisol tidak terjadi, hal ini karena asetilasi pada cincin benzena lebih sukar dibandingkan asetilasi pada gugus OH fenol. Perlu adanya kondisi lain untuk melakukan asetilasi pada cincin benzena. Asetilasi anisol pada waktu reaksi 24 jam dan temperatur 130C didapatkan produk dengan kadar 74%.Beta zeolite generally has a high acidity and potentially active as heterogeneous catalyst in the Friedel-Crafts acylation of aromatic compounds. To improve its stability and selectivity, beta zeolite needs to be activated and modified in advance with zirconium to elicit active metal using ion exchange method. Characterization of catalyst include catalyst’s crystallinity using XRD analysis, the nature of the catalyst surface with the Surface Area Analyzer and the acidity test using pyridine adsorption. In the current study the activity and the selectivity of catalyst Zr4+-beta zeolite

  9. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water

    Energy Technology Data Exchange (ETDEWEB)

    Moliner, Manuel [California Inst. of Technology (CalTech), Pasadena, CA (United States); Roman-Leshkov, Yuriy [California Inst. of Technology (CalTech), Pasadena, CA (United States); Davis, Mark E. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2010-04-06

    The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup (HFCS; reaction performed by enzyme catalysts) and recently is being considered as an intermediate step in the possible route of biomass to fuels and chemicals. Here, it is shown that a large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity. Specifically, a 10% (wt/wt) glucose solution containing a catalytic amount of Sn-Beta (1:50 Sn:glucose molar ratio) gives product yields of approximately 46% (wt/wt) glucose, 31% (wt/wt) fructose, and 9% (wt/wt) mannose after 30 min and 12 min of reaction at 383 K and 413 K, respectively. This reactivity is achieved also when a 45 wt% glucose solution is used. The properties of the large-pore zeolite greatly influence the reaction behavior because the reaction does not proceed with a medium-pore zeolite, and the isomerization activity is considerably lower when the metal centers are incorporated in ordered mesoporous silica (MCM-41). The Sn-Beta catalyst can be used for multiple cycles, and the reaction stops when the solid is removed, clearly indicating that the catalysis is occurring heterogeneously. Most importantly, the Sn-Beta catalyst is able to perform the isomerization reaction in highly acidic, aqueous environments with equivalent activity and product distribution as in media without added acid. This enables Sn-Beta to couple isomerizations with other acid-catalyzed reactions, including hydrolysis/isomerization or isomerization/dehydration reaction sequences [starch to fructose and glucose to 5-hydroxymethylfurfural (HMF) demonstrated here].

  10. Investigating the Influence of Mesoporosity in Zeolite Beta on its Catalytic Performance for the Conversion of Methanol to Hydrocarbons

    KAUST Repository

    Liu, Zhaohui

    2015-08-26

    Hierarchically porous zeolite Beta (Beta-MS) synthesized by a soft-templating method contains remarkable intra-crystalline mesoporosity, which reduces the diffusion length in zeolite channels down to several nanometers and alters the distribution of Al among distinct crystallographic sites. When used as a catalyst for the conversion of methanol to hydrocarbons (MTH) at 330 oC, Beta-MS exhibited a 2.7-fold larger conversion capacity, a 2.0-fold faster reaction rate, and a remarkably longer lifetime than conventional zeolite Beta (Beta-C). The superior catalytic performance of Beta-MS is attributed to its hierarchical structure, which offers full accessibility to all catalytic active sites. In contrast, Beta-C was easily deactivated because a layer of coke quickly deposited on the outer surfaces of the catalyst crystals, impeding access to interior active sites. This difference is clearly demonstrated by using electron microscopy combined with electron energy loss spectroscopy to probe the distribution of coke in the deactivated catalysts. At both low and high conversions, ranging from 20% to 100%, Beta-MS gave higher selectivity towards higher aliphatics (C4-C7) but lower ethene selectivity compared to Beta-C. Therefore, we conclude that a hierarchical structure decreases the residence time of methylbenzenes in zeolite micropores, disfavoring the propagation of the aromatic-based catalytic cycle. This conclusion is consistent with a recent report on ZSM-5 and is also strongly supported by our analysis of soluble coke species residing in the catalysts. Moreover, we identified an oxygen-containing compound, 4-methyl-benzaldehyde, in the coke, which has not been observed in the MTH reaction before.  

  11. Adsorptive desulfurization over hierarchical beta zeolite by alkaline treatment

    Institute of Scientific and Technical Information of China (English)

    Fuping Tian; Xiaojian Yang; Yanchun Shi; Cuiying Jia; Yongying Chen

    2012-01-01

    Hierarchical beta zeolites with SiO2/Al2O3 molar ratios of 16 to 25 were obtained by alkaline treatment in NaOH solution.The effects of treatment temperature on crystallinity,textural properties and chemical composites were studied by XRD,N2 sorption,FT-IR and XRF techniques.The desulfurization performance of parent and alkaline-treated beta zeolites was investigated by static absorption in four model fuels,containing four sulfur compounds of different molecular sizes like thiophene (TP),3-methylthiophene (3-MT),benzothiophene (BT) and dibenzothiophene (DBT),respectively.The crystallinity was observed to be successfully maintained when the treatment temperature was below 50℃.Mesoporosity of beta zeolite was evidently developed with alkaline treatment.The formation of mesopore remarkably improved the desulfurization performance for TP,3-MT,BT and DBT,especially for DBT with larger molecular diameter.Though the addition of toluene in the model fuels resulted in a significant drop of the desulfurization performance of mesoporous beta zeolite,the introduction of cerium ions to some extent mitigated the effect of toluene,which means that both the adsorbents porous structure and the adsorption mode are responsible for the desulfurization performance.The adsorbent of cerium ion-exchanged mesoporous beta showed about 80% recovery of desulfurization after the first regeneration.

  12. Catalytic Cracking of Palm Oil Over Zeolite Catalysts: Statistical Approach

    Directory of Open Access Journals (Sweden)

    F. A. A. Twaiq and S. Bhatia

    2012-08-01

    Full Text Available The catalytic cracking of palm oil was conducted in a fixed bed micro-reactor over HZSM-5, zeolite ? and ultrastable Y (USY zeolite catalysts. The objective of the present investigation was to study the effect of cracking reaction variables such as temperature, weight hourly space velocity, catalyst pore size and type of palm oil feed of different molecular weight on the conversion, yield of hydrocarbons in gasoline boiling range and BTX aromatics in the organic liquid product.  Statistical Design of Experiment (DOE with 24 full factorial design was used in experimentation at the first stage.  The nonlinear model and Response Surface Methodology (RSM were utilized in the second stage of experimentation to obtain the optimum values of the variables for maximum yields of hydrocarbons in gasoline boiling range and aromatics.  The HZSM-5 showed the best performance amongst the three catalysts tested.  At 623 K and WHSV of 1 h-1, the highest experimental yields of gasoline and aromatics were 28.3 wt.% and 27 wt.%, respectively over the HZSM-5 catalyst.  For the same catalyst, the statistical model predicted that the optimum yield of gasoline was 28.1 wt.% at WHSV of 1.75 h-1 and 623 K.  The predicted optimum yield of gasoline was 25.5 wt.% at 623 K and WHSV of 1 h-1.KEY WORDS: Catalytic Cracking, Palm Oil, Zeolite, Design Of Experiment, Response Surface Methodology.

  13. Synthesis of mesoporous Beta and Sn-Beta zeolites and their catalytic performances.

    Science.gov (United States)

    Jin, Junjiang; Ye, Xinxin; Li, Yongsheng; Wang, Yanqin; Li, Liang; Gu, Jinlou; Zhao, Wenru; Shi, Jianlin

    2014-06-14

    Mesoporous Beta zeolite has been successfully prepared through hydrothermal synthesis in the presence of cationic ammonium-modified chitosan as the meso-template. Through a subsequent solid-gas reaction between highly dealuminated mesoporous Beta zeolite and SnCl4 steam at an elevated temperature, mesoporous Sn-Beta has been facilely obtained. It was revealed that the addition of cationic chitosan induced the nanocrystal aggregation to particle sizes of ∼300 nm, giving rise to the intercrystalline/interparticle mesoporosity. In the Sn-implanting procedure, Sn species were demonstrated to be doped into the framework of the resulting mesoporous Beta zeolite in a tetrahedral environment without structural collapse. Due to the micro/mesoporous structures, both mesoporous Beta and Sn-Beta exhibited superior performances in α-pinene isomerization, Baeyer-Villiger oxidation of 2-adamantanone by hydrogen peroxide and the isomerization of glucose in water, respectively.

  14. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  15. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    Science.gov (United States)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  16. Catalyst Activity Comparison of Alcohols over Zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-01-01

    Alcohol transformation to transportation fuel range hydrocarbon on HZSM-5 (SiO2 / Al2O3 = 30) catalyst was studied at 360oC and 300psig. Product distributions and catalyst life were compared using methanol, ethanol, 1-propanol or 1-butanol as a feed. The catalyst life for 1-propanol and 1-butanol was more than double compared to that for methanol and ethanol. For all the alcohols studied, the product distributions (classified to paraffin, olefin, napthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 hours TOS, liquid product from 1-propanol and 1-butanol transformation primarily contains higher olefin compounds. The alcohol transformation process to higher hydrocarbon involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization, and hydrogenation. Compared to ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker acidic sites. On the other hand, dehydrocyclization of propylene and butylene to form the cyclic compounds requires the sits with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1 propanol and 1 butanol compared to methanol and ethanol conversion over HZSM-5.

  17. Mechanochemical approach for selective deactivation of external surface acidity of ZSM-5 zeolite catalyst.

    Science.gov (United States)

    Inagaki, Satoshi; Sato, Koki; Hayashi, Shunsuke; Tatami, Junichi; Kubota, Yoshihiro; Wakihara, Toru

    2015-03-01

    The acid sites associated with the external surface of zeolite particles are responsible for undesirable consecutive reactions, such as isomerization, alkylation, and oligomerization, resulting in a lower selectivity to a target product; therefore, the selective modification (deactivation) of the external surface of zeolite particles has been an important issue in zeolite science. Here, a new method for surface deactivation of zeolite catalyst was tested via a mechanochemical approach using powder composer. Postsynthetic mechanochemical treatment of ZSM-5 zeolite causes a selective deactivation of catalytically active sites existing only on the external surface, as a potentially useful catalyst for highly selective production of p-xylene. PMID:25654542

  18. Novel zeolite-supported rhodium catalysts for ethanol steam reforming

    Science.gov (United States)

    Campos-Skrobot, Fabiana C.; Rizzo-Domingues, Roberta C. P.; Fernandes-Machado, Nádia R. C.; Cantão, Mauricio P.

    Renewable bioethanol is an interesting hydrogen source for fuel cells through steam reforming, but its C-C bond promotes parallel reactions, mainly coke and by-products formation. In this way, good ethanol reforming catalysts are still needed, which explains current research and development efforts around the world. Most catalysts proposed for ethanol reforming are based on oxide-supported noble metals with surface area below 100 m 2 g -1 and reaction temperatures above 500 °C. Novel Rh and Rh-K catalysts supported on NaY zeolite with surface area above 440 m 2 g -1 are presented in this work. Reaction temperature was fixed at 300 °C and H 2O/EtOH molar ratio and reagent flow were varied. Ethanol conversion varied from 50 to 99%, with average increase of 50% due to K promoter, and hydrogen production yield achieved 68%.

  19. Removal of organobromine compounds from the pyrolysis oils of flame retarded plastics using zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hall, William J.; Williams, Paul T. [Energy and Resources Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2008-03-15

    Two flame retarded plastics have been pyrolysed in the presence of two zeolite catalysts to remove the organobromine compounds from the derived pyrolysis oil. The flame retarded plastics were, acrylonitrile-butadiene-styrene (ABS) that was flame retarded with tetrabromobisphenol A and high impact polystyrene (HIPS) that was flame retarded with decabromodiphenyl ether. The two catalysts investigated were zeolite ZSM-5 and zeolite Y-Zeolite. Pyrolysis was carried out in a fixed bed reactor at a final pyrolysis temperature of 440 C. The pyrolysis gases were passed immediately to a fixed bed of the catalyst. It was found that the presence of zeolite catalysts increased the amount of gaseous hydrocarbons produced during pyrolysis but decreased the amount of pyrolysis oil produced. In addition, significant quantities of coke were formed on the surface of the catalysts during pyrolysis. The zeolite catalysts were found to reduce the formation of some valuable pyrolysis products such as styrene and cumene, but other products such as naphthalene were formed instead. The zeolite catalysts, especially Y-Zeolite, were found to be very effective at removing volatile organobromine compounds. However, they were less effective at removing antimony bromide from the volatile pyrolysis products, although some antimony bromide was found on the surfaces of the spent catalysts. (author)

  20. Cracking with zeolite catalysts promoted with uranium or uranium plus silver

    Energy Technology Data Exchange (ETDEWEB)

    Lussier, R.J.; Magee, J.S. Jr.

    1976-10-12

    Uranium oxide or uranium and silver oxides in combination with hydrogen or rare earth oxides are exchanged into zeolites as components of zeolite cracking catalysts to increase the olefin content of the gasoline and, thus, enhance the yield of high octane components as well as reduce the coking tendency of the catalyst. 5 Claims, No Drawings

  1. Alkali resistant Fe-zeolite catalysts for SCR of NO with NH3 in flue gases

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders;

    2011-01-01

    , towards e.g. potassium salts in flue gases from biomass fired power plants. These properties allowed both undoped and potassium doped Fe-zeolite catalysts to posses high activity during the selective catalytic reduction (SCR) of NO with NH3. The extent of deactivation of the Fe-zeolite catalysts...

  2. Fe-BEA Zeolite Catalysts for NH3-SCR of NOx

    DEFF Research Database (Denmark)

    Frey, Anne Mette; Mert, Selcuk; Due-Hansen, Johannes;

    2009-01-01

    Iron-containing zeolites are known to be promising catalysts for the NH3-SCR reaction. Here, we will investigate the catalytic activity of iron-based BEA catalysts, which was found to exhibit improved activities compared to previously described iron-containing zeolite catalysts, such as ZSM-5...... and ZSM-12. Series of Fe-BEA zeolite catalysts were prepared using a range of different preparation methods. Furthermore, we found that an iron concentration around 3 wt% on BEA showed a small optimum in SCR activity compared to the other iron loadings studied....

  3. Study on Deactivation and Cracking Performance of Catalysts Containing Y and MFI Zeolites

    Institute of Scientific and Technical Information of China (English)

    Chen Zhenyu; Li Caiying; Tian Huiping; Huang Zhiqing

    2004-01-01

    This article investigated the deactivation caused by hydrothermal treatment and metal contamination of two cracking catalysts containing the Y and ZRP- 1 zeolites aimed at maximization of light olefin yield.Test results had shown that the hydrothermal stability and resistance to metal contamination of the ZRP-1zeolite were apparently better than those of the Y zeolite. Hydrothermal treatment and metal contamination had not only changed the catalytic cracking performance of respective zeolites, but at the same time had also modified to a definite degree of the relative proportions of effective components in these two zeolites and affected the synergistic effects between them, resulting in a relative enhancement of secondary cracking ability of the catalyst and increased olefin selectivity in the FCC products. In the course of application of catalyst for maximization of light olefins yield appropriate adjustment of the relative proportion of two active components can help to alleviate the products distribution and selectivity changes caused by deactivationof FCC catalysts.

  4. Scope and limitations of reactant shape selectivity in hydrocracking on zeolite catalysts. Moeglichkeiten und Grenzen des formselektiven Hydrocrackens an Zeolith-Katalysatoren

    Energy Technology Data Exchange (ETDEWEB)

    Weitkamp, J.; Ernst, S. (Stuttgart Univ. (Germany, F.R.). Inst. fuer Technische Chemie)

    1990-01-01

    The paper reports on model investigations on isomerization and hydrocracking of long-chain n-alkanes on bifunctional zeolite catalysts. The investigations are aimed at developing the basics of a method for middle distillate and lobe fraction dewaxing by means of isomerization. On certain high-silicate zeolites considerable yields, invariably greater than isomere yields achieved with carefully optimized Y-zeolites, can be obtained. This leads to improved low-temperature properties of the feedstock without the drawback of matter loss in the boiling range of the goal product, as is the case in dewaxing by hydrocracking with reactant shape selectivity. The bifunctional forms of zeolites Beta, ZSM-12, ZSM-22 and ZSM-23 are particularly suitable as catalysts. (orig.).

  5. Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts

    DEFF Research Database (Denmark)

    Kustova, Marina; Egeblad, Kresten; Christensen, Claus H.;

    2007-01-01

    Recently, a new family of crystalline zeolitic materials was reported, the so-called mesoporous zeolite single crystals featuring individual zeolite single crystals with an additional noncrystalline mesopore system interconnected with the usual micropore system of the zeolite, resulting in a hier...... transport. Importantly, the mesoporous zeolites show significant improved resistance to poisoning by carbon formation....

  6. Dimethylether production on zeolite catalysts activated by Cl-, F-and/or ultrasonication

    Institute of Scientific and Technical Information of China (English)

    Sameh M K Aboul-Fotouh; Noha A K Aboul-Gheit; Mona A Naghmash

    2016-01-01

    The chlorinated and fluorinated zeolite catalysts were prepared by the impregnation of zeolites ( H-ZSM-5, H-MOR or H-Y) using two halogen precursors ( ammonium chloride and ammonium fluoride ) in this study. The influence of ultrasonic irradiation was evaluated for optimizing both halogen precursors for production of dimethylether ( DME) via methanol dehydration in a fixed bed reactor. The catalysts were characterized by SEM, XRD, BET and NH3-TPD. The reaction conditions were temperatures from 100 to 300℃ and a WHSV =15. 9 h-1 . All halogenated catalysts show higher catalytic activities at all reaction temperatures studied. However, the halogenated zeolite catalysts prepared under ultrasonic irradiation show higher performance for DME formation. The chlorinated zeolite catalysts show higher activity and selectivity for DME production than the respective fluorinated versions.

  7. A Selective Octane-Enhancing FCC Catalyst Using ZRP Zeolite as an Active Component

    Institute of Scientific and Technical Information of China (English)

    Huang Dayang; Shu Xingtian; He Mingyuan; Yang Xiaoming; Wang Dianzhong; Zong Baoning

    2001-01-01

    A hetero-crystalline seeding method to prepare a unique MFI type zeolite with mesopores of ca. 4 nm diameter designated as the ZRP zeolite, which possesses high stability and selectivity and is used as component of FCC catalysts to produce high-octane gasoline and light olefins, was developed. With the DOCR and DOCP catalysts containing the ZRP zeolite modified by phosphorus-incorporation as the octaneenhancing catalysts, the commercial trial was carried out in a 0.8Mt/a RFCC unit with a feedstock composed of Daqing atmospheric residue. As compared to the base catalyst, the LPG+gasoline+LCO product yield obtained from this catalyst was increased by 0.53m%. Meanwhile, the RON and MON of gasoline was increased by 1.4 and 2.4 units, respectively. The higher increment of MON is attributable to the higher isoparaffines content in gasoline. This result indicates that the ZRP zeolite possesses higher isomerization selectivity.

  8. Synergy between metals in bimetallic zeolite supported catalyst for NO-promoted N2O decomposition

    NARCIS (Netherlands)

    Pieterse, J.A.Z.; Mul, G.; Melian-Cabrera, I.; van den Brink, R.W.

    2005-01-01

    The detrimental effect of NO on N2O decomposition over zeolite supported noble metal catalysts can be (partly) eliminated by combining noble metal with iron or cobalt. In the presence of NO, the total conversion of N2O over these bimetallic-zeolites exceeds the sum of conversions over the monometall

  9. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process.

    Science.gov (United States)

    Martín, Nuria; Li, Zhibin; Martínez-Triguero, Joaquín; Yu, Jihong; Moliner, Manuel; Corma, Avelino

    2016-04-26

    The synthesis of nanosized SSZ-39 zeolite has been achieved using a high silica FAU zeolite as the Si and Al source and tetraethylphosphonium (TEP) cations as OSDAs. The obtained SSZ-39 material shows a remarkably high catalyst lifetime compared to conventional SSZ-13 and SSZ-39 materials. PMID:26947336

  10. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

    DEFF Research Database (Denmark)

    Poreddy, Raju; Shunmugavel, Saravanamurugan; Riisager, Anders

    2015-01-01

    Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96...

  11. Zeolite ZSM5 catalysts for abatement of nitrogen oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ganemi, Bager

    1999-07-01

    Airborne pollutants from the combustion of fossil fuels are a global problem. Emission of nitrogen oxides (NO{sub x}) is increasing with the worldwide increase in the use of energy. Atmospheric and photochemical reactions link nitrogen oxides to hydrocarbons and tropospheric ozone. The emission of NO{sub x} has to be tackled urgently in order to limit the harmful effects of anthropogenic activity on the environment. The subject of this thesis is catalytic nitrogen oxide abatement through direct decomposition and reduction by methane over ion-exchanged zeolite ZSM5. The work covers catalytic conversion and surface intermediates, including correlations with the level of exchanged Cu{sup 2+} cations and Ni{sup 2+} or Pd{sup 2+} co-cations. Special attention is given to the aluminium content of the support and changes in structural parameters. It was found that NO{sub x} conversion over cation-exchanged ZSM5 is strongly influenced by the ion-exchange procedure and by the above material parameters. Characterization of Cu-ZSM5 reveals that approximately two molecules of water per Cu{sup 2+} ion desorb at temperatures between 150 and 350 Deg C, in addition to the conventional dehydration at lower temperatures. The desorbed water comes from the decomposition of Cu(OH){sub 2}. Decomposition of hydroxylated copper ions results in the formation Of Cu{sup 2+}-O-Cu{sup 2+} dimers, which are suggested to be the active sites for catalytic decomposition of NO. Acid sites are important for the dispersion of copper ions on the catalyst surface. Acid sites are also important for the interaction between copper species and the zeolite. Increased acidity leads to a stronger interaction between the exchanged cation and the framework, i.e. the exchanged cations become more resistant to mobility. The stronger bond between the exchanged cations and lattice oxygen also prevents dealumination of the catalyst and decreases the thermal expansion at higher temperatures. The temperature of

  12. Transalkylation of Multi-secbutylbenzenes with Benzene over Hierarchical Beta Zeolite

    Institute of Scientific and Technical Information of China (English)

    Yingxia Li; Can Luo; Xuan Wang; Chongpin Huang; Biaohua Chen

    2014-01-01

    A hierarchical beta zeolite synthesized by quasi-solid phase conversion method was characterized by BET, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), temperature-programmed desorption of ammonia (NH3-TPD), 27Al and 29Si magic angle spinning nuclear magnetic resonance (27Al and 29Si MAS NMR), and its catalytic performance was compared with that of conventional microporous beta zeolite for liquid phase transalkylation of multi-secbutylbenzenes (MSBBs) with benzene. The results indicate that the hierarchical beta zeolite consists of nanosized crystals with a meso/microporous structure and has stronger acid strength than the microporous beta zeolite. The higher conversion of tri-secbutylbenzene (TSBB) and selectivity of sec-butylbenzene (SBB) are achieved on hierarchical beta zeolite than microporous beta zeolite, while the conversion of di-secbutylbenzene (DSBB) is slightly higher. The improvement of catalytic performance over hierarchical beta zeolite can be ascribed to the presence of mesopores, nanosized crystals and stronger acidity.

  13. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2007-09-30

    The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

  14. Investigation of the Hydroisomerization Activities of Ni-Mo Catalysts Loaded on HY adn HUSY Zeolites

    Institute of Scientific and Technical Information of China (English)

    LuChangbo; LiuChenguang

    2002-01-01

    A series of Ni-Mo/zeolite-Al2o3 catalysts was prepared by incipient wetness impregnation and their catalytic experiments were carried out using an automated microflow apparatus.It is concluded that the Ni-Mo catalyst loaded on the HUSY has larger BET surface areas and possesses more acid sites than that loaded on the HY zeolite,and simultaneously the Ni-Mo/HUSY-Al2O3 catalyst reveals higher catalytic activ-ity characterized by feedstock conversion and isomer yield which is about two or three times higher than that of the Ni-Mo/HY-Al2O3 catalyst.

  15. Investigation of the Hydroisomerization Activities of Ni-Mo Catalysts Loaded on HY and HUSY Zeolites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of Ni-Mo/zeolite-A12O3 catalysts was prepared by incipient wetness impregnation andtheir catalytic experiments were carried out using an automated microflow apparatus. It is concluded that theNi-Mo catalyst loaded on the HUSY has larger BET surface areas and possesses more acid sites than thatloaded on the HY zeolite, and simultaneously the Ni-Mo/HUSY-A12O3 catalyst reveals higher catalytic activ-ity characterized by feedstock conversion and isomer yield which is about two or three times higher than thatof the Ni-Mo/HY-A12O3 catalyst.

  16. Development of advanced zeolite catalysts for the vapor phase Beckmann rearrangement of cyclohexanone oxime

    Science.gov (United States)

    Dai, Lian-Xin; Iwaki, Yoshihide; Koyama, Katsuyuki; Tatsumi, Takashi

    1997-11-01

    The vapor phase Beckmann rearrangement of cyclohexanone oxime to ɛ-caprolactam catalyzed by various zeolites was studied. The catalytic performance was greatly affected by both the zeolite structure and diluent solvent. When 1-hexanol was used in place of benzene, the catalytic performance of all catalysts except silicalite-1 was greatly improved. In particular, the selectivity and stability of H-LTL and H-OFF-ERI zeolites remarkably increased; both catalysts exhibited ca. 100% oxime conversion and ɛ-caprolactam selectivity of >95% for 6 h.

  17. Characterization and Design of Zeolite Catalysts Solid Acidity, Shape Selectivity and Loading Properties

    CERN Document Server

    Niwa, Miki; Okumura, Kazu

    2010-01-01

    Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. Zeolite-based catalysts are used by industrial chemical companies in the interconversion of hydrocarbons and the alkylation of aromatic compounds. The current book deals with the characterization of specific properties of Zeolites and calculations for the design of catalysts. Measurements and utilization of solid acidity, shape selectivity, and loading properties, that are three prominent properties of a Zeolite catalyst, are treated in detail. These features concern chemical vapor deposition of silica, shape selectivity, loading properties, solid activity, Brønsted or Lewis character, ammonia temperature programmed desorption, control of the pore-opening size by chemical vapor deposition of silica and XAFS analysis of metals being highly dispersed inside and outside a framework.

  18. Catalytic cracking process exploying a zeolite as catalysts and catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Lussier, R.J.; Surland, G.J.

    1989-06-06

    This patent describes a method for cracking hydrocarbons which comprises reacting a hydrocarbon feedstock under catalytic cracking conditions in the presence of a cracking catalyst composition which comprises a crystalline zeolite, an inorganic oxide matrix, and a finely divided, calcined caustic leached aluminum silicon spinel/mullite component having a silica to alumina mole ratio of from about 0.5 to 1.7 and an acid site retention of from about 70 to 95 percent after treating at 1350{sup 0}F in the presence of saturated steam and a X-ray diffraction pattern as set forth in Tables A or B.

  19. Palladium-Zeolite nanofiber as an effective recyclable catalyst membrane for water treatment.

    Science.gov (United States)

    Choi, Jungsu; Chan, Sophia; Yip, Garriott; Joo, Hyunjong; Yang, Heejae; Ko, Frank K

    2016-09-15

    Zeolite is an exciting natural material due to its unique capability of ammonium nitrogen (NH3N) adsorption in water. In this study, multifunctional hybrid composites of zeolite/palladium (Ze/Pd) on polymer nanofiber membranes were fabricated and explored for sustainable contaminant removal. SEM and XRD demonstrated that zeolite and palladium nanoparticles were uniformly distributed and deposited on the nanofibers. NH3N recovery rate was increased from 23 to 92% when palladium coated zeolite was embedded on the nanofiber. Multifunctional nanofibers of Ze/Pd membranes were able to adsorb NH3N on the zeolites placed on the surface of fibers and palladium catalysts were capable of selective oxidation of NH3N to N2 gas. The cycling of NH3N adsorption-oxidation, high flux, hydrophilicity, and flexibility of the membrane makes it a strong candidate for water treatment. PMID:27253639

  20. 3D Nanoscale Imaging and Quantitative Analysis of Zeolite Catalysts

    OpenAIRE

    Zecevic, J.

    2013-01-01

    Zeolites are crystalline microporous aluminosilicates, one of the most versatile and widely used class of materials.The unique physico-chemical properties of zeolites are found to be irreplaceable in many industrial processes such as separation, adsorption and catalysis. To exploit their full potential and optimize their properties for specific applications, zeolites are often subjected to several post-synthesis modifications. The work presented in this thesis aims to provide a deeper underst...

  1. Zeolite catalysts for the liquid-phase hydrazinolysis of 4-cyanopyridine

    Energy Technology Data Exchange (ETDEWEB)

    Dzhumakaev, K.K.; Isakov, Ya.I.; Dzhumadullaeva, S.A.; Minachev, K.M.

    1988-08-01

    We have studied the catalytic activity of synthetic zeolites in the reaction of 4-cyanopyridine with hydrazine giving isonicotinic acid hydrazide. It has been found that the best catalysts for the process are NaX. NaY, CaNaY, and CaNaX. The modifying effect of hydrazine hydrate substrate on the catalytic properties of the zeolite systems has been demonstrated.

  2. Influence of zeolite structure on the activity and durability of Co-Pd-zeolite catalysts in the reduction of NOx with methane

    International Nuclear Information System (INIS)

    Selective catalytic reduction of NO with CH4 was studied over ZSM-5, MOR, FER and BEA zeolite-based cobalt (Co) and palladium (Pd) catalysts in the presence of oxygen and water. As compared to other catalytic systems reported in literature for CH-4-SCR in the presence of water, zeolite supported Co-Pd combination catalysts are very active and selective. The most active catalysts, based on MOR and ZSM-5, are characterised by well-dispersed Pd ions in the zeolite that activate methane. Wet ion-exchange is a good method to achieve high dispersion of Pd provided that it is carried out in a competitive manner. The presence of cobalt (Co3O4, Co-oxo ions) boosts SCR activity by oxidising NO to NO2. The activity of the zeolite-based Co-Pd combination catalysts decreases with prolonged times on stream. The severity of the deactivation was found to be different for different zeolite topologies. The characterisation and evaluation of freshly calcined catalysts and spent catalysts show two things that occur during reaction: (1) zeolite solvated metal cations disappear in favour of (inactive) metal oxides and presumably larger metal entities, i.e. loss of dispersion, (2) loss of crystallinity affiliated with steam-dealumination and the concomitant formation of extra-framework aluminium in the presence of water. Both phenomena strongly depend on the (reaction) temperature. The deactivation of Co-Pd-zeolite resembles the deactivation of Pd-zeolite. Hence, future research could encompass the stabilisation of Pd (cations) in the zeolite pores by exploring additives other than cobalt. For this, detailed understanding on the siting of Pd in zeolites is important

  3. Influence of zeolite structure on the activity and durability of Co-Pd-zeolite catalysts in the reduction of NOx with methane

    International Nuclear Information System (INIS)

    Selective catalytic reduction of NO with CH4 was studied over ZSM-5, MOR, FER and BEA zeolite-based cobalt (Co) and palladium (Pd) catalysts in the presence of oxygen and water. As compared to other catalytic systems reported in literature for CH4-SCR in the presence of water, zeolite supported Co-Pd combination catalysts are very active and selective. The most active catalysts, based on MOR and ZSM-5, are characterised by well-dispersed Pd ions in the zeolite that activate methane. Wet ion exchange is a good method to achieve high dispersion of Pd provided that it is carried out in a competitive manner. The presence of cobalt (Co3O4, Co-oxo ions) boosts SCR activity by oxidising NO to NO2. The activity of the zeolite-based Co-Pd combination catalysts decreases with prolonged times on stream. The severity of the deactivation was found to be different for different zeolite topologies. The characterisation and evaluation of freshly calcined catalysts and spent catalysts show two things that occur during reaction: (1) zeolite solvated metal cations disappear in favour of (inactive) metal oxides and presumably larger metal entities, i.e. loss of dispersion; (2) loss of crystallinity affiliated with steam-dealumination and the concomitant formation of extra-framework aluminium (EFAL) in the presence of water. Both phenomena strongly depend on the (reaction) temperature. The deactivation of Co-Pd-zeolite resembles the deactivation of Pd-zeolite. Hence, future research could encompass the stabilisation of Pd (cations) in the zeolite pores by exploring additives other than cobalt. For this, detailed understanding on the siting of Pd in zeolites is important

  4. Alkali resistant Cu/zeolite deNOx catalysts for flue gas cleaning in biomass fired applications

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Riisager, Anders; Fehrmann, Rasmus

    2011-01-01

    Cu/zeolite catalysts have been prepared by wet impregnation and characterized by N2 physisorption, EPR, H2-TPR and NH3-TPD methods. The Cu content was varied to optimize the loading as well as surface acidity. Optimized Cu/zeolite catalysts showed high surface acidity and excellent activity...

  5. Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NOx

    NARCIS (Netherlands)

    Deka, U.; Lezcano-Gonzalez, I.; Weckhuysen, B.M.; Beale, A.M.

    2013-01-01

    Cu-exchanged zeolites have demonstrated widespread use as catalyst materials in the abatement of NOx, especially from mobile sources. Recent studies focusing on Cu-exchanged zeolites with the CHA structure have demonstrated them to be excellent catalysts in the ammonia-assisted selective catalytic r

  6. Dealuminated ZSM—5 Zeolite Catalyst for Ethylene Oligomerization to Liquid Fuels

    Institute of Scientific and Technical Information of China (English)

    NorAishahSaidinaAmin; DidiDwiAnggoro

    2002-01-01

    Ethylene oligomerization using ZSM-5 zeolite was investigated to study the role of Broensted acid sites in the formation of higher hydrocarbons,The oligomeriztion of olefins,dependent on the acidity of ZSM-5 zeolite ,is an important step in the conversion of natural gas to liquied fuels,The framework Si/Al ratio reflects the number of potential acid sites and the acid strength of the ZSM-5 catalyst,ZSM-5 with the mole ratio SiO2/Al2O3 equal to 30 was dealuminated for different periods of time according to the acidic ion-exchange method to produce ZSM-5 with various Si/Al ratios,The FT-IR analysis revealed that the integrated framework aluminum band,non-framework aluminum band,and silanol groups areas of the ZSM-5 zeolites decreased after being dealuminated,The performanc of the dealuminated zeolite was tested for ethylene oligomerization.The results demonstrated that the dealumination of ZSM-5 led to higher ethylene conversion,but the gasoline selectivity was reduced compared to the performance of a ZSM-5 zeolite ,The characterization results revealed the amount of aluminum in the zeolitic framework,the crystallinity of the ZSM-5 zeolite,and the Si/Al ration affected the formation of Broensted acid sites,The number of the Broensted acid sites on the catalyst active sites is important in the olefin conversion to liquied hydrocarbons.

  7. Preparation and Characterization of Zeolite Beta with Low SiO2/Al2O3 Ratio

    Institute of Scientific and Technical Information of China (English)

    Kang Shanjiao; Gong Yanjun; Dou Tao; Zhang Ying; Zheng Yanying

    2007-01-01

    Zeolite beta with a low SiO2/Al2O3 ratio was synthesized by a novel two-step process. The synthesized sample was characterized with XRD,SEM,FTIR,and N2 adsorption-desorption and solid-state MAS NMR. The results showed that aluminium species were inserted into the framework of zeolite beta. The BET surface area,volume,and particle size of the zeolite beta sample decreased with decreasing SiO2/Al2O3 ratio. Our process was proved an efficient route to synthesize zeolite beta with a low SiO2/Al2O3 ratio.

  8. 3D Nanoscale Imaging and Quantitative Analysis of Zeolite Catalysts

    NARCIS (Netherlands)

    Zecevic, J.

    2013-01-01

    Zeolites are crystalline microporous aluminosilicates, one of the most versatile and widely used class of materials.The unique physico-chemical properties of zeolites are found to be irreplaceable in many industrial processes such as separation, adsorption and catalysis. To exploit their full potent

  9. Physico-chemical Characterization of Mo-Hβ Zeolite Catalysts

    Institute of Scientific and Technical Information of China (English)

    LIU Sheng-lin; HUANG Sheng-jun; XIN Wen-jie; QIN xin-hua; XIE Su-juan; XU Long-ya

    2004-01-01

    A series of Mo-impregnated Hβ samples, with MoO3 loading in Hβ zeolite in the mass fraction range of 0. 5%-6.0%, were studied by means of XRD and IR in order to characterize their structures. Mo/Hβ samples' crystallinity almost linearly decreases with increasing the amount of MoO3 loaded. The IR spectra and XRD patterns suggest that the progressive destabilization of the Hβ zeolite structure is caused by increasing Mo loading in (MoO3+Hβ zeolite). During the calcination, Al2(MoO4)3 formed from the dealumination of Hβ zeolite, causes the substantially partial breakdown of the zeolite framework when the Mo loading in MoO3 +Hβ is relatively high.

  10. Some regularities of ion exchange processes in production of zeolite-containing catalysts of cracking

    International Nuclear Information System (INIS)

    The equilibrium of lanthanum- and ammonium ion exchange on Y-type zeolite and amorphous aluminium silicate has been studied, the ions being constituents of a cracking catalyst. Nomograms, permitting to make calculations of cation compositions of each ion-exchanger depending on the composition and total concentration of a solution, are plotted. On the basis of the nomograms the optimum values of the cation composition and concentration of a solution are found, which ensure preparation of a catalyst with a high degree of lanthanum substitution for ammonium in zeolite at a relatively low degree of ammonium penetration into amorphous aluminium silicate are found

  11. Conversion of bio-feedstocks through acid and basic zeolites and catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Buzzoni, R.; Bosetti, A.; Delledonne, D.; Perego, C. [eni S.p.A. Research Centre for Non-Conventional Energy, Novara (Italy). Ist. eni Donegani

    2012-07-01

    Not far in the future, a significant part of fuels and chemicals will be originated by renewable biomass resources. In this respect, zeolite catalysts may help to develop a new generation of bio-fuel and chemical processes. In the new bio-paradigm not only acid but also basic materials will have an important and dominant role. Just to give some examples, basic zeolites based catalysts have been proposed for transesterification of triglyceride esters of fatty acids to biodiesel, for disrupting the lignin polymer by base catalyzed depolymerisation and for one pot lignin liquefaction by hydrogenation. (orig.)

  12. The study of methanol transformation over Cu-modified ZSM-5, Beta zeolite and MCM-41 mesoporous silica using 11C-radioisotope labeling

    International Nuclear Information System (INIS)

    Complete text of publication follows. The copper-containing zeolites and mesoporous silica, among other metals, are suitable for dehydrogenation of methanol. The Cu transition metal determines the route of methanol conversion on supports of ZSM-5 and Beta zeolite as well as MCM-41 mesoporous silica. The catalysis mechanism and the catalytic property are concluded from the composition of methanol derivates over Cu-modified catalysts. The Cu ion-exchanged ZSM-5 and Beta zeolite and MCM-41 mesoporous silica were synthesized and characterized using X-ray power diffraction, scanning electron microscope, nitrogen and pyridine adsorption, X-ray fluorescency and FTIR spectroscopy. The 11C-radioactive labeling method (11C radioisotope, T1/2 = 20 min, is a gamma emitter by annihilation of its positron) is suitable for following the process of 11C-methanol con- version i.e. adsorption, desorption and catalytic transformation as well as for investigation of small amounts of molecules over catalysts by very sensitive radioactivity detectors.The 11C radioisotope was produced at cyclotron and the 11C-methanol was synthesized by a classical radiochemical method. After catalysis the 11C-radioactive and non radioactive volatile products were identified by radiogas chromatography hereby radiolabeled compound and -derivates were distinguished from other participant natural, nonradioactive carbon compounds. Along radioactive products dimethyl ether and small hydrocarbons products were formed by Bronsted acid sites of catalysts while formaldehyde and small methyl formate were formed by Cu metal over bifunctional Cu-ZSM-5, Cu-Beta zeolite and mesoporous Cu-MCM-41 silica at 240 deg C. The detection of methoxy methanol and dimethoxy methane confirmed the simultaneous presence of acid and basic sites of catalysts. At higher temperature (400 deg C) the CO and CO2 final products were dominated. In our previous works, methanol conversion to hydrocarbons was observed by dehydration over acid H

  13. Dealuminated ZSM-5 Zeolite Catalyst for Ethylene Oligomerization to Liquid Fuels

    Institute of Scientific and Technical Information of China (English)

    Nor Aishah Saidina Amin; Didi Dwi Anggoro

    2002-01-01

    Ethylene oligomerization using ZSM-5 zeolite was investigated to study the role of Bronstedacid sites in the formation of higher hydrocarbons. The oligomerization of olefins, dependent on the acidityof ZSM-5 zeolite, is an important step in the conversion of natural gas to liquid fuels. The framework Si/Alratio reflects the number of potential acid sites and the acid strength of the ZSM-5 catalyst. ZSM-5 withthe mole ratio SiO2/Al2O3 equal to 30 was dealuminated for different periods of time according to theacidic ion-exchange method to produce ZSM-5 with various Si/Al ratios. The FT-IR analysis revealedthat the integrated framework aluminum band, non-framework aluminum band, and silanol groups areasof the ZSM-5 zeolites decreased after being dealuminated. The performance of the dealuminated zeolitewas tested for ethylene oligomerization. The results demonstrated that the dealumination of ZSM-5 ledto higher ethylene conversion, but the gasoline selectivity was reduced compared to the performance of aZSM-5 zeolite. The characterization results revealed the amount of aluminum in the zeolitic framework,the crystallinity of the ZSM-5 zeolite, and the Si/Al ratio affected the formation of Bronsted acid sites.The number of the Bronsted acid sites on the catalyst active sites is important in the olefin conversion toliquid hydrocarbons.

  14. Zeolite-based SCR catalysts and their use in diesel engine emission treatment

    Science.gov (United States)

    Narula, Chaitanya K; Yang, Xiaofan

    2015-03-24

    A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al.sup.+3, wherein the catalyst decreases NO.sub.x emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu--Fe-ZSM5, Cu--La-ZSM-5, Fe--Cu--La-ZSM5, Cu--Sc-ZSM-5, and Cu--In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.

  15. Catalytic Pyrolysis of Wild Reed over a Zeolite-Based Waste Catalyst

    OpenAIRE

    Myung Lang Yoo; Yong Ho Park; Young-Kwon Park; Sung Hoon Park

    2016-01-01

    Fast catalytic pyrolysis of wild reed was carried out at 500 °C. Waste fluidized catalytic cracking (FCC) catalyst disposed from a petroleum refinery process was activated through acetone-washing and calcination and used as catalyst for pyrolysis. In order to evaluate the catalytic activity of waste FCC catalyst, commercial HY zeolite catalyst with a SiO2/Al2O3 ratio of 5.1 was also used. The bio-oil produced from pyrolysis was analyzed using gas chromatography/mass spectrometry (GC/MS). When...

  16. Zeolite-based SCR catalysts and their use in diesel engine emission treatment

    Science.gov (United States)

    Narula, Chaitanya K.; Yang, Xiaofan

    2016-08-02

    A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al.sup.+3, wherein the catalyst decreases NO.sub.x emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu--Fe-ZSM5, Cu--La-ZSM-5, Fe--Cu--La-ZSM5, Cu--Sc-ZSM-5, and Cu--In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.

  17. Effect of Co and Mo Loading by Impregnation and Ion Exchange Methods on Morphological Properties of Zeolite Y Catalyst

    OpenAIRE

    Didi Dwi Anggoro; Nur Hidayati; Luqman Buchori; Yayuk Mundriyastutik

    2016-01-01

    Coal tar can be used as an alternative raw material for the production of liquid fuels, such as: gasoline and diesel through hydrogenation and cracking process. Hydrogenation and cracking process requires a catalyst which has metal components for hydrogenation reaction and acid components for cracking reaction. In this study, the Co/Zeolite Y and Co-Mo/Zeolite Y catalysts were prepared by impregnation and ion exchange methods. Characterizations of the catalysts were carried out by X-Ray Diffr...

  18. Study on Aromatization of C6 Aliphatic Hydrocarbons on ZRP Zeolite Catalyst

    Institute of Scientific and Technical Information of China (English)

    Wang Yongjun; Xie Chaogang

    2004-01-01

    The performance of ZRP zeolite catalysts for aromatization of C6 aliphatic hydrocarbons was investigated in a pulsed microreactor. The influence of metal modified ZRP zeolites on aromatization reaction was also studied, coupled with comparison of aromatization tendencies of olefins, paraffins and paraffins with different degrees of chain branching. Test results had shown that the lower the silicon/aluminum ratio in the ZRP zeolite, the higher the aromatization reactivity of aliphatic hydrocarbons. Modification of ZRP zeolite by zinc and its zinc content had apparent impact on the yield and distribution of aromatics. The aromatization tendency of olefins was apparently better than paraffins, while the aromatization tendency of monomethyl paraffins was better than that of straight-chain paraffins with the exception of dimethyl paraffins, which had worse aromatization tendency because of their steric hindrance.

  19. Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Volli, Vikranth; Purkait, M.K., E-mail: mihir@iitg.ernet.in

    2015-10-30

    Highlights: • Flyash was utilized for zeolites preparation for transesterification. • Single phase and highly crystalline zeolite was obtained at flyash/NaOH ratio of 1:1.2. • Si/Al ratio of 2 resulted in the formation of zeolite X. • At 5 wt% of catalyst loading conversion was 84.6%. • The biodiesel obtained has a calorific value of 37.5 MJ/Kg. - Abstract: This work discusses the utilization of flyash for synthesis of heterogeneous catalyst for transesterification. Different types of zeolites were synthesized from alkali fusion followed by hydrothermal treatment of coal flyash as source material. The synthesis conditions were optimized to obtain highly crystalline zeolite based on degree of crystallinity and cation exchange capacity (CEC). The effect of CEC, acid treatment, Si/Al ratio and calcination temperature (800, 900 and 1000 °C) on zeolite formation was also studied. Pure, single phase and highly crystalline zeolite was obtained at flyash/NaOH ratio (1:1.2), fusion temperature (550 °C), fusion time (1 h), hydrothermal temperature (110 °C) and hydrothermal time (12 h). The synthesized zeolite was ion-exchanged with potassium and was used as catalyst for transesterification of mustard oil to obtain a maximum conversion of 84.6% with 5 wt% catalyst concentration, 12:1 methanol to oil molar ratio, reaction time of 7 h at 65 °C. The catalyst was reused for 3 times with marginal reduction in activity.

  20. THE OPTIMIZATION OF PRODUCTION ZEOLITE Y CATALYST FROM RHA BY RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Didi Dwi Anggoro

    2012-02-01

    Full Text Available Rice husk is the milling byproduct of rice and is a major waste product of the agriculture industry. Amorphous silica, commonly referred to as rice husk ash, was extracted from rice husk by acid leaching, pyrolysis, and carbon-removing processes. These properties make the ash a valuable raw material for many industries.  This paper is study of synthesized of zeolite Y from rice husk ash. Zeolite Y synthesis is used for petroleum industry as expensive catalyst. Rice husk was calcined at temperature 700oC for two hours using furnace to produce pure silica. The composition of synthesized of zeolite Y from rice husk was 2.24 Na2O:Al2O3:8SiO2:112 H2O. The gel solution was mixed at room temperature for 24 hours using autoclave. Then, the gel solution was heated with variable temperature and time crystallization. The product zeolite synthesis Y was filtered and washed with distilled water until pH lower than ten, than dried at oven. This product was analyzed with X-Ray Diffraction (XRD. From XRD analyze result indicated that from rice husk ash can produced zeolite synthesis Y which high crystallization degree. The optimum conditions for synthesis of zeolite Y from rice husk ash are temperature at 100oC for 48 hours, silicate at 20%, and aluminate at 10%.

  1. Mesoporous zeolite SBA-15 supported nickel diimine catalysts for ethylene polymerization

    Institute of Scientific and Technical Information of China (English)

    GUO Chao; ZHANG Dao; JIN Guoxin

    2004-01-01

    The novel mesoporous zeolite SBA-15 is successfully used as the support to immobilize late-transition metal nickel diimine catalyst, both in physical and chemical methods, EA, ICP, FT-IR and XRD are applied to characterizing these supported catalysts. The results of ethylene polymerization reveal that these supported catalysts have high catalytic activity as their homogenous counterpart does, moreover, polyethylene with a fibrous morphology is produced due to the channel effect of support, and both the molecular weight and molecular weight distributions of polymers are increased greatly.

  2. Metalloenzyme-Like Zeolites as Lewis Acid Catalysts for C-C Bond Formation.

    Science.gov (United States)

    Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-10-19

    The use of metalloenzyme-like zeolites as Lewis acid catalysts for C-C bond formation reactions has received increasing attention over the past few years. In particular, the observation of direct aldol condensation reactions enabled by hydrophobic zeolites with isolated framework metal sites has encouraged the development of catalytic approaches for producing chemicals from biomass-derived compounds. The discovery of new Diels-Alder cycloaddition/dehydration routes and experimental and computational studies of Lewis acid catalyzed carbonyl-ene reactions have given a further boost to this rapidly evolving field. PMID:26465652

  3. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2006-09-30

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of mesoporous aluminosilicate catalyst, Al-SBA-15, containing strong Broensted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt% Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst will be evaluated for the conversion of heavy petroleum feedstocks to naphtha and middle distillates.

  4. The influence of zeolite surface-aluminum species on the deactivationof CuZnAl/zeolite hybrid catalysts for the direct DME synthesis

    OpenAIRE

    García Trenco, Andrés; MARTINEZ FELIU, AGUSTIN

    2014-01-01

    The influence of the nature and amount of zeolite-surface Al species on the deactivation behavior ofbifunctional CZA/zeolite hybrid catalysts during the direct DME synthesis (260◦C, 4.0 MPa) from syn-gas (66% H2, 30% CO, 4% CO2) has been studied. To this aim, a series of delaminated ITQ-2 zeolites hasbeen prepared by acid treatment and steaming of an Al-ITQ-2 (Si/Al = 12) sample as well as by impreg-nation of an all-silica Si-ITQ-2 sample with Al(NO3)3(aq.) and calcination, and used as ...

  5. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED STABLE NANOPOROUS HOST

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2006-06-20

    Al-SBA-15 mesoporous catalysts with strong Broensted acid sites and Al stabilized in a totally tetrahedral coordination was synthesized from the addition of hydrothermally aged zeolite Y precursor to SBA-15 synthesis mixture under mildly acidic condition of pH 5.5. The materials possessed surface areas between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm and pore volumes up 1.03 cm{sup 3}, which were comparable to parent SBA-15 synthesized under similar conditions. Up to 2 wt. % Al was present in the most aluminated sample that was investigated, and the Al remained stable in totally tetrahedral coordination, even after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. The catalyst's activity was not affected by the aging time of the precursor for up to the 24 hr aging time investigated. This method of introducing Al and maintaining it in a total tetrahedral coordination is very effective, in comparison to other direct and post synthesis alumination methods reported. The catalytic performance of the zeolite Y/SBA-15 composite materials will be compared with that of pure SBA-15. The catalysts will then be evaluated for the conversion of heavy petroleum feedstocks.

  6. Liquid and Gaseous Fuel from Waste Plastics by Sequential Pyrolysis and Catalytic Reforming Processes over Indonesian Natural Zeolite Catalysts

    Directory of Open Access Journals (Sweden)

    Mochamad Syamsiro

    2014-08-01

    Full Text Available In this study, the performance of several differently treated natural zeolites in a sequential pyrolysis and catalytic reforming of plastic materials i.e. polypropylene (PP and polystyrene (PS were investigated. The experiments were carried out on two stage reactor using semi-batch system. The samples were degraded at 500°C in the pyrolysis reactor and then reformed at 450°C in the catalytic reformer. The results show that the mordenite-type natural zeolites could be used as efficient catalysts for the conversion of PP and PS into liquid and gaseous fuel. The treatment of natural zeolites in HCl solution showed an increase of the surface area and the Si/Al ratio while nickel impregnation increased the activity of catalyst. As a result, liquid product was reduced while gaseous product was increased. For PP, the fraction of gasoline (C5-C12 increased in the presence of catalysts. Natural zeolite catalysts could also be used to decrease the heavy oil fraction (>C20. The gaseous products were found that propene was dominated in all conditions. For PS, propane and propene were the main components of gases in the presence of nickel impregnated natural zeolite catalyst. Propene was dominated in pyrolysis over natural zeolite catalyst. The high quality of gaseous product can be used as a fuel either for driving gas engines or for dual-fuel diesel engine.

  7. Dynamic Nuclear Polarization NMR Enables the Analysis of Sn-Beta Zeolite Prepared with Natural Abundance 119Sn Precursors

    OpenAIRE

    Gunther, William R.; Michaelis, Vladimir K.; Caporini, Marc A.; Griffin, Robert G.; Román-Leshkov, Yuriy

    2014-01-01

    The catalytic activity of tin-containing zeolites, such as Sn-Beta, is critically dependent on the successful incorporation of the tin metal center into the zeolite framework. However, synchrotron-based techniques or solid-state nuclear magnetic resonance (ssNMR) of samples enriched with 119Sn isotopes are the only reliable methods to verify framework incorporation. This work demonstrates, for the first time, the use of dynamic nuclear polarization (DNP) NMR for characterizing zeolites contai...

  8. Suppression of methane formation during Fisher-Tropsch synthesis using manganese-cobalt oxide supported on H-5A zeolite as a catalyst

    Institute of Scientific and Technical Information of China (English)

    Syed Tajammul Hussain; Muhammad Mazhar; Muhammad Arif Nadeem

    2009-01-01

    In Fischer-Tropsch synthesis reaction, methane formation is one of the side reactions which must be suppressed in order to get better catalytic selectivity for light olefins. In the present study, we have modified cobalt based Fischer-Tropsch catalyst and developed a process to minimize methane production, consequently to produce maximum yield of light olefins. Manganese-cobalt oxide supported on H-5A zeolite catalyst was synthesized using modified H-5A zeolite, to increase its surface acid sites. Increased acidity of zeolite plays a major part in the suppression of methane formation during the Fischer-Tropsch reaction. The modified zeolite results in the electronic modification of catalyst surface by creating new active catalytic sites. The results are compared with other supported catalysts along with unmodified zeolite. Appreciable reduction in methane formation is achieved on modified zeolite supported catalyst in comparison with unsupported catalyst.

  9. Metal-Exchanged β Zeolites as Catalysts for the Conversion of Acetone to Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Aurora J. Cruz-Cabeza

    2012-01-01

    Full Text Available Various metal-β zeolites have been synthesized under similar ion-exchange conditions. During the exchange process, the nature and acid strength of the used cations modified the composition and textural properties as well as the Brönsted and Lewis acidity of the final materials. Zeolites exchanged with divalent cations showed a clear decrease of their surface Brönsted acidity and an increase of their Lewis acidity. All materials were active as catalysts for the transformation of acetone into hydrocarbons. Although the protonic zeolite was the most active in the acetone conversion (96.8% conversion, the metal-exchanged zeolites showed varied selectivities towards different products of the reaction. In particular, we found the Cu-β to have a considerable selectivity towards the production of isobutene from acetone (over 31% yield compared to 7.5% of the protonic zeolite. We propose different reactions mechanisms in order to explain the final product distributions.

  10. Comparative investigations of zeolite catalyst deactivation by coking in the conversion of methanol to hydrocarbons

    OpenAIRE

    Evensen, Kjetil Gurholt

    2014-01-01

    With large countries as India and China in tremendous development accompanied by a growing worldwide population, questions arise in how energy demands can be met in the post-oil society. The methanol-to-hydrocarbon process, catalysed by Brønsted acidic zeolites, constitutes an alternative route for the production of gasoline and other valuable hydrocarbons from feedstocks such as natural gas and coal. Catalyst deactivation by coke formation is nevertheless a big concern, and a better understa...

  11. Shape-selective reactions with zeolite catalysts. VII. Alkylation and disproportionation of cumene to produce diisopropylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Kaeding, W.W. (Mobil Chemical Co., Princeton, NJ (USA))

    1989-12-01

    Cumene disproportionates to diisopropylbenzenes (DIPB) and benzene over Mobil ZSM-12 zeolite catalyst. In addition, cumene is alkylated with propylene to give DIPB with high selectivity. With cumene alkylation, para-DIPB is favored (65-80%), with 20-30% meta and 0-5% ortho isomers also being produced. This is in direct contrast to thermodynamic considerations, where meta-DIPB is the favored isomer.

