WorldWideScience

Sample records for beta spectrometers

  1. MONSTER: a TOF Spectrometer for beta-delayed Neutron Spetroscopy

    CERN Document Server

    Martinez, T; Castilla, J; Garcia, A R; Marin, J; Martinez, G; Mendoza, E; Santos, C; Tera, F; Jordan, M D; Rubio, B; Tain, J L; Bhattacharya, C; Banerjee, K; Bhattacharya, S; Roy, P; Meena, J K; Kundu, S; Mukherjee, G; Ghosh, T K; Rana, T K; Pandey, R; Saxena, A; Behera, B; Penttila, H; Jokinen, A; Rinta-Antila, S; Guerrero, C; Ovejero, M C; Villamarin, D; Agramunt, J; Algora, A

    2014-01-01

    Beta-delayed neutron (DN) data, including emission probabilities, P-n, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

  2. Field transportable beta spectrometer. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Test Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies. One such capability being addressed by the D and D Focus Area is rapid characterization for facility contaminants. The technology was field demonstrated during the period January 7 through January 9, 1997, and offers several potential benefits, including faster turn-around time, cost reduction, and reduction in secondary waste. This report describes a PC controlled, field-transportable beta counter-spectrometer which uses solid scintillation coincident counting and low-noise photomultiplier tubes to count element-selective filters and other solid media. The dry scintillation counter used in combination with an element-selective technology eliminates the mess and disposal costs of liquid scintillation cocktails. Software in the instrument provides real-time spectral analysis. The instrument can detect and measure Tc-99, Sr-90, and other beta emitters reaching detection limits in the 20 pCi range (with shielding). Full analysis can be achieved in 30 minutes. The potential advantages of a field-portable beta counter-spectrometer include the savings gained from field generated results. The basis for decision-making is provided with a rapid turnaround analysis in the field. This technology would be competitive with the radiometric analysis done in fixed laboratories and the associated chain of custody operations.

  3. Efficiency Calibration of a Mini-Orange Type beta-Spectrometer by the $\\beta^{-}$-Spectrum of $^{90}$Sr

    CERN Document Server

    Kalinnikov, V G; Solnyshkin, A A; Sereeter, Z; Lebedev, N A; Chumin, V G; Ibrakhin, Ya S

    2002-01-01

    A specific method for efficiency calibration of a mini-orange type beta-spectrometer by means of the continuous beta^{-}-spectrum of ^{90}Sr and the conversion electron spectrum of ^{207}Bi in the energy range from 500 to 2200 keV has been elaborated. In the experiment typical SmCo_5 magnets (6A and 8A) were used. An accuracy of efficiency determination was 5-10 %.

  4. Search for new physics in $\\beta$-neutrino correlations using trapped ions and a retardation spectrometer

    CERN Multimedia

    Coeck, S; Lienard, E; Zboril, M; Zakoucky, D; Severijns, N

    2002-01-01

    The WITCH set-up is a combination of two Penning ion traps and a retardation spectrometer for recoil ions from $\\beta$-decay. It was installed at ISOLDE in the past four years. In this addendum the present status of the experiment is described and beam time is asked to further improve the set-up and perform first measurements.

  5. The DOE Automated Radioxenon Sampler-Analyzer (ARSA) Beta-Gamma Coincidence Spectrometer Data Analyzer

    Science.gov (United States)

    2000-09-01

    detected using the counting system given the daily fluctuations in Radon gas interference, the background counts, the memory effect of previous...THE DOE AUTOMATED RADIOXENON SAMPLER-ANALYZER (ARSA) BETA-GAMMA COINCIDENCE SPECTROMETER DATA ANALYZER T.R. Heimbigner, T.W. Bowyer, J.I...1830 ABSTRACT The Automated Radioxenon Sampler/Analyzer (ARSA) developed at the Pacific Northwest National Laboratory for the Comprehensive

  6. A beta-ray spectrometer based on a two-or three silicon detector coincidence telescope

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S. [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics; Weizman, Y. [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics; Hirning, C.R. [Health Physics Dept., Ontario Hydro, Whitby (Canada)

    1995-03-11

    This report describes the operation of a beta-ray energy spectrometer based on a silicon detector telescope using two or three elements. The front detector is a planar, totally-depleted, silicon surface barrier detector that is 97 {mu}m thick, the back detector is a room-temperature, lithium compensated, silicon detector that is 5000 {mu}m thick, and the intermediate detector is similar to the front detector but 72 {mu}m thick and intended to be used only in intense photon fields. The three detectors are mounted in a light-tight aluminum housing. The capability of the spectrometer to reject photons is based upon the fact that the incident photon will have a small probability of simultaneously losing detectable energy in two detectors, and an even smaller probability of losing detectable energy in all three detectors. Electrons will, however, almost always record measurable events in either the front two or all three detectors. A coincidence requirement between the detectors thus rejects photon induced events. With a 97 {mu}m thick detector the lower energy coincidence threshold is approximately 110 keV. With an ultra-thin 40 {mu}m thick front detector, and operated at 15 C, the spectrometer is capable of detecting even 60-70 keV electrons with a coincidence efficiency of 60%. The spectrometer has been used to measure beta radiation fields in CANDU reactor working environments, and the spectral information is intended to support dose algorithms for the LiF TLD chips used in the Ontario Hydro dosimetry program. (orig.).

  7. A beta ray spectrometer based on a two-, or three-element silicon detector coincidence telescope

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S.; Weizman, Y. [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics; Hirning, C.R. [Ontario Hydro, Whitby, ON (Canada). Health Physics Dept.

    1995-12-31

    The operation of a beta ray energy spectrometer based on a two-or three-element silicon detector telescope is described. The front detector (A) is a thin, totally depleted, silicon surface barrier detector either 40 {mu}m, 72 {mu}m or 98 {mu}m thick. The back detector (C) is a Li compensated silicon detector, 5000 {mu}m thick. An additional thin detector can be inserted between these two detectors when additional photon rejection capability is required in intense photon fields. The capability of the spectrometer to reject photons is based on the fact that incident photons will have a small probability of simultaneously losing detectable energy in two detectors and an even smaller probability of losing detectable energy in all three detectors. Electrons, however, above a low energy threshold, will always record simultaneous, events in all three detectors. The spectrometer is capable of measuring electron energies from a lower energy coincidence threshold of 70 keV with 60% efficiency increasing to 100% efficiency in the energy region between 150 keV and 2.5 MeV. (Author).

  8. Efficiency calibration of a mini-orange type beta-spectrometer by the beta sup - -spectrum of sup 9 sup 0 Sr

    CERN Document Server

    Kalinnikov, V G; Ibrakhim, Y S; Lebedev, N A; Samatov, Z K; Sehrehehtehr, Z; Solnyshkin, A A

    2002-01-01

    A specific method for efficiency calibration of a mini-orange type beta-spectrometer by means of the continuous beta sup - -spectrum of sup 9 sup 0 Sr and the conversion electron spectrum of sup 2 sup 0 sup 7 Bi in the energy range from 500 to 2200 keV has been elaborated. In the experiment typical SmCo sub 5 magnets (6A and 8A) were used. An accuracy of efficiency determination was 5-10 %.

  9. The Proton Spectrum in Neutron Beta Decay: First Results with the aSPECT spectrometer

    Science.gov (United States)

    Baeßler, S.; Angerer, H.; Ayala Guardia, F.; Borg, M.; Eberhardt, K.; Glück, F.; Heil, W.; Konorov, I.; Konrad, G.; Luquero Llopis, N.; Muñoz Horta, R.; Orlowski, M.; Petzoldt, G.; Rich, D.; Simson, M.; Sobolev, Y.; Wirth, H. F.; Zimmer, O.

    2006-11-01

    First measurements with the aSPECT spectrometer have been performed in a beam time at the beam line MEPHISTO of the neutron research reactor FRM-II. In this paper we give a short description of the spectrometer. The data analysis is still underway.

  10. Measurement of the proton recoil spectrum in neutron beta decay with the spectrometer aSPECT. Study of systematic effects

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Gertrud Emilie

    2012-01-24

    Free neutron decay, n{yields}pe anti {nu}{sub e}, is the simplest nuclear beta decay, well described as a purely left-handed, vector minus axial-vector interaction within the framework of the Standard Model (SM) of elementary particles and fields. Due to its highly precise theoretical description, neutron beta decay data can be used to test certain extensions to the SM. Possible extensions require, e.g., new symmetry concepts like left-right symmetry, new particles, leptoquarks, supersymmetry, or the like. Precision measurements of observables in neutron beta decay address important open questions of particle physics and cosmology, and are generally complementary to direct searches for new physics beyond the SM in high-energy physics. In this doctoral thesis, a measurement of the proton recoil spectrum with the neutron decay spectrometer aSPECT is described. From the proton spectrum the antineutrinoelectron angular correlation coefficient a can be derived. In our first beam time at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany (2005-2006), background instabilities due to particle trapping and the electronic noise level of the proton detector prevented us from presenting a new value for a. In the latest beam time at the Institut Laue-Langevin (ILL) in Grenoble, France (2007-2008), the trapped particle background has been reduced sufficiently and the electronic noise problem has essentially been solved. For the first time, a silicon drift detector was used. As a result of the data analysis, we identified and fixed a problem in the detector electronics which caused a significant systematic error. The target figure of the latest beam time was a new value for a with a total relative error well below the present literature value of 4 %. A statistical accuracy of about 1.4% was reached, but we could only set upper limits on the correction of the problem in the detector electronics, which are too high to determine a meaningful result. The present

  11. A 36 m SANS BATAN spectrometer (SMARTer): Probing n-dodecyl-{beta}-D-maltoside micelles structures by a contrast variation

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia)], E-mail: e.giri@centrin.net.id; Ikram, Abarrul [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia)

    2009-02-21

    The performance of a 36 m small-angle neutron scattering (SANS) BATAN spectrometer (SMARTer) in Serpong, Indonesia, was explored in investigating a micelle structure by a contrast variation technique, changing the H{sub 2}O/D{sub 2}O ratio as aqueous solution. Micellar solution of n-dodecyl-{beta}-D-maltoside was chosen for its sensitivity in various concentrations of 0% D{sub 2}O, 50% D{sub 2}O and 100% D{sub 2}O to reveal the detail structures of the micelle. At first, a spherical lognormal model calculation was employed and fitted on the experimental data to obtain the size range of the micelle. The refinement of the micelle structure was then completed using an oblate-core shell ellipsoid model calculation. The results show that the micelle is composed of 4-9 A thick disaccharides group as a shell or corona layer, while over all the oblate ellipsoid micelle structure has major-axis and minor-axis of 34 and 18 A, respectively.

  12. Studies of the $\\beta$-decay of Kr and Sr nuclei on and near the N=Z line with a Total Absorption $\\gamma$-ray Spectrometer

    CERN Multimedia

    2002-01-01

    It is proposed to measure the Gamow-Teller strength distribution in the decays of $^{71-75}$Kr and $^{75,76}$Sr using a Total Absorption Gamma-ray Spectrometer (TAGS) based on a large NaI(TI) detector. The $\\gamma$-rays emitted in these decays will be detected in the TAGS in coincidence with positrons and X-rays from electron capture. Measurements of $\\beta$-delayed particles will also be performed in coincidence with the TAGS. Comparison with theoretical calculations based on the mean field approach, Tamm-Dancoff and QRPA method should allow a determination of the shapes of the ground states of these nuclei.

  13. Feasibility of photoelectron sources for testing the energy scale stablity of the KATRIN beta-ray spectrometer

    CERN Document Server

    Dragoun, O; Kaspar, J; Bonn, J; Kovalik, A; Otten, E W; Venos, D; Weinheimer, Ch

    2010-01-01

    Photoabsorption of nuclear gamma-rays in thin metallic convertors was examined with the aim to produce monoenergetic photoelectrons of kinetic energy around 18.6 keV and natural width of about 1 eV. Calculations were carried out for commercial photon sources of 241Am (1.1 GBq) and 119mSn (0.5 GBq) irradiating Co and Ti convertors. Photoelectrons ejected by 241Am gamma- and X-rays from Co convertors of various thickness were measured with two electrostatic spectrometers.

  14. Measurement of the electron-antineutrino angular correlation coefficient a in neutron beta decay with the spectrometer aSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, G.

    2007-08-29

    In the four beam times we performed at the FRM-II, we were able to show that the spectrometer works in principle and that a determination of a with it is possible. A set of routines has been written for decoding and analyzing the raw data. The routines are written in C using the ROOT libraries and can be easily adapted or expanded. We have found a reliable way to extract the proton count rates from the data by building pulseheight spectra for each measurement, subtracting background measurements from those and fitting the resulting peak with a Gaussian. The background of the measurements was studied in detail. The background caused by electrons from neutron decay is very well understood and conforms quantitatively to our expectation. Due to the spatial resolution of our detector and the time resolution provided by our DAQ electronics, we were able to study correlated electron-proton pairs from one neutron decay event. They form a clearly visible peak in a time- and channel-distance spectrum, which can be shifted in the channel-dimension by varying the voltages applied to the lower and upper E x B electrodes. Performing a pulseheight analysis for both involved particles allowed us to obtain a fairly clean energy spectrum of the background caused by electrons from neutron decay in our detector. Using these correlations for data analysis may be of interest for future neutron decay experiments which use segmented detectors. (orig.)

  15. Monolithic spectrometer

    Science.gov (United States)

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  16. Studies of the $\\beta$-decay of Sr nuclei on and near the N=Z Line with a Total Absorption Gamma-ray Spectrometer

    CERN Multimedia

    Marechal, F; Caballero ontanaya, L

    2002-01-01

    In the framework of the investigation of the shapes of the ground states of the parent nucleus, we propose to carry out measurements of the complete Gamow-Teller strength distribution for the $^{76-80}$Sr isotopes, with a new Total Absorption Gamma Spectrometer installed on a new beam line. The results will be compared with theoretical calculations based on the mean field approach. A brief report on the IS370 experiment on $^{72-75}$Kr decay, which was recently performed at ISOLDE, will be given and the performance of the sum spectrometer will be presented.

  17. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  18. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  19. Spectrometer gun

    Science.gov (United States)

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  20. Neutron Beta Decay Studies with Nab

    CERN Document Server

    Baeßler, S; Alonzi, L P; Balascuta, S; Barrón-Palos, L; Bowman, J D; Bychkov, M A; Byrne, J; Calarco, J R; Chupp, T; Vianciolo, T V; Crawford, C; Frlež, E; Gericke, M T; Glück, F; Greene, G L; Grzywacz, R K; Gudkov, V; Harrison, D; Hersman, F W; Ito, T; Makela, M; Martin, J; McGaughey, P L; McGovern, S; Page, S; Penttilä, S I; Počanić, D; Rykaczewski, K P; Salas-Bacci, A; Tompkins, Z; Wagner, D; Wilburn, W S; Young, A R

    2012-01-01

    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.

  1. The Spectrometer

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  2. MASS SPECTROMETER

    Science.gov (United States)

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  3. Portable triple silicon detector telescope spectrometer for skin dosimetry

    DEFF Research Database (Denmark)

    Helt-Hansen, J.; Larsen, H.E.; Christensen, P.

    1999-01-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50 mu m/150 mu m/7000 mu m covered by a 2 mu m thick titanium window. Rejection of photon contributions from mixed beta/photon exposures...... detectors. The LabVIEW(TM) software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer...

  4. Development of Miniature Spectrometers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-guo

    2007-01-01

    Spectrometer is an essential and necessary optical element used for measuring the chemical components and content of the matter.The development of miniature spectrometers can be traced back to 1980s.The development state and different manufacturing methods of micro-spectrometers are presented.Finally,we analyze the miniaturization trend of spectrometers.Some groundwork for the scientific research is offered by introducing micro-spectrometers development.

  5. A SSS Spectrometer

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The SSS spectrometer, so called simple scintillation spectrometer, is made by BTI (Bubble Technology Industries). The spectrometer can be used in the neutron energy range from 4.0 to 17 MeV. The SSS includes two sections: A probe and an analyzer module

  6. Beta Thalassemia

    Science.gov (United States)

    Beta thalassemia is found in people of Mediterranean, Middle Eastern, African, South Asian (Indian, Pakistani, etc.), Southeast Asian and Chinese descent. 1 Beta Thalassemia ßß Normal beta globin genes found on chromosomes ...

  7. The SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, J.; Papadakis, P. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2014-03-15

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  8. Portable triple silicon detector telescope spectrometer for skin dosimetry

    Science.gov (United States)

    Helt-Hansen, J.; Larsen, H. E.; Christensen, P.

    1999-12-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50μm/150μm/7000μm covered by a 2μm thick titanium window. Rejection of photon contributions from mixed beta/photon exposures is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact, portable processing unit including a laptop computer executing control, monitor, histogram and display tasks. The use of digital signal processing at an early stage of the signal chain has facilitated the achievement of a compact, low-weight device. 256 channels are available for each of the three detectors. The LabVIEWTM software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer to measure beta and photon spectra as well as beta dose rates in mixed beta/photon radiation fields. It also describes the main features of the digital signal-processing electronics.

  9. Improved Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Mass Spectrometer project will develop system requirements and analyze the path to space qualification.   The results of this project...

  10. Fourier Transform Spectrometer System

    Science.gov (United States)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  11. Compact Grism Spectrometer

    Science.gov (United States)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  12. Miniaturised TOF mass spectrometer

    Science.gov (United States)

    Rohner, U.; Wurz, P.; Whitby, J.

    2003-04-01

    For the BepiColombo misson of ESA to Mercury, we built a prototype of a miniaturised Time of Flight mass spectrometer with a low mass and low power consumption. Particles will be set free form the surface and ionized by short laser pluses. The mass spectrometer is dedicated to measure the elemental and isotopic composition of almost all elements of Mercurys planetary surface with an adequate dynamique range, mass range and mass resolution. We will present first results of our prototype and future designs.

  13. The GRIFFIN spectrometer

    Science.gov (United States)

    Svensson, C. E.; Garnsworthy, A. B.

    2014-01-01

    Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) is an advanced new high-efficiency γ-ray spectrometer being developed for use in decay spectroscopy experiments with low-energy radioactive ion beams provided by TRIUMF's Isotope Separator and Accelerator (ISAC-I) radioactive ion beam facility. GRIFFIN will be comprised of sixteen large-volume clover-type high-purity germanium (HPGe) γ-ray detectors coupled to custom digital signal processing electronics and used in conjunction with a suite of auxiliary detection systems. This article provides an overview of the GRIFFIN spectrometer and its expected performance characteristics.

  14. Speckle-based spectrometer

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2015-01-01

    A novel spectrometer concept is analyzed and experimentally verified. The method relies on probing the speckle displacement due to a change in the incident wavelength. A rough surface is illuminated at an oblique angle, and the peak position of the covariance between the speckle patterns observed...

  15. The Omega spectrometer

    CERN Multimedia

    1972-01-01

    The Omega spectrometer which came into action during the year. An array of optical spark chambers can be seen withdrawn from the magnet aperture. In the 'igloo' above the magnet is located the Plumbicon camera system which collects information from the spark chambers.

  16. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    CERN Document Server

    Arenz, M; Bahr, M; Barrett, J P; Bauer, S; Beck, M; Beglarian, A; Behrens, J; Bergmann, T; Besserer, U; Blümer, J; Bodine, L I; Bokeloh, K; Bonn, J; Bornschein, B; Bornschein, L; Büsch, S; Burritt, T H; Chilingaryan, S; Corona, T J; De Viveiros, L; Doe, P J; Dragoun, O; Drexlin, G; Dyba, S; Ebenhöch, S; Eitel, K; Ellinger, E; Enomoto, S; Erhard, M; Eversheim, D; Fedkevych, M; Felden, A; Fischer, S; Formaggio, J A; Fränkle, F; Furse, D; Ghilea, M; Gil, W; Glück, F; Urena, A Gonzalez; Görhardt, S; Groh, S; Grohmann, S; Grössle, R; Gumbsheimer, R; Hackenjos, M; Hannen, V; Harms, F; Hauÿmann, N; Heizmann, F; Helbing, K; Herz, W; Hickford, S; Hilk, D; Hillen, B; Höhn, T; Holzapfel, B; Hötzel, M; Howe, M A; Huber, A; Jansen, A; Kernert, N; Kippenbrock, L; Kleesiek, M; Klein, M; Kopmann, A; Kosmider, A; Kovalík, A; Krasch, B; Kraus, M; Krause, H; Krause, M; Kuckert, L; Kuffner, B; La Cascio, L; Lebeda, O; Leiber, B; Letnev, J; Lobashev, V M; Lokhov, A; Malcherek, E; Mark, M; Martin, E L; Mertens, S; Mirz, S; Monreal, B; Müller, K; Neuberger, M; Neumann, H; Niemes, S; Noe, M; Oblath, N S; Off, A; Ortjohann, H -W; Osipowicz, A; Otten, E; Parno, D S; Plischke, P; Poon, A W P; Prall, M; Priester, F; Ranitzsch, P C -O; Reich, J; Rest, O; Robertson, R G H; Röllig, M; Rosendahl, S; Rupp, S; Rysavy, M; Schlösser, K; Schlösser, M; Schönung, K; Schrank, M; Schwarz, J; Seiler, W; Seitz-Moskaliuk, H; Sentkerestiova, J; Skasyrskaya, A; Slezak, M; Spalek, A; Steidl, M; Steinbrink, N; Sturm, M; Suesser, M; Telle, H H; Thümmler, T; Titov, N; Tkachev, I; Trost, N; Unru, A; Valerius, K; Venos, D; Vianden, R; Vöcking, S; Wall, B L; Wandkowsky, N; Weber, M; Weinheimer, C; Weiss, C; Welte, S; Wendel, J; Wierman, K L; Wilkerson, J F; Winzen, D; Wolf, J; Wüstling, S; Zacher, M; Zadoroghny, S; Zboril, M

    2016-01-01

    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of t...

  17. In Situ Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The In Situ Mass Spectrometer projects focuses on a specific subsystem to leverage advanced research for laser-based in situ mass spectrometer development...

  18. The Composite Infrared Spectrometer

    Science.gov (United States)

    Calcutt, Simon; Taylor, Fredric; Ade, Peter; Kunde, Virgil; Jennings, Donald

    1992-01-01

    The Composite Infrared Spectrometer (CIRS) is a remote sensing instrument to be flown on the Cassini orbiter. It contains two Fourier transform spectrometers covering wavelengths of 7-1000 microns. The instrument is expected to have higher spectral resolution, smaller field of view, and better signal-to-noise performance than its counterpart, IRIS, on the Voyager missions. These improvements allow the study of the variability of the composition and temperature of the atmospheres of both Saturn and Titan with latitude, longitude and height, as well as allowing the possibility of discovery of previously undetected chemical species in these atmospheres. The long wavelengths accessible to CIRS allow sounding deeper into both atmospheres than was possible with IRIS.