  12. Electrophilic Aromatic Iodine Substitution of 1-[(p-TolyliminoMethyl]-Naphthalen-2-Ol In Zeolite Catalyst

    Directory of Open Access Journals (Sweden)

    Murat Gündüz

    2011-12-01

    Full Text Available In this study, the naphtholic Schiff base has been reacted with iodine in the catalyst of natural zeolite clinoptilolite in order to synthesize iodine substituted Schiff base. The isolated product structure has been determined by IR, UV, 1H-NMR, 13C-NMR, Mass spectroscopy and elemental analysis. Under our reaction conditions it's found that the iodine is substituted to the phenyl ring of the naphtholic Schiff base.

  13. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2007-03-31

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of a mesoporous aluminosilicate catalyst, AlSBA-15. The Al-SBA-15 mesoporous catalyst contains strong Br{umlt o}nsted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt % Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at a temperature of 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into a psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst is being evaluated for the conversion of a heavy petroleum feedstock to naphtha and middle distillates. This phase was significantly delayed during the past six months due to a serious malfunction of the fume hoods in the Clark Atlanta University's Research Center for Science and Technology, where the project is being conducted. The fume hood system was repaired and the catalyst evaluation is now underway.

  14. Evaluation of photocatalytic activities of supported catalysts on NaX zeolite or activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Brites-Nóbrega, Fernanda F. de [Chemical Engineering Department, Universidade Estadual de Maringá (UEM), Av. Colombo, 5790, CEP 87020-900 Maringá, PR (Brazil); Sanitary and Environmental Engineering Department, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG (Brazil); Polo, Aldino N.B.; Benedetti, Angélica M. [Chemical Engineering Department, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua da Faculdade, 645, CEP 85903-000 Toledo, PR (Brazil); Leão, Mônica M.D. [Sanitary and Environmental Engineering Department, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG (Brazil); Slusarski-Santana, Veronice, E-mail: veronice.santana@unioeste.br [Chemical Engineering Department, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua da Faculdade, 645, CEP 85903-000 Toledo, PR (Brazil); Fernandes-Machado, Nádia R.C. [Chemical Engineering Department, Universidade Estadual de Maringá (UEM), Av. Colombo, 5790, CEP 87020-900 Maringá, PR (Brazil)

    2013-12-15

    Highlights: • The synergic effect between ZnO and NaX was positive, which increased its activity. • The best results were obtained at pH 3 and 9 with ZnO/NaX and at pH 3 with Nb{sub 2}O{sub 5}/AC. • High degradation and considerable mineralization were attained with 10% ZnO/NaX. • ZnO and Nb{sub 2}O{sub 5} supported on NaX and AC are promising alternatives as photocatalysts. -- Abstract: This study aimed to evaluate the photocatalytic activity of ZnO and Nb{sub 2}O{sub 5} catalysts, both supported on NaX zeolite and activated charcoal (AC). The synergistic effect between oxide and support and the influence of solution pH (3, 7 and 9) on photocatalytic degradation of reactive blue 5G (C.I. 222) were analyzed. The catalysts Nb{sub 2}O{sub 5}/NaX, Nb{sub 2}O{sub 5}/AC and ZnO/NaX, ZnO/AC with 5 and 10% (wt%) were prepared by wet impregnation. The results showed that the catalysts exhibit quite different structural and textural properties. The synergic effect between ZnO and NaX support was higher than that with the activated charcoal, showing that these catalysts were more efficient. The most photoactive catalyst was 10% ZnO/NaX which showed 100% discoloration of the dye solution at pH 3, 7 and 9 after 0.5, 5 and 2 h of irradiation, respectively. The hydrolytic nature of zeolite favored the formation of surface hydroxyl radicals, which increased the activity of the photocatalyst. Thus, catalysts supported on NaX zeolite are promising for use in photocatalysis.

  15. A study of the activity of a zeolite catalyst with reference to isomerisation of hexene

    International Nuclear Information System (INIS)

    At Sasol the zeolite catalyst HZ-1 is used to isomerize short-chain hydrocarbons. In this reaction unwanted organic acids are also formed. This investigation has as focal point the interaction between one of these acids, n-butyric acid, and the catalyst. This study consisted of kinetic experiments with a continous reactor as well as a pulse reactor. Temperature programmed desorption was also used. The following techniques was used: (i) Nitrogen adsorption to determine the surface areas as well as the pore size distributions; (ii) Electron microscopy; (iii) X-ray diffraction; (iv) X-ray fluorescence; (v) Energy dispersive X-ray fluorescence. It was determined that the HZ-1 catalyst is a synthetic X-type zeolite. The most important result of the investigation concerning the interaction of the n-butyric acid was that the substance is responsible for the poisening. Butyric acid plays an important role in the forming of saturated hydrocarbons. It was found that as a result of the reaction of the hexene and the butyric acid with the zeolite, a wide spectrum of products are formed

  16. Zeolite Based SCR Catalysts - An Interesting Alternative To Vanadia-Titania Systems

    Energy Technology Data Exchange (ETDEWEB)

    Devadas, M.; Kroecher, O.; Wokaun, A.

    2004-03-01

    Metal exchanged zeolite catalysts were tested for the selective catalytic reduction of NO{sub x} with ammonia (NH{sub 3}-SCR) and compared with a vanadia based catalyst. With pure NO in the feed Cu-ZSM5 exhibited a better NO{sub x} conversion than Fe-ZSM5 and V{sub 2}O{sub 5}/WO{sub 3}-TiO{sub 2} at all temperatures. The main drawback of Cu-ZSM5 is the required excess of ammonia due to oxidation of NH{sub 3} to N{sub 2} (SCO). For a feed ratio of NO:NO{sub 2} = 0.5, all catalysts showed a high activity at elevated temperatures, but Fe-ZSM5 and Cu-ZSM5 performed better than the vanadia catalyst at lower temperatures. (author)

  17. The curious case of zeolite-clay/binder interactions and their consequences for catalyst preparation.

    Science.gov (United States)

    Whiting, Gareth T; Chowdhury, Abhishek Dutta; Oord, Ramon; Paalanen, Pasi; Weckhuysen, Bert M

    2016-07-01

    Zeolite-based catalyst bodies are commonly employed in a range of important industrial processes. Depending on the binder and shaping method chosen, vast differences in the reactivity, selectivity and stability are obtained. Here, three highly complementary micro-spectroscopic techniques were employed to study zeolite ZSM-5-binder interactions in SiO2-, Al2O3-, SiO2 : Al2O3- (2 : 1 mix) and kaolinite-bound catalyst pellets. We establish how their preparation influences the zeolite-clay/binder interactions. Using thiophene as an acid-catalyzed staining reaction, light absorbing oligomers produced in each sample were followed. To our surprise, kaolinite decreased the overall reactivity of the sample due to the phase change of the binder, creating a hard impenetrable outer layer. Aluminum migration to the zeolite was observed when Al2O3 was selected as a binder, creating additional Brønsted acid sites, which favored the formation of ring-opened thiophene oligomers compared to the larger oligomer species produced when SiO2 was used as a binder. In the latter case, the interaction of the Si-OH groups in the binder with thiophene was revealed to have a large impact in creating such large oligomer species. Furthermore, the combination of a SiO2 : Al2O3 mix as a binder enhanced the reactivity, possibly due to the creation of additional Brønsted acid sites between the two binder components during pellet preparation. It is evident that, independent of the shaping method, the intimate contact between the zeolite and binder heavily impacts the reactivity and product selectivity, with the type of binder playing a vital role. PMID:27101314

  18. Catalytic Pyrolysis of Wild Reed over a Zeolite-Based Waste Catalyst

    Directory of Open Access Journals (Sweden)

    Myung Lang Yoo

    2016-03-01

    Full Text Available Fast catalytic pyrolysis of wild reed was carried out at 500 °C. Waste fluidized catalytic cracking (FCC catalyst disposed from a petroleum refinery process was activated through acetone-washing and calcination and used as catalyst for pyrolysis. In order to evaluate the catalytic activity of waste FCC catalyst, commercial HY zeolite catalyst with a SiO2/Al2O3 ratio of 5.1 was also used. The bio-oil produced from pyrolysis was analyzed using gas chromatography/mass spectrometry (GC/MS. When the biomass-to-catalyst ratio was 1:1, the production of phenolics and aromatics was promoted considerably by catalysis, whereas the content of oxygenates was affected little. Significant conversion of oxygenates to furans and aromatics was observed when the biomass-to-catalyst ratio of 1:10 was used. Activated waste FCC catalyst showed comparable catalytic activity for biomass pyrolysis to HY in terms of the promotion of valuable chemicals, such as furans, phenolics and aromatics. The results of this study imply that waste FCC catalyst can be an important economical resource for producing high-value-added chemicals from biomass.

  19. Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization

    Directory of Open Access Journals (Sweden)

    F. V. Barsi

    2009-06-01

    Full Text Available Isomerization of linear alkanes has had considerable importance for the refining industry because the isomers formed in this reaction have high octane number. Most works reported in the literature studied the use of bifunctional catalysts, i.e., ones that have acid sites and metallic sites. In this study, bifunctional monometallic (Ni or Pt and bimetallic catalysts (Pt-Ni, using HUSY zeolite as the support, were prepared in order to verify the role of the metal content and composition on the catalytic properties for n-hexane isomerization. The method used for metal dispersion in the zeolite was competitive ion exchange using ammine complexes [Ni(NH36]Cl2 and [Pt(NH34]Cl2 as precursors. Four series of catalysts with constant atomic metal content had total metal amounts between 130 and 280 µmol M/g cat. Catalysts were characterized by temperature programmed reduction (TPR and subjected to catalytic evaluation for n-hexane isomerization at 250 ºC and 1 atm using H2/C6 = 9 molar ratio. TPR results show an easier reducibility of Ni+2 cations in the presence of Pt, which was evidenced by the displacement of the reduction peak of those cations towards lower temperatures in bimetallic catalysts. The bimetallic catalysts presented a higher activity in the isomerization of n-hexane when compared to the monometallic ones, as well better stability as the Pt content in the solid increases. The results of the activity as a function of the Pt content in the bimetallic catalysts show a maximum value around 50% of Pt. An addition of Pt above this critical value leads to a small decrease of the catalytic activity.

  20. 不同结构分子筛的甲醇制丙烯催化性能%Methanol to propylene reaction over zeolite catalysts with different topologies

    Institute of Scientific and Technical Information of China (English)

    胡思; 巩雁军; 张卿; 张军亮; 张亚飞; 杨飞鹰; 窦涛

    2012-01-01

    Conversion of methanol to propylene (MTP) was comparatively studied over four zeolites with different topologies,i. e. SAPO-34,ZSM-48,ZSM-5 and beta at atmospheric pressure,450℃ and WHSV=1. 5 h-1 . The correlations between product selectivity,catalyst stability and zeolite topology were investigated. Besides,coking behavior of the four zeolite catalysts during the reaction was also discussed. Among the studied catalysts,SAPO-34 with narrow 8-member ring openings showed the highest selectivity to light olefins (ethylene and propylene). However,it seems that the high density of acid site and the large cages of SAPO-34 resulted in an extremely fast coking deactivation. Beta zeolite with wide pore structure exhibited high propylene/ethylene (P/E) ratio,but the propylene selectivity was somewhat low due to the product distribution shifting towards heavier hydrocarbons. In contrast,ZSM-48 and ZSM-5 zeolite with 10-member ring openings gave higher propylene selectivity,but their deactivation rates were quite different. ZSM-48 zeolite with symmetrical straight channels underwent fast deactivation after a few hours on stream,while ZSM-5 zeolite with intersecting channel system presented superior resistance to coke deactivation. The significant difference in catalytic performance of the four zeolites could be mainly ascribed to the combined effect of shape selectivity for intermediates and products controlled by zeolites topology.%在常压、空速为1.5h-1、反应温度为450℃条件下,考察了4种具有不同拓扑结构的分子筛(SAPO-34、ZSM-48、ZSM-5和beta)在甲醇转化制丙烯(MTP)反应中的催化性能,并对催化剂的积炭失活行为进行了研究.结果表明,从8元环到12元环,分子筛孔口尺寸越小,低碳烯烃(乙烯+丙烯)选择性越高,积炭失活速率也越快.孔道尺寸越大,丙烯/乙烯(P/E)比越高,但产物分布向C4以上组分偏移,丙烯选择性降低.10元环分子筛具有较高的丙烯选择性,但催化剂

  1. Ni catalysts with different promoters supported on zeolite for dry reforming of methane

    KAUST Repository

    Alotaibi, Raja

    2015-07-08

    Dry reforming of methane (DRM) is considered a high endothermic reaction with operating temperatures between 700 and 1000 °C to achieve high equilibrium conversion of CH4 and CO2 to the syngas (H2 and CO). The conventional catalysts used for DRM are Ni-based catalysts. However, many of these catalysts suffer from the short longevity due to carbon deposition. This study aims to evaluate the effect of La and Ca as promoters for Ni-based catalysts supported on two different zeolite supports, ZL (A) (BET surface area = 925 m2/g, SiO2/Al2O3 mol ratio = 5.1), and ZL (B) (BET surface area = 730 m2/g, SiO2/Al2O3 mol ratio = 12), for DRM. The physicochemical properties of the prepared catalysts were characterized with XRD, BET, TEM and TGA. These catalysts were tested for DRM in a microtubular reactor at reaction conditions of 700 °C. The catalyst activity results show that the catalysts Ni/ZL (B) and Ca-Ni/ZL (B) give the highest methane conversion (60 %) with less time on stream stability compared with promoted Ni on ZL (A). In contrast, La-containing catalysts, La-Ni/ZL (B), show more time on stream stability with minimum carbon content for the spent catalyst indicating the enhancement of the promoters to the Ni/ZL (A) and (B), but with less catalytic activity performance in terms of methane and carbon dioxide conversions due to rapid catalyst deactivation.

  2. Green chemistry perspectives of methane conversion via oxidative methylation of aromatics over zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Adebajo, M.O. [University of Queensland, St Lucia, Qld. (Australia)

    2007-06-15

    This paper provides a general overview of the recent work that we and other researchers have done on the utilisation of methane for catalytic methylation of aromatic compounds and for direct coal liquefaction for the production of liquid hydrocarbons. In particular, the paper presents a detailed description of more recent substantial experimental evidence that we have provided for the requirement of oxygen as a stoichiometry reactant for benzene methylation with methane over moderately acidic zeolite catalysts. The reaction, which has been termed 'oxidative methylation', was thus postulated to involve a two-step mechanism involving intermediate methanol formation by methane partial oxidation, followed by benzene methylation with methanol in the second step. However, strongly acidic zeolites can cause cracking of benzene to yield methylated products in the absence of oxygen. The participation of methane and oxygen, and the effective use of zeolite catalysts in this methylation reaction definitely have some positive green chemistry implications. Thus, the results of these previous studies are also discussed in this review in light of the principles and tools of green chemistry. Various metrics were used to evaluate the greenness, cost-effectiveness, and material and energy efficiency of the oxidative methylation reaction.

  3. Synthesis and Application of a Zeolite-containing Composite Material Made from Spent FCC Catalyst

    Institute of Scientific and Technical Information of China (English)

    Zheng Shuqin; He Lijun; YaoHua; RenShao; YuHongxia; Zhang Jiance

    2015-01-01

    Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger speciifc surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking (FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resis-tance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the oleifn content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.

  4. Direct evidence of advantage of using nanosized zeolite Beta for ISFET-based biosensor construction

    International Nuclear Information System (INIS)

    Analytical characteristics of urease- and butyrylcholinesterase (BuChE)- based ion sensitive field-effect transistor (ISFET) biosensors were investigated by the incorporation of zeolite Beta nanoparticles with varying Si/Al ratios. The results obtained by the zeolite-modified ISFET transducers suggested that the Si/Al ratio strongly influenced the biosensor performances due to the electrostatic interactions among enzyme, substrate, and zeolite surface as well as the nature of the enzymatic reaction. Using relatively small nanoparticles (62.7 ± 10, 76.2 ± 10, and 77.1 ± 10 nm) rather than larger particles, that are widely used in the literature, allow us to produce more homogenous products which will give more control over the quantity of materials used on the electrode surface and ability to change solely Si/Al ratio without changing other parameters such as particle size, pore volume, and surface area. This should enable the investigation of the individual effect of changing acidic and electronic nature of this material on the biosensor characteristics. According to our results, high biosensor sensitivity is evident on nanosize and submicron size particles, with the former resulting in higher performance. The sensitivity of biosensors modified by zeolite particles is higher than that to the protein for both types of biosensors. Most significantly, our results show that the performance of constructed ISFET-type biosensors strongly depends on Si/Al ratio of employed zeolite Beta nanoparticles as well as the type of enzymatic reaction employed. All fabricated biosensors demonstrated high signal reproducibility and stability for both BuChE and urease.

  5. Selective Production of Aromatics from 2-Octanol on Zinc Ion-Exchanged MFI Zeolite Catalysts

    Directory of Open Access Journals (Sweden)

    Masakazu Iwamoto

    2015-12-01

    Full Text Available The aromatization of 2-octanol derived from castor oil as a byproduct in the formation of sebacic acid was investigated on various zeolite catalysts. Zn ion-exchanged MFI (ZSM-5 zeolites with small silica/alumina ratios and zinc contents of 0.5 to 2.0 wt. % were determined to exhibit good and stable activity for the reaction at 623 to 823 K. The yield of aromatics was 62% at 773 K and the space velocity 350 to 1400 h−1. The temperature and contact time dependences of the product distributions indicated the reaction pathways of 2-octanol→dehydration to 2-octene→decomposition to C5 and C3 compounds→further decomposition to small alkanes and alkenes→aromatization with dehydrogenation. Alcohols with carbon numbers of 5 to 8 exhibited similar distributions of products compared to 2-octanol, while corresponding carbonyl compounds demonstrated different reactivity.

  6. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    Full Text Available The necessity to remove organic pollutants from the industrial wastewater streams has forced the development of new technologies that can produce better results in terms of pollutant removal and process efficiency in combination with low investment and operating costs. One of the new emerging processes with a potential to fulfil these demands is catalytic wet peroxide oxidation, commonly known as the CWPO process. The oxidative effect of the hydrogen peroxide is intensified by the addition of a heterogeneous catalyst that can reduce the operating conditions to atmospheric pressure and temperatures below 383 K. Zeolites, among others, are especially appealing as catalysts for selective oxidation processes due to their unique characteristics such as shape selectivity, thermal and chemical stability, and benign effect on nature and the living world. In this work, catalytic activity, selectivity and stability of Cu/Y-5 zeolite in phenol oxidation with hydrogen peroxide was examined. Catalyst samples were prepared by ion exchange method of the protonic form of commercial zeolite. The catalysts were characterized with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and AAS elemental analysis, while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and in the temperature range from 323 to 353 K. The catalyst was prepared in powdered form and the mass fraction of the active metal component on the zeolite was 3.46 %. The initial concentration of phenol solution was equal to 0.01 mol dm−3 and the concentration of hydrogen peroxide ranged from 0.01 to 0.10 mol dm−3. The obtained experimental data was tested to a proposed kinetic model for phenol oxidation r = k1 cF cVP and hydrogen peroxide decomposition rHP = k2 cHP. The kinetic parameters were estimated using the Nelder

  7. Photodecolorization of Eriochrome Black T using NiS-P zeolite as a heterogeneous catalyst

    International Nuclear Information System (INIS)

    NiS-P zeolite was prepared by ion exchange and precipitation procedures and it was characterized by FT-IR, SEM and thermal methods. The prepared composite was used as a catalyst in the photodecolorization process of Eriochrome Black T (E.B.T.) dye in aqueous solution under UV irradiation. The effect of key operating parameters such as catalyst dosage, temperature, initial concentration of the dye and initial pH of the solutions were studied on the decolorization process of dye. The primary objective was to determine the optimal conditions for each of the parameters. UV-vis spectrophotometric measurements were performed for the determination of decolorization and mineralization extents. The optimal operation parameters were found as follows: pH 9.1, 0.8 g L-1 of catalyst loading and 40 ppm of dye concentration. The NiS particles out of zeolite framework did not show significant decolorization efficiency. The decolorization process obeyed first-order kinetics.

  8. Photodegradation of Methyl Green by Nickel-Dimethylglyoxime/ZSM-5 Zeolite as a Heterogeneous Catalyst

    Directory of Open Access Journals (Sweden)

    Alireza Nezamzadeh-Ejhieh

    2013-01-01

    Full Text Available Ni-DMG/ZSM-5 zeolite was prepared by ion exchange and complexation procedures. FT-IR, XRD, SEM, TG, and DTG methods were used for characterization of the raw and modified samples. The prepared composite was used as a catalyst in the photodegradation process of an aqueous solution methyl green (MG dye under UV irradiation. The effect of key operating parameters such as catalyst dosage, temperature, the initial concentration of the dye, and pH of the samples was studied on the degradation extent of the dye. UV-Vis spectrophotometric measurements were performed for determination of the decolorization and mineralization extents. The optimal operation parameters were found as follows: , temperature of 60°C, 0.6 g L−1 of the catalyst, and 40 ppm of the dye concentration. The Ni-DMG particles out of zeolite framework did not show significant degradation efficiency. The degradation process obeys the first-order kinetic.

  9. Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production.

    Science.gov (United States)

    Volli, Vikranth; Purkait, M K

    2015-10-30

    This work discusses the utilization of flyash for synthesis of heterogeneous catalyst for transesterification. Different types of zeolites were synthesized from alkali fusion followed by hydrothermal treatment of coal flyash as source material. The synthesis conditions were optimized to obtain highly crystalline zeolite based on degree of crystallinity and cation exchange capacity (CEC). The effect of CEC, acid treatment, Si/Al ratio and calcination temperature (800, 900 and 1000 °C) on zeolite formation was also studied. Pure, single phase and highly crystalline zeolite was obtained at flyash/NaOH ratio (1:1.2), fusion temperature (550 °C), fusion time (1 h), hydrothermal temperature (110 °C) and hydrothermal time (12h). The synthesized zeolite was ion-exchanged with potassium and was used as catalyst for transesterification of mustard oil to obtain a maximum conversion of 84.6% with 5 wt% catalyst concentration, 12:1 methanol to oil molar ratio, reaction time of 7 h at 65 °C. The catalyst was reused for 3 times with marginal reduction in activity.

  10. Production of alkyl-aromatics from light oxygenates over zeolite catalysts for bio-oil refining

    Science.gov (United States)

    Hoang, Trung Q.

    Upgrading of light oxygenates derived from biomass conversion, such as propanal and glycerol, to more valuable aromatics for biofuels has been demonstrated on zeolite catalysts. Aromatics with a high ratio of C 9/(C8+C7) and little benzene are produced at much higher yield from oxygenates than from olefins at mild conditions over HZSM-5. It is proposed that C9 aromatics are predominantly produced via acid-catalyzed aldol condensation. This reaction pathway is different from the pathway of propylene and other hydrocarbon aromatization that occurs via a hydrocarbon pool at more severe conditions with major aromatic products C6 and C7. In fact, investigation on the effect of crystallite size HZSM-5 has shown a higher ratio of C9/(C8+C 7) aromatics on small crystallite. This is due to faster removal of products from the shorter diffusion path length. As a result, a longer catalyst lifetime, less isomerization, and less cracking were observed on small crystallites. Beside crystallite size, pore geometry of zeolites was also found to significantly affect aromatic production for both conversion of propanal and glycerol. It is shown that the structure of the HZSM-22, with a one-dimensional and narrower channel system, restricts the formation of aromatics. In contrast, a higher yield of aromatic products is observed over HZSM-5 with its three-dimensional channel system. By increasing channel dimension and connectivity of the channels, increasing catalyst activity was also observed due to more accessible acid sites. It was also found that glycerol is highly active for dehydration on zeolites to produce high yields of acrolein (propenal), a high value chemical. To maximize aromatics from glycerol conversion, HZSM-5 and HY were found to be effective. A two-bed reactor of Pd/ZnO and HZSM-5 was used to first deoxygenate/hydrogenate glycerol over Pd/ZnO to intermediate oxygenates that can further aromatize on HZSM-5. The end results are very promising with significant improvement

  11. Pure Silica Zeolite Beta Membrane: A Potential Low Dielectric Constant Material For Microprocessor Application

    Science.gov (United States)

    Fong, Yeong Yin; Bhatia, Subhash

    The semiconductor industry needs low dielectric constant (low k-value) materials for more advance microprocessor and chips by reducing the size of the device features. In fabricating these contents, a new material with lower k-value than conventional silica (k = 3.9-4.2) is needed in order to improve the circuit performance. The choice of the inorganic zeolite membrane is an attractive option for low k material and suitable for microprocessor applications. A pure silica zeolite beta membrane was synthesized and coated on non-porous stainless steel support using insitu crystallization in the presence of tetraethylammonium hydroxide, TEA (OH), as structure directing agent, fumed silica, HF and deionized water at pH value of 9. The crystallization was carried out for the duration of 14 days under hydrothermal conditions at 130°C. The membrane was characterized by thermogravimetric analysis (TGA), nitrogen adsorption and Scanning Electron Microscope (SEM). SEM results show a highly crystalline; with a truncated square bipyramidal morphology of pure silica zeolite beta membrane strongly adhered on the non-porous stainless steel support. In the present work, the k-value of the membrane was measured as 2.64 which make it suitable for the microprocessor applications.

  12. Co-production of hydrogen and carbon nanofibers from methane decomposition over zeolite Y supported Ni catalysts

    International Nuclear Information System (INIS)

    Highlights: • Methane cracking requires an optimum temperature range of 550–600 °C for H2 yield. • At 550 and 600 °C, catalyst showed longer activity for the whole test. • At 600 °C, a 614.25 gc/gNi of carbon was obtained using 30% Ni/Y zeolite catalysts. • Produced filamentous carbon has the same diameter as the metallic nickel itself. • VHSV has reverse and non-linear relevancy to the weight of Ni/Y zeolite catalyst. - Abstract: The objective of this paper is to study the influences of different operating conditions on the hydrogen formation and properties of accumulated carbon from methane decomposition using zeolite Y supported 15% and 30% Ni, respectively, at a temperature range between 500 and 650 °C in a pilot scale fixed bed reactor. The temperature ramp was showed a significant impact on the thermo-catalytic decomposition (TCD) of methane. An optimum temperature range of 550–600 °C were required to attain the maximum amount of methane conversion and revealed that at 550 and 600 °C, catalyst showed longer activity for the whole studied of experimental runs. Additionally, at 550 °C, the methane decomposition is two times longer for 30% Ni/Y zeolite than that for 15% Ni/Y zeolite catalyst, whereas it is almost three times higher at 500 °C. A maximum carbon yield of 614.25 and 157.54 gc/gNi were reported after end of the complete reaction at 600 °C with 30% and 15% Ni/Y zeolite catalyst, respectively. From BET, TPD, and XRD analysis, we had reported that how the chemistry between the TCD of methane and metal content of the catalysts could significantly affect the hydrogen production as well as carbon nano-fibers. TEM analysis ensured that the produced carbon had fishbone type structures with a hollow core and grew from crystallites of Ni anchored on the external surface of the catalysts and irrespective of the metal loadings, the whisker types of nano filaments were formed as confirmed from FESEM analysis. Nevertheless, the effect of

  13. Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation

    Directory of Open Access Journals (Sweden)

    Soldatkin O. O.

    2014-07-01

    Full Text Available Aim. Optimization of a new method of enzyme immobilization for amperometric biosensor creation. Methods. The amperometric biosensor with glucose oxidase immobilized on zeolites as bioselective elements and platinum disk electrode as transducers of biochemical signal into the electric one was used in the work. Results. The biosensors based on glucose oxidase adsorbed on zeolites were characterized by a higher sensitivity to glucose and a better inter-reproducibility. The best analytical characteristics were obtained for the biosensors based on nano beta zeolite. It has been found that an increase in the amount of zeolite on the surface of amperometric transducer may change such biosensor parameters as sensitivity to the substrate and duration of the analysis. Conclusions. The proposed method of enzyme immobilization by adsorption on zeolites is shown to be quite promising in the development of amperometric biosensors and therefore should be further investigated.

  14. Effect of coke formation on the transformations of butylenes on a high-silica zeolite catalyst

    Science.gov (United States)

    Gashimov, F. A.; Kozharov, A. I.; Nadirov, P. A.; Mirzai, J. I.

    2010-08-01

    The transformations of butylenes on a high-silica zeolite catalyst (HHSZC) at 423-773 K were studied. Liquid reaction products formed above 443 K. The liquid phase of the reaction products mainly consisted of aliphatic hydrocarbons at 448-523 K and aromatic hydrocarbons at 623-723 K. The catalyst activity in the formation of liquid products did not show itself until 4-6% consolidation products (CPs) accumulated on its surface. DTA and gravimetric studies showed that CPs were nonuniform in composition. Some of the CPs were removed by decomposition under nitrogen, while others by oxidation with oxygen. It was inferred from ammonia adsorption data that the accumulation of CPs on the surface of HHSZC led to a decrease in the number of acid centers.

  15. Production of C3+ Olefins and Propylene from Ethanol by Zr-Modified H-ZSM-5 Zeolite Catalysts

    Directory of Open Access Journals (Sweden)

    Megumu Inaba

    2012-01-01

    Full Text Available Ethanol conversion to C3+ olefins, especially propylene, using Zr-modified H-ZSM-5 catalysts was investigated. Zr-modification to H-ZSM-5 zeolite could improve the initial yield of C3+ olefins and propylene and could reduce the initial yield of ethylene. In general, catalysts exhibiting the higher initial yield of propylene showed the steeper decrease in propylene yield as the reaction proceeded. However, Zr-modification to H-ZSM-5 could depress the decrease in propylene yield for aqueous ethanol. As cause of catalytic deactivation, carbon deposition on catalyst and framework collapse of zeolite support can be considered. The addition of water to Zr-modified H-ZSM-5 catalyst could depress carbon deposition in some degree, and, as a result, the decrease in propylene yield could be depressed.

  16. Methanol-to-olefins process over zeolite catalysts with DDR topology: effect of composition and structural defects on catalytic performance

    OpenAIRE

    Yarulina, I.; J. Goetze; Gücüyener, C; Thiel, L.; Dikhtiarenko, A.; Ruiz-Martinez, J.; Weckhuysen, B. M.; Gascon, J; Kapteijn, F.

    2016-01-01

    A systematic study of the effect of physicochemical properties affecting catalyst deactivation, overall olefin selectivity and ethylene/propylene ratio during the methanol-to-olefins (MTO) reaction is presented for two zeolites with the DDR topology, namely Sigma-1 and ZSM-58. Both catalysts show high selectivity towards light olefins and completely suppress the formation of hydrocarbons bigger than C4, with selectivity to ethane not exceeding 1% and some traces of propane. By applying seeded...

  17. Synthesis of zeolite beta with pretreated rice husk silica and its transformation to ZSM-12

    Energy Technology Data Exchange (ETDEWEB)

    Loiha, Sirinuch [Material Chemistry Research Unit, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000 (Thailand); Prayoonpokarach, Sanchai [Material Chemistry Research Unit, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Songsiriritthigun, Prayoon [Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000 (Thailand); Wittayakun, Jatuporn, E-mail: jatuporn@sut.ac.th [Material Chemistry Research Unit, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Center of Environmental and Hazardous Waste Management (EHWM), Thammasat University, Pathumtani 12120 (Thailand)

    2009-06-15

    Silica with 98% purity was prepared from rice husk by acid leaching and used as a silica source for the syntheses of zeolite beta (Beta) under hydrothermal conditions with gel Si/Al ratios of 8, 13, 15, 20, 50, 100, 150, and 200. Based on powder X-ray diffraction patterns, samples with gel Si/Al ratios of 8-20 contained only the pure phase of Beta and the highest relative crystallinity was observed in the Beta with gel Si/Al ratio of 13. This sample was further characterized by scanning electron microscopy, particle size analyzer and N{sub 2} adsorption analysis. The Beta particles were sphere shaped with the average particle size of 1.5 {mu}m and a surface area of 670 m{sup 2} g{sup -1}. The samples with gel Si/Al ratios ranging from 50 to 200 showed mixed phases of Beta and ZSM-12, and the latter phase was more dominant as the Si/Al ratio increased.

  18. Synthesis of zeolite beta with pretreated rice husk silica and its transformation to ZSM-12

    International Nuclear Information System (INIS)

    Silica with 98% purity was prepared from rice husk by acid leaching and used as a silica source for the syntheses of zeolite beta (Beta) under hydrothermal conditions with gel Si/Al ratios of 8, 13, 15, 20, 50, 100, 150, and 200. Based on powder X-ray diffraction patterns, samples with gel Si/Al ratios of 8-20 contained only the pure phase of Beta and the highest relative crystallinity was observed in the Beta with gel Si/Al ratio of 13. This sample was further characterized by scanning electron microscopy, particle size analyzer and N2 adsorption analysis. The Beta particles were sphere shaped with the average particle size of 1.5 μm and a surface area of 670 m2 g-1. The samples with gel Si/Al ratios ranging from 50 to 200 showed mixed phases of Beta and ZSM-12, and the latter phase was more dominant as the Si/Al ratio increased.

  19. Spatial Distribution of Zeolite ZSM-5 within Catalyst Bodies Affects Selectivity and Stability of Methanol-to-Hydrocarbons Conversion

    NARCIS (Netherlands)

    Castaño, P.; Ruiz-Martinez, J.; Epelde, E.; Gayubo, A.G.; Weckhuysen, B.M.

    2013-01-01

    Solid acids, such as zeolites, are used as catalyst materials in a wide variety of important crude oil refinery, bulk chemical synthesis, and green processes. Examples include fluid catalytic cracking (FCC),[1] methanol-to-hydrocarbons (MTH) conversion,[ 2] plastic waste valorization,[3] and biomass

  20. Correlating metal poisoning with zeolite deactivation in an individual catalyst particle by chemical and phase sensitive X-ray microscopy

    NARCIS (Netherlands)

    Ruiz-Martinez, J.; Beale, A.M.; Deka, U.; O'Brien, M.G.; Quinn, P.D.; Mosselmans, J.F.W.; Weckhuysen, B.M.

    2013-01-01

    Fluid catalytic cracking (FCC) is the main conversion process used in oil refineries. An X-ray microscopy method is used to show that metal poisoning and related structural changes in the zeolite active material lead to a non-uniform core–shell deactivation of FCC catalyst particles. The study links

  1. Effects of Dealumination and Desilication of Beta Zeolite on Catalytic Performance in n-Hexane Cracking

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2016-01-01

    Full Text Available Catalytic cracking of n-hexane to selectively produce propylene on Beta zeolite was carried out. The H-Beta (HB (Si/Al = 77 zeolite showed higher catalytic stability and propylene selectivity than the Al-rich HB (Si/Al = 12, due to its smaller number of acid sites, especially Lewis acid sites (LAS. However, catalytic stability and propylene selectivity in high n-hexane conversions were still not satisfactory. After dealumination with HNO3 treatment, catalytic stability was improved and propylene selectivity during high n-hexane conversions was increased. On the other hand, catalytic stability was not improved after desilication with NaOH treatment, although mesopores were formed. This may be related to the partially destroyed structure. However, propylene selectivity in high n-hexane conversions was increased after alkali treatment. We successfully found that the catalytic stability was improved and the propylene selectivity in high n-hexane conversions was further increased after the NaOH treatment followed by HNO3 treatment. This is due to the decrease in the number of acid sites and the increase in mesopores which are beneficial to the diffusion of coke precursor.

  2. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOST

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2005-11-15

    Composite materials of SBA-15/zeolite Y were synthesized from zeolite Y precursor and a synthesis mixture of mesoporous silicate SBA-15 via a hydrothermal process in the presence of a slightly acidic media of pH 4-6 with 2M H{sub 2}SO{sub 4}. The SBA-15/ZY composites showed Type IV adsorption isotherms, narrow BJH average pore size distribution of 4.9 nm, surface areas up to 800 m{sup 2}2/g and pore volumes 1.03 cm{sup 3}, all comparable to pure SBA-15 synthesized under similar conditions. Chemical analysis revealed Si/Al ratio down to 8.5 in the most aluminated sample, and {sup 27}AlSS MAS NMR confirmed aluminum was in tetrahedral coordination. This method of introduction of Al in pure T{sub d} coordination is effective in comparison to other direct and post synthesis alumination methods. Bronsted acid sites were evident from a pyridinium peak at 1544 cm-1 in the FTIR spectrum after pyridine adsorption, and from NH{sub 3} -TPD experiments. SBA-15/ZY composites showed significant catalytic activities for the dealkylation of isopropylbenzene to benzene and propene, similar to those of commercial zeolite Y. It was observed that higher conversion for catalysts synthesized with high amount of ZY precursor mixture added to the SBA-15. Over all the composites has shown good catalytic activity. Further studies will be focused on gaining a better understand the nature of the precursor, and to characterize and to locate the acid sites in the composite material. The composite will also be evaluated for heavy oil conversion to naphtha and middle distillates.

  3. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia

    Science.gov (United States)

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-07-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4+ generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process.

  4. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia.

    Science.gov (United States)

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-01-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4(+) generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process. PMID:27445009

  5. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia

    Science.gov (United States)

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-01-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4+ generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process. PMID:27445009

  6. A Zeolite Imidazolate Framework ZIF-8 Catalyst for Friedel-Crafts Acylation

    Institute of Scientific and Technical Information of China (English)

    LienT.L.NGUYEN; Ky K.A.LE; Nam T.S.PHAN

    2012-01-01

    A zeolite imidazolate framework,ZIF-8,was synthesized and characterized by dynamic laser light scattering,X-ray powder diffraction,scanning electron microscopy,transmission electron microscopy,thermogravimetric analysis,Fourier transform infrared,atomic absorption spectrophotometry,and nitrogen adsorption measurements.The ZIF-8 was highly crystalline and porous with a surface area of over 1600 m2/g.Friedel-Crafts acylation of anisole and benzoyl chloride proceeded well in the presence of ZIF-8 (2-6 mol%) without the need for an inert atmosphere.The reaction afforded a selectivity of 93%-95% to the p-isomer.The solid catalyst can be separated from the reaction mixture by simple centrifugation and reused without significant degradation in catalytic activity.There was no leaching of active acid species into the reaction solution.

  7. Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts

    International Nuclear Information System (INIS)

    Non-catalytic and catalytic pyrolysis of microalgae were carried out to generate an organic liquid fuel precursor. The impacts of several process variables on the fast pyrolysis in a falling solids reactor are reported, including temperature, particle size, flow rate, and atmosphere (N2, H2O and CO2). Experiments were carried out with duckweed as the biomass to provide some comparison. The speciated organic phase product data were classified according to the different compound types including hydrocarbons, alcohols, oxygenates, and nitrogenates. In-situ catalytic pyrolysis produced an organic phase with an increased fraction of hydrocarbons and decreased fraction of oxygenates, evidence for carbon removal chemistries such as decarboxylation and decarbonylation. The noncatalytic pyrolysis gave the highest total liquid yield while catalytic pyrolysis resulted in the highest yield of the desired hydrocarbon fraction. A comparison of four exchanged ZSM-5 catalysts (H-, Fe-, Cu-, and Ni-) indicates that the protonated zeolite provided the largest enhancement among the catalysts of the liquid product yield and composition: H-ZSM-5 increased the yield of the hydrocarbon fraction in the organic phase from 21% to 43%, a 100% relative increase, and exhibited the least coking. The effects of biomass weight hourly space velocity, and comparisons between H-ZSM5 powder and monolithic catalysts are also reported. The implications of the findings for the conversion of microalgae to liquid fuels are discussed. -- Graphical abstract: Display Omitted Highlights: ► Pyrolysis of microalgae and duckweed in falling solids reactor. ► Effect of process variables on product yields and compositions determined. ► Catalytic pyrolysis enhances bio-oil composition. ► Shape selective ZSM-5 catalysts enhance hydrocarbon yield.

  8. Transformation of levoglucosan over H-MCM-22 zeolite and H-MCM-41 mesoporous molecular sieve catalysts

    International Nuclear Information System (INIS)

    Catalytic transformation of levoglucosan (1-6-anhdyro-β-D-glucopyranose) was carried out in a fixed bed reactor at 573 K over zeolite and mesoporous material catalysts. Proton forms of MCM-22-30 and MCM-41-20 catalysts were tested in the conversion, changing also the residence time. The yield of the transformation product phases was substantially influenced by the structures, at the same time the formation of the different compounds were dependent on the structures of the acidic zeolite catalysts. Oxygenated species were the main liquid product, consisting mainly of aldehydes and furfurals (glycolaldehyde, formaldehyde, acetaldehyde, furfural, 5-methylfurfural, acetic acid). The formation of the liquid products was higher over MCM-41-20 than over MCM-22-30 for all the oxygenated species except acetic acid, indicating larger formation of non-condensable products over the microporous material. By increasing the residence time the formation of acetic acid increased in transformations over MCM-22, however, such increase also led to generation of more gases with both catalysts. The deactivation due to coking was more severe over the zeolite compared to the mesoporous material. It was, however, possible to successfully regenerate the spent zeolites without changing the structure. -- Highlights: → Transformation of levoglucosan (1-6-anhdyro-β-D-glucopyranose) was done at 573 K. → MCM-22-30 and MCM-41-20 catalysts were tested. → Oxygenated species (glycolaldehyde, formaldehyde, acetaldehyde, furfural, 5-methylfurfural, acetic acid) were the main liquid products. → Acidity had an influence on product distribution and deactivation.

  9. Hydrogenation of Anthracene in Supercritical Carbon Dioxide Solvent Using Ni Supported on Hβ-Zeolite Catalyst

    Directory of Open Access Journals (Sweden)

    Ashraf Aly Hassan

    2012-01-01

    Full Text Available Catalytic hydrogenation of anthracene was studied over Ni supported on Hβ-zeolite catalyst under supercritical carbon dioxide (sc-CO2 solvent. Hydrogenation of anthracene in sc-CO2 yielded 100% conversion at 100 °C, which is attributed to the reduced mass transfer limitations, and increased solubility of H2 and substrate in the reaction medium. The total pressure of 7 MPa was found to be optimum for high selectivity of octahydroanthracene (OHA. The conversion and selectivity for OHA increased with an increase in H2 partial pressure, which is attributed to higher concentration of hydrogen atoms at higher H2 pressures. The selectivity reduced the pressure below 7 MPa because of enhanced desorption of the tetrahydro-molecules and intermediates from Ni active sites, due to higher solubility of the surface species in sc-CO2. The selectivity of OHA increased with the increase in catalyst weight and reaction time. The rate of hydrogenation of anthracene was compared with that found for napthalene and phenanthrene. The use of acetonitrile as co-solvent or expanded liquid with CO2 decreased the catalytic activity.

  10. NiMo/Al2O3 catalyst containing nano-sized zeolite Y for deep hydrodesulfurization and hydrodenitrogenation of diesel

    Institute of Scientific and Technical Information of China (English)

    Hailiang Yin; Tongna Zhou; Yunqi Liu; Yongming Chai; Chenguang Liu

    2011-01-01

    Two mixed-matrix NiMo/Al2O3 catalysts containing nano- and micro-sized zeolite Y have been prepared to explore the size effect of zeolite Y particle on the hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities of fluid catalytic cracking (FCC) diesel.They were characterized by SEM,BET,XRD,H2-TPR,NH3-TPD and HRTEM.The results show that the catalyst containing nano-sized zeolite Y possesses larger average pore diameter,higher pore volume,weaker and lesser acid sites,more easily reducible metal phases,shorter MoS2 slabs and more slab layers than the catalyst containing micro-sized zeolite Y.The catalysts were also evaluated with a high-pressure fixed-bed reactor using real FCC diesel as feed.The results display that the catalyst containing nano-sized zeolite Y bears higher HDS and HDN activities and exhibits higher relative rate constant for the removal of total sulfur or nitrogen than the one containing micro-sized zeolite.

  11. Elucidation of Diels-Alder Reaction Network of 2,5-Dimethylfuran and Ethylene on HY Zeolite Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Do, Phuong T. M. [Univ. of Delaware, Newark, DE (United States); McAtee, Jesse R. [Univ. of Delaware, Newark, DE (United States); Watson, Donald A. [Univ. of Delaware, Newark, DE (United States); Lobo, Raul F. [Univ. of Delaware, Newark, DE (United States)

    2012-12-12

    The reaction of 2,5-dimethylfuran and ethylene to produce p-xylene represents a potentially important route for the conversion of biomass to high-value organic chemicals. Current preparation methods suffer from low selectivity and produce a number of byproducts. Using modern separation and analytical techniques, the structures of many of the byproducts produced in this reaction when HY zeolite is employed as a catalyst have been identified. From these data, a detailed reaction network is proposed, demonstrating that hydrolysis and electrophilic alkylation reactions compete with the desired Diels–Alder/dehydration sequence. This information will allow the rational identification of more selective catalysts and more selective reaction conditions.

  12. Copper Tetrahydrosalen Complex Encapsulated in Zeolite Y:an Effective Heterogeneous Catalyst for the Oxidation of Cycloalkanes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new heterogeneous catalyst, copper tetrahydrosalen complex encapsulated in zeolite Y (denoted as Cu[H4]salen/Y) has been developed with flexible ligand method, and characterized by FTIR, DR UV-Vis spectroscopy, N2 adsorption/desorption at -196℃. This catalyst behaved like a bio-mimic enzyme, and exhibited much higher activity for the oxidation of cycloalkanes than Cusalen/Y prepared with the same method. The effects of the reaction conditions on the catalytic performance were investigated.

  13. Bayberry-like ZnO/MFI zeolite as high performance methanol-to-aromatics catalyst.

    Science.gov (United States)

    Wang, Ning; Qian, Weizhong; Shen, Kui; Su, Chang; Wei, Fei

    2016-02-01

    Unique bayberry-like MFI zeolites are synthesized through a quasi-solid-state crystallization approach. This hierarchical zeolite structure has a relatively thick shell, densely grown nanocrystals with an ordered packed channel, high mechanical stability, high surface area and a low Si/Al ratio. Its catalytic efficiency for methanol-to-aromatics is significantly higher than that of conventional MFI zeolites.

  14. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    Science.gov (United States)

    Rolllins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  15. Transalkylation of ethyl benzene with triethylbenzene over ZSM-5 zeolite catalyst

    KAUST Repository

    Akhtar, M. Naseem

    2010-09-01

    Transalkylation of 1,3,5-triethylbenzene (TEB) with ethylbenzene (EB) has been studied over ZSM-5 zeolite using a riser simulator reactor with respect to optimizing DEB yield. The reaction temperature was varied from 350 to 500°C with contact time ranging from 3 to 15s to report on the effect of reaction conditions on TEB conversion, DEB selectivity and isomerization of TEB. The transalkylation of TEB with EB was compared with the reactions of pure 1,3,5-TEB and EB (disproportionation, isomerization and cracking). A synergistic effect was observed on the conversion of 1,3,5-TEB and DEB yield. The 1,3,5-TEB conversion increased from 40% to 50% with simultaneous increase in the DEB selectivity from 17% to 36% in transalkylation reaction (EB+1,3,5-TEB) as compared with the reaction of pure 1,3,5-TEB. It was found that pure 1,3,5-TEB underwent cracking reaction to produce DEB and EB. The isomerization of 1,3,5-TEB was more active at low temperature while cracking was more active at high temperature. The temperature of 350°C was observed as the optimum for production of maximum amount of DEB. Kinetic parameters for the disappearance of 1,3,5-TEB during its transformation reaction via cracking and isomerization pathways were calculated using the catalyst activity decay function based on time-on-stream (TOS). The apparent activation energies decrease in order E secondary cracking>E primary racking>E isomerization for ZSM-5 catalysts. © 2010 Elsevier B.V.

  16. Zeolite H-BEA catalysed multicomponent reaction: One-pot synthesis of amidoalkyl naphthols - Biologically active drug-like molecules

    Indian Academy of Sciences (India)

    Sunil R Mistry; Rikesh S Joshi; Kalpana C Maheria

    2011-07-01

    Zeolite has been used as an efficient and a novel heterogeneous catalyst for one-pot synthesis of biologically active drug-like molecules, amidoalkyl naphthols. This green route involves multicomponent reaction of 2-naphthol, aromatic aldehydes and amide in the presence of a catalytic amount of zeolite H-Beta (H-BEA) under solvent reflux as well as solvent-free conditions.

  17. Low-temperature activation of methane over rare earth metals promoted Zn/HZSM-5 zeolite catalysts in the presence of ethylene

    Institute of Scientific and Technical Information of China (English)

    Hengqiang Zhang; Aiguo Kong; Yongjie Ding; Chengyong Dai; Yongkui Shan

    2011-01-01

    At low temperature of 723 K, methane can be easily activated in the presence of ethylene in the feed, and converted to higher hydrocarbons (C2-C4) and aromatics (C6-C10), through its reaction over rare metals modified Zn/HZSM-5 zeolite catalysts without undesirable carbon oxides formation.Methane can get 37.3% conversion over the above catalysts under Iow temperature, and the catalysts show a longer lifetime than usual metal supported HZSM-5 zeolite catalysts without adding any rare earth metals.The effects of methane activation over various rare earth metal promoted Zn/HZSM-5 catalysts on the products and influences of several reaction conditions such as temperature, catalyst lifetime and molar ratio of CH4/C2H4 have been discussed.

  18. Heteropoly acid encapsulated into zeolite imidazolate framework (ZIF-67) cage as an efficient heterogeneous catalyst for Friedel-Crafts acylation

    Science.gov (United States)

    Ammar, Muhammad; Jiang, Sai; Ji, Shengfu

    2016-01-01

    A new strategy has been developed for the encapsulation of the phosphotungstic heteropoly acid (H3PW12O40 denoted as PTA) into zeolite imidazolate framework (ZIF-67) cage and the PTA@ZIF-67(ec) catalysts with different PTA content were prepared. The structure of the catalysts was characterized by XRD, BET, SEM, FT-IR, ICP-AES and TG. The catalytic activity and recovery properties of the catalysts for the Friedel-Crafts acylation of anisole with benzoyl chloride were evaluated. The results showed that 14.6-31.7 wt% PTA were encapsulated in the ZIF-67 cage. The PTA@ZIF-67(ec) catalysts had good catalytic activity for Friedel-Crafts acylation. The conversion of anisole can reach ~100% and the selectivity of the production can reach ~94% over 26.5 wt% PTA@ZIF-67(ec) catalyst under the reaction condition of 120 °C and 6 h. After reaction, the catalyst can be easily separated from the reaction mixture by the centrifugation. The recovered catalyst can be reused five times and the selectivity can be kept over 90%.

  19. Intergrown new zeolite beta polymorphs with interconnected 12-ring channels solved by combining electron crystallography and single-crystal X-ray diffraction

    KAUST Repository

    Yu, Zhengbao

    2012-10-09

    Two new polymorphs of zeolite beta, denoted as SU-78A and SU-78B, were synthesized by employing dicyclohexylammonium hydroxides as organic structure-directing agents. The structure was solved by combining transmission electron microscopy and single-crystal X-ray diffraction. SU-78 is an intergrowth of SU-78A and SU-78B and contains interconnected 12-ring channels in three directions. The two polymorphs are built from the same building layer, similar to that for the zeolite beta family. The layer stacking in SU-78, however, is different from those in zeolite beta polymorph A, B, and C, showing new zeolite framework topologies. SU-78 is thermally stable up to 600 °C. © 2012 American Chemical Society.

  20. Inlfuence of the Alkali Treatment of HZSM-5 Zeolite on Catalytic Performance of PtSn-Based Catalyst for Propane Dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    Huang Li; Zhou Shijian; Zhou Yuming; Zhang Yiwei; Xu Jun; Wang Li

    2013-01-01

    The porous material ATZ with micro-mesopore hierarchical porosity was prepared by alkali treatment of parent HZSM-5 zeolite and applied for propane dehydrogenation. The zeolite samples were characterized by XRD, N2-physisorption, and NH3-TPD analysis. The results showed that the alkali treatment can modify the physicochemical prop-erties of HZSM-5 zeolite. In this case, the porous material ATZ showed larger external surface area with less acid sites as compared to the HZSM-5 zeolite. It was found out that the alkali treatment of HZSM-5 zeolite could promote the catalytic performance of PtSn/ATZ catalyst. The possible reason was ascribed to the low acidity of ATZ. Furthermore, the presence of mesopores could reduce the carbon deposits on the metallic surface, which was also favorable for the dehydrogenation reaction.

  1. Designing zeolite catalysts for size- and shape-selective reactions: Selective hydrogenation of acetylene in the presence of butadiene and ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Corbin, D.R.; Abrams, L.; Bonifaz, C. (E.I. du Pont de Nemours Company, Wilmington, DE (USA))

    1989-02-01

    In the production of ethylene from the steam cracking of natural gas, small amounts of acetylene and butadiene are produced. Downstream, acetylene can present a hazard in a cryogenic separation process while nonselective hydrogenation removes acetylene as well as valuable ethylene and butadiene. With the aid of adsorption measurements, a selective hydrogenation catalyst has been designed. Small-pore zeolites, which serve as catalytic supports and provide reactant selective control, were ion-exchanged with Ni{sup 2+} and subsequently reduced. Compared to a commercial catalyst in which 60% of butadiene and all of the acetylene are hydrogenated, these new catalysts totally hydrogenate acetylene with only 10-20% hydrogenation of the butadiene and almost no hydrogenation of ethylene. To achieve selective hydrogenation, poisoning of the metal sites on the external zeolite surface is essential in order to obtain a product spectrum dominated by catalytic sites within the zeolite framework.

  2. Effect of Co and Mo Loading by Impregnation and Ion Exchange Methods on Morphological Properties of Zeolite Y Catalyst

    Directory of Open Access Journals (Sweden)

    Didi Dwi Anggoro

    2016-03-01

    Received: 10th November 2015; Revised: 16th January 2016; Accepted: 16th January 2016 How to Cite: Anggoro, D.D., Hidayati, N., Buchori, L., Mundriyastutik, Y. (2016. Effect of Co and Mo Loading by Impregnation and Ion Exchange Methods on Morphological Properties of Zeolite Y Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 75-83. (doi:10.9767/bcrec.11.1.418.75-83 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.418.75-83

  3. ZEOLITES: EFFECTIVE WATER PURIFIERS

    Science.gov (United States)

    Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

  4. Acidic and basic properties of zeolite-containing cracking catalyst in the process of butene-1 isomerization

    Science.gov (United States)

    Mursalova, L. A.; Guseinova, E. A.; Adzhamov, K. Yu.

    2016-08-01

    The process of butene-1 isomerization in the presence of two groups of samples of zeolite-containing catalyst (ZCC) that earlier participated in the traditional and oxidative catalytic cracking of vacuum gasoil is investigated. It is established that the nature of the reaction mixture and conditions of the cracking process are key factors in forming the acidic and basic properties of the catalyst. It is shown that the highest activity in the butene-1 isomerization into cis-/ trans-butene-2 is demonstrated by ZCC samples that participated in the oxidative catalytic cracking (oxycracking). It is suggested that the enhanced catalytic activity of this group of ZCC samples was related to the availability of acid-base centers in the form of radical-like oxygen along with protic- and aprotic-type acidic centers in the structure of the oxidative compaction products.

  5. Synthesis of mesoporous zeolite catalysts by in situ formation of carbon template over nickel nanoparticles

    DEFF Research Database (Denmark)

    Abildstrøm, Jacob Oskar; Kegnæs, Marina; Hytoft, Glen;

    2016-01-01

    A novel synthesis procedure for the preparation of the hierarchical zeolite materials with MFI structure based on the carbon templating method with in situ generated carbon template is presented in this study. Through chemical vapour deposition of coke on nickel nanoparticles supported on silica...... oxide, a carbon-silica composite is obtained and exploited as a combined carbon template/silica source for zeolite synthesis. This approach has several advantages in comparison with conventional carbon templating methods, where relatively complicated preparative strategies involving multistep...... impregnation procedures and rather expensive chemicals are used. Removal of the carbon template by combustion results in zeolite single crystals with intracrystalline pore volumes between 0.28 and 0.48 cm3/g. The prepared zeolites are characterized by XRD, SEM, TEM and physisorption analysis. The isomerization...

  6. Capture and isotopic exchange method for water and hydrogen isotopes on zeolite catalysts up to technical scale for pre-study of processing highly tritiated water

    International Nuclear Information System (INIS)

    Highly tritiated water (HTW) may be generated at ITER by various processes and, due to the excessive radio toxicity, the self-radiolysis and the exceedingly corrosive property of HTW, a potential hazard is associated with its storage and process. Therefore, the capture and exchange method for HTW utilizing Molecular Sieve Beds (MSB) was investigated in view of adsorption capacity, isotopic exchange performance and process parameters. For the MSB, different types of zeolite were selected. All zeolite materials were additionally coated with platinum. The following work comprised the selection of the most efficient zeolite candidate based on detailed parametric studies during the H2/D2O laboratory scale exchange experiments (about 25 g zeolite per bed) at the Tritium Laboratory Karlsruhe (TLK). For the zeolite, characterization analytical techniques such as Infrared Spectroscopy, Thermogravimetry and online mass spectrometry were implemented. Followed by further investigation of the selected zeolite catalyst under full technical operation, a MSB (about 22 kg zeolite) was processed with hydrogen flow rates up to 60 mol*h-1 and deuterated water loads up to 1.6 kg in view of later ITER processing of arising HTW. (authors)

  7. Capture and isotopic exchange method for water and hydrogen isotopes on zeolite catalysts up to technical scale for pre-study of processing highly tritiated water

    Energy Technology Data Exchange (ETDEWEB)

    Michling, R.; Braun, A.; Cristescu, I.; Dittrich, H.; Gramlich, N.; Lohr, N. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Glugla, M.; Shu, W.; Willms, S. [ITER Organization, Saint-Paul-lez-Durance (France)

    2015-03-15

    Highly tritiated water (HTW) may be generated at ITER by various processes and, due to the excessive radio toxicity, the self-radiolysis and the exceedingly corrosive property of HTW, a potential hazard is associated with its storage and process. Therefore, the capture and exchange method for HTW utilizing Molecular Sieve Beds (MSB) was investigated in view of adsorption capacity, isotopic exchange performance and process parameters. For the MSB, different types of zeolite were selected. All zeolite materials were additionally coated with platinum. The following work comprised the selection of the most efficient zeolite candidate based on detailed parametric studies during the H{sub 2}/D{sub 2}O laboratory scale exchange experiments (about 25 g zeolite per bed) at the Tritium Laboratory Karlsruhe (TLK). For the zeolite, characterization analytical techniques such as Infrared Spectroscopy, Thermogravimetry and online mass spectrometry were implemented. Followed by further investigation of the selected zeolite catalyst under full technical operation, a MSB (about 22 kg zeolite) was processed with hydrogen flow rates up to 60 mol*h{sup -1} and deuterated water loads up to 1.6 kg in view of later ITER processing of arising HTW. (authors)

  8. Effect of combining the metals of group VI supported on H-ZSM-5 zeolite as catalysts for non-oxidative conversion of natural gas to petrochemicals

    Institute of Scientific and Technical Information of China (English)

    A.K.Aboul-Gheit; A.E.Awadallah

    2009-01-01

    The most prestigious catalyst applied in natural gas (methane) non-oxidative conversion to petrochemicals is 6%Mo/H-ZSM-5.Chromium,molybdenum and tungsten are the group VI metals.Hence,in this work,6%Mo/H-ZSM-5 was correlated with 3%Cr+3%Mo/H-ZSM-5 and 3%W+3%Mo/H-ZSM-5 as catalysts to examine their promoting or inhibiting effects on the various reactions taking place during methane conversion.The catalytic activities of these catalysts were tested in a continuous flow fixed bed reactor at 700℃ and a GHSV of 1500 ml·g-1 ·h-1. Characterization of the catalysts using XRD,TGA and TPD were investigated.XRD and NH3-TPD showed greater interaction between the W-phase and the Bronsted acid sites in the channels of the zeolite than between Cr-phase and the acid sites in the zeolite.

  9. S+X-I+ route to mesostructured materials from Fau and Beta zeolite precursors: A comparative study of their assembly behaviors in extremely acidic media

    International Nuclear Information System (INIS)

    Mesoporous molecular sieves were synthesized from Beta and Fau zeolite precursors through S+X-I+ route under extremely acidic conditions in parallel (designated as MBeta and MFau, respectively). The textural properties of MFau were different from its MBeta counterpart but resembled normal MCM-41 silica from TEOS. Al content in MBeta was almost equivalent to that in the initial Beta zeolite precursors, whereas only trace Al species was present in MFau from elemental analysis results. The hydrothermal stability of MBeta after post-synthesis ammonia treatment was considerably improved compared with normal MCM-41 aluminosilicates, whereas the MFau after the same procedure was as unstable as normal MCM-41 silica. Thus, the assembly behaviors of Beta and Fau zeolite precursors were comparatively studied based on these results. The microstructure of Fau zeolite precursors were degraded by the extremely acidic condition, and Al species was dissolved into the synthesis mixture. However, Beta zeolite precursors survived the chemical attack of extremely acidic media and were incorporated into mesostructured framework as primary building units

  10. Indole cyanation via C-H bond activation under catalysis of Ru(Ⅲ)-exchanged NaY zeolite (RuY) as a recyclable catalyst

    Institute of Scientific and Technical Information of China (English)

    Alireza Khorshidi

    2012-01-01

    Selective 3-cyanation of indoles was achieved under heterogeneous catalysis of Ru(Ⅲ)-exchanged NaY zeolite (RuY) as a recyclable catalyst,in combination with K4[Fe(CN)6] as a nontoxic,slow cyanide releasing agent.Under the aforementioned conditions,good yields of the desired products were obtained.

  11. CHARACTERIZATION OF H-Y AND CR-Y ZEOLITE CATALYSTS DURING THE OXIDATIVE DESTRUCTION OF CFC11 AND CFC12

    Science.gov (United States)

    The long term stability-deactivation characteristics of two Y zeolite catalysts, namely H-Y and cation exchanged Cr-Y, were studied during the oxidative destruction of CFC11 and CFC12 feeds. Experiments were carried out at 300 degrees C and 500 h-1 space velocity. Properties of...

  12. Improved Automotive NO (x) Aftertreatment System: Metal Ammine Complexes as NH3 Source for SCR Using Fe-Containing Zeolite Catalysts

    DEFF Research Database (Denmark)

    Johannessen, Tue; Schmidt, Henning; Frey, Anne Mette;

    2009-01-01

    Ammonia storage is a challenge in the selective catalytic reduction of NO (x) in vehicles. We propose a new system, based on metal ammines as the ammonia source. In combination with iron containing zeolites as the SCR catalyst it should be possible to obtain a low temperature system for NO (x...

  13. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    Science.gov (United States)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  14. Zeolite-catalyzed isomerization of tetroses in aqueous medium

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Riisager, Anders

    2014-01-01

    The isomerization of erythrose (ERO) was studied in water over commercially available large-pore zeolites such as, e.g. H-Y, H-USY and H-beta. Among the employed zeolites, H-USY(6) was found to efficiently isomerize the sugar yielding 45 % erythrulose (ERU), 42 % ERO and 3 % of the epimer threose...... in at least five reaction runs with essentially unchanged activity and without significant aluminium leaching from the catalyst. The use of benign reaction conditions and an industrially pertinent solid catalyst in combination with water establishes a new, green tetrose isomerization protocol...

  15. Selective catalytic reduction of nitric oxide with acetaldehyde over NaY zeolite catalyst in lean exhaust feed

    International Nuclear Information System (INIS)

    Steady-state selective catalytic reduction (SCR) of nitric oxide (NO) was investigated under simulated lean-burn conditions using acetaldehyde (CH3CHO) as the reductant. This work describes the influence of catalyst space velocity and the impact of nitric oxide, acetaldehyde, oxygen, sulfur dioxide, and water on NOx reduction activity over NaY zeolite catalyst. Results indicate that with sufficient catalyst volume 90% NOx conversion can be achieved at temperatures relevant to light-duty diesel exhaust (150-350C). Nitric oxide and acetaldehyde react to form N2, HCN, and CO2. Oxygen is necessary in the exhaust feed stream to oxidize NO to NO2 over the catalyst prior to reduction, and water is required to prevent catalyst deactivation. Under conditions of excess acetaldehyde (C1:N>6:1) and low temperature (x conversion is apparently very high; however, the NOx conversion steadily declines with time due to catalytic oxidation of some of the stored (adsorbed) NO to NO2, which can have a significant impact on steady-state NOx conversion. With 250ppm NO in the exhaust feed stream, maximum NOx conversion at 200C can be achieved with =400ppm of acetaldehyde, with higher acetaldehyde concentrations resulting in production of acetic acid and breakthrough of NO2 causing lower NOx conversion levels. Less acetaldehyde is necessary at lower NO concentrations, while more acetaldehyde is required at higher temperatures. Sulfur in the exhaust feed stream as SO2 can cause slow deactivation of the catalyst by poisoning the adsorption and subsequent reaction of nitric oxide and acetaldehyde, particularly at low temperature

  16. Performance of Adsorption Desulfurization on NiY/Beta Zeolites%NiY/Beta 复合分子筛吸附脱硫性能研究

    Institute of Scientific and Technical Information of China (English)

    庄新玲; 秦玉才; 阮艳军; 董世伟; 胡志君; 范跃超; 秦波; 段林海; 宋丽娟

    2013-01-01

    采用液相离子交换法制备了NiY及NiY/Beta分子筛,利用智能重量分析仪测定了噻吩、苯在NiY、NiY/Beta分子筛上的吸附-脱附等温线,计算比较了噻吩、苯在分子筛上的扩散系数,同时使用固定床技术考查了改性后的分子筛对催化裂化汽油的吸附脱硫性能。结果表明,复合分子筛 NiY/Beta仍然保持着较好的微孔结构,对噻吩的饱和吸附量大于苯的。而且噻吩在 NiY/Beta分子筛上的相对扩散系数明显增大,而苯的扩散系数有所减少,这有利于噻吩在分子筛上的扩散过程,抑制了苯在分子筛上的吸附,从而提高了NiY/Beta复合分子筛对噻吩的选择性脱除能力。对于FCC汽油NiY/Beta复合分子筛也表现出更好的深度脱硫能力。%The adsorption-desorption isotherms of thiophene and benzene in the NiY and NiY/Beta zeolites ,prepared by liquid phase ion exchange ,have been investigated by an intelligent gravimetric analyzer (IGA) and the diffusion coefficients were also calculated .Properties of selective adsorptive desulfurization of FCC gasoline on the zeolites were evaluated by a fixed-bed adsorption experiment . The results show that the NiY/Beta zeolites remain the microporous structure . The saturated adsorption amount of thiophene is larger than that of benzene and so it is to the diffusion coefficients .The better diffusivity of thiophene inhibits the adsorption of benzene , resulting in the absorption desulfurization capability of the NiY/Beta zeolites improved .

  17. The Effect of Time dealumination and Solvent Concentration in Synthesis of Zeolite Catalyst and Catalytic Test for DiEthyl Ether Production Process

    International Nuclear Information System (INIS)

    Ethanol is an alternative energy, but its has three distinct disadvantages as a transportation fuel. Its availability is currently limited, and it has a lower volumetric heating value and a lower Reid vapour pressure (RVP) than gasoline. This paper focuses for this disadvantages and to solve this problem can do with converts ethanol to DiEthyl Ether product. This research produced DiEthyl Ether by ethanol dehydration process with zeolite as catalyst. The catalyst synthesis from natural material from District Gunung Kidul, Indonesia. The catalyst produced with dealumination, neutralization, drying and calcination processes. The zeolite catalyst was analysed of Si/Al, X-ray Diffraction and specific surface area. The catalyst product then used for ethanol dehydration to produce DiEthyl Ether. The results shown the biggest surface area is 184,52 m2/gram at catalyst production at 10 hours for time dealumination. The crystallite of catalyst product is similar like shown at diffractogram of XRD analysis. The ratio Si/Al biggest is 313.7 that obtaining at catalyst production with 7 hours for time dealumination. The catalytic test use fixed bed reactor with 1 inci diameter and ethanol fermentation both as feed. The operation condition is 150 deg. C at temperature and atmosphere pressure. The compounds product in liquid phase are diethyl ether, methanol and water.

  18. The Effect of Time dealumination and Solvent Concentration in Synthesis of Zeolite Catalyst and Catalytic Test for DiEthyl Ether Production Process

    Science.gov (United States)

    Widayat, Widayat; Roesyadi, A.; Rachimoellah, M.

    2009-09-01

    Ethanol is an alternative energy, but its has three distinct disadvantages as a transportation fuel. Its availability is currently limited, and it has a lower volumetric heating value and a lower Reid vapour pressure (RVP) than gasoline. This paper focuses for this disadvantages and to solve this problem can do with converts ethanol to DiEthyl Ether product. This research produced DiEthyl Ether by ethanol dehydration process with zeolite as catalyst. The catalyst synthesis from natural material from District Gunung Kidul, Indonesia. The catalyst produced with dealumination, neutralization, drying and calcination processes. The zeolite catalyst was analysed of Si/Al, X-ray Diffraction and specific surface area. The catalyst product then used for ethanol dehydration to produce DiEthyl Ether. The results shown the biggest surface area is 184,52 m 2 / gram at catalyst production at 10 hours for time dealumination. The crystallite of catalyst product is similar like shown at diffractogram of XRD analysis. The ratio Si/Al biggest is 313.7 that obtaining at catalyst production with 7 hours for time dealumination. The catalytic test use fixed bed reactor with 1 inci diameter and ethanol fermentation borth as feed. The operation condition is 150° C at temperature and atmosphere pressure. The compounds product in liquid phase are diethyl ether, methanol and water.

  19. Photocatalytic oxidation of NO{sub x} over TiO{sub 2}/HZSM-5 catalysts in the presence of water vapor: Effect of hydrophobicity of zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Gaofei [The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006 (China); Hu, Yun, E-mail: huyun@scut.edu.cn [The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006 (China); Jiang, Shumei; Wei, Chaohai [The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006 (China)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer The photooxidation of NO{sub x} over TiO{sub 2}/HZSM-5 was tested in the presence of water vapor. Black-Right-Pointing-Pointer TiO{sub 2}/HZSM-5 exhibited higher NO conversion and lower NO{sub 2} formation than pure TiO{sub 2}. Black-Right-Pointing-Pointer Water vapor related to relative humidity and water pre-adsorption was effect factor. Black-Right-Pointing-Pointer TiO{sub 2} hybridized with hydrophobic HZSM-5 zeolite retained high reactivity. Black-Right-Pointing-Pointer Photocatalytic reactivity of TiO{sub 2}/HZSM-5 depended on hydrophobicity of zeolites. - Abstract: TiO{sub 2} hybridized with HZSM-5 zeolites photocatalysts were prepared by a simple solid state dispersion method. The physicochemical properties of the catalysts were characterized by X-ray diffraction, UV-vis diffuse reflectance and FT-IR spectroscopy. The photocatalytic oxidation of NO{sub x} over TiO{sub 2}/HZSM-5 having different Si/Al ratios was carried out under various levels of humidity and different pre-adsorption times in dark. The TiO{sub 2}/HZSM-5 composite catalysts exhibited higher NO conversion and lower NO{sub 2} formation than pure TiO{sub 2}. Pre-adsorption with water vapor and the high humidity during the photoreaction were harmful to the reactivity of TiO{sub 2} hybridized with hydrophilic HZSM-5 zeolite. However, the photocatalytic reactivity of TiO{sub 2} hybridized with hydrophobic zeolite varied little with increase in humidity. The results indicated that the high photocatalytic reactivity of TiO{sub 2}/HZSM-5 catalysts is largely depended on the hydrophobicity of the zeolites.

  20. Investigation of PCDD/F emissions from mobile source diesel engines: impact of copper zeolite SCR catalysts and exhaust aftertreatment configurations.

    Science.gov (United States)

    Liu, Z Gerald; Wall, John C; Barge, Patrick; Dettmann, Melissa E; Ottinger, Nathan A

    2011-04-01

    This study investigated the impact of copper zeolite selective catalytic reduction (SCR) catalysts and exhaust aftertreatment configurations on the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from mobile source diesel engines. Emissions of PCDD/Fs, reported as the weighted sum of 17 congeners called the toxic equivalency quotient (TEQ), were measured using a modified EPA Method 0023A in the absence and presence of exhaust aftertreatment. Engine-out emissions were measured as a reference, while aftertreatment configurations included various combinations of diesel oxidation catalyst (DOC), diesel particulate filter (DPF), Cu-zeolite SCR, Fe-zeolite SCR, ammonia oxidation catalyst (AMOX), and aqueous urea dosing. In addition, different chlorine concentrations were evaluated. Results showed that all aftertreatment configurations reduced PCDD/F emissions in comparison to the engine-out reference, consistent with reduction mechanisms such as thermal decomposition or combined trapping and hydrogenolysis reported in the literature. Similarly low PCDD/F emissions from the DOC-DPF and the DOC-DPF-SCR configurations indicated that PCDD/F reduction primarily occurred in the DOC-DPF with no noticeable contribution from either the Cu- or Fe-zeolite SCR systems. Furthermore, experiments performed with high chlorine concentration provided no evidence that chlorine content has an impact on the catalytic synthesis of PCDD/Fs for the chlorine levels investigated in this study.

  1. The Effect of K and Acidity of NiW-Loaded HY Zeolite Catalyst for Selective Ring Opening of 1-Methylnaphthalene.

    Science.gov (United States)

    Lee, You-Jin; Kim, Eun-Sang; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-05-01

    Bi-functional catalysts were prepared using HY zeolites with various SiO2/Al2O3 ratios for acidic function, NiW for metallic function, and K for acidity control. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction was investigated using the prepared bi-functional catalysts with different levels of acidity in a fixed bed reactor system. In NiW/HY catalysts without K addition, the acidity decreased with the SiO2/Al2O3 mole ratio of the HY zeolite. Ni1.1W1.1/HY(12) catalyst showed the highest acidity but slightly lower yields for the selective ring opening than Ni1.1W1.1/HY(30) catalyst. The acidity of the catalyst seemed to play an important role as the active site for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. Catalyst acidity could be controlled between Ni1.1W1.1/HY(12) and Ni1.1W1.1/HY(30) by adding a moderate amount of K to Ni1.1W1.1/HY(12) catalyst. K0.3Ni1.1W1.1/HY(12) catalyst should have the optimum acidity for the selective ring opening. The addition of a moderate amount of K to the NiW/HY catalyst must improve the catalytic performance due to the optimization of catalyst acidity.

  2. Titanium-Beta Zeolites Catalyze the Stereospecific Isomerization of D-Glucose to L-Sorbose via Intramolecular C5-C1 Hydride Shift

    Energy Technology Data Exchange (ETDEWEB)

    Gounder, Rajamani [California Inst. of Technology (CalTech), Pasadena, CA (United States); Davis, Mark E. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2013-06-03

    Pure-silica zeolite beta containing Lewis acidic framework Ti4+ centers (Ti-Beta) is shown to catalyze the isomerization of D-glucose to L-sorbose via an intramolecular C5–C1 hydride shift. Glucose–sorbose isomerization occurs in parallel to glucose–fructose isomerization on Ti-Beta in both water and methanol solvents, with fructose formed as the predominant product in water and sorbose as the predominant product in methanol (at 373 K) at initial times and over the course of >10 turnovers. Isotopic tracer studies demonstrate that 13C and D labels placed respectively at the C1 and C2 positions of glucose are retained respectively at the C6 and C5 positions of sorbose, consistent with its formation via an intramolecular C5–C1 hydride shift isomerization mechanism. This direct Lewis acid-mediated pathway for glucose–sorbose isomerization appears to be unprecedented among heterogeneous or biological catalysts and sharply contrasts indirect base-mediated glucose–sorbose isomerization via 3,4-enediol intermediates or via retro-aldol fragmentation and recombination of sugar fragments. Measured first-order glucose–sorbose isomerization rate constants (per total Ti; 373 K) for Ti-Beta in methanol are similar for glucose and glucose deuterated at the C2 position (within a factor of ~1.1), but are a factor of ~2.3 lower for glucose deuterated at each carbon position, leading to H/D kinetic isotope effects expected for kinetically relevant intramolecular C5–C1 hydride shift steps. Optical rotation measurements show that isomerization of D-(+)-glucose (92% enantiomeric purity) with Ti-Beta in water (373 K) led to the formation of L-(-)-sorbose (73% enantiomeric purity) and D-(-)-fructose (87% enantiomeric purity) as the predominant stereoisomers, indicating that stereochemistry is preserved at carbon centers not directly involved in intramolecular C5–C1 or C2–C1 hydride shift steps, respectively. This new Lewis acid

  3. Recent advances in secondary ion mass spectrometry of solid acid catalysts : Large zeolite crystals under bombardment

    NARCIS (Netherlands)

    Hofmann, Jan P.; Rohnke, Marcus; Weckhuysen, Bert M.

    2014-01-01

    This Perspective aims to inform the heterogeneous catalysis and materials science community about the recent advances in Time-of-Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) to characterize catalytic solids by taking large model H-ZSM-5 zeolite crystals as a showcase system. SIMS-based techniqu

  4. Easily recoverable titanosilicate zeolite beads with hierarchical porosity: Preparation and application as oxidation catalysts

    NARCIS (Netherlands)

    Cheng, Wenjing; Jiang, Yanqiu; Xu, Xianzhu; Wang, Yan; Lin, Kaifeng; Pescarmona, Paolo P.

    2016-01-01

    Titanosilicate zeolite beads with hierarchical porosity and 0.2-0.5 mm diameter (HPB-TS-1) have been synthesized from a titanosilicate solution, employing a porous anion-exchange resin as shape- and structure-directing template. The characterization results showed the existence of crystalline TS-1 n

  5. A Single-Site Platinum CO Oxidation Catalyst in Zeolite KLTL: Microscopic and Spectroscopic Determination of the Locations of the Platinum Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, Joseph D.; Chotigkrai, Nutchapon; Xu, Pinghong; Enderle, Bryan; Praserthdam, Piyasan; Chen, Cong-Yan; Browning, Nigel D.; Gates, Bruce C.

    2014-07-01

    A stable site-isolated mononuclear platinum catalyst with a well-defined structure is presented. Platinum complexes supported in zeolite KLTL were synthesized from [Pt(NH3)4](NO3)2, oxidized at 633 K, and used to catalyze CO oxidation. Finally, IR and X-ray absorption spectra and electron micrographs determine the structures and locations of the platinum complexes in the zeolite pores, demonstrate the platinum-support bonding, and show that the platinum remained site isolated after oxidation and catalysis.

  6. Kinetic-Thermodynamic Analysis of the Reactive Distillation Process of the Cyclohexene Hydration Using the Zeolite Catalyst

    Institute of Scientific and Technical Information of China (English)

    叶建初; 黄佳丽; 林晗丹; 曹克腾; 沙勇

    2011-01-01

    Reactive distillation could be utilized to produce cyclohexanol through the cyclohexene hydration. By means of highly active zeolite catalyst HZSM-5, the kinetic-thermodynamic analysis of this reactive distillation has been carried out to get the characteristics of the reactive distillation. Results from kinetic and thermodynamic analysis indicate that the optimal pressure of this reactive distillation process should be set to higher pressure such as 0.3 or 0.4 MPa. To avoid the recovery of cyclohexanol at the top of the column, an unreactive section should be allocated at the upper column. In addition, the inert component benzene is more unfavorable to the reactive distillation process in comparison with the inert cyclohexane.

  7. Hydroisomerization of n-heptane over bimetal-bearing H3PW12O40 catalysts supported on dealuminated USY zeolite

    Institute of Scientific and Technical Information of China (English)

    WEI RuiPing; GU YanBo; WANG Jun

    2008-01-01

    The bimetal-bearing (CePt or LaPt) 12-tungstophosphoric acid (H3PW12O40 (PW)) catalysts supported on dealuminated USY zeolite (DUSY) were prepared by impregnation and characterized by XRD, BET, IR, and H2-chemisorption.Their catalytic activities were tested in the hydroisomerization of n-heptane with a continuous atmospheric fixed-bed reactor.After the steam treatment combined with the acid leaching, as well as the supporting with PW and the bimetals, the DUSY support retains the Y zeolite porosity and the PW well keeps its Keggin structure in catalysts.The doping of Ce into the catalysts enhances the dispersion of Pt on the catalyst surface.The Pt-bearing PW catalysts doped with Ce or La, especially Ce, exhibit much higher catalytic activity and selectivity than the catalysts without dopants at lowered re-action temperatures.At the optimal reaction conditions, i.e., the reaction temperature of 250℃ and WHSV of 1.4 h-1, the catalyst with a Pt loading of 0.4%, PW loading of 10% and a molar ratio of Ce to Pt of 15:1 shows a conversion of n-heptane of 70.3% with a high selectivity for isomerization products of 94.1%.

  8. Hydroisomerization of n-heptane over bimetal-bearing H3PW12O40 catalysts supported on dealuminated USY zeolite

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The bimetal-bearing (CePt or LaPt) 12-tungstophosphoric acid (H3PW12O40 (PW)) catalysts supported on dealuminated USY zeolite (DUSY) were prepared by impregnation and characterized by XRD, BET, IR, and H2-chemisorption. Their catalytic activities were tested in the hydroisomerization of n-heptane with a continuous atmospheric fixed-bed reactor. After the steam treatment combined with the acid leaching, as well as the supporting with PW and the bimetals, the DUSY support retains the Y zeolite porosity and the PW well keeps its Keggin structure in catalysts. The doping of Ce into the catalysts enhances the dispersion of Pt on the catalyst surface. The Pt-bearing PW catalysts doped with Ce or La, especially Ce, exhibit much higher catalytic activity and selectivity than the catalysts without dopants at lowered reaction temperatures. At the optimal reaction conditions, i.e., the reaction temperature of 250℃ and WHSV of 1.4 h1, the catalyst with a Pt loading of 0.4%, PW loading of 10% and a molar ratio of Ce to Pt of 15:1 shows a conversion of n-heptane of 70.3% with a high selectivity for isomerization products of 94.1%.

  9. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    Science.gov (United States)

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. PMID:26138135

  10. Synthesis of 2,3-Butanedione over TS-1, Ti-NCl, TiMCM-41, Ti-Beta, Fe-Si, Fe-Beta and VS-1 Zeolites

    OpenAIRE

    Oscar Anunziata; Liliana Pierella; Marcos Gomez; Andrea Beltramone

    2000-01-01

    The purpose of this work is the synthesis of 2,3-butanedione (diacetyl) by selective oxidation of 2-butanone (methyl ethyl ketone) in the presence of O2 and H2O2 30% as oxidants. All the tests were performed over several selective oxidation zeolite catalysts, synthesized and characterized in our laboratory.

  11. HERFD-XANES and XES as complementary operando tools for monitoring the structure of Cu-based zeolite catalysts during NOx-removal by ammonia SCR

    Science.gov (United States)

    Günter, T.; Doronkin, D. E.; Carvalho, H. W. P.; Casapu, M.; Grunwaldt, J.-D.

    2016-05-01

    In this article, we demonstrate the potential of hard X-ray techniques to characterize catalysts under working conditions. Operando high energy resolution fluorescence detected (HERFD) XANES and valence to core (vtc) X-ray emission spectroscopy (XES) have been used in a spatially-resolved manner to study Cu-zeolite catalysts during the standard-SCR reaction and related model conditions. The results show a gradient in Cu oxidation state and coordination along the catalyst bed as the reactants are consumed. Vtc-XES gives complementary information on the direct adsorption of ammonia at the Cu sites. The structural information on the catalyst shows the suitability of X-ray techniques to understand catalytic reactions and to facilitate catalyst optimization.

  12. Catalytic Performance of Zeolite-Supported Vanadia in the Aerobic Oxidation of 5-hydroxymethylfurfural to 2,5- diformylfuran

    DEFF Research Database (Denmark)

    Sádaba, Irantzu; Gorbanev, Yury; Kegnæs, Søren;

    2013-01-01

    /Vis spectrophotometry. The H-beta zeolite catalysts were found to contain highly dispersed vanadium oxide species at all loadings, and provided the highest reaction selectivity towards DFF and the lowest metal leaching of the examined systems. In particular, 1 wt % V2O5/H-beta was found to be a stable, recyclable......The catalytic performance of zeolite-supported vanadia catalysts was examined for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) in organic solvents such as N,N-dimethylformamide (DMF), methyl isobutyl ketone, toluene, trifluorotoluene and DMSO. Catalysts based...... on the four different zeolite supports H-beta, H-Y, H-mordenite, and H-ZSM-5 with 1–10 wt% vanadia loading were prepared and characterized by nitrogen physisorption, X-ray powder diffraction, scanning electron  microscopy, ammonia temperature-programmed desorption, Raman spectroscopy and UV...

  13. Catalytic Intermediate Pyrolysis of Napier Grass in a Fixed Bed Reactor with ZSM-5, HZSM-5 and Zinc-Exchanged Zeolite-A as the Catalyst

    Directory of Open Access Journals (Sweden)

    Isah Yakub Mohammed

    2016-03-01

    Full Text Available The environmental impact from the use of fossil fuel cum depletion of the known fossil oil reserves has led to increasing interest in liquid biofuels made from renewable biomass. This study presents the first experimental report on the catalytic pyrolysis of Napier grass, an underutilized biomass source, using ZSM-5, 0.3HZSM-5 and zinc exchanged zeolite-A catalyst. Pyrolysis was conducted in fixed bed reactor at 600 °C, 30 °C/min and 7 L/min nitrogen flow rate. The effect of catalyst-biomass ratio was evaluated with respect to pyrolysis oil yield and composition. Increasing the catalyst loading from 0.5 to 1.0 wt % showed no significant decrease in the bio-oil yield, particularly, the organic phase and thereafter decreased at catalyst loadings of 2.0 and 3.0 wt %. Standard analytical methods were used to establish the composition of the pyrolysis oil, which was made up of various aliphatic hydrocarbons, aromatics and other valuable chemicals and varied greatly with the surface acidity and pore characteristics of the individual catalysts. This study has demonstrated that pyrolysis oil with high fuel quality and value added chemicals can be produced from pyrolysis of Napier grass over acidic zeolite based catalysts.

  14. Effect of the nature of a structure-forming additive on the physicochemical properties of zeolites and the activity of Zn-containing catalysts based on them in ethane aromatization

    Science.gov (United States)

    Vosmerikova, L. N.; Barbashin, Ya. E.; Vosmerikov, A. V.

    2014-03-01

    The effect the nature of the structure-forming additive has on the physicochemical properties of synthesized zeolites and the activity of Zn-containing catalysts prepared on their basis in converting ethane into aromatic hydrocarbons is studied. It is shown that the structure-forming additive plays an important role in the hydrothermal synthesis of zeolites. It is found that the highest activity and stability in ethane aromatization is exhibited by a catalyst based on a zeolite synthesized using hexamethylenediamine as a template.

  15. Superior performance of metal-organic frameworks over zeolites as solid acid catalysts in the Prins reaction: green synthesis of nopol.

    Science.gov (United States)

    Opanasenko, Maksym; Dhakshinamoorthy, Amarajothi; Hwang, Young Kyu; Chang, Jong-San; Garcia, Hermenegildo; Čejka, Jiří

    2013-05-01

    The catalytic performance of a set of metal-organic frameworks [CuBTC, FeBTC, MIL-100(Fe), MIL-100(Cr), ZIF-8, MIL-53(Al)] was investigated in the Prins condensation of β-pinene with formaldehyde and compared with the catalytic behavior of conventional aluminosilicate zeolites BEA and FAU and titanosilicate zeolite MFI (TS-1). The activity of the investigated metal-organic frameworks (MOFs) increased with the increasing concentration of accessible Lewis acid sites in the order ZIF-8zeolites BEA and FAU, which showed significantly lower selectivity to the target nopol than the MOFs. Its high activity, the preservation of its structure and active sites, and the possibility to use it in at least three catalytic cycles without loss of activity make MIL-100 (Fe) the best performing catalyst of the series for the Prins condensation of β-pinene and paraformaldehyde. Our report exemplifies the advantages of MOFs over zeolites as solid catalysts in liquid-phase reactions for the production of fine chemicals.

  16. Chromium removal by zeolite-rich materials obtained from an exhausted FCC catalyst: Influence of chromium incorporation on the sorbent structure.

    Science.gov (United States)

    Gonzalez, Maximiliano R; Pereyra, Andrea M; Torres Sánchez, Rosa M; Basaldella, Elena I

    2013-10-15

    A spent FCC catalyst was converted into a zeolitic mixture, and the product obtained was afterward used as trapping material for Cr(III) species frequently found in aqueous solutions. Eventual changes in the sorbent structure produced by Cr incorporation were studied by different characterization techniques such as point of zero charge determinations (PZC), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and infrared absorption (FTIR). The XRD and FTIR analyses indicated that chromium incorporation produces an amorphization of the material, and PZC measurements show no surface adsorption of charged chromium species. SEM and EDX analyses clearly show that after chromium sorption, the initial microspheroidal catalyst morphology was maintained, and the presence of chromium species was mainly detected in the outer microsphere surface, where the zeolite crystals were hydrothermally grown.

  17. Studies of the Effects of Alkali Metal Oxides Promoter on the Oxidative Methylation of Toluene with Methane over KY Zeolite Catalysts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The toluene conversion, the selectivity to styrene and ethylbenzene( C8 selectivity) in the oxidative methylation of toluene with methane have been studied comparatively for the KY zeolite catalyst promoted with Li2O, Na2O, K2O, and Cs2O respectively. It was found that the effect of promoter decreased in the order: Cs2O>Na2O>Li2O>K2O.

  18. Catalytic performance of dealuminated H-Y zeolite supported bimetallic nano catalysts in Hydroizomerization of n-hexane and n-heptane

    International Nuclear Information System (INIS)

    A series of dealuminated Y-zeolites impregnated by 0.5 wt % Pt catalysts promoted by different amounts of Ni, Pd or Cr (0.3 and 0.6 wt %) were prepared and characterized as hydrocracking catalysts. The physicochemical and structural characterization of the solid catalysts were investigated and reported through N2 physisorption, XRD, TGA-DSC, FT-IR and TEM techniques. Solid catalysts surface acidities were investigated through FT-IR spectroscopy aided by pyridine adsorption. The solid catalytic activities were evaluated through hydro conversion of n-hexane and n-heptane employing micro-catalytic pulse technique directly connected to a gas chromatograph analyzer. The thermal stability of the solids was also investigated up to 800 degree C. Crystallinity studies using the XRD technique of all modified samples proved analogous to the parent Y-zeolite, exhibiting nearly an amorphous and microcrystalline character of the second metal oxides. Disclosure of bimetallic catalysts crystalline characterization, through XRD, was not viable. The nitrogen adsorption-desorption isotherms for all samples concluded type I adsorption isotherms, without any hysteresis loop, indicating that the entire pore system is composed of micropores. TEM micrographs of the solid catalysts demonstrate well-dispersed Pt, Ni and Cr nanoparticles having sizes of 2-4 nm and 7-8 nm, respectively. The catalytic activity results indicate that the bimetallic (0.5 Pt-0.3 Cr)/D18 H-Y catalyst is the most active towards n-hexane and n-heptane isomerization while (0.5 Pt-0.6 Ni)/D18 H-Y catalyst can be designed as most suitable as a cracking catalyst

  19. Catalytic Intermediate Pyrolysis of Napier Grass in a Fixed Bed Reactor with ZSM-5, HZSM-5 and Zinc-Exchanged Zeolite-A as the Catalyst

    OpenAIRE

    Isah Yakub Mohammed; Feroz Kabir Kazi; Suzana Yusup; Peter Adeniyi Alaba; Yahaya Muhammad Sani; Yousif Abdalla Abakr

    2016-01-01

    The environmental impact from the use of fossil fuel cum depletion of the known fossil oil reserves has led to increasing interest in liquid biofuels made from renewable biomass. This study presents the first experimental report on the catalytic pyrolysis of Napier grass, an underutilized biomass source, using ZSM-5, 0.3HZSM-5 and zinc exchanged zeolite-A catalyst. Pyrolysis was conducted in fixed bed reactor at 600 °C, 30 °C/min and 7 L/min nitrogen flow rate. The effect of catalyst-biomass ...

  20. Preparation for Pt-Loaded Zeolite Catalysts Using w/o Microemulsion and Their Hydrocracking Behaviors on Fischer-Tropsch Product

    OpenAIRE

    Toshiaki Hanaoka; Tomohisa Miyazawa; Katsuya Shimura; Satoshi Hirata

    2015-01-01

    Pt-loaded β-type zeolite catalysts with constant Pt content (0.11 wt.%) and similar pore structure were prepared using a water-in-oil (w/o) microemulsion. The effect of Pt particle synthesis conditions using microemulsion (a type of Pt complex-forming agents and the molar ratio of complex-forming agent to Pt4+) on loaded Pt particle size was investigated. The Pt particle size of the Pt catalyst using tetraethylammonium chloride (TEAC) as a complex-forming agent with the molar TEAC/Pt ratio 10...

  1. Preparation for Pt-Loaded Zeolite Catalysts Using w/o Microemulsion and Their Hydrocracking Behaviors on Fischer-Tropsch Product

    Directory of Open Access Journals (Sweden)

    Toshiaki Hanaoka

    2015-02-01

    Full Text Available Pt-loaded β-type zeolite catalysts with constant Pt content (0.11 wt.% and similar pore structure were prepared using a water-in-oil (w/o microemulsion. The effect of Pt particle synthesis conditions using microemulsion (a type of Pt complex-forming agents and the molar ratio of complex-forming agent to Pt4+ on loaded Pt particle size was investigated. The Pt particle size of the Pt catalyst using tetraethylammonium chloride (TEAC as a complex-forming agent with the molar TEAC/Pt ratio 10 was the minimum value (3.8 nm, and was much smaller than that (6.7 nm prepared by the impregnation method. The utilization of the complex-forming agent of which hydrophobic groups occupied a small volume and the appropriate complex-forming agent/Pt ratio were favorable for synthesis of small Pt particles. The effect of loaded Pt particle size on the hydrocracking of the Fischer-Tropsch (FT product was investigated using the Pt-loaded zeolite catalysts at 250 °C with an initial H2 pressure of 0.5 MPa, and reaction time of 1 h. The Pt catalyst with a Pt particle size of 4.2 nm prepared using the microemulsion exhibited the maximum corresponding jet fuel yield (30.0%, which was higher than that of the impregnated catalyst.

  2. Use of natural zeolites for creation of catalysts containing Cu, Cr, Co, Fe for total oxidation of CO, CH4, CH3OH gas wastes

    International Nuclear Information System (INIS)

    On the basis of natural zeolites of 'Nor Koghb' from Noyemberyan Region of Armenia various quantities of metal containing (Cu,Cr, Co, Fe) catalysts were synthesized by methods of: impregnation; impregnation by ultrasonic treatment (UST); ion exchange. It was studied physico-chemical properties of synthesized catalysts with the help of X-ray, ESR and electronic microscope. Catalytic activity of synthesized catalysts is studied in the processes of deep oxidation by air under atmospheric pressure of methanol, carbon oxide and methane. It is shown that increase of quantity of CuO>2 weight % in clinoptilolite leads to decrease of CO, CH3OH and CH4 conversion and increase of quantity of CoO, Cr2O3, Fe2O3 (2-6 weight %) leads to increase of above mentioned conversion.These catalysts preserve their catalytic activity for a long period of time

  3. Investigation of Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High Field Solid State NMR

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhenchao; Xu, Suochang; Hu, Mary Y.; Bao, Xinhe; Peden, Charles HF; Hu, Jian Z.

    2015-01-22

    Aluminum site changes for dehydrated H-Beta zeolite during rehydration process are systematically investigated by ²⁷Al MAS and MQ MAS NMR at high magnetic fields up to 19.9 T. Benefiting from the high magnetic field, more detailed information is obtained from the considerably broadened and overlapped spectra of dehydrated H-beta zeolite. Dynamic changes of aluminum sites are demonstrated during rehydration process. In completely dehydrated H-Beta, invisible aluminum can reach 29%. The strength of quadrupole interactions for framework aluminum sites decreases gradually during water adsorption processes. The number of extra-framework aluminum (EFAL) species, i.e., penta- (34 ppm) and octa- (4 ppm) coordinated aluminum atoms rises initially with increasing water adsorption, and finally change into either tetra-coordinated framework or extra-framework aluminum in saturated water adsorption samples, with the remaining octa-coordinated aluminum lying at 0 and -4 ppm, respectively. Quantitative ²⁷Al MAS NMR analysis combined with ¹H MAS NMR indicates that some active EFAL species formed during calcination can reinsert into the framework during this hydration process. The assignment of aluminum at 0 ppm to EFAL cation and -4 ppm to framework aluminum is clarified for H-Beta zeolite.

  4. Effects of Calcination Temperature on the Acidity and Catalytic Performances of HZSM-5 Zeolite Catalysts for the Catalytic Cracking of n-Butane

    Institute of Scientific and Technical Information of China (English)

    Jiangyin Lu; Zhen Zhao; Chunming Xu; Aijun Duan; Pu Zhang

    2005-01-01

    The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total acid amounts, their density and the amount of B-type acid of HZSM-5 catalysts rapidly decreased, while the amounts of L-type acid had almost no change and thus the ratio of L/B was obviously enhanced with the increase of calcination temperature (excluding 800 ℃). The catalytic performances of modified HZSM-5 catalysts for the cracking of n-butane were also investigated. The main properties of these catalysts were characterized by means of XRD, N2 adsorption at low temperature, NH3-TPD, FTIR of pyridine adsorption and BET surface area measurements. The results showed that HZSM-5 zeolite pretreated at 800 ℃ had very low catalytic activity for n-butane cracking. In the calcination temperature range of 500-700 ℃, the total selectivity to olefins, propylene and butene were increased with the increase of calcination temperature, while, the selectivity for arene decreased with the calcination temperature.The HZSM-5 zeolite calcined at 700 ℃ produced light olefins with high yield, at the reaction temperature of 650 ℃ the yields of total olefins and ethylene were 52.8% and 29.4%, respectively. Besides, the more important role is that high calcination temperature treatment improved the duration stability of HZSM-5zeolites. The effect of calcination temperature on the physico-chemical properties and catalytic performance of HZSM-5 for cracking of n-butane was explored. It was found that the calcination temperature had large effects on the surface area, crystallinity and acid properties of HZSM-5 catalyst, which further affected the catalytic performance for n-butane cracking.

  5. Catalyst composition

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, T.; Sakai, T.; Sumitani, K.; Yamasaki, Y.

    1984-11-27

    A catalyst composition comprising a crystalline aluminosilicate selected from the group consisting of zeolite ZSM-5, zeolite ZSM-11, zeolite ZSM-12, zeolite ZSM-35 and zeolite ZSM-38 and having a silica/alumina mole ratio of 20 to 1,000; and at least two metals which are platinum and at least one other metal selected from the group consisting of titanium, chromium, zinc, gallium, germanium, strontium, yttrium, zirconium, molybdenum, palladium, tin, barium, cerium, tungsten, osmium, lead, cadmium, mercury, indium, lanthanum and beryllium. This catalyst composition is useful particularly for the isomerization of aromatic hydrocarbons and reforming of naphtha.

  6. BTX production by in-situ contact reforming of low-temperature tar from coal with zeolite-derived catalysts; Zeolite kei shokubai wo mochiita sekitan teion tar no sesshoku kaishitsu ni yoru BTX no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, T.; Fuda, K.; Murakami, K.; Kyo, M.; Hosoya, S.; Kobayashi, S. [Akita University, Akita (Japan). Mining College

    1996-10-28

    On BTX production process from low-temperature tar obtained by pyrolysis of coal, the effect of exchanged metallic species and reaction temperature were studied using metallic ion-exchanged Y-zeolite as catalyst. In experiment, three kinds of coals with different produced tar structures such as Taiheiyo and PSOC-830 sub-bituminous coals and Loy Yang brown coal were used. Y-zeolite ion-exchanged with metal chloride aqueous solution was used as catalyst. Zn{sup 2+}, Ni{sup 2+} and In{sup 3+} were used as metal ions to be exchanged. The experiment was conducted by heating a pyrolysis section up to 600{degree}C for one hour after preheating a contact reforming section up to a certain proper temperature. As a result, the Ni system catalyst was effective for BTX production from aromatic-abundant tar, while the Zn system one from lower aromatic tar. In general, relatively high yields of toluene and xylene were obtained at lower temperature, while those of benzene at higher temperature. 4 figs., 1 tab.

  7. Immobilization of L-Lysine on Zeolite 4A as an Organic-Inorganic Composite Basic Catalyst for Synthesis of α,β-Unsaturated Carbonyl Compounds under Mild Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Farzad; Rezapour, Mehdi; Kianpour, Sahar [Islamic Azad Univ., Isfahan (Iran, Islamic Republic of)

    2013-08-15

    Lysine (Lys) immobilized on zeolite 4A was prepared by a simple adsorption method. The physical and chemical properties of Lys/zeolite 4A were investigated by X-ray diffraction (XRD), FT-IR, Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis. The obtained organic-inorganic composite was effectively employed as a heterogeneous basic catalyst for synthesis of α,β-unsaturated carbonyl compounds. No by-product formation, high yields, short reaction times, mild reaction conditions, operational simplicity with reusability of the catalyst are the salient features of the present catalyst.

  8. Aromatization of light naphtha fractions on zeolites: 2. Model of catalyst deactivation

    OpenAIRE

    Ostrovski Nikolaj M.; Rovenskaja Svetlana A.; Echevski Genadij V.

    2004-01-01

    A model of catalyst deactivation in the "Zeoforming" process was developed. The deactivation rate constants and activation energies were estimated. The role of adsorbed oligomers in the reaction and the deactivation kinetics were examined. The model is intended for further modeling and optimization of the process.

  9. Aromatization of light naphtha fractions on zeolites: 2. Model of catalyst deactivation

    Directory of Open Access Journals (Sweden)

    Ostrovski Nikolaj M.

    2004-01-01

    Full Text Available A model of catalyst deactivation in the "Zeoforming" process was developed. The deactivation rate constants and activation energies were estimated. The role of adsorbed oligomers in the reaction and the deactivation kinetics were examined. The model is intended for further modeling and optimization of the process.

  10. Light straight-run gas oil hydrotreatment over sulfided CoMoP/Al{sub 2}O{sub 3}-USY zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marin, C.; Escobar, J.; Galvan, E.; Murrieta, F.; Zarate, R.; Vaca, H. [Instituto Mexicano del Petroleo, Tratamiento de Crudo Maya, Eje Central Lazaro Cardenas 152, Col. San Bartolo Atepehuacan, Del. G.A. Madero (Mexico)

    2005-01-25

    Al{sub 2}O{sub 3} supports were modified by integrating USY zeolites (13.6 wt.%) of various nominal SiO{sub 2}/Al{sub 2}O{sub 3} molar ratios (30-80). The obtained hybrid solids calcined at 500 {sup o}C were impregnated at incipient wetness with a Co-Mo-P solution. After sulfiding with CS{sub 2}-spiked naphtha (at 230 {sup o}C, 5.5 MPa and LHSV=3 h{sup -1}) the corresponding catalysts were tested in light straight-run gas oil hydrotreatment at industrially relevant operating conditions. The catalyst containing zeolite of the highest SiO{sub 2}/Al{sub 2}O{sub 3} molar ratio (80) showed very high hydrodesulfurization activity. Operating at 360 {sup o}C, 5.5 MPa and LHSV=2.5 h{sup -1}, ultra-low sulfur diesel (circa 50 ppm S) could be obtained over that material, from a feedstock of 10,400 ppm S. Medium-strong acidity could be playing an important role on this behaviour by promoting isomerization of sterically hindered organo-sulfur compounds to more favorable configurations. Moreover, hydrodearomatization and hydrodenitrogenation were also enhanced by addition of that high-silica zeolite.

  11. New zeolites in Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, H.; Joisten, M.; Luengen, S.; Winkler, D. (RWTH Aachen, Aachen (Germany). Inst. fuer Brennstoffchemie und Physikalisch-Chemische Verfahrenstechnik)

    1994-03-01

    Liquid fuels as well as liquid chemical feedstock can be produced from abundantly available sources such as coal or natural gas via syngas and subsequent Fischer-Tropsch synthesis (FTS). Continuing earlier investigations of various authors on zeolites A,X,Y or ZSM-5 in FTS, this paper deals with mordenite, erionite, ZSM-11, ZSM-12, and zeolites L, omega and beta, combined with Fe (promoted with Cu and K), or Co, by coprecipitation, by impregnation with carbonyls, or by ion exchange. It was the aim of this investigation to measure the effect of these zeolites on the composition of FTS products. Catalyst screening was executed at medium pressure (10 to 15 bar) in fixed bed and in bubble column reactors. It was found that the product spectra in the gaseous phase as well as in the liquid phase can be significantly different from those of classical straight-chain FTS products, and that they branch into more isomers, olefins and oxygenates, owing to the shape selectivity and acidity of the zeolites. Furthermore, it was found that zeolites with large pores were more resistant to fast blocking by carbon deposition. From the point of view of environmental protection, it should be emphasized that the FTS product is absolutely sulphur-free. 4 refs., 7 figs., 6 tabs.

  12. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template.

    Science.gov (United States)

    Kim, Kyoungsoo; Lee, Taekyoung; Kwon, Yonghyun; Seo, Yongbeom; Song, Jongchan; Park, Jung Ki; Lee, Hyunsoo; Park, Jeong Young; Ihee, Hyotcherl; Cho, Sung June; Ryoo, Ryong

    2016-07-01

    Three-dimensional graphene architectures with periodic nanopores—reminiscent of zeolite frameworks—are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst

  13. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template

    Science.gov (United States)

    Kim, Kyoungsoo; Lee, Taekyoung; Kwon, Yonghyun; Seo, Yongbeom; Song, Jongchan; Park, Jung Ki; Lee, Hyunsoo; Park, Jeong Young; Ihee, Hyotcherl; Cho, Sung June; Ryoo, Ryong

    2016-07-01

    Three-dimensional graphene architectures with periodic nanopores—reminiscent of zeolite frameworks—are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst

  14. Selective catalytic reduction of nitrogen oxides with ammonia over microporous zeolite catalysts

    OpenAIRE

    VENNESTROM, PETER NICOLAI RAVNBORG

    2014-01-01

    With increasing legislative demands to remove nitrogen oxides (NOx) from automotive diesel exhaust, new catalyst systems are investigated and intensely studied in industry as well in academia. The most prevailing catalytic method of choice is the selective catalytic reduction (SCR) where non-toxic urea is used as a reductant for practical reasons. Usually urea is stored in a separate tank and once injected into the exhaust system it hydrolyses into the more aggressive reductant NH3 and CO2. ...

  15. Transient Spectroscopic Characterization of the Genesis of a Ruthenium Complex Catalyst Supported on Zeolite Y

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, Isao; Gates, Bruce C.; (UCD)

    2010-01-12

    A mononuclear ruthenium complex anchored to dealuminated zeolite HY, Ru(acac)(C{sub 2}H{sub 4}){sup 2+} (acac = acetylacetonate, C{sub 5}H{sub 7}O{sup 2}{sup -}), was characterized in flow reactors by transient infrared (IR) spectroscopy and Ru K edge X-ray absorption spectroscopy. The combined results show how the supported complex was converted into a form that catalyzes ethene conversion to butene. The formation of these species resulted from the removal of acac ligands from the ruthenium (as shown by IR and extended X-ray absorption fine structure (EXAFS) spectra) and the simultaneous decrease in the symmetry of the ruthenium complex, with the ruthenium remaining mononuclear and its oxidation state remaining essentially unchanged (as shown by EXAFS and X-ray absorption near-edge structure spectra). The removal of anionic acac ligands from the ruthenium was evidently compensated by the bonding of other anionic ligands, such as hydride from H2 in the feed stream, to form species suggested to be Ru(H)(C{sub 2}H{sub 4}){sub 2}{sup +}, which is coordinatively unsaturated and inferred to react with ethene, leading to the observed formation of butene in a catalytic process.

  16. Template-synthesized porous silicon carbide as an effective host for zeolite catalysts.

    Science.gov (United States)

    Gu, Lijun; Ma, Ding; Yao, Songdong; Liu, Xiumei; Han, Xiuwen; Shen, Wenjie; Bao, Xinhe

    2009-12-14

    A facile method has been developed for the fabrication of porous silicon carbide (SiC) by means of sintering a mixture of SiC powder and carbon pellets at a relatively lower temperature, that is, 1450 degrees C, in air. The pore density and the total pore volume of the resulting porous SiC could be tuned by changing the initial SiC/C weight ratio. The structure evolution and the associated property changes during the preparation were examined through X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, (29)Si magic-angle spinning (MAS) NMR spectroscopy, and mercury-intrusion porosimetry analyses. Silica and SiO(x)C(y) ceramics formed in situ during the calcination process acted as binders of the porous SiC grains. The porous SiC can be used as a host for the growth of ZSM-5 zeolite crystals to form the ZSM-5/porous-SiC composite material. After loading another catalytic active component of molybdenum, a novel catalytic material, Mo-ZSM-5/porous-SiC, was obtained, which exhibited improved catalytic activity in the methane dehydroaromatization reaction.

  17. NO oxidation on Zeolite Supported Cu Catalysts: Formation and Reactivity of Surface Nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton; Gao, Feng; Wang, Yilin; Szanyi, Janos; Peden, Charles HF

    2016-04-18

    The comparative activities of a small-pore Cu-CHA and a large-pore Cu-BEA catalyst for the selective catalytic reduction (SCR) of NOx with NH3, and for the oxidation of NO to NO2 and the subsequent formation of surface nitrates were investigated. Although both catalysts are highly active in SCR reactions, they exhibit very low NO oxidation activity. Furthermore, Cu-CHA is even less active than Cu-BEA in catalyzing NO oxidation but is clearly more active for SCR reactions. Temperature-programed desorption (TPD) experiments following the adsorption of (NO2 + NO + O2) with different NO2:NO ratios reveal that the poor NO oxidation activity of the two catalysts is not due to the formation of stable surface nitrates. On the contrary, NO is found to reduce and decompose the surface nitrates on both catalysts. To monitor the reaction pathways, isotope exchange experiments were conducted by using 15NO to react with 14N-nitrate covered catalyst surfaces. The evolution of FTIR spectra during the isotope exchange process demonstrates that 14N-nitrates are simply displaced with no formation of 15N-nitrates on the Cu-CHA sample, which is clearly different from that observed on the Cu-BEA sample where formation of 15N-nitrates is apparent. The results suggest that the formal oxidation state of N during the NO oxidation on Cu-CHA mainly proceeds from its original +2 to a +3 oxidation state, whereas reaching a higher oxidation state for N, such as +4 or +5, is possible on Cu-BEA. The authors at PNNL gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  18. A Comparative Study of N2O Formation during the Selective Catalytic Reduction of NOx with NH3 on Zeolite Supported Cu Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton; Gao, Feng; Wang, Yilin; Szanyi, Janos; Peden, Charles HF

    2015-09-01

    A comparative study was carried out on a small-pore CHA.Cu and a large-pore BEA.Cu zeolite catalyst to understand the lower N2O formation on small-pore zeolite supported Cu catalysts in the selective catalytic reduction (SCR) of NOx with NH3. On both catalysts, the N2O yield increases with an increase in the NO2/NOx ratios of the feed gas, suggesting N2O formation via the decomposition of NH4NO3. Temperature-programmed desorption experiments reveal that NH4NO3 is more stable on CHA.Cu than on BEA.Cu. In situ FTIR spectra following stepwise (NO2 + O2) and (15NO + NH3 + O2) adsorption and reaction, and product distribution analysis using isotope-labelled reactants, unambiguously prove that surface nitrate groups are essential for the formation of NH4NO3. Furthermore, CHA.Cu is shown to be considerably less active than BEA.Cu in catalyzing NO oxidation and the subsequent formation of surface nitrate groups. Both factors, i.e., (1) the higher thermal stability of NH4NO3 on CHA.Cu, and (2) the lower activity for this catalyst to catalyze NO oxidation and the subsequent formation of surface nitrates, likely contribute to the higher SCR selectivity with less N2O formation on this catalyst as compared to BEA.Cu. The latter is determined as the primary reason since surface nitrates are the source that leads to the formation of NH4NO3 on the catalysts.

  19. Session 6: Decomposition of NO over {beta}-Mo{sub 2}C and {beta}-Mo{sub 2}C/Al{sub 2}O{sub 3} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Shengfu, Ji; Chengyue, Li [Beijing University of Chemical Technology, Key Lab. of Science and Technology of Controllable Chemical Reactions, Ministry of Education (China); Shengfu, Ji; Jiaxin, Wang; Jian, Yang; Shuben, Li [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China)

    2004-07-01

    In this study, for the first time it has been found that the the bulk {beta}-Mo{sub 2}C and an alumina-supported {beta}-Mo{sub 2}C catalysts are very active for the direct NO decomposition at low temperature. The obtained experimental results are presented. (authors)

  20. Enhancement of Treatment Efficiency of Recalcitrant Wastewater Containing Textile Dyes Using a Newly Developed Iron Zeolite Socony Mobil-5 Heterogeneous Catalyst.

    Directory of Open Access Journals (Sweden)

    Mushtaq Ahmad

    Full Text Available Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5 was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption.

  1. Dynamic nuclear polarization NMR enables the analysis of Sn-Beta zeolite prepared with natural abundance ¹¹⁹Sn precursors.