  19. Surface Plasmon Based Spectrometer

    Science.gov (United States)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  20. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  1. Miniaturized Ion Mobility Spectrometer

    Science.gov (United States)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  2. Galileo Ultraviolet Spectrometer experiment

    Science.gov (United States)

    Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.

    1992-01-01

    The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.

  3. Development of Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S. (and others)

    2007-06-15

    Neutron spectrometers which are used in the basic researches such as physics, chemistry and materials science and applied in the industry were developed at the horizontal beam port of HANARO reactor. In addition, the development of core components for neutron scattering and the upgrade of existing facilities are also performed. The vertical neutron reflectometer was fabricated and installed at ST3 beam port. The performance test of the reflectometer was completed and the reflectometer was opened to users. The several core parts and options were added in the polarized neutron spectrometer. The horizontal neutron reflectometer from Brookhaven National Laboratory was moved to HANARO and installed, and the performance of the reflectometer was examined. The HIPD was developed and the performance test was completed. The base shielding for TAS was fabricated. The soller collimator, Cu mosaic monochromator, Si BPC monochromator and position sensitive detector were developed and applied in the neutron spectrometer as part of core component development activities. In addition, the sputtering machine for mirror device are fabricated and the neutron mirror is made using the sputtering machine. The FCD was upgraded and the performance of the FCD are improved over the factor of 10. The integration and upgrade of the neutron detection system were also performed.

  4. Mass spectrometers: instrumentation

    Science.gov (United States)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  5. MASS SPECTROMETER LEAK

    Science.gov (United States)

    Shields, W.R.

    1960-10-18

    An improved valve is described for precisely regulating the flow of a sample fluid to be analyzed, such as in a mass spectrometer, where a gas sample is allowed to "leak" into an evacuated region at a very low, controlled rate. The flow regulating valve controls minute flow of gases by allowing the gas to diffuse between two mating surfaces. The structure of the valve is such as to prevent the corrosive feed gas from contacting the bellows which is employed in the operation of the valve, thus preventing deterioration of the bellows.

  6. Overview of the Axial Field Spectrometer in the ISR tunnel

    CERN Multimedia

    1980-01-01

    A view of the Axial Field Spectrometer – the last large experiment at the ISR. The horizontal top and vertical outer arrays of the uranium-scintillator hadron calorimeter are clear to be seen, with the blue cylindrical pole piece of the magnet just visible. The pipes that are visible in front of the pole piece are cryogenic feed pipes for the superconducting low-beta quadrupoles.

  7. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  8. The SPEDE electron spectrometer

    CERN Document Server

    O'Neill, George

    This thesis presents SPEDE (SPectrometer for Electron DEtection) and documents its construction, testing and performance during commissioning at Jyvaskyla, Finland, before deployment at the HIE-ISOLDE facility at CERN coupled with the MINIBALL array to perform in-beam electron-gamma spectroscopy using post-accelerated radioactive ion beams. Commissioning experiments took place in two two-day stints during spring 2015, coupled with several JUROGAMII gamma-detectors. This spectrometer will help aid in fully understanding exotic regions of the nuclear chart such as regions with a high degree of octupole deformation, and in those nuclei exhibiting shape coexistence. For the rst time, electron spectroscopy has been performed at the target position from states populated in accelerated nuclei via Coulomb excitation. The FWHM of SPEDE is approximately 7 keV at 320 keV, and Doppler correction was possible to improve Doppler broadened peaks. The results are intended to give the reader a full understanding of the dete...

  9. Simulation of the SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.M.; Herzberg, R.D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Hauschild, K. [Universite Paris-Sud, CSNSM-IN2P3-CNRS, Orsay (France)

    2015-06-15

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  10. Spatial heterodyne spectrometer for FLEX

    Science.gov (United States)

    Scott, Alan; Zheng, Sheng-Hai; Brown, Stephen; Bell, Andrew

    2007-10-01

    A spatial heterodyne spectrometer (SHS) has significant advantages for high spectral resolution imaging over narrow pre-selected bands compared to traditional solutions. Given comparable optical étendue at R~6500, a field-widened SHS will have a throughput-resolution product ~170 x larger than an air-spaced etalon spectrometer, and ~1000 x larger than a standard grating spectrometer. The monolithic glass Michelson design and lack of moving parts allows maximum stability of spectral calibration over the mission life. For these reasons, SHS offers considerable advantages for the core spectrometer instrument in the European Space Agency's (ESA) Fluorescence Explorer (FLEX) mission.

  11. VEGAS: VErsatile GBT Astronomical Spectrometer

    Science.gov (United States)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  12. Photo ion spectrometer

    Science.gov (United States)

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  13. Aerosol mobility size spectrometer

    Science.gov (United States)

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  14. Spectrometers and Polyphase Filterbanks in Radio Astronomy

    CERN Document Server

    Price, Danny C

    2016-01-01

    This review gives an introduction to spectrometers and discusses their use within radio astronomy. While a variety of technologies are introduced, particular emphasis is given to digital systems. Three different types of digital spectrometers are discussed: autocorrelation spectrometers, Fourier transform spectrometers, and polyphase filterbank spectrometers. Given their growing ubiquity and significant advantages, polyphase filterbanks are detailed at length. The relative advantages and disadvantages of different spectrometer technologies are compared and contrasted, and implementation considerations are presented.

  15. Novel Micro Fourier Transform Spectrometers

    Institute of Scientific and Technical Information of China (English)

    KONG Yan-mei; LIANG Jing-qiu; LIANG Zhong-zhu; WANG-Bo; ZHANG Jun

    2008-01-01

    The miniaturization of spectrometer opens a new application area with real-time and on-site measurements. The Fourier transform spectrometer(FTS) is much attractive considering its particular advantages among the approaches. This paper reviews the current status of micro FTS in worldwide and describes its developments; In addition, analyzed are the key problems in designing and fabricating FTS to be settled during the miniaturization. Finally, a novel model of micro FTS with no moving parts is proposed and analyzed, which may provide new concepts for the design of spectrometers.

  16. Adaptive Computed Tomography Imaging Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The present proposal describes the development of an adaptive Computed Tomography Imaging Spectrometer (CTIS), or "Snapshot" spectrometer which can "instantaneously"...

  17. Development of a portable triple silicon detector telescope for beta spectroscopy and skin dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Helt-Hansen, J

    2000-11-01

    It is now recognized that beta radiation can be a significant radiation problem for exposure of the skin. There is thus a need for a portable and rugged active beta dosemeter-spectrometer to carry out immediate measurements of doses and energies of beta particles even in the presence of photon radiation. The main objective of this report is to describe the development of such an instrument. A beta-spectrometer has been developed consisting of three silicon surface barrier detectors with the thickness: 50{mu}m/150{mu}m/7000{mu}m covered by a 2 {mu}m thick titanium window. The spectrometer is capable of measuring electron energies from 50 keV to 3.5 MeV. The spectrometer is characterized by a compact low weight design, achieved by digital signal processing beginning at an early stage in the signal chain. 255 channels are available for each of the three detectors. The spectrometer is controlled by a laptop computer, which also handles all subsequent data analysis. By use of coincidence/anti-coincidence considerations of the absorbed energy in the three detector elements, counts caused by electrons are separated from those originating from photons. The electron energy distribution is multiplied by a set of conversion coefficients to obtain the dose at 0.07 mm tissue. Monte Carlo calculations has been used to derive the conversion coefficients and to investigate the influence of noise and the design of detector assembly on the performance of the spectrometer. This report describes the development of the spectrometer and its mode of operation, followed by a description of the Monte Carlo calculations carried out to obtain the conversion coefficients. Finally is the capability of the telescope spectrometer to measure beta and photon spectra as well as beta dose rates in pure beta and mixed beta/photon radiation fields described. (au)

  18. The GRAVITY spectrometers: optical qualification

    Science.gov (United States)

    Yazici, Senol; Straubmeier, Christian; Wiest, Michael; Wank, Imke; Fischer, Sebastian; Horrobin, Matthew; Eisenhauer, Frank; Perrin, Guy; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2014-07-01

    GRAVITY1 is a 2nd generation Very Large Telescope Interferometer (VLTI) operated in the astronomical K-band. In the Beam Combiner Instrument2 (BCI) four Fiber Couplers3 (FC) will feed the light coming from each telescope into two fibers, a reference channel for the fringe tracking spectrometer4 (FT) and a science channel for the science spectrometer4 (SC). The differential Optical Path Difference (dOPD) between the two channels will be corrected using a novel metrology concept.5 The metrology laser will keep control of the dOPD of the two channels. It is injected into the spectrometers and detected at the telescope level. Piezo-actuated fiber stretchers correct the dOPD accordingly. Fiber-fed Integrated Optics6 (IO) combine coherently the light of all six baselines and feed both spectrometers. Assisted by Infrared Wavefront Sensors7 (IWS) at each Unit Telescope (UT) and correcting the path difference between the channels with an accuracy of up to 5 nm, GRAVITY will push the limits of astrometrical accuracy to the order of 10 μas and provide phase-referenced interferometric imaging with a resolution of 4 mas. The University of Cologne developed, constructed and tested both spectrometers of the camera system. Both units are designed for the near infrared (1.95 - 2.45 μm) and are operated in a cryogenic environment. The Fringe Tracker is optimized for highest transmission with fixed spectral resolution (R = 22) realized by a double-prism.8 The Science spectrometer is more diverse and allows to choose from three different spectral resolutions8 (R = [22, 500, 4000]), where the lowest resolution is achieved with a prism and the higher resolutions are realized with grisms. A Wollaston prism in each spectrometer allows for polarimetric splitting of the light. The goal for the spectrometers is to concentrate at least 90% of the ux in 2 × 2 pixel (36 × 36 μm2) for the Science channel and in 1 pixel (24 × 24 μm) in the Fringe Tracking channel. In Section 1, we present

  19. Automated Nuclear Quadruple Resonance Spectrometer

    Directory of Open Access Journals (Sweden)

    IVANCHUK, M.

    2008-06-01

    Full Text Available Improvement of an autodyne Nuclear quadruple resonance spectrometer is offered. The change of frequency of oscillatory LC circuit of the spectrometer is carried out in two ways: by varicap and variable capacitor. A processor module for the capacitor and varicap control is developed. The unit allows to scan and measure the level and frequency of the NQR-signal. The unit is controlled by the personal computer.

  20. Automated Nuclear Quadruple Resonance Spectrometer

    OpenAIRE

    2008-01-01

    Improvement of an autodyne Nuclear quadruple resonance spectrometer is offered. The change of frequency of oscillatory LC circuit of the spectrometer is carried out in two ways: by varicap and variable capacitor. A processor module for the capacitor and varicap control is developed. The unit allows to scan and measure the level and frequency of the NQR-signal. The unit is controlled by the personal computer.

  1. The MAGNEX spectrometer: Results and perspectives

    Science.gov (United States)

    Cappuzzello, F.; Agodi, C.; Carbone, D.; Cavallaro, M.

    2016-06-01

    This review discusses the main achievements and future perspectives of the MAGNEX spectrometer at the INFN-LNS laboratory in Catania (Italy). MAGNEX is a large-acceptance magnetic spectrometer for the detection of the ions emitted in nuclear collisions below Fermi energy. In the first part of the paper an overview of the MAGNEX features is presented. The successful application to the precise reconstruction of the momentum vector, to the identification of the ion masses and to the determination of the transport efficiency is demonstrated by in-beam tests. In the second part, an overview of the most relevant scientific achievements is given. Results from nuclear elastic and inelastic scattering as well as from transfer and charge-exchange reactions in a wide range of masses of the colliding systems and incident energies are shown. The role of MAGNEX in solving old and new puzzles in nuclear structure and direct reaction mechanisms is emphasized. One example is the recently observed signature of the long searched Giant Pairing Vibration. Finally, the new challenging opportunities to use MAGNEX for future experiments are briefly reported. In particular, the use of double charge-exchange reactions toward the determination of the nuclear matrix elements entering in the expression of the half-life of neutrinoless double beta decay is discussed. The new NUMEN project of INFN, aiming at these investigations, is introduced. The challenges connected to the major technical upgrade required by the project in order to investigate rare processes under high fluxes of detected heavy ions are outlined.

  2. Ultra Compact Imaging Spectrometer (UCIS)

    Science.gov (United States)

    Blaney, Diana L.; Green, Robert; Mouroulis, Pantazis; Cable, Morgan; Ehlmann, Bethany; Haag, Justin; Lamborn, Andrew; McKinley, Ian; Rodriguez, Jose; van Gorp, Byron

    2016-10-01

    The Ultra Compact Imaging Spectrometer (UCIS) is a modular visible to short wavelength infrared imaging spectrometer architecture which could be adapted to a variety of mission concepts requiring low mass and low power. Imaging spectroscopy is an established technique to address complex questions of geologic evolution by mapping diagnostic absorption features due to minerals, organics, and volatiles throughout our solar system. At the core of UCIS is an Offner imaging spectrometer using M3 heritage and a miniature pulse tube cryo-cooler developed under the NASA Maturation of Instruments for Solar System Exploration (MatISSE) program to cool the focal plane array. The TRL 6 integrated spectrometer and cryo-cooler provide a basic imaging spectrometer capability that is used with a variety of fore optics to address lunar, mars, and small body science goals. Potential configurations include: remote sensing from small orbiters and flyby spacecraft; in situ panoramic imaging spectroscopy; and in situ micro-spectroscopy. A micro-spectroscopy front end is being developed using MatISSE funding with integration and testing planned this summer.

  3. Cherenkov counting efficiencies for {beta}{sup -}-emitters in dry state in glass vials

    Energy Technology Data Exchange (ETDEWEB)

    Morita-Murase, Yuko; Murakami, Isao; Homma, Yoshio [Laboratory for Radiopharmaceutical Chemistry, Kyoritsu College of Pharmacy, Tokyo (Japan)

    2000-10-01

    Cherenkov counting efficiencies for standardized {beta}{sup -} -emitters in the dry state at the centre of air-filled glass vials were measured with a liquid scintillation spectrometer. Cherenkov counting efficiencies, which are plotted as a function of the average energy of {beta}{sup -}-particles and the internal conversion electrons, give a straight line on log-log scale. (author)

  4. The GT resonance revealed in beta sup + -decay using new experimental techniques

    CERN Document Server

    Algora, A; Rubio, B; Taín, J L; Agramunt, J; Blomqvist, J M; Batist, L; Borcea, R; Collatz, R; Gadea, A; Gerl, J; Gierlik, M; aGórska, M; Guilbaud, O; Grawe, H; Hellström, M; Hu, Z; Janas, Z; Karny, M; Kirchner, R; Kleinheinz, P; Liu, W; Martínez, T; Moroz, F; Plochocki, A; Rejmund, M; Roeckl, E; Rykaczewski, K; Shibata, M; Szerypo, J; Wittmann, V

    1999-01-01

    The GT beta decay of sup 1 sup 5 sup 0 Ho has been studied with a Total Absorption Spectrometer (TAS), with an array of 6 Euroball CLUSTER Ge detectors (the CLUSTER CUBE), and with an alpha detector. The three techniques complement each other. The results provide the first observation of an extremely sharp resonance in GT beta decay.

  5. JPL Fourier transform ultraviolet spectrometer

    Science.gov (United States)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  6. A high-throughput neutron spectrometer

    Science.gov (United States)

    Stampfl, Anton; Noakes, Terry; Bartsch, Friedl; Bertinshaw, Joel; Veliscek-Carolan, Jessica; Nateghi, Ebrahim; Raeside, Tyler; Yethiraj, Mohana; Danilkin, Sergey; Kearley, Gordon

    2010-03-01

    A cross-disciplinary high-throughput neutron spectrometer is currently under construction at OPAL, ANSTO's open pool light-water research reactor. The spectrometer is based on the design of a Be-filter spectrometer (FANS) that is operating at the National Institute of Standards research reactor in the USA. The ANSTO filter-spectrometer will be switched in and out with another neutron spectrometer, the triple-axis spectrometer, Taipan. Thus two distinct types of neutron spectrometers will be accessible: one specialised to perform phonon dispersion analysis and the other, the filter-spectrometer, designed specifically to measure vibrational density of states. A summary of the design will be given along with a detailed ray-tracing analysis. Some preliminary results will be presented from the spectrometer.

  7. Inside the ETH spectrometer magnet

    CERN Multimedia

    1974-01-01

    The ETH spectrometer magnet being prepared for experiment S134, which uses a frozen spin polarized target to study the associated production of a kaon and a lambda by negative pions interacting with protons (CERN-ETH, Zurich-Helsinki-Imperial College, London-Southampton Collaboration). (See Photo Archive 7406316)

  8. Mid infrared MEMS FTIR spectrometer

    Science.gov (United States)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  9. The smallsat TIR spectrometer MIBS

    NARCIS (Netherlands)

    Leijtens, J.A.P.; Court, A.J.; Lucas, J.W.

    2005-01-01

    In frame of the ESA Earthcare MSI study, TNO Science and Industry has developed a compact spectrometer which is optimized for operation in the 7 to 14 μm wavelength region. By optimizing the throughput of the system, and using the advantages of modern manufacturing technologies to the largest extend

  10. Alpha proton x ray spectrometer

    Science.gov (United States)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  11. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  12. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  13. New schemes of static mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Baisanov, O.A. [Military Institute of Air Defense Forces, Aktobe (Kazakhstan); Doskeyev, G.A. [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan); Spivak-Lavrov, I.F., E-mail: baisanov@mail.ru [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan)

    2011-07-21

    Different possibilities to increase the 'quality', or Q-quantity, of static mass spectrometers by expanding the ion beam before it enters the magnetic field are analyzed. The design of mass spectrometers using a cone-shaped achromatic prism is discussed. Different variants of achromatic mass spectrometers using electrostatic prisms and sector magnetic fields are also considered.

  14. Beta decay of {sup 103}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Kavatsyuk, O.; Kavatsyuk, M. [GSI, Darmstadt (Germany); National Taras Shevcjenko Univ. of Kyiv (Australia); Batist, L. [St. Petersburg Nuclear Physics Inst. (Russian Federation); Univ. di Napoli (Italy); INFN, Napoli (Italy); Banu, A.; Becker, F.; Bruechle, W.; Doering, J.; Gorska, M.; Grawe, H.; Kirchner, R.; Mandal, S.; Mazzocchi, C.; Plettner, C.; Roeckl, E.; Schaedel, M. [GSI, Darmstadt (Germany); Blazhev, A. [GSI, Darmstadt (Germany); Univ. Sofia (Bulgaria); Faestermann, T. [Technische Universitaet Muenchen (Germany); Janas, Z.; Karny, M.; Plochocki, A.; Zylicz, J. [University of Warsaw (Poland); Jungclaus, A. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica (Spain); La Commara, M.; Romoli, M. [INFN, Napoli (Italy); Mukha, I. [GSI, Darmstadt (Germany); Kurchatov Inst. Moscow (Russian Federation); Muralithar, S. [GSI, Darmstadt (Germany); Forschungszentrum Rossendorf (Germany); Schwengner, R. [Forschungszentrum Rossendorf (Germany)

    2005-08-01

    The {beta} decay of {sup 103}Sn, a three-neutron-particle nucleus with respect to the {sup 100}Sn core, was investigated at the GSI on-line mass separator using an array of 17 germanium crystals and a total absorption spectrometer. A total of 31 {beta}-delayed {gamma}-rays (29 new) of the {sup 103}Sn{yields}{sup 103}In decay were observed and, on the basis of {beta}-{gamma}-{gamma} coincidences, the {sup 103}Sn decay scheme was established for the first time. By means of total absorption spectroscopy, {beta} intensities, the Gamow-Teller strength distribution and the summed Gamow-Teller strength value of 3.5{+-}0.5 were determined for this decay. Its half-life and Q{sub EC} value were found to be 7.0{+-}0.2 s and 7.64{+-}0.7 MeV, respectively. The {beta}-delayed proton branching ratio was measured to be 1.2{+-}0.1%. The results are discussed in comparison with shell-model predictions based on realistic and empirical interactions. (orig.)

  15. On-chip spiral spectrometer

    CERN Document Server

    Redding, Brandon; Bromberg, Yaron; Sarma, Raktim; Cao, Hui

    2016-01-01

    We designed an on-chip spectrometer based on an evanescently-coupled multimode spiral waveguide. Interference between the modes in the waveguide forms a wavelength-dependent speckle pattern which can be used as a fingerprint to identify the input wavelength after calibration. Evanescent coupling between neighboring arms of the spiral enhances the temporal spread of light propagating through the spiral, leading to a dramatic increase in the spectral resolution. Experimentally, we demonstrated that a 250 {\\mu}m radius spiral spectrometer provides a resolution of 0.01 nm at a wavelength of 1520 nm. Spectra containing 40 independent spectral channels can be recovered simultaneously and the operation bandwidth can be increased further when measuring sparse spectra.

  16. Exploiting a Transmission Grating Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell

    2004-12-08

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

  17. On-Chip Random Spectrometer

    CERN Document Server

    Redding, Brandon; Sarma, Raktim

    2013-01-01

    Light scattering in disordered media has been studied extensively due to its prevalence in natural and artificial systems [1]. In the field of photonics most of the research has focused on understanding and mitigating the effects of scattering, which are often detrimental. For certain applications, however, intentionally introducing disorder can actually improve the device performance, e.g., in photovoltaics optical scattering improves the efficiency of light harvesting [2-5]. Here, we utilize multiple scattering in a random photonic structure to build a compact on-chip spectrometer. The probe signal diffuses through a scattering medium generating wavelength-dependent speckle patterns which can be used to recover the input spectrum after calibration. Multiple scattering increases the optical pathlength by folding the paths in a confined geometry, enhancing the spectral decorrelation of speckle patterns and thus increasing the spectral resolution. By designing and fabricating the spectrometer on a silicon wafe...

  18. On-chip plasmonic spectrometer.

    Science.gov (United States)

    Tsur, Yuval; Arie, Ady

    2016-08-01

    We report a numerical and experimental study of an on-chip optical spectrometer, utilizing propagating surface plasmon polaritons in the telecom spectral range. The device is based on two holographic gratings, one for coupling, and the other for decoupling free-space radiation with the surface plasmons. This 800 μm×100 μm on-chip spectrometer resolves 17 channels spectrally separated by 3.1 nm, spanning a freely tunable spectral window, and is based on standard lithography fabrication technology. We propose two potential applications for this new device; the first employs the holographic control over the amplitude and phase of the input spectrum, for intrinsically filtering unwanted frequencies, like pump radiation in Raman spectroscopy. The second prospect utilizes the unique plasmonic field enhancement at the metal-dielectric boundary for the spectral analysis of very small samples (e.g., Mie scatterers) placed between the two gratings.