    Science.gov (United States)

    Gunther, William R; Michaelis, Vladimir K; Caporini, Marc A; Griffin, Robert G; Román-Leshkov, Yuriy

    2014-04-30

    The catalytic activity of tin-containing zeolites, such as Sn-Beta, is critically dependent on the successful incorporation of the tin metal center into the zeolite framework. However, synchrotron-based techniques or solid-state nuclear magnetic resonance (ssNMR) of samples enriched with (119)Sn isotopes are the only reliable methods to verify framework incorporation. This work demonstrates, for the first time, the use of dynamic nuclear polarization (DNP) NMR for characterizing zeolites containing ~2 wt % of natural abundance Sn without the need for (119)Sn isotopic enrichment. The biradicals TOTAPOL, bTbK, bCTbK, and SPIROPOL functioned effectively as polarizing sources, and the solvent enabled proper transfer of spin polarization from the radical's unpaired electrons to the target nuclei. Using bCTbK led to an enhancement (ε) of 75, allowing the characterization of natural-abundance (119)Sn-Beta with excellent signal-to-noise ratios in <24 h. Without DNP, no (119)Sn resonances were detected after 10 days of continuous analysis. PMID:24697321

  2. Potential of sustainable hierarchical zeolites in the valorization of α-pinene.

    Science.gov (United States)

    Nuttens, Nicolas; Verboekend, Danny; Deneyer, Aron; Van Aelst, Joost; Sels, Bert F

    2015-04-13

    In the valorization of α-pinene, which is an important biomass intermediate derived from turpentine oil, hierarchical (mesoporous) zeolites represent a superior class of catalysts. Hierarchical USY, ZSM-5, and beta zeolites have been prepared, characterized, and catalytically evaluated, with the aim of combining the highest catalytic performance with the most sustainable synthetic protocol. These zeolites are prepared by alkaline treatment in aqueous solutions of NH4 OH, NaOH, diethylamine, and NaOH complemented with tetrapropylammonium bromide. The hierarchical USY zeolite is the most attractive catalyst of the tested series, and is able to combine an overall organic-free synthesis with an up to sixfold activity enhancement and comparable selectivity over the conventional USY zeolite. This superior performance relates to a threefold greater activity than that of the commercial standard, namely, H2 SO4 /TiO2 . Correlation of the obtained benefits to the amount of solid lost during the postsynthetic modifications highlights that the highest activity gains are obtained with minor leaching. Furthermore, a highly zeolitic character, as determined by bulk XRD, is beneficial, but not crucial, in the conversion of α-pinene. The alkaline treatments not only result in a higher overall activity, but also a more functional external surface area, attaining up to four times the pinene conversions per square nanometer. The efficiency of the hierarchical USY zeolite is concomitantly demonstrated in the conversion of limonene and turpentine oil, which emphasizes its industrial potential.

  3. Method for purifying zeolitic material

    Energy Technology Data Exchange (ETDEWEB)

    Kokotailo, G.T.; Rohrman, A.C. Jr.

    1987-10-27

    A method is described for purifying an impure zeolitic material which contains crystalline zeolite phases of varying solubility in the presence of hydroxide ion whereby crystalline phases of greater solubility are removed from the zeolitic material. The zeolitic material contacts an aqueous solution having a hydroxide ion concentration sufficient to substantially solubilize at least one but not all of the phases in such a way that the solution does not substantially enter the zeolitic channel system of the material, and thereafter washing the zeolitic material to remove the solubilized phases. The method of claim 1 is described wherein the solution is a 1 to 50 weight percent aqueous solution of alkali metal hydroxide. The method of claim 1 is described wherein the impure zeolitic material contains a component selected from the group consisting of zeolite beta, ZSM-5, ZSM-11, ZSM-5/ZSM-11 intermediate, ZSM-12, ZSM-23, ZSM-35, ZSM-38 and ZSM-48.

  4. Application of aromatization catalyst in synthesis of carbon nanotubes

    Indian Academy of Sciences (India)

    Song Rongjun; Yang Yunpeng; Ji Qing; Li Bin

    2012-02-01

    In a typical chemical vapour deposition (CVD) process for synthesizing carbon nanotubes (CNTs), it was found that the aromatization catalysts could promote effectively the formation of CNT. The essence of this phenomenon was attributed to the fact that the aromatization catalyst can accelerate the dehydrogenation–cyclization and condensation reaction of carbon source, which belongs to a necessary step in the formation of CNTs. In this work, aromatization catalysts, H-beta zeolite, HZSM-5 zeolite and organically modified montmorillonite (OMMT) were chosen to investigate their effects on the formation of multi-walled carbon nanotubes (MWCNTs) via pyrolysis method when polypropylene and 1-hexene as carbon source and Ni2O3 as the charring catalyst. The results demonstrated that the combination of those aromatization catalysts with nickel catalyst can effectively improve the formation of MWCNTs.

  5. Catalytic Combustion of Ethyl Acetate over Nanostructure Cobalt Supported ZSM-5 Zeolite Catalysts

    Institute of Scientific and Technical Information of China (English)

    NIAEI,Aligholi; SALARI,Dariush; HOSSEINI,Seyed Ali; KHATAMIAN,Masumeh; JODAEL,Azadeh

    2009-01-01

    Gas phase catalytic combustion of ethyl acetate,as one of volatile organic compounds(VOC),was studied on nanostructure ZSM-5.HZSM-5 and Co-ZSM-5 with different cobalt loadings. Nanostructure of ZSM-5 Was deter-mined by XRD,SEM and TEM. Catalytic studies were carried out under atmospheric pressure in a fixed bed reactor.Results showed that the Co-ZSM-5 catalysts had better activity than others and at temperatures below 350℃.amount of Co loading was mole effective on catalytic activity.The order of conversion of ethyl acetate over differ-ent Co loading is as follows:Co-ZSM-5(0.75 wt%)

  6. An investigation of the activity and stability of Pd and Pd-Zr modified Y-zeolite catalysts for the removal of PAH, CO, CH{sup 4} and NO{sup x} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Klingstedt, F.; Kalantar Neyestanaki, A.; Lindfors, L.-E.; Salmi, T. [Process Chemistry Group, Laboratory of Industrial Chemistry, Abo Akademi University, Biskopsg. 8, FIN-20500 Turku (Finland); Heikkila, T.; Laine, E. [Laboratory of Industrial Physics, Department of Physics, University of Turku, Vesilinnant. 5, FIN-20014 Turku (Finland)

    2003-01-30

    Pd-Y- and Pd-Zr-Y-zeolite catalysts were prepared by the ion-exchange of parent NH{sub 3}-Y-zeolite, thermally pre-treated Y-zeolite and hydrothermally pre-treated Y-zeolite. The activity of the catalysts was studied in conversion of gas mixtures simulating the flue gases from the combustion of biofuels and natural gas driven vehicles (NGVs) at temperature ranges of 120-800C. The effect of sulphur-poisoning was examined by the addition of 5ppm SO{sub 2} into the feed gas mixtures. High activity in the removal of the model pollutants was obtained over the fresh catalysts. De-activation was observed as a result of catalyst ageing in the reactants' flow (800C, 6h) or steam treatment (850C, 12vol.% H{sub 2}O, 16h). The de-activation was attributed to the de-alumination as well as to the migration of Pd{sup 2+} cations. The catalysts were characterised by XRD, SEM-EDXA, N{sub 2}-physisorption, O{sub 2}/SO{sub 2}/NH{sub 3}/naphthalene-TPD, XRF and DCP.

  7. Mo-Based Zeolite Catalysts and Oxygen-Free Methane Aromatization%Mo基分子筛催化剂及甲烷无氧芳构化

    Institute of Scientific and Technical Information of China (English)

    胥月兵; 陆江银; 王吉德; 张战国

    2011-01-01

    Among the investigated catalysts, the Mo-based zeolite catalysts showed the highest catalytic activity. These catalysts were systematically discussed on MoOx structure and its location in zeolite, the active Mo species and its carburization in the induction period. The issues on intermediates, the bi-functional reaction mechanism and catalyst deactivation with coke were also discussed. The effect of preparation method, calcination temperature and time, Mo loading, ratio of SiO2 to Al2O3 and the catalyst pretreatment in reaction on the catalytic performance of Mo-based catalyst were demonstrated. Then the ways to improve the catalyst activity and reaction stability were comprehensively introduced, pointing out that the catalyst was always deactivated due to coke and needed regeneration. At last according to our research results the discussion and analysis in the view of engineering technology for methane dehydroaromatization were given, and some problems needed to be solved were put forward.%本文综述了甲烷无氧芳构化反应及Mo基分子筛催化剂的研究进展.在众多的催化剂中以Mo基分子筛催化性能最佳.概括了催化剂中关于MoOz前躯体结构和其在分子筛中落位,Mo2C物种和诱导期等;讨论了反应中涉及的中间产物、双功能机理以及催化剂失活等问题;归纳了催化剂制备过程中制备方法、焙烧温度与时间、Mo载量和分子筛硅铝比以及催化剂预处理对反应活性的影响;综述了提高催化剂催化性能和反应性能的各种方法,并对其分析,同时介绍了两种催化剂再生方法.最后,依据本实验室研究进展,对甲烷芳构化从工艺角度进行一些可行性讨论,并提出相关问题和展望.

  8. SSZ-52, a zeolite with an 18-layer aluminosilicate framework structure related to that of the DeNOx catalyst Cu-SSZ-13.

    Science.gov (United States)

    Xie, Dan; McCusker, Lynne B; Baerlocher, Christian; Zones, Stacey I; Wan, Wei; Zou, Xiaodong

    2013-07-17

    A new zeolite (SSZ-52, |(C14H28N)6Na6(H2O)18|[Al12Si96O216]), related to the DeNOx catalyst Cu-SSZ-13 (CHA framework type), has been synthesized using an unusual polycyclic quaternary ammonium cation as the structure-directing agent. By combining X-ray powder diffraction (XPD), high-resolution transmission electron microscopy (HRTEM) and molecular modeling techniques, its porous aluminosilicate framework structure (R3m, a = 13.6373(1) Å, c = 44.7311(4) Å), which can be viewed as an 18-layer stacking sequence of hexagonally arranged (Si,Al)6O6 rings (6-rings), has been elucidated. The structure has a three-dimensional 8-ring channel system and is a member of the ABC-6 family of zeolites (those that can be described in terms of 6-ring stacking sequences) like SSZ-13, but it has cavities that are twice as large. The code SFW has been assigned to this new framework type. The large cavities contain pairs of the bulky organic cations. HRTEM and XPD simulations show that stacking faults do occur, but only at the 5-10% level. SSZ-52 has considerable potential as a catalyst in the areas of gas conversion and sequestration. PMID:23782259

  9. Kinetics and deactivation mechanisms of the thermal decomposition of methane in hydrogen and carbon nanofiber Co-production over Ni-supported Y zeolite-based catalysts

    International Nuclear Information System (INIS)

    Highlights: • Methane cracking requires an optimum temperature range of 550–600 °C for H2 yield. • Reaction order and activation energy were 2.65 and 61.77 kJ/mol, respectively. • At 600 °C, a 496.40 gc/gNi of carbon was obtained using 30% Ni/Y zeolite catalysts. • Deactivation order and activation energy were 1.2, and 94.03 kJ/mol, respectively. • Produced filamentous carbon has the same diameter as the metallic nickel itself. - Abstract: This paper reports the reaction rate and deactivation kinetics of methane decomposition by using zeolite Y as the support and Ni as the active phase in a fixed bed reactor at a temperature range of 500 °C to 650 °C and at partial pressures of methane/nitrogen mixture of 0.2, 0.35, and 0.5 atm. The reaction order and activation energy were 2.65 and 61.77 kJ/mol, respectively. To quantify catalytic activity, carbon deposition rate was taken into consideration, which showed that the actual and thermodynamically predicted accumulated carbons were in good balance. Deactivation order, methane concentration dependency, and activation energy were 1.2, −1.28, and 94.03 kJ/mol, respectively. The kinetic experiment indicates that the optimum temperature range should be maintained to achieve the highest performance from 30% Ni/Y zeolite in terms of hydrogen formation rate, average hydrogen formation rate, total hydrogen formation, average carbon formation, total carbon formation, and carbon formation rate. TEM and XRD analysis were performed to characterize the deactivated, fresh, and calcined catalysts, and the results indicated that the formed filamentous carbon has the same diameter as the metallic nickel itself. The influence of volume hourly space velocity (VHSV) on methane conversion and carbon nanofiber production was also discussed

  10. 含有多级孔复合分子筛的复合催化剂上合成气一步制二甲醚%Synthesis of dimethyl ether from syngas using a hierarchically porous composite zeolite as the methanol dehydration catalyst

    Institute of Scientific and Technical Information of China (English)

    王琰; 王文丽; 陈月仙; 郑家军; 李瑞丰

    2013-01-01

    以Beta分子筛为核、Y型分子筛为壳层的多级孔复合分子筛(BFZ)作为甲醇脱水催化剂用于固定床中合成气一步法制备二甲醚,并与纯Y型分子筛进行了比较,研究了二甲醚合成催化反应活性与甲醇脱水催化剂孔道结构和酸性之间的关系.结果表明,复合分子筛HBFZ具有中等强度的酸性和中孔孔道结构,有利于提高合成气制备二甲醚的催化反应活性.二甲醚直接合成催化剂由工业CuO/ZnO/Al2O3催化剂(CZA)与分子筛(HBFZ、HY)采用机械混合方法制备;催化评价结果显示,CZA/HBFZ比CZA/HY具有更优的催化活性和稳定性.在250℃,5.0 MPa和1500h-1的反应条件下,CZA/HBFZ催化剂上CO的转化率和DME的选择性分别达到94.2%和67.9%.%Hierarchically porous composite zeolite (BFZ,with Beta zeolite cores and Y zeolite polycrystalline shells) was employed as the methanol dehydration catalyst in the direct synthesis of dimethyl ether (DME) from syngas in a fixed-bed reactor.The correlation between the catalytic activity and the textural and acid properties of the dehydration catalyst was investigated.The results indicate that the composite zeolite of H-form (HBFZ) exhibits moderate acid strength and meso-porosity,which is responsible for the high activity of CO hydrogenation.For the direct synthesis of DME from CO hydrogenation over the physical mixture of commercial CuO/ZnO/Al2O3 catalyst (CZA) and the H-form zeolites (HBFZ or HY),CZA/HBFZ exhibits higher activity and stability than CZA/HY.Under 250 ℃,5.0 MPa and 1 500 h-1,the conversion of CO and the selectivity to DME over CZA/HBFZ achieve 94.2% and 67.9%,respectively.

  11. Zeolite Catalyzed Aldol Condensation Reactions

    OpenAIRE

    Adedayo I. Inegbenebor; Raphael C. Mordi; Oluwakayode M. Ogunwole

    2015-01-01

    The review is based on the description of zeolite structure, uses, synthesis, and catalytic aldol reaction in aldol condensation. An internal aldolcondensation reaction has been achieved over ZSM-5 zeolite with high silica-alumina ratio at 350oC. It therefore follows that zeolite canfunction as a catalyst in aldol type condensation reactions and that weak acid sites as well as a small number of active sites favor the aldolcondensation reaction of carbonyl compounds. However, the mixed condens...

  12. Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation

    OpenAIRE

    Soldatkin O. O.; Ozansoy Kasap B.; Akata Kurc B.; Soldatkin A. P.; Dzyadevych S. V.; El’skaya A. V.

    2014-01-01

    Aim. Optimization of a new method of enzyme immobilization for amperometric biosensor creation. Methods. The amperometric biosensor with glucose oxidase immobilized on zeolites as bioselective elements and platinum disk electrode as transducers of biochemical signal into the electric one was used in the work. Results. The biosensors based on glucose oxidase adsorbed on zeolites were characterized by a higher sensitivity to glucose and a better inter-reproducibility. The best analytical charac...

  13. Identification of Extra-Framework Species on Fe/ZSM-5 and Cu/ZSM-5 Catalysts Typical Microporous Molecular Sieves with Zeolitic Structure

    Directory of Open Access Journals (Sweden)

    E.A. Urquieta-González

    2002-09-01

    Full Text Available Cu and Fe species formed during the preparation of Cu/ and Fe/ZSM-5 catalysts by ion exchange were studied. XRD, SEM, H2-TPR, DRS-UV-VIS, EPR, Mössbauer Spectroscopy (MÖSS and chemical analysis (AAS were used to sample characterization. Cu/ZSM-5 catalysts, irrespective of their Si/Al ratio and Cu content, showed a reduction peak at around 210°C, which was attributed to the reduction of Cu+2 to Cu+1. The reduction peak of Cu+1 to Cu0 shifted to higher temperatures with the increase of Si/Al ratio or with the diminution of Cu/Al ratio, evidencing that isolated Cu cations present a higher interaction with the zeolite structure. The MÖSS data showed the presence of Fe+3 species in charge-compensation sites and a higher content of hematite (Fe2O3 in the catalysts prepared in aqueous medium. The EPR analysis also evidenced the Cu+2 and Fe+3 presence in Cu and Fe/ZSM-5 catalysts, respectively.

  14. Altering bio-oil composition by catalytic treatment of pinewood pyrolysis vapors over zeolites using an auger - packed bed integrated reactor system

    Directory of Open Access Journals (Sweden)

    Vamshi Krishna Guda

    2016-09-01

    Full Text Available Pine wood pyrolysis vapors were catalytically treated using Zeolite catalysts. An auger fed reactor was used for the pinewood pyrolysis while a packed bed reactor mounted on the top of the auger reactor housed the catalyst for the treatment of pinewood pyrolytic vapors. The pyrolytic vapors produced at 450 oC were passed through zeolite catalysts maintained at 425 oC at a weight hourly space velocity (WHSV of 12 h-1. Five zeolites, including ZSM-5, mordenite, ferrierite, Zeolite-Y, and Zeolite-beta (all in H form, were used to study the effect of catalyst properties such as acidity, pore size, and pore structure on catalytic cracking of pinewood pyrolysis vapors. Product bio-oils were analyzed for their chemical composition using GC-MS, water content, density, viscosity, acid value, pH, and elemental compositions. Thermogravimetric analysis (TGA was performed to analyze the extent of coking on zeolite catalysts. Application of catalysis to biomass pyrolysis increased gas product yields at the expense of bio-oil yields. While all the zeolites deoxygenated the pyrolysis vapors, ZSM-5 was found to be most effective. The ZSM-5 catalyzed bio-oil, rich in phenolics and aromatic hydrocarbons, was less viscous, had relatively lower acid number and high pH, and possessed oxygen content nearly half that of un-catalyzed bio-oil. Brønsted acidity, pore size, and shape-selective catalysis of ZSM-5 catalyst proved to be the determining factors for its activity. TGA results implied that the pore size of catalysts highly influenced coking reactions. Regeneration of the used catalysts was successfully completed at 700 oC.

  15. Liquid and Gaseous Fuel from Waste Plastics by Sequential Pyrolysis and Catalytic Reforming Processes over Indonesian Natural Zeolite Catalysts

    OpenAIRE

    Mochamad Syamsiro; Shuo Cheng; Wu Hu; Harwin Saptoadi; Nosal Nugroho Pratama; Wega Trisunaryanti; Kunio Yoshikawa

    2014-01-01

    In this study, the performance of several differently treated natural zeolites in a sequential pyrolysis and catalytic reforming of plastic materials i.e. polypropylene (PP) and polystyrene (PS) were investigated. The experiments were carried out on two stage reactor using semi-batch system. The samples were degraded at 500°C in the pyrolysis reactor and then reformed at 450°C in the catalytic reformer. The results show that the mordenite-type natural zeolites could be used as efficient catal...

  16. β分子筛在加氢裂化反应中催化性能特点研究%STUDY ON THE CATALYTIC PERFORMANCE OF ZEOLITE BETA IN HYDROCRACKING

    Institute of Scientific and Technical Information of China (English)

    杜艳泽; 乔楠森; 王凤来; 关明华

    2011-01-01

    A brief introduction of the characteristics of zeolite p structure was presented. The hydrocracking performance of catalyst containing zeolite pwas studied on a 200 mL hydrocracking device,and compared with catalyst containing zeolite Y and amorphous silica-alumina catalyst. Results show that under the same process conditions,catalysts containing zeolite p exhibit better catalytic performance during hydrocracking than the others; the selectivity of middle distillates is more than two percentage points higher,the setting point of diesel fractions is 4-12℃ lower,as well as good isomerization property, high cracking activity and strong nitrogen tolerance, which indicates that hydrocracking catalyst containing zeolite β can be used for maximizing middle distillates production.%对β分子筛结构特点进行介绍,在200 mL小型加氢实验装置上考察β分子筛催化剂的加氢裂化性能,并与Y型分子筛和无定形硅铝催化剂的性能进行对比.结果表明:在相同工艺条件下,与Y型分子筛和无定形硅铝催化剂相比,β分子筛加氢裂化催化剂的中间馏分油选择性提高2.0百分点以上,柴油凝点降低4~12℃.β分子筛在加氢裂化反应中表现出异构性能好、裂化活性高、中间馏分油选择性好、产品质量好、抗氮能力强等特点,可应用于最大量生产中间馏分油的加氢裂化催化剂.

  17. Hexane cracking over steamed phosphated zeolite H-ZSM-5 : Promotional effect on catalyst performance and stability

    NARCIS (Netherlands)

    Van Der Bij, Hendrik E.; Meirer, Florian; Kalirai, Samanbir; Wang, Jian; Weckhuysen, Bert M.

    2014-01-01

    The nature behind the promotional effect of phosphorus on the catalytic performance and hydrothermal stability of zeolite H-ZSM-5 has been studied using a combination of 27Al and 31P MAS NMR spectroscopy, soft X-ray absorption tomography and n-hexane catalytic cracking, complemented with NH3 tempera

  18. Modification of HZSM- 5 Zeolite by Hydrochloric Acid and Catalytic Performance of Mo - based Catalyst for Methane Dehydroaromatization Reaction%盐酸改性HZSM-5及Mo-基催化剂的MDA反应活性

    Institute of Scientific and Technical Information of China (English)

    王红霞; 赵婷婷

    2012-01-01

    采用盐酸溶液在303K对HZSM-5分子筛进行预处理,并以处理后的分子筛制备相应的Mo-基催化剂.分子筛和催化剂采用XRD和NH3-TPD等手段进行表征,利用甲烷无氧芳构化(MDA)反应评价Mo-基催化剂的催化活性.结果表明,指定实验条件下的盐酸处理在一定程度上降低了分子筛的结晶度,降低了分子筛上的B酸量,改性后的Mo-基催化剂在MDA反应中表现很好的稳定性.%The pretreatment with HC1 solution at 303 K was applied to modify HZSM -5 zeolite, and the Mobased catalysts were prepared by using the modified HZSM -5 zeolite as support and tested for catalytic performance of methane dehydroaromatization reaction. The modified Mo - based catalysts show a higher stability than that of Mo/HZSM - 5 catalyst prepared with unmodified with HZSM - 5 zeolite. The effect of acid treatment on the structure and acidity of HZSM - 5 zeolite and Mo - based catalysts were studied by XRD and NH3 - TPD methods. The results show that the acid treatment to HZSM - 5 at given experimental conditions led to a decrease in the crystallinity of HZSM -5 zeolite and the number of the Brnsted acid sites to a certain degree.

  19. HYDROGENATION OF POLYCYCLIC AROMATIC COMPOUNDS USING NI SUPPORT ON H-BETA ZEOLITE IN SUPERCRITICAL CARBON DIOXIDE

    Science.gov (United States)

    The primary rationale for use of supercritical carbon dioxide as a solvent in hydrogenation is the elimination of mass transfer limitations, through enhancement of the solubility of hydrogen at the reaction locus. Hydrogenation of anthracene was performed using NiHB-zeolite catal...

  20. Performance of ultrasonic – Treated nano-zeolites employed in the preparation of dimethyl ether

    Directory of Open Access Journals (Sweden)

    Sanaa M. Solyman

    2013-06-01

    Full Text Available Catalytic dehydration of methanol to dimethyl ether was carried out over nano-zeolites and their modified samples via ultrasonic technique. Parent H-Beta and Parent H-Mordenite zeolites are used as synthesized and after sonication. H-Mordenite sonicated for 20 and 120 min whereas H-Beta sonicated for 20 min only. The reaction temperature was varied between 100 and 225 °C at three different contact times. The different catalyst samples were characterized using: XRD, FTIR, TEM, SEM and NH3-TPD techniques. The results revealed that sonication of parent zeolite samples affects on the unit cell dimensions and their crystal size. FTIR-spectroscopic analysis indicated that sonication may decrease the pore opening and cause framework structure defects. TEM and SEM micrographs showed that sonication broke-up and re-ordered zeolite crystals with longer time resulted in a different morphology relative to parents and also change the particle size. Sonicated samples have a good performance in methanol dehydration with complete conversion and complete selectivity to dimethyl ether at lower temperature relative to the corresponding parent zeolites. TPD results indicated that the concentration of strong acid sites decreased in sonicated H-Mordenite samples leading to an increase of their catalytic activity and the selectivity to DME. On the other hand, ultrasonic treatment of H-Beta sample decreased its catalytic activity.

  1. Selective synthesis and characterization of single-site HY zeolite-supported rhodium complexes and their use as catalysts for ethylene hydrogenation and dimerization

    Science.gov (United States)

    Khivantsev, Konstantin

    Single-site Rh(CO)2, Rh(C2H4)2 and Rh(NO)2 complexes anchored on various dealuminated HY zeolites can be used as precursors for the selective surface mediated synthesis of well-defined site-isolated Rh(CO)(H)x complexes. DFT calculations and D 2 isotope exchange experiments provide strong evidence for the formation of a family of site isolated mononuclear rhodium carbonyl hydride complexes (including the first examples of RhH complexes with undissociated H2 ligands): Rh(CO)(H2), Rh(CO)(H)2, and Rh(CO)(H). The fraction of each individual complex formed varies significantly with the Si/Al ratio of the zeolite and the nature of the precursor used. HY zeolite-supported mononuclear Rh(CO)2 complexes are very active in ethylene hydrogenation and ethylene dimerization under ambient conditions. There is strong evidence for the cooperation mechanism between mononuclear rhodium complexes and Bronsted acid sites of the zeolite support in C-C bond formation process, as well as ethane formation. Finally, it is shown that the dimerization pathway selectivity can be progressively tuned (and completely switched off) by modifying the number of Bronsted acid sites on the zeolite surface. HY zeolite-supported mononuclear Rh(NO)2 complexes can be selectively formed upon exposure of Rh(CO)2/HY to the gas phase NO/He. They are structurally similar to Rh(CO)2/HY with Rh(I) retaining square planar geometry and nitrosyl ligands adopting a linear configuration. Rh(NO)2/HY30 is active in ethylene hydrogenation and ethylene dimerization under ambient conditions. This is the first unprecedented example of a supported transition-metal nitrosyl complex capable of performing a catalytic reaction. Moreover, this is the first example of a site-isolated Rh complex with ligands other than ethylene or carbonyl, which can catalyze both ethylene hydrogenation and dimerization. Unlike its dicarbonyl counterpart, dinitrosyl rhodium complex has a uniquely different reactivity towards ethylene and hydrogen

  2. The role of zeolites in the deactivation of multifunctional Fischer-Tropsch Synthesis catalysts: the interaction between HZSM-5 and Fe-based FT-catalysts

    International Nuclear Information System (INIS)

    In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis. (author)

  3. The role of zeolites in the deactivation of multifunctional fischer-tropsch synthesis catalysts: the interaction between HZSM-5 and Fe-based Ft-catalysts

    Directory of Open Access Journals (Sweden)

    P. C. Zonetti

    2013-12-01

    Full Text Available In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis.

  4. The role of zeolites in the deactivation of multifunctional Fischer-Tropsch Synthesis catalysts: the interaction between HZSM-5 and Fe-based FT-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zonetti, P.C.; Gaspar, A.B.; Mendes, F.M.T.; Appel, L.G., E-mail: lucia.appel@int.gov.br [Instituto Nacional de Tecnologia (INT/MCT), Rio de Janeiro, RJ (Brazil); Avillez, R. R. de [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil); Sousa-Aguiar, E.F. [Centro de Pesquisa Leopoldo Americo Miguez de Mello (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2013-10-15

    In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis. (author)

  5. Hexane cracking over steamed phosphated zeolite H-ZSM-5: promotional effect on catalyst performance and stability.

    Science.gov (United States)

    van der Bij, Hendrik E; Meirer, Florian; Kalirai, Sam; Wang, Jian; Weckhuysen, Bert M

    2014-12-15

    The nature behind the promotional effect of phosphorus on the catalytic performance and hydrothermal stability of zeolite H-ZSM-5 has been studied using a combination of (27) Al and (31) P MAS NMR spectroscopy, soft X-ray absorption tomography and n-hexane catalytic cracking, complemented with NH3 temperature-programmed desorption and N2 physisorption. Phosphated H-ZSM-5 retains more acid sites and catalytic cracking activity after steam treatment than its non-phosphated counterpart, while the selectivity towards propylene is improved. It was established that the stabilization effect is twofold. First, the local framework silico-aluminophosphate (SAPO) interfaces, which form after phosphatation, are not affected by steam and hold aluminum atoms fixed in the zeolite lattice, preserving the pore structure of zeolite H-ZSM-5. Second, the four-coordinate framework aluminum can be forced into a reversible sixfold coordination by phosphate. These species remain stationary in the framework under hydrothermal conditions as well. Removal of physically coordinated phosphate after steam-treatment leads to an increase in the number of strong acid sites and increased catalytic activity. We propose that the improved selectivity towards propylene during catalytic cracking can be attributed to local SAPO interfaces located at channel intersections, where they act as impediments in the formation of bulky carbenium ions and therefore suppress the bimolecular cracking mechanism. PMID:25370739

  6. Hexane cracking over steamed phosphated zeolite H-ZSM-5: promotional effect on catalyst performance and stability.

    Science.gov (United States)

    van der Bij, Hendrik E; Meirer, Florian; Kalirai, Sam; Wang, Jian; Weckhuysen, Bert M

    2014-12-15

    The nature behind the promotional effect of phosphorus on the catalytic performance and hydrothermal stability of zeolite H-ZSM-5 has been studied using a combination of (27) Al and (31) P MAS NMR spectroscopy, soft X-ray absorption tomography and n-hexane catalytic cracking, complemented with NH3 temperature-programmed desorption and N2 physisorption. Phosphated H-ZSM-5 retains more acid sites and catalytic cracking activity after steam treatment than its non-phosphated counterpart, while the selectivity towards propylene is improved. It was established that the stabilization effect is twofold. First, the local framework silico-aluminophosphate (SAPO) interfaces, which form after phosphatation, are not affected by steam and hold aluminum atoms fixed in the zeolite lattice, preserving the pore structure of zeolite H-ZSM-5. Second, the four-coordinate framework aluminum can be forced into a reversible sixfold coordination by phosphate. These species remain stationary in the framework under hydrothermal conditions as well. Removal of physically coordinated phosphate after steam-treatment leads to an increase in the number of strong acid sites and increased catalytic activity. We propose that the improved selectivity towards propylene during catalytic cracking can be attributed to local SAPO interfaces located at channel intersections, where they act as impediments in the formation of bulky carbenium ions and therefore suppress the bimolecular cracking mechanism.

  7. Mesoporous Fe-containing ZSM-5 zeolite single crystal catalysts for selective catalytic reduction of nitric oxide by ammonia

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Egeblad, Kresten; Kustova, Marina;

    2007-01-01

    Mesoporous and conventional Fe-containing ZSM-5 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnationmethod and tested in NO selective catalytic reduction (SCR) with NH3. It was found that mesoporous Fe-ZSM-5 catalysts exhibit higher SCR activities than comparable conventional cataly...

  8. New method of magnetic characterization of zeolite-cobalt catalysts. Second quarterly technical progress report, December 1, 1985-February 28, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Murty, A.N.

    1986-03-31

    This report describes the work carried out during the project period from December 1, 1985 through February 28, 1986. The results of our investigations on a series of cobalt and cobalt thoria catalysts physically admixed with the medium pore zeolite ZSM-5 are presented. The preparation of the catalysts and the catalytic measurements were carried out at the Pittsburgh Energy Technology Centre of the Department of Energy and the Zero-field Nuclear Magnetic Resonance experiments were made at Grambling State University using a modified Wilks Nuclear Quadrupole Resonance spectrometer, described in the previous report. The catalytic measurements revealed that the hydrocarbon yields increase from about 35% to 60% as the cobalt metal loading in ZSM-5 increases from 3 wt % to 9 wt %. When a small amount of the promoter Thoria (0.4 wt %) is added, the hydrocarbon yields increased significantly (by about 25%), for the same weight percents of cobalt in Co-ZSM-5. The primary objective of our project is to examine the effect on the Ferromagnetic character of the cobalt metal due to the (1) concentration of Co metal in ZSM-5, (2) presence of the promoter Thoria, and (3) catalytic activity. 12 refs.

  9. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  10. Hβ AND MODIFIED Hβ ZEOLITES AS CATALYSTS FOR BECKMANN REARRANGEMENT OF CYCLOHEXANONE OXIME%Hβ及改性Hβ分子筛催化环己酮肟重排制己内酰胺

    Institute of Scientific and Technical Information of China (English)

    章永洁; 王亚权; 卜亿峰; 王莅; 米镇涛; 何菲; 吴魏; 闵恩泽; 傅送保; 朱泽华

    2004-01-01

    The Beckmann rearrangement of cyclohexanone oxime is an important reaction for obtaining ε-caprolactam, the raw material of nylon 6 fibers. Currently, the widely used technologies for the production of cyclohexanone oxime produce large amounts of byproducts. For the Beckmann rearrangement, many solid acid catalysts such as alumina, boria-alumina, and zeolites including Y, those with MFI-structure and β have been studied. However, no generally accepted understanding about the reaction mechanism has been achieved.

  11. Studies on Zeolite-Supported Mo and Re Catalysts : Catalytic Performance in Methane Aromatization Reaction and Their Structural Characterization

    OpenAIRE

    Wang, Linsheng

    1999-01-01

    The main achievements in the present studies are summarized as 4 key points: 1) HZSM-5 supported Mo and Re catalysts are found to be quite active and selective for directly conyerting methane to benzene, naphthalene and C2 hydrocarbons. A great progress for methane aromatization has been made because of the discover of the two new catalysts. 2) Coke deposition on the catalyst for non-oxidative conversion of methane is solved by varying methane pressure combined with addition of CO2 in methane...

  12. The effect of soot on ammonium nitrate species and NO2 selective catalytic reduction over Cu-zeolite catalyst-coated particulate filter.

    Science.gov (United States)

    Mihai, Oana; Tamm, Stefanie; Stenfeldt, Marie; Olsson, Louise

    2016-02-28

    interacting with the ammonium nitrate species on the CuxOy or other copper species on the surface of the zeolite particles, which reduces the ammonium nitrate blocking of the catalyst and thereby results in higher NO2 SCR activity.

  13. The effect of soot on ammonium nitrate species and NO2 selective catalytic reduction over Cu-zeolite catalyst-coated particulate filter.

    Science.gov (United States)

    Mihai, Oana; Tamm, Stefanie; Stenfeldt, Marie; Olsson, Louise

    2016-02-28

    interacting with the ammonium nitrate species on the CuxOy or other copper species on the surface of the zeolite particles, which reduces the ammonium nitrate blocking of the catalyst and thereby results in higher NO2 SCR activity. PMID:26755757

  14. 改性的纳米HZSM-5沸石作为对位选择性烷基化应的催化剂%Modified Nano-HZSM-5 Zeolite as Para-Selective Alkylation Catalyst

    Institute of Scientific and Technical Information of China (English)

    郭洪臣; 王祥生

    2000-01-01

    @@ Zeolites with grain size less than 100 nm, which bear both the unique physical properties of nano grains and the unique micropore character of zeo lites, are big potentials in replacing the existing zeo lite catalysts and in developing novel environmental ly-benign catalytic processes. We observed[1] in the alkylation of ethylbenzene with ethylene that the at tenuation of the HZSM-5 crystallites into nano-size significantly increases the catalyst activity and dura bility. Yet studies on the modification of nano-zeo lites in order to improve their low shape-selectivity remain unreported.

  15. Synthesis and testing of nanosized zeolite Y

    Science.gov (United States)

    Karami, Davood

    This work focuses on the synthesis and testing of nanosized zeolite Y. The synthesis formulations of faujasite-type structure of zeolite Y prepared in nanosized form are described. The synthetic zeolite Y is the most widely employed for the preparation of fluid catalytic cracking (FCC) catalysts. The synthesis of zeolite Y is very complicated process. The mean particle size of zeolite Y is 1800 nm. The major challenge of this work involved reducing this average particle size to less than 500 nm. The preliminary experiments were conducted to obtain the pure zeolite Y using the soluble silicates as a silica source. This was achieved by applying the experimental design approach to study the effects of many parameters. The ageing time turned out to be the most significant variable affecting product purity. Based on the preliminary results, a detailed investigation was carried out to determine the effects of silica-alumina precursor preparations on zeolite Y synthesis. Aluminosilicate precursors were prepared by gelling and precipitation of soluble silicate. The as-prepared precursors were used for the hydrothermal synthesis of zeolite Y. The procedure of the precipitation of soluble silicate yielded pure zeolite Y at the conventional synthesis conditions. The extent of purity of zeolite Y depends on the surface areas of aluminosilicate precursors. A novel approach to zeolite Y synthesis was employed for the preparation of the pure nanosized zeolite Y. This was achieved by applying the method of impregnation of precipitated silica. This novel method of impregnation for zeolite Y preparation allows eliminating the vigorous agitation step required for the preparation of a homogeneous silica solution, thereby simplifying the synthesis of zeolite Y in one single vessel. In case of the synthesis of nanosized zeolite Y, the effect of varying the organic templates on the formation of nanosized particles of zeolite Y was investigated, while all other reaction parameters were

  16. Selective catalytic reduction of NO by ammonia using mesoporous Fe-containing HZSM-5 and HZSM-12 zeolite catalysts: An option for automotive applications

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Hansen, T. W.; Kustova, Marina;

    2007-01-01

    , the activity of the mesoporous samples in NO SCR with NH3 is significantly higher than for conventional samples. Such a difference in the activity is probably related with the better diffusion of reactants and products in the mesopores and better dispersion of the iron particles in the mesoporous zeolite...... as was confirmed by SEM analysis. Moreover, the maximum activity for the mesoporous zeolites is found at higher Fe concentrations than for the conventional zeolites. This also illustrates that the mesoporous zeolites allow a better dispersion of the metal component than the conventional zeolites. Finally...

  17. Preparation of USY zeolite VOx supported catalysts from V(AcAc)3 and NH4VO3. Catalytic properties for the dehydrogenation of n-butane in oxygen-free atmosphere.

    Science.gov (United States)

    Garcia, Elba M; Sanchez, Miguel D; Tonetto, Gabriela; Volpe, María A

    2005-12-01

    The preparation of different samples of vanadia supported on ultrastable zeolite (VO(x)/USY) is discussed. The samples were prepared in order to obtain highly dispersed V-species, avoiding the formation of crystalline vanadia and the destruction of the zeolite framework. Two methods were employed for preparing VO(x)/USY samples: an organic route using V(AcAc)3 and an inorganic route using NH4VO3. The characterization of the samples was performed with XRD, TPR, NH3-TPD, and N2 isotherms. From these results it is concluded that when VO(x) is supported on the surface of USY from acidic aqueous solution of ammonium metavanadate, the destruction of the zeolite framework is accomplished. For higher pH values in the impregnating solution, undesired V2O5 is formed on the USY surface. On the other hand, VO(x)/USY prepared from the organic precursor shows no destruction of the USY structure. In addition, highly dispersed VO(x) are formed, though for relatively high V loadings (6%) an obstruction of the zeolite windows takes place. The samples are tested as catalysts for gas phase dehydrogenation of n-butane to olefins. The catalysts prepared from NH4VO3 are almost inactive for the reaction. On the other hand, both samples prepared from V(AcAc)3 present initial conversion levels in the 8-12% range. However, the selectivity depends on the V loading, the catalysts with 6% loading being the most selective (75%). The catalytic patterns of the samples (activity and selectivity) are in agreement with the physicochemical features of the VO(x)/USY surface. PMID:16023658

  18. {gamma} alumina- and HY zeolite-supported molybdenum catalysts: characterisation of the oxidic and sulfided phases; Catalyseurs a base de molybdene supporte sur alumine {gamma} et zeolithe HY: caracterisation des phases oxydes et sulfures

    Energy Technology Data Exchange (ETDEWEB)

    Plazenet, G.

    2001-10-01

    Oxidic precursors of hydro-treatment catalysts (Co)Mo/alumina or zeolite were characterised by Raman spectroscopy, NMR and EXAFS at the Mo and Co K-edges. The formation of an Anderson-type alumino-molybdate compound upon impregnation of the support with an ammonium hepta-molybdate solution was confirmed for alumina, and also observed for the HY zeolitic support, with consumption of the amorphous alumina of the zeolite. In absence of the latter, ammonium hepta-molybdate precipitates. The species are conserved upon drying; upon calcination, the alumino-molybdate evolves into a surface aluminium molybdate type phase, whereas the hepta-molybdate transforms into MoO{sub 3}. The species formed upon impregnation are located in the inter-granular porosity whereas MoO{sub 3} vapor-condensation leads to formation of dimers located inside the zeolitic structure. The study of the cobalt-promoted precursors showed that the evolution of the molybdenum is the same in the case of co-impregnation preparation. Impregnation with cobalt-molybdate prevents the formation of the alumino-molybdate anion and thus enables the preservation of the Mo-Co interaction but, whatever the precursor, the leveling effect of the calcination-re-hydration steps was demonstrated. An EXAFS study at different sulfur coverages of the MoS{sub 2} platelets in the alumina-supported sulfided catalysts showed the limitations of EXAFS for size determination of MoS{sub 2} crystallites, a parameter that can be reached by AWAXS, which also conveys information about sheet-stacking. The EXAFS study of sulfided (Co)Mo/HY systems revealed incomplete sulfidation of the samples and the very high dispersion of the active phase. The absence of an observable Mo-Co interaction whatever the preparation of the promoted catalysts is consistent with the absence of promoting effect in toluene hydrogenation. (author)

  19. 含NiY分子筛的加氢裂化催化剂载体研究%Application of NiY zeolite as the support of hydrocracking catalyst

    Institute of Scientific and Technical Information of China (English)

    刘金松; 王志伟; 王伟; 李鑫源; 沈志虹

    2012-01-01

    采用水热晶化法,合成出了含骨架杂原子Ni的NiY分子筛.分别以Y分子筛和NiY分子筛作为载体,通过等体积浸渍法担载金属活性组分Ni、Mo,制备加氢裂化催化剂.通过NH3-TPD表征催化剂的表面酸性、固定床反应器评价催化剂的加氢裂化性能.结果表明,将Ni引入分子筛骨架中,可以调变催化剂的表面酸性,提高其裂化和脱硫活性,并减少催化剂上的积炭.%NiY zeolite was synthesized through hydrothermal method, in which Ni was incorporated into the zeolite framework. With NiY and Y zeolites as the supports, a series of hydrocracking catalysts were prepared and characterized by XRD, SEM and NH3 -TPD; their catalytic performance in hydrocracking was evaluated in a fixed-bed reactor. The results indicated that the surface acidity of Y zeolite can be modified through introducing Ni into the framework. Compared with Ni-Mo/Y catalyst with Y as support, Ni-Mo/NY catalyst with NiY as support has more total acid sites but less strong acid sites; as a result, it exhibits higher cracking and desulfurization activity, higher stability and less coke deposition.

  20. Incorporação de dióxido de titânio em zeólitas para emprego em fotocatálise heterogênea Titanium oxide incorporation on zeolites for heterogeneous photocatalisis

    Directory of Open Access Journals (Sweden)

    Jean C. Merg

    2010-01-01

    Full Text Available This work proposes the study of heterogeneous photocatalysis using TiO2 impregnated in zeolites beta, ZSM-5, mordenite, NaXb, NaXp and NaY for the decomposition of methylene blue. The catalysts were characterized by XRD, IR, textural analyses by N2 adsorption, SEM, DRS and the reaction of decomposition was monitored by UV visible. The results indicated that didn't have structural changes in the catalysts after Ti impregnations, only in the case of NaY and NaX zeolites. The better photocatalyst to metylene blue decomposition was beta/Ti zeolite due had one structure more accessible (with bigger porous helping in TiO2 dispersion and catalytic active.

  1. Zeolites and Zeotypes for Oil and Gas Conversion

    NARCIS (Netherlands)

    Vogt, Eelco T C; Whiting, Gareth T.; Dutta Chowdhury, Abhishek; Weckhuysen, Bert M.

    2015-01-01

    Zeolite-based catalyst materials are widely used in chemical industry. In this chapter, the applications of zeolites and zeotypes in the catalytic conversion of oil and gas are reviewed. After a general introduction to zeolite science and technology, we discuss refinery applications, such as fluid c

  2. 小晶粒Y型分子筛催化剂的加氢裂化反应性能%HYDROCRACKING PERFORMANCE OF SMALL CRYSTAL SIZE ZEOLITE Y CATALYST

    Institute of Scientific and Technical Information of China (English)

    杨俊杰; 樊宏飞; 赵崇庆; 朱金剑

    2012-01-01

    采用小晶粒Y型分子筛制备加氢裂化催化剂,在一段串联小型固定床加氢裂化装置上考察了小晶粒催化剂的重油裂化性能,以及反应温度、空速、精制段出口氮含量对催化剂裂化性能的影响,并进行了催化剂的稳定性试验.结果表明:相同条件下,采用小晶粒催化剂比采用常规催化剂能够使原料油的转化率提高3.5百分点;升高反应温度能够提高原料油的转化率,在保持转化率不变的条件下,空速对产物分布和性质的影响不大;精制段出口氮含量的提高会降低产物的收率和质量;在360 h到2 160 h的反应稳定性考察试验中,反应温度仅提高2℃,产物分布变化不大,表明小品粒催化剂具有良好的稳定性.%Hydrocracking catalyst containing small crystal size zeolite Y was prepared and its hydro-cracking performance processing heavy oil was studied using a single stage device with two fixed-bed reactors in series. The effects of reaction temperature, liquid hourly space velocity (LHSV) and nitrogen content of hydrotreated feed on the cracking performance of catalyst were investigated, as well'as the stability of catalyst was examined. Results showed that under the same reaction conditions, compared with conventional zeolite Y catalyst, using small crystal size zeolite catalyst the conversion of feed could be higher 3. 5 percentage points. Results also showed that with the increase of reaction temperature, the conversion of feed increased; under constant conversion, the effect of LHSV on product distribution and product quality was little; the increase of nitrogen content in hydrotreated feed had negative effect on product yield and quality. During the long-term stability test, from 360 h to 2 160 h, the reaction temperature only increased 2 ℃ , and the distributions of products basically unchanged, which indicated that the operation stability of small crystal size zeolite Y catalyst was excellent.

  3. Study on Synthesis and Catalytic Performance of Hierarchical Zeolite

    Institute of Scientific and Technical Information of China (English)

    Zhang Lingling; Li Fengyan; ZhaoTianbo; Sun Guida

    2007-01-01

    A kind of hierarchical zeolite catalyst was synthesized by hydrothermal method.X-ray diffraction (XRD)and nitrogen adsorption-desorption method were used to study the phase and aperture structure of the prepared catalyst.Infrared(IR)spectra of pyridine adsorbed on the sample showed that the hierarchical zeolite really had much more Bronsted and Lewis acidic sites than the HZSM-5 zeolite.The catalytic cracking of large hydrocarbon molecules showed that the hierarchical zeolite had a higher catalytic activity than the HZSM-5 zeolite.

  4. A Green Synthesis of 2-Ethylanthraquinone by Dehydration of 2-(4'-ethylbenzoyl) benzoic Acid over Solid Acid Catalysts

    Institute of Scientific and Technical Information of China (English)

    Ren Shu XU; Xin Wen GUO; Gui Ru WANG; Zhu Xia ZHANG

    2005-01-01

    The dehydration of 2-(4'-ethylbenzoyl) benzoic acid (BE acid) to 2-ethylanthraquinone(2-EAQ) was investigated over solid acid catalysts. The results showed that H-beta zeolite catalyst modified by dilute HNO3 solution exhibited an excellent performance. In our study, theconversion of BE acid can reach 96.7%, and the selectivity to 2-EAQ is up to 99.6%.

  5. Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite.

    Science.gov (United States)

    Zhu, Xiaochun; Kosinov, Nikolay; Hofmann, Jan P; Mezari, Brahim; Qian, Qingyun; Rohling, Roderigh; Weckhuysen, Bert M; Ruiz-Martínez, Javier; Hensen, Emiel J M

    2016-02-21

    The presence of small amount of fluoride in alkaline hydrothermal synthesis of SSZ-13 zeolite yields bimodal microporous particles with substantially improved performance in the methanol-to-olefins (MTO) reaction. Hydrocarbon uptake measurements and fluorescence microspectroscopy of spent catalysts demonstrate enhanced diffusion through micropores at the grain boundaries of nanocrystals running through the zeolite particles. Fluoride-assisted SSZ-13 synthesis is a cheap and scalable approach to optimize the performance of MTO zeolite catalysts. PMID:26810114

  6. Cracking vegetable oil from Callophylluminnophyllum L. seeds to bio-gasoline by Ni-Mo/Al2O3 and Ni-Mo/Zeolite as micro-porous catalysts

    Science.gov (United States)

    Savitri, Effendi, R.; Tursiloadi, S.

    2016-02-01

    Natural minerals such as zeolite are local natural resources in the various regions in Indonesia. Studies on the application of natural mineral currently carried out by national research institutions, among others, as a filler, bleaching agent, or dehydration agent. However, not many studies that utilize these natural minerals as green catalysts material which has high performance for biomass conversion processes and ready to be applied directly by the bio-fuel industry. The trend movement of green and sustainable chemistry research that designing environmentally friendly chemical processes from renewable raw materials to produce innovative products derived biomass for bio-fuel. Callophylluminnophyllum L. seeds can be used as raw material for bio-energy because of its high oil content. Fatty acid and triglyceride compounds from this oil can be cracked into bio-gasoline, which does not contain oxygen in the hydrocarbon structure. Bio-gasoline commonly is referred to as drop-in biofuel because it can be directly used as a substitute fuel. This paper focused on the preparation and formulation of the catalyst NiMo/H-Zeolite and Ni-Mo/Al2O3 which were used in hydro-cracking process of oil from Callophylluminnophyllum L. seeds to produce bio-gasoline. The catalysts were analyzed using XRD, BET and IR-adsorbed pyridine method. The results of hydro-cracking products mostly were paraffin (C10-C19) straight chain, with 59.5 % peak area based on GC-MS analysis.

  7. Zeolite Catalyzed Aldol Condensation Reactions

    Directory of Open Access Journals (Sweden)

    Adedayo I. Inegbenebor

    2015-03-01

    Full Text Available The review is based on the description of zeolite structure, uses, synthesis, and catalytic aldol reaction in aldol condensation. An internal aldolcondensation reaction has been achieved over ZSM-5 zeolite with high silica-alumina ratio at 350oC. It therefore follows that zeolite canfunction as a catalyst in aldol type condensation reactions and that weak acid sites as well as a small number of active sites favor the aldolcondensation reaction of carbonyl compounds. However, the mixed condensation product was found to be favored at temperatures above 300oCand the self-condensation of ethanal to crotonaldehyde was favored at temperatures below 300oC. It has also been suggested that both Brønstedand Lewis acids are involved in aldol reactions with Lewis acid sites the most probable catalytic sites. The zeolite group of minerals has founduse in many chemical and allied industries.

  8. Copper containing hydrocarbon cracking catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lussier, R.J.; Magee, J.S. Jr.

    1975-12-30

    A copper-exchanged zeolite cracking catalyst capable of producing high octane gasoline of increased aromatic and olefinic content is described. Mixtures of copper and hydrogen ions are exchanged into a Y-type zeolite using a combination of exchange and calcination steps. The exchanged zeolite is advantageously combined with a major portion of inorganic oxide matrix to produce a catalyst suitable for use in standard commercial fluid and moving bed cat-cracking units. (auth)

  9. Kinetics of zeolite dealumination in steam

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, C.D.; Labouriau, A.; Crawford, S.N.; Romero, R.; Quirin, J.; Earl, W.L.

    1998-08-01

    Zeolite dealumination is a well known phenomenon that contributes to the deactivation or activation of catalysts in several different applications. The most obvious effect is in acid catalysis where dealumination under reaction conditions removes the Broensted sites, thus deactivating the catalyst. The authors are interested in the use of cation exchanged zeolites as selective reduction catalysts for removal of NO{sub x} from exhaust streams, particularly from automotive exhaust. In this case, copper exchanged ZSM-5 has been shown to be an effective catalyst for the generic reaction of NO{sub x} with hydrocarbons. However, high temperature and steam in combustion exhaust causes dealumination and consequent migration of copper out of the zeolite structure resulting in rapid deactivation of the catalyst. Dealumination of zeolites has been reported by many authors in uncountable papers and cannot be reviewed here. However, to the authors` knowledge there are no reports on the kinetics of dealumination under varying conditions of temperature and steam. By measuring the kinetics of dealumination with different zeolites and exchange cations they expect to develop working models of the dealumination process that will allow control of zeolite deactivation. This manuscript is a description of the basic techniques used and a progress report on the very beginning of this study.

  10. Application of novel Polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg2+ from aqueous solution and industrial wastewater: Kinetic, isotherm and thermodynamic studies

    International Nuclear Information System (INIS)

    Hierarchical zeolite consists of both microporous and unordered mesoporous structures. A composite of Polypyrrole/thiol-functionalized Beta/MCM-41 (PPy/SH-Beta/MCM-41) was prepared, characterized by FE-SEM, FT-IR, XRD, TGA and BET analysis and applied in the investigation of its adsorption characteristics for the removal of Hg2+ ions from aqueous solutions. Thiol-functionalized Beta/MCM-41 (SH-Beta/MCM-41) was prepared by 3-mercaptopropyltrimethoxysilane (MPTMS) in the presence of aerosil-200 as a silica source by two-step hydrothermal crystallization procedure. Batch mode experiments were conducted and three kinetic models were used to describe the adsorption process. The experimental data fitted very well with the Pseudo-second-order kinetic model. The calculated thermodynamic parameters (ΔH, ΔS and ΔG) revealed that the adsorption of Hg2+ onto PPy/SH-Beta/MCM-41 is an endothermic and spontaneous process. It was found that temperature has a positive effect on the removal efficiency and that PPy/SH-Beta/MCM-41 is potentially able to remove Hg2+ ions from aqueous solutions at even high concentrations (400 mg L−1). The recovery of Hg2+ from the PPy/SH-Beta/MCM-41 adsorbent was found to be more than 90% using 0.5 M H2SO4, and the ability of the absorbent to be reused for removal of Hg2+ was investigated.

  11. Application of novel Polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg2+ from aqueous solution and industrial wastewater: Kinetic, isotherm and thermodynamic studies

    Science.gov (United States)

    Javadian, Hamedreza; Taghavi, Mehdi

    2014-01-01

    Hierarchical zeolite consists of both microporous and unordered mesoporous structures. A composite of Polypyrrole/thiol-functionalized Beta/MCM-41 (PPy/SH-Beta/MCM-41) was prepared, characterized by FE-SEM, FT-IR, XRD, TGA and BET analysis and applied in the investigation of its adsorption characteristics for the removal of Hg2+ ions from aqueous solutions. Thiol-functionalized Beta/MCM-41 (SH-Beta/MCM-41) was prepared by 3-mercaptopropyltrimethoxysilane (MPTMS) in the presence of aerosil-200 as a silica source by two-step hydrothermal crystallization procedure. Batch mode experiments were conducted and three kinetic models were used to describe the adsorption process. The experimental data fitted very well with the Pseudo-second-order kinetic model. The calculated thermodynamic parameters (ΔH, ΔS and ΔG) revealed that the adsorption of Hg2+ onto PPy/SH-Beta/MCM-41 is an endothermic and spontaneous process. It was found that temperature has a positive effect on the removal efficiency and that PPy/SH-Beta/MCM-41 is potentially able to remove Hg2+ ions from aqueous solutions at even high concentrations (400 mg L-1). The recovery of Hg2+ from the PPy/SH-Beta/MCM-41 adsorbent was found to be more than 90% using 0.5 M H2SO4, and the ability of the absorbent to be reused for removal of Hg2+ was investigated.

  12. Towards a full understanding of the nature of Ni(II) species and hydroxyl groups over highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation method.

    Science.gov (United States)

    Chen, Bao-Hui; Chao, Zi-Sheng; He, Hao; Huang, Chen; Liu, Ya-Juan; Yi, Wen-Jun; Wei, Xue-Ling; An, Jun-Fang

    2016-02-14

    Highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation (D-P) method were characterized by Fourier transform infrared (FT-IR), hydrogen temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), N2-absorption/desorption, field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and (27)Al magic-angle nuclear magnetic resonance (MAS NMR) techniques. The results showed that the D-P of nickel species occurred predominantly on the internal surface of highly siliceous HZSM-5 zeolite, in which the internal silanol groups located on the hydroxylated mesopores or nanocavities played a key role. During the D-P process, nickel hydroxide was first deposited-precipitated via olation/polymerization of neutral hydroxoaqua nickel species over the HZSM-5 zeolite. With the progress of the D-P process, 1 : 1 nickel phyllosilicate was formed over the HZSM-5 via the hetero-condensation/polymerization between charged hydroxoaqua nickel species and monomer silicic species generated due to the partial dissolution of the HZSM-5 framework. The 1 : 1 nickel phyllosilicate could also be generated via the hydrolytic adsorption of hydroxoaqua nickel species and their subsequent olation condensation. After calcination, the deposited-precipitated nickel hydroxide was decomposed into nickel oxide, while the 1 : 1 nickel phyllosilicate was transformed into 2 : 1 nickel phyllosilicate. According to the above mechanism, Ni(ii) species were present both in the form of nickel oxide and 2 : 1 nickel phyllosilicate, which were mutually separated from each other, being highly dispersed over HZSM-5 zeolite.

  13. Effects of Hydrothermal Aging on NH3-SCR reaction over Cu/zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ja Hun; Tran, Diana N.; Burton, Sarah D.; Szanyi, Janos; Lee, Jong H.; Peden, Charles HF

    2012-02-06

    The effects of hydrothermal treatment on model Cu/zeolite catalysts were investigated to better understand the nature of Cu species for the selective catalytic reduction of NO{sub x} by NH{sub 3}. After hydrothermal aging at 800 C for 16 h, the NO{sub x} reduction performance of Cu-ZSM-5 and Cu-beta were significantly reduced at low temperatures, while that of Cu-SSZ-13 was not affected. When the zeolite framework aluminum species were probed using solid state {sup 27}Al-NMR, significant reduction in the intensities of the tetrahedral aluminum peak was observed for Cu-ZSM-5 and Cu-beta, although no increase in the intensities of the octahedral aluminum peak was observed. When the redox behavior of Cu species was examined using H{sub 2}-TPR, it was found that Cu{sup 2+} could be reduced to Cu{sup +} and to Cu{sup 0} fir Cu-ZSM-5 and Cu-beta catalysts, while Cu{sup 2+} could be reduced to Cu{sup +} only for Cu-SSZ-13. After hydrothermal aging, CuO and Cu-aluminate species were found to form in Cu-ZSM-5 and Cu-beta, while little changes were observed for Cu-SSZ-13.

  14. Mesostructured zeolites: bridging the gap between zeolites and MCM-41.

    Science.gov (United States)

    Prasomsri, Teerawit; Jiao, Wenqian; Weng, Steve Z; Garcia Martinez, Javier

    2015-05-28

    Surfactant-templating is one of the most versatile and useful techniques to implement mesoporous systems into solid materials. Various strategies based on various interactions between surfactants and solid precursors have been explored to produce new structures. Zeolites are invaluable as size- and shape-selective solid acid catalysts. Nevertheless, their micropores impose limitations on the mass transport of bulky feed and/or product molecules. Many studies have attempted to address this by utilizing surfactant-assisting technology to alleviate the diffusion constraints. However, most efforts have failed due to micro/mesopore phase separation. Recently, a new technique combining the uses of cationic surfactants and mild basic solutions was introduced to synthesise mesostructured zeolites. These materials sustain the unique characteristics of zeolites (i.e., strong acidity, crystallinity, microporosity, and hydrothermal stability), including tunable mesopore sizes and degrees of mesoporosity. The mesostructured zeolites are now commercially available through Rive Technology, and show superior performance in VGO cracking. This feature article provides an overview of recent explorations in the introduction of mesoporosity into zeolites using surfactant-templating techniques. Various porous materials, preparation methods, physical and catalytic properties of mesostructured zeolites will be discussed. PMID:25866848

  15. Nano Catalysts for Diesel Engine Emission Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging

  16. Functionalization of zeolitic cavities: grafting NH2 groups in framework T sites of B-SSZ-13--a way to obtain basic solids catalysts?

    Science.gov (United States)

    Regli, Laura; Bordiga, Silvia; Busco, Claudia; Prestipino, Carmelo; Ugliengo, Piero; Zecchina, Adriano; Lamberti, Carlo

    2007-10-10

    Insertion of B atoms into an Al-free zeolitic framework with CHA topology results in the formation of B-SSZ-13 zeotype with Si/B = 11. B K-edge NEXAFS testifies that B forms [B(OSi)4] units in a Td-like geometry (sp3-hybridized B atoms). According to B K-edge NEXAFS and IR, template burning results in the formation of [B(OSi)3] units in a D3h-like geometry (sp2-hybridized B atoms) with a break of a B-O-Si bond and the formation of a Si-OH group. The activated material contains B(III) Lewis acid centers able to specifically coordinate bases like NH3. Such [B(OSi)3] units are reactive toward ammonia, resulting in the formation of B-NH2 surface functionality inside the pores of B-SSZ-13 already under mild conditions, i.e., 35 mbar of NH3 at 373 K for 30 min and without crystallinity degradation. A minor fraction of Si-NH2 cannot be excluded owing to the presence of two IR doublets at 3500 and 3430 cm-1 and at 1600 and 1550 cm-1. Ab initio B3LYP/6-31+G(d,p) calculations on a cluster model, supported by a single-point MP2 on B3LYP/6-31+G(D,P) optimized structures, found the break by NH3 of a B-O-Si bond of the [B(OSi)3] unit with formation of [SiOH] and [H2N-B(OSi)2] species to be energetically favored. Comparison between experimental and computed frequency shifts shows them to be in semiquantitative agreement. The high stability of the B-NH2 surface functionality is probed by N K-edge NEXAFS spectra collected under UHV conditions. These findings can open a new route in the preparation of shape selective solid basic catalysts. PMID:17867687

  17. The effect of physical and chemical treatment on nano-zeolite characterization and their performance in dimethyl ether preparation

    Directory of Open Access Journals (Sweden)

    Sanaa M. Solyman

    2015-09-01

    Full Text Available Catalytic dehydration of methanol to dimethyl ether (DME was investigated using physically and chemically modified H-Mordenite and H-Beta zeolites as catalysts. Physical modification was carried out using ultrasonic wave’s energy, while chemical modification was performed through impregnation in aluminum nitrate followed by calcination. The produced solid catalysts were evaluated as selective catalysts for the dehydration of methanol to dimethyl ether at 100–250 °C performed at three different contact times. Chemical and structural characterizations of the solid catalysts were identified using XRD, FT-IR, TEM, SEM and NH3-TPD. Ultrasonication physical mixing of solids proved as useful tool of preparation, producing fine reordered crystals of nanocomposite zeolites with novel morphology. The newly ordered crystals were distinguished by their frame work structure, acidic properties, crystal and particle sizes, unit cell volume, pore opening, and favorable catalytic activity of 100% selectivity to DME at 200 °C for all contact times studied. The effects of Al2O3 on the dispersion and interaction within the nano-zeolite crystals and hence on the catalytic dehydration of methanol were verified as the major influence toward utmost selectivity.

  18. Nanostructured Basic Catalysts: Opportunities for Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Conner, William C; Huber, George; Auerbach, Scott

    2009-06-30

    This research studied and developed novel basic catalysts for production of renewable chemicals and fuels from biomass. We focused on the development of unique porous structural-base catalysts zeolites. These catalysts were compared to conventional solid base materials for aldol condensation, that were being commercialized for production of fuels from biomass and would be pivotal in future biomass conversion to fuels and chemicals. Specifically, we had studied the aldolpyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our research has indicated that the base strength of framework nitrogen in nitrogen substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

  19. Synthesis of Hydrocarbons from H2-Deficient Syngas in Fischer-Tropsch Synthesis over Co-Based Catalyst Coupled with Fe-Based Catalyst as Water-Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2015-01-01

    Full Text Available The effects of metal species in an Fe-based catalyst on structural properties were investigated through the synthesis of Fe-based catalysts containing various metal species such, as Mn, Zr, and Ce. The addition of the metal species to the Fe-based catalyst resulted in high dispersions of the Fe species and high surface areas due to the formation of mesoporous voids about 2–4 nm surrounded by the catalyst particles. The metal-added Fe-based catalysts were employed together with Co-loaded beta zeolite for the synthesis of hydrocarbons from syngas with a lower H2/CO ratio of 1 than the stoichiometric H2/CO ratio of 2 for the Fischer-Tropsch synthesis (FTS. Among the catalysts, the Mn-added Fe-based catalyst exhibited a high activity for the water-gas shift (WGS reaction with a comparative durability, leading to the enhancement of the CO hydrogenation in the FTS in comparison with Co-loaded beta zeolite alone. Furthermore, the loading of Pd on the Mn-added Fe-based catalyst enhanced the catalytic durability due to the hydrogenation of carbonaceous species by the hydrogen activated over Pd.

  20. [What a physician should know about zeolites].

    Science.gov (United States)

    Boranić, M

    2000-01-01

    Zeolites are natural and synthetic hydrated crystalline aluminosilicates endowed with absorptive and ion exchange properties. They have found numerous and multifarous applications--in industry as catalysts and absorbents, in water sanitation for the removal of ammonia and heavy metals, in agriculture as fertilizers, and in animal husbandry as the absorbents of excreted material and as food additives. Medical applications have included the use in filtration systems for anesthesia or dialysis and as the contrast materials in NMR imaging. Recently, zeolite powders for external use have found application as deodorants, antimycotic agents and wound dressings. Peroral use of encapsulated zeolite powders enriched with vitamins, oligoelements or other ingredients has been claimed to exert beneficial medical effects. Ingestion of zeolites may be considered analogous to the clay eating (geophagia), considered in traditional medicine as a remedy for various illnesses. Being amphoteric, zeolites are partly soluble in acid or alkaline media, but within the physiological pH range the solubility is generally low. Minimal amounts of free aluminium or silicium from the ingested zeolites are resorbed from the gut. The bulk of ingested zeolite probably remains undissolved in the gut. In view of the ion exchange properties, zeolites may be expected to change the ionic content, pH and buffering capacity of the gastrointestinal secretions and to affect the transport through the intestinal epithelium. In addition, zeolites could affect the bacterial flora and the resorption of bacterial products, vitamins and oligoelements. The contact of zeolite particles with gastrointestinal mucosa may elicit the secretion of cytokines with local and systemic actions. Reactive silicium ions might react with biomolecules of the intestinal epithelium, and if resorbed, do so in other cells. Mutagenic and carcinogenic effects of zeolite particles have been described, resembling such effects of asbestos

  1. Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites

    Directory of Open Access Journals (Sweden)

    Moses Wazingwa Munthali

    2014-12-01

    Full Text Available In addition to their well-known uses as catalysts, zeolites are utilized to adsorb and remove various cations from aqueous system. The adsorption of the cations is ascribed to the negative charge of zeolites derived from isomorphous substitution of Si by Al. The amount of Na+ adsorption on 4A, X, Y, Na-P1 and mordenite type zeolites were determined in aqueous media, in a two-cation (Na+ and H+ system. Although each zeolite has a constant amount of negative charge, the amount of Na+ adsorption of each zeolite decreased drastically at low pH−pNa values, where pH−pNa is equal to log{(Na+/(H+}. By using the plot of the amount of Na+ adsorption versus pH−pNa, an index of the H+ selectivity, which is similar to the pKa of acids, of each zeolite was estimated, and the index tended to increase with decreasing Si/Al ratio of zeolites. These indicate that zeolites with lower Si/Al and higher negative charge density have higher H+ adsorption selectivity, and in fact, such a zeolite species (4A and X adsorbed considerable amount of H+ even at weakly alkaline pH region. The adsorption of H+ results in the decrease of cation adsorption ability, and may lead to the dissolution of zeolites in aqueous media.

  2. β沸石中Fe(Ⅱ)Salen络合物的合成及性能研究%SYNTHESIS AND CHARACTERIZATION OF Fe( Ⅱ )SALEN COMPLEX IN ZEOLITE BETA

    Institute of Scientific and Technical Information of China (English)

    马静红; 李瑞丰; 谢克昌

    2001-01-01

    Fe( Ⅱ )Salen( N, N',-bis(salicylaldehyde)ethylenediimine) was synthesized inside the cavity of zeolite Beta by the flexible ligand method and characterized by various physicochemical methods such as XRD, SEM, TG-DTA, UVVis. Evidences indicate by elemental analysis and thermal analysis that Fe( Ⅱ ) ion complexes stoichiometrically associated with Salen molecule in zeolite Beta. The encapsulated Fe( Ⅱ )Salen complexes were found to catalyze the cyclohexene oxidation reaction effectually.%采用自由配体法在β沸石的空腔内合成了Fe(Ⅱ)Salen络合物.XRD,SEM,TG-DTA,UV-Vis和元素分析等物理化学方法的分析结果表明,在沸石中的Fe(Ⅱ)Salen是由金属离子与配体以化学计量(摩尔比为1)络合而成,并体现了Fe(Ⅱ)Salen络合物的本征特性.环己烯的催化氧化揭示了β沸石中Fe(Ⅱ)Salen络合物的独特反应性.

  3. 乙醇脱水制乙烯中亚微米ZSM-5分子筛催化剂的积碳研究%Coking Behavior of Submicron ZSM-5 Zeolite Catalyst in Dehydration of Ethanol to Ethylene

    Institute of Scientific and Technical Information of China (English)

    王飞; 罗漫; 肖文德; 程晓维; 龙英才

    2011-01-01

    Reactions and coking behaviors of ethanol, diethyl ether or ethylene on a submicron ZSM-5 zeolite catalyst, which was used in dehydration of ethanol to ethylene, were studied in a fixbed reactor. The coking behavior and the dehydration mechanism were analyzed by means of TG, N2 adsorption-desorption techniques, pyridine adsorption FTIR and 13C NMR. Experimental results showed that diethyl ether was an intermediate of the ethanol dehydration to ethylene and that ethylene oligomerization was responsible for the coke formation. The coke might consist mainly of alkyl aromatics and the coke deposition rate was correlated to the olefin content and the water content in the reaction mixture. The coke deposition rate on the ZSM-5 zeolite catalyst lowered in the following order: ethylene > ethylene and water > diethyl ether > ethanol, which were used as feeds separately.After 100 h on stream, the coke deposits blocked more than 70% of the catalyst pores, and consumed more than 80% of acid sites on the catalyst, which caused a loss of catalyst activity.%在固定床反应器中研究了乙醇脱水反应中亚微米ZSM-5分子筛催化剂上乙醇、乙醚和乙烯的反应及积碳行为,采用TG、低温氮气吸附-脱附、吡啶吸附红外光谱和13C NMR等方法对催化剂进行了表征,以考察分子筛催化剂的积碳行为及乙醇脱水反应机理.实验结果表明,乙醚是乙醇脱水生成乙烯的中间体,而乙烯低聚是积碳的主要来源;积碳的主要组成可能是烷基芳烃,而积碳速率与反应混合物中的烯烃含量及水含量有关,ZSM-5分子筛催化剂上各物质积碳速率由快到慢的顺序:乙烯>乙烯+水>乙醚>乙醇;在线反应100h后,积碳堵塞了70%以上的催化剂孔道,并且消耗了80%以上的催化剂酸中心,因而导致催化剂活性有所降低.

  4. Application of novel Polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg{sup 2+} from aqueous solution and industrial wastewater: Kinetic, isotherm and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Javadian, Hamedreza, E-mail: Hamedreza.Javadian@yahoo.com [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Islamic Republic of Iran (Iran, Islamic Republic of); Taghavi, Mehdi [Polymer Chemistry Research Laboratory, Department of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-01-15

    Hierarchical zeolite consists of both microporous and unordered mesoporous structures. A composite of Polypyrrole/thiol-functionalized Beta/MCM-41 (PPy/SH-Beta/MCM-41) was prepared, characterized by FE-SEM, FT-IR, XRD, TGA and BET analysis and applied in the investigation of its adsorption characteristics for the removal of Hg{sup 2+} ions from aqueous solutions. Thiol-functionalized Beta/MCM-41 (SH-Beta/MCM-41) was prepared by 3-mercaptopropyltrimethoxysilane (MPTMS) in the presence of aerosil-200 as a silica source by two-step hydrothermal crystallization procedure. Batch mode experiments were conducted and three kinetic models were used to describe the adsorption process. The experimental data fitted very well with the Pseudo-second-order kinetic model. The calculated thermodynamic parameters (ΔH, ΔS and ΔG) revealed that the adsorption of Hg{sup 2+} onto PPy/SH-Beta/MCM-41 is an endothermic and spontaneous process. It was found that temperature has a positive effect on the removal efficiency and that PPy/SH-Beta/MCM-41 is potentially able to remove Hg{sup 2+} ions from aqueous solutions at even high concentrations (400 mg L{sup −1}). The recovery of Hg{sup 2+} from the PPy/SH-Beta/MCM-41 adsorbent was found to be more than 90% using 0.5 M H{sub 2}SO{sub 4}, and the ability of the absorbent to be reused for removal of Hg{sup 2+} was investigated.

  5. Elaboration of y-fanjasite catalysts containing radioactive elements such as uranyl ion in order to obtain aromatic solvents and heavy amines

    International Nuclear Information System (INIS)

    The present work has shown the possibility of ammonia alkylation by n-octanol-l in gaseous phase, in presence of zeolitic catalysts. These catalysts are Y faujasitic types being used in waste water demineralization containing radioactive elements such as uranyl ion. This ion gives to the Y faujasite similar activity and selectivity as those of catalysts containing rare earths or transition metals. Toluene disproportionation has permitted to test beforehand catalysts destined to ammonia alkylation and to compare their mechanism. We have also proved the possibility to produce heavy amines such as tertiary amines which are used as uranium extractant agent. Some zeolites such as ZSM-5, beta, X, A, analcime, HS and Y faujasite type are prepared by hydrothermal synthesis method and characterized by some analysis techniques

  6. Templating mesoporous zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Christina Hviid; Kustova, Marina;

    2008-01-01

    The application of templating methods to produce zeolite materials with hierarchical bi- or trimodal pore size distributions is reviewed with emphasis on mesoporous materials. Hierarchical zeolite materials are categorized into three distinctly different types of materials: hierarchical zeolite c...

  7. Honeycomb reactor washcoated with mordenite type zeolite catalysts for the reduction of NO{sub x} by NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.; Ham, S.W.; Nam, I.S.; Kim, Y.G. [Pohang Univ. of Science and Technology (Korea, Republic of)]|[Research Inst. of Industrial Science and Technology, Pohang (Korea, Republic of)

    1996-01-01

    A low pressure drop reactor was prepared by washcoating Cu ion-exchange mordenite on a honeycomb. The reactor configuration including reaction conditions was experimentally optimized both for low-pressure drop and for high catalytic activity of the honeycomb reactor. Over 90% of NO conversion was achieved by both Cu ion-exchanged synthetic zeolite (CuHM) and natural zeolite (CuNZA). The pressure drops due to honeycomb reactors were low enough to meet the constraint of the pressure drop (5 in. of H{sub 2}O) for its application to a utility boiler. A mathematical model based on fluid flow, reaction kinetics, and pressure drop was derived for the design of the reactor, and then the reactor was simulated to examine the effects of operating conditions on NO conversion. Finally, the sulfur tolerance of the honeycomb reactor developed in this work has also been investigated.

  8. First Principles Simulations of Hydrocarbon Conversion Processes in Functionalized Zeolitic Materials

    Science.gov (United States)

    Mazar, Mark Nickolaus

    is responsible for the largest activation energy of the catalytic cycle. This assessment is similar to the findings of alkane metathesis studies on alumina/silica supports and indicates that the entire AM cycle can be performed in zeolites by isolated single-atom transition metal hydrides. Performed over acid form zeolites, MTH is used in the conversion of methanol into a broad range of hydrocarbons, including alkenes, alkanes, and aromatics. For reasons that are not yet rigorously quantified, product selectivities vary dramatically based on the choice of catalyst and reaction conditions. The methylation of species containing double bonds (i.e., co-catalysts) is central to the overall process. Distinct structure-function relationships were found with respect to the elementary steps in the methylation and beta-scission of olefins. In Chapter 4, the role of zeolite topology in the step-wise methylation of ethene by surface methoxides is investigated. Elementary steps are studied across multiple frameworks (i.e., BEA, CHA, FER, MFI, and MOR) constituting a wide variety of confinement environments. The reaction of surface methoxides with ethene is found to require a transition state containing a primary carbocation. The barrier height is found to decrease nearly monotonically with respect to the degree of dispersion interactions stabilizing the primary carbocationic species in the transition state. In addition, quantification of the ``local'' dispersion energy indicates that confinement effects can not be simply correlated to pore size. The beta-scission of olefins plays an important role in the product selectivities of many important chemical processes, including MTH. In Chapter 5, beta-scission modes involving C6 and C8 isomers are investigated at a single, isolated Bronsted acid site within H-ZSM-5. We find that the relative enthalpic barriers of beta-scission elementary steps can be rationalized by the substitution order of the two different carbocationic carbon

  9. Cr-13 X/K-Cr-13 X分子筛催化剂上二氯甲烷的催化燃烧%Catalytic Combustion of Dichloromethane over Cr-13 X and K-Cr-13 X Zeolites Catalysts

    Institute of Scientific and Technical Information of China (English)

    张丽雷; 刘绍英; 李子健; 姚洁; 王公应

    2014-01-01

    Cr-13 X and K-Cr-13 X zeolites catalysts with different K and Cr contents were prepared by ion ex-change method, and their catalytic performance for catalytic combustion of dichloromethane were evaluated in a conventional fixed bed reactor. Then, these catalysts were characterized via physicochemical techniques. The results showed that, when the Cr content was less than 5.19%, crystallinity of 13X zeolite was not affec-ted by the addition of K and Cr significantly. Cr addition not only enhanced the selectivity of CO2 product, but also eliminated CH3 Cl by-products. The exchange of K with an appropriate amount enhanced the stability and activity of Cr-13X catalyst, as well as the selectivity of CO2 and HCl products. The enhancement of the cata-lytic activity and the products distribution could be accounted for the basis of oxidation and acidity of catalysts. On the condition of gas hourly space velocity of 1í104 h-1 and dichloromethane concentration of 5692 mg/m3 , an optimal 1.31%K-5.01%Cr-13X catalyst was found with t50 at 212 ℃, t98 at 298 ℃ , CO2 selectivity at 60.6% and HCl selectivity at 96.5%, and this catalyst showed relatively stable catalytic activity during 100 h reaction.%以13X分子筛为原料采用离子交换法制备了不同Cr含量的Cr-13X和K-Cr-13X分子筛催化剂,在固定床反应器上研究了催化剂对二氯甲烷的催化燃烧性能.研究结果表明, Cr含量(质量分数)小于5.19%时,对催化剂的结构没有明显影响.添加Cr提高了CO2的选择性,无CH3 Cl副产物生成.交换适量的K可以提高Cr-13X催化剂的活性和稳定性,并提高CO2和HCl的选择性.催化剂的表面酸性和氧化性是影响催化剂活性和产物分布的主要因素.在空速为1×104 h-1,二氯甲烷浓度为5692 mg/m3的条件下,1.31%K-5.01%Cr-13X分子筛催化剂对二氯甲烷催化燃烧50%的温度( t50)为212℃,燃烧98%的温度( t98)为298℃, CO2选择性为60.6%, HCl选择性为96.5%,连续反应100 h,未发现有明显失活现象.

  10. Natural zeolites: structures, classification, origin, occurrence and importance

    International Nuclear Information System (INIS)

    Zeolite are hydrated aluminosilicates composed of SiO/sub 4/ and AlO/sub 4/ tetrahedra. The aluminosilicate frameworks contain well defined channels (pores) and cavities . The cavities contain exchangeable cation, in particular sodium, potasium, magnesium, calcium and barium. The dehydrated zeolite behaves like molecular sieve. The zeolites occur both as minerals and as material synthesized in laboratory and on industrial scale. The old classification of recognized species of zeolites was based on morphological properties. A modified classification in based on secondary building units of frameworks. There are different opinions about the origin and occurrence of zeolite minerals. The zeolites have gained much importance as molecular sieves and catalysts. They are also very important for their unique structural properties. (authors)

  11. [Zeolite catalysis in conversion of cellulosics

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, G.T.

    1992-01-01

    To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

  12. [Zeolite catalysis in conversion of cellulosics

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, G.T.

    1992-12-31

    To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

  13. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William

    2014-08-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  14. Identification of Extra-Framework Species on Fe/ZSM-5 and Cu/ZSM-5 Catalysts Typical Microporous Molecular Sieves with Zeolitic Structure

    OpenAIRE

    Urquieta-González E.A.; Martins L; Peguin R.P.S.; Batista M.S.

    2002-01-01

    Cu and Fe species formed during the preparation of Cu/ and Fe/ZSM-5 catalysts by ion exchange were studied. XRD, SEM, H2-TPR, DRS-UV-VIS, EPR, Mössbauer Spectroscopy (MÖSS) and chemical analysis (AAS) were used to sample characterization. Cu/ZSM-5 catalysts, irrespective of their Si/Al ratio and Cu content, showed a reduction peak at around 210°C, which was attributed to the reduction of Cu+2 to Cu+1. The reduction peak of Cu+1 to Cu0 shifted to higher temperatures with the increase of Si/Al ...

  15. Zeolite-catalyzed biomass conversion to fuels and chemicals

    DEFF Research Database (Denmark)

    Taarning, Esben; Osmundsen, Christian Mårup; Yang, Xiaobo;

    2011-01-01

    Heterogeneous catalysts have been a central element in the efficient conversion of fossil resources to fuels and chemicals, but their role in biomass utilization is more ambiguous. Zeolites constitute a promising class of heterogeneous catalysts and developments in recent years have demonstrated...

  16. Highly dispersed iron species created on alkali-treated zeolite for ammonia SCR

    Institute of Scientific and Technical Information of China (English)

    Jing Ma; Duan Weng; Xiaodong Wu; Zhichun Si; Zhenwei Wu

    2013-01-01

    Alkaline treatment using sodium hydroxide was introduced to obtain a hierarchical pore structure in H-ZSM-5 zeolite. Fe-exchanged zeolite catalysts were prepared by impregnation on the original and alkali-treated zeolites, and were evaluated for NOx reduction by NH3, NO oxidation, and NH3 oxidation reactions. The highly dispersed iron species as active sites can be obtained by controlling the pore structure and particle size of zeolite. Therefore, the Fe/ZSM-5 catalyst treated mildly by sodium hydroxide before iron exchange, which contains amounts of highly dispersed Fe species, obtains over 80% NOx conversion at a wide temperature range of 250-500 1C.

  17. The effects of natural zeolite on ions adsorption and reducing solution electrical conductivity Na and K solutions

    OpenAIRE

    Ghorbani, Hadi; Babaei, Ali Agha

    2009-01-01

    Natural zeolites are crystalline alominosilicate minerals with three dimensions. In general, three important factors, structure, texture, chemical composition as well as economic value of natural and synthetic zeolites have made them as valuable materials. Zeolites as catalysts in oil and petrochemical industries, fire distinguishing industries and agricultural industries are just some of their applications. Zeolites are also valuable as soil fertilizer, soil moisture holder, muni...

  18. Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF

    2013-11-03

    Selective catalytic reduction (SCR) of NOx with ammonia using metal-exchanged molecular sieves with a chabazite (CHA) structure has recently been commercialized on diesel vehicles. One of the commercialized catalysts, i.e., Cu-SSZ-13, has received much attention for both practical and fundamental studies. For the latter, the particularly well-defined structure of this zeolite is allowing long-standing issues of the catalytically active site for SCR in metal-exchanged zeolites to be addressed. In this review, recent progress is summarized with a focus on two areas. First, the technical significance of Cu-SSZ-13 as compared to other Cu-ion exchanged zeolites (e.g., Cu-ZSM-5 and Cu-beta) is highlighted. Specifically, the much enhanced hydrothermal stability for Cu-SSZ-13 compared to other zeolite catalysts is addressed via performance measurements and catalyst characterization using several techniques. The enhanced stability of Cu-SSZ-13 is rationalized in terms of the unique small pore structure of this zeolite catalyst. Second, the fundamentals of the catalytically active center; i.e., the chemical nature and locations within the SSZ-13 framework are presented with an emphasis on understanding structure-function relationships. For the SCR reaction, traditional kinetic studies are complicated by intra-particle diffusion limitations. However, a major side reaction, nonselective ammonia oxidation by oxygen, does not suffer from mass-transfer limitations at relatively low temperatures due to significantly lower reaction rates. This allows structure-function relationships that are rather well understood in terms of Cu ion locations and redox properties. Finally, some aspects of the SCR reaction mechanism are addressed on the basis of in-situ spectroscopic studies.

  19. Effect of vanadium on the deactivation of FCC catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roncolatto, R.E.; Lam, Y.L. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Div. de Catalisadores]. E-mail: roncolatto@cenpes.petrobras.com.br; y12@cenpes.petrobras.com.br

    1998-06-01

    This work provides concrete evidence that causes the destruction of the zeolite in the FCC catalysts by a mechanism of acid attack or solid-solid transformation, as well as additional dealumination of the zeolite framework in the presence of steam and at high temperature. While these effects resulted in the reduction in crystallinity (zeolite Y content), specific area and unit cell size of the Y zeolite as the amount of vanadium in the catalysts increased, the reduction in activity was the most pronounced. The differences in these behaviors were interpreted and the model can be used for better catalyst formulation or screening. (author)

  20. EFFECT OF VANADIUM ON THE DEACTIVATION OF FCC CATALYSTS

    Directory of Open Access Journals (Sweden)

    Roncolatto R.E

    1998-01-01

    Full Text Available This work provides concrete evidence that vanadium causes the destruction of the zeolite in the FCC catalysts by a mechanism of acid attack or solid-solid transformation, as well as additional dealumination of the zeolite framework in the presence of steam and at high temperature. While these effects resulted in the reduction in crystallinity (zeolite Y content, specific area and unit cell size of the Y zeolite as the amount of vanadium in the catalysts increased, the reduction in activity was the most pronounced. The differences in these behaviors were interpreted and the model can be used for better catalyst formulation or screening.

  1. New method of magnetic characterization of zeolite-cobalt catalysts. Quarterly technical progress report No. 1, September 1-November 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This report describes the work carried out during the project period from September 1, 1985 through November 30, 1985. Phase I of the activity consists of modification of the existing WILKS Nuclear Quadrupole Resonance (NQR) Spectrometer system for zerofield Nuclear Magnetic Resonance (NMR) studies. Phase II is the experimental investigation of nuclear magnetic resonance absorption of the transition metal cobalt in Co-ZSM-5 catalysts. 4 figs.

  2. Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites

    KAUST Repository

    Tian, Qiwei

    2016-02-05

    Direct synthesis of hierarchical zeolites currently relies on the use of surfactant-based templates to produce mesoporosity by the random stacking of 2D zeolite sheets or the agglomeration of tiny zeolite grains. The benefits of using nonsurfactant polymers as dual-function templates in the fabrication of hierarchical zeolites are demonstrated. First, the minimal intermolecular interactions of nonsurfactant polymers impose little interference on the crystallization of zeolites, favoring the formation of 3D continuous zeolite frameworks with a long-range order. Second, the mutual interpenetration of the polymer and the zeolite networks renders disordered but highly interconnected mesopores in zeolite crystals. These two factors allow for the synthesis of single-crystalline, mesoporous zeolites of varied compositions and framework types. A representative example, hierarchial aluminosilicate (meso-ZSM-5), has been carefully characterized. It has a unique branched fibrous structure, and far outperforms bulk aluminosilicate (ZSM-5) as a catalyst in two model reactions: conversion of methanol to aromatics and catalytic cracking of canola oil. Third, extra functional groups in the polymer template can be utilized to incorporate desired functionalities into hierarchical zeolites. Last and most importantly, polymer-based templates permit heterogeneous nucleation and growth of mesoporous zeolites on existing surfaces, forming a continuous zeolitic layer. In a proof-of-concept experiment, unprecedented core-shell-structured hierarchical zeolites are synthesized by coating mesoporous zeolites on the surfaces of bulk zeolites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. First Principles Simulations of Hydrocarbon Conversion Processes in Functionalized Zeolitic Materials

    Science.gov (United States)

    Mazar, Mark Nickolaus

    is responsible for the largest activation energy of the catalytic cycle. This assessment is similar to the findings of alkane metathesis studies on alumina/silica supports and indicates that the entire AM cycle can be performed in zeolites by isolated single-atom transition metal hydrides. Performed over acid form zeolites, MTH is used in the conversion of methanol into a broad range of hydrocarbons, including alkenes, alkanes, and aromatics. For reasons that are not yet rigorously quantified, product selectivities vary dramatically based on the choice of catalyst and reaction conditions. The methylation of species containing double bonds (i.e., co-catalysts) is central to the overall process. Distinct structure-function relationships were found with respect to the elementary steps in the methylation and beta-scission of olefins. In Chapter 4, the role of zeolite topology in the step-wise methylation of ethene by surface methoxides is investigated. Elementary steps are studied across multiple frameworks (i.e., BEA, CHA, FER, MFI, and MOR) constituting a wide variety of confinement environments. The reaction of surface methoxides with ethene is found to require a transition state containing a primary carbocation. The barrier height is found to decrease nearly monotonically with respect to the degree of dispersion interactions stabilizing the primary carbocationic species in the transition state. In addition, quantification of the ``local'' dispersion energy indicates that confinement effects can not be simply correlated to pore size. The beta-scission of olefins plays an important role in the product selectivities of many important chemical processes, including MTH. In Chapter 5, beta-scission modes involving C6 and C8 isomers are investigated at a single, isolated Bronsted acid site within H-ZSM-5. We find that the relative enthalpic barriers of beta-scission elementary steps can be rationalized by the substitution order of the two different carbocationic carbon

  4. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    Directory of Open Access Journals (Sweden)

    Jarian Vernimmen

    2011-11-01

    Full Text Available In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials.

  5. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source....... With this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All samples...... are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature programmed desorption (NH3-TPD), and N-2 adsorption measurements. The obtained zeolites combine the high crystallinity and the characteristic micropores of zeolites with an intracrystalline mesopore system...

  6. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes;

    2012-01-01

    Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared...

  7. Distribution of metal and adsorbed guest species in zeolites

    International Nuclear Information System (INIS)

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes 129Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of 129Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, 129Xe NMR is insensitive to fine structural details at room temperature

  8. Distribution of metal and adsorbed guest species in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  9. Tight bifunctional hierarchical catalyst.

    Science.gov (United States)

    Højholt, Karen T; Vennestrøm, Peter N R; Tiruvalam, Ramchandra; Beato, Pablo

    2011-12-28

    A new concept to prepare tight bifunctional catalysts has been developed, by anchoring CoMo(6) clusters on hierarchical ZSM-5 zeolites for simultaneous use in HDS and hydrocracking catalysis. The prepared material displays a significant improved activity in HDS catalysis compared to the impregnated counterpart. PMID:22048337

  10. RECENT PROGRESS OF INDUSTRIAL ZEOLITES IN CHINA%中国工业分子筛进展

    Institute of Scientific and Technical Information of China (English)

    甘俊; 王涛; 刘志坚; 一镡文芳

    2006-01-01

    介绍了由中国石化催化剂分公司所属催化剂厂生产的用于FCC催化剂的CDY,DOSY和ZSP工业分子筛,以及用于乙苯制备工艺的粒径约为100 nm左右的β分子筛.%The CDY, DOSY and ZSP industrial zeolites used as the FCC catalysts, and the zeolite β with small particle size of~100 nm as the catalyst for alkylation of benzene with ethylene were introduced here. These industrial zeolites were manufactured at catalyst factories of the SINOIPEC Catalyst Company.

  11. Synthesis and characterization of Fe(III-piperazine-derived complexes encapsulated in zeolite Y

    Directory of Open Access Journals (Sweden)

    Márcio E. Berezuk

    2012-01-01

    Full Text Available Zeolite-encapsulated complexes have been widely applied in hydrocarbon oxidation catalysis. The "ship-in-a-bottle" encapsulation of iron(III complexes containing piperazine and piperazine-derivative ligands in zeolite-Y is described. The flexible ligand methodology was employed and the efficiency and reproducibility of the procedure was investigated. The catalysts were characterized employing several techniques and the results indicate the presence of coordinated and uncoordinated iron(III ions inside and outside the zeolitic cage.

  12. Synthesis and characterization of Fe(III)-piperazine-derived complexes encapsulated in zeolite Y

    Energy Technology Data Exchange (ETDEWEB)

    Berezuk, Marcio E., E-mail: berezuk@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Apucarana, PR (Brazil); Paesano Junior, Andrea [Dept. de Fisica, Universidade Estadual de Maringa, Maringa, (Brazil); Carvalho, Nakedia M.F. [Departament of Chemistry, Massachusetts Institute of Technology, Cambridge, MA (United States); Horn Junior, Adolfo; Arroyo, Pedro A. [Laboratorio de Ciencias Quimicas, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil); Cardozo-Filho, Lucio [Dept. de Engenharia Quimica, Universidade Estadual de Maringa, PR (Brazil)

    2012-07-01

    Zeolite-encapsulated complexes have been widely applied in hydrocarbon oxidation catalysis. The 'ship-in-a-bottle' encapsulation of iron(III) complexes containing piperazine and piperazine-derivative ligands in zeolite-Y is described. The flexible ligand methodology was employed and the efficiency and reproducibility of the procedure was investigated. The catalysts were characterized employing several techniques and the results indicate the presence of coordinated and uncoordinated iron(III) ions inside and outside the zeolitic cage. (author)

  13. Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons

    DEFF Research Database (Denmark)

    Hoff, Thomas C.; Gardner, David W.; Thilakaratne, Rajeeva;

    2016-01-01

    The production of aromatic hydrocarbons from cellulose by zeolite-catalyzed fast pyrolysis involves a complex reaction network sensitive to the zeolite structure, crystallinity, elemental composition, porosity, and acidity. The interplay of these parameters under the reaction conditions represent...... a major roadblock that has hampered significant improvement in catalyst design for over a decade. Here, we studied commercial and laboratory-synthesized ZSM-5 zeolites and combined data from 10 complementary characterization techniques in an attempt to identify parameters common to high...

  14. Phenol Tert-Butylation Catalyzed by Zeolite H-Mordenite

    Institute of Scientific and Technical Information of China (English)

    HAN Sen; LI Zhenhua; ZHANG Kui

    2005-01-01

    Para-tert-butyl phenol (p-TBP) and 2,4-di-tert-butyl phenol (2,4-DTBP) are widely used for the preparation of antioxidants. Zeolite catalysts showed good performance for the synthesis of p-TBP and 2,4-DTBP. In this work, zeolite H-mordenite (HM) catalyst was prepared and the alkylation of phenol with tert-butyl alcohol over zeolite HM catalyst was investigated at different reaction conditions. It is found that increasing temperature enhances the selectivity to p-TBP and the optimum reaction temperature for phenol conversion is 438 K. Increasing flow rate decreases phenol conversion apparently while the selectivity to p-TBP has a little increase. The suitable tert-butyl alcohol/phenol molar ratio is 2. Lower alcohol/phenol molar ratios are beneficial to p-TBP while higher ones are helpful for producing 2,4-DTBP.

  15. Tracing catalytic conversion on single zeolite crystals in 3D with nonlinear spectromicroscopy

    NARCIS (Netherlands)

    Domke, K.F.; Riemer, T.A.; Rago, G.; Parvulescu, A.N.; Bruijnincx, P.C.A.; Enejder, A.; Weckhuysen, B.M.; Bonn, M.

    2012-01-01

    The cost- and material-efficient development of nextgeneration catalysts would benefit greatly from a molecular-level understanding of the interaction between reagents and catalysts in chemical conversion processes. Here, we trace the conversion of alkene and glycol in single zeolite catalyst partic

  16. Design of Ru-zeolites for hydrogen-free production of conjugated linoleic acids.

    Science.gov (United States)

    Philippaerts, An; Goossens, Steven; Vermandel, Walter; Tromp, Moniek; Turner, Stuart; Geboers, Jan; Van Tendeloo, Gustaaf; Jacobs, Pierre A; Sels, Bert F

    2011-06-20

    While conjugated vegetable oils are currently used as additives in the drying agents of oils and paints, they are also attractive molecules for making bio-plastics. Moreover, conjugated oils will soon be accepted as nutritional additives for "functional food" products. While current manufacture of conjugated vegetable oils or conjugated linoleic acids (CLAs) uses a homogeneous base as isomerisation catalyst, a heterogeneous alternative is not available today. This contribution presents the direct production of CLAs over Ru supported on different zeolites, varying in topology (ZSM-5, BETA, Y), Si/Al ratio and countercation (H(+), Na(+), Cs(+)). Ru/Cs-USY, with a Si/Al ratio of 40, was identified as the most active and selective catalyst for isomerisation of methyl linoleate (cis-9,cis-12 (C18:2)) to CLA at 165 °C. Interestingly, no hydrogen pre-treatment of the catalyst or addition of hydrogen donors is required to achieve industrially relevant isomerisation productivities, namely, 0.7 g of CLA per litre of solvent per minute. Moreover, the biologically most active CLA isomers, namely, cis-9,trans-11, trans-10,cis-12 and trans-9,trans-11, were the main products, especially at low catalyst concentrations. Ex situ physicochemical characterisation with CO chemisorption, extended X-ray absorption fine structure measurements, transmission electron microscopy analysis, and temperature-programmed oxidation reveals the presence of highly dispersed RuO(2) species in Ru/Cs-USY(40). PMID:21506286

  17. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, Muhammad, E-mail: muhammad.ayoub@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750, Tronoh, Perak, Malaysia and School of Chemical Engineering, Universiti Sains Malaysia, 43000, Pinang (Malaysia); Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my [School of Chemical Engineering, Universiti Sains Malaysia, 43000, Pinang (Malaysia); Inayat, Abrar, E-mail: abrar.inayat@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750, Tronoh, Perak (Malaysia)

    2014-10-24

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure of zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N{sub 2} adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.

  18. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  19. Zeolite Chemistry Studied at the Level of Single Particles, Molecules and Atoms

    NARCIS (Netherlands)

    Ristanovic, Z.

    2016-01-01

    Zeolites are microporous aluminosilicates that find a wide-spread application as catalysts in the oil refining and petrochemical industries. Zeolite acidity and related chemistry play a major role in numerous catalytic processes and it is of significant practical interest to understand their reactiv

  20. Performance of modified H-ZSM-5 zeolite for dehydration of methanol to dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Hassanpour, Samaneh; Taghizadeh, Majid [Department of chemical engineering, Babol University of Technology, P.O. Box 484, 4714871167 Babol (Iran); Yaripour, Fereydoon [Catalyst Research Group, Petrochemical Research and Technology Company, National Petrochemical Company, Tehran (Iran)

    2010-10-15

    The conversion of methanol to dimethyl ether was carried out over various commercial zeolites and modified H-ZSM-5 catalysts to evaluate their catalytic performance. A series of commercially available zeolite samples were used for vapor-phase dehydration of methanol to DME. Catalyst screening tests were performed in a fixed-bed reactor under the same operating conditions (T = 300 S, P = 16 barg, WHSV = 3.8 h{sup -1}). It was found that all the H-form zeolite catalysts in this study were active and selective for DME synthesis. According to the experimental results MDHC-1 catalyst exhibited the highest activity in dehydration of methanol. After finding the most active catalyst, the H-MFI90 zeolite was modified with Na content varying from 0 to 120 mol%, via wet-impregnation method to further improve its selectivity. All of catalysts were characterized by BET, XRD, NH{sub 3}-TPD, ICP, TGA, SEM, FT-IR and TPH techniques. It was found that these materials affected activity of MDHC-1 zeolite by changing its acidity. Ultimately, among all the catalysts studied, Na{sub 100}-modified H-MFI90 zeolite exhibited optimum activity, selectivity and stability at methanol dehydration reaction. (author)

  1. Hierarchical zeolites from class F coal fly ash

    Science.gov (United States)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  2. Infrared Spectroscopic Characterization of CIT-6 and a Family of *BEA Zeolites

    OpenAIRE

    Tomlinson, Sean R.; Tyler McGown; Schlup, John R.; Jennifer L. Anthony

    2013-01-01

    Infrared spectroscopy is known to be a useful tool for identifying local structure changes in zeolites. Infrared spectroscopy is often employed to complement X-ray diffraction data. Local structure changes in zeolite CIT-6 and its zeolite beta (*BEA) analogs caused by calcination, altering framework composition, and ion exchange have been identified with mid- and far-infrared spectroscopy. Differences in the local structures of the samples were observed in mid- and far-infrared spectra, inclu...

  3. In-situ Micro-Spectroscopy on Coke Formation Processes in Zeolites

    OpenAIRE

    Mores, D.

    2011-01-01

    Zeolite catalysts are used in a large variety of (petro-)chemical conversions. The acid sites in these materials are responsible for the chemical transformation, while their well-defined crystallographic architecture offers unique molecular size and shape selectivity. The finite availability of crude oil demands for new technologies that utilize alternative feedstocks (like biomass, natural gas or coal) for the production of chemicals. In these novel conversions zeolite catalyst can play an i...

  4. Catalytic Performance of Fe/H-beta Catalyst Modified by Mn for NOx Decomposition at Low Temperature%Mn改性Fe/H-beta催化剂的低温催化分解NOx的研究

    Institute of Scientific and Technical Information of China (English)

    潘华; 宋华丰

    2012-01-01

    通过Mn改性制备了Fe和Mn的质量比为1且Fe和Mn的质量分数均为5% (5%Fe-5%Mn/H-beta)的催化剂,通过氢气程序升温还原(H2-TPR)比较分析了Fe-Mn/H-beta、Fe/H-beta和Mn/H-beta催化剂中Fe和Mn的化学形态,考察了O2、SO2和H2O等反应条件对Fe-Mn/H-beta催化剂低温催化分解NOx的影响.结果表明,相比Fe/H-beta和Mn/H-beta,Fe-Mn/H-beta 催化剂在富氧和低温条件下具有较好的催化活性,其中623 K下催化剂的活性最高,NOx的转化率达到45%左右.Fe-Mn/H-beta催化剂中Fe和Mn的共存提高了Fe2O3和MnO2的含量.氧的存在促进了NOx催化分解,水蒸气和SO2对NOx催化分解有一定的抑制作用.%Direct decomposition of NOX was investigated with 5% Fe-5% Mn/H-beta catalysts with equal weight of Mn and Fe. The chemical states of Fe and Mn in Fe-Mn/H-beta, Fe/H-be-ta, and Mn/H-beta catalysts were characterized by H2-TPR. The effects of O2, SO2 and H20 on decomposition of NOX at low temperature with 5 %Fe-5% Mn/H-beta catalysts were examined. The results indicate that the activity of Fe-Mn/H-beta is higher than that of Fe/H-beta or Mn/H-beta at rich oxygen and low temperature from 573 K to 673 K. The maximum NO* conversion is about 45% with 5 %Fe-5%Mn/H-beta at 623 K. The presence of Fe in Fe-Mn/H-beta enhances the transformation of Mn3+ ions into Mn4+ ions, and the addition of Mn increases the amount of Fe2O3 in Fe-Mn/H-beta. In addition, O2 inhibition is not observed in NOX decomposition with Fe-Mn/H-beta while the presence of H2O and SO2 inhibits the activity of Fe-Mn/H-beta.

  5. Characterization of the acid properties of tungsten/zirconia catalysts using adsorption microcalorimetry and n-pentane isomerization activity

    Energy Technology Data Exchange (ETDEWEB)

    Vartuli, J.C.; Santiesteban, J.G.; Traverso, P.; Cardona-Martinez, N.; Chang, C.D.; Stevenson, S.A.

    1999-10-01

    Ammonia adsorption microcalorimetry was conducted on various solid acid tungsten/zirconia catalysts prepared by different techniques. The calorimetric data were compared to catalytic test results using n-pentane isomerization as a measure of acid activity. The results show that (1) the co-precipitation method of making the tungsten/zirconia catalyst produces a greater number of acidic sites than impregnating tungsten on hydrous zirconia, resulting in a more active catalyst, and (2) the addition of small amounts of iron to the tungsten/zirconia catalyst increases the acid site strength as determined by ammonia adsorption and improves the paraffin isomerization activity. The calorimetry data indicate that the acid site strength of the tungsten/zirconia materials is similar to or slightly higher than that found in zeolites or sulfated zirconia and is comparable to sulfuric acid. However, the paraffin isomerization activity results suggest that the acid sites of the tungsten/zirconia catalyst should be about four orders of magnitude more active than that of zeolite {beta} on the basis of turnover frequency. Their experimental results indicate a lack of correlation between the heat of ammonia adsorption with catalytic activity. Comparisons of catalytic activity between materials based entirely on acid strength may not be valid, and kinetic probes would be more appropriate.

  6. Photocatalytic Activity of TiO2 Coating on Natural Feather Zeolite in Degradation of Orthomonochlorphenol

    Institute of Scientific and Technical Information of China (English)

    CHEN Liang; ZHANG Zhi-xiang; CHEN Dong-hui

    2006-01-01

    TiO2 coatings on natural feather zeolite are respectively prepared by a collosol (Sol-gel) method and two powder coating methods with deionized water or dehydrated ethanol as a dispersant. During degradation of orthomonochlorphenol solutions by ultraviolet, the strong adsorption capability of the zeolite results in increased concentration of substrate on its surface. The TiO2 film coated on feather zeolite further enhances the photocatalytic activity. The TiO2 film on the zeolite prepared by the Sol-gel method is found more effective as a catalyst than that by two powder coating methods.

  7. Catalysis on Interface of Nano-oxide and Nano-zeolite

    Institute of Scientific and Technical Information of China (English)

    K.Ito; F.Jan; S.Asaoka

    2007-01-01

    1 Results The catalysts which can efficiently hydro-reform higher n-paraffin to lower isoparaffins for environmentally-friendly gasoline were studied. The catalysts were examined by the conversion of n-hexadecane, n-C16H34 to i-C6H14—i-C10H22.The tri-modally nano-porous catalysts composed of (Ni-Mo)/[γ-Al2O3], nano-oxide, and nano-crystalline zeolite had some active and selective performance because of the interface between nano-oxide and nano-zeolite. The catalyst composed of nano-crystalline MFI or BE...

  8. The Influence of Zeolites on Radical Formation During Lignin Pyrolysis.

    Science.gov (United States)

    Bährle, Christian; Custodis, Victoria; Jeschke, Gunnar; van Bokhoven, Jeroen A; Vogel, Frédéric

    2016-09-01

    Lignin from lignocellulosic biomass is a promising source of energy, fuels, and chemicals. The conversion of the polymeric lignin to fuels and chemicals can be achieved by catalytic and noncatalytic pyrolysis. The influence of nonporous silica and zeolite catalysts, such as silicalite, HZSM5, and HUSY, on the radical and volatile product formation during lignin pyrolysis was studied by in situ high-temperature electron paramagnetic resonance spectroscopy (HTEPR) as well as GC-MS. Higher radical concentrations were observed in the samples containing zeolite compared to the sample containing only lignin, which suggests that there is a stabilizing effect by the inorganic surfaces on the formed radical fragments. This effect was observed for nonporous silica as well as for HUSY, HZSM5, and silicalite zeolite catalysts. However, the effect is far larger for the zeolites owing to their higher specific surface area. The zeolites also showed an effect on the volatile product yield and the product distribution within the volatile phase. Although silicalite showed no effect on the product selectivity, the acidic zeolites such as HZSM5 or HUSY increased the formation of deoxygenated products such as benzene, toluene, xylene (BTX), and naphthalene.

  9. Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y

    Science.gov (United States)

    Li, Wenlin; Zheng, Jinyu; Luo, Yibin; Da, Zhijian

    2016-09-01

    The zeolite Y is considered as a leading catalyst for FCC industry. The acidity and porosity modification play important roles in determining the final catalytic properties of zeolite Y. The alkaline treatment of zeolite Y by dealumination and alkaline treatment with NaOH and NaOH&TBPH was investigated. The zeolites were characterized by X-ray diffraction, low-temperature adsorption of nitrogen, transmission electron microscope, NMR, NH3-TPD and IR study of acidity. Accordingly, the hierarchical porosity and acidity property were discussed systematically. Finally, the catalytic performance of the zeolites Y was evaluated in the cracking of 1,3,5-TIPB. It was found that desilication with NaOH&TBPH ensured the more uniform intracrystalline mesoporosity with higher microporosity, while preserving higher B/L ratio and moderate Brønsted acidities resulting in catalysts with the most appropriated acidity and then with better catalytic performance.

  10. Thermodynamic Parameters Evaluation of Alpha- and Beta-cages in Na/sup +/, Ba/sup 2+/, Fe/sup 3+/, Co/sup 2+/, Ni/sup 2+/ and Cu/sup 2+/ Exchanged Zeolite a Using Quantum Mechanical Theory and Fermi Dirac Statistics

    International Nuclear Information System (INIS)

    The aim of present paper is to investigate the effects of non-framework cations, their hydration capacity and the role of phonons (acoustical and optical) on the thermodynamic characteristics of Type-A zeolite using Quantum Mechanical theory and Fermi Dirac Statistics. This study is motivated by the lack of an accurate measurement capability of thermodynamic properties of zeolites by the existing methods reported in literature, that is why we have suggested the quantum mechanical and Fermi Dirac statistical approaches. Thermal analysis data for zeolite samples were obtained by thermogravimetric and differential thermal analysis (TG-DTG) technique at a heating rate of 10 K min-1 in order to evaluate the desorption behavior of water. The results showed that the thermal stability of these samples was found to be dependent mainly on the electropositive non-framework cations. Meanwhile, on the basis of thermodynamic parameters, the sizes of alpha- and beta-cages in Na-A and its derivative zeolite were calculated using Fermi Dirac Statistics. Thereafter, semi-quantum effects (logarithmic behavior) of specific heat, entropy and enthalpy were observed in all samples as manifestations of the production of photons due to gaining of thermal energy. As a result, Debye temperature would increase due to localization of heat energy in the Brillouin zone, and the calculated specific heat capabilities showed almost no changes after cation exchange. However entropy and enthalpy first exceeds NaA in Ba/sup 2+/, Ni/sup 2+/ and Cu/sup 2+/ and then decrease in Fe/sup 3+/ and Co/sup 2+/. These demonstrations indicated that Ba/sup 2+/, Ni/sup 2+/, Cu/sup 2+/, Fe/sup 3+/ and Co/sup 2+/ cations influenced both the entropy and enthalpy as a result of the interaction of cations with the zeolite framework, which confirmed that the changes in the lattice mode were dependent on the increase or decrease in the electrostatic interactions between the cations and the framework zeolite. (author)

  11. Coke formation over zeolites and CeO2-zeolites and its influence on selective catalytic reduction of NOx

    International Nuclear Information System (INIS)

    Selective catalytic reduction, various possible reasons of coke formation, and temperature programmed oxidation of coke deposits are studied over HFER, HZSM-5 and 15|wt% CeO2-H zeolites. The materials are characterised by TGA, NH3-TPD and in-situ FTIR measurements. HFER based catalysts showed superior NOx (NO+NO2) conversion in SCR with propene compared with HZSM-5 based catalysts. It is found that NO2 (formed by the oxidation of NO) is not the only important intermediate in determining the extent of NOx conversion. The topology and acidity of the zeolites play an important role in selective activation of propene and its reaction with NO2. Over HZSM-5 based catalysts the rate of deposition of carbonaceous compounds is higher than the rate of reaction of activated propene with NO2, leading to unselective reduction to NO. The nature and the amount of the carbonaceous products deposited over the zeolites are found to depend on the acidity, structure of the zeolite and reaction conditions (inert or oxidative atmosphere). Coke deposition rate is enhanced in the presence of oxygen and most of the coke is retained by the zeolite which is detrimental for NOx reduction. in-situ IR studies show that hydrocarbon deposits are more heterogeneous and carbon rich over HZSM-5 compared with HFER. TPO studies show that only a negligible fraction of hydrocarbon deposits are active in NOx conversion

  12. Modification of acidity of Mo-Fe/HZSM-5 zeolite via argon plasma treatment

    Institute of Scientific and Technical Information of China (English)

    Xinli ZHU; Kailu YU; Dangguo CHENG; Yueping ZHANG; Qing XIA; Changjun LIU

    2008-01-01

    The NH3-TPD characterization was conducted to confirm that the acidity of Mo-Fe/HZSM-5 zeolite could be selectively modified via the glow discharge plasma treatment. The plasma catalyst treatment could totally change the distribution of aromatic products with higher methane conversion compared to the untreated catalyst. Some polycyclic aromatics such as anthracene, pyrene and phenanthrene were also produced over the plasma treated catalyst, in addition to benzene, toluene and naphthalene, which were normally obtained over the untreated catalyst.