  19. Holographic Fabry-Perot spectrometer.

    Science.gov (United States)

    Martínez-Matos, O; Rodrigo, José A; Vaveliuk, P; Calvo, M L

    2011-02-15

    We propose a spectrum analyzer based on the properties of a hologram recorded with the field transmitted by a Fabry-Perot etalon. The spectral response of this holographic Fabry-Perot spectrometer (HFPS) is analytically investigated in the paraxial approximation and compared with a conventional Fabry-Perot etalon of similar characteristics. We demonstrate that the resolving power is twice increased and the free spectral range (FSR) is reduced to one-half. The proposed spectrometer could improve the operational performance of the etalon because it can exhibit high efficiency and it would be insensible to environmental conditions such as temperature and vibrations. Our analysis also extends to another variant of the HFPS based on holographic multiplexing of the transmitted field of a Fabry-Perot etalon. This device increases the FSR, keeping the same HFPS performance.

  20. Beta-carotene

    Science.gov (United States)

    ... patches on the tongue and mouth called oral leukoplakia. Taking beta-carotene by mouth for up to 12 months seems to decrease symptoms of oral leukoplakia. Osteoarthritis. Beta-carotene taken by mouth may prevent ...

  1. New detector array - the HRIBF Modular Total Absorption Spectrometer

    Science.gov (United States)

    Wolinska-Cichocka, Marzena; Rykaczewski, Krzysztof; Karny, Marek; Kuzniak, Aleksandra; Grzywacz, Robert; Rasco, Charlie; Miller, David; Gross, Carl J.; Johnson, Jim

    2011-10-01

    The construction of a new Modular Total Absorption Spectrometer (MTAS) at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory will be presented. The total absorption gamma spectra measured with MTAS will be used to derive a true beta-feeding pattern and resulting beta strength function for fission products. In particular, the measurements of decay heat released by radioactive nuclei produced in nuclear fuels at power reactors will be performed. MTAS is made up of 19 large NaI(Tl) crystals each encapsulated with a 0.8-mm-thick carbon fiber. There are also two 1-mm- thick Silicon Strip Detectors surrounding a moving tape collector that count beta-energy loss signals. The structure is shielded by more than 1-inch of lead around MTAS which reduces background radiation significantly. MTAS efficiency for full energy deposition of gamma ray approaches nearly 90% for 300 keV gammas and over 75% for a 5 MeV gamma transition. Research supported by the DOE Office of Nuclear Physics.

  2. The Pickup Ion Composition Spectrometer

    Science.gov (United States)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  3. FPGA based pulsed NQR spectrometer

    Science.gov (United States)

    Hemnani, Preeti; Rajarajan, A. K.; Joshi, Gopal; Motiwala, Paresh D.; Ravindranath, S. V. G.

    2014-04-01

    An NQR spectrometer for the frequency range of 1 MHz to 5 MHZ has been designed constructed and tested using an FPGA module. Consisting of four modules viz. Transmitter, Probe, Receiver and computer controlled (FPGA & Software) module containing frequency synthesizer, pulse programmer, mixer, detection and display, the instrument is capable of exciting nuclei with a power of 200W and can detect signal of a few microvolts in strength. 14N signal from NaNO2 has been observed with the expected signal strength.

  4. Static Fourier transform infrared spectrometer.

    Science.gov (United States)

    Schardt, Michael; Murr, Patrik J; Rauscher, Markus S; Tremmel, Anton J; Wiesent, Benjamin R; Koch, Alexander W

    2016-04-01

    Fourier transform spectroscopy has established itself as the standard method for spectral analysis of infrared light. Here we present a robust and compact novel static Fourier transform spectrometer design without any moving parts. The design is well suited for measurements in the infrared as it works with extended light sources independent of their size. The design is experimentally evaluated in the mid-infrared wavelength region between 7.2 μm and 16 μm. Due to its large etendue, its low internal light loss, and its static design it enables high speed spectral analysis in the mid-infrared.

  5. Fourier-Transform Infrared Spectrometer

    Science.gov (United States)

    Schindler, R. A.

    1986-01-01

    Fourier-transform spectrometer provides approximately hundredfold increase in luminosity at detector plane over that achievable with older instruments of this type. Used to analyze such weak sources as pollutants and other low-concentration substances in atmosphere. Interferometer creates fringe patterns on two distinct arrays of light detectors, which observe different wavelength bands. Objective lens focuses scene on image plane, which contains optical chopper. To make instrument less susceptible to variations in scene under observation, field and detector lenses focus entrance aperture, rather that image, onto detector array.

  6. The Alpha Magnetic Spectrometer (AMS)

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Bene, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buenerd, M.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y.H.; Chen, H.F.; Chen, H.S.; Chen, Z.G.; Chernoplekov, N.A.; Chiueh, T.H.; Chuang, Y.L.; Cindolo, F.; Commichau, V.; Contin, A. E-mail: contin@bo.infn.it; Crespo, P.; Cristinziani, M.; Cunha, J.P. da; Dai, T.S.; Deus, J.D.; Dinu, N.; Djambazov, L.; DAntone, I.; Dong, Z.R.; Emonet, P.; Engelberg, J.; Eppling, F.J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P.H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W.Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M.A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, W.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lee, S.C.; Levi, G.; Levtchenko, P.; Liu, C.L.; Liu, H.T.; Lopes, I.; Lu, G.; Lu, Y.S.; Luebelsmeyer, K.; Luckey, D.; Lustermann, W.; Mana, C.; Margotti, A.; Mayet, F.; McNeil, R.R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, I.H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postolache, V.; Produit, N.; Rancoita, P.G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J.P.; Riihonen, E.; Ritakari, J.; Roeser, U.; Roissin, C.; Sagdeev, R.; Sartorelli, G.; Schultz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E.S.; Shoutko, V.

    2002-02-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m{sup 2}) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  7. The Alpha Magnetic Spectrometer (AMS)

    CERN Document Server

    Alcaraz, J; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Crespo, P; Cristinziani, M; Cunha, J P D; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; Dantone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu, H T; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mourao, A; Mujunen, A; Palmonari, F; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Postolache, V; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Sartorelli, G; Schwering, G; Scolieri, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Vandenhirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Gunten, H V; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan, L G; Yang, C G; Yang, M; Ye, S W; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B

    2002-01-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m sup 2) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  8. Characterization of a new modular decay total absorption gamma-ray spectrometer (DTAS) for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Montaner Piza, A.; Tain, J. L.; Agramunt, J.; Algora, A.; Guadilla, V.; Marin, E.; Rice, S.; Rubio, B. [Instituto de Fisica Corpuscular, CSIC-Univ. de Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain)

    2013-06-10

    Beta-decay studies are one of the main goals of the DEcay SPECtroscopy experiment (DESPEC) to be installed at the future Facility for Antiproton and Ion Research (FAIR). DESPEC aims at the study of nuclear structure of exotic nuclei. A new modular Decay Total Absorption gamma-ray Spectrometer (DTAS) is being built at IFIC and is specially adapted to studies at fragmentation facilities such as the Super Fragment Separator (Super-FRS) at FAIR. The designed spectrometer is composed of 16 identical NaI(Tl) scintillation crystals. This work focuses on the characterization of these independent modules, as an initial step for the characterization of the full spectrometer. Monte Carlo simulations have been performed in order to understand the detector response.

  9. Forward-Looking Betas

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Vainberg, Gregory

    Few issues are more important for finance practice than the computation of market betas. Existing approaches compute market betas using historical data. While these approaches differ in terms of statistical sophistication and the modeling of the time-variation in the betas, they are all backward......-looking. This paper introduces a radically different approach to estimating market betas. Using the tools in Bakshi and Madan (2000) and Bakshi, Kapadia and Madan (2003) we employ the information embedded in the prices of individual stock options and index options to compute our forward-looking market beta...

  10. A Pulsed Spectrometer Designed for Feedback NQR

    Science.gov (United States)

    Schiano, J. L.; Ginsberg, M. D.

    2000-02-01

    A pulsed NQR spectrometer specifically designed to facilitate real-time tuning of pulse sequence parameters is described. A modular approach based on the interconnection of several rack-mounted blocks provides easy access to all spectrometer signals and simplifies the task of modifying the spectrometer design. We also present experimental data that demonstrates the ability of the spectrometer to increase the signal to noise ratio of NQR measurements by automatically adjusting the pulse width in the strong off-resonant comb pulse sequence.

  11. The Geostationary Fourier Transform Spectrometer

    Science.gov (United States)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  12. Fluorescence imaging spectrometer optical design

    Science.gov (United States)

    Taiti, A.; Coppo, P.; Battistelli, E.

    2015-09-01

    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  13. Betting against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    2014-01-01

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model's five central predictions: (1) Because constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for......, the return of the BAB factor is low. (4) Increased funding liquidity risk compresses betas toward one. (5) More constrained investors hold riskier assets....... for US equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures. (2) A betting against beta (BAB) factor, which is long leveraged low-beta assets and short high-beta assets, produces significant positive risk-adjusted returns. (3) When funding constraints tighten...

  14. Betting Against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model’s five central predictions: (1) Since constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for U...... of the BAB factor is low; (4) Increased funding liquidity risk compresses betas toward one; (5) More constrained investors hold riskier assets........S. equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures; (2) A betting-against-beta (BAB) factor, which is long leveraged low beta assets and short high-beta assets, produces significant positive risk-adjusted returns; (3) When funding constraints tighten, the return...

  15. A Mass Spectrometer Simulator in Your Computer

    Science.gov (United States)

    Gagnon, Michel

    2012-01-01

    Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result,…

  16. Objective Crystal Spectrometer on the SRG satellite

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Westergaard, Niels Jørgen Stenfeldt; Rasmussen, I.

    1994-01-01

    The flight version of the Objective Crystal Spectrometer (OXS) on the SPECTRUM-X- GAMMA satellite is presented. The spectrometer is a panel that is placed in front of one of the SODART telescopes. It is composed of an array of the three Bragg crystals, LiF(220), Si(111) and RAP(001) for high...

  17. Design of a pulsed angular selective electron gun for the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Winzen, Daniel; Hannen, Volker; Ortjohann, Hans-Werner; Zacher, Michael; Weinheimer, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet, Muenster (Germany); Collaboration: KATRIN-Collaboration

    2012-07-01

    The KATRIN (KArlsruhe TRItium Neutrino mass) experiment will study the tritium {beta}-spectrum near the endpoint of 18.6 keV, aiming to measure the mass of the electron antineutrino. Using an electrostatic retarding spectrometer (MAC-E-Filter), the projected sensitivity for m{sub ve} is 200 meV/c{sup 2} at 90% C.L. In order to map out the electric and magnetic fields in the main spectrometer, an angular selective electron gun is currently being developed. The e-gun uses an UV-Laser to produce electrons via the photo-electric effect from a copper substrate which are then accelerated electrostatically. It features a small energy spread of approx. 0.1 eV, a sharp emission angle and will be able to cover the whole magnetic flux tube of KATRIN. Using a pulsed laser it is also possible to investigate the time of flight (TOF) of electrons through the spectrometer, offering enhanced sensitivity to spectrometer properties far away from the analysing plane. By comparing information from transmission function measurements and TOF data with Monte Carlo simulations of the setup, one will be able to achieve a detailed understanding of the spectrometer properties.

  18. Imperfect World of $\\beta\\beta$-decay Nuclear Data Sets

    CERN Document Server

    Pritychenko, B

    2015-01-01

    The precision of double-beta ($\\beta\\beta$) decay experimental half lives and their uncertainties is reanalyzed. The method of Benford's distributions has been applied to nuclear reaction, structure and decay data sets. First-digit distribution trend for $\\beta\\beta$-decay T$_{1/2}^{2\

  19. GEANT4 Monte Carlo simulations of sources measured with the GSI total absorption spectrometer

    CERN Document Server

    Algora, A; Taín, J L; Nacher, E; Rubio, B; Cano-Ott, D; Gadea, A

    2003-01-01

    Beta decay experiments are a primary source of information for nuclear structure studies and at the same time complementary to in-beam investigations far from stability. Although both types of experiment are mainly based on gamma-ray spectroscopy, they face different experimental problems. The solution to these experimental problems is to create a device, a Total Absorption Gamma Spectrometer (TAGS), which ideally is sensitive to the beta population of the nuclear levels rather than to the individual gamma rays. A TAGS can be constructed using a big scintillator crystal (4 pi geometry), which acts as a calorimeter for gamma-ray cascades that follow the beta-decay process. (R.P.)

  20. Background reduction of the KATRIN spectrometers. Transmission function of the pre-spectrometer and systematic tests of the main-spectrometer wire electrode

    Energy Technology Data Exchange (ETDEWEB)

    Prall, Matthias

    2011-07-04

    The KArlsruhe TRItium Neutrino experiment, KATRIN will determine the mass of the anti {nu}{sub e} with a sensitivity of 0.2 eV (90% C.L.) via a measurement of the {beta}-spectrum of tritium decaying in a windowless gaseous molecular tritium source near its endpoint of 18.57 keV. This approach relies exclusively on the relativistic kinematics of the decay products rendering the experiment model independent and reducing the systematic uncertainty. An ultra-low background of a few mHz and an energy resolution of 0.93 eV are among the requirements to reach the sensitivity. These demands are fulfilled with the main spectrometer (MS). While the {beta}-decay electrons are guided by a magnetic field through the experiment, the MS acts as a high-pass filter for the {beta}-decay electrons. Only those above an energy barrier, the retarding potential, are transmitted to the detector. The last about 30 eV of the T{sub 2} {beta}-spectrum will be scanned in this way. The MS is equipped with a 650 m{sup 2}, two-layered, UHV compatible and quasi-massless wire electrode suppressing secondary electron background originating at the main-spectrometer walls and caused by residual radioactivity and cosmic muons. Its energy resolution of 0.93 eV is only achieved, if a large part of the 248 wire electrode modules, which determine the electric field inside the MS, has a mechanical precision of 0.2 mm. Not a single of the about 28.000 wires of the electrode must break during the lifetime of KATRIN. A 2-dimensional laser sensor for contact-less position (precision about 0.01 mm) and tension (precision about 0.04 N) measurements was developed and applied, to firstly, verify the mechanical precision of the electrode modules and secondly, to examine their reliability. A 3-dimensional coordinate measurement table was automated to perform these measurements in a clean room. This table was also used to verify the precision of components using a camera system and image recognition methods (0.05 mm

  1. Portable triple silicon detector telescope spectrometer for skin dosimetry

    CERN Document Server

    Helt-Hansen, J; Christensen, P

    1999-01-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50 mu m/150 mu m/7000 mu m covered by a 2 mu m thick titanium window. Rejection of photon contributions from mixed beta/photon exposures is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact, portable processing unit including a laptop computer executing control, monitor, histogram and display tasks. The use of digital signal processing at an early stage of the signal chain has facilitated the achievement of a compact, low-weight device. 256 channels are available for each of the three detectors. The LabVIEW sup T sup M software distributed by National Instruments was used for all program developments for the sp...

  2. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  3. Negative Beta Encoder

    CERN Document Server

    Kohda, Tohru; Aihara, Kazuyuki

    2008-01-01

    A new class of analog-digital (A/D), digital-analog (D/A) converters as an alternative to conventional ones, called $\\beta$-encoder, has been shown to have exponential accuracy in the bit rates while possessing self-correction property for fluctuations of amplifier factor $\\beta$ and quantizer threshold $\

  4. Double beta decay experiments

    CERN Document Server

    Barabash, A S

    2011-01-01

    The present status of double beta decay experiments is reviewed. The results of the most sensitive experiments are discussed. Proposals for future double beta decay experiments with a sensitivity to the $$ at the level of (0.01--0.1) eV are considered.

  5. [The coding correction of slit diffraction in Hadamard transform spectrometer].

    Science.gov (United States)

    Li, Bo; Wang, Shu-Rong; Huang, Yu; Wang, Jun-Bo

    2013-08-01

    According to the principles of Hadamard transform spectrometer and the slit diffraction characteristics, the influence of spectrometer entrance slit diffraction of Hadamard transform spectrometer on the measurement result was analyzed, for the diffraction case, the Hadamard transform spectrometer instrument structure matrix was studied, and the Hadamard transform spectrometer encoding/decoding method was established. The analysis of incident spectral verified the correctness of the coding/ decoding. This method is very important for the high precision measurement of Hadamard transform spectrometer.

  6. Mini-Orange Spectrometer at CIAE

    CERN Document Server

    Zheng, Yun; Li, Guang-Sheng; Li, Cong-Bo; He, Chuang-Ye; Chen, Qi-Ming; Zhong, Jian; Zhou, Wen-Kui; Deng, Li-Tao; Zhu, Bao-Ji

    2016-01-01

    A Mini-Orange spectrometer used for in-beam measurements of internal conversion electrons, which consists of a Si(Li) detector and different sets of SmO$_5$ permanent magnets for filtering and transporting the conversion electrons to the Si(Li) detector, has been developed at China Institute of Atomic Energy. The working principle and configuration of the Mini-Orange spectrometer are described. The performance of the setup is illustrated by measured singles conversion electron spectra using the Mini-Orange spectrometer.

  7. Radiation calibration for LWIR Hyperspectral Imager Spectrometer

    Science.gov (United States)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Wei-jian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2014-11-01

    The radiometric calibration of LWIR Hyperspectral imager Spectrometer is presented. The lab has been developed to LWIR Interferometric Hyperspectral imager Spectrometer Prototype(CHIPED-I) to study Lab Radiation Calibration, Two-point linear calibration is carried out for the spectrometer by using blackbody respectively. Firstly, calibration measured relative intensity is converted to the absolute radiation lightness of the object. Then, radiation lightness of the object is is converted the brightness temperature spectrum by the method of brightness temperature. The result indicated †that this method of Radiation Calibration calibration was very good.

  8. A Compact High-Energy Neutron Spectrometer

    CERN Document Server

    Brooks, F D; Buffler, A; Dangendorf, V; Herbert, M S; Jones, D T L; Nchodu, M R; Nolte, R; Smit, F D

    2007-01-01

    A compact liquid organic neutron spectrometer (CLONS) based on a single NE213 liquid scintillator (5 cm diam. x 5 cm) is described. The spectrometer is designed to measure neutron fluence spectra over the energy range 2-200 MeV and is suitable for use in neutron fields having any type of time structure. Neutron fluence spectra are obtained from measurements of two-parameter distributions (counts versus pulse height and pulse shape) using the Bayesian unfolding code MAXED. Calibration and test measurements made using a pulsed neutron beam with a continuous energy spectrum are described and the application of the spectrometer to radiation dose measurements is discussed.

  9. Digital Logarithmic Airborne Gamma Ray Spectrometer

    OpenAIRE

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energ...

  10. Genetics Home Reference: beta thalassemia

    Science.gov (United States)

    ... Understand Genetics Home Health Conditions beta thalassemia beta thalassemia Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Beta thalassemia is a blood disorder that reduces the production ...

  11. Rapid synthesis of beta zeolites

    Science.gov (United States)

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  12. Study of $\\beta$-delayed neutron decay of $^{8}$He

    CERN Multimedia

    The goal of the present proposal is to study $\\beta$-delayed neutron decay branch of $^{8}$He. The energy spectra of the emitted neutrons will be measured in the energy range of 0.1 – 6 MeV using the VANDLE spectrometer. Using coincident $\\gamma$-ray measurement, components of the spectrum corresponding to transitions to the ground- and first- excited states of $^{7}$Li will be disentangled. The new data will allow us to get a more complete picture of the $\\beta$-decay of $^{8}$He and to clarify the discrepancy between the B(GT) distributions derived from the $\\beta$-decay and $^{8}$He(p, n)$^{8}$Li reaction studies.

  13. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  14. Calibration of a photomultiplier array spectrometer

    Science.gov (United States)

    Bailey, Steven A.; Wright, C. Wayne; Piazza, Charles R.

    1989-01-01

    A systematic approach to the calibration of a photomultiplier array spectrometer is presented. Through this approach, incident light radiance derivation is made by recognizing and tracing gain characteristics for each photomultiplier tube.

  15. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  16. Remote UV Fluorescence Lifetime Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop, demonstrate, and deliver to NASA an innovative, portable, and power efficient Remote UV Fluorescence Lifetime Spectrometer...

  17. Long-Wave Infrared Dyson Spectrometer

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis Z.; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2008-01-01

    Preliminary results are presented for an ultra compact long-wave infrared slit spectrometer based on the dyson concentric design. The dyson spectrometer has been integrated in a dewar environment with a quantum well infrared photodetecor (QWIP), concave electron beam fabricated diffraction grating and ultra precision slit. The entire system is cooled to cryogenic temperatures to maximize signal to noise ratio performance, hence eliminating thermal signal from transmissive elements and internal stray light. All of this is done while maintaining QWIP thermal control. A general description is given of the spectrometer, alignment technique and predicated performance. The spectrometer has been designed for optimal performance with respect to smile and keystone distortion. A spectral calibration is performed with NIST traceable targets. A 2-point non-uniformity correction is performed with a precision blackbody source to provide radiometric accuracy. Preliminary laboratory results show excellent agreement with modeled noise equivalent delta temperature and detector linearity over a broad temperature range.

  18. Portable Remote Imaging Spectrometer (PRISM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an UV-NIR (350nm to 1050 nm) portable remote imaging spectrometer (PRISM) for flight on a variety of airborne platforms with high SNR and response...

  19. Electronically-Scanned Fourier-Transform Spectrometer

    Science.gov (United States)

    Breckinridge, J. B.; Ocallaghan, F. G.

    1984-01-01

    Instrument efficient, lightweight, and stable. Fourier-transform spectrometer configuration uses electronic, instead of mechanical, scanning. Configuration insensitive to vibration-induced sampling errors introduced into mechanically scanned systems.

  20. Low Power Mass Spectrometer employing TOF Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A low power Mass Spectrometer employing multiple time of flight circuits for parallel processing is possible with a new innovation in design of the Time of flight...

  1. Low Power FPGA Based Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a general purpose reconfigurable wide bandwidth spectrometer for use in NASA's passive microwave missions, deep space network and radio...

  2. ISLA: An Isochronous Spectrometer with Large Acceptances

    Energy Technology Data Exchange (ETDEWEB)

    Bazin, D., E-mail: bazin@nscl.msu.edu; Mittig, W.

    2013-12-15

    A novel type of recoil mass spectrometer and separator is proposed for the future secondary radioactive beams of the ReA12 accelerator at NSCL/FRIB, inspired from the TOFI spectrometer developed at the Los Alamos National Laboratory for online mass measurements. The Isochronous Spectrometer with Large Acceptances (ISLA) is able to achieve superior characteristics without the compromises that usually plague the design of large acceptance spectrometers. ISLA can provide mass-to-charge ratio (m/q) measurements to better than 1 part in 1000 by using an optically isochronous time-of-flight independent of the momentum vector of the recoiling ions, despite large acceptances of 20% in momentum and 64 msr in solid angle. The characteristics of this unique design are shown, including requirements for auxiliary detectors around the target and the various types of reactions to be used with the re-accelerated radioactive beams of the future ReA12 accelerator.

  3. Isomeric effects in ion-induced fragmentation of alpha- and beta-alanine

    NARCIS (Netherlands)

    Sobocinski, P.; Bari, S.; Postma, J.; Alvarado, F.; Hoekstra, R.; Manil, B.; Rangama, J.; Bernigaud, V.; Huber, B. A.; Schlatholter, T.; McGuigan, KG; Tokesi, K; Sulik, B

    2008-01-01

    We have investigated the dissociation of alpha- and beta- alanine following impact of slow multicharged ions, namely He(+), He(2+), O(5+) and Xe(20+) at 10 keV per charge unit. The collision products were analyzed using a reflectron-type time-of-flight mass spectrometer. In general, for a given proj

  4. Design and construction of a NIR spectrometer

    CERN Document Server

    Barcala-Riveira, J M; Fernandez-Marron, J L; Molero-Menendez, F; Navarrete-Marin, J J; Oller-Gonzalez, J C

    2003-01-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  5. Optical Calibration For Jefferson Lab HKS Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    L. Yuan; L. Tang

    2005-11-04

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  6. A Spectrometer Based on Diffractive Lens

    Institute of Scientific and Technical Information of China (English)

    WANG Daoyi; YAN Yingbai; JIN Guofan; WU Minxian

    2001-01-01

    A novel spectrometer is designed based on diffractive lens. It is essentially a flat field spectrometer. All the focal points are along the optical axis. Besides, all the asymmetrical aberrations vanish in our mounting. Thus low aberration can be obtained. In this article a diffractive lens is modeled as a special grating and analyzed by using a grating-based method. And a stigmatic point is introduced to reduce the aberrations.

  7. Mass Spectrometer for Airborne Micro-Organisms

    Science.gov (United States)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  8. 1987 calibration of the TFTR neutron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W.; Strachan, J.D. (Los Alamos National Lab., NM (USA); Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1989-12-01

    The {sup 3}He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs.

  9. Ruggedized Spectrometers Are Built for Tough Jobs

    Science.gov (United States)

    2015-01-01

    The Mars Curiosity Chemistry and Camera instrument, or ChemCam, analyzes the elemental composition of materials on the Red Planet by using a spectrometer to measure the wavelengths of light they emit. Principal investigator Roger Wiens worked with Ocean Optics, out of Dunedin, Florida, to rework the company's spectrometer to operate in cold and rowdy conditions and also during the stresses of liftoff. Those improvements have been incorporated into the firm's commercial product line.

  10. A digital control system for neutron spectrometers

    DEFF Research Database (Denmark)

    Hansen, Knud Bent; Skaarup, Per

    1968-01-01

    A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer.......A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer....

  11. Study of neutron spectrometers for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kaellne, Jan

    2005-11-15

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation.

  12. NIST Calibration of a Neutron Spectrometer ROSPEC.

    Science.gov (United States)

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated (252)Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements.

  13. The role of electron scattering from registration detector in the "Troitsk nu-mass" MAC-E type spectrometer

    Science.gov (United States)

    Grigorieva, P. V.; Nozik, A. A.; Pantuev, V. S.; Skasyrskaya, A. K.

    2016-10-01

    There is a proposal to search for a sterile neutrino in a few keV mass range by the "Troitsk nu-mass" facility. In order to estimate sterile neutrino mixing one needs to make precision spectrum measurements well below the endpoint using the existing electrostatic spectrometer with a magnetic adiabatic collimation, or MAC-E filter. The expected signature will be a kink in the electron energy spectrum in tritium beta-decay. In this paper we consider the systematic effect of electron backscattering on the detector used in the spectrometer. For this purpose we provide a set of Monte-Carlo simulation results of electron backscattering on a silicon detector with a thin golden window with realistic electric and magnetic fields in the spectrometer. We have found that the probability of such an effect reaches up to 20-30%. The scattered electron could be reflected backwards to the detector by electrostatic field or by magnetic mirror. There is also a few percent probability to escape from the spectrometer through its entrance. A time delay between the scattering on the detector and the return of the reflected electron can reach a couple of microseconds in the Troitsk spectrometer. Such estimations are critical for the planning upgrades of the detector and the registration electronics. All considered effects are relevant to any MAC-E type spectrometer with solid detector.

  14. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    Kai Zuber

    2012-10-01

    The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given.

  15. Alpha and Beta Determinations

    CERN Document Server

    Dunietz, Isard

    1999-01-01

    Because the Bd -> J/psi Ks asymmetry determines only sin(2 beta), a discrete ambiguity in the true value of beta remains. This note reviews how the ambiguity can be removed. Extractions of the CKM angle alpha are discussed next. Some of the methods require very large data samples and will not be feasible in the near future. In the near future, semi-inclusive CP-violating searches could be undertaken, which are reviewed last.

  16. Development of a method for activity measurements of {sup 232}Th daughters with a multidetector gamma-ray coincidence spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Antovic, N. [Faculty of Natural Sciences and Mathematics, University of Montenegro, Cetinjski put b.b., 81000 Podgorica (Montenegro)], E-mail: antovicn@yahoo.com; Svrkota, N. [Center for Ecotoxicological Research, Put Radomira Ivanovica 2, 81000 Podgorica (Montenegro)

    2009-06-15

    The method for activity measurements of the {sup 232}Th daughters, developed at the six-crystal gamma-ray coincidence spectrometer PRIPYAT-2M and based on coincidence counting of the 583 and 2615 keV photons from cascade transitions which follow {beta}{sup -}-decay of {sup 208}Tl, as well as on counting the 911 keV photons which follow {beta}{sup -}-decay of {sup 228}Ac in the integral and non-coincidence mode of counting, is presented.

  17. Investigation of UV-laser induced electrons in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Johannes; Hilk, Daniel [Institut fuer experimentelle Kernphysik, KIT, Karlsruhe (Germany); Collaboration: KATRIN-Collaboration

    2015-07-01

    The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to determine the effective mass of the electron anti neutrino with a sensitivity of 200 meV/c{sup 2} via the precise measurement of the tritium beta decay spectrum close to its endpoint energy of 18.6 keV. To achieve the desired sensitivity a very low background rate of 10{sup -2} electrons per second is necessary. Cosmic muons produce a large number of secondary electrons at the inner surface of the KATRIN main spectrometer. These secondary electrons are mostly suppressed via magnetic shielding effects, however some of these electrons can reach the focal plane detector and contribute to the background. In order to shield these electrons, an electrostatic retarding potential is produced by a dual-layer wire electrode system, installed at the inner surface of the spectrometer vessel. An UV laser system is used to generate a large number of low-energy secondary electrons via photoelectric effect at dedicated positions inside the main spectrometer vessel. These electrons are used to investigate the efficiency of the electrostatic shielding for different electrode potentials. This talk presents measurement results recently obtained in context of the second commissioning phase of the main spectrometer.

  18. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  19. Beta cell dynamics: beta cell replenishment, beta cell compensation and diabetes.

    Science.gov (United States)

    Cerf, Marlon E

    2013-10-01

    Type 2 diabetes, characterized by persistent hyperglycemia, arises mostly from beta cell dysfunction and insulin resistance and remains a highly complex metabolic disease due to various stages in its pathogenesis. Glucose homeostasis is primarily regulated by insulin secretion from the beta cells in response to prevailing glycemia. Beta cell populations are dynamic as they respond to fluctuating insulin demand. Beta cell replenishment and death primarily regulate beta cell populations. Beta cells, pancreatic cells, and extra-pancreatic cells represent the three tiers for replenishing beta cells. In rodents, beta cell self-replenishment appears to be the dominant source for new beta cells supported by pancreatic cells (non-beta islet cells, acinar cells, and duct cells) and extra-pancreatic cells (liver, neural, and stem/progenitor cells). In humans, beta cell neogenesis from non-beta cells appears to be the dominant source of beta cell replenishment as limited beta cell self-replenishment occurs particularly in adulthood. Metabolic states of increased insulin demand trigger increased insulin synthesis and secretion from beta cells. Beta cells, therefore, adapt to support their physiology. Maintaining physiological beta cell populations is a strategy for targeting metabolic states of persistently increased insulin demand as in diabetes.

  20. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  1. An echelle diffraction grating for imaging spectrometer

    Science.gov (United States)

    Yang, Minyue; Wang, Han; Li, Mingyu; He, Jian-Jun

    2016-09-01

    We demonstrate an echelle diffraction grating (EDG) of 17 input waveguides and 33 output waveguides. For each input waveguide, only 17 of 33 output waveguides are used, receiving light ranging from 1520 nm to 1600 nm wavelength. The channel spacing of the EDG is 5 nm, with loss of -6dB and crosstalk of -17dB for center input waveguide and -15dB for edge input waveguides. Based on the 3 μm SOI platform the device is polarization insensitive. As a simple version of EDG spectrometer it is designed to be a part of the on-chip spectroscopic system of the push-broom scanning imaging spectrometer. The whole on-chip spectrometer consists of an optical on-off switch array, a multi-input EDG and detector array. With the help of on-off switch array the multiple input waveguides of the EDG spectrometer could work in a time division multiplexed fashion. Since the switch can scan very fast (less than 10 microseconds), the imaging spectrometer can be operated in push-broom mode. Due to the CMOS compatibility, the 17_channel EDG scales 2.5×3 mm2. The full version of EDG spectrometer is designed to have 129 input waveguides and 257 output waveguides (129 output channel for each input waveguide), working in wavelength ranging from 1250 nm to 1750 nm, and had similar blazed facet size with the 17_channel one, which means similar fabrication tolerance in grating facets. The waveguide EDG based imaging spectrometer can provide a low-cost solution for remote sensing on unmanned aerial vehicles, with advantages of small size, light weight, vibration-proof, and high scalability.

  2. Developing small vacuum spark as an x-ray source for calibration of an x-ray focusing crystal spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ghomeishi, Mostafa; Adikan, Faisal Rafiq Mahamd [Photonic Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Karami, Mohammad [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2012-10-15

    A new technique of x-ray focusing crystal spectrometers' calibration is the desired result. For this purpose the spectrometer is designed to register radiated copper K{alpha} and K{beta} lines by using a flat {alpha}-quartz crystal. This experiment uses pre-breakdown x-ray emissions in low vacuum of about 2.5-3 mbar. At this pressure the pinch will not form so the plasma will not radiate. The anode material is copper and the capacity of the capacitor bank is 22.6 nF. This experiment designed and mounted a repetitive triggering system to save the operator time making hundreds of shots. This emission amount is good for calibration and geometrical adjustment of an optical crystal x-ray focusing spectrometer.

  3. Fast neutron detection with a segmented spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Langford, T.J., E-mail: thomas.langford@yale.edu [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Bass, C.D. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Beise, E.J.; Breuer, H.; Erwin, D.K. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Heimbach, C.R.; Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2015-01-21

    A fast neutron spectrometer consisting of segmented plastic scintillator and {sup 3}He proportional counters was constructed for the measurement of neutrons in the energy range 1–200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  4. A compact multichannel spectrometer for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  5. A compact multichannel spectrometer for Thomson scattering.

    Science.gov (United States)

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  6. Fast Neutron Detection with a Segmented Spectrometer

    CERN Document Server

    Langford, T J; Beise, E J; Breuer, H; Erwin, D K; Heimbach, C R; Nico, J S

    2014-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination The spectrometer was characterized for energy resolution and efficiency in fast neutron fields of 2.5 MeV, 14 MeV, and fission spectrum neutrons, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  7. Fast neutron detection with a segmented spectrometer

    Science.gov (United States)

    Langford, T. J.; Bass, C. D.; Beise, E. J.; Breuer, H.; Erwin, D. K.; Heimbach, C. R.; Nico, J. S.

    2015-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and 3He proportional counters was constructed for the measurement of neutrons in the energy range 1-200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  8. Digital Logarithmic Airborne Gamma Ray Spectrometer

    CERN Document Server

    Zeng, GuoQiang; Li, Chen; Tan, ChengJun; Ge, LiangQuan; Gu, Yi; Cheng, Feng

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energy calibration. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, effectively measuring energy from 20keV to 10MeV is possible.

  9. Digital logarithmic airborne gamma ray spectrometer

    Science.gov (United States)

    Zeng, Guo-Qiang; Zhang, Qing-Xian; Li, Chen; Tan, Cheng-Jun; Ge, Liang-Quan; Gu, Yi; Cheng, Feng

    2014-07-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range because the low-energy pulse signal has a larger gain than the high-energy pulse signal. After energy calibration, the spectrometer can clearly distinguish photopeaks at 239, 352, 583 and 609 keV in the low-energy spectral sections. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, it is possible to effectively measure energy from 20 keV to 10 MeV.

  10. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  11. A 4[pi] dilepton spectrometer: PEPSI

    Energy Technology Data Exchange (ETDEWEB)

    Buda, A. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Bacelar, J.C.S. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Balanda, A. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Klinken, J. van (Kernfysisch Versneller Inst., Groningen (Netherlands)); Sujkowski, Z. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Woude, A. van der (Kernfysisch Versneller Inst., Groningen (Netherlands))

    1993-11-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd[sub 2]Fe[sub 14]B permanent magnets forming a compact 4[pi] magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response function of PEPSI has been measured with mono-energetic beams of electrons from 5 to 20 MeV. The PEPSI spectrometer was used for measuring the internal pair conversion coefficient ([alpha][sub [pi

  12. Upgrade of an old Raman Spectrometer

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    Improvement of a conventional Jeol Raman spectrometer with a single channel photo multiplier detector is described. New optical components (fibres, mirror, lens and CCD detector) have been chosen to design a high quality and easy-to-use instrument. Tests have shown that with this modified...... spectrometer Raman spectra can be acquired of a quality comparable to the spectra obtained previously, but the time needed to obtain a spectrum is markedly reduced. Selected test spectra and a simple calibration procedure to obtain the wavenumber values from the band CCD pixel position are presented....

  13. Wide size range fast integrated mobility spectrometer

    Science.gov (United States)

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  14. Vacuum system for the SAMURAI spectrometer

    Science.gov (United States)

    Shimizu, Y.; Otsu, H.; Kobayashi, T.; Kubo, T.; Motobayashi, T.; Sato, H.; Yoneda, K.

    2013-12-01

    The first commissioning experiment of the SAMURAI spectrometer and its beam line was performed in March, 2012. The vacuum system for the SAMURAI spectrometer includes its beam line and the SAMURAI vacuum chamber with the windows for detecting neutrons and charged particles. The window for neutrons was made of stainless steel with a thickness of 3 mm and was designed with a shape of partial cylinder to support itself against the atmospheric pressure. The window for charged particles was of the combination of Kevlar and Mylar with the thickness of 280 and 75 μm, respectively. The pressure in the vacuum system was at a few Pa throughout the commissioning experiment.

  15. SAMURAI spectrometer for RI beam experiments

    Science.gov (United States)

    Kobayashi, T.; Chiga, N.; Isobe, T.; Kondo, Y.; Kubo, T.; Kusaka, K.; Motobayashi, T.; Nakamura, T.; Ohnishi, J.; Okuno, H.; Otsu, H.; Sako, T.; Sato, H.; Shimizu, Y.; Sekiguchi, K.; Takahashi, K.; Tanaka, R.; Yoneda, K.

    2013-12-01

    A large-acceptance multiparticle spectrometer SAMURAI has been constructed at the RIKEN RI Beam Factory (RIBF) for RI beam experiments. It was designed primarily for kinematically complete experiments such as the invariant-mass spectroscopy of particle-unbound states in exotic nuclei, by detecting heavy fragments and projectile-rapidity nucleons in coincidence. The system consists of a superconducting dipole magnet, beam line detectors, heavy fragment detectors, neutron detectors, and proton detectors. The SAMURAI spectrometer was commissioned in March 2012, and a rigidity resolution of about 1/1500 was obtained for RI beams up to 2.4 GeV/c.

  16. SAMURAI spectrometer for RI beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: kobayash@lambda.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Chiga, N. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Isobe, T. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Kondo, Y. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Kubo, T.; Kusaka, K.; Motobayashi, T. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nakamura, T. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Ohnishi, J.; Okuno, H.; Otsu, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Sako, T. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Sato, H.; Shimizu, Y. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Sekiguchi, K.; Takahashi, K. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Tanaka, R. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Yoneda, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)

    2013-12-15

    A large-acceptance multiparticle spectrometer SAMURAI has been constructed at the RIKEN RI Beam Factory (RIBF) for RI beam experiments. It was designed primarily for kinematically complete experiments such as the invariant-mass spectroscopy of particle-unbound states in exotic nuclei, by detecting heavy fragments and projectile-rapidity nucleons in coincidence. The system consists of a superconducting dipole magnet, beam line detectors, heavy fragment detectors, neutron detectors, and proton detectors. The SAMURAI spectrometer was commissioned in March 2012, and a rigidity resolution of about 1/1500 was obtained for RI beams up to 2.4 GeV/c.

  17. Preliminary results from a new spin spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G.; Bedrossian, P.J. [Lawrence Livermore National Lab., CA (United States); Cummins, T.R. [Univ. of Missouri, Rolla, MO (United States). Dept. of Physics] [and others

    1998-12-31

    The first preliminary results from a novel spectrometer for elementally-specific measurements of magnetic surfaces and ultrathin films are presented here. The key measurements are based upon spin-resolving and photon-dichroic photoelectron spectroscopy. True spin-resolution is achieved by the use of a Mini-Mott detection scheme. The photon-dichroic measurements include the variant magnetic x-ray linear dichroism (MXLD). Both a multi-channel, energy dispersive collection scheme as well as the spin-detecting Mini-Mott apparatus are used in data collection. The Spin Spectrometer is based at the Spectromicroscopy Facility (Beamline 7) at the Advanced Light Source.

  18. Beta and Gamma Gradients

    DEFF Research Database (Denmark)

    Løvborg, Leif; Gaffney, C. F.; Clark, P. A.;

    1985-01-01

    Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions...... of differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears...

  19. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    Science.gov (United States)

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  20. Triple-axis spectrometer DruechaL

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs.

  1. HyTES: Thermal Imaging Spectrometer Development

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Realmuto, Vincent; Lamborn, Andy; Paine, Chris; Mumolo, Jason M.; Eng, Bjorn T.

    2011-01-01

    The Jet Propulsion Laboratory has developed the Hyperspectral Thermal Emission Spectrometer (HyTES). It is an airborne pushbroom imaging spectrometer based on the Dyson optical configuration. First low altitude test flights are scheduled for later this year. HyTES uses a compact 7.5-12 micrometer m hyperspectral grating spectrometer in combination with a Quantum Well Infrared Photodetector (QWIP) and grating based spectrometer. The Dyson design allows for a very compact and optically fast system (F/1.6). Cooling requirements are minimized due to the single monolithic prism-like grating design. The configuration has the potential to be the optimal science-grade imaging spectroscopy solution for high altitude, lighter-than-air (HAA, LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The QWIP sensor allows for optimum spatial and spectral uniformity and provides adequate responsivity which allows for near 100mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. The QWIP's repeatability and uniformity will be helpful for data integrity since currently an onboard calibrator is not planned. A calibration will be done before and after eight hour flights to gage any inconsistencies. This has been demonstrated with lab testing. Further test results show adequate NEDT, linearity as well as applicable earth science emissivity target results (Silicates, water) measured in direct sunlight.

  2. Digital Signal Processing in the GRETINA Spectrometer

    Science.gov (United States)

    Cromaz, Mario

    2015-10-01

    Developments in the segmentation of large-volume HPGe crystals has enabled the development of high-efficiency gamma-ray spectrometers which have the ability to track the path of gamma-rays scattering through the detector volume. This technology has been successfully implemented in the GRETINA spectrometer whose high efficiency and ability to perform precise event-by-event Doppler correction has made it an important tool in nuclear spectroscopy. Tracking has required the spectrometer to employ a fully digital signal processing chain. Each of the systems 1120 channels are digitized by 100 Mhz, 14-bit flash ADCs. Filters that provide timing and high-resolution energies are implemented on local FPGAs acting on the ADC data streams while interaction point locations and tracks, derived from the trace on each detector segment, are calculated in real time on a computing cluster. In this presentation we will give a description of GRETINA's digital signal processing system, the impact of design decisions on system performance, and a discussion of possible future directions as we look towards soon developing larger spectrometers such as GRETA with full 4 π solid angle coverage. This work was supported by the Office of Science in the Department of Energy under grant DE-AC02-05CH11231.

  3. Neutron spectrometer for fast nuclear reactors

    CERN Document Server

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  4. Resolution of a triple axis spectrometer

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans

    1969-01-01

    A new method for obtaining the resolution function for a triple-axis neutron spectrometer is described, involving a combination of direct measurement and analytical calculation. All factors which contribute to the finite resolution of the instrument may be taken into account, and Gaussian...

  5. Study and Demarcating of Electron Magnetic Spectrometer

    Institute of Scientific and Technical Information of China (English)

    LIYe-jun; SHANYu-sheng; TAOYe-zheng; CHENGYou-jian; ZHANGHai-feng

    2003-01-01

    The principle of electron magnetic spectrometer is a moving charged particle circles a central point for the Lorenz force when it moves in a steady magnetic field, at the same time, we consider the influence of gravity excursion, magnetic grads excursion and curvature excursion. Having adopted yoke iron equalizing technology and had magnetic field and gravity field at the same line.