  13. Hierarchical Porous ZSM-5 Zeolite Synthesized by in situ Zeolitization and Its Coke Deposition Resistance in Aromatization Reaction

    Institute of Scientific and Technical Information of China (English)

    张珂; 柳云骐; 赵晋翀; 刘晨光

    2012-01-01

    Hierarchical ZSM-5 zeolites with micro-, meso- and macroporosity were prepared from diatomite zeolitization through a vapor-phase transport process on solid surfaces. The aromatization performance of the catalysts was in- vestigated on a fixed bed reactor by using FCC gasoline as feedstock. The crystal phase, morphology, pore struc- tures, acidity and coke depositions of the hierarchical ZSM-5 zeolites were characterized by means of X-ray diffrac- tion (XRD), scanning electron microscope (SEM), N2 adsorption/desorption, Fourier transform infrared (FT-IR) and thermogravimetry-mass spectrogram (TG-MS), respectively. The results show that the prepared hierarchical ZSM-5 zeolite possesses excellent porosity and high crystallinity, displaying an improved aromatization performance and carbon deposition resistance due to its meso- and macroporous structures.

  14. Advance in heterogeneous catalysts for styrene epoxidation to styrene oxide with molecular oxygen%分子氧氧化苯乙烯制备环氧苯乙烷的多相催化剂研究进展

    Institute of Scientific and Technical Information of China (English)

    杨瑞云; 王宪沛; 李文; 李小安; 闫俊; 张辉辉; 刘卫涛

    2013-01-01

    综述了分子氧氧化苯乙烯制备环氧苯乙烷的多相催化剂研究进展,重点介绍了Co系催化剂在苯乙烯环氧化方面的应用.其中,负载在Beta型分子筛上的Co-Beta催化剂具有较高的催化活性、选择性及稳定性.%The latest research progress in the heterogeneous catalysts for epoxidation of styrene to styrene oxide by molecular oxygen was reviewed,especially cobalt catalyst,among which Co-beta catalysts supported on beta zeolites exhibited higher catalytic activity,selectivity and stability.

  15. Computer Simulation of Zeolites : Adsorption, Diffusion and Dealumination

    NARCIS (Netherlands)

    Ban, S.

    2009-01-01

    Zeolites are microporous materials with pores that have about the same size as small molecules like water or benzene. They are important catalysts in the petrochemical industry, for example for catalytic cracking, and isomerization- and alkylation reactions. This thesis deals with molecular aspects

  16. Acetalization of furfural with zeolites under benign reaction conditions

    DEFF Research Database (Denmark)

    Rubio-Caballeroa, Juan Miguel; Shunmugavel, Saravanamurugan; Maireles-Torres, Pedro;

    2014-01-01

    Acetalization is a viable method to protect carbonyl functionalities in organic compounds and offers apotential synthetic strategy for synthesizing derived chemicals. In this work, several families of commer-cial zeolites have been employed as solid acid catalysts in the acetalization of furfural...

  17. 金属与分子筛含量对预加氢1-甲基萘的加氢裂化催化剂的影响%Effect of Metal and Zeolite Mass Fractions on the Hydrocracking Catalyst of Prehydrotreated 1-Methyl Naphthalene

    Institute of Scientific and Technical Information of China (English)

    鞠雪艳; 胡志海; 蒋东红; 聂红; 李大东

    2012-01-01

    考察了加氢裂化催化剂中HY分子筛与金属负载量对其催化1-甲基萘精制油样加氢裂化反应产物的影响.结果表明,在酸性较强的催化剂上甲基四氢萘类反应主要是单分子反应机理,通过异构开环路径生成较大量单环芳烃,同时有一定量BTX化合物生成.HY分子筛质量分数的增加可提高催化剂中中强B酸中心数量,提高四氢萘类异构开环转化成断侧链单环芳烃的选择性;增加催化剂的金属负载量对四氢萘类生成多环烷烃及单环烷烃有利.%Hydrocracking product yields of prehydrotreated 1-methyl naphthalene were investigated over the catalysts with different HY zeolite mass fractions and metal loadings. The results indicated that methyltetralin was hydrocracked through mono-atom pathway and large yield of mono-cyclic aromatic was detected accompanied by BTX. Middle and strong B acid sites increased with the increase of HY zeolite mass fraction in catalyst, which favored the transformation of tetralins to mono-aromatic with short side-chain. Increasing metal loadings of the catalyst enhanced the yields of mono and di-cyclic cycloalkane in catalytic hydrocracking of prehydrotreated 1-methyl naphthalene.

  18. Exploring green catalysts for production of biofuels and value added chemicals for renewable and sustainable energy future

    Science.gov (United States)

    Budhi, Sridhar

    Porous silica have attracted significant attention in the past few decades due to their unique textural properties. They were extensively investigated for applications in catalysis, separation, environmental remediation and drug delivery. We have investigated the porous metal incorporated silica in the synthetic as well as catalytic perspectives. The synthesis of metal incorporated mesoporous silica via co-condensation such as SBA-15, KIT-5 are still challenging as it involves acidic synthetic route. Synthesis in high acidity conditions affects the incorporation of metal in silica due to high dissolution of metal precursors and breaking of metal oxygen and silica bond. The research presented here demonstrates an efficient way to incorporate metals by addition of diammonium hydrogen phosphate along with metal precursor during the synthesis. The incorporation efficiency has increased 2-3 times with this approach. Catalytic studies were performed to support our hypothesis. Such synthesized molybdenum incorporated mesoporous silica were investigated as catalyst for fast pyrolysis. When molydenum incorporated in silica was used as catalyst for fast pyrolysis of pine, it selectively produced furans (furan, methylfuran and dimethylfuran). Furans are considered value-added chemicals and can be used as a blendstock for diesel/jet grade fuel. The catalyst was very stable to harsh pyrolysis conditions and had a longer life before deactivation when compared with traditional zeolites. Further, this catalyst did not produce aromatic hydrocarbons in significant yields unlike zeolites. The origin of the furans was determined to be biopolymer cellulose and the selectivity for furans are attributed to low catalyst acidity. The effect of silica to alumina ratio (SAR) of beta-zeolite was investigated ranging to elucidate the relationship between the of number of acid sites on product speciation and catalyst deactivation on catalysts supplied by Johnson Matthey. The catalyst with low

  19. State of the art of Lewis acid-containing zeolites: lessons from fine chemistry to new biomass transformation processes

    OpenAIRE

    Moliner Marin, Manuel

    2014-01-01

    The former synthesis of TS-1 opened new catalytic opportunities for zeolites, especially for their application as selective redox catalysts in several fine chemistry processes. Interestingly, isolated Ti species in the framework positions of hydrophobic zeolites, such as high silica zeolites, offer unique Lewis acid sites even in the presence of protic polar solvents (such as water). Following this discovery, other transition metals (such as Sn, Zr, V, Nb, among others) have been introduced i...

  20. Alkaline leaching for synthesis of improved Fe-ZSM5 catalysts

    NARCIS (Netherlands)

    Melian-Cabrera, [No Value; Espinosa, S; Mentruit, C; Kapteijn, F; Moulijn, JA; Melián-Cabrera, I.

    2006-01-01

    Fe-ZSM5 catalysts were fully Fe-exchanged by pretreating the parent zeolite with base a solution prior to the Fe-exchange. The catalysts prepared in this way showed very low amount of inactive FeOx and improved performance in N2O decomposition. Alkaline leaching breaks down the zeolite crystals - wh

  1. Metallocene supported core@LDH catalysts for slurry phase ethylene polymerisation.

    Science.gov (United States)

    Buffet, Jean-Charles; Byles, Coral F H; Felton, Ryan; Chen, Chunping; O'Hare, Dermot

    2016-03-14

    We report the synthesis of solid catalysts based on a zirconocene supported on either silica@AMO-LDH or zeolite@AMO-LDH for the slurry phase polymerisation of ethylene. The hybrid catalysts demonstrate synergistic effects in which the polymerisation activity is up to three times higher than the zirconocene supported on analogous single phase silica or zeolite supports.

  2. An overview of recent development in composite catalysts from porous materials for various reactions and processes.

    Science.gov (United States)

    Xie, Zaiku; Liu, Zhicheng; Wang, Yangdong; Yang, Qihua; Xu, Longya; Ding, Weiping

    2010-01-01

    Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT), etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts. PMID:20559508

  3. An Overview of Recent Development in Composite Catalysts from Porous Materials for Various Reactions and Processes

    Directory of Open Access Journals (Sweden)

    Zaiku Xie

    2010-05-01

    Full Text Available Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT, etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts.

  4. X-ray electron probe microanalysis of zeolite powder particles

    International Nuclear Information System (INIS)

    Complete text of publication follows. The zeolite powders of various trademarks are used for production of petroleum-refining catalysts. In this connection, it is very important have information not only about chemical composition and distribution of impurity elements, but about shape, surface, structure and size of particles. That allows a more detailed analysis of the physical-chemical characteristics of catalysts, affecting their activity at different stages of technological process. The X-ray electron probe microanalysis (EPMA) technique is developed for individual particles of fine-dispersed zeolite powders of various trademarks: ZSM-5, ZSM-12, MOR, BEA. The investigations were conducted using Superprobe-733 and Superprobe JXA-8200 (JEOL Ltd, Japan) devices with energy-dispersive and wavelength-dispersive spectrometers. The dependencies of the relative intensity on the time of electron probe influence have been studied at the different accelerating voltages and currents of probe for the selecting of optimum condition of analytical signal registration. The phase and chemical composition of zeolite powders, the surface, shape of particles and their distribution in sizes were studied. The results of phase analysis showed, that particles of different shape and various size were separated in all samples of zeolites. The particles of flaky, orbicular, rounded and oval shape with size of 10 m are separated in zeolite sample ZSM-12. The particles of faceted shape with size of 5-10 μm are observed in zeolite samples MOR and BEA. Larger particles of different shape with size of 5-20 μm are separated in zeolite sample ZSM-5, while the finer-dispersed fraction of particles with size of 3-10 μm are observed in this sample after gel decomposition (aging of gel). The data of zeolite powders chemical composition showed the heterogeneous distribution of silicon. The increased contents of silicon are observed towards the edge of particles that connected with aggregation and

  5. Dual template synthesis of a highly mesoporous SSZ-13 zeolite with improved stability in the methanol-to-olefins reaction.

    Science.gov (United States)

    Wu, Leilei; Degirmenci, Volkan; Magusin, Pieter C M M; Szyja, Bartłomiej M; Hensen, Emiel J M

    2012-10-01

    The dual template synthesis of zeolite SSZ-13 by use of trimethyl-adamantanammonium hydroxide and a diquaternary-ammonium mesoporogen induces considerable mesoporosity without impeding zeolite microporosity. The strongly improved accessibility of Brønsted sites in mesoporous SSZ-13 increases its stability during application as an acid catalyst in the methanol-to-olefins reaction. PMID:22896837

  6. Dual template synthesis of a highly mesoporous SSZ-13 zeolite with improved stability in the methanol-to-olefins reaction

    OpenAIRE

    Wu, Leilei, L; Degirmenci, Volkan; Magusin, Pieter; Szyja, Bartlomiej M; Hensen, Emiel J.M.

    2012-01-01

    The dual template synthesis of zeolite SSZ-13 by use of trimethyl-adamantanammonium hydroxide and a diquaternary-ammonium mesoporogen induces considerable mesoporosity without impeding zeolite microporosity. The strongly improved accessibility of Brønsted sites in mesoporous SSZ-13 increases its stability during application as an acid catalyst in the methanol-to-olefins reaction.

  7. Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method.

    Science.gov (United States)

    Lazdovica, K; Liepina, L; Kampars, V

    2016-05-01

    Pyrolysis of wheat bran with or without catalysts was investigated using TGA-FTIR method in order to determine the influence of zeolite and noble metal catalysts on the evolution profile and relative yield of the volatile compounds. The addition of all catalysts decreased the volatile matter of wheat bran from 76.3% to 75.9%, 73.9%, 73.5%, 69.7% and increased the solid residue from 18.0% to 18.4%, 20.4%, 20.8%, 24.6% under the catalyst of ZSM-5, 5% Pd/C, MCM-41, and 5% Pt/C. Noble-metal catalysts had higher activity for deoxygenation of compounds containing carbonyl, carboxyl, and hydroxyl groups than zeolites. Degradation of nitrogen containing compounds atom proceeded better in presence of zeolites. Noble-metal catalysts promoted formation of aromatics and changed the profiles of evolved compounds whereas zeolites advanced formation of aliphatics and olefins. PMID:26874441

  8. Pyrolysis of scrap tyres with zeolite USY

    International Nuclear Information System (INIS)

    A zeolite catalyst of ultrastable Y-type (USY) was investigated in the research of two staged pyrolysis-catalysis of scrap tyres. Scrap tyres were pyrolysed in a fixed bed reactor and the evolved pyrolysis gases were passed through a secondary catalytic reactor. The main objective of this paper was to investigate the effect of zeolite USY on the yield of products and the composition of derived oil. The influences of several parameters such as pyrolysis temperature, catalytic temperature, catalyst/tyre ratio, heating rate, etc. on the yield of the derived oil, char and gas were investigated. It showed that the increase of catalytic temperature and catalyst/tyre ratio resulted in high yield of gas at the expense of the oil yield. For example, when the catalyst/tyre ratio increased from 0.25 to 1.0, the yield of gas increased from 30.5 to 49.9 wt.%, and the oil yield decreased nearly two-fold from 31.6 to 12.7 wt.%. The concentration of light naphtha (boiling point < 160 deg. C) was also investigated in this study. And the high catalyst/tyre ratio favored to increase the concentration of light naphtha (<160 deg. C) in oil. In order to study the composition of derived oil, a distilled fraction (<280 deg. C), which was 92.5 wt.% of the oil obtained from catalytic pyrolysis of scrap tyre at a pyrolysis temperature, catalytic temperature and catalyst/tyre ratio of 500, 400 deg. C and 0.5, respectively, was analyzed with gas chromatography/mass spectrometry (GC/MS). The distillate was found to contain 1.23 wt.% benzene, 9.35 wt.% toluene, 3.68 wt.% ethylbenzene, 12.64 wt.% xylenes, 1.81 wt.% limonene and 13.89 wt.% PAHs, etc., where the single ring aromatics represented a significant potential use as chemicals

  9. Conversion of Isoprenoid Oil by Catalytic Cracking and Hydrocracking over Nanoporous Hybrid Catalysts

    Directory of Open Access Journals (Sweden)

    Toshiyuki Kimura

    2012-01-01

    Full Text Available In order to produce petroleum alternatives from biomass, a significant amount of research has been focused on oils from microalgae due to their origin, which would not affect food availability. Nanoporous hybrid catalysts composed of ns Al2O3 and zeolites have been proven to be very useful compared to traditional catalysts in hydrotreating (HT, hydrocracking (HC, and catalytic cracking (CC of large molecules. To evaluate the reaction scheme and products from model isoprenoid compounds of microalgae oil, nanoporous hybrid catalyst technologies (CC: ns Al2O3/H-USY and ns Al2O3/H-GaAlMFI; HC: [Ni-Mo/γ-Al2O3]/ns Al2O3/H-beta were studied. The major product from CC on ns Al2O3/H-USY was highly aromatic gasoline, while the product from HC was half-isoparaffinic/olefinic kerosene. Although more than 50 wt% of the products from HT/CC on the USY catalyst was liquefied petroleum gas due to overcracking, the product from HT/CC on the MFI catalyst was high-octane-number gasoline. Delightfully, the product from HT/HC was kerosene and its average number was 11, with more than 80 wt% being isoparaffinic. As a result, it was demonstrated that hydrotreating may convert isoprenoid oil from microalgae over nanoporous hybrid catalysts into a variety of products.

  10. Conversion of isoprenoid oil by catalytic cracking and hydrocracking over nanoporous hybrid catalysts.

    Science.gov (United States)

    Kimura, Toshiyuki; Liu, Chen; Li, Xiaohong; Maekawa, Takaaki; Asaoka, Sachio

    2012-01-01

    In order to produce petroleum alternatives from biomass, a significant amount of research has been focused on oils from microalgae due to their origin, which would not affect food availability. Nanoporous hybrid catalysts composed of ns Al₂O₃ and zeolites have been proven to be very useful compared to traditional catalysts in hydrotreating (HT), hydrocracking (HC), and catalytic cracking (CC) of large molecules. To evaluate the reaction scheme and products from model isoprenoid compounds of microalgae oil, nanoporous hybrid catalyst technologies (CC: ns Al₂O₃/H-USY and ns Al₂O₃/H-GaAlMFI; HC: [Ni-Mo/γ-Al₂O₃]/ns Al₂O₃/H-beta) were studied. The major product from CC on ns Al₂O₃/H-USY was highly aromatic gasoline, while the product from HC was half-isoparaffinic/olefinic kerosene. Although more than 50 wt% of the products from HT/CC on the USY catalyst was liquefied petroleum gas due to overcracking, the product from HT/CC on the MFI catalyst was high-octane-number gasoline. Delightfully, the product from HT/HC was kerosene and its average number was 11, with more than 80 wt% being isoparaffinic. As a result, it was demonstrated that hydrotreating may convert isoprenoid oil from microalgae over nanoporous hybrid catalysts into a variety of products. PMID:22791962

  11. Synthesis of Modified β-Zeolite Under Microwave Irradiation and Its Use on Etherification

    Institute of Scientific and Technical Information of China (English)

    Ma Jun; Wang Haiyan; Hu Tingfang; Tian Yanwen; Zhou Tong; Qin Zhiwei

    2004-01-01

    β -zeolite was synthesized by using tetraethyl ammonium hydroxide as the template reagent and microwave radiation as the heat source. The effect of the sol composition and the radiation temperature on zeolite crystallinity was investigated. The zeolite was tested and compared with the commercial product, which was produced by conventional hydrothermal synthesis method. ,The physico-chemical properties of the synthesized samples, the specific surface area of the samples synthesized under microwave irradiation and pore volume measured by X-ray diffraction apparatus, were better than the conventional samples. The etherification experiment on FCC light naphtha in the presence of transition metals modified H β -zeolite, which was synthesized firstly under microwave irradiation, was studied in a fixed-bed reactor. The effect of catalyst preparation conditions on its activity, stability and the effect of reaction temperature, methanol/tertiary-carbon olefin molar ratio and liquid hourly space velocity on the etherification reaction were discussed. The experimental results showed that the different metals modified H β -zeolite had different etherification performances. And the conversion of tertiary carbon-olefins of the molybdenum modified H β zeolite, which was loaded at a concentration of 3 percents, was higher than that on 6.0 percent of H β zeolite. The modified H β zeolite catalysts possessed favorable prospects for its higher stability.

  12. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  13. A continuous flow strategy for the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural using Lewis acid zeolites.

    Science.gov (United States)

    Lewis, Jennifer D; Van de Vyver, Stijn; Crisci, Anthony J; Gunther, William R; Michaelis, Vladimir K; Griffin, Robert G; Román-Leshkov, Yuriy

    2014-08-01

    Hf-, Zr- and Sn-Beta zeolites effectively catalyze the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural with primary and secondary alcohols into 2,5-bis(alkoxymethyl)furans, thus making it possible to generate renewable fuel additives without the use of external hydrogen sources or precious metals. Continuous flow experiments reveal nonuniform changes in the relative deactivation rates of the transfer hydrogenation and etherification reactions, which impact the observed product distribution over time. We found that the catalysts undergo a drastic deactivation for the etherification step while maintaining catalytic activity for the transfer hydrogenation step. (119) Sn and (29) Si magic angle spinning (MAS) NMR studies show that this deactivation can be attributed to changes in the local environment of the metal sites. Additional insights were gained by studying effects of various alcohols and water concentration on the catalytic reactivity.

  14. Efficient Production of Hydrogen from Decomposition of Formic Acid over Zeolite Incorporated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Mielby, Jerrik Jørgen; Kegnæs, Søren

    2016-01-01

    Formic acid has a great potential as a safe and convenient source of hydrogen for sustainable chemical synthesis and renewable energy storage. Here, we report a heterogeneous gold nanoparticles catalyst for efficient production of hydrogen from vapor phase decomposition of formic acid using zeoli...... sintering stability. Based on these results, we believe that incorporation of metal nanoparticles in zeolites may find use as highly active and selective heterogeneous catalysts for the production of hydrogen in future renewable energy applications.......Formic acid has a great potential as a safe and convenient source of hydrogen for sustainable chemical synthesis and renewable energy storage. Here, we report a heterogeneous gold nanoparticles catalyst for efficient production of hydrogen from vapor phase decomposition of formic acid using zeolite...... incorporated gold nanoparticles. The catalyst is prepared by pressure assisted impregnation and reduction (PAIR), which results in a uniform distribution of small gold nanoparticles that are incorporated into zeolite silicalite-1 crystals. Consequently, the incorporated nanoparticles exhibit increased...

  15. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes.

    Science.gov (United States)

    Shi, Jing; Wang, Yangdong; Yang, Weimin; Tang, Yi; Xie, Zaiku

    2015-12-21

    The kaleidoscopic applications of zeolite catalysts (zeo-catalysts) in petrochemical processes has been considered as one of the major accomplishments in recent decades. About twenty types of zeolite have been industrially applied so far, and their versatile porous architectures have contributed their most essential features to affect the catalytic efficiency. This review depicts the evolution of pore models in zeolite catalysts accompanied by the increase in industrial and environmental demands. The indispensable roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The zeolites and related industrial processes discussed range from the uni-modal micropore system of zeolite Y (12-ring micropore, 12-R) in fluid catalytic cracking (FCC), zeolite ZSM-5 (10-R) in xylene isomerization and SAPO-34 (8-R) in olefin production to the multi-modal micropore system of MCM-22 (10-R and 12-R pocket) in aromatic alkylation and the hierarchical pores in FCC and catalytic cracking of C4 olefins. The rational construction of pore models, especially hierarchical features, is highlighted with a careful classification from an industrial perspective accompanied by a detailed analysis of the theoretical mechanisms.

  16. Visualizing Dealumination of a Single Zeolite Domain in a Real-Life Catalytic Cracking Particle.

    Science.gov (United States)

    Kalirai, Sam; Paalanen, Pasi P; Wang, Jian; Meirer, Florian; Weckhuysen, Bert M

    2016-09-01

    Fluid catalytic cracking (FCC) catalysts play a central role in the chemical conversion of crude oil fractions. Using scanning transmission X-ray microscopy (STXM) we investigate the chemistry of one fresh and two industrially deactivated (ECAT) FCC catalysts at the single zeolite domain level. Spectro-microscopic data at the Fe L3 , La M5 , and Al K X-ray absorption edges reveal differing levels of deposited Fe on the ECAT catalysts corresponding with an overall loss in tetrahedral Al within the zeolite domains. Using La as a localization marker, we have developed a novel methodology to map the changing Al distribution of single zeolite domains within real-life FCC catalysts. It was found that significant changes in the zeolite domain size distributions as well as the loss of Al from the zeolite framework occur. Furthermore, inter- and intraparticle heterogeneities in the dealumination process were observed, revealing the complex interplay between metal-mediated pore accessibility loss and zeolite dealumination.

  17. Bifunctional Nanostructured Base Catalysts: Opportunities for BioFuels

    Energy Technology Data Exchange (ETDEWEB)

    Connor, William

    2010-12-30

    ABSTRACT This research studied and develop novel basic catalysts for production of renewable chemicals and fuels from biomass. We will focus on the development of unique porous structural-base catalysts formed by two techniques: from (mixed) metal-oxide bases and by nitrogen substitution for oxygen in zeolites. These catalysts will be compared to conventional solid base materials for aldol condensation, catalytic fast pyrolysis, and transesterification reactions. These reactions are important in processes that are currently being commercialized for production of fuels from biomass and will be pivotal in future biomass conversion to fuels and chemicals. Specifically, we have studied the aldol-condensation of acetone with furfural over oxides and zeolites, the conversion of sugars by rapid pyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our previous research has indicated that the base strength of framework nitrogen in nitrogen-substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

  18. Mobil/Badger to market zeolite-based cumene technology

    International Nuclear Information System (INIS)

    Badger (Cambridge, MA) and Mobil (Fairfax, VA) are ready to jointly license a new cumene technology that they say achieves higher yields and product purity than existing processes. The zeolite-based technology is scheduled to be introduced at next month's DeWitt Petrochemical Review in Houston. The Mobil/Badger technology aims to challenge the dominant position of UOP's (Des Plaines, IL) solid phosphoric acid (SPA) catalyst process - which accounts for 80%-90% of the world's cumene production. In addition, Monsanto/Kellogg's aluminum chloride-based technology has gained significant momentum since its introduction in the 1980s. And late last year, ABB Lummus Crest (Bloomfield, NJ) also began marketing a zeolite-based cumene technology. While all the technologies make cumene via the alkylation of benzene with propylene, the Mobil/Badger process uses a zeolite-containing catalyst designed by Mobil to selectively catalyze the benzene/propylene reaction, avoiding unwanted propylene oligomerization. Because the olefin reactions are so fast, says Frank A. Demers, Badger's v.p./technology development and marketing, other zeolite technologies are forced to use complex reactor arrangements to stop the propylene-propylene reactions. However, he says, 'Mobil has designed a catalyst that wants to react benzene with propylene to make cumene.'

  19. Hydraulic conductivity of compacted zeolites.

    Science.gov (United States)

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  20. Structural analysis of hierarchically organized zeolites

    Science.gov (United States)

    Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-10-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact.

  1. The remarkable activity and stability of a highly dispersive beta-brass Cu-Zn catalyst for the production of ethylene glycol

    Science.gov (United States)

    Li, Molly Meng-Jung; Zheng, Jianwei; Qu, Jin; Liao, Fenglin; Raine, Elizabeth; Kuo, Winson C. H.; Su, Shei Sia; Po, Pang; Yuan, Youzhu; Tsang, Shik Chi Edman

    2016-02-01

    Incorporation of Zn atoms into a nanosize Cu lattice is known to alter the electronic properties of Cu, improving catalytic performance in a number of industrially important reactions. However the structural influence of Zn on the Cu phase is not well studied. Here, we show that Cu nano-clusters modified with increasing concentration of Zn, derived from ZnO support doped with Ga3+, can dramatically enhance their stability against metal sintering. As a result, the hydrogenation of dimethyl oxalate (DMO) to ethylene glycol, an important reaction well known for deactivation from copper nanoparticle sintering, can show greatly enhanced activity and stability with the CuZn alloy catalysts due to no noticeable sintering. HRTEM, nano-diffraction and EXAFS characterization reveal the presence of a small beta-brass CuZn alloy phase (body-centred cubic, bcc) which appears to greatly stabilise Cu atoms from aggregation in accelerated deactivation tests. DFT calculations also indicate that the small bcc CuZn phase is more stable against Cu adatom migration than the fcc CuZn phase with the ability to maintain a higher Cu dispersion on its surface.

  2. The remarkable activity and stability of a highly dispersive beta-brass Cu-Zn catalyst for the production of ethylene glycol

    Science.gov (United States)

    Li, Molly Meng-Jung; Zheng, Jianwei; Qu, Jin; Liao, Fenglin; Raine, Elizabeth; Kuo, Winson C. H.; Su, Shei Sia; Po, Pang; Yuan, Youzhu; Tsang, Shik Chi Edman

    2016-01-01

    Incorporation of Zn atoms into a nanosize Cu lattice is known to alter the electronic properties of Cu, improving catalytic performance in a number of industrially important reactions. However the structural influence of Zn on the Cu phase is not well studied. Here, we show that Cu nano-clusters modified with increasing concentration of Zn, derived from ZnO support doped with Ga3+, can dramatically enhance their stability against metal sintering. As a result, the hydrogenation of dimethyl oxalate (DMO) to ethylene glycol, an important reaction well known for deactivation from copper nanoparticle sintering, can show greatly enhanced activity and stability with the CuZn alloy catalysts due to no noticeable sintering. HRTEM, nano-diffraction and EXAFS characterization reveal the presence of a small beta-brass CuZn alloy phase (body-centred cubic, bcc) which appears to greatly stabilise Cu atoms from aggregation in accelerated deactivation tests. DFT calculations also indicate that the small bcc CuZn phase is more stable against Cu adatom migration than the fcc CuZn phase with the ability to maintain a higher Cu dispersion on its surface. PMID:26856760

  3. Effect of NiW Modified HZSM-5 and HY Zeolites on Hydrocracking Conversion of Crude Palm Oil to Liquid Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Maliwan Subsadsana

    2016-05-01

    Full Text Available The catalytic conversion of crude palm oil over HZSM-5 and HY zeolites modified with NiW as catalysts in the hydrocracking process was investigated. These zeolites supported by NiW catalysts were prepared employing the impregnation technique. NiW was added to the zeolites in order to induce bi-functional properties (both acid and metal sites in the catalysts. Subsequently, the catalysts were characterized by X-ray diffraction spectrometry (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, ammonia temperature programmed desorption (NH3-TPD andnitrogen adsorption-desorption isotherms analysis. The catalytic activity of prepared catalysts was evaluated through the conversion of crude palm oil to biofuels. These results indicate that the incorporation of NiW over HZSM-5 and HY zeolites improves the conversion efficiency and enhances the yield of biofuel (gasoline, kerosene, and diesel, possibly due to NiW promote of hydrogenation and dehydrogenation reaction.

  4. for zeolite coating

    Directory of Open Access Journals (Sweden)

    Carlos Renato Rambo

    2006-01-01

    Full Text Available Biotemplating is the processing of microcellular ceramics by reproduction of natural morphologies, where the microstructural features of the biotemplate are maintained in the biomorphic ceramic. Different biotemplates with distinct pore anatomies were used to produce biomorphic supports for the zeolite coating: wood, cardboard, sea-sponge and sisal. The biomorphic ceramics were produced by distinguished processing routes: Al-gas infiltration-reaction, liquid-metal infiltration, dip-coating and sol-gel synthesis, in order to produce nitrides, carbides and oxides, depending on the processing conditions. The zeolite coating was performed by hydrothermal growth of MFI-type (Silicalite-1 and ZSM-5 zeolite crystals onto the internal pore walls of the biomorphic templates. The final biomorphic ceramic-zeolite composites were physically characterized, evaluated in terms of their gas adsorption capabilities and correlated to their microstructure and specific pore anatomy. The combination of the properties of the biomorphic ceramics with the adsorption properties of zeolites results in materials with distinct properties as potential candidates for adsorption and catalytic applications due to their characteristic porosity, molecular sieving capabilities and high thermo-mechanical strength.

  5. Synthesis of zeolite membranes

    Institute of Scientific and Technical Information of China (English)

    JIANG Haiyang; ZHANG Baoquan; Y. S. Lin; LI Yongdan

    2004-01-01

    Zeolite membranes offer great application potentials in membrane separation and/or reaction due to their excellent separation performance and catalytic ability. Up to present, various synthesis methods of zeolite membranes have been developed, including embedded method,in-situ hydrothermal synthesis method, and secondary growth method etc. Compared with the in-situ hydrothermal synthesis method, the secondary growth method possesses a variety of advantages such as easier operation, higher controllability in crystal orientation, microstructure and film thickness, leading to much better reproducibility. This review provides a concise summary and analysis of various synthesis methods reported in the literature. In particular, the secondary growth method was discussed in detail in terms of crystal orientation, defects and crystal grain layers. Some critical issues were also highlighted, which were conducive to the improvement in the synthesis technology of zeolite membranes.

  6. Fries Rearrangement of Phenyl Acetate over Solid Acid Catalyst

    Institute of Scientific and Technical Information of China (English)

    CanXiongGUO; YanLIU; 等

    2002-01-01

    A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o-hydroxyacetophenone (o-HAP) than for strongly acidic zeolite catalysts. The supported catalyst was characterized by XRD,IR,XPS,pyridine-TPD and the surface area measurements. The catalytic properties were influenced significantly by pretreatment temperature.

  7. Fries Rearrangement of Phenyl Acetate over Solid Acid Catalyst

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o-hydroxyacetophenone (o-HAP) than for strongly acidic zeolite catalysts. The supported catalyst was characterized by XRD, IR, XPS, pyridine-TPD and the surface area measurements. The catalytic properties were influenced significantly by pretreatment temperature.

  8. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    Science.gov (United States)

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone.

  9. Infrared Spectroscopic Characterization of CIT-6 and a Family of *BEA Zeolites

    Directory of Open Access Journals (Sweden)

    Sean R. Tomlinson

    2013-01-01

    Full Text Available Infrared spectroscopy is known to be a useful tool for identifying local structure changes in zeolites. Infrared spectroscopy is often employed to complement X-ray diffraction data. Local structure changes in zeolite CIT-6 and its zeolite beta (*BEA analogs caused by calcination, altering framework composition, and ion exchange have been identified with mid- and far-infrared spectroscopy. Differences in the local structures of the samples were observed in mid- and far-infrared spectra, including changes in the intratetrahedral asymmetric stretch, the double-ring mode, and the intratetrahedral bending mode regions. The infrared spectra indicate that calcination or acetic acid extraction changed the structure of CIT-6 to that of zeolite beta (*BEA. Zinc ion exchange or the substitution of aluminum into the framework structure of acetic acid extracted samples retained the CIT-6 structure.

  10. Ru complexes of Hoveyda-Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions.

    Science.gov (United States)

    Balcar, Hynek; Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Hoveyda-Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36) and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (<1% of Ru content). XPS analysis revealed that during immobilization ion exchange between Hoveyda-Grubbs type catalyst and zeolitic support occurred in the case of Cl(-) counter anion; in contrast, PF6 (-) counter anion underwent partial decomposition. PMID:26664629

  11. Ru complexes of Hoveyda-Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions.

    Science.gov (United States)

    Balcar, Hynek; Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Hoveyda-Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36) and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (<1% of Ru content). XPS analysis revealed that during immobilization ion exchange between Hoveyda-Grubbs type catalyst and zeolitic support occurred in the case of Cl(-) counter anion; in contrast, PF6 (-) counter anion underwent partial decomposition.

  12. Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions

    Science.gov (United States)

    Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Summary Hoveyda–Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36) and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (<1% of Ru content). XPS analysis revealed that during immobilization ion exchange between Hoveyda–Grubbs type catalyst and zeolitic support occurred in the case of Cl− counter anion; in contrast, PF6 − counter anion underwent partial decomposition. PMID:26664629

  13. Catalytic Dehydration of 4-Hydroxy-3-hexanone to 4-Hexen-3-one over HZSM-5 Zeolite

    Institute of Scientific and Technical Information of China (English)

    Huang Kai; Zheng Haitao; Tao Keyi

    2013-01-01

    A study on catalytic dehydration of 4-hydroxy-3-hexanone (HH) to 4-hexen-3-one (HO) was carried out through conversion of HH over HZSM-5 zeolite catalyst in a ifxed-bed reactor (FBR) operating under atmospheric pressure. The test indicated a relatively high activity of the HZSM-5 zeolite capable of achieving a HH conversion of 99.2% and a HO yield of 83.5%. Catalyst deactivation could be prevented by increasing the reaction temperature by 10℃ for every 20 h and adding 2.0% of piperidine in the feed. A catalyst stability test (for 100 h) in FBR showed that the catalyst was active even after 100 h of time-on-stream with HH conversion remaining at 99.2% and HO yield still reaching over 83.5%. Regenera-tion experiment showed that the regenerated catalyst demonstrated a catalytic performance comparable to the fresh one.

  14. The growth of zeolites A, X and mordenite in space

    Science.gov (United States)

    Sacco, Albert, Jr.; Bac, N.; Coker, E. N.; Dixon, A. G.; Warzywoda, J.; Thompson, R. W.

    1994-01-01

    Zeolites are a class of crystalline aluminosilicate materials that form the backbone of the chemical process industry worldwide. They are used primarily as adsorbents and catalysts and support to a significant extent the positive balance of trade realized by the chemical industry in the United States (around $19 billion in 1991). The magnitude of their efforts can be appreciated when one realizes that since their introduction as 'cracking catalysts' in the early 1960's, they have saved the equivalent of 60 percent of the total oil production from Alaska's North Slope. Thus the performance of zeolite catalysts can have a profound effect on the U.S. economy. It is estimated that a 1 percent increase in yield of the gasoline fraction per barrel of oil would represent a savings of 22 million barrels of crude oil per year, representing a reduction of $400 million in the United States' balance of payments. Thus any activity that results in improvement in zeolite catalyst performance is of significant scientific and industrial interest. In addition, due to their 'stability,' uniformity, and, within limits, their 'engineerable' structures, zeolites are being tested as potential adsorbents to purify gases and liquids at the parts-per-billion levels needed in today's electronic, biomedical, and biotechnology industries and for the environment. Other exotic applications, such as host materials for quantum-confined semiconductor atomic arrays, are also being investigated. Because of the importance of this class of material, extensive efforts have been made to characterize their structures and to understand their nucleation and growth mechanisms, so as to be able to custom-make zeolites for a desired application. To date, both the nucleation mechanics and chemistry (such as what are the 'key' nutrients) are, as yet, still unknown for many, if not all, systems. The problem is compounded because there is usually a 'gel' phase present that is assumed to control the degree of

  15. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten;

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this resear...

  16. Fabrication and catalytic tests of MCM-22/silicon carbide structured catalysts.

    Science.gov (United States)

    Gu, Lijun; Ma, Ding; Hu, Gang; Wu, Jingjing; Wang, Hongxia; Sun, Changyong; Yao, Songdong; Shen, Wenjie; Bao, Xinhe

    2010-10-28

    The structured catalyst of zeolite MCM-22/silicon carbide (SiC) was prepared for the first time through the in situ hydrothermal synthesis approach. The zeolite loading of the structured catalyst could be tuned by changing the synthesis time and applying alkali pre-treatment of SiC substrate. An additional silica layer formed on SiC substrate after the precalcination treatment facilitated the crystallization of MCM-22 zeolite on the SiC substrate. The MCM-22/SiC structured catalyst thus prepared exhibited good catalytic performance in the methane dehydroaromatization reaction.

  17. Selective methane oxidation on zeolite stabilized copper oxide clusters

    OpenAIRE

    Grundner, Sebastian

    2016-01-01

    Copper oxide clusters stabilized in the micropores of zeolites have been found to selectively oxidize methane to methanol. The synthesis of a catalyst with homotopic trinuclear copper oxide clusters was achieved via ion exchange and oxidation. The steric and chemical environments of these clusters characterized by combinations of physicochemical measurement were critical to activate and convert methane. While the absence of water was critical for methane oxidation, the presence of water was r...

  18. High Yield of Liquid Range Olefins Obtained by Converting i-Propanol over Zeolite H-ZSM-5

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie; Shunmugavel, Saravanamurugan; Hruby, S.L.;

    2009-01-01

    Methanol, ethanol, and i-propanol were converted under methanol-to-gasoline (MTH)-like conditions (400 degrees C, 1-20 bar) over zeolite H-ZSM-5. For methanol and ethanol, the catalyst lifetimes and conversion capacities are comparable, but when i-propanol is used as the reactant, the catalyst li...

  19. 多级结构ZSM-5沸石分子筛的合成及其Mo基催化剂在甲烷无氧脱氢芳构化中的应用%Synthesis of Hierarchical ZSM-5 Zeolite and Performance of Its Mo-Based Catalyst for Methane Dehydroaromatization

    Institute of Scientific and Technical Information of China (English)

    于素霞; 杨建华; 初乃波; 李刚; 鲁金明; 王金渠

    2009-01-01

    A hierarchical spherical-like ZSM-5 zeolite was synthesized using multiwall carbon nanotubes as secondary template. First, the nanotubes were purified by reflux with concentrated hydrochloric acid for 24 h. This purification step was repeated until the hydrochloric acid was no longer colored by impurities from the nanotubes (typically 3-4 times). Then the disposed nanotubes were added into the synthesis solution of ZSM-5, which was obtained by mixing H_2O, tetraethylorthosilicate, Al(C_3H_8O)_3, and tetrapropylammonium hydroxide (TPAOH). Afterward, this mixture was subjected to crystallization at varying temperatures. The obtained products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and nitrogen adsorption analysis. The results indicated that ZSM-5 zeolite with uniform size of 300-400 nm was synthesized, and it was spherical-like aggregates and has hierarchical structure constructed by many ZSM-5 nanotubes of 20-40 nm. The hierarchical ZSM-5 zeolite was modified to form a Mo/HZSM-5 catalyst, and its catalytic performance for methane dehydroaromatization was investigated. The modified Mo/HZSM-5 catalyst exhibited CH_4 conversion as high as 19% and better life time. The CH_4 conversion was kept at 10% even when the reaction time was 24 h. It is suggested that hierarchical structure was favorable for the enhancement of catalyst performance, which is due to the presence of both micropores and mesopores.%以经盐酸预处理的碳纳米管为第二模板,在不添加其它有机溶剂的情况下,仅通过控制晶化条件,即采用变温水热晶化法合成具有多级结构的ZSM-5分子筛.通过x射线衍射、红外光谱测试、透射电镜和N2吸附对合成的分子筛进行了表征,结果表明,该合成分子筛呈近球形,是由纳米棒自组装形成的具有多级结构的亚微米球.该分子筛改性后用于甲烷无氧脱氢芳构化反应,显示出良好的催化性能,

  20. Synthesis of 3-(1-Cyclohexenyl)-2-butanone via Environmentally Friendly Catalysts

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen-hua

    2003-01-01

    We substituted several environmentally friendly catalysts which included HY and H-β zeolites, various cation-exchanged β zeolites, and solid-supported ferric chloride for conventional catalysts for the synthesis of 3-(1-cyclohexenyl)-2-butanone from the reaction of ethylidenecyclohexane with acetic anhydride at room temperature. HY zeolite was found to be the most effective for this reaction, and gave the acylated product in a 72% yield under the conditions of n(ethylidenecyclohexane)/n(acetic anhydride)/m(HY zeolite)=1 mmol/10 mmol/0.100 g, reaction temperature 25 ℃ and reaction time 2 h. The used HY zeolite can be recovered, regenerated and gave almost the same yield as the fresh one. The lifetime of the HY zeolite is over 80 h. The effect of different factors on the reaction has also been investigated.

  1. 过渡金属基分子筛SCR催化剂失活机制及抗失活技术研究进展%Research Progress on Deactivation and Resistance of Transitional Metal Based Zeolite SCR Catalysts

    Institute of Scientific and Technical Information of China (English)

    马静; 翁端; 吴晓东; 司知蠢

    2011-01-01

    过渡金属基分子筛是在氨选择性催化还原氮氧化物技术领域广泛应用的一类催化材料,在实际应用中容易中毒失活.失活形式主要有水热老化失活,P、S中毒失活,HCs中毒失活及尿素中毒失活等.本文分析了过渡金属基分子筛催化剂的4种失活机制及相应的抗失活工艺,并展望了过渡金属基分子筛的发展方向.%Transitional metal based zeolites are widely used to remove nitrogen oxides by NH3-SCR, which will eventually become de-activated in practical application proceses, including hydrothermal aging, P and S poisoning, HCs poisoning and urea poisoning. The deactivation mechanisms and the related methods to improve the resistance to deactivation are reviewed. The development trends of the transitional metal based zeolite are outlined.

  2. Influence of zeolitic structure on photoreduction property and hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Chatti, Ravikrishna V.; Dubey, Nidhi; Joshi, Meenal V.; Labhsetwar, Nitin K.; Rayalu, Sadhana S. [National Environmental Engineering Research Institute (NEERI-CSIR), Environmental Materials Unit, Nehru Marg, 440020 Nagpur, Maharashtra (India); Joshi, P.N. [National Chemical Laboratory (NCL-CSIR), Pune (India)

    2010-03-15

    A new photocatalytic material developed by supporting TiO{sub 2} in combination with transition metal ion like cobalt and heteropolyacid (HPA) on the surface is facilitating enhanced photoreduction of water and methyl orange. Zeolites being a solid acid play an important role in the electron transfer reaction, facilitated by the Lewis acid sites in the form of aluminium ions. In the present work, four different zeolite matrices namely, NaY zeolite, ultrastable zeolite Y, beta zeolite and titanium silicate-1 have been used for the synthesis of new photocatalytic materials. These materials have been evaluated for water splitting by an initial screening procedure using methyl orange photoreduction. The photocatalyst containing Na Y has emerged as a potential photocatalyst with hydrogen evolution rate of 2730 {mu}mol/h/g of TiO{sub 2}. Hydrogen evolution was not observed for the composite photocatalysts synthesized using the other zeolite matrices. It has been observed that physico-chemical properties like Si/Al ratio, acidity and basicity of the zeolite support have a tremendous influence on the photoreduction property of these zeolite matrices. (author)

  3. Isomerisation of c4-c6 aldoses with zeolites

    DEFF Research Database (Denmark)

    2014-01-01

    temperatures. C6 and C5 aldose sugars such as glucose and xylose, which are available in large amounts from biomass precursors, are isomerized to fructose and xylulose respectively, in a one or two-step process over inexpensive commercially available zeolite catalysts, containing aluminum as the only metal...... in the catalyst. The ketoses obtained are used as sweeteners in the food and/or brewery industry, or treated to obtain downstream platform chemicals such as lactic acid, HMF, levulinic acid, furfural, MMHB, and the like....

  4. Vanadia supported on zeolites for SCR of NO by ammonia

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Riisager, Anders; Fehrmann, Rasmus

    2010-01-01

    in the selective catalytic reduction (SCR) of NO with ammonia. The SCR activity was found to correlate directly with the total acidity of the catalysts and showed high poisoning resistivity after doping with potassium oxide (100 mu mol/g). The poisoning resistance was due to unique combination of high surface area......, acidity and micropore structure of the support. Apparently the support hosted the potassium oxide on the acid sites, thereby protecting the active vanadium species from poisoning. Zeolite based catalysts might therefore prove useful for SCR of NO in alkali-containing flue gases from, e.g. biomass fired...

  5. Idea of environmental catalyst and its application; Kankyo shokubai no hasso to sono riyo

    Energy Technology Data Exchange (ETDEWEB)

    Inumaru, K. [The University of Tokyo, Tokyo (Japan)

    1997-10-20

    The catalyst creating environmental conservation and comfortable environment is generally named an `environmental catalyst (EC).` EC is roughly classified into direct and indirect type ECs. Purification catalysts for automobile exhaust gas, and catalysts for chemical production process are under investigation as direct and indirect type ECs, respectively. The catalyst was found which can remove NOx under the coexistence of oxygen by using hydrocarbon as reductant. In addition, the practical exhaust gas purification catalyst was also developed for lean-burn engines by combining noble metal catalysts with NOx absorbing materials or zeolite superior in reductant adsorbing power. {epsilon}-caprolactam as raw material of nylon 6 is synthesized from cyclohexanoneoxime through Beckmann` rearrangement reaction. Zeolite system solid catalysts using no ammonia are under investigation. An environment-friendly synthesis method using not phosgene but catalyst was proposed for production of dimethyl carbonate. How to utilize catalysts for global material circulation remains unsolved for the future study. 5 refs.

  6. Study on Removing Trace Olefins in Aromatic Hydrocarbons with HPMo-loaded Y Zeolites

    Institute of Scientific and Technical Information of China (English)

    Jiang Zhenghong; Zeng Haiping; Shi Li

    2008-01-01

    HPMo-loaded Y-zeolites were prepared for the removal of trace olefins from aromatic hydrocarbons.The temperature of calcination and the proportion of phospho-molybdic acid in the catalyst were studied. The catalytic activity for olefins removal and the service life of the catalyst were tested in a fixed bed microreactor. The results showed that the catalyst containing 3% phospho-molybdic acid, which was calcined at 550℃,demonstrated the best activity for olefins removal. The catalyst could be regenerated and could perform still very well. Catalyst characterization was performed by XRD and measured by pyridine-FTIR spectrometry. The test results indicated that the activity of the catalyst was related with the effect of acid concentration and acid strength. Besides, the deactivation of the catalyst was associated with the formation of coke deposits and the deactivated catalyst could recover its activity by oxidation with air under a proper temperature.

  7. Zeolite crystal growth in space

    Science.gov (United States)

    Sacco, Albert, Jr.; Thompson, Robert W.; Dixon, Anthony G.

    1991-01-01

    The growth of large, uniform zeolite crystals in high yield in space can have a major impact on the chemical process industry. Large zeolite crystals will be used to improve basic understanding of adsorption and catalytic mechanisms, and to make zeolite membranes. To grow large zeolites in microgravity, it is necessary to control the nucleation event and fluid motion, and to enhance nutrient transfer. Data is presented that suggests nucleation can be controlled using chemical compounds (e.g., Triethanolamine, for zeolite A), while not adversely effecting growth rate. A three-zone furnace has been designed to perform multiple syntheses concurrently. The operating range of the furnace is 295 K to 473 K. Teflon-lined autoclaves (10 ml liquid volume) have been designed to minimize contamination, reduce wall nucleation, and control mixing of pre-gel solutions on orbit. Zeolite synthesis experiments will be performed on USML-1 in 1992.

  8. Novel modified zeolites for energy-efficient hydrocarbon separations.

    Energy Technology Data Exchange (ETDEWEB)

    Arruebo, Manuel (University of Colorado, Boulder, CO); Dong, Junhang; Anderson, Thomas (Burns and McDonnell, Kansas City, MO); Gu, Xuehong; Gray, Gary (Goodyear Chemical Company, Akron, OH); Bennett, Ron (Goodyear Chemical Company, Akron, OH); Nenoff, Tina Maria; Kartin, Mutlu; Johnson, Kaylynn (Goodyear Chemical Company, Akron, OH); Falconer, John (University of Colorado, Boulder, CO); Noble, Richard (University of Colorado, Boulder, CO)

    2006-11-01

    We present synthesis, characterization and testing results of our applied research project, which focuses on the effects of surface and skeletal modification of zeolites for significant enhancements in current hydrocarbon (HC) separations. Zeolites are commonly used by the chemical and petroleum industries as catalysts and ion-exchangers. They have high potential for separations owing to their unique pore structures and adsorption properties and their thermal, mechanical and chemical properties. Because of zeolites separation properties, low cost, and robustness in industrial process, they are natural choice for use as industrial adsorbents. This is a multidisciplinary effort to research, design, develop, engineer, and test new and improved materials for the separation of branched vs. linear organic molecules found in commercially important HC streams via adsorption based separations. The focus of this project was the surface and framework modification of the commercially available zeolites, while tuning the adsorption properties and the selectivities of the bulk and membrane separations. In particular, we are interested with our partners at Goodyear Chemical, on how to apply the modified zeolites to feedstock isoprene purification. For the characterization and the property measurements of the new and improved materials powder X-ray diffraction (PXRD), Residual Gas Analyzer-Mass Spectroscopy (RGA-MS), Electron Microscopy (SEM/EDAX), temperature programmed desorption (TPD) and surface area techniques were utilized. In-situ carbonization of MFI zeolite membranes allowed for the maximum separation of isoprene from n-pentane, with a 4.1% enrichment of the binary stream with n-pentane. In four component streams, a modified MFI membrane had high selectivities for n-pentane and 1-3-pentadiene over isoprene but virtually no separation for the 2-methyl-2-butene/isoprene pair.

  9. Modificação de zeólitas para uso em catálise Modifying zeolites for use in catalysis

    Directory of Open Access Journals (Sweden)

    Fernando J. Luna

    2001-12-01

    Full Text Available The use of zeolites and other molecular sieves as catalysts is discussed at an introductory level. The text includes a brief historic background on the use of zeolites in catalysis, and a discussion of some chemical and physical properties of silicalite, aluminosilicate, and aluminophosphate molecular sieves. The strategies currently used to chemically modify zeolites and related materials to produce catalysts with increased activity and selectivity are discussed, including the use of redox molecular sieves for hydrocarbon oxidation and the leaching of the active metals from the support.

  10. Development of a stable cobalt-ruthenium Fisher-Tropsch catalyst. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, R.R.; Gala, H.B.

    1995-02-01

    The reverse micelle catalyst preparation method has been used to prepare catalysts on four supports: magnesium oxide, carbon, alumina- titania and steamed Y zeolite. These catalysts were not as active as a reference catalyst prepared during previous contracts to Union Carbide Corp. This catalyst was supported on steamed Y zerolite support and was impregnated by a pore-filling method using a nonaqueous solvent. Additional catalysts were prepared via pore- filling impregnation of steamed Y zeolites. These catalysts had levels of cobalt two to three and a half times as high as the original Union Carbide catalyst. On a catalyst volume basis they were much more active than the previous catalyst; on an atom by atom basis the cobalt was about of the same activity, i.e., the high cobalt catalysts` cobalt atoms were not extensively covered over and deactivated by other cobalt atoms. The new, high activity, Y zerolite catalysts were not as stable as the earlier Union Carbide catalyst. However, stability enhancement of these catalysts should be possible, for instance, through adjustment of the quantity and/or type of trace metals present. A primary objective of this work was determination whether small amounts of ruthenium could enhance the activity of the cobalt F-T catalyst. The reverse micelle catalysts were not activated by ruthenium, indeed scanning transmission electronic microscopy (STEM) analysis provided some evidence that ruthenium was not present in the cobalt crystallites. Ruthenium did not seem to activate the high cobalt Y zeolite catalyst either, but additional experiments with Y zeolite-supported catalysts are required. Should ruthenium prove not to be an effective promoter under the simple catalyst activation procedure used in this work, more complex activation procedures have been reported which are claimed to enhance the cobalt/ruthenium interaction and result in activity promotion by ruthenium.

  11. Adsorption and photocatalytic degradation of pharmaceuticals and pesticides by carbon doped-TiO2 coated on zeolites under solar light irradiation.

    Science.gov (United States)

    An, Ye; de Ridder, David Johannes; Zhao, Chun; Schoutteten, Klaas; Bussche, Julie Vanden; Zheng, Huaili; Chen, Gang; Vanhaecke, Lynn

    2016-01-01

    To evaluate the performance of zeolite-supported carbon-doped TiO(2) composite catalysts toward target pollutants under solar light irradiation, the adsorption and photocatalytic degradation of 18 pharmaceuticals and pesticides with distinguishing features (molecular size and volume, and photolysis) were investigated using mordenite zeolites with SiO(2)/Al(2)O(3) ratios of 18 and 240. Different quantities of carbon-doped TiO(2) were coated on the zeolites, and then the finished composite catalysts were tested in demineralized, surface, and hospital wastewater samples, respectively. The composite photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, and surface area and porosity analyses. Results showed that a dispersed layer of carbon-doped TiO(2) is formed on the zeolite surface; this layer blocks the micropores of zeolites and reduces their surface area. However, these reductions did not significantly affect adsorption onto the zeolites. Our results demonstrated that zeolite-supported carbon-doped TiO(2) systems can effectively degrade 18 pharmaceuticals and pesticides in demineralized water under natural and simulated solar light irradiation. In surface and hospital wastewaters, zeolite-supported carbon-doped TiO(2) systems present excellent anti-interference capability against radical scavengers and competitive organics for pollutants removal, and higher pollutants adsorption on zeolites evidently enhances the removal rate of target pollutants in surface and hospital wastewater samples with a complicated matrix. PMID:27332831

  12. Structural characteristics of zeolite/TiO2 composite and photocatalysis of toluene degradation

    Institute of Scientific and Technical Information of China (English)

    MING Caibing; WU Pingxiao

    2005-01-01

    Zeolite/TiO2 composite photocatalysts were prepared by adding a certain amount of mordenite in TiO2, and degradation experiments on toluene through photocatalytic reactions were implemented. In this paper, these photocatalysts were characterized by using SEM, IR, RAMAN, XRD and UV-Vis to shed light on the microstructure and photocatalytic performance of the composite photocatalysts. The results indicated that the structural hydroxy of zeolite can participate in bonding reaction with TiO2, the addition of zeolite can greatly reduce the diameter of nanometer TiO2 particles in the composite photocatalysts, and enhance the ultraviolet light absorptance of the composite photocatalysts. When the percentage content of zeolite reached 20%, the photocatalytic performance of this catalyst would be highest, with the toluene conversion rate up to 94.58%.