  6. Imaging mass spectrometer with mass tags

    Science.gov (United States)

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  7. A compact positron annihilation lifetime spectrometer

    Institute of Scientific and Technical Information of China (English)

    李道武; 刘军辉; 章志明; 王宝义; 张天保; 魏龙

    2011-01-01

    Using LYSO scintillator coupled on HAMAMATSU R9800 (a fast photomultiplier) to form the small size γ-ray detectors, a compact lifetime spectrometer has been built for the positron annihilation experiments. The system time resolution FWHM=193 ps and the co

  8. A 4-PI DILEPTON SPECTROMETER - PEPSI

    NARCIS (Netherlands)

    BUDA, A; BACELAR, JCS; BALANDA, A; VANKLINKEN, J; SUJKOWSKI, Z; VANDERWOUDE, A

    1993-01-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd2Fe14B permanent magnets forming a compact 4 pi magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response f

  9. IR Spectrometer Project for the BTA Telescope

    OpenAIRE

    Afanasiev, V. L.; Emelianov, E. V.; Murzin, V. A.; Vdovin, V. F.

    2013-01-01

    We introduce a project of new cooled infrared spectrometer-photometer for 6-m telescope BTA (Special Astrophysical Observatory of Russian Science Academy). The device would extend the wavelength range accessible for observations on the 6-m BTA telescope toward near infrared (0.8-2.5 um).

  10. Computer Enhanced SRO NQR-Spectrometer

    Science.gov (United States)

    Mano, Koichi; Hashimoto, Masao

    1986-02-01

    An automatic computer supported SRO NQR spectrometer system was constructed for the measurement of time dependent NQR signal intensities. The system has several functions: fast scanning (500 kH z/25 s), averaging, smoothing, automatic noise level estimation, automatic peak detection, etc. The process of the ß → α phase transition of p-dichlorobenzene is illustrated by the 3-dimensional spectrum .

  11. Broadband Infrared Heterodyne Spectrometer: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, C G; Cunningham, C T; Tringe, J W

    2010-12-16

    This report summarizes the most important results of our effort to develop a new class of infrared spectrometers based on a novel broadband heterodyne design. Our results indicate that this approach could lead to a near-room temperature operation with performance limited only by quantum noise carried by the incoming signal. Using a model quantum-well infrared photodetector (QWIP), we demonstrated key performance features of our approach. For example, we directly measured the beat frequency signal generated by superimposing local oscillator (LO) light of one frequency and signal light of another through a spectrograph, by injecting the LO light at a laterally displaced input location. In parallel with the development of this novel spectrometer, we modeled a new approach to reducing detector volume though plasmonic resonance effects. Since dark current scales directly with detector volume, this ''photon compression'' can directly lead to lower currents. Our calculations indicate that dark current can be reduced by up to two orders of magnitude in an optimized ''superlens'' structure. Taken together, our spectrometer and dark current reduction strategies provide a promising path toward room temperature operation of a mid-wave and possibly long-wave infrared spectrometer.

  12. Applied Beta Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rich, B.L.

    1986-01-01

    Measurements of beta and/or nonpenetrating exposure results is complicated and past techniques and capabilities have resulted in significant inaccuracies in recorded results. Current developments have resulted in increased capabilities which make the results more accurate and should result in less total exposure to the work force. Continued development of works in progress should provide equivalent future improvements.

  13. Beta Thalassemia (For Parents)

    Science.gov (United States)

    ... had their spleens removed. Slower growth rates. The anemia resulting from beta thalassemia can cause children to grow more slowly and also can lead ... boost production of new red blood cells. Some children with moderate anemia may require an occasional blood transfusion , particularly after ...

  14. Trichoderma .beta.-glucosidase

    Science.gov (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-01-03

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  15. Roughing up Beta

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Li, Sophia Zhengzi; Todorov, Viktor

    Motivated by the implications from a stylized equilibrium pricing framework, we investigate empirically how individual equity prices respond to continuous, or \\smooth," and jumpy, or \\rough," market price moves, and how these different market price risks, or betas, are priced in the cross-section...

  16. Precision Study of the $\\beta$-decay of $^{62}$Ga

    CERN Multimedia

    2002-01-01

    It is proposed to perform a precision study of the $\\beta$-decay of $\\,^{62}$Ga taking advantage of recent developments of the ISOLDE Laser Ion Source. The goal is to eventually extend the high-precision knowledge of superallowed $\\beta$-decays beyond the nine decays that presently are used for extracting the V$_{ud}$ quark mixing matrix element of the CKM matrix. The scientific motivations are the current deviation of more than 2$\\sigma$ of the unitary condition of this matrix, which could be an indication of non-standard-model physics, and a test of the theoretical corrections applied to the experimental data. The experiment will utilise the Total Absorption $\\gamma$-ray (TAG) spectrometer in order to determine weak branchings to excited states in $^{62}$Zn and the ISOLDE spectroscopy station to perform half-life measurements and detailed spectroscopy of this nucleus.

  17. Gamow-Teller beta decay of {sup 105}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Kavatsyuk, M.; Kavatsyuk, O. [GSI, Darmstadt (Germany); Univ. of Kyiv (Ukraine); Batist, L. [St. Petersburg Nuclear Physics Inst. (Russian Federation); Napoli Univ. (Italy); INFN, Napoli (Italy); Becker, F.; Bruechle, W.; Doering, J.; Gorska, M.; Grawe, H.; Kirchner, R.; Mandal, S.; Mazzocchi, C.; Plettner, C.; Roeckl, E.; Schaedel, M. [GSI, Darmstadt (Germany); Blazhev, A. [GSI, Darmstadt (Germany); Univ. Sofia (Bulgaria); Faestermann, T. [Technische Universitaet Muenchen (Germany); Janas, Z.; Karny, M.; Plochocki, A.; Zylicz, J. [University of Warsaw (Poland); Jungclaus, A. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica (Spain); La Commara, M.; Romoli, M. [Universita ' ' Federico II' ' and INFN, Napoli (Italy); Mukha, I. [GSI, Darmstadt (Germany); Kurchatov Inst., Moscow (Russian Federation); Muralithar, S. [GSI, Darmstadt (Germany); Nuclear Science Center, New Delhi (India)

    2006-08-15

    The {beta}-decay of {sup 105}Sn was re-investigated at the ISOL facility of GSI Darmstadt by using a total absorption spectrometer. The experimental results include the half-life and {beta}-delayed proton branching ratio of 32.7(5) s and 1.1(4).10{sup -4}, respectively, and the contribution of electron capture to the {sup 105}Sn decay of 0.420(35). The Gamow-Teller strength distribution peaking at 3.6 MeV was measured, yielding a summed Gamow-Teller strength of 3.0(4). The latter data are discussed in comparison with shell-model predictions based on an empirical interaction. (orig.)

  18. Beta-decay studies near {sup 100}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Karny, M.; Janas, Z.; Miernik, K.; Plochocki, A.; Zylicz, J. [University of Warsaw, Institute of Experimental Physics, Warsaw (Poland); Batist, L. [St. Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation); Banu, A.; Becker, F.; Burkard, K.; Bruechle, W.; Doering, J.; Gorska, M.; Grawe, H.; Kirchner, R.; Mandal, S.; Mazzocchi, C.; Mukha, I.; Plettner, C.; Roeckl, E.; Schaedel, M. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Blazhev, A. [GSI, Darmstadt (Germany); Sofia Univ. (Bulgaria); Faestermann, T. [Technische Universitaet Muenchen, Muenchen (Germany); Jungclaus, A. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Kavatsyuk, M.; Kavatsyuk, O. [GSI, Darmstadft (Germany); Taras Shevchenko Kiev National University, Kiev (Ukraine); La Commara, M.; Romoli, M. [Universita ' ' Federico II' ' and INFN Napoli, Dipartimento Scienze Fisiche, Napoli (Italy); Muralithar, S. [GSI, Darmstadt (Germany); Nuclear Science Center, New Delhi (India); Rykaczewski, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Schmidt, K. [Continental Teves AG and Co., Frankfurt am Main (Germany); Schwengner, R. [Forschungszentrum Rossendorf, Dresden (Germany)

    2005-09-01

    The {beta}-decay of {sup 102}Sn was studied by using high-resolution germanium detectors as well as a Total Absorption Spectrometer (TAS). A decay scheme has been constructed based on the {gamma}-{gamma} coincidence data. The total experimental Gamow-Teller strength B{sub GT}{sup exp} of {sup 102}Sn was deduced from the TAS data to be 4.2(9). A search for {beta}-delayed {gamma}-rays of {sup 100}Sn decay remained unsuccessful. However, a Gamow-Teller hindrance factor h = 2.2(3), and a cross-section of about 3nb for the production of {sup 100}Sn in fusion-evaporation reaction between {sup 58}Ni beam and {sup 50}Cr target have been estimated from the data on heavier tin isotopes. The estimated hindrance factor is similar to the values derived for lower shell nuclei. (orig.)

  19. Low-Power Wideband Digital Spectrometer for Planetary Science Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a wideband digital spectrometer to support space-born measurements of planetary atmospheric composition. The spectrometer...

  20. TGF-beta and osteoarthritis.

    NARCIS (Netherlands)

    Blaney Davidson, E.N.; Kraan, P.M. van der; Berg, W.B. van den

    2007-01-01

    OBJECTIVE: Cartilage damage is a major problem in osteoarthritis (OA). Growth factors like transforming growth factor-beta (TGF-beta) have great potential in cartilage repair. In this review, we will focus on the potential therapeutic intervention in OA with TGF-beta, application of the growth facto

  1. Q_EC values of the Superallowed beta-Emitters 10-C, 34-Ar, 38-Ca and 46-V

    CERN Document Server

    Eronen, T; Hakala, J; Hardy, J C; Jokinen, A; Kankainen, A; Moore, I D; Penttila, H; Reponen, M; Rissanen, J; Saastamoinen, A; Aysto, J

    2011-01-01

    The Q_EC values of the superallowed beta+ emitters 10-C, 34-Ar, 38-Ca and 46-V have been measured with a Penning-trap mass spectrometer to be 3648.12(8), 6061.83(8), 6612.12(7) and 7052.44(10) keV, respectively. All four values are substantially improved in precision over previous results.

  2. Monte Carlo calculations of monoenergetic electron depth dose distributions in LiF chips: Skin dose correction factors for beta rays

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S. [Ben Gurion Univ. of the Negev, Beersheva (Israel); Hirning, C.R. [Ontario Hydro, Whitby (Canada); Yuen, P.; Wong, P. [Chalk River Labs., Ontario (Canada)

    1994-10-01

    Monte Carlo calculations have been carried out for monoenergetic electrons from 0.1 to 4 MeV irradiating LiF chips in both perpendicular and isotropic geometry. This enabled the calculation of skin dose correction factors (beta factors) for typical beta energy spectra as measured with a beta-ray spectrometer at CANDU nuclear generating stations. The correction factors were estimated by averaging the depth dose distributions for the monoenergetic electrons over the experimentally measured beta-ray spectra. The calculations illustrate the large uncertainty in beta factors arising from the unknown angular distribution of the beta-ray radiation field and uncertainties in the shape of the beta-ray spectra below 500 keV. 28 refs., 8 figs., 2 tabs.

  3. High resolution solar soft X-ray spectrometer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fei; WANG Huan-Yu; PENG Wen-Xi; LIANG Xiao-Hua; ZHANG Chun-Lei; CAO Xue-Lei; JIANG Wei-Chun; ZHANG Jia-Yu; CUI Xing-Zhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed.A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer.The spectrometer consists of the detectors and their readout electronics,a data acquisition unit and a payload data handling unit.A ground test system is also developed to test SOX.The test results show that the design goals of the spectrometer system have been achieved.

  4. BaF2 TIME DIFFERENTIAL PERTURBED ANGULAR DISTRIBUTION SPECTROMETER

    Institute of Scientific and Technical Information of China (English)

    朱升云; 勾振辉; 等

    1994-01-01

    A BaF2 time differential perturbed angular distribution spectrometer has been established at the HI-13 tandem accelerator in CIAE.The time resolution of the spectrometer is 195ps and the nonlinearity is less than 2%.The spectrometer works very stably and no time drift is found over a period of experimental runs.This spectrometer has been successfully used in the g-factor measurement of 43Sc(19/2-,3.1232MeV).

  5. Miniature anastigmatic spectrometer design with a concave toroidal mirror.

    Science.gov (United States)

    Dong, Jianing; Chen, He; Zhang, Yinchao; Chen, Siying; Guo, Pan

    2016-03-01

    An advanced optical design for a low-cost and astigmatism-corrected spectrometer with a high resolution is presented. The theory and method of astigmatism correction are determined with the use of a concave toroidal mirror. The performances of a modified spectrometer and a traditional spectrometer are compared, and the analysis is verified. Experimentally, the limiting resolution of our spectrometer is 0.1 nm full width at half-maximum, as measured for 579.1 nm.

  6. Differential regulation of chemoattractant-stimulated beta 2, beta 3, and beta 7 integrin activity.

    Science.gov (United States)

    Sadhu, C; Masinovsky, B; Staunton, D E

    1998-06-01

    Leukocyte adhesion to endothelium and extravasation are dynamic processes that require activation of integrins. Chemoattractants such as IL-8 and FMLP are potent activators of leukocyte integrins. To compare the chemoattractant-stimulated activation of three integrins, alpha 4 beta 7, alpha L beta 2, and alpha V beta 3, in the same cellular context, we expressed an IL-8 receptor (IL-8RA) and FMLP receptor (FPR) in the lymphoid cell line JY. Chemoattractants induced a rapid increase in alpha L beta 2- and alpha V beta 3-dependent JY adhesion within 5 min, and it was sustained for 30 min. In contrast, stimulation of alpha 4 beta 7-dependent adhesion was transient, returning to basal levels by 30 min. The activation profiles of the integrins were similar regardless of whether IL-8 or FMLP was used for induction. We also demonstrate that alpha 4 beta 7-dependent adhesion was uniquely responsive to the F actin-disrupting agent cytochalasin D and the protein kinase C (PKC) inhibitor chelerythrin. While alpha V beta 3- and alpha L beta 2-mediated cell adhesion was significantly reduced by cytochalasin D, alpha 4 beta 7-mediated adhesion was enhanced. Chelerythrin inhibited both the IL-8 and PMA activation of alpha L beta 2 and alpha V beta 3. In contrast, inducible alpha 4 beta 7 activity was unaffected, and basal activity was increased. These findings demonstrate that the mechanism of alpha 4 beta 7 regulation by chemoattractants is different from that of alpha L beta 2 and alpha V beta 3 and that it appears to involve distinct cytoskeletal and PKC dependencies. In addition, PKC activity may be a positive or negative regulator of integrin-dependent adhesion.

  7. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2016-11-15

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  8. Nuclear astrophysics studies by SAMURAI spectrometer in RIKEN RIBF

    Science.gov (United States)

    Yoneda, K.

    2012-11-01

    SAMURAI is a spectrometer which is now being constructed at RIKEN RI Beam Factory. This spectrometer is characterized by a large angular-and momentum-acceptance enabling, for example, multi-particle coincidence measurements. Here brief descriptions of SAMURAI spectrometer and physics topics relevant to nuclear astrophysics are presented.

  9. Nuclear astrophysics studies by SAMURAI spectrometer in RIKEN RIBF

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, K. [RIKEN Nishina Center, 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan)

    2012-11-12

    SAMURAI is a spectrometer which is now being constructed at RIKEN RI Beam Factory. This spectrometer is characterized by a large angular-and momentum-acceptance enabling, for example, multi-particle coincidence measurements. Here brief descriptions of SAMURAI spectrometer and physics topics relevant to nuclear astrophysics are presented.

  10. Fourier and Hadamard transform spectrometers - A limited comparison. II

    Science.gov (United States)

    Harwit, M.; Tai, M. H.

    1977-01-01

    A mathematical approach was used to compare interferometric spectrometers and Hadamard transform spectrometers. The principle results are reported, noting that the simple Hadamard spectrometer encodes more efficiently than a Michelson interferometer which, in turn, encodes less efficiently than is usually acknowledged. Hirschfeld's (1977) major objections to these findings are discussed, although it is noted that none of his objections is supported by evidence.

  11. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  12. A Revised Scheme for the Beta Decay of 115-Day Ta182

    DEFF Research Database (Denmark)

    Hansen, P. Gregers; Nielsen, H. L.; Wilsky, K.

    1964-01-01

    V and not, as hitherto believed, to the 1222 keV level. The investigation has further revealed two new β components of higher energy: 591 keV (0.9±0.5% )and 1708 keV (0.05±0.01%). The 1708 keV transition represents a new example of K-forbidden 3−→2+ beta transitions in the rare-earth region.......A six-gap beta spectrometer, a xenon-filled proportional counter, scintillation equipment, and coincidence techniques have been used in a reinvestigation of the beta transitions to the known levels in W182. The main beta component of 522 keV (65%) is shown to proceed to the level at 1290 ke...

  13. Search for non Standard Model physics in nuclear-$\\beta$ decay with the WITCH experiment

    CERN Document Server

    Coeck, Sam

    In this work the WITCH experiment, which primarily aims for precision measurements of the beta-neutrino-angular correlation coefficient, is presented in detail. First a theoretical description of the beta-decay process is presented and it was shown how measurements of correlation coefficients can reveal the exact nature of the weak interaction. Although many experiments have already been conducted in this field, there is still considerable room for additional phenomena that are not included in the Standard Model. At WITCH the beta-neutrino-angular correlation coefficient will be obtained from precision measurements of the energy spectrum of the nuclei that recoil after beta-decay, thus avoiding the need to observe the neutrino. To enable a measurement of the recoiling ions, the setup uses a combination of two electromagnetic Penning traps and a retardation spectrometer. This allows one to construct the scattering free radioactive source that is needed as the recoiling ions have only a very small kinetic energ...

  14. The DOE Automated Radioxenon Sampler-Analyzer (ARSA) Beta-Gamma Coincidence Spectrometer Data Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Heimbigner, Tom R.; Bowyer, Ted W.; McIntyre, Justin I.; Abel, Keith H.; Hayes, James C.; Panisko, Mark E.; Pitts, W. K.

    2000-09-01

    The ARSA developed at PNNL for the CTBT measures four radioxenon isotopes. This paper will describe the software program along with data formats, various software controllable parameters and calculations.

  15. Measurements of beta ray spectra inside nuclear generating stations using a silicon detector coincidence telescope: skin dose beta correction factors for TL elements

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S.; Weizmann, Y. [Ben Gurion University of the Negev (Israel); Hirning, C.R. [Ontario Hydro, Whitby (Canada). Health Physics

    1996-10-01

    The measurement of beta ray spectra at various work locations inside nuclear generating stations operated by Ontario Hydro is described. The measurements were carried out using an advanced coincidence telescope spectrometer using silicon detectors only. The spectrometer is capable of measuring electron energies over the range 70-2500 keV with close to 100% efficiency. Over 40 beta ray spectra were measured at various work locations in three nuclear generating stations. Photon rejection is carried out by requiring a coincidence between either two or three detectors. Monte Carlo calculations were then used to estimate beta correction factors for the LiF:Mg,Ti elements used in the Ontario Hydro thermoluminescence dosemeters. Averaging over all the measured beta correction factors for the `skin chip (100 mg. cm{sup -2}) results in a value of 2.73 {+-} 0.77 and for the extremity dosemeter (240 mg.cm{sup -2}) an average value of 4.42 {+-} 1.17 is obtained. These values are 57% and 120% greater, respectively, than the current values used by Ontario Hydro. In addition, beta correction factors for nine representative spectra were calculated for 40 mg.cm{sup -2} and 20 mg.cm{sup -2} chips, and the results demonstrate the benefits of decreased dosemeter thickness. The average value of the beta correction factor, as well as the spread in the beta correction factor, decreases dramatically from 4.80 {+-} 2.1 (240 mg.cm{sup -2}) to 1.29 {+-} 0.1 (20mg.cm{sup -2}). (Author).

  16. Beta-thalassemia

    Directory of Open Access Journals (Sweden)

    Origa Raffaella

    2010-05-01

    Full Text Available Abstract Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands, dilated myocardiopathy, liver fibrosis and cirrhosis. Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes, gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely

  17. Beta-thalassemia.

    Science.gov (United States)

    Galanello, Renzo; Origa, Raffaella

    2010-05-21

    Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC) transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands), dilated myocardiopathy, liver fibrosis and cirrhosis). Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes), gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely, deletions in the beta

  18. Beta and muon decays

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, A.; Pascual, P.

    1967-07-01

    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  19. Realized Beta GARCH

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger; Voev, Valeri Radkov

    2014-01-01

    We introduce a multivariate generalized autoregressive conditional heteroskedasticity (GARCH) model that incorporates realized measures of variances and covariances. Realized measures extract information about the current levels of volatilities and correlations from high-frequency data, which...... is particularly useful for modeling financial returns during periods of rapid changes in the underlying covariance structure. When applied to market returns in conjunction with returns on an individual asset, the model yields a dynamic model specification of the conditional regression coefficient that is known...... as the beta. We apply the model to a large set of assets and find the conditional betas to be far more variable than usually found with rolling-window regressions based exclusively on daily returns. In the empirical part of the paper, we examine the cross-sectional as well as the time variation...

  20. A wideband spectrometer for the SRT

    Science.gov (United States)

    Comoretto, G.; Natale, V.

    A radiotelescope operating at millimeter wavelengths must be able to analyze an instantaneous bandwidth of at least a few GHz in spectroscopic mode, with a number of spectral points of the order of thousands. Two solutions are examined. In the first, it is assumed that a multi-channel digital spectrometer, with a bandwidth of the order of 100 MHz for each channel, will be available. In this case, a digital filterbank derived from the experience with the ALMA correlator could be used to synthesize a total bandwidth of 1-2 GHz. For wider bandwidths, an acousto-optical spectrometer is proposed. The experience at IRA, Sez. di Firenze with these instruments is presented, and possible solutions are outlined.

  1. Calibration of the solar radio spectrometer

    Institute of Scientific and Technical Information of China (English)

    TAN ChengMing; YAN YiHua; TAN BaoLin; XU GuiRong

    2009-01-01

    This paper shows some improvements and new results of calibration of Chinese solar radio spectrom-eter by analyzing the daily calibration data recorded in the period of 1997-2007. First, the calibration coefficient is fitted for three bands (1.0-2.0 GHz, 2.6-3.8 GHz, 5.2-7.6 GHz) of the spectrometer by using the moving-average method confined by the property of the daily calibration data. By this calibration coefficient, the standard deviation of the calibration result was less than 10 sfu for 95% frequencies of 2.6-3.8 GHz band in 2003. This result is better than that calibrated with the constant coefficient. Second, the calibration coefficient is found in good correlation with local air temperature for most frequencies of 2.6-3.8 GHz band. Moreover, these results are helpful in the research of the quiet solar radio emission.

  2. Data Reduction with the MIKE Spectrometer

    CERN Document Server

    Bernstein, Rebecca A; Prochaska, J Xavier

    2015-01-01

    This manuscript describes the design, usage, and data-reduction pipeline developed for the Magellan Inamori Kyocera Echelle (MIKE) spectrometer used with the Magellan telescope at the Las Campanas Observatory. We summarize the basic characteristics of the instrument and discuss observational procedures recommended for calibrating the standard data products. We detail the design and implementation of an IDL based data-reduction pipeline for MIKE data (since generalized to other echelle spectrometers, e.g. Keck/HIRES, VLT/UVES). This includes novel techniques for flat-fielding, wavelength calibration, and the extraction of echelle spectroscopy. Sufficient detail is provided in this manuscript to enable inexperienced observers to understand the strengths and weaknesses of the instrument and software package and an assessment of the related systematics.

  3. A 4 π dilepton spectrometer: PEPSI

    Science.gov (United States)

    Buda, A.; Bacelar, J. C. S.; Bałanda, A.; van Klinken, J.; Sujkowski, Z.; van der Woude, A.

    1993-11-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd 2Fe 14B permanent magnets forming a compact 4 π magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response function of PEPSI has been measured with mono-energetic beams of electrons from 5 to 20 MeV. The PEPSI spectrometer was used for measuring the internal pair conversion coefficient ( απ) of the 15.1 MeV M1 transition from a Jπ = 1 + state to the ground state in 12C. Our experimental value of απ = (3.3 ± 0.5) × 10 -3 is in good agreement with theoretical estimates.

  4. Imaging spectrometer wide field catadioptric design

    Science.gov (United States)

    Chrisp; Michael P.

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  5. Calibration of the solar radio spectrometer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper shows some improvements and new results of calibration of Chinese solar radio spectrometer by analyzing the daily calibration data recorded in the period of 1997-2007. First, the calibration coefficient is fitted for three bands (1.0-2.0 GHz, 2.6-3.8 GHz, 5.2-7.6 GHz) of the spectrometer by using the moving-average method confined by the property of the daily calibration data. By this calibration coefficient, the standard deviation of the calibration result was less than 10 sfu for 95% frequencies of 2.6-3.8 GHz band in 2003. This result is better than that calibrated with the constant coefficient. Second, the calibration coefficient is found in good correlation with local air temperature for most frequencies of 2.6-3.8 GHz band. Moreover, these results are helpful in the research of the quiet solar radio emission.

  6. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  7. Neutron spectrometer for improved SNM search.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  8. WSPEC: A Waveguide Filter Bank Spectrometer

    CERN Document Server

    Che, George; Underhill, Matthew; Mauskopf, Philip; Groppi, Christopher; Jones, Glenn; Johnson, Bradley; McCarrick, Heather; Flanigan, Daniel; Day, Peter

    2015-01-01

    We have designed, fabricated, and measured a 5-channel prototype spectrometer pixel operating in the WR10 band to demonstrate a novel moderate-resolution (R=f/{\\Delta}f~100), multi-pixel, broadband, spectrometer concept for mm and submm-wave astronomy. Our design implements a transmission line filter bank using waveguide resonant cavities as a series of narrow-band filters, each coupled to an aluminum kinetic inductance detector (KID). This technology has the potential to perform the next generation of spectroscopic observations needed to drastically improve our understanding of the epoch of reionization (EoR), star formation, and large-scale structure of the universe. We present our design concept, results from measurements on our prototype device, and the latest progress on our efforts to develop a 4-pixel demonstrator instrument operating in the 130-250 GHz band.

  9. The MIRI Medium Resolution Spectrometer calibration pipeline

    CERN Document Server

    Labiano, A; Bailey, J I; Beard, S; Dicken, D; García-Marín, M; Geers, V; Glasse, A; Glauser, A; Gordon, K; Justtanont, K; Klaassen, P; Lahuis, F; Law, D; Morrison, J; Müller, M; Rieke, G; Vandenbussche, B; Wright, G

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments, such as fringe corrections and wavelength offsets, with different algorithms for point source or extended source data. The MRS pipeline has also two different variants: the baseline pipeline, optimized for most foreseen science cases, and the optimal pipeline, where extra steps will be needed for specific science cases. This paper provides a comprehensive description of the MRS Calibration Pipeline from uncalibrated slope images to final scientific products, with brief descriptions of its algorithms, input and output data, and the accessory data and calibration data products necessary to run the pipeline.

  10. Coroutine Sequencing in BETA

    DEFF Research Database (Denmark)

    Kristensen, Bent Bruun; Madsen, Ole Lehrmann; Møller-Pedersen, Birger;

    In object-oriented programming, a program execution is viewed as a physical model of some real or imaginary part of the world. A language supporting object-oriented programming must therefore contain comprehensive facilities for modeling phenomena and concepts form the application domain. Many ap...... applications in the real world consist of objects carrying out sequential processes. Coroutines may be used for modeling objects that alternate between a number of sequential processes. The authors describe coroutines in BETA...

  11. Magic Baseline Beta Beam

    CERN Document Server

    Agarwalla, Sanjib Kumar; Raychaudhuri, Amitava

    2007-01-01

    We study the physics reach of an experiment where neutrinos produced in a beta-beam facility at CERN are observed in a large magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO). The CERN-INO distance is close to the so-called "magic" baseline which helps evade some of the parameter degeneracies and allows for a better measurement of the neutrino mass hierarchy and $\\theta_{13}$.

  12. Beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    2016-01-01

    Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin...... and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades......, but the mechanisms involved are still not clarified. In this review the information obtained in previous studies is recapitulated together with some of the current attempts to resolve the controversy in the field: identification of the putative progenitor cells, identification of the factors involved...

  13. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  14. Acquisition of HPLC-Mass Spectrometer

    Science.gov (United States)

    2015-08-18

    Replacing this large bulky tert-butyl carbamate with a thinner less sterically encumbering protecting group such as a methyl carbamate may eliminate the...This instrument has been an asset in organic synthesis and natural product isolation and teaching in organic, biochemistry, and instrumental analysis...isolation and teaching in organic, biochemistry, and instrumental analysis classes. Over the last year thie mass spectrometer has directly influenced the

  15. The Berkeley tunable far infrared laser spectrometers

    Science.gov (United States)

    Blake, G. A.; Laughlin, K. B.; Cohen, R. C.; Busarow, K. L.; Gwo, D.-H.

    1991-01-01

    A detailed description is presented for a tunable far infrared laser spectrometer based on frequency mixing of an optically pumped molecular gas laser with tunable microwave radiation in a Schottky point contact diode. The system has been operated on over 30 laser lines in the range 10-100/cm and exhibits a maximum absorption sensitivity near one part in a million. Each laser line can be tuned by + or - 110 GHz with first-order sidebands.

  16. Calibration and monitoring of spectrometers and spectrophotometers.

    Science.gov (United States)

    Frings, C S; Broussard, L A

    1979-06-01

    We have delineated some of the factors affecting the performance of spectrometers and spectrophotometers in the clinical laboratory and have presented some of the methods for verifying that these instruments are functioning properly. At a minimum, every laboratory should perform periodic inspections of spectrometric functions to check wavelength calibration, linearity of detector response, and stray radiation. Only through such an inspection program can a laboratory ensure that these instruments are not contributing to inaccurate analytical results.

  17. VAMOS: a VAriable MOde high acceptance Spectrometer

    CERN Document Server

    Savajols, H

    1999-01-01

    The study of reactions induced by the future SPIRAL beams at GANIL requires new techniques: the low intensity of secondary beams implies the need of a very high efficiency detection system ; the study of nearly or completely unknown nuclei, over a wide range of masses and energies, needs a very efficient method for attributing a reaction product to a nucleus. The VAriable MOde high acceptance Spectrometer VAMOS is being designed and built especially for this purpose.

  18. Midrapidity measurements with the BRAHMS spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, D. [Brookhaven National Lab., Upton, NY (United States)

    1995-07-15

    The forward- and midrapidity-arms of the BRAHMS experiment are designed to measure charged particle production over a wide range of transverse momentum for rapidities, 0{le}y{le}4. Details of the midrapidity spectrometer, which provides coverage for 0{le}{eta}{le}1.3, are presented here. The capabilities for inclusive {pi}{sup +-}, K{sup +-}, and p{sup +-} measurements and boson pair correlations are discussed.

  19. Development of Electron Magnetic Spectrometer and Application

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The interaction between ultra-short pulse laser and solid plasma produces hot electron. Thereare many methods to study hot electron spectrum and space distribution. But the way of electron magnetic spectrometer is the most directional method. Particles with charge act circle movement in spare magnetic field. Different energy electrons have different whirl radius. So along whirl diameter direction electron spectrum can be obtained. Actually, electron is affected by gravity excursion and magnetic grads and curvature excursion besides lawrence power. The direction of

  20. One module of the ALICE photon spectrometer

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first module for the ALICE photon spectrometer has been completed. Each of the five modules will contain 3584 lead-tungstate crystals, a material as transparent as ordinary silica glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, allowing the energy of electrons, positrons and photons to be measured through the 17 920 detection channels.

  1. Superconducting RF separator for Omega Spectrometer

    CERN Multimedia

    1977-01-01

    The photo shows an Nb-deflector for the superconducting RF separator ready for installation in its cryostat (visible at the back). Each deflector was about 3 m long. L. Husson and P. Skacel (Karlsruhe) stand on the left, A. Scharding (CERN) stands on the right. This particle separator, the result of a collaboration between the Gesellshaft für Kernforschung, Karlsruhe, and CERN was installed in the S1 beam line to Omega spectrometer. (See Annual Report 1977.)

  2. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  3. What Happened with Spectrometer Magnet 2B

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A

    2010-05-27

    The spectrometer solenoid is supposed to be the first magnets installed in MICE [1]-[4]. This report described what happened during the test of the MICE spectrometer solenoid 2B. First, the report describes the temperatures in the magnet, the cooler top plate and the shield during the run where the magnet quenched at 258 A. During this quench, a lead between the bottom of the HTS leads and the diode bank burned out causing the magnet to quench. Second, three methods for measuring the net heat flow into the cold mass are described. Third, there is a discussion of possible resistive heating in the HTS leads between liquid helium temperature and the copper plate, which is at about 50 K. Fourth, there is a discussion of the measured first stage heat loads in the magnet, when there is no current in the magnet. The first stage heat load calculations are based on knowing the first stage temperatures of the three two-stage pulse tube coolers and the single stage GM cooler. Fifth, the estimated heat load to the first stage when the magnet has current in it is discussed. Sixth, there is a comparison of the stage 1 heat loads in magnet 1A [5], magnet 2A [6], and magnet 2B [7]. Finally there is a discussion of recommended changes for improving the spectrometer solenoids so that the coolers can keep them cold.

  4. Vacuum system for the SAMURAI spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y., E-mail: yshimizu@ribf.riken.jp [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Otsu, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Kobayashi, T. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Kubo, T.; Motobayashi, T.; Sato, H.; Yoneda, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)

    2013-12-15

    Highlights: • The paper describes the vacuum system for the SAMURAI spectrometer including its beam line and the SAMURAI vacuum chamber. • The windows for detecting neutrons and charged particles are mounted on the SAMURAI vacuum chamber. • The deflection and induced stress of the windows were calculated by ANSYS program code. • The windows were constructed and examined with the test chamber before mounting on the SAMURAI vacuum chamber. • The SAMURAI was kept on a few Pa of the pressure during the experiment without any problems caused by these windows. -- Abstract: The first commissioning experiment of the SAMURAI spectrometer and its beam line was performed in March, 2012. The vacuum system for the SAMURAI spectrometer includes its beam line and the SAMURAI vacuum chamber with the windows for detecting neutrons and charged particles. The window for neutrons was made of stainless steel with a thickness of 3 mm and was designed with a shape of partial cylinder to support itself against the atmospheric pressure. The window for charged particles was of the combination of Kevlar and Mylar with the thickness of 280 and 75 μm, respectively. The pressure in the vacuum system was at a few Pa throughout the commissioning experiment.

  5. Compact high performance spectrometers using computational imaging

    Science.gov (United States)

    Morton, Kenneth; Weisberg, Arel

    2016-05-01

    Compressive sensing technology can theoretically be used to develop low cost compact spectrometers with the performance of larger and more expensive systems. Indeed, compressive sensing for spectroscopic systems has been previously demonstrated using coded aperture techniques, wherein a mask is placed between the grating and a charge coupled device (CCD) and multiple measurements are collected with different masks. Although proven effective for some spectroscopic sensing paradigms (e.g. Raman), this approach requires that the signal being measured is static between shots (low noise and minimal signal fluctuation). Many spectroscopic techniques applicable to remote sensing are inherently noisy and thus coded aperture compressed sensing will likely not be effective. This work explores an alternative approach to compressed sensing that allows for reconstruction of a high resolution spectrum in sensing paradigms featuring significant signal fluctuations between measurements. This is accomplished through relatively minor changes to the spectrometer hardware together with custom super-resolution algorithms. Current results indicate that a potential overall reduction in CCD size of up to a factor of 4 can be attained without a loss of resolution. This reduction can result in significant improvements in cost, size, and weight of spectrometers incorporating the technology.

  6. VERITAS: Versatile Triple-Axis Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Il

    2006-04-15

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, {approx} 5 m Curved Guide, {approx} 26 m w/ R 1500 m Straight Guide before the Instrument, {approx} 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world.

  7. Imaging spectrometer for fugitive gas leak detection

    Science.gov (United States)

    Hinnrichs, Michele

    1999-12-01

    Under contract to the U.S. Air Force and Navy, Pacific Advanced Technology has developed a very sensitive infrared imaging spectrometer that can perform remote imaging and spectro-radiometry. One of the most exciting applications for this technology is in the remote monitoring of smoke stack emissions and fugitive leaks. To date remote continuous emission monitoring (CEM) systems have not been approved by the EPA, however, they are under consideration. If the remote sensing technology is available with the sensitivity to monitor emission at the required levels and man portable it can reduce the cost and improve the reliability of performing such measurements. Pacific Advanced Technology (PAT) believes that it currently has this technology available to industry. This paper will present results from a field test where gas vapors during a refueling process were imaged and identified. In addition images of propane from a leaking stove will be presented. We at PAT have developed a real time image processing board that enhances the signal to noise ratio of low contrast gases and makes them easily viewable using the Image Multispectral Sensing (IMSS) imaging spectrometer. The IMSS imaging spectrometer is the size of a camcorder. Currently the data is stored in a Notebook computer thus allowing the system to be easily carried into power plants to look for fugitive leaks. In the future the IMSS will have an embedded processor and DSP and will be able to transfer data over an Ethernet link.

  8. LHCb: $2\\beta_s$ measurement at LHCb

    CERN Multimedia

    Conti, G

    2009-01-01

    A measurement of $2\\beta_s$, the phase of the $B_s-\\bar{B_s}$ oscillation amplitude with respect to that of the ${\\rm b} \\rightarrow {\\rm c^{+}}{\\rm W^{-}}$ tree decay amplitude, is one of the key goals of the LHCb experiment with first data. In the Standard Model (SM), $2\\beta_s$ is predicted to be $0.0360^{+0.0020}_{-0.0016} \\rm rad$. The current constraints from the Tevatron are: $2\\beta_{s}\\in[0.32 ; 2.82]$ at 68$\\%$CL from the CDF experiment and $2\\beta_{s}=0.57^{+0.24}_{-0.30}$ from the D$\\oslash$ experiment. Although the statistical uncertainties are large, these results hint at the possible contribution of New Physics in the $B_s-\\bar{B_s}$ box diagram. After one year of data taking at LHCb at an average luminosity of $\\mathcal{L}\\sim2\\cdot10^{32}\\rm cm^{-2} \\rm s^{-1}$ (integrated luminosity $\\mathcal{L}_{\\rm int}\\sim 2 \\rm fb^{-1}$), the expected statistical uncertainty on the measurement is $\\sigma(2\\beta_s)\\simeq 0.03$. This uncertainty is similar to the $2\\beta_s$ value predicted by the SM.

  9. Method of multiplexed analysis using ion mobility spectrometer

    Science.gov (United States)

    Belov, Mikhail E.; Smith, Richard D.

    2009-06-02

    A method for analyzing analytes from a sample introduced into a Spectrometer by generating a pseudo random sequence of a modulation bins, organizing each modulation bin as a series of submodulation bins, thereby forming an extended pseudo random sequence of submodulation bins, releasing the analytes in a series of analyte packets into a Spectrometer, thereby generating an unknown original ion signal vector, detecting the analytes at a detector, and characterizing the sample using the plurality of analyte signal subvectors. The method is advantageously applied to an Ion Mobility Spectrometer, and an Ion Mobility Spectrometer interfaced with a Time of Flight Mass Spectrometer.

  10. Measurements for the Performance of the Digital Autocorrelation Spectrometer

    Institute of Scientific and Technical Information of China (English)

    Fa-Chun Lu; Jarken Esimbek; Jian-Jun Zhou; Xing-Wu Zheng

    2007-01-01

    Injecting phase calibration (PCAL) signals to the feed horn of the observation system and analyzing the output response signals of the spectrometer, we measured the working performance of a 4096-channel digital autocalibration spectrometer. The results demonstrate that the spectrometer has a fine working performance: (1) the channels are distributed uniformly in the spectrometer; (2) line drift produces little effect on the observation results; (3)spectral resolution shows little changes with observation time. The distribution of the frequency resolution in an 80 MHz bandwidth was measured. A trial observation on the two molecular spectral lines of H2CO and H 110α taken with this spectrometer is described.

  11. [Design of Dual-Beam Spectrometer in Spectrophotometer for Colorimetry].

    Science.gov (United States)

    Liu, Yi-xuan; Yan, Chang-xiang

    2015-07-01

    Spectrophotometers for colorimetry are usually composed of two independent and identical spectrometers. In order to reduce the volume of spectrophotometer for colorimetry, a design method of double-beam spectrometer is put forward. A traditional spectrometer is modified so that a new spectrometer can realize the function of double spectrometers, which is especially suitable for portable instruments. One slit is replaced by the double-slit, than two beams of spectrum can be detected. The working principle and design requirement of double-beam spectrometer are described. A spectrometer of portable spectrophotometer is designed by this method. A toroidal imaging mirror is used for the Czerny-Turner double-beam spectrometer in this paper, which can better correct astigmatism, and prevent the dual-beam spectral crosstalk. The results demonstrate that the double-beam spectrometer designed by this method meets the design specifications, with the spectral resolution less than 10 nm, the spectral length of 9.12 mm, and the volume of 57 mm x 54 mm x 23 mm, and without the dual-beam spectral overlap in the detector either. Comparing with a traditional spectrophotometer, the modified spectrophotometer uses a set of double-beam spectrometer instead of two sets of spectrometers, which can greatly reduce the volume. This design method can be specially applied in portable spectrophotometers, also can be widely applied in other double-beam spectrophotometers, which offers a new idea for the design of dual-beam spectrophotometers.

  12. Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip

    Science.gov (United States)

    Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

    2012-01-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  13. New generation VNIR/SWIR/TIR airborne imaging spectrometer

    Science.gov (United States)

    Wang, Yueming; Wei, Liqin; Yuan, Liyin; Li, Chunlai; Lv, Gang; Xie, Feng; Han, Guicheng; Shu, Rong; Wang, Jianyu

    2016-10-01

    Imaging spectrometer plays an important role in the remote sensing application. Imaging spectrometer can collects and provides a unique spectral signature of many materials. The spectral signature may be absorbing, reflecting, and emitting. Generally, optical spectral bands for earth observing consist of VNIR, SWIR, TIR/LWIR. VNIR band imaging spectrometer is well-known in vegetation remote sensing and ocean detection. SWIR band imaging spectrometer is widely applied in mineralogy investigation. For its uniquely capability of spectral radiance measurement, TIR/LWIR imaging spectrometer attracts much attention these years. This paper will present a new generation VNIR/SWIR/TIR imaging spectrometer. The preliminary result of its first flight will also be shared. The spectral sampling intervals of VNIR/SWIR/TIR are 2.4nm/3nm/30nm, respectively. The spatial pixel numbers are 2800/1400/700,respectively. It's a push-broom imaging spectrometer.

  14. Development of a Gas Filled Magnet spectrometer coupled with the Lohengrin spectrometer for fission study

    Directory of Open Access Journals (Sweden)

    Materna T.

    2013-03-01

    Full Text Available The accurate knowledge of the fission of actinides is necessary for studies of innovative nuclear reactor concepts. The fission yields have a direct influence on the evaluation of the fuel inventory or the reactor residual power after shutdown. A collaboration between the ILL, LPSC and CEA has developed a measurement program on fission fragment distributions at ILL in order to measure the isotopic and isomeric yields. The method is illustrated using the 233U(n,f98Y reaction. However, the extracted beam from the Lohengrin spectrometer is not isobaric ions which limits the low yield measurements. Presently, the coupling of the Lohengrin spectrometer with a Gas Filled Magnet (GFM is studied at the ILL in order to define and validate the enhanced purification of the extracted beam. This work will present the results of the spectrometer characterisation, along with a comparison with a dedicated Monte Carlo simulation especially developed for this purpose.

  15. The role of electron scattering from registration detector in the “Troitsk nu-mass” MAC-E type spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Grigorieva, P.V. [Institute for Nuclear Research of Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7a, Moscow 117312 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 (Russian Federation); Nozik, A.A., E-mail: nozik@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7a, Moscow 117312 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 (Russian Federation); Pantuev, V.S., E-mail: pantuev@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7a, Moscow 117312 (Russian Federation); Skasyrskaya, A.K. [Institute for Nuclear Research of Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7a, Moscow 117312 (Russian Federation)

    2016-10-01

    There is a proposal to search for a sterile neutrino in a few keV mass range by the “Troitsk nu-mass” facility. In order to estimate sterile neutrino mixing one needs to make precision spectrum measurements well below the endpoint using the existing electrostatic spectrometer with a magnetic adiabatic collimation, or MAC-E filter. The expected signature will be a kink in the electron energy spectrum in tritium beta-decay. In this paper we consider the systematic effect of electron backscattering on the detector used in the spectrometer. For this purpose we provide a set of Monte-Carlo simulation results of electron backscattering on a silicon detector with a thin golden window with realistic electric and magnetic fields in the spectrometer. We have found that the probability of such an effect reaches up to 20–30%. The scattered electron could be reflected backwards to the detector by electrostatic field or by magnetic mirror. There is also a few percent probability to escape from the spectrometer through its entrance. A time delay between the scattering on the detector and the return of the reflected electron can reach a couple of microseconds in the Troitsk spectrometer. Such estimations are critical for the planning upgrades of the detector and the registration electronics. All considered effects are relevant to any MAC-E type spectrometer with solid detector.

  16. Low energy x-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, W.R.

    1981-06-05

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni L..cap alpha../sub 1/ /sub 2/ lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures.