  13. Catalytic Flash Pyrolysis of Biomass Using Different Types of Zeolite and Online Vapor Fractionation

    KAUST Repository

    Imran, Ali

    2016-03-11

    Bio-oil produced from conventional flash pyrolysis has poor quality and requires expensive upgrading before it can be used as a transportation fuel. In this work, a high quality bio-oil has been produced using a novel approach where flash pyrolysis, catalysis and fractionation of pyrolysis vapors using two stage condensation are combined in a single process unit. A bench scale unit of 1 kg/h feedstock capacity is used for catalytic pyrolysis in an entrained down-flow reactor system equipped with two-staged condensation of the pyrolysis vapor. Zeolite-based catalysts are investigated to study the effect of varying acidities of faujasite Y zeolites, zeolite structures (ZSM5), different catalyst to biomass ratios and different catalytic pyrolysis temperatures. Low catalyst/biomass ratios did not show any significant improvements in the bio-oil quality, while high catalyst/biomass ratios showed an effective deoxygenation of the bio-oil. The application of zeolites decreased the organic liquid yield due to the increased production of non-condensables, primarily hydrocarbons. The catalytically produced bio-oil was less viscous and zeolites were effective at cracking heavy molecular weight compounds in the bio-oil. Acidic zeolites, H-Y and H-ZSM5, increased the desirable chemical compounds in the bio-oil such as phenols, furans and hydrocarbon, and reduced the undesired compounds such as acids. On the other hand reducing the acidity of zeolites reduced some of the undesired compounds in the bio-oil such as ketones and aldehydes. The performance of H-Y was superior to that of the rest of zeolites studied: bio-oil of high chemical and calorific value was produced with a high organic liquid yield and low oxygen content. H-ZSM5 was a close competitor to H-Y in performance but with a lower yield of bio-oil. Online fractionation of catalytic pyrolysis vapors was employed by controlling the condenser temperature and proved to be a successful process parameter to tailor the

  14. Fabrication and Catalytic Activity of Thermally Stable Gold Nanoparticles on Ultrastable Y (USY Zeolites

    Directory of Open Access Journals (Sweden)

    Keiko Iida

    2013-07-01

    Full Text Available Au was deposited on ultrastable Y (USY zeolites using an ion-exchange method. Up to 5.5 wt% Au was introduced into the NH4-form of USY zeolites. In contrast, deposition of Au hardly took place on the H- and Na-forms of Y-type zeolites, NH4-forms of mordenite, and ZSM-5. Treatment of the Au-loaded USY zeolite in a H2 atmosphere, afforded Au0 nanoparticles. These particles were thermally stable even at 973 K, where their mean particle diameter was 3.7 nm. In contrast, highly aggregated Au particles were observed after thermal treatment at temperatures lower than 523 K, followed by storage in air for a month. The resulting particle sizes were in good correlation with the IR band intensity of the adsorbed CO and the catalytic activity of Au in the aerobic oxidation of benzyl alcohol. The Au nanoparticles showed highest activity when the Au/USY zeolite was thermally treated at 673–973 K. A negligible deactivation was observed after repeating the reaction at least 12 times. In the case of Au/TiO2 catalyst prepared by the deposition-precipitation method, the highest activity was observed at 573 K, which was lower than the temperature used for the Au/USY zeolites. This study demonstrated the potential use of the NH4-form of USY zeolites for supporting Au.

  15. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity.

    Science.gov (United States)

    Choi, Minkee; Cho, Hae Sung; Srivastava, Rajendra; Venkatesan, Chithravel; Choi, Dae-Heung; Ryoo, Ryong

    2006-09-01

    Zeolites are a family of crystalline aluminosilicate materials widely used as shape-selective catalysts, ion exchange materials, and adsorbents for organic compounds. In the present work, zeolites were synthesized by adding a rationally designed amphiphilic organosilane surfactant to conventional alkaline zeolite synthesis mixtures. The zeolite products were characterized by a complementary combination of X-ray diffraction (XRD), nitrogen sorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The analyses show that the present method is suitable as a direct synthesis route to highly mesoporous zeolites. The mesopore diameters could be uniformly tailored, similar to ordered mesoporous silica with amorphous frameworks. The mesoporous zeolite exhibited a narrow, small-angle XRD peak, which is characteristic of the short-range correlation between mesopores, similar to disordered wormhole-like mesoporous materials. The XRD patterns and electron micrographs of the samples taken during crystallization clearly showed the evolution of the mesoporous structure concomitantly to the crystallization of zeolite frameworks. The synthesis of the crystalline aluminosilicate materials with tunable mesoporosity and strong acidity has potentially important technological implications for catalytic reactions of large molecules, whereas conventional mesoporous materials lack hydrothermal stability and acidity. PMID:16892049

  16. Fluorescence labelling as tool for zeolite particle tracking in nanoremediation approaches.

    Science.gov (United States)

    Gillies, Glenn; Mackenzie, Katrin; Kopinke, Frank-Dieter; Georgi, Anett

    2016-04-15

    Colloidal Fe-zeolites such as Fe-BEA-35 are currently under study as new adsorbent and catalyst materials for in-situ chemical oxidation with H2O2. As for nanoremediation in general, the availability of suitable particle detection methods is a requirement for successful process development and particle tracing. Detection and distinguishing between natural colloids and introduced particles with a similar composition are a challenge. By means of fluorescence labelling, a highly specific detection option for Fe-BEA-35 was developed. 'Ship-in-a-bottle' synthesis of fluorescein within the zeolite pores, which was applied for the first time for a BEA type zeolite, provides a product with stable and non-extractable fluorescence. When the fluorescent labelled zeolite is added at a concentration of 1wt.% referring to the total zeolite mass, a very low detection limit of 1mg/L of total zeolite is obtained. Compared to commonly applied turbidity measurements, detection via fluorescence labelling is much more specific and sensitive. Fluorescence is only marginally affected by carboxymethyl cellulose, which is frequently applied as stabilizer in application suspensions but will be depleted upon contact with H2O2. Transport properties of fluorescent labelled and non-labelled Fe-zeolite particles are in agreement as determined in a column study with quartz sand and synthetic groundwater (classified as very hard). PMID:26849345

  17. Cu and Co exchanged ZSM-5 zeolites: activity towards no reduction and hydrocarbon oxidation

    Directory of Open Access Journals (Sweden)

    Leandro Martins

    2006-04-01

    Full Text Available |Cu x|[Si yAl]-MFI and |Co x|[Si yAl]-MFI catalysts were prepared by ion exchange from |Na|[Si yAl]-MFI zeolites (y = 12, 25 and 45. The activity of the catalysts was evaluated in the reduction of NO to N2 in an oxidative atmosphere using propane or methane as reducing agents. The Cu catalysts were only active with propane and they presented higher activity than the Co-based catalysts, the latter being active with both hydrocarbons. H2-TPR and DRS-UV/Vis data allowed correlation between the activity towards NO reduction and the presence of cationic charge-compensating species in the zeolite. It was also verified that the hydrocarbons are preferentially oxidised by O2, a reaction that occurs simultaneously with their oxidation with NO.

  18. Catalytic Synthesis of Pyrazolo[3,4-d]pyrimidin-6-ol and Pyrazolo[3,4-d]pyrimidine-6-thiol Derivatives Using Nanoparticles of NaX Zeolite as Green Catalyst

    Directory of Open Access Journals (Sweden)

    Ali Gharib

    2013-01-01

    Full Text Available An efficient and environmental benign method is reported for the synthesis of some pyrazolopyrimidine derivatives using 3-methyl-1-phenyl-5-pyrazolone with carbonyl compounds in the presence of nanozeolite Nax catalysts, solvent-free and at reflux conditions. It is noteworthy to mention that this method of the synthesis requires less time, less temperature, and better yield.

  19. Rhenium Nanochemistry for Catalyst Preparation

    Directory of Open Access Journals (Sweden)

    Vadim G. Kessler

    2012-08-01

    Full Text Available The review presents synthetic approaches to modern rhenium-based catalysts. Creation of an active center is considered as a process of obtaining a nanoparticle or a molecule, immobilized within a matrix of the substrate. Selective chemical routes to preparation of particles of rhenium alloys, rhenium oxides and the molecules of alkyltrioxorhenium, and their insertion into porous structure of zeolites, ordered mesoporous MCM matrices, anodic mesoporous alumina, and porous transition metal oxides are considered. Structure-property relationships are traced for these catalysts in relation to such processes as alkylation and isomerization, olefin metathesis, selective oxidation of olefins, methanol to formaldehyde conversion, etc.

  20. Catalysis. Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion.

    Science.gov (United States)

    Gao, Jie; Zheng, Yiteng; Jehng, Jih-Mirn; Tang, Yadan; Wachs, Israel E; Podkolzin, Simon G

    2015-05-01

    Direct methane conversion into aromatic hydrocarbons over catalysts with molybdenum (Mo) nanostructures supported on shape-selective zeolites is a promising technology for natural gas liquefaction. We determined the identity and anchoring sites of the initial Mo structures in such catalysts as isolated oxide species with a single Mo atom on aluminum sites in the zeolite framework and on silicon sites on the zeolite external surface. During the reaction, the initial isolated Mo oxide species agglomerate and convert into carbided Mo nanoparticles. This process is reversible, and the initial isolated Mo oxide species can be restored by a treatment with gas-phase oxygen. Furthermore, the distribution of the Mo nanostructures can be controlled and catalytic performance can be fully restored, even enhanced, by adjusting the oxygen treatment. PMID:25858978

  1. Unique properties of silver cations in solid-acid catalysis by zeolites and heteropolyacids.

    Science.gov (United States)

    Ono, Yoshio; Baba, Toshihide

    2015-06-28

    Ag(+)-exchanged zeolites exhibit unique catalytic properties caused by the combination of their redox and acidic properties. Partial reduction of Ag(+) ions in zeolites with hydrogen leads to the formation of acidic protons and silver metal particles, which can be observed using X-ray powder diffraction patterns (XRD). By simply evacuating hydrogen from the system, the silver metal particles are returned back to Ag(+) ions and at the same time, acidic protons are eliminated. This interconversion of Ag(+) ions and silver metal or gaseous hydrogen and surface protons is reflexed in the catalytic activities of Ag(+)-exchanged zeolites for acid-catalyzed reactions: the activity of Ag(+)-exchanged Y zeolite (Ag-Y) reversibly changes with the partial pressure of hydrogen. Furthermore, the activity of Ag-Y in the presence of hydrogen is higher than that of H(+)-exchanged Y zeolite (H-Y). Similar phenomena are also observed for the silver salt of dodecatungstophosphoric acid (Ag3PW12O40). Ag(+)-exchanged ZSM-5 zeolite (Ag-ZSM-5) is a very selective catalyst for aromatization of alkanes, alkenes and methanol. Examination of the activation step of lower alkanes revealed that Ag(+) ions dramatically enhance the dehydrogenation of the alkanes via heterolytic dissociation of the alkanes into carbenium ions and hydride species. Ag(+)-exchanged zeolites can also activate methane. The reaction of methane with ethene and benzene gives propene and toluene, respectively. Ag-ZSM-5 is a very stable catalyst under hydrothermal conditions because of the interconversion properties of Ag(+) ions and silver metal in the zeolite. PMID:26018842

  2. Zeolite deactivation during hydrocarbon reactions: characterisation of coke precursors and acidity, product distribution

    OpenAIRE

    Wang, B.

    2008-01-01

    The catalytic conversion of hydrocarbons over zeolites has been applied in large scale petroleum-refining processes. However, there is always formation and retention of heavy by-products, called coke, which causes catalyst deactivation. This deactivation is due to the poisoning of the acid sites and/or pore blockage. The formation of coke on hydrocarbon processing catalysts is of considerable technological and economic importance and a great deal of work has been carried out to this study. Th...

  3. A Continuous Lumping Model for Hydrocracking on a Zeolite Cata- lysts: Model Development and Parameter Identification

    OpenAIRE

    Becker, Per Julian; Celse, Benoit; Guillaume, Denis; Costa, Victor,; Bertier, Luc; Guillon, Emmanuelle; Pirngruber, Gerhard

    2016-01-01

    International audience Process models are a vital tool for the development of industrial hydrocracking units and to drive innovationof process design and novel catalysts. A hydrocracking model, based on the continuous lumpingapproach, is presented in this work. A zeolite catalyst was used for hydrocracking of pre-treated VGOfeeds. The model includes inhibition terms for organic nitrogen and NH3 gas. A total of 74 data points,from experimental runs in a fixed-bed pilot plant, have been used...

  4. Tuning interactions between zeolite and supported metal by physical-sputtering to achieve higher catalytic performances

    OpenAIRE

    Xin-Gang Li; Cheng Liu; Jian Sun; Hui Xian; Yi-Sheng Tan; Zheng Jiang; Akira Taguchi; Mitsuhiro Inoue; Yoshiharu Yoneyama; Takayuki Abe; Noritatsu Tsubaki

    2013-01-01

    To substitute for petroleum, Fischer-Tropsch synthesis (FTS) is an environmentally benign process to produce synthetic diesel (n-paraffin) from syngas. Industrially, the synthetic gasoline (iso-paraffin) can be produced with a FTS process followed by isomerization and hydrocracking processes over solid-acid catalysts. Herein, we demonstrate a cobalt nano-catalyst synthesized by physical-sputtering method that the metallic cobalt nano-particles homogeneously disperse on the H-ZSM5 zeolite supp...

  5. Effects of steaming-made changes in physicochemical properties of Y-zeolite on cracking of bulky 1,3,5-triisopropylbenzene and coke formation

    Energy Technology Data Exchange (ETDEWEB)

    Bazyari, A.; Hosseinpour, N. [Catalysis and Nanostructured Materials Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran); Khodadadi, A.A.; Mortazavi, Y. [Catalysis and Nanostructured Materials Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran); Oil and Gas Center of Excellence, University of Tehran, P.O. Box 11155/4563, Tehran (Iran)

    2009-10-15

    The effects of acidic properties and structural changes of Y zeolite, produced by steaming, on the zeolite cracking activity, coking tendency and distribution of various products during catalytic conversion of bulky 1,3,5-triisopropylbenzene (TIPB) are reported. NaY zeolite with framework Si/Al ratio of 2.4 was synthesized by a hydrothermal method and ammonium exchanged. The zeolite was dealuminated by a temperature-programmed steaming to form USY1 and USY2 zeolites with framework Si/Al ratio of 8.1 and 12.3 respectively. The catalysts were characterized by XRD, XRF, SEM, AAS, NH{sub 3}-TPD and N{sub 2} adsorption-desorption techniques. The samples were in-situ activated at 748 K and evaluated by TIPB cracking at 623 K. The coke content of the catalyst beds was estimated by TPO using an FT-IR gas cell. The results of activity measurements reveal that the dealuminated zeolites lead to lower cracking activity initially; while, they exhibit higher activity at longer times. In addition, a slight modification of the window diameter of Y zeolite, as revealed by pore size distribution analyses, alters the diffusion limitation of the reactant and products through the pores of the zeolite and significantly affects the adsorbent-adsorbate interactions. TPO experiments show that compared to the precursor zeolite, lower amount of coke is formed on the dealuminated catalysts possessing lower density of acid sites. However, the coke formed on USY samples is heavier than that formed on its precursor Y zeolite. This may be attributed to the larger pores shaped in the dealuminated catalysts which in turn provide suitable places for coke formation and growth. (author)

  6. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  7. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-04-29

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  8. Enhanced relative photonic efficiency of titania/zeolite composite photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, M.V.; Cheralathan, K.K.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. [Dept. of Chemistry, Anna Univ., Chennai (India)

    2003-07-01

    The photocatalytic degradation of 2,4-dichlorophenoxyacetic acid, an endocrine disrupter using TiO{sub 2} and supported TiO{sub 2} has been attempted in the present investigation. Batch studies were carried out to optimise various experimental parameters for maximum degradation efficiency. As the adsorption capacity of the photocatalyst is important to provide maximum pollutant concentration environment surrounding the catalyst, zeolites, which are good adsorbents were chosen as supports for TiO{sub 2}. Studies were conducted with three different zeolites differing in Si/Al ratio which governs the hydrophilicity of the support. The wt% loading of TiO{sub 2} on the support was found to be important for effective degradation. Though immobilised system requires high wt% loading the amount of TiO{sub 2} used is only 50% compared to TiO{sub 2} system. Zeolite being less expensive than TiO{sub 2}, TiO{sub 2}/zeolite composite system makes the process cost effective. The efficiencies of various systems were compared in terms of relative photonic efficiency. The relative photonic efficiency value for all these systems is more than one showing the effectiveness of this process. (orig.)

  9. Mesoporous Catalyst and/or Carrier TUD-1 for Sustainable Chemistry

    OpenAIRE

    Telalovic, S.

    2011-01-01

    Heterogeneous catalysts, namely zeolites (crystalline aluminosilicates with pore size up to 1.2 nm) are applied in the production of mostly small sized, bulk chemicals due to their narrow pore size. To extend the use of heterogeneous catalysts for the production of fine chemicals by employment of mesoporous materials that can accommodate much larger molecules than traditional zeolites, TUD-1 (having pore size larger than 2 nm), developed at the Technical University Delft have been applied. TU...

  10. Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    A mesoporous carbon prepared from sucrose was successfully employed as a hard template to produce hierarchical silicalite-1, thus providing a very simple and inexpensive route to desirable zeolite catalysts from widely available raw materials. The porous carbon was prepared by hydrothermal treatm...

  11. Isomerization of α-pinene over ion-exchanged natural zeolites

    OpenAIRE

    Çakıcıoğlu Özkan, Seher Fehime; Gündüz, Gönül; Akpolat, Oğuz; Beşün, Nurgün; Murzin, Dmitry Yu.

    2003-01-01

    Catalysts prepared by ion exchange of clinoptilolite-based natural zeolite tuffs with NH4 +, Ba2+ and Pb2+ were investigated in the isomerization reaction of α-pinene at atmospheric pressure under nitrogen flow. Activity and selectivity to mono-, bi- and tricyclic products were correlated with acidity strength.

  12. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    Science.gov (United States)

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  13. In-situ Micro-Spectroscopy on Coke Formation Processes in Zeolites

    NARCIS (Netherlands)

    Mores, D.

    2011-01-01

    Zeolite catalysts are used in a large variety of (petro-)chemical conversions. The acid sites in these materials are responsible for the chemical transformation, while their well-defined crystallographic architecture offers unique molecular size and shape selectivity. The finite availability of crud

  14. Method for producing zeolites and zeotypes

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a method for producing zeolite, zeolite-like or zeotype particles comprising the steps of: 1 ) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal nanoparticles on the surface of the silica or alumina...... source; 3) Passing a gaseous hydrocarbon, alkyl alcohol or alkyl ether over the silica or alumina supported metal nanoparticle to form a carbon template coated zeolite, zeolite-like or zeotype precursor composition; 4a) Adding a structure directing agent to the carbon template coated zeolite, zeolite......-like or zeotype precursor composition thereby creating a zeolite, zeolite-like or zeotype gel composition; 4b) Crystallising the zeolite, zeolite-like or zeotype gel composition by subjecting said composition to a hydrothermal treatment; 5) Removing the carbon template and structure directing agent and isolating...

  15. Oxygen and hydrogen isotope geochemistry of zeolites

    Science.gov (United States)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  16. Characterization of coke deposited on nano-sized Pt-Pd/H-beta spent during long-chain paraffin hydroisomerization

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, F.; Einicke, W.D.; Ficht, K.; Glaeser, R. [Leipzig Univ. (Germany). Inst. of Chemical Technology; Bertmer, M. [Leipzig Univ. (Germany). Inst. of Experimental Physics II; Kuchling, T. [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Energy Process Engineering and Chemical Engineering

    2013-11-01

    The hydroisomerization of long-chain n-paraffins were studied in the temperature range 205- 230 C at p{sub H2}=50 bar using a bench scale trickle-bed continuous-flow reactor. The bimetallic catalysts consisted of mixtures of platinum and palladium supported on commercially available nano-sized zeolites Beta (n{sub Si}/n{sub Al} = 12 and 25) extruded with a binder ({gamma}-alumina). For hexadecane conversion, high yields to isomers (25 and 45 wt.% of mono- and multibranched isomers, respectively) without extensive cracking (>10 wt.%) were obtained at a conversion of 80 %. Long-term tests with C{sub 16}H{sub 34} and blends of solid n-paraffins for 30-60 days on stream clearly indicate that a minor loss in catalyst activity can easily be compensated by increasing the reaction temperature from 230 C to 235 C. The zeolite sample with a 'mild acidity' revealed low hydrocracking at isomerization yield up to 70 wt.% and high stability. Carbonaceous deposits formed during n-paraffin hydroisomerization were investigated by temperature-programmed oxidation, elemental analysis, ATR-FTIR and {sup 13}C MAS NMR spectroscopy showing the formation of low-temperature, hydrogen-rich coke. (orig.)

  17. Platinum incorporation in the Na Y zeolite through impregnation method, and characterization by XRD, FTIR and nitrogen adsorption

    International Nuclear Information System (INIS)

    Supported metal catalysts are widely used in petroleum refining, chemical and petroleum industries. These catalysts are important in ammonia synthesis, conversion of hydrocarbons with water vapor to synthesis gas, reforming, hydrocracking, ... Platinum has long been used in cracking, hydrogenation and dehydrogenation processes. The aim of this project is the Na Y zeolitic sample preparation through impregnation for incipient humidity, with 0,5% concentration of platinum, aiming its use as a catalyst in the steam reforming reaction. The characterization techniques used were: X Rays Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Nitrogen Adsorption (BET Method). From the obtained results through the techniques mentioned previously it is possible to evidence that the platinum impregnation process did not change the Na Y zeolite structure. Through the superficial specific area (BET) it was possible to observe that the platinum impregnation process caused a decrease in the specific area due to the reduction to the accessibility to the micropores of the zeolitic structure. (author)

  18. Zeolite ITQ-30

    OpenAIRE

    Corma, Avelino; Díaz Cabañas, María José

    2005-01-01

    [EN] The invention relates to a laminar microporous crystalline zeolite material known as ITQ-30 which, as when synthesized, has a chemical composition in the anhydrous state with the following molar relations: x (M 1/n XO 2 ): y YO 2 . SiO 2 z R, wherein: x represents a value less than 0.1, which can be equal to zero; y has a value of less than 0.1, which can be equal to zero; z has a value of less than 0.1; M is selected from among H + , NH 4+ , one or more +n inorganic cations and combinat...

  19. Process for preparing noble metal-containing zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Y.-Y.P.

    1989-11-21

    The patent describes a process for preparing noble metal- containing zeolite material of enhanced noble metal dispersion. It comprises: contacting a zeolite material with a cationic noble metal complex; calcining the resulting material in the presence of molecular oxygen at about 300 {degrees} to 375 {degrees} C. for a period of time sufficient to cause decomposition of the noble metal complex into a product containing cationic noble metal species; purging oxygen and water from the resulting material by exposing the material to an atmosphere of inert gas at 200 {degrees} to 350 {degrees} C. and reducing the resulting material with hydrogen at 200 {degrees} to 350 {degrees} C. for a period of time sufficient to reduce the cationic noble metal species to highly dispersed free metal. This paper also describes the same process wherein the zeolite is selected from the group consisting of zeolite beta, ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM- 20, ZSM-22, ZSM-23, ZSM-35 and ZSM-48. This paper also describes the same process wherein the noble metal is selected from the group consisting of platinum, palladium, rhodium, ruthenium, silver, rhenium, and iridium.

  20. Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes

    International Nuclear Information System (INIS)

    Highlights: → Pyrolysis transforms plastic wastes in valuable liquids and gases useful as fuels or source of chemicals. → The use of ZSM-5 zeolite in pyrolysis favours the production of gases and of lighter and more aromatic liquids. → ZSM-5 zeolite is almost completely deactivated after one plastics pyrolysis experiment. → ZSM-5 zeolite used in plastic wastes pyrolysis can be regenerated by burning the deposited coke in an air stream. → Regenerated ZSM-5 recovers its activity and produces liquids and gases equivalent to those obtained with fresh catalyst. - Abstract: In this work, a study of the regeneration and reuse of ZSM-5 zeolite in the pyrolysis of a plastic mixture has been carried out in a semi-batch reactor at 440 deg. C. The results have been compared with those obtained with fresh-catalyst and in non-catalytic experiments with the same conditions. The use of fresh catalyst produces a significant change in both the pyrolysis yields and the properties of the liquids and gases obtained. Gases more rich in C3-C4 and H2 are produced, as well as lower quantities of aromatic liquids if compared with those obtained in thermal decomposition. The authors have proved that after one pyrolysis experiment the zeolite loses quite a lot of its activity, which is reflected in both the yields and the products quality; however, this deactivation was found to be reversible since after regeneration heating at 550 deg. C in oxygen atmosphere, this catalyst recovered its initial activity, generating similar products and in equivalent proportions as those obtained with fresh catalyst.

  1. GREEN CHEMISTRY. Shape-selective zeolite catalysis for bioplastics production.

    Science.gov (United States)

    Dusselier, Michiel; Van Wouwe, Pieter; Dewaele, Annelies; Jacobs, Pierre A; Sels, Bert F

    2015-07-01

    Biodegradable and renewable polymers, such as polylactic acid, are benign alternatives for petrochemical-based plastics. Current production of polylactic acid via its key building block lactide, the cyclic dimer of lactic acid, is inefficient in terms of energy, time, and feedstock use. We present a direct zeolite-based catalytic process, which converts lactic acid into lactide. The shape-selective properties of zeolites are essential to attain record lactide yields, outperforming those of the current multistep process by avoiding both racemization and side-product formation. The highly productive process is strengthened by facile recovery and practical reactivation of the catalyst, which remains structurally fit during at least six consecutive reactions, and by the ease of solvent and side-product recycling. PMID:26138977

  2. GREEN CHEMISTRY. Shape-selective zeolite catalysis for bioplastics production.

    Science.gov (United States)

    Dusselier, Michiel; Van Wouwe, Pieter; Dewaele, Annelies; Jacobs, Pierre A; Sels, Bert F

    2015-07-01

    Biodegradable and renewable polymers, such as polylactic acid, are benign alternatives for petrochemical-based plastics. Current production of polylactic acid via its key building block lactide, the cyclic dimer of lactic acid, is inefficient in terms of energy, time, and feedstock use. We present a direct zeolite-based catalytic process, which converts lactic acid into lactide. The shape-selective properties of zeolites are essential to attain record lactide yields, outperforming those of the current multistep process by avoiding both racemization and side-product formation. The highly productive process is strengthened by facile recovery and practical reactivation of the catalyst, which remains structurally fit during at least six consecutive reactions, and by the ease of solvent and side-product recycling.

  3. Zeolite-Catalyzed Hydrocarbon Formation from Methanol: Density Functional Simulations

    Directory of Open Access Journals (Sweden)

    George Fitzgerald

    2002-04-01

    Full Text Available Abstract: We report detailed density functional theory (DFT calculations of important mechanisms in the methanol to gasoline (MTG process in a zeolite catalyst. Various reaction paths and energy barriers involving C-O bond cleavage and the first C-C bond formation are investigated in detail using all-electron periodic supercell calculations and recently developed geometry optimization and transition state search algorithms. We have further investigated the formation of ethanol and have identified a different mechanism than previously reported [1], a reaction where water does not play any visible role. Contrary to recent cluster calculations, we were not able to find a stable surface ylide structure. However, a stable ylide structure built into the zeolite framework was found to be possible, albeit a very high reaction barrier.

  4. Shape-selective zeolite catalysis for bioplastics production

    Science.gov (United States)

    Dusselier, Michiel; Van Wouwe, Pieter; Dewaele, Annelies; Jacobs, Pierre A.; Sels, Bert F.

    2015-07-01

    Biodegradable and renewable polymers, such as polylactic acid, are benign alternatives for petrochemical-based plastics. Current production of polylactic acid via its key building block lactide, the cyclic dimer of lactic acid, is inefficient in terms of energy, time, and feedstock use. We present a direct zeolite-based catalytic process, which converts lactic acid into lactide. The shape-selective properties of zeolites are essential to attain record lactide yields, outperforming those of the current multistep process by avoiding both racemization and side-product formation. The highly productive process is strengthened by facile recovery and practical reactivation of the catalyst, which remains structurally fit during at least six consecutive reactions, and by the ease of solvent and side-product recycling.

  5. Synergistic removal of nitrogen monoxide by non-thermal plasma and catalyst simultaneously

    Institute of Scientific and Technical Information of China (English)

    YU Gang; YU Qi; ZENG Ke-si; ZHAI Xiao-dong

    2005-01-01

    An experimental system of De-NO with plasma-catalyst(Cu zeolite) was established to investigate the differences between DeNO with plasma-catalyst and De-NO only with plasma, to provide the instruction for selecting appropriate catalyst and operating condition.The characteristics of De-NO with plasma and De-NO with plasma-catalyst were investigated comparatively by experiments. The experimental results show that De-NO with plasma-catalyst has high NO removal rate; Cu zeolite is an effective catalyst which can promote NO removal rate in plasma remarkably; De-NO with plasma-catalyst should be operated at low temperature and the temperature has opposite effects on the function of catalyst and plasma; water vapor and O2 can increase the NO removal rate.

  6. Synthesis of highly effective adsorbents from natural raw materials (zeolites)

    International Nuclear Information System (INIS)

    Natural raw materials bentonite, silica tuff and diatomaceous earth from Macedonia were used in synthesis of zeolites type A, ZSM-5 and multilayer silicate magadiite-adsorbents. The bentonite was subject to pretreatment with acids (HCl and H2SO4 - 5, 10, 15 and W%) or NaOH, and used in synthesis of zeolite type A having molar ratio of: 2Na2O : Al2O3 : 2SiO2 : 100H2O. Silicate tuff was applied (without any pretreatment, in a two stage reaction) in a high temperature synthesis, using butylamine as an organic 'template' component in order to get high silica zeolite type ZSM-5 having molar ratio of: 59.37SiO2 : Al2O3 : 3.84Na2O : 1.90R2O : 2025.10H2O. Multilayer silicate magadiite MS-H was synthesized from natural raw material diatomaceous earth. The product with a molar ratio of: 8SiO2 : Na2O : 75H2O showed the best characteristics. The proposed method of alkaline pretreatment is a new one and it is acceptable from the economy point of view due to low energy consumption. The conclusion shows that the final result of the synthesis was not perfect, i.e. it has 70% of zeolite ZSM-5 and the rest were some amorphous phases. This product is suitable for industrial application in catalytic processes due to the fact that commercial catalyst contain typically 20 to 50% of zeolite type ZSM-5. On the other hand, the magadiite being multilayer silicate with no aluminium inside, is well suited as a carrier due to its ability of intercalation. The experimental results indicate that natural raw materials from Macedonia could be used for synthesis of synthetical silicates with high qualities and acceptable overall costs, specially when alkaline pretreatment is used. 14 refs., 4 tabs., 11 figs

  7. KINETIKA REAKSI PADA PROSES PRODUKSI DIETIL ETER DARI ETANOL DENGAN KATALIS H-ZEOLIT

    Directory of Open Access Journals (Sweden)

    Widayat Widayat

    2012-11-01

    Full Text Available DiEtil Eter diproduksi dari etanol dengan proses dehidrasi. Penelitian ini bertujuan untukmempelajari kinetika reaksi proses dehidrasi etanol dengan katalis H-zeolit. Katalis H-zeolitdisintesis dengan proses dealuminasi dan kalsinasi dan impregnasi dengan logam Al dan prosesreduksi dan kalsinasi. Proses produksi DiEtil Eter dilaksanakan dengan proses adsorpsi dan reaksikatalitik sedangkan proses studi kinetika reaksi menggunakan pendekatan Langmuir-Hinshelwood.Proses analisis kinetika reaksi menggunakan perangkat lunak MATLAB. Model kinetika reaksi prosesdehidrasi etanol menjadi DiEtil Eter dan etilen dengan katalis H-zeolit pada konsentrasi umpanetanol 85-95% dan rentang temperatur 140-240oC, dimana reaksi permukaan yang mengontrol reaksiglobal adalahDiEthyl Ether is produced by using ethanol dehydrationprocess. The objective of this research was to study the reaction kinetic of ethanol dehydrationprocess by H-zeolite catalyst from natural zeolite. The H-zeolite catalyst was prepared bydealumination, calcination, impregnation with Al and reduction processes. DiEthyl Ether productionwas produced by using adsorption-catalytic reaction. The kinetic study was did with MATLABsoftware. Kinetic model of ethanol dehydration processes into DiEthyl Ether and ethylene with Hzeolitecatalyst and ethanol feed concentration among 85-95% and temperature between 140-240oCunder surface reaction is shown by

  8. Isobutane/2-butene alkylation in Y zeolite exchange with metallic ions; Alquilacao de isobutano com 2-buteno em zeolita Y trocada com ions metalicos

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbach Junior, Nilton; Mota, Claudio J.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica]. E-mail: cmota@iq.ufrj.br

    2003-07-01

    In industrial scale-process, isobutane/2-butene alkylation has been normally achieved under strong acids conditions, using HF or H{sub 2}SO{sub 4} as catalysts. Nevertheless, this acids present problems such as high consumption and environmental risk. Therefore, there is a strong interest in substituting them by solid catalysts. However, over solid acids, there is a fast deactivation, usually attributed to oligomerization, occurring on Broensted sites, that preferentially adsorb the unsaturated hydrocarbons. This study shows that the reaction can occur on zeolites Y without Broensted acid sites, using an alkyl halide as initiator, added to the feed in the initial moments of the reaction. In this approach the oligomerization problem is minimized. The reactions were carried out in liquid phase at 50 deg C and 450 lb/in{sup 2}, using a mixture of isobutene/2-butene with a molar fraction of 10:1. Catalyst activity and selectivity to trimethylpentane and dimethylhexane for the Y zeolite exchange with Ag{sup +}, Cu{sup ++} and Fe{sup +++} were followed by on line capillary gas chromatography. For comparison purpose, the reaction was also carried out on a HUSY zeolite. All cation-exchanged zeolite presented a better performance than the protonic zeolite. The best performance was of the Y zeolite exchange with Ag{sup +}, followed by Cu{sup ++} and Fe{sup +++} exchanged zeolites. (author)

  9. 尿素水溶液浸渍对柴油机 NH3-SCR后处理铜基分子筛催化剂性能的影响%Impact of diesel emission fluid soaking on the performance of Cu-zeolite catalysts for diesel NH3-SCR systems

    Institute of Scientific and Technical Information of China (English)

    Dong-wei YAO; Feng WU; Xin-lei WANG

    2016-01-01

    ) soaking and urea deposits on selective catalytic reduction (SCR) catalysts are critical issues for real diesel engine NH3-SCR systems. To investigate the impact of DEF soaking and urea deposits on SCR catalyst performance, fresh Cu-zeolite catalyst samples were drilled from a full-size SCR catalyst. Those samples were impregnated with DEF solutions and subsequently hydrothermally treated to simulate DEF soaking and urea deposits on real SCR catalysts during diesel engine operations. Their SCR performance was then evaluated in a flow reactor with a four-step test protocol. Test results show that the DEF soaking leached some Cu from the SCR catalysts and slightly reduced their Cu loadings. The loss of Cu and associated metal sites on the catalysts weakened their catalytic oxidation abilities and caused lower NO/NH3 oxidation and lower high-temperature N2O selectivity. Lower Cu loading also made the catalysts less active to the decomposition of surface ammonium nitrates and decreased low-temperature N2O selectivity. Cu loss during DEF impregnation released more acid sites on the surface of the catalysts and increased their acidities, and more NH3 was able to be adsorbed and involved in SCR reactions at medium and high temperatures. Due to lower NH3 oxidation and higher NH3 storage, the DEF-impregnated SCR catalyst samples showed higher NOx conversion above 400 °C compared with the non-soaked one. The negative impact of urea deposits during DEF im-pregnation was not clearly observed, because the high-temperature hydrothermal treatment helped to remove the urea deposits.

  10. Lewis-acid and redox-active zeolite catalysts for the activation of methane and lower hydrocarbons in the selective catalytic reduction of NO{sub x}. Subproject: structural characterization and kinetic modelling. Final report; Lewis-acide und redox-aktive Zeolith-Katalysatoren fuer die Aktivierung von Methan und Fluessiggas-Kohlenwasserstoffen in der SCR von NO{sub x}. Teilprojekt: Strukturelle Katalysatorcharakterisierung und Modellierung der Reaktionskinetik. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gruenert, W. [Bochum Univ. (Germany). Technische Chemie; Sowade, T.; Schmidt, C.; Stroeder, U. [Heraeus (W.C.) GmbH, Hanau (Germany)

    2001-12-01

    Zeolites (in particular ZSM-5) modified by indium and additionally promoted by ceria have been studied as catalysts for selective reduction of NO by methane. The structural properties of the catalysts have been investigated by XRD, FTIR, EXAFS, electron microscopy and XPS. The ceria promotor may be added to In-ZSM-5 by precipitation onto the external zeolite surface or by physically admixing a high surface-area powder. The preparation of the basic In-ZSM-5 system has a large influence on the properties of the catalyst. Preparation by aqueous exchange leads in most cases to a coexistence of a small amount of intra-zeolite indium species and extra-zeolite indium phases. Only at low pH, exclusively intra-zeolite indium is formed to a low extent (<10% exchange degree). Intrazeolite indium can be also obtained by dry preparations using InCl{sub 3} (solid-state ion exchange, sublimation, transport reaction). The In species formed carry Cl ligands, the stability of which depends on the indium content: after washing and calcination steps, Cl ligands could no longer be detected only in samples with low In content. Reductive solid-state ion exchange is a further method to prepare intra-zeolite In species. In mixtures containing excess indium, oligometric intra-zeolite In species are formed via this route. Intra-zeolite Cl-free In species exhibit significant SCR activity while Cl-containing In-species activate methane with low SCR selectivity. In ceria-promoted systems, the ceria provides full NO{sub 2} supply by catalysing the NO oxidation. With sufficient NO{sub 2} supply, the even Cl-containing In sites provide high SCR activities. Since the relevance of acidic sites was established e.g. by poisoning experiments, the reaction mechanism can by visualised by proceeding via methane activation over In sites, reaction of activated methane with NO{sub 2} to a volatile intermediate (e.g. nitromethane), which is then decomposed over the acidic sites. The reaction kinetics of the

  11. OPTIMASI TEMPERATUR HIDRODESULFURISASI TIOFEN TERKATALISIS NI-MO/ZEOLIT ALAM

    Directory of Open Access Journals (Sweden)

    Harjito -

    2013-07-01

    Full Text Available Telah dilakukan kajian mengenai pengaruh temperatur hidrodesulfurisasi terhadap produk hidrodesulfurisasi tiofen. Penelitian dilakukan untuk mengetahui temperatur optimum hidrodesulfurisasi tiofen dengan katalis Ni-Mo/zeolite alam. Variasi temperatur yang dilakukan adalah 3000C, 3500Cdan 4000C. Katalis Ni-Mo/Zeolit alam dipreparasi secara koimpregnasi. Proses hidrodesulfurisasi dilakukan dengan umpan campuran tiofen-n-heksan dengan komposisi 1:1. Sebagai gas pembawa digunakan gas hydrogen dengan laju alir 25 mL/menit. Hasil hidrodesulfurisasi didinginkan dan dianalisis dengan kromatografi gas. Hasil analisis menunjukkan terjadinya peningkatan jumlah produk dan komponen produk pada setiap kenaikan temperatur 500C. Namun demikian kenaikan jumlah produk pada kenaikan temperatur dari 3500C ke 4000C jika dibandingkan dengan kenaikan produk pada kenaikan temperatur dari 3000C ke 3500C tidak cukup signifikan. Jadi dapat disimpulkan bahwa temperatur hidrodesulfurisasi tiofen terkatalisis Ni-Mo/Zeolit alam adalah 3500C. The study on the effect of temperature on the product tiofen hydrodesulfurization by using Ni/Mo/natural tiofen-n-hexane. The study was done conducted to determine the optimum temperature of  hydrodesulfurization tiofen by using Ni-Mo/ natural zeolite catalyst and the temperature variation was 300oC, 350oC dan 400oC. The Ni-Mo/ natural Zeolit  catalysts were prepared by coimpregnation and hydrodesulfurization process was done by tiofen-n-hexane feed mixture with composition of 1:1, hydrogen gas was used as a carrier gas with a flow rate 25 ml/min. The result of  hydrodesulfurization was cooled and analyzed by gas chromatography  and it revealed an increasing number of products and product components at for each 50°C rising of temperature. However, the increasing of number of products on the temperature rise of  350°C to 400°C was not significant if compared to the increasing of product temperature that increased

  12. Functionalized Cellulose: PET Polymer Fibers with Zeolites for Detoxification Against Nerve Agents%Functionalized Cellulose:PET Polymer Fibers with Zeolites for Detoxification Against Nerve Agents

    Institute of Scientific and Technical Information of China (English)

    Agarwal Satya R; Sundarrajan Subramanian; Ramakrishna Seeram

    2012-01-01

    Presently activated carbon is used as an adsorptive material for chemical and biological warfare agents.It possess excellent surface properties such as large surface area,fire-resistance and plenty availability,but has disadvantages such as its heavy weight,low breathability (after adsorption of moisture) and disposal.In this paper,we propose to utilize novel electrospun polymeric nanostructures having zeolites as catalyst materials.In this respective,the electrospun polymer nanofibers would serve as the best possible substitutes to activated carbon based protective clothing applications.This is the first in the literature that reports the integration of these types of catalysts with nanofiberous membranes.Electrospinning of cellulose/polyethylene terephthalate (PET) blend nanofibers has been carried out.Zeolite catalysts (Linde Type A and Mordenite) for the detoxification of nerve agent stimulant-paraoxon,were prepared due to their relative simplicity of synthesis.The catalysts were then coated onto nanofiber membranes and their morphology was confirmed using SEM.This is the first report on the coating of nanofibers with zeolites and their successful demonstration against nerve agent stimulant.The UV absorption spectra clearly show the detoxification ability of the functionalized fibers and their potential to be used in textiles for protection and decontamination.

  13. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis.

    Science.gov (United States)

    van der Bij, Hendrik E; Weckhuysen, Bert M

    2015-10-21

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus-zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus-zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research.

  14. Isothermal Cyclic Conversion of Methane into Methanol over Copper-Exchanged Zeolite at Low Temperature.

    Science.gov (United States)

    Tomkins, Patrick; Mansouri, Ali; Bozbag, Selmi E; Krumeich, Frank; Park, Min Bum; Alayon, Evalyn Mae C; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2016-04-25

    Direct partial oxidation of methane into methanol is a cornerstone of catalysis. The stepped conversion of methane into methanol currently involves activation at high temperature and reaction with methane at decreased temperature, which limits applicability of the technique. The first implementation of copper-containing zeolites in the production of methanol directly from methane is reported, using molecular oxygen under isothermal conditions at 200 °C. Copper-exchanged zeolite is activated with oxygen, reacts with methane, and is subsequently extracted with steam in a repeated cyclic process. Methanol yield increases with methane pressure, enabling reactivity with less reactive oxidized copper species. It is possible to produce methanol over catalysts that were inactive in prior state of the art systems. Characterization of the activated catalyst at low temperature revealed that the active sites are small clusters of copper, and not necessarily di- or tricopper sites, indicating that catalysts can be designed with greater flexibility than formerly proposed. PMID:27010863

  15. Oxidation of benzyl alcohol by K2FeO4 to benzaldehyde over zeolites

    Science.gov (United States)

    Wang, Yuan-Yuan; Song, Hua; Song, Hua-Lin; Jin, Zai-Shun

    2016-10-01

    A novel and green procedure for benzaldehyde synthesis by potassium ferrate oxidation of benzyl alcohol employing zeolite catalysts was studied. The prepared oxidant was characterized by SEM and XRD. The catalytic activity of various solid catalysts was studied using benzyl alcohol as a model compound. USY was found to be a very efficient catalyst for this particular oxidation process. Benzaldehyde yields up to 96.0% could be obtained at the following optimal conditions: 0.2 mL of benzyl alcohol, 4 mmol of K2FeO4, 0.5 g of USY zeolite; 20 mL of cyclohexene, 0.3 mL of acetic acid (36 wt %), 30°C temperature, 4 h reaction time.

  16. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  17. Methyl Halide to Olefins and Gasoline over Zeolites and SAPO Catalysts: A New Route of MTO and MTG%沸石和SAPO分子筛催化卤代甲烷转化制烯烃和汽油:一种新的MTO和MTG路线

    Institute of Scientific and Technical Information of China (English)

    魏迎旭; 张大治; 刘中民; 苏宝连

    2012-01-01

    Rational and efficient conversion of methane to more useful higher hydrocarbons is one of the most important topics of natural gas utilization.Although methane activation and its conversion to valuable compounds attract an increasing attention,methane conversion is often made in indirect way through the very energy-consuming step for syngas production from steam reforming of methane.Some promising results appeared to be of significance for the development of an alternative and potential route for the production of high value-added products from methane.Efficient conversion of methane to higher hydrocarbons could be realized via methyl halide as the intermediate.After the production of halomethane,they could be transformed to gasoline and light olefins over modified zeolites and SAPO molecular sieves.High conversion efficiency and selectivity indicated the feasibility of industrial application.The research gained recently growing interest from the point of view in both fundamental research and industrial application.The study on the reaction mechanism shed light on the possible route of C-C bond construction from methyl halide,which is the very important issue of the C1-reactant conversion to higher hydrocarbons.Hydrogen halide generation during methyl halide conversion did not exert apparent impact on the reaction mechanism and the structure stability of the catalysts.This review deals with the evolution of the field and comments the advantages to be explored and the drawbacks to be prevented for the development of new and sustainable methane-to-olefins (MTO) and methane-to-gasoline (MTG) routes via methyl halides.

  18. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  19. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  20. Synthesis of ITQ-2 zeolite under static conditions and its properties

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Using silica gel as the precursor, MCM-22(p) was synthesized under the static conditions. Then ITQ-2 zeolite was obtained by using n-cetyltrimethylammonium bromide (CTAB) and tetrapro- pylammonium hydroxide (TPAOH) as the swelling agents to swell the pores of MCM-22(p). The ob- tained zeolite was characterized by XRD, SEM, BET, NH3-TPD. The results show that the zeolite had the best swelling when MCM-22(p):CTAB:TPAOH=1:4:1. The synthesis duration and temperature did not influence significantly the pore swelling. Except TPAOH, CTAB can also be used together with tetrabuthylammonium hydroxide (TBAOH) as the pore swelling agent. There was contribution of sur- face area and pore volume from the mesoporous pores in the ITQ-2 zeolite and it also showed weaker acidity than MCM-22. However, the ITQ-2 supported NiW catalyst showed higher activity and selec- tivity to the middle distillates in the hydrocracking of vacuum gasoil (VGO) than MCM-22 supported catalyst. This implied that the diffusion of large molecules of heavy oil in the catalyst was facilitated due to the presence of the mesoporous pores and hence higher activity and selectivity to middle dis- tillates.

  1. Manufacture of nitrogen-containing crystalline metal silicates having a zeolite structure

    Energy Technology Data Exchange (ETDEWEB)

    Marosi, L.; Schwarzmann, M.; Stabenow, J.

    1984-06-26

    A process is claimed for the manufacture of a nitrogen-containing crystalline metal silicate having a zeolite structure from silicon dioxide and a metal oxide and/or metal hydroxide, wherein the crystallization is carried out in the absence of an alkali metal in an aqueous solution of hexamethylenediamine, preferably under the autogeneous pressure of the solution at from 100/sup 0/ to 200/sup 0/ C. The zeolites are preferably used as catalysts for the reaction of methanol and/or dimethyl ether to give unsaturated hydrocarbons, the oligomerization of olefins, the alkylation of aromatics, and other conversions of hydrocarbons.

  2. Síntesis y caracterización de la zeolita Beta

    Directory of Open Access Journals (Sweden)

    Mahiceth Quintero

    2012-12-01

    Full Text Available Beta zeolite is normally obtained with Si/Al 5 and infinity ratios, using tetraethylammonium (TEA as templante. Important parameters in the TEA-Beta synthesis are alkali cation concentration, the type of cation used, the concentration of hydroxide, and the amount of templante, the temperature and the source of silica used. The synthesis with ratios Si:Al above 80 are generally quite difficult to achieve, but have recently been reported with all silica synthesis using TEA as templante. Their main applications are in the catalytic processes of hydrocarbon transformation (alkylation, in the inorganic membrane preparation and like “seed” in the synthesis of other zeolites. It is a microporous solid, with a unique system of channels and characteristic a chemical composition. In this work Beta zeolite was synthesized with aluminum sulfate like aluminum source. The phase identified in the pattern of X-ray diffraction obtained, coincides with the structure of the zeolite Beta.

  3. Synthesis and Characterization of High Aluminum Zeolite X from Technical Grade Materials

    Directory of Open Access Journals (Sweden)

    Seyed Kamal Masoudian

    2013-06-01

    Full Text Available Zeolites are widely used as ion exchangers, adsorbents, separation materials and catalyst due to their well-tailored and highly-reproducible structures; therefore, the synthesis of zeolite from low grade resources can be interested. In the present work, high aluminum zeolite X was prepared from mixing technical grade sodium aluminate and sodium silicate solutions at temperatures between 70°C and 100°C. The synthesized zeolite X was characterized by SEM and X-ray methods according to ASTM standard procedures. The results showed that aging of the synthesis medium at the room temperature considerably increased the selectivity of zeolite X formation. On the other hand, high temperature of reaction mixture during crystallization formed zeolite A in the product; therefore, it decreased the purity of zeolite X. In addition, it was found that increasing H2O/Na2O and decreasing Na2O/SiO2 molar ratios in the reaction mixture resulted product with higher purity. © 2013 BCREC UNDIP. All rights reservedReceived: 7th January 2013; Revised: 7th April 2013; Accepted: 19th April 2013[How to Cite: Masoudian, S. K., Sadighi, S., Abbasi, A. (2013. Synthesis and Characterization of High Alu-minum Zeolite X from Technical Grade Materials. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 54-60. (doi:10.9767/bcrec.8.1.4321.54-60][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4321.54-60] | View in  |

  4. Catalytic Dehydrogenation over Pd-Supported ZSM-5 Zeolite for o-Phenylphenol Synthesis%载钯ZSM-5分子筛催化脱氢合成邻苯基苯酚

    Institute of Scientific and Technical Information of China (English)

    蔡春; 吕春绪

    2001-01-01

    Pd-supported ZSM-5 zeolites prepared through ion exchange technique were used as a dehydrogenation catalyst for synthesis of o-phenylphenol from cyclohexanone. When Si/A1 ratio in the catalyst was 85: 1 or more, an obvious reduction in attenuation rate of catalyst activity was observed.When the Si/Al ratio was of 17 . 1 or less, polymer compounds could be formed on the surface of zeolite, that would decrease the dehydrogenation activity due to the reduction of the specific surface area of the catalyst.

  5. Obtaining zeolite Y synthesized by hydrothermal treatment assisted by microwave; Obtencao de zeolita Y sintetizada atraves de tratamento hidrotermico assistido por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, A.N.; Simoes, V.N.; Neiva, L.S.; Rodrigues, M.G.F.; Gama, L., E-mail: Alluskynha@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Oliveira, J. B.L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Departamento de Quimica

    2011-07-01

    n search of new catalysts several man-made structures have been developed. The use of zeolites in catalysis is applied due to its ability to associate activity, selectivity and stability, the main conditions to have an effective catalyst. Thus, studies have been done on the hydrothermal synthesis of zeolites by microwave assisted, since the use of microwave radiation offers several advantages over conventional heating. In this context, this work aims to synthesis and characterization of zeolite Y via hydrothermal treatment in a microwave oven. The sample obtained was characterized by XRD, BET and SEM. XRD results showed the formation of zeolite Y in just 60 minutes. The sample showed high value of surface area, the latter being of 476.2 m² / g. The particles are agglomerated, but with a narrow distribution of size. (author)

  6. Time- and space-resolved high energy operando X-ray diffraction for monitoring the methanol to hydrocarbons reaction over H-ZSM-22 zeolite catalyst in different conditions

    Science.gov (United States)

    del Campo, Pablo; Slawinski, Wojciech Andrzej; Henry, Reynald; Erichsen, Marius Westgård; Svelle, Stian; Beato, Pablo; Wragg, David; Olsbye, Unni

    2016-06-01

    The conversion of methanol to hydrocarbons (MTH) over H-ZSM-22 was studied by operando time- and space-resolved X-ray diffraction (XRD) at 370-385 °C and WHSV = 2 g/g h at the Swiss-Norwegian Beamline at ESRF. The performance of a commercial H-ZSM-22 sample was compared before and after acid-base treatment, and with and without propanol co-feed, respectively. N2 adsorption, Scanning Electron Microscopy and propyl amine desorption experiments showed that acid-base treatment led to enhanced accessibility of acid sites, mainly due to the formation of mesopores between agglomerated H-ZSM-22 crystals. The catalytic set-up allowed us to simultaneously observe the catalyst activity and unit cell volume variations by time- and space-resolved HXRD in operando conditions. The expansion of the unit cell and final flattening at different positions in the catalytic bed matched very nicely with the catalytic activity gradients. Different scenarios provided different behaviors and gave insights in the effect of morphology and co-feed process on the activity in the MTH process. This technique is the only one which has so far been able to provide direct evidence of the behavior of the species inside the catalytic reactor.

  7. MFI-type (ZSM-5) zeolite-filled TiO{sub 2} nanotubes for enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Paramasivam, I; Schmuki, P [Department of Materials Science, WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen (Germany); Avhale, A; Inayat, A; Boesmann, A; Schwieger, W [Department of Chemical Reaction Engineering, University of Erlangen-Nuremberg, Egerlandstrasse 3, D-91058 Erlangen (Germany)], E-mail: schmuki@ww.uni-erlangen.de

    2009-06-03

    The present work demonstrates enhanced photocatalytic activity for zeolite-filled TiO{sub 2} nanotubes. ZSM-5 zeolite nanocrystals were grown on and into a TiO{sub 2} nanotubular skeleton (TiNT/ZSM-5) by multi-step hydrothermal synthesis consisting of in situ seeding and multiple in situ crystallization (MISC). The resulting zeolite nanocrystals were in the range of a few nanometers and they adhere well to the nanotubular inner walls. After crystallization, the photocatalytic activity of this zeolite-filled nanotube catalyst system was compared with neat anatase TiO{sub 2} nanotube (TiNT) and with calcined ZSM-5 powder. The results show for TiNT/ZSM-5 a highly enhanced efficiency for the decomposition of acetophenone (used as an aromatic model organic pollutant)

  8. Investigating Zeolite Local Structure with Advanced Solid State NMR. As-Synthesized ZSM-5 and Fe-ZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Pieterse, J.A.Z. [ECN Clean Fossil Fuels, Petten (Netherlands); Abraham, A.; Van Bokhoven, J. [Institute for Chemical and Bioengineering, ETH Zurich ETH-Hoenggerberg, HCI CH-8093 Zurich (Switzerland); Van Eck, E.R.H.; Kentgens, A.P.M. [Department of Physical Chemistry, Solid State NMR, Institute for Molecules and Materials, Radboud University, Nijmegen (Netherlands)

    2005-08-01

    Zeolites are porous materials that have a major impact and use in the areas of catalysis (e.g. hydro-cracking), ion exchange (e.g. pollution remediation) and are extensively used as molecular sieves. Despite extensive research, some aspects of zeolites are still not well understood. Here some recent results obtained for a variety of zeolites are presented, illustrating the advantage of using higher field solid state NMR in this area of research. Different catalytic properties can be gained by exchanging the charge balancing protons for other ions or by loading the zeolite with metals in a variety of ways. Iron-exchanged zeolites are an important example, especially Fe-ZSM-5, and are being studied for use as DeNOx catalysts in lean-burn gasoline and diesel engines and also for N2O decomposition and reduction. In order to study the interaction between iron and the zeolite lattice, Fe-exchanged ZSM5 is investigated by {sup 27}Al MQMAS NMR in its dried and hydrated state. The results indicate that some of the aluminium associated with the Bronsted sites participate in the ion exchange while others are not. In as-synthesized ZSM-5 the interaction between the template molecule around which the zeolite lattice builds and aluminium located in the lattice is clearly illustrated with the TRAPDOR technique. It indicates that the aluminium and methyl carbons in one type of channel are much closer than in the other type of channel.

  9. Zeolites as nanoporous, gas-sensitive materials for in situ monitoring of DeNO(x)-SCR.

    Science.gov (United States)

    Simons, Thomas; Simon, Ulrich

    2012-01-01

    In a proof-of-concept study we demonstrate in situ reaction monitoring of DeNO(x)-SCR on proton-conducting zeolites serving as catalyst and gas sensor at the same time. By means of temperature-dependent impedance spectroscopy we found that the thermally induced NH(3) desorption in H-form and in Fe-loaded zeolite H-ZSM-5 follow the same process, while a remarkable difference under DeNO(x)-SCR reaction conditions was found. The Fe-loaded catalyst shows a significantly lower onset temperature, and time-dependent measurements suggest different SCR reaction mechanisms for the two catalysts tested. These results may help in the development of catalysts for the reduction of NO(x) emissions and ammonia consumption, and provide insight into the elementary catalytic process promoting a full description of the NH(3)-SCR reaction system.

  10. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    -earth exchanged Y zeolite in a silica-alumina matrix. X-ray fluorescence analyses showed that the rare earths used in preparing the catalysts were a mixture of lanthanum and cerium. Antimony found in the spent catalyst was added during operation of the FCC unit as a way to suppress the adverse effects of deposited nickel. The fresh HDS samples consisted of sulfided nickel and molybdenum on an alumina support. The spent catalyst showed nearly 10% vanadium on the catalyst and a modest increase in nickel and sulfur on the catalyst as a result of operations. Hydrocracking catalysts were not available for this study.