  17. Spectrometers for RF breakdown studies for CLIC

    Science.gov (United States)

    Jacewicz, M.; Ziemann, V.; Ekelöf, T.; Dubrovskiy, A.; Ruber, R.

    2016-08-01

    An e+e- collider of several TeV energy will be needed for the precision studies of any new physics discovered at the LHC collider at CERN. One promising candidate is CLIC, a linear collider which is based on a two-beam acceleration scheme that efficiently solves the problem of power distribution to the acceleration structures. The phenomenon that currently prevents achieving high accelerating gradients in high energy accelerators such as the CLIC is the electrical breakdown at very high electrical field. The ongoing experimental work within the CLIC collaboration is trying to benchmark the theoretical models focusing on the physics of vacuum breakdown which is responsible for the discharges. In order to validate the feasibility of accelerating structures and observe the characteristics of the vacuum discharges and their eroding effects on the structure two dedicated spectrometers are now commissioned at the high-power test-stands at CERN. First, the so called Flashbox has opened up a possibility for non-invasive studies of the emitted breakdown currents during two-beam acceleration experiments. It gives a unique possibility to measure the energy of electrons and ions in combination with the arrival time spectra and to put that in context with accelerated beam, which is not possible at any of the other existing test-stands. The second instrument, a spectrometer for detection of the dark and breakdown currents, is operated at one of the 12 GHz stand-alone test-stands at CERN. Built for high repetition rate operation it can measure the spatial and energy distributions of the electrons emitted from the acceleration structure during a single RF pulse. Two new analysis tools: discharge impedance tracking and tomographic image reconstruction, applied to the data from the spectrometer make possible for the first time to obtain the location of the breakdown inside the structure both in the transversal and longitudinal direction thus giving a more complete picture of the

  18. Simultaneous beta and gamma spectroscopy

    Science.gov (United States)

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  19. Thermal emission spectrometer experiment - Mars Observer mission

    Science.gov (United States)

    Christensen, Philip R.; Anderson, Donald L.; Chase, Stillman C.; Clark, Roger N.; Kieffer, Hugh H.; Malin, Michael C.; Pearl, John C.; Carpenter, James; Bandiera, Nuno; Brown, F. G.

    1992-01-01

    The paper describes the thermal emission spectrometer (TES) designed for the Mars Observer mission. The TES measurements of the surface and the atmosphere of Mars will be used to determine and map the composition of the surface rocks, minerals, and the condensates. Examples of information that will be obtained from TES data include mineral abundance maps, condensate properties and their distribution in time and space, aerosol properties and their distribution in time and space, the rock abundance, the polar energy balance, and properties of gaseous species. Where appropriate, these derived parameters will be distributed in the form of gridded map, to allow direct comparison with other derived data sets.

  20. Comparison of properties of digital spectrometer systems.

    Science.gov (United States)

    Mazanova, Monika; Dryak, Pavel; Kovar, Petr; Auerbach, Pavel

    2014-05-01

    We have tested two digital spectrometer systems, the DSP 9660 and Lynx(®) modules, connected to a HPGe detector. Lynx(®) is a fully integrated 32K channel signal analyzer based on digital signal processing techniques, which offers advanced digital stabilization. The model DSP 9660 digitalizes the signal directly at a very high sampling rate. The evaluated properties were integral nonlinearity, differential linearity, channel profiles, resolution and throughput. We found that the DSP system has slightly inferior resolution and throughput in comparison with the Lynx(®) system.

  1. Photoacoustic Soot Spectrometer (PASS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, M [Los Alamos National Laboratory; Springston, S [Brookhaven National Laboratory; Koontz, A [Pacific Northwest National Laboratory; Aiken, A [Los Alamos National Laboratory

    2013-01-17

    The photoacoustic soot spectrometer (PASS) measures light absorption by aerosol particles. As the particles pass through a laser beam, the absorbed energy heats the particles and in turn the surrounding air, which sets off a pressure wave that can be detected by a microphone. The PASS instruments deployed by ARM can also simultaneously measure the scattered laser light at three wavelengths and therefore provide a direct measure of the single-scattering albedo. The Operator Manual for the PASS-3100 is included here with the permission of Droplet Measurement Technologies, the instrument’s manufacturer.

  2. The Omega spectrometer in the West Hall.

    CERN Multimedia

    1976-01-01

    Inside the hut which sits on top of the superconducting magnet are the TV cameras that observe the particle events occurring in the spark chambers in the magnet gap below. On the background the two beam lines feeding the spectrometer target, for separated hadrons up to 40 GeV, on the right, for 80 GeV electrons, on the left, respectively. The latter strikes a radiator thus sending into Omega tagged photons up to 80 GeV. On the foreground, the two sections of the large gas Cerenkov counter working at atmospheric pressure, used for trigger purpose.

  3. The Berkeley EUV spectrometer for ORFEUS

    Science.gov (United States)

    Hurwitz, M.; Bowyer, S.

    1991-01-01

    A novel EUV spectrometer is presented for the ORFEUS-SPAS mission. It uses a set of four varied line-space spherical diffraction gratings to obtain high-resolution spectra of point sources at wavelengths between 390 and 1200 A. The spectra are recorded with two detector units, each containing curved-surface microchannel plates and a delay-line anode-readout system. An independent optical system detects the image of the source in the entrance aperture and tracks the source as it drifts during an observation, enabling a reconstruction of the spectra postflight. The overall system performance is discussed and illustrated by synthetic spectra.

  4. Hyperspectral Thermal Emission Spectrometer: Engineering Flight Campaign

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.; Shoen, Steven S.; Eng, Bjorn T.

    2013-01-01

    The Hyperspectral Thermal Emission Spectrometer (HyTES) successfully completed its first set of engineering test flights. HyTES was developed in support of the Hyperspectral Infrared Imager (HyspIRI). HyspIRI is one of the Tier II Decadal Survey missions. HyTES currently provides both high spectral resolution (17 nm) and high spatial resolution (2-5m) data in the thermal infrared (7.5-12 micron) part of the electromagnetic spectrum. HyTES data will be used to help determine the optimum band positions for the HyspIRI Thermal Infrared (TIR) sensor and provide antecedent data for HyspIRI related studies.

  5. Covariances for Gamma Spectrometer Efficiency Calibrations

    Directory of Open Access Journals (Sweden)

    Williams John G.

    2016-01-01

    Full Text Available An essential part of the efficiency calibration of gamma spectrometers is the determination of uncertainties on the results. Although this is routinely done, it often does not include the correlations between efficiencies at different energies. These can be important in the subsequent use of the detectors to obtain activities for a set of dosimetry reactions. If those values are not mutually independent, then obviously that fact could impact the validity of adjustments or of other conclusions resulting from the analysis. Examples are given of detector calibrations in which the correlations are calculated and propagated through an analysis of measured activities.

  6. A compact positron annihilation lifetime spectrometer

    Institute of Scientific and Technical Information of China (English)

    LI Dao-Wu; LIU Jun-Hui; ZHANG Zhi-Ming; WANG Bao-Yi; ZHANG Tian-Bao; WEI Long

    2011-01-01

    Using LYSO scintillator coupled on HAMAMATSU R9800(a fast photomultiplier)to form the small size γ-ray detectors,a compact lifetime spectrometer has been built for the positron annihilation experiments.The system time resolution FWHM=193 ps and the coincidence counting rate -8 cps/μCi were achieved.A lifetime value of 219±1 ps of positron annihilation in well annealed Si was tested,which is in agreement with the typical values published in the previous lectures.

  7. Lead Slowing Down Spectrometer Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Glen A.; Anderson, Kevin K.; Bonebrake, Eric; Casella, Andrew M.; Danon, Yaron; Devlin, M.; Gavron, Victor A.; Haight, R. C.; Imel, G. R.; Kulisek, Jonathan A.; O' Donnell, J. M.; Weltz, Adam

    2012-06-07

    This report documents the progress that has been completed in the first half of FY2012 in the MPACT-funded Lead Slowing Down Spectrometer project. Significant progress has been made on the algorithm development. We have an improve understanding of the experimental responses in LSDS for fuel-related material. The calibration of the ultra-depleted uranium foils was completed, but the results are inconsistent from measurement to measurement. Future work includes developing a conceptual model of an LSDS system to assay plutonium in used fuel, improving agreement between simulations and measurement, design of a thorium fission chamber, and evaluation of additional detector techniques.

  8. Micro-optical-mechanical system photoacoustic spectrometer

    Science.gov (United States)

    Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

    2013-01-01

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

  9. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  10. Compact proton spectrometers for measurements of shock

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Zylstra, A; Frenje, J A; Seguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M G; Casey, D T; Sinenian, N; Manuel, M; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G; Dewald, E; Doeppner, T; Edwards, M J; Glenzer, S H; Hicks, D; Landen, O L; London, R; Meezan, N B

    2012-05-02

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign (NIC) diagnostic. The WRF measures the spectrum of protons from D-{sup 3}He reactions in tuning-campaign implosions containing D and {sup 3}He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total {rho}R through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  11. Conceptual design of a Disk Chopper Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Copley, J.R.D. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1997-09-01

    We describe methods that we have used for the conceptual design of the Disk Chopper Spectrometer at the Cold Neutron Research Facility, National Institute of Standards and Technology. Most of the discussion concerns the multiple chopper system. No single design method is best in every situation. We believe that an analytical approach is preferable, whenever possible. Graphical methods of expressing problems have been very instructive. We have also found it useful, and occasionally invaluable, to cross-check results obtained using different methods, such as analytical integration and ray-tracing.

  12. Dual waveband compact catadioptric imaging spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Chrisp, Michael P.

    2012-12-25

    A catadioptric dual waveband imaging spectrometer that covers the visible through short-wave infrared, and the midwave infrared spectral regions, dispersing the visible through shortwave infrared with a zinc selenide grating and midwave infrared with a sapphire prism. The grating and prism are at the cold stop position, enabling the pupil to be split between them. The spectra for both wavebands are focused onto the relevant sections of a single dual waveband detector. Spatial keystone distortion is controlled to less than one tenth of a pixel over the full wavelength range, facilitating the matching of the spectra in the midwave infrared with the shorter wavelength region.

  13. Electro-optic imaging Fourier transform spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  14. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  15. Beta section Beta: biogeographical patterns of variation and taxonomy.

    NARCIS (Netherlands)

    Letschert, J.P.W.

    1993-01-01

    In Chapter 1 an account is given of the historical subdivision of the genus Beta and its sections, and the relations of the sections are discussed. Emphasis is given to the taxonomic treatment of wild section Beta by various authors. The Linnaean names B. vulgaris L. and B. maritima L. are lectotypi

  16. Cyclic modular beta-sheets.

    Science.gov (United States)

    Woods, R Jeremy; Brower, Justin O; Castellanos, Elena; Hashemzadeh, Mehrnoosh; Khakshoor, Omid; Russu, Wade A; Nowick, James S

    2007-03-07

    The development of peptide beta-hairpins is problematic, because folding depends on the amino acid sequence and changes to the sequence can significantly decrease folding. Robust beta-hairpins that can tolerate such changes are attractive tools for studying interactions involving protein beta-sheets and developing inhibitors of these interactions. This paper introduces a new class of peptide models of protein beta-sheets that addresses the problem of separating folding from the sequence. These model beta-sheets are macrocyclic peptides that fold in water to present a pentapeptide beta-strand along one edge; the other edge contains the tripeptide beta-strand mimic Hao [JACS 2000, 122, 7654] and two additional amino acids. The pentapeptide and Hao-containing peptide strands are connected by two delta-linked ornithine (deltaOrn) turns [JACS 2003, 125, 876]. Each deltaOrn turn contains a free alpha-amino group that permits the linking of individual modules to form divalent beta-sheets. These "cyclic modular beta-sheets" are synthesized by standard solid-phase peptide synthesis of a linear precursor followed by solution-phase cyclization. Eight cyclic modular beta-sheets 1a-1h containing sequences based on beta-amyloid and macrophage inflammatory protein 2 were synthesized and characterized by 1H NMR. Linked cyclic modular beta-sheet 2, which contains two modules of 1b, was also synthesized and characterized. 1H NMR studies show downfield alpha-proton chemical shifts, deltaOrn delta-proton magnetic anisotropy, and NOE cross-peaks that establish all compounds but 1c and 1g to be moderately or well folded into a conformation that resembles a beta-sheet. Pulsed-field gradient NMR diffusion experiments show little or no self-association at low (

  17. The Calibration Home Base for Imaging Spectrometers

    Directory of Open Access Journals (Sweden)

    Johannes Felix Simon Brachmann

    2016-08-01

    Full Text Available The Calibration Home Base (CHB is an optical laboratory designed for the calibration of imaging spectrometers for the VNIR/SWIR wavelength range. Radiometric, spectral and geometric calibration as well as the characterization of sensor signal dependency on polarization are realized in a precise and highly automated fashion. This allows to carry out a wide range of time consuming measurements in an ecient way. The implementation of ISO 9001 standards in all procedures ensures a traceable quality of results. Spectral measurements in the wavelength range 380–1000 nm are performed to a wavelength uncertainty of +- 0.1 nm, while an uncertainty of +-0.2 nm is reached in the wavelength range 1000 – 2500 nm. Geometric measurements are performed at increments of 1.7 µrad across track and 7.6 µrad along track. Radiometric measurements reach an absolute uncertainty of +-3% (k=1. Sensor artifacts, such as caused by stray light will be characterizable and correctable in the near future. For now, the CHB is suitable for the characterization of pushbroom sensors, spectrometers and cameras. However, it is planned to extend the CHBs capabilities in the near future such that snapshot hyperspectral imagers can be characterized as well. The calibration services of the CHB are open to third party customers from research institutes as well as industry.

  18. Dedicated monolithic infrared spectrometer for process monitoring

    Science.gov (United States)

    Chadha, Suneet; Kyle, William; Bolduc, Roy A.; Curtiss, Lawrence E.

    1999-12-01

    Foster-Miller has leveraged its innovations in IR fiber- optic probes and the recent development of a miniature spectrometer to build a novel IR sensor system for process applications. The developed sensor systems is a low-cost alternative to process FTIR and filter based systems. A monolithic wedge-grating optic provides the spectral dispersion with low cost thermopile point or array detectors picking off the diffracted wavelengths from the optic. The integrated optic provides spectral discrimination between 3- 12 micrometers with resolution at 8 cm-1 or better and high overall optical throughput. The device has a fixed cylindrical grating uniquely bonded to the edge of a ZnSe conditioning 'wedge'. The conditioning optic overcomes limitations of concave gratings as it accepts high angle light at the narrow end of the wedge and progressively conditions it to be near normal to the grating. On return, the diffracted wavelengths are concentrated on the discrete or array detector elements by the wedge, providing throughput comparable to that of an FTIR. The miniature spectrometer coupled to flow through liquid cells or multipass gas cells provides significant cost advantage over conventional sampling methodologies. Currently, we are investigating process applications for the petroleum and dairy markets. The sensor system eliminates the cost, complexity, reliability and bandwidth/resolution problems associated with either Fabry Perot or Michelson Interferometer based approaches for low-cost process applications.

  19. Software Polarization Spectrometer "PolariS"

    CERN Document Server

    Mizuno, Izumi; Kano, Amane; Kuroo, Makoto; Nakamura, Fumitaka; Kawaguchi, Noriyuki; Shibata, Katsunori M; Kuji, Seisuke; Kuno, Nario

    2014-01-01

    We have developed a software-based polarization spectrometer, PolariS, to acquire full-Stokes spectra with a very high spectral resolution of 61 Hz. The primary aim of PolariS is to measure the magnetic fields in dense star-forming cores by detecting the Zeeman splitting of molecular emission lines. The spectrometer consists of a commercially available digital sampler and a Linux computer. The computer is equipped with a graphics processing unit (GPU) to process FFT and cross-correlation using the CUDA (Compute Unified Device Architecture) library developed by NVIDIA. Thanks to a high degree of precision in quantization of the analog-to-digital converter and arithmetic in the GPU, PolariS offers excellent performances in linearity, dynamic range, sensitivity, bandpass flatness and stability. The software has been released under the MIT License and is available to the public. In this paper, we report the design of PolariS and its performance verified through engineering tests and commissioning observations.

  20. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2 ·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirements from AMS, and satisfies the strict safety standards of NASA.

  1. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    陈和生

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirem

  2. Performance Validation of the ATLAS Muon Spectrometer

    CERN Document Server

    Mair, Katharina

    ATLAS (A Toroidal LHC ApparatuS) is a general-purpose experiment for the future Large Hadron Collider (LHC) at CERN, which is scheduled to begin operation in the year 2007, providing experiments with proton-proton collisions. The center-of-mass energy of 14TeV and the design luminosity of 1034 cm−2s−1 will allow to explore many new aspects of fundamental physics. The ATLAS Muon Spectrometer aims at a momentum resolution better than 10% for transverse momentum values ranging from pT = 6 GeV to pT = 1TeV. Precision tracking will be performed by Ar-CO2-gas filled Monitored Drift Tube chambers (MDTs), with a single wire resolution of < 100 μm. In total, about 1 200 chambers, arranged in a large structure, will allow muon track measurements over distances up to 15m in a magnetic field of 0.5 T. Given the large size of the spectrometer it is impossible to keep the shape of the muon chambers and their positions stable within the requested tracking accuracy of 50 μm. Therefore the concept of an optical alig...

  3. A wide field of view plasma spectrometer

    Science.gov (United States)

    Skoug, R. M.; Funsten, H. O.; Möbius, E.; Harper, R. W.; Kihara, K. H.; Bower, J. S.

    2016-07-01

    We present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is > 1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and are measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. We present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.

  4. Comb-locked Lamb-dip spectrometer

    Science.gov (United States)

    Gatti, Davide; Gotti, Riccardo; Gambetta, Alessio; Belmonte, Michele; Galzerano, Gianluca; Laporta, Paolo; Marangoni, Marco

    2016-06-01

    Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm2, which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10-11 cm-1 absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10-23 cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed.

  5. The MAGNEX spectrometer: results and perspectives

    CERN Document Server

    Cappuzzello, F; Carbone, D; Cavallaro, M

    2016-01-01

    This article discusses the main achievements and future perspectives of the MAGNEX spectrometer at the INFN-LNS laboratory in Catania (Italy). MAGNEX is a large acceptance magnetic spectrometer for the detection of the ions emitted in nuclear collisions below Fermi energy. In the first part of the paper an overview of the MAGNEX features is presented. The successful application to the precise reconstruction of the momentum vector, to the identification of the ion masses and to the determination of the transport efficiency is demonstrated by in-beam tests. In the second part, an overview of the most relevant scientific achievements is given. Results from nuclear elastic and inelastic scattering as well as from transfer and charge exchange reactions in a wide range of masses of the colliding systems and incident energies are shown. The role of MAGNEX in solving old and new puzzles in nuclear structure and direct reaction mechanisms is emphasized. One example is the recently observed signature of the long search...

  6. Wide swath imaging spectrometer utilizing a multi-modular design

    Science.gov (United States)

    Chrisp, Michael P.

    2010-10-05

    A wide swath imaging spectrometer utilizing an array of individual spectrometer modules in the telescope focal plane to provide an extended field of view. The spectrometer modules with their individual detectors are arranged so that their slits overlap with motion on the scene providing contiguous spatial coverage. The number of modules can be varied to take full advantage of the field of view available from the telescope.

  7. Integration of BETA with Eclipse

    DEFF Research Database (Denmark)

    Andersen, Peter; Madsen, Ole Lehrmann; Enevoldsen, Mads Brøgger

    2004-01-01

    This paper presents language interoperability issues appearing in order to implement support for the BETA language in the Java-based Eclipse integrated development environment. One of the challenges is to implement plug-ins in BETA and be able to load them in Eclipse. In order to do this, some form...

  8. Measurements of sin 2 $\\beta$

    CERN Document Server

    Tricomi, A

    2000-01-01

    A review of the most recent measurements of the CP violating parameter sin 2 beta from LEP and CDF is reported. These yield an average value of sin 2 beta =0.91+or-0.35, giving a confidence level that CP violation in the B system has been observed of almost 99%. (10 refs).

  9. Beta decay of Cu-56

    NARCIS (Netherlands)

    Borcea, R; Aysto, J; Caurier, E; Dendooven, P; Doring, J; Gierlik, M; Gorska, M; Grawe, H; Hellstrom, M; Janas, Z; Jokinen, A; Karny, M; Kirchner, R; La Commara, M; Langanke, K; Martinez-Pinedo, G; Mayet, P; Nieminen, A; Nowacki, F; Penttila, H; Plochocki, A; Rejmund, M; Roeckl, E; Schlegel, C; Schmidt, K; Schwengner, R; Sawicka, M

    2001-01-01

    The proton-rich isotope Cu-56 was produced at the GSI On-Line Mass Separator by means of the Si-28(S-32, p3n) fusion-evaporation reaction. Its beta -decay properties were studied by detecting beta -delayed gamma rays and protons. A half-Life of 93 +/- 3 ms was determined for Cu-56. Compared to the p

  10. Beta Function and Anomalous Dimensions

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2011-01-01

    We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalou...

  11. RAVEN Beta Release

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert Arthur [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Congjian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Daniel Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, Paul William [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This documents the release of the Risk Analysis Virtual Environment (RAVEN) code. A description of the RAVEN code is provided, and discussion of the release process for the M2LW-16IN0704045 milestone. The RAVEN code is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is capable of investigating the system response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. RAVEN has now increased in maturity enough for the Beta 1.0 release.

  12. Standoff gas identification and application with FTIR imaging spectrometer

    Science.gov (United States)

    Wang, Chensheng; Sun, Wei; Li, Biao; Zhang, Zhijie; Wang, Peng; Zhang, Zhen; Tang, Wei; Yu, Hui

    2016-11-01

    FTIR imaging spectrometer has significant meaning in the fields like industrial plume emission monitoring and public security monitoring. In this paper, a LWIR FTIR imaging spectrometer is applied to realize the field gas identification experiment. First, the structure and design of this spectrometer is indicated and discussed. Based on the algorithms research, the related gas identification software is developed. To verify this design, both lab and field experiments are realized. The lab experiment is applied to verify the spectral identification algorithm. The field trial is applied to analyze the gas components, and the results show that this spectrometer can realize the gas elements identification in real time.

  13. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  14. Uncooled near- and mid-IR spectrometer engine. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Agiltron proposes to develop an extremely compact and high sensitivity uncooled near- and mid-infrared (NMIR) spectrometer engine for planetary compositional...