  11. Study of the ortho-positron annihilation process in zeolite Y

    International Nuclear Information System (INIS)

    For several years a great interest has existed for the study of the natural and synthetic zeolites due to its properties. The porosity, one of their main characteristics allows that these materials are used as molecular sieves, catalysts, gases drying, etc. In order to investigating the porosity and other zeolite properties one carries out the study of the process of positron annihilation lifetime spectroscopy (Pals). This is a technique that provides information about the size and the pores form since is highly sensitive to the free volume and the superficial area of those porous materials as the zeolites. The study began with the elaboration of zeolite Y tablets in a hydraulic press where different pressures (from 0 to 1.26 GPa) and masses (70, 80 and 100 mg) were proven to obtain the estimate porosity of each tablet. A graph was elaborated and the effect of the mass and pressure with regard to the zeolite porosity was analyzed. Later on, the powder and tablets of 70 mg were characterized by means of X-ray diffraction (the glass size, interplanar distance, length and the volume of the unitary cell); scanning electron microscopy (the particles size and morphology); thermo gravimetric analysis (dehydration temperature and the stability up to 700 C) and the Brunauer Emmett Teller method (specific area). After the zeolite Y tablets characterization was carried out the positron annihilation process by means of Pals where its free volume of zeolite Y was analyzed, which includes to the structural cavities and the interparticle volume. The powdered zeolite was analyzed to different experimental conditions (preparation of the sample and the Pals equipment) to obtain the optimal conditions (a window with a time of 400 ns and a enlarged energy window) of analysis. On the other hand, the tablets were analyzed under optimal conditions to obtain the four components of time and intensity (τ, Ι), result of the different ways of positrons annihilation in the zeolite. These

  12. Preparation by the nano-casting process of novel porous carbons from large pore zeolite templates

    Energy Technology Data Exchange (ETDEWEB)

    F Gaslain; J Parmentier; V Valtchev; J Patarin [Laboratoire de Materiaux a Porosite Controlee (LMPC), UMR CNRS 7016, ENSCMu Universite de Haute Alsace, 3 rue Alfred Werner, 68093 Mulhouse Cedex, (France); C Vix Guterl [Institut de Chimie des Surfaces et Interfaces (ICSI), UPR CNRS 9069, 15 rue Jean Starky, 68057 Mulhouse Cedex (France)

    2005-07-01

    The development of new growing industrial applications such as gas storage (e.g.: methane or hydrogen) or electric double-layer capacitors has focussed the attention of many research groups. For this kind of application, porous carbons with finely tailored micro-porosity (i.e.: pore size diameter {<=} 1 nm) appear as very promising materials due to their high surface area and their specific pore size distribution. In order to meet these requirements, attention has been paid towards the feasibility of preparing microporous carbons by the nano-casting process. Since the sizes and shapes of the pores and walls respectively become the walls and pores of the resultant carbons, using templates with different framework topologies leads to various carbon replicas. The works performed with commercially available zeolites employed as templates [1-4] showed that the most promising candidate is the FAU-type zeolite, which is a large zeolite with three-dimensional channel system. The promising results obtained on FAU-type matrices encouraged us to study the microporous carbon formation on large pore zeolites synthesized in our laboratory, such as EMC-1 (International Zeolite Association framework type FAU), zeolite {beta} (BEA) or EMC-2 (EMT). The carbon replicas were prepared following largely the nano-casting method proposed for zeolite Y by the Kyotani research group [4]: either by liquid impregnation of furfuryl alcohol (FA) followed by carbonization or by vapour deposition (CVD) of propylene, or by an association of these two processes. Heat treatment of the mixed materials (zeolite / carbon) could also follow in order to improve the structural ordering of the carbon. After removal of the inorganic template by an acidic treatment, the carbon materials obtained were characterised by several analytical techniques (XRD, N{sub 2} and CO{sub 2} adsorption, electron microscopy, etc...). The unique characteristics of these carbons are discussed in details in this paper and

  13. Characterization of Mexican zeolite minerals

    International Nuclear Information System (INIS)

    50% of the Mexican territory is formed by volcanic sequences of the Pliocene type, which appear extensively in the northwest states (Sonora, Sinaloa, Chihuahua, Durango) and west of Mexico (Jalisco and Nayarit), in central Mexico (Zacatecas, Guanajuato, San Luis Potosi, Queretaro, Hidalgo) and south of Mexico (Guerrero, Oaxaca); therefore, it is to be expected that in our country big locations of natural zeolites exist in its majority of the clinoptilolite type. The present study was focused toward the characterization of two Mexican natural zeolite rocks presumably of the clinoptilolite and filipsite types, one of them comes from the state of Chihuahua and the other of a trader company of non metallic minerals, due that these materials are not characterized, its are not known their properties completely and therefore, the uses that can be given to these materials. In this investigation work it was carried out the characterization of two Mexican zeolite rocks, one coming from the Arroyo zone, municipality of La Haciendita, in the state of Chihuahua; and the other one was bought to a trader company of non metallic minerals. The two zeolites so much in their natural form as conditioned with sodium; they were characterized by means of X-ray diffraction, scanning electron microscopy of high vacuum and elementary microanalysis (EDS), surface area analysis (BET), thermal gravimetric analysis. To differentiate the heulandite crystalline phase of the other clinoptilolite rock, its were carried out thermal treatments. The quantification of Al, Na, Ca, K, Mg, Fe was carried out in solution, by means of atomic absorption spectroscopy and the quantity of Si was determined by gravimetry. The zeolite rocks presented for the major part the crystalline heulandite and clinoptilolite phases for the most part, and it was found that the zeolite coming from the state of Chihuahua possesses a bigger content of heulandite and the denominated filipsite it is really a zeolite

  14. Hydrothermally stable, low-temperature NO.sub.x reduction NH.sub.3-SCR catalyst

    Science.gov (United States)

    Narula, Chaitanya K; Yang, Xiaofan

    2015-03-24

    A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.

  15. Hydrothermally stable, low-temperature NO.sub.x reduction NH.sub.3-SCR catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Yang, Xiaofan

    2016-10-25

    A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.

  16. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3

    OpenAIRE

    Yuanyuan Yue; Haiyan Liu; Pei Yuan; Chengzhong Yu; Xiaojun Bao

    2015-01-01

    Iron-modified ZSM-5 zeolites (FeZSM-5s) have been considered to be a promising catalyst system to reduce nitrogen oxide emissions, one of the most important global environmental issues, but their synthesis faces enormous economic and environmental challenges. Herein we report a cheap and green strategy to fabricate hierarchical FeZSM-5 zeolites from natural aluminosilicate minerals via a nanoscale depolymerization-reorganization method. Our strategy is featured by neither using any aluminum-,...

  17. Selective catalytic reduction of nitric oxide by ammonia over Cu-exchanged Cuban natural zeolites

    International Nuclear Information System (INIS)

    The catalytic selective reduction of NO over Cu-exchanged natural zeolites (mordenite (MP) and clinoptilolite (HC)) from Cuba using NH3 as reducing agent and in the presence of excess oxygen was studied. Cu(II)-exchanged zeolites are very active catalysts, with conversions of NO of 95%, a high selectivity to N2 at low temperatures, and exhibiting good water tolerance. The chemical state of the Cu(II) in exchanged zeolites was characterized by H2-TPR and XPS. Cu(II)-exchanged clinoptilolite underwent a severe deactivation in the presence of SO2. However, Cu(II)-exchanged mordenite not only maintained its catalytic activity, but even showed a slight improvement after 20h of reaction in the presence of 100ppm of SO2

  18. Sample preparation and electron microscopy of hydrocracking catalysts

    Science.gov (United States)

    Husain, S.; McComb, D. W.; Perkins, J. M.; Haswell, R.

    2008-08-01

    This work focuses on the preparation of zeolite and alumina hydrocracking catalysts for investigation by electron energy-loss spectroscopy (EELS). EELS can potentially give new insights into the location and structure of coke which can result in catalyst deactivation. Three sample preparation techniques have been used - microtoming, focussed ion beam milling (LIB) and conventional ion beam milling. Crushing and grinding the catalyst pellets has been discounted as a preparation technique as the spatial relationship between the coke and the catalyst is lost using this method. Microtomed sections show some mechanical damage while sections milled in a single beam LIB microscope show gallium decoration in pores and were too thick for EELS. Conventional ion beam milling has proved to be most successful as it results in extensive thin regions and maintains the spatial distribution of the zeolite and alumina phases.

  19. Catalytic activity of FeZSM-5 zeolites in benzene hydroxylation by N2O: The role of geometry characterized by fractal dimensions

    OpenAIRE

    Tatlier, M.; Kiwi-Minsker, L.

    2005-01-01

    The fractal dimensions of FeZSM-5 zeolites were used to characterize the change in their geometry depending on different post-synthesis treatments. The fractal dimension values were estimated from the Dubinin-Astakhov isotherms of nitrogen adsorption and related to the activity of these zeolites in the benzene hydroxylation to phenol by nitrous oxide. The zeolites had two different iron contents (350 and 5800 ppm) and a Si/Al ratio of 42. The catalysts were activated by steaming (823 K) and/o...

  20. Comparison of adsorption efficiency of Triton X-100 surfactant from industrial wastewater using synthetic and natural zeolites: isotherm and kinetic studies

    Directory of Open Access Journals (Sweden)

    A Shahbazi

    2016-01-01

    Full Text Available Background and Objectives: Rapid growing of Triton X-100 application in industries results in its appearance in effluents  and threaten the aqueous ecosystems. Triton X-100 is not biodegradable and can accumulate in food chain. Materials and Methods: In this study, sorption capacity of six synthesized zeolites with different regular porous structure was studied for triton X-100 (TX-100 surfactant and the results were compared with Clinoptilolite natural zeolite of Damavand region. Results: Within all zeolite studied, Beta(200 showed the highest sorption capacity (about 575 mg/g, which is due to its regular pore structure with large pore diameter, channel intersections, high SiO2/Al2O3 ratio and high surface area. Langmuir monolayer isotherm and pseudo-second-order kinetic equation could provide well-fitted to the experimental data in simulating adsorption behavior of TX-100 over Beta(200 zeolite. Conclusion: The adsorption feature was internal sorption and the intraparticle diffusion might be a rate-limiting control for Beta(200 zeolite. Results of experiments demonstrated that the hydrophobic zeolites with large pore diameter such as Beta(200 could be effective sorbents for industrial wastewater treatment features.

  1. Catalyst for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  2. Confirmation of Isolated Cu2+ Ions in SSZ-13 Zeolite as Active Sites in NH3-Selective Catalytic Reduction

    NARCIS (Netherlands)

    Deka, U.; Juhin, A.F.; Eilertsen, E.A.; Emerich, H.; Green, M.A.; Korhonen, S.T.; Weckhuysen, B.M.; Beale, A.M.

    2012-01-01

    NH3-Selective Catalytic Reduction (NH3-SCR) is a widely used technology for NOx reduction in the emission control systems of heavy duty diesel vehicles. Copper-based ion exchanged zeolites and in particular Cu-SSZ-13 (CHA framework) catalysts show both exceptional activity and hydrothermal stability

  3. A convenient synthesis of 1,5-diarylpyrazoles from Baylis-Hillman adducts using HY-zeolite

    Institute of Scientific and Technical Information of China (English)

    Mohammad; Nikpassand; Manouchehr; Mamaghani; Mohammad; Ali; Zanjanchi; Nosrat; Olah; Mahmoodi; Massomeh; Mirzaeinejad

    2010-01-01

    A facile and convenient protocol was developed for the synthesis of 1,5-diarylpyrazoles using Baylis-Hillman adducts in the presence of HY-zeolite as an efficient recyclable heterogeneous catalyst in reasonable reaction times(1.5-2.5 h) and high yields (78-90%).

  4. Simultaneous coking and dealumination of zeolite H-ZSM-5 during the transformation of chloromethane into olefins

    NARCIS (Netherlands)

    Ibanez, M.; Gamero, M.; Ruiz-Martinez, J.; Weckhuysen, B. M.; Aguayo, A. T.; Bilbao, J.; Castano, P.

    2016-01-01

    The deactivation pathways of a zeolite H-ZSM-5 catalyst containing bentonite and alpha-Al2O3 as binder material have been studied during the transformation of chloromethane into light olefins, which is considered as a possible step to valorize methane from natural gas. The reactions have been carrie

  5. Synthesis, characterization and catalytic activity of indium substituted nanocrystalline Mobil Five (MFI) zeolite

    International Nuclear Information System (INIS)

    Highlights: • In situ modification of the MFI zeolite by incorporation of indium. • The samples were characterized by XRD, FTIR, TGA, UV–vis (DRS), SAA, EDX and SEM. • The incorporation of indium was confirmed by XRD, FT-IR, UV–vis (DRS), EDX and TGA. • Hydroxylation of phenol reaction was studied on the synthesized catalysts. - Abstract: A series of indium doped Mobil Five (MFI) zeolite were synthesized hydrothermally with silicon to aluminium and indium molar ratio of 100 and with aluminium to indium molar ratios of 1:1, 2:1 and 3:1. The MFI zeolite phase was identified by XRD and FT-IR analysis. In XRD analysis the prominent peaks were observed at 2θ values of around 6.5° and 23° with a few additional shoulder peaks in case of all the indium incorporated samples suggesting formation of pure phase of the MFI zeolite. All the samples under the present investigation were found to exhibit high crystallinity (∼92%). The crystallite sizes of the samples were found to vary from about 49 to 55 nm. IR results confirmed the formation of MFI zeolite in all cases showing distinct absorbance bands near 1080, 790, 540, 450 and 990 cm−1. TG analysis of In-MFI zeolites showed mass losses in three different steps which are attributed to the loss due to adsorbed water molecules and the two types TPA+ cations. Further, the UV–vis (DRS) studies reflected the position of the indium metal in the zeolite framework. Surface area analysis of the synthesized samples was carried out to characterize the synthesized samples The analysis showed that the specific surface area ranged from ∼357 to ∼361 m2 g−1 and the pore volume of the synthesized samples ranged from 0.177 to 0.182 cm3 g−1. The scanning electron microscopy studies showed the structure of the samples to be rectangular and twinned rectangular shaped. The EDX analysis was carried out for confirmation of Si, Al and In in zeolite frame work. The catalytic activities of the synthesized samples were

  6. Synthesis, characterization and catalytic activity of indium substituted nanocrystalline Mobil Five (MFI) zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Kishor Kr. [Department of Chemistry, ADP College, Nagaon, Assam 782002 (India); Nandi, Mithun [Department of Chemistry, Gauhati University, Guwahati, Assam 781014 (India); Talukdar, Anup K., E-mail: anup_t@sify.com [Department of Chemistry, Gauhati University, Guwahati, Assam 781014 (India)

    2015-06-15

    Highlights: • In situ modification of the MFI zeolite by incorporation of indium. • The samples were characterized by XRD, FTIR, TGA, UV–vis (DRS), SAA, EDX and SEM. • The incorporation of indium was confirmed by XRD, FT-IR, UV–vis (DRS), EDX and TGA. • Hydroxylation of phenol reaction was studied on the synthesized catalysts. - Abstract: A series of indium doped Mobil Five (MFI) zeolite were synthesized hydrothermally with silicon to aluminium and indium molar ratio of 100 and with aluminium to indium molar ratios of 1:1, 2:1 and 3:1. The MFI zeolite phase was identified by XRD and FT-IR analysis. In XRD analysis the prominent peaks were observed at 2θ values of around 6.5° and 23° with a few additional shoulder peaks in case of all the indium incorporated samples suggesting formation of pure phase of the MFI zeolite. All the samples under the present investigation were found to exhibit high crystallinity (∼92%). The crystallite sizes of the samples were found to vary from about 49 to 55 nm. IR results confirmed the formation of MFI zeolite in all cases showing distinct absorbance bands near 1080, 790, 540, 450 and 990 cm{sup −1}. TG analysis of In-MFI zeolites showed mass losses in three different steps which are attributed to the loss due to adsorbed water molecules and the two types TPA{sup +} cations. Further, the UV–vis (DRS) studies reflected the position of the indium metal in the zeolite framework. Surface area analysis of the synthesized samples was carried out to characterize the synthesized samples The analysis showed that the specific surface area ranged from ∼357 to ∼361 m{sup 2} g{sup −1} and the pore volume of the synthesized samples ranged from 0.177 to 0.182 cm{sup 3} g{sup −1}. The scanning electron microscopy studies showed the structure of the samples to be rectangular and twinned rectangular shaped. The EDX analysis was carried out for confirmation of Si, Al and In in zeolite frame work. The catalytic activities of

  7. Stability and activity of doped transition metal zeolites in the hydrothermal processing

    Directory of Open Access Journals (Sweden)

    Thomas François Robin

    2015-12-01

    Full Text Available This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper and iron in under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered as a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds which have an impact on the physical and chemical propriety of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts but their stability and activity under hydrothermal conditions is not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350 °C. Catalysts have been characterised before and after treatment using XRD, BET physisorption and STEM microscopy. Metal leaching was determined by analysis of the water phase following hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5 for example molybdenum improves the crystallinity of the zeolite. In general, metal doped zeolites were relatively stable under subcritical water. Activity of the catalysts for processing lipids, protein and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella and P. ellipsoidea. The catalysts exhibited greater activity towards converting lipids for example MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  8. Zeolite synthesis: an energetic perspective.

    Science.gov (United States)

    Zwijnenburg, Martijn A; Bromley, Stefan T

    2010-11-21

    Taking |D(H(2)O)(x)|[AlSiO(4)] based materials (where D is Li, Na, K, Rb or Cs) as an archetypal aluminosilicate system, we use accurate density functional theory calculations to demonstrate how the substitution of silicon cations in silica, with pairs of aluminium and (alkali metal) cations, changes the energetic ordering of different competing structure-types. For large alkali metal cations we further show that the formation of porous aluminosilicate structures, the so-called zeolites, is energetically favored. These findings unequivocally demonstrate that zeolites can be energetic preferred reaction products, rather than being kinetically determined, and that the size of the (hydrated) cations in the pore, be it inorganic or organic, is critical for directing zeolite synthesis.

  9. Zeolite-dye micro lasers

    CERN Document Server

    Vietze, U; Laeri, F; Ihlein, G; Schüth, F; Limburg, B; Abraham, M

    1998-01-01

    We present a new class of micro lasers based on nanoporous molecular sieve host-guest systems. Organic dye guest molecules of 1-Ethyl-4-(4-(p-Dimethylaminophenyl)-1,3-butadienyl)-pyridinium Perchlorat were inserted into the 0.73-nm-wide channel pores of a zeolite AlPO$_4$-5 host. The zeolitic micro crystal compounds where hydrothermally synthesized according to a particular host-guest chemical process. The dye molecules are found not only to be aligned along the host channel axis, but to be oriented as well. Single mode laser emission at 687 nm was obtained from a whispering gallery mode oscillating in a 8-$\\mu$m-diameter monolithic micro resonator, in which the field is confined by total internal reflection at the natural hexagonal boundaries inside the zeolitic microcrystals.

  10. Methanol dehydration on carbon-based acid catalysts

    OpenAIRE

    Valero-Romero, Mª José; Calvo-Muñoz, Elisa Mª; Ruiz-Rosas, Ramiro; Rodríguez-Mirasol, José; Cordero, Tomás

    2013-01-01

    Methanol dehydration to produce dimethyl ether (DME) is an interesting process for the chemical industry since DME is an important intermediate and a promising clean alternative fuel for diesel engines. Pure or modified γ-aluminas (γ-Al2O3) and zeolites are often used as catalysts for this reaction. However, these materials usually yield non desirable hydrocarbons and undergo fast deactivation. In this work, we study the catalytic conversion of methanol over an acid carbon catalyst obtaine...

  11. Adsorption of parent nitrosamine on the nanocrystaline H-zeolite: A theoretical study

    International Nuclear Information System (INIS)

    Adsorption of parent nitrosamine (NA) on 5T and 10T cluster models of H-ZSM-5 catalyst has been theoretically investigated using quantum chemical B3LYP and MP2 methods. Three stable complexes (A-C) were found on the potential energy surface of interaction between NA and cluster models of H-ZSM-5. NA can interact not only with acidic site of zeolite via the lone electron pair on nitrogen and oxygen atoms (O(N)...HZO) but also with the oxygen atoms of the framework via the hydrogen atoms of NH2 group (NH...O) as well. However, the Lewis acidity of zeolite framework is the dominating factor in the interaction between NA and zeolite. The calculated adsorption enthalpy of NA on 5T and 10T clusters of H-ZSM-5 catalyst at ONIOM(MP2/6-311++G(d,p):HF/6-31+G(d)) level ranges from -19.73 to -40.33 and -63.81 to -73.73 kJ/mol, respectively. Adsorption energy for A-C complexes increases in going from B3LYP method to MP2 one. The results of atoms in molecules (AIM) calculations showed that NH5...O interactions have electrostatic character, whereas O(N)...HZ interactions have partially covalent nature. The results of natural bond orbital (NBO) analysis showed that charge transfer occurs from NA to H-zeolite cluster.

  12. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    International Nuclear Information System (INIS)

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NOx) and ammonia (NH3) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO2 was observed at room temperature in the presence of NH3 as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO2 reduction with NH3 relative to nanocrystalline NaY

  13. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature.

    Science.gov (United States)

    Narsimhan, Karthik; Iyoki, Kenta; Dinh, Kimberly; Román-Leshkov, Yuriy

    2016-06-22

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C-H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483-498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions. PMID:27413787

  14. Surface chemical modification of zeolites and their catalytic performance for naphthalene alkylation

    Institute of Scientific and Technical Information of China (English)

    张铭金; 郑安民; 邓风; 岳勇; 叶朝辉

    2003-01-01

    Zeolitesβ, Y and mordenite are modified with organic and inorganic cupric salts using a liquid phase deposit method, and their catalytic performance and the dispersion states of copper on the zeolites are characterized by using naphthalene isopropylation reaction and 129Xe NMR, respectively. The experimental results indicate that naphthalene conversion on the catalysts decreases in the order of HY>Hβ>HMCM-22>HM. The performance of the zeolites has been largely improved after the modification. Naphthalene conversion rate reaches 97% and 60%, andβ,β′-selectivity 66% and 70% for CuHY and CuH?, respectively. Metal surfactants, such as hexanoic and octanoic copper, play a positive role in modifying the external surface and pore structure of zeolitesβ and Y. 129Xe NMR results demonstrate that the two types of the pore channels in CuHβ are unimpeded for xenon atoms, and there is a fast chemical exchange between two xenon atoms located in different adsorption sites; Cu2+ ion is a strong adsorption site for xenon atoms and it is a strong active center as well; Cu2+ and Cu+ ions coexist in channels of zeolites, which are in agreement with the conclusions from ab initio quantum chemical calculations.

  15. Benzene hydrogenation catalysed by molybdenum carbide supported on Y zeolite; Hidrogenacao de benzeno catalisada por especies do tipo carbeto de molibdenio suportado em zeolita Y

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Angela Sanches; Faro Junior, Arnaldo da Costa [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Dept. de Fisico-Quimica]. E-mail: asrocha@iq.ufrj.br; farojr@iq.ufrj.br; Silva, Victor Teixeira da [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Quimica]. E-mail: dasilva@aquarius.ime.eb.br

    2003-07-01

    Besides increasingly severe environmental legislation that limits the amount of aromatic hydrocarbons present in diesel fuels , improvement of the cetane number stimulates the development of hydrodesaromatization (HDA) catalysts. The present work investigates zeolite-supported molybdenum carbide catalysts , as an alternative for deep HDA. The transition metal carbides display catalytic activity similar to that of the noble metals catalysts used for this purpose, but they show larger thiotolerance, and have a lower price. Molybdenum carbide supported on Y zeolite with different silica/alumina ratios (SAR) and sodium contents were prepared starting from Mo(CO){sub 6} adsorbed on the zeolites and decomposed under different gaseous atmospheres, at high temperatures. The obtained materials were tested in benzene hydrogenation at 90 deg C, showing significant activity at atmospheric pressure, which characterizes the formation of carbides species. Strong dependence of the activity of the catalysts was also observed in relation to SAR and to the quantity of sodium of the zeolite supports. FTIR results show that the presence of protons in the zeolites dis favors the formation active molybdenum species. (author)

  16. Lewis Acid Zeolites for Biomass Conversion: Perspectives and Challenges on Reactivity, Synthesis, and Stability.

    Science.gov (United States)

    Luo, Helen Y; Lewis, Jennifer D; Román-Leshkov, Yuriy

    2016-06-01

    Zeolites containing Sn, Ti, Zr, Hf, Nb, or Ta heteroatoms are versatile catalysts for the activation and conversion of oxygenated molecules owing to the unique Lewis acid character of their tetrahedral metal sites. Through fluoride-mediated synthesis, hydrophobic Lewis acid zeolites can behave as water-tolerant catalysts, which has resulted in a recent surge of experimental and computational studies in the field of biomass conversion. However, many open questions still surround these materials, especially relating to the nature of their active sites. This lack of fundamental understanding is exemplified by the many dissonant results that have been described in recent literature reports. In this review, we use a molecular-based approach to provide insight into the relationship between the structure of the metal center and its reactivity toward different substrates, with the ultimate goal of providing a robust framework to understand the properties that have the strongest influence on catalytic performance for the conversion of oxygenates. PMID:27146555

  17. Catalyst Particles for Fluid Catalytic Cracking Visualized at the Individual Particle Level by Micro-Spectroscopy

    OpenAIRE

    Buurmans, I.L.C.

    2011-01-01

    In this PhD research the investigation of the reactivity and acidity of Fluid Catalytic Cracking (FCC) catalysts at the level of an individual catalyst particles is described. A range of micro-spectroscopic techniques has been applied to visualize both the active zeolite component within the catalyst particles as well as the matrix components. The most important techniques applied were UV-Vis micro-spectroscopy, confocal fluorescence microscopy, integrated laser and electron microscopy (a com...

  18. Porous structure and particle size of silica and hydrotalcite catalyst precursors

    OpenAIRE

    Titulaer, M.K.

    1993-01-01

    The subject of this thesis is the control of the porous structure of catalyst bodies. The first part deals with silica, that can be utilized as catalyst support with many industrially important catalytic reactions. The second part of the thesis deals with the preparation and characterization of solid catalysts having a tubular or a platelet microstructure. The success of zeolites in catalytic reactions is due to the fact that the shape of the porous structure can be controlled on an atomic sc...

  19. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  20. Relationship between single and bulk mechanical properties for zeolite ZSM5 spray-dried particles

    OpenAIRE

    Marigo, M.; Cairns, D. L.; Bowen, J; Ingram, A.; Stitt, E. H.

    2014-01-01

    In this work typical mechanical properties for a catalyst support material, ZSM5 (a spray-dried granular zeolite), have been measured in order to relate the bulk behaviour of the powder material to the single particle mechanical properties. Particle shape and size distribution of the powders, determined by laser diffraction and scanning electron microscopy (SEM), confirmed the spherical shape of the spray-dried particles. The excellent flowability of the material was assessed by typical metho...

  1. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature

    OpenAIRE

    Narsimhan, Karthik; Iyoki, Kenta; Dinh, Kimberly; Román-Leshkov, Yuriy

    2016-01-01

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C–H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483–498 K). Reaction kinetics studies show sustained catalytic acti...

  2. Zeolite and high silica zeotype microporous materials used for the removal of toxic elements

    International Nuclear Information System (INIS)

    Breakthrough properties and kinetics of barium (Ba/sup 2+/ sorption in high silica zeolite-beta and zeotype beta-Fe and beta-B have been studied. Exchange diffusion coefficients and activation energies were measured at temperatures between 298 to 333 K and thermodynamic parameters delta S/sup */ and delta G/sup */ were also calculated. The sodium forms of zeolite-beta, zeotype materials beta-B and beta-Fe were synthesized hydrothermally from the aqueous silicate gels of Na/sub 2/O-SiO/sub 2/-Al/sub 2/O/sub 3/-B/sub 2/O/sub 3/-Fe/sub 2/O/sub 3/-[(C/sub 4/H/sub 9)/ sub 4/ N]/sub 2/O-H/sub 2/O. The crystalline products have been characterised by a wide range of analytical techniques like X-ray powder diffraction (DSC). /sup 57/Fe Moessbauer spectroscopic studies on synthesized and calcined samples have confirmed the uniform dispersion of Fe/sup 3+/ ion sin the tetrahedral framework of zeotype beta-Fe. (authors)

  3. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    Science.gov (United States)

    Zečević, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2016-01-01

    The ability to precisely control nanoscale features is increasingly exploited to develop and improve monofunctional catalysts1–4. Striking effects might also be expected in the case of bifunctional catalysts, which play an important role in hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel5–7. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called ‘intimacy criterion’8 has dictated the maximum distance between the two site types beyond which catalytic activity decreases. The lack of synthesis and material characterization methods with nanometer precision has long prevented in-depth exploration of the criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites8–11. Here we show for a bifunctional catalyst, comprised of an intimate mixture of zeolite Y and alumina binder and with platinum (Pt) metal controllably deposited20,21 on either the zeolite or the binder, that close proximity between metal and zeolite acid sites can be detrimental: the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains Pt on the binder, i.e. with a larger distance between metal and acid sites. Cracking of the large and complex hydrocarbon molecules typically derived from alternative sources such as gas-to-liquid technology, vegetable oil or algal oil6–7 should thus benefit especially from bifunctional catalysts that avoid locating Pt on the zeolite as the traditionally assumed optimal location. More generally, we anticipate that the ability to spatially organize different active sites at the nanoscale demonstrated here will benefit the further development and optimization of the newly emerging generation of multifunctional catalysts12–15. PMID:26659185

  4. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  5. Resonant diffusion of normal alkanes in zeolites: Effect of the zeolite structure and alkane molecule vibrations

    CERN Document Server

    Tsekov, R

    2015-01-01

    Diffusion of normal alkanes in one-dimensional zeolites is theoretically studied on the basis of the stochastic equation formalism. The calculated diffusion coefficient accounts for the vibrations of the diffusing molecule and zeolite framework, molecule-zeolite interaction, and specific structure of the zeolite. It is shown that when the interaction potential is predominantly determined by the zeolite pore structure, the diffusion coefficient varies periodically with the number of carbon atoms of the alkane molecule, a phenomenon called resonant diffusion. A criterion for observable resonance is obtained from the balance between the interaction potentials of the molecule due to the atomic and pore structures of the zeolite. It shows that the diffusion is not resonant in zeolites without pore structure, such as ZSM-12. Moreover, even in zeolites with developed pore structure no resonant dependence of the diffusion constant can be detected if the pore structure energy barriers are not at least three times high...

  6. Catalytic behavior of Pt nanoparticles dealuminated Y-zeolite for some n-alkane hydro isomerization

    International Nuclear Information System (INIS)

    Dealuminated zeolite Y-supported platinum was prepared adopting two dealumination methods, viz. fast (1, 3 and 6 h) and slow method (18 h). The content of Pt was constant at 0.5 wt % in all investigated catalysts. The prepared samples were characterized using TGA/DSC, XRD, FTIR techniques, nitrogen adsorption at 196 C and TEM-connected with energy dispersive spectroscopy (EDS). Surface acidity was investigated via pyridine adsorption using FT-IR spectroscopy. The parent and dealuminated Y-zeolite samples were characterized by their microporous system. By increasing the dealumination time to 6 h, the increased specific surface area and total pore volume indicated a sort of pore opening taking place with an increase in the accessibility of nitrogen molecules. DSC confirmed the thermal stability of the dealuminated zeolite samples up to 800 degree C. The prepared catalysts were tested through hydro isomerization reactions of n-hexane and n-heptane using a micro-catalytic pulse technique. Different catalytic behaviors could be distinguished for the dealuminated samples based on competitive reactions; hydro-isomerization, hydrocracking and cyclization. Slow dealumination leads to the most selective catalysts for hydro isomerization. n-Heptane was converted to higher extent than n-hexane; cracking process was more evident when the former was fed to the reactor

  7. Utilization of biomass: Conversion of model compounds to hydrocarbons over zeolite H-ZSM-5

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie; Holm, Martin Spangsberg

    2011-01-01

    Zeolite catalyzed deoxygenation of small oxygenates present in bio-oil or selected as model compounds was performed under Methanol-to-Hydrocarbons (MTH) like reaction conditions using H-ZSM-5 as the catalyst. Co-feeding of the oxygenates with methanol generally decreases catalyst lifetime due....../ester functionalities favor oxygen removal through decarbonylation over dehydration which preserves hydrogen in the hydrocarbon product mixture. By employing 13C labeled substrates we confirmed the incorporation of carbon into the hydrocarbon products as well as a pronounced preference of the additive carbon towards...

  8. Shape-selective Valorization of Biomass-derived Glycolaldehyde using Tin-containing Zeolites

    DEFF Research Database (Denmark)

    Tolborg, Søren; Meier, Sebastian; Shunmugavel, Saravanamurugan;

    2016-01-01

    sugars while hindering consecutive aldol reactions leading to hexose sugars. High yields of tetrose sugars (74 %) with minor amounts of vinyl glycolic acid (VGA), an α-hydroxyacid, are obtained using Sn-MFI with selectivities towards C4 products reaching 97 %. Tin catalysts having large pores or no pore......A highly selective self-condensation of glycolaldehyde to different C4 molecules has been achieved using Lewis acidic stannosilicate catalysts in water at moderate temperatures (40–100 °C). The medium-sized zeolite pores (10-membered ring framework) in Sn-MFI facilitate the formation of tetrose...

  9. Zeolites for Sensors for Reducing Gases

    Institute of Scientific and Technical Information of China (English)

    Ralf Moos; Kathy Sahner; Gunter Hagen; Andreas Dubbe

    2006-01-01

    Due to their unique properties, zeolites can be used either as passive filters to greatly enhance selectivity or as very selective sensor materials. Some well known principles are briefly reviewed and the following three novel application modes are discussed. Zeolites can be applied as cover layers for specificity improvement of p-type semiconducting hydrocarbon sensors. Furthermore, a novel combination of metal oxides with zeolites leading to a very selective hydrocarbon sensor is described. In this application, it is shown that the interface chromium oxide / zeolite plays an essential role. And, in a very recent approach, Na+ ion conducting zeolites are applied as an auxiliary phase in a potentiometric gas sensor. The cell voltage shows a Nernstian response, which is selective towards propane. Here, the proposed mechanism assumes Na+ activity changes in the zeolite pores due to hydrocarbon sorption.

  10. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Keka Ojha; Narayan C Pradhan; Amar Nath Samanta

    2004-12-01

    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. The synthesized zeolite was characterized using various techniques such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, BET method for surface area measurement etc. The synthesis conditions were optimized to obtain highly crystalline zeolite with maximum BET surface area. The maximum surface area of the product was found to be 383 m2/g with high purity. The crystallinity of the prepared zeolite was found to change with fusion temperature and a maximum value was obtained at 823 K. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.

  11. Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions

    Directory of Open Access Journals (Sweden)

    Hynek Balcar

    2015-11-01

    Full Text Available Hoveyda–Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36 and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (− counter anion; in contrast, PF6− counter anion underwent partial decomposition.

  12. Study on catalytic synthesis of 1,3-benzodioxoles by HY zeolite

    Institute of Scientific and Technical Information of China (English)

    LIANG Xuezheng; GAO Shan; YANG Jianguo; LIU Caihua; YU Xinyu; HE Mingyuan

    2007-01-01

    The acetalization and ketalization of various aldehydes and ketones with catechol by using HY zeolite as catalyst were studied.Effect of the reaction time,mole ratio of reactants,and amount of catalyst on the yield of benzodioxoles were investigated.Results show that HY is an efficient catalyst for the acetalization and ketalization with high conversion and selectivity in mild conditions.The best reaction conditions:molar ratio of catechol to aldehydes or ketones is 1:1.4,catalyst amount is 3.5 g/1 mol catechol,reaction time is 5 h.Under these conditions,the conversion and selectivity were over 50% and 97%,respectively.

  13. Efficient photocatalytic degradation of organics present in gas and liquid phases using Pt-TiO2/Zeolite (H-ZSM).

    Science.gov (United States)

    Neppolian, B; Mine, Shinya; Horiuchi, Yu; Bianchi, C L; Matsuoka, M; Dionysiou, D D; Anpo, M

    2016-06-01

    TiO2-encapsulated H-ZSM photocatalysts were prepared by physical mixing of TiO2 and zeolites. Pt was immobilized on the surface of the TiO2-encapsulated zeolite (H-ZSM) catalysts by a simple photochemical reduction method. Different weight ratios of both TiO2 and Pt were hybridized with H-ZSM and the catalytic performance of the prepared catalysts was investigated for 2-propanol oxidation in liquid phase and acetaldehyde in gas phase reaction. Around 5-10 wt% TiO2-encapsulated H-ZSM catalysts was found to be optimal amount for the effective oxidation of the organics. Prior to light irradiation, Pt-TiO2-H-ZSM showed considerable amount of catalytic degradation of 2-propanol in the dark, forming acetone as an intermediate. In this study, Pt has played a major and important role on the total oxidation of 2-propanol as well as acetaldehyde. As a result, no residual organics were present in the pores of the zeolites. The catalysts could be reused more than three times without losing their catalytic activity in both phases. The Pt-TiO2-H-ZSM photocatalysts could overcome the problem of strong adsorption of organics in the zeolite pores (after the reaction). Thus, Pt-TiO2-H-ZSM can be used as a potential catalyst for both liquid and gas phase oxidation of organic pollutants.

  14. Catalytic Acylation of Anisole over Some Zeolites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    4-Methoxyacetophenone(4-MAP) was synthesized by the acylation of anisole with acetic anhydride in the presence of HY zeolite.The addition of an appropriate amount of some solvent such as dichloromethane,chloroform,carbon disulfide or chlorobenzene to the reaction system can improve the yield of the acylated product to a certain extent.HY zeolite used can be recovered,and reused after being regenerated,obtaining almost the same yield of 4-MAP as the fresh zeolite.

  15. Synthesis and characterization of ZSM-12 type zeolytic catalysts by using different aluminium sources in the petroleum industry; Sintese e caracterizacao de catalisadores zeoliticos do tipo ZSM-12 utilizando diferentes fontes de aluminio na industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Marilia R.F.S.; Jesus, Daniela B.; Souza, Marcelo J.B. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Engenharia Quimica; Santos, Consuelo D.; Machado, Sanny W.M.; Pedrosa, Anne M. Garrido [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Quimica

    2010-12-15

    The main objective was to synthesize and characterize ZSM-12 zeolites from different sources of aluminium, using hydrothermal method and characterize the catalysts synthesized by X-ray diffractions, thermal analysis and infrared absorption spectroscopy. The X-ray diffractogram showed the formation of zeolites of the family pantasil crystalline. Thermogravimetric curves and FTIR spectra were utilized by monitoring the removal of template and by monitoring the maintenance of zeolite structure. (author)

  16. Propene poisoning on three typical Fe-zeolites for SCR of NOχ with NH₃: from mechanism study to coating modified architecture.

    Science.gov (United States)

    Ma, Lei; Li, Junhua; Cheng, Yisun; Lambert, Christine K; Fu, Lixin

    2012-02-01

    Application of Fe-zeolites for urea-SCR of NO(x) in diesel engine is limited by catalyst deactivation with hydrocarbons (HCs). In this work, a series of Fe-zeolite catalysts (Fe-MOR, Fe-ZSM-5, and Fe-BEA) was prepared by ion exchange method, and their catalytic activity with or without propene for selective catalytic reduction of NO(x) with ammonia (NH(3)-SCR) was investigated. Results showed that these Fe-zeolites were relatively active without propene in the test temperature range (150-550 °C); however, all of the catalytic activity was suppressed in the presence of propene. Fe-MOR kept relatively higher activity with almost 80% NO(x) conversion even after propene coking at 350 °C, and 38% for Fe-BEA and 24% for Fe-ZSM-5 at 350 °C, respectively. It was found that the pore structures of Fe-zeolite catalysts were one of the main factors for coke formation. As compared to ZSM-5 and HBEA, MOR zeolite has a one-dimensional structure for propene diffusion, relatively lower acidity, and is not susceptible to deactivation. Nitrogenated organic compounds (e.g., isocyanate) were observed on the Fe-zeolite catalyst surface. The site blockage was mainly on Fe(3+) sites, on which NO was activated and oxidized. Furthermore, a novel fully formulated Fe-BEA monolith catalyst coating modified with MOR was designed and tested, the deactivation due to propene poisoning was clearly reduced, and the NO(x) conversion reached 90% after 700 ppm C(3)H(6) exposure at 500 °C.

  17. Increased thermal conductivity monolithic zeolite structures

    Science.gov (United States)

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  18. Adsorption of radioactive iodide by natural zeolites

    International Nuclear Information System (INIS)

    Two natural zeolites from Iranian deposits (clinoptilolite and natrolite) were characterized and their ability for adsorption of iodide from nuclear wastewaters was evaluated. The adsorption behavior was studied on natural and modified zeolites by γ-spectrometry using 131I as radiotracer. Adsorption isotherms and distribution coefficient (Kd) were measured. The results showed that clinoptilolite is a more promising zeolite for removal of iodide compared to natrolite. Furthermore, the adsorption was higher in silver, lead and thallium forms, whereas the lowest desorption was observed in lead modified zeolite. (author)

  19. NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system

    Science.gov (United States)

    Balmer-Millar, Mari Lou; Park, Paul W.; Panov, Alexander G.

    2007-06-26

    The activity and durability of a zeolite lean-burn NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.

  20. Properties of the FCC Catalyst Additive Prepared from Guizhou Kaoline

    Directory of Open Access Journals (Sweden)

    Xianlun Xu

    2006-09-01

    Full Text Available The properties of a FCC catalyst additive prepared from Guizhou kaoline were extensively investigated. The samples were characterized by N2 adsorption, X-ray diffraction, IR spectrometry, and scanning electron microscope (SEM. The results showed that the crystallinity of NaY zeolite synthesized from this kaoline was 25% and the silica alumina ratio was rk/s ˇ m = 5.05. The catalyst additive prepared from above crystallization product exhibited excellent performance of nickel and vanadium passivation, offered 21% lower coke versus base catalyst, while maintaining high bottoms upgrading selectivity.

  1. Influence of Steam Treating on Deethylating Type Isomerization Catalyst

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This article mainly worked on methods to reduce side reactions of the de-ethylating type catalyst for xylene isomerization. In laboratory the de-ethylating type catalyst for xylene isomerization was subjected to steam treatment at different temperatures and durations to achieve dealumination of the ZSM-5 zeolite to some extent, which could affect the change in Bronsted acid content to decrease xylene loss along with reduction of side reactions. Test results showed that the degree for reducing side reactions by steam treatment depended upon two important parameters-treating temperature and duration. The optimal condition required treating the catalyst at 500℃ for 8 hours.

  2. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    Science.gov (United States)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  3. Computational study of the carbonyl-ene reaction of encapsulated formaldehyde in Na-FAU zeolite

    Science.gov (United States)

    Sangthong, Winyoo; Probst, Michael; Limtrakul, Jumras

    2005-06-01

    Density-functional theory (B3LYP/6-31G(d,p)) and the ONIOM (Our-own-N-layer Integrated molecular Orbital+molecular Mechanics) approach utilizing two-layer ONIOM schemes (B3LYP/6-31G(d,p):UFF) have been employed to investigate structures of Na-exchanged zeolite-encapsulated formaldehyde (HCHO@Na-zeolite) and their interactions with propylene. The carbonyl-ene reaction of propylene and formaldehyde was studied on three model systems: (1) formaldehyde in Na-exchanged zeolite: HCHO@Na-zeolite/CH 3CH dbnd6 CH 2; (2) naked Na(I) as catalyst: Na(I)/HCHO/CH 3CH dbnd6 CH 2; (3) a bare model where only the reactants are present: HCHO/CH 3CH dbnd6 CH 2. It is found that inclusion of the extended zeolite framework has an effect on the structure and energetics of the adsorption complexes and leads to a lower energy barrier (25.1 kcal/mol) of the reaction as compared to the bare model system (34.4 kcal/mol). If the naked Na(I) interacts with the HCHO/CH 3CH dbnd6 CH 2 complex the energy barrier of the system is even lower than HCHO@Na-zeolite/CH 3CH dbnd6 CH 2, due to the large electrostatic field generated by the naked Na(I) cation (17.5 kcal/mol). The carbonyl-ene reaction of propylene using HCHO@Na-faujasite takes place in a single concerted reaction step.

  4. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: contaminants, char and pyrolysis oil properties.

    Science.gov (United States)

    Miskolczi, Norbert; Ateş, Funda; Borsodi, Nikolett

    2013-09-01

    Pyrolysis of real wastes (MPW and MSW) has been investigated at 500°C, 550°C and 600°C using Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3 as catalysts. The viscosity of pyrolysis oils could be decreased by the using of catalysts, especially by β-zeolite and MoO3. Both carbon frame and double bound isomerization was found in case of thermo-catalytic pyrolysis. Char morphology and texture analysis showed more coke deposits on the catalyst surface using MSW raw material. Pyrolysis oils had K, S, P Cl, Ca, Zn, Fe, Cr, Br and Sb as contaminants; and the concentrations of K, S, P, Cl and Br could be decreased by the using of catalysts. PMID:23891947

  5. Catalytic upgrading of biomass pyrolysis vapours using Faujasite zeolite catalysts

    NARCIS (Netherlands)

    Nguyen, T.S.; Zabeti, M.; Lefferts, L.; Brem, G.; Seshan, K.

    2012-01-01

    Bio-oil produced via fast pyrolysis of biomass has the potential to be processed in a FCC (fluid catalytic cracking) unit to generate liquid fuel. However, this oil requires a significant upgrade to become an acceptable feedstock for refinery plants due to its high oxygen content. One promising rout

  6. Improved synthesis of isostearic acid using zeolite catalysts

    Science.gov (United States)

    Isostearic acids are unique and important biobased products with superior properties. Unfortunately, they are not widely utilized in industry because they are produced as byproducts from a process called clay-catalyzed oligomerization of tall oil fatty acids. Generally, this clay method results in...

  7. Incorporation of metals (Pt-Ni-Ru) in the zeolite ZSM-5 through ion exchange competitive: synthesis and characterization; Incorporacao de metais (Pt-Ni-Ru) na zeolita ZSM-5 atraves da troca ionica competitiva: sintese e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, A.S.; Rodrigues, M.G.F., E-mail: antusiasb@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia Quimica; Grau, J.M. [Instituto de Investigaciones en Catalisis y Petroquimica (INCAPE/FIQ/UNL-CONICET), Santa Fe (Argentina)

    2012-07-01

    Zeolites are very important materials due to their high specific surface area. Moreover, they are suitable for use as catalyst support. Noble metals supported on zeolites have been widely used as catalysts in the petrochemical industry. This paper was prepared and characterized, a powder aiming its use in heterogeneous catalysis. Support was used as ZSM-5 and the method of incorporation of the metals (Ru-PtNi) was competitive ion exchange. The materials (ZSM-5 and Pt-Ni-Ru/ZSM-5) were characterized by spectrophotometry Energy Dispersive X-ray (EDX), X-Ray Diffraction (XRD) and nitrogen physisorption (BET method). Based on the results of X-ray diffraction, it is possible to demonstrate the preservation of the structure of zeolite ZSM-5 after the competitive ion Exchange with metals (Ru-Pt-Ni) and calcination. The dispersion of metals on ZSM-5 did not change the textural characteristics of the zeolite. (author)

  8. Effect of Water Vapour on the Acidity of ZSM-5Zeolite Used for Catalytic Cracking of Naphtha to Manufacture Ethylene and Propylene

    Institute of Scientific and Technical Information of China (English)

    Ma Guangwei; Xiao Jingxian; ZhangHuining; Xie Zaiku

    2008-01-01

    The change in acidity of the ZSM-5 zeolite was investigated after it was treated with water vapour,and its capability on ammonia adsorption was also studied after having adsorbed water vapour.The effect of water vapour on products distribution was studied during catalytic cracking of naphtha,the changes in the adsorption ability and catalytic performance of the ZSM-5 zeolite was investigated after the catalyst was loaded with phosphorus species.These results all indicated that water vapour could reduce the acid strength and acid density of ZSM-5 zeolite and affect the capability of ZSM-5 on adsorption of gases,therefore the activated energy contributed by the ZSM-5 zeolite to the catalytic cracking reaction would be low to prevent the feedstock from deepened catalytic cracking and coke formation.

  9. Mesoporous molecular sieve catalysts

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane

    This thesis deals with a very specific class of molecular sieves known as zeolites. Zeolites are a class of crystalline aluminosilicates characterised by pores or cavities of molecular dimensions as part of their crystal structure. In this work zeolites were modified for the use and understanding...

  10. Effects of catalyst support and chemical vapor deposition condition on synthesis of multi-walled carbon nanocoils

    Science.gov (United States)

    Suda, Yoshiyuki; Iida, Tetsuo; Takikawa, Hirofumi; Harigai, Toru; Ue, Hitoshi; Umeda, Yoshito

    2016-02-01

    Multi-walled carbon nanocoil (MWCNC) is a carbon nanotube (CNT) with helical shape. We have synthesized MWCNCs and MWCNTs hybrid by chemical vapor deposition (CVD). MWCNCs are considered to be a potential material in nanodevices, such as electromagnetic wave absorbers and field emitters. It is very important to take into account the purity of MWCNCs. In this study, we aimed to improve the composition ratio of MWCNCs to MWCNTs by changing catalyst preparation and CVD conditions. As a catalyst, Fe2O3/zeolite was prepared by dissolving Fe2O3 fine powder and Y-type zeolite (catalyst support material) in ethanol with an Fe density of 0.5wt.% and with a zeolite density of 3.5wt.%. The catalyst-coated Si substrate was transferred immediately onto a hotplate and was heated at 80°C for 5 min. Similarly, Fe2O3/Al2O3, Co/zeolite/Al2O3, Co/zeolite, and Co/Al2O3 were prepared. The effect of the difference of the composite catalysts on synthesis of MWCNCs was considered. The CVD reactor was heated in a tubular furnace to 660-790°C in a nitrogen atmosphere at a flow rate of 1000 ml/min. Subsequently, acetylene was mixed with nitrogen at a flow rate ratio of C2H2/N2 = 0.02-0.1. The reaction was kept under these conditions for 10 min. MWCNTs and MWCNCs were well grown by the catalysts of Co/zeolite and Co/Al2O3. The composition ratio of MWCNCs to MWCNTs was increased by using a combination of zeolite and Al2O3. The highest composition ratio of MWCNCs to MWCNTs was 12%.

  11. Alkaline leaching for synthesis of improved Fe-ZSM5 catalysts

    OpenAIRE

    Melian-Cabrera, [No Value; Espinosa, S.; Mentruit, C; Kapteijn, F.; Moulijn, JA; Melián-Cabrera, I.

    2006-01-01

    Fe-ZSM5 catalysts were fully Fe-exchanged by pretreating the parent zeolite with base a solution prior to the Fe-exchange. The catalysts prepared in this way showed very low amount of inactive FeOx and improved performance in N2O decomposition. Alkaline leaching breaks down the zeolite crystals - which shorten the diffusional lengths - and the Fe-exchange is completed. The improved performance is related to the higher amount of Fe exchanged into the Bronsted sites. (C) 2005 Elsevier B.V. All ...

  12. Natural zeolites - origin and mechanism of action

    International Nuclear Information System (INIS)

    The chemical composition and the crystalline structure explain ion exchange, adsorption selectivity, acidity and stability of zeolites. The properties of the two most important natural zeolites, e.g. Klinoptilolite and mordenite are described in detail. This includes petrography, chemical modification and applications. (orig.)

  13. Moessbauer spectroscopy study of a natural zeolite

    International Nuclear Information System (INIS)

    With the help of Moessbauer spectroscopy, it was established that iron in natural zeolites occupies positions in the aluminosilicate structure in place of aluminium; the positions of iron are octahedricals, and the valency is 3+; it was shown too, that the zeolite is geometrically stable to acid treatment, notwithstanding the formation of vacancies during acid treatments. (author)

  14. Method of producing zeolite encapsulated nanoparticles

    DEFF Research Database (Denmark)

    2015-01-01

    The invention therefore relates to a method for producing zeolite, zeolite-like or zeotype encapsulated metal nanoparticles, the method comprises the steps of: 1) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal nanopart......The invention therefore relates to a method for producing zeolite, zeolite-like or zeotype encapsulated metal nanoparticles, the method comprises the steps of: 1) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal...... nanoparticles on the surface of the silica or alumina source; 3) Passing a gaseous hydrocarbon, alkyl alcohol or alkyl ether over the silica or alumina supported metal nanoparticles to form a carbon template coated zeolite, zeolite-like or zeotype precursor composition; 4a) Adding a structure directing agent...... template and structure directing agent and isolating the resulting zeolite, zeolite-like or zeotype encapsulated metal nanoparticles...

  15. Preparation of Zeolite-metal Composite Membrane

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A NaA zeolite membrane was synthesized on the surface of the stainless steel slab. The membrane was characterized by XRD and SEM. The membrane was continuous and highly intergrown. The size of NaA zeolite crystals was about 5 ~ 6 mm.

  16. Dynamics Studies on Molecular Diffusion in Zeolites

    Institute of Scientific and Technical Information of China (English)

    王秋霞; 樊建芬; 肖鹤鸣

    2003-01-01

    A review about the applications of molecular dynamics(MD)simulation in zeolites is presented. MD simulation has been proved to be a useful tool due to its applications in this field for the recent two decades. The fundamental theory of MD is introduced and the hydrocarbon diffusion in zeolites is mainly focused on in this paper.

  17. Selective catalytic reduction of nitric oxide by methane over cerium and silver ion-exchanged ZSM-5 zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijiang; Flytzani-Stephanopoulos, Maria [Department of Chemical Engineering, Tufts University, Medford, MA (United States)

    1997-12-31

    A new catalyst comprising cerium and silver ion-exchanged ZSM-5 zeolite is reported in this paper, for the reduction of nitric oxide by methane in the presence of excess oxygen. The bi-cation exchanged Ce-Ag-ZSM-5 catalyst was very active for this reaction, while either Ce-ZSM-5 or Ag-ZSM-5 alone showed low activity. The presence of oxygen in the feed gas mixture enhanced the activity of the catalyst and the NO conversion to N{sub 2} increased with the CH{sub 4}/NO ratio and Ag loading of the zeolite. The presence of water vapor had a small adverse effect on the catalyst activity. The coexistence of Ce and Ag ions in the zeolite is crucial for achieving high NO conversion to N{sub 2}. A small amount of cerium is adequate to promote the selective catalytic reduction of NO. The two main functions of Ce ions are (1) to provide the Ag ion sites with NO{sub 2} by catalyzing the oxidation of NO to NO{sub 2} and (2) to suppress the direct CH{sub 4} oxidation to CO{sub 2}. The Ag sites are the active centers where the reaction of NO{sub 2} with CH{sub 4} takes place

  18. Homogeneous catalysts

    CERN Document Server

    Chadwick, John C; Freixa, Zoraida; van Leeuwen, Piet W N M

    2011-01-01

    This first book to illuminate this important aspect of chemical synthesis improves the lifetime of catalysts, thus reducing material and saving energy, costs and waste.The international panel of expert authors describes the studies that have been conducted concerning the way homogeneous catalysts decompose, and the differences between homogeneous and heterogeneous catalysts. The result is a ready reference for organic, catalytic, polymer and complex chemists, as well as those working in industry and with/on organometallics.

  19. Nuclear waste treatment using Iranian natural zeolites (a brief review)

    International Nuclear Information System (INIS)

    The natural zeolite research in Iran is a relatively new subject, which has started about 12 years ago. This paper intends to review some performed research in the field of nuclear wastewater using zeolites in our laboratory. The results of various research work on the natural zeolites as well as on some relevant synthetic zeolites will be discussed in this article. (author)

  20. Ion exchange investigation on the Syrian zeolite

    International Nuclear Information System (INIS)

    We have studied the ion exchange process by using Syrian zeolite from the region of Tell-Assis with four solutions containing these ions: Ag+, NH4+, Pb2+, and Cu2+. It was found that the required time to reach the equilibrium is 6-8 hours, and depends on the type of ion. the exchange capacity mainly depends on the type of ions, and range between 0.5-1.57 m. mol/g. The effect of pH on ion exchange capacity was obvious and the best results were reached when the pH ranged between 5+ will exchange with univalent and bivalent ions in the zeolite, whereas the bivalent ions as Pb+2 will preferentially exchange with the bivalent ions in the zeolite. we concluded that the used zeolite gave good results compared with some known zeolite. (Author)