  15. Conversion electrons used to monitor the energy scale of electron spectrometer near tritium endpoint - a simulation study

    CERN Document Server

    Rysavy, M

    2006-01-01

    Measurements of the endpoint region of the tritium beta-decay spectrum provides good possibility to determine neutrino mass. This, however, needs a perfect monitoring of the spectrometer energy scale. A parallel measurement of electron line of known energy - in particular the 83mKr conversion K-line - may serve well to this purpose. The 83Rb decaying to 83mKr seems to be a very suitable radioactive source due to its halflife of 86.2 day. In this work, we determine the amount of 83Rb which is necessary for a successful monitoring.

  16. Field measurements of beta ray energy spectra in CANDU nuclear generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S. (Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics); Hirning, C.R. (Ontario Hydro, Whitby, ON (Canada)); Yuen, P.S.; Aikens, M.S. (AECL Research, Chalk River, ON (Canada). Chalk River Labs.)

    1994-01-01

    Field measurements of beta ray energy spectra have been carried out at various locations in CANDU nuclear generating stations operated by Ontario Hydro. The beta ray energy spectrometer consists of a 5 cm diameter x 2 cm thick BC-404 plastic scintillator situated behind a 100 [mu]m thick, totally depleted, silicon detector. Photon events are rejected by requiring a coincidence between the two detectors. The spectrometer is capable of measuring electron energies from 125 keV to 3.5 MeV. Beta ray energy spectra have been measured for uncontaminated and contaminated fueling machine components, fueling machine swipes and a reactor containment vault. The degree of protection afforded by various articles of protective clothing has also been investigated for the various fueling machine components. Monte Carlo calculations have been used to estimate beta factors for 100 mg.cm[sup -2] and 240 mg.cm[sup -2] LiF-TLD chips, which are used as 'skin-and 'extremity' dosemeters in the Ontario Hydro Radiation Dosimetry Programme. (Author).

  17. [Serum beta 2 microglobulin (beta 2M) following renal transplantation].

    Science.gov (United States)

    Pacheco-Silva, A; Nishida, S K; Silva, M S; Ramos, O L; Azjen, H; Pereira, A B

    1994-01-01

    Although there was an important improvement in graft and patient survival the last 10 years, graft rejection continues to be a major barrier to the success of renal transplantation. Identification of a laboratory test that could help to diagnose graft rejection would facilitate the management of renal transplanted patients. PURPOSE--To evaluate the utility of monitoring serum beta 2M in recently transplanted patients. METHODS--We daily determined serum beta 2M levels in 20 receptors of renal grafts (10 from living related and 10 from cadaveric donors) and compared them to their clinical and laboratory evolution. RESULTS--Eight patients who presented immediate good renal function following grafting and did not have rejection had a mean serum beta 2M of 3.7 mg/L on the 4th day post transplant. The sensitivity of the test for the diagnosis of acute rejection was 87.5%, but the specificity was only 46%. Patients who presented acute tubular necrosis (ATN) without rejection had a progressive decrease in their serum levels of beta 2M, while their serum creatinine changed as they were dialyzed. In contrast, patients with ATN and concomitance of acute rejection or CSA nephrotoxicity presented elevated beta 2M and creatinine serum levels. CONCLUSION--Daily monitoring of serum beta 2M does not improve the ability to diagnose acute rejection in patients with good renal function. However, serum beta 2M levels seemed to be useful in diagnosing acute rejection or CSA nephrotoxicity in patients with ATN.

  18. MONSTER: a time of flight spectrometer for β-delayed neutron emission measurements

    Science.gov (United States)

    Garcia, A. R.; Martínez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marín, J.; Martínez, G.; Mendoza, E.; Ovejero, M. C.; Reillo, E. M.; Santos, C.; Tera, F. J.; Villamarín, D.; Nolte, R.; Agramunt, J.; Algora, A.; Tain, J. L.; Banerjee, K.; Bhattacharya, C.; Pentillä, H.; Rinta-Antila, S.; Gorelov, D.

    2012-05-01

    The knowledge of the β-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the β-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (Sβ) function. In addition, β-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.

  19. Polarized triple-axis spectrometer TASP

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    The polarized triple-axis spectrometer TASP at SINQ has been optimized for measuring magnetic cross sections in condensed matter. The neutrons are polarized or analyzed either by means of benders or Heusler monochromators. The beam divergence, i.e. the intensity, and the spectral range of the neutrons is rather large because of the supermirror coatings of the feeding neutron guide. The intensity can be further increased at the sample position by means of a focussing monochromator and a focussing anti-trumpet. The end position of TASP allows the tailoring of the neutron beam already before the monochromator and to scatter neutrons over very wide ranges of angles. (author) 6 figs., 1 tab., 8 refs.

  20. Radon measurement using a liquid scintillation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Taeko; Morishima, Hiroshige; Kawai, Hiroshi; Kondo, Sohei (Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.); Mifune, Masaki; Konishi, Masanobu; Shirai, Chiaki

    1992-12-01

    A convenient radon detecting device for the purpose of estimating natural radiation exposure is described. The [alpha] radioactivity of radon gas absorbed in fine active carbon particles exposed to air is measured with a liquid scintillation spectrometer (Packard-PICO-RAD system). Its detection limits are 2mBq/l in air and 0.5 Bq/l in water with an accuracy of about 10 %. Radon concentrations at Misasa hot springs in Tottori prefecture were measured using this method. They were 0.16 [approx] 7.7 Bq/l in a bath room and 0.057 [approx] 0.36 Bq/l outdoors. Radon concentrations of the hot springs were 82 [approx] 1,700 Bq/l. (author).

  1. Development of a multidimensional gamma-spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, Jonathan L.; Cantaloub, Michael G.; Mayer, Michael F.; Miley, Harry S.

    2017-02-28

    A high-sensitivity multidimensional gamma-spectrometer is being developed within the shallow underground laboratory at Pacific Northwest National Laboratory (PNNL, USA). The system consists of two Broad Energy Germanium (BEGe) detectors, inside a low-background lead and copper shield, fitted with a cosmic veto background reduction system. The detector has advanced functionality, including operation in single or combined detector mode, with reductions in the cosmic background by 49.6% and Compton suppression of 6.5%. For selected radionuclides this provides an overall MDA improvement of 52.7%. Utilizing both detectors for simultaneous measurements of thermally irradiated highly enriched uranium (HEU) increased peak identification and reduced uncertainty by 27.6%. The design uses commercially off-the-shelf (COTS) components, for which the configuration is described, to provide a practical and powerful solution for low-level nuclear measurements.

  2. Commissioning of a proton-recoil spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, J.C.; Faught, R.T

    2000-01-01

    Measurements of neutron fluence spectra in fields from bare and heavy-water-moderated {sup 252}Cf were made with a commercially available proton-recoil spectrometer (PRS) that covers 50 keV to 4.5 MeV. Data obtained from these measurements were compared with data from Bonner sphere spectrometry, Monte Carlo simulation and the open literature. Alterations to the input data file used in unfolding recoil-proton pulse-height distributions were made. Understanding the reasons for these changes and considering the effects of some of the results in an appreciation of the significance of parameters used in the unfolding. An uncertainty of 10% is estimated for values of fluence and ambient dose equivalent for the energy region covered by this PRS. (author)

  3. Smart Spectrometer for Distributed Fuzzy Control

    CERN Document Server

    Benoit, Eric

    2009-01-01

    If the main use of colour measurement is the metrology, it is now possible to find industrial control applications which uses this information. Using colour in process control leads to specific problems where human perception has to be replaced by colour sensors. This paper relies on the fuzzy representation of colours that can be taken into account by fuzzy controllers. If smart sensors already include intelligent functionalities like signal processing, or configuration, only few of them include functionalities to elaborate the fuzzy representation of measurements. In this paper, we develop a solution where the numeric processing is performed locally by the sensor, and where fuzzy processing is exported towards another computing resource by means of the CAN network. This paper presents the concept and the application to a smart fuzzy spectrometer.

  4. A compact neutron-gamma spectrometer

    Science.gov (United States)

    Cester, D.; Nebbia, G.; Stevanato, L.; Pino, F.; Sajo-Bohus, L.; Viesti, G.

    2013-08-01

    A compact neutron/gamma detector has been developed using a liquid scintillator cell coupled to a Flat Panel PMT; performances have been compared with a second cell coupled to a traditional linearly-focused 12 dynodes PMT. Energy resolution and pulse shape discrimination (PSD) measured by using a fast digitizer are very similar for the two detectors with the time resolution of the Flat Panel PMT slightly worse. The new detector results to be weakly affected by the influence of a moderate magnetic field while the traditional PMT exhibits strong pulse reduction. The compact size and the low power consumption obtained by using the Flat Panel PMT are very useful in portable neutron/gamma spectrometers.

  5. A Bonner Sphere Spectrometer for pulsed fields.

    Science.gov (United States)

    Aza, E; Dinar, N; Manessi, G P; Silari, M

    2016-02-01

    The use of conventional Bonner Sphere Spectrometers (BSS) in pulsed neutron fields (PNF) is limited by the fact that proportional counters, usually employed as the thermal neutron detectors, suffer from dead time losses and show severe underestimation of the neutron interaction rate, which leads to strong distortion of the calculated spectrum. In order to avoid these limitations, an innovative BSS, called BSS-LUPIN, has been developed for measuring in PNF. This paper describes the physical characteristics of the device and its working principle, together with the results of Monte Carlo simulations of its response matrix. The BSS-LUPIN has been tested in the stray neutron field at the CERN Proton Synchrotron, by comparing the spectra obtained with the new device, the conventional CERN BSS and via Monte Carlo simulations.

  6. Recent exploits of the ISOLTRAP mass spectrometer

    CERN Document Server

    Kreim, S; Naimi, S; Blaum, K; Breitenfeldt, M; Rossel, R E; Fink, D; Stanja, J; Atanasov, D; Borgmann, Ch; Cocolios, T E; Zuber, K; Wolf, R N; George, S; Neidherr, D; Nicol, T; Rosenbusch, M; Lunney, D; Boehm, Ch; Manea, V; Herlert, A; Koester, U; Beck, D; Wienholtz, F; Kellerbauer, A; Ramirez, E Minaya; Schweikhard, L

    2013-01-01

    The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for beam analysis. (C) 2013 Elsevier B.V. All rights reserved.

  7. The Alpha Magnetic Spectrometer Silicon Tracker

    CERN Document Server

    Burger, W J

    1999-01-01

    The Alpha Magnetic Spectrometer (AMS) is designed as a independent module for installation on the International Space Station Alpha (ISSA) in the year 2002 for an operational period of three years. The principal scientific objectives are the searches for antimatter and dark matter in cosmic rays. The AMS uses 5.5 m sup 2 of silicon microstrip sensors to reconstruct charged particle trajectories in the field of a permanent magnet. The detector design and construction covered a 3 yr period which terminated with a test flight on the NASA space shuttle Discovery during June 2-12, 1988. In this contribution, we describe the shuttle version of the AMS silicon tracker, including preliminary results of the tracker performance during the flight. (author)

  8. Miniaturised Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Rohner, U.; Benz, W.; Whitby, J. A.; Wurz, P.; Schulz, R.; Romstedt, J.

    2004-04-01

    Originally intended for the European Space Agency's BepiColombo mission to Mercury, we have built a series of highly miniaturised laser ablation time of flight mass spectrometers (LMS), suitable for in situ measurements of the elemental and isotopic composition of the surface of airless planetary bodies. The instruments will determine ma jor, minor, and trace element abundances in minerals on a spatial scale of 10 m, and will have sufficient dynamic range and mass resolution to perform useful isotopic measurements in favourable cases. Solid material is simultaneously evaporated and ionised by means of laser ablation, requiring intense pulsed laser radiation. Laser ablation was chosen as the sample introduction technique principally because of its high spatial resolution and the lack of any need for sample preparation. Advantages of the technique include simplicity of the resulting design, speed of measurement, and the ability for depth profiling (potentially important for a regolith in which mineral grains are coated with impact produced glass). Time of flight mass spectrometers are simple, robust devices that couple well to a pulsed ion source and we have previous experience of their construction for space flight, e.g. the ROSINA instrument suite for the ROSETTA mission. For BepiColombo, we have built two prototype instruments, one with a design mass of 500 g and a volume comparable to a beer can intended to be deployed on a static lander, and a smaller cigarettebox sized version with a design mass of 250 g, small enough to be integrated in a rover or robotic arm.

  9. LANL/Green Star spectrometer tests

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, T.E.; Cremers, T.L.; Vo, D.T. [Los Alamos National Lab., NM (United States); Seldiakov, Y.P.; Dorin, A.B.; Kondrashov, M.V. [Green Star, Moscow (Russian Federation); Timoshin, V.I. [VNIINM, Moscow (Russian Federation)

    1997-12-01

    The US and Russia have agreed to the joint development of a nondestructive assay system for use to support the dismantlement of nuclear weapons in Russia. This nondestructive assay system will be used to measure plutonium produced by the conversion of Russian nuclear weapons. The NDA system for Russia will be patterned after the ARIES NDA system being constructed at Los Alamos. One goal of the program is to produce an NDA system for use in Russia that maximizes the use of Russian resources to facilitate maintenance and future upgrades. The Green Star SBS50 Single Board Spectrometer system (Green Star Ltd., Moscow, Russia) has been suggested for use as the data acquisition component for gamma ray instruments in the system. Possible uses are for plutonium isotopic analysis and also segmented gamma scanning. Green Star has also developed analysis software for the SBS50. This software, both plutonium isotopic analysis and uranium enrichment analysis, was developed specifically for customs/border inspection applications (low counting rate applications and identification as opposed to quantification) and was not intended for MC and A applications. Because of the relative immaturity of the Green Star plutonium isotopic analysis software (it has been under development for only one year and is patterned after US development circa 1980), it was tentatively agreed, before the tests, that the Russian NDA system would use the Los Alamos PC/FRAM software for plutonium isotopic analysis. However, it was also decided to include the Green Star plutonium isotopic software in the testing, both to quantify its performance for MC and A applications and also to provide additional data to Green Star for further development of their software. The main purpose of the testing was to evaluate the SBS-50 spectrometer as a data acquisition device for use with LANL software.

  10. Spectral calibration for convex grating imaging spectrometer

    Science.gov (United States)

    Zhou, Jiankang; Chen, Xinhua; Ji, Yiqun; Chen, Yuheng; Shen, Weimin

    2013-12-01

    Spectral calibration of imaging spectrometer plays an important role for acquiring target accurate spectrum. There are two spectral calibration types in essence, the wavelength scanning and characteristic line sampling. Only the calibrated pixel is used for the wavelength scanning methods and he spectral response function (SRF) is constructed by the calibrated pixel itself. The different wavelength can be generated by the monochromator. The SRF is constructed by adjacent pixels of the calibrated one for the characteristic line sampling methods. And the pixels are illuminated by the narrow spectrum line and the center wavelength of the spectral line is exactly known. The calibration result comes from scanning method is precise, but it takes much time and data to deal with. The wavelength scanning method cannot be used in field or space environment. The characteristic line sampling method is simple, but the calibration precision is not easy to confirm. The standard spectroscopic lamp is used to calibrate our manufactured convex grating imaging spectrometer which has Offner concentric structure and can supply high resolution and uniform spectral signal. Gaussian fitting algorithm is used to determine the center position and the Full-Width-Half-Maximum(FWHM)of the characteristic spectrum line. The central wavelengths and FWHMs of spectral pixels are calibrated by cubic polynomial fitting. By setting a fitting error thresh hold and abandoning the maximum deviation point, an optimization calculation is achieved. The integrated calibration experiment equipment for spectral calibration is developed to enhance calibration efficiency. The spectral calibration result comes from spectral lamp method are verified by monochromator wavelength scanning calibration technique. The result shows that spectral calibration uncertainty of FWHM and center wavelength are both less than 0.08nm, or 5.2% of spectral FWHM.

  11. Measurements of beta ray spectra in CANDU nuclear generating stations using a silicon detector coincidence telescope

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S.; Weizman, Y. [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics; Hirning, C.R. [Ontario Hydro, Whitby, ON (Canada). Health Physics Dept.

    1996-12-31

    The measurement of beta ray spectra at various work locations inside nuclear generating stations operated by Ontario Hydro is described. The measurements were carried out using an advanced coincidence telescope spectrometer using silicon detectors only. The spectrometer is capable of measuring electron energies over the range 60 keV- 2500 keV with close to 100% coincidence efficiency. Photon rejection is carried out by requiring a coincidence between either two or three silicon detectors. Monte Carlo calculations were then used to estimate beta correction factors for the LiF:Mg,Ti elements used in the Ontario Hydro thermoluminescence dosemeters. Averaging over all the measured beta correction factors for the `skin` chip (100 mg.cm{sup -2}) results in a value of 2.73 {+-} 0.77 and for the extremity dosemeter (240 mg.cm{sup -2}) an average value of 4.42 {+-} 1.17 is obtained. These values are 57% and 120% greater, respectively, than the current values used by Ontario Hydro. In addition, beta correction factors for nine representative spectra were calculated for 40 mg.cm{sup -2} chips and 20 mg.cm{sup -2} chips and the results demonstrate the benefits of decreased dosemeter thickness. The average value of the beta correction factor, as well as the spread in the beta correction factor, decreases dramatically from 4.8 {+-} 2.1 (240 mg.cm{sup -2}) to 1.29 ``1.2`` +-`` 0.1 (20 mg.cm{sup -2}). (author).

  12. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  13. [Current status and prospects of portable NIR spectrometer].

    Science.gov (United States)

    Yu, Xin-Yang; Lu, Qi-Peng; Gao, Hong-Zhi; Peng, Zhong-Qi

    2013-11-01

    Near-infrared spectroscopy (NIRS) is a reliable, rapid, and non-destructive analytical method widely applied in as a number of fields such as agriculture, food, chemical and oil industry. In order to suit different applications, near-infrared spectrometers are now varied. Portable near-infrared spectrometers are needed for rapid on-site identification and analysis. Instruments of this kind are rugged, compact and easy to be transported. In this paper, the current states of portable near-infrared spectrometers are reviewed. Portable near-infrared spectrometers are built of different monochromator systems: filter, grating, Fourier-transform methods, acousto-optic tunable filter (AOTF) and a large number of new methods based on micro-electro-mechanical systems (MEMS). The first part focuses on working principles of different monochromator systems. Advantages and disadvantages of different systems are also briefly mentioned. Descriptions of each method are given in turn. Typical spectrometers of each kind are introduced, and some parameters of these instruments are listed. In the next part we discuss sampling adapters, display, power supply and some other parts, which are designed to make the spectrometer more portable and easier to use. In the end, the current states of portable near-infrared spectrometers are summarized. Future trends of development of portable near-infrared spectrometers in China and abroad are discussed.

  14. Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations

    Science.gov (United States)

    Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric

    2014-01-01

    A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…

  15. Development of the Fabry-Perot Spectrometer Application

    Science.gov (United States)

    Browne, Kathryn

    2015-01-01

    Methane is a greenhouse gas with global warming effects 20 times more detrimental than carbon dioxide. Currently, only aircraft missions measure methane and do not provide continuous monitoring, This presentation will cover the Fabry-Perot spectrometer which will provide continuous monitoring of methane. It will also cover the development of the software used to extract and process the data the spectrometer collects.

  16. Inexpensive Raman Spectrometer for Undergraduate and Graduate Experiments and Research

    Science.gov (United States)

    Mohr, Christian; Spencer, Claire L.; Hippler, Michael

    2010-01-01

    We describe the construction and performance of an inexpensive modular Raman spectrometer that has been assembled in the framework of a fourth-year undergraduate project (costs below $5000). The spectrometer is based on a 4 mW 532 nm green laser pointer and a compact monochromator equipped with glass fiber optical connections, linear detector…

  17. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    Science.gov (United States)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  18. SAMURAI A Large-Acceptance Spectrometer in RIBF

    Science.gov (United States)

    Yoneda, K.

    2013-09-01

    SAMURAI is a spectrometer which is now being constructed at RIKEN RIBF. This spectrometer is characterized by a large angular- and momentumacceptance enabling, for example, multi-particle coincidence measurements. The on-site construction started in October 2010, and the rst experiments will be performed in early 2012. Here the current status and future plan of this SAMURAI project is presented.

  19. Status of the OCS Bragg-Spectrometer for SODART

    DEFF Research Database (Denmark)

    Wiebicke, H.J.; Halm, I.; Christensen, Finn Erland;

    1998-01-01

    OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented.......OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented....

  20. APEX; current status of the airborne dispersive pushbroom imaging spectrometer

    NARCIS (Netherlands)

    Nieke, J.; Itten, K.I.; Kaiser, J.W.; Schlapfer, D.; Brazile, J.; Debruyn, W.; Meuleman, K.; Kempeneers, P.; Neukom, A.; Feusi, H.; Adolph, P.; Moser, R.; Schilliger, T.; Kohler, P.; Meng, M.; Piesbergen, J.; Strobl, P.; Schaepman, M.E.; Gavira, J.; Ulbrich, G.J.; Meynart, R.

    2004-01-01

    Recently, a joint Swiss/Belgian initiative started a project to build a new generation airborne imaging spectrometer, namely APEX (Airborne Prism Experiment) under the ESA funding scheme named PRODEX. APEX is a dispersive pushbroom imaging spectrometer operating in the spectral range between 380 - 2

  1. Experiments on double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Busto, J. [Neuchatel Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The Double Beta Decay, and especially ({beta}{beta}){sub 0{nu}} mode, is an excellent test of Standard Model as well as of neutrino physics. From experimental point of view, a very large number of different techniques are or have been used increasing the sensitivity of this experiments quite a lot (the factor of 10{sup 4} in the last 20 years). In future, in spite of several difficulties, the sensitivity would be increased further, keeping the interest of this very important process. (author) 4 figs., 5 tabs., 21 refs.

  2. Dosimetry of {beta} extensive sources; Dosimetria de fuentes {beta} extensas

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E.L.; Lallena R, A.M. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain)

    2002-07-01

    In this work, we have been studied, making use of the Penelope Monte Carlo simulation code, the dosimetry of {beta} extensive sources in situations of spherical geometry including interfaces. These configurations are of interest in the treatment of the called cranealfaringyomes of some synovia leisure of knee and other problems of interest in medical physics. Therefore, its application can be extended toward problems of another areas with similar geometric situation and beta sources. (Author)

  3. The source of monoenergetic electrons for the monitoring of spectrometer in the KATRIN neutrino experiment

    CERN Document Server

    Slezák, Martin

    The international project KATRIN (KArlsruhe TRItium Neutrino experiment) is a next-generation tritium $\\beta$-decay experiment. It is designed to measure the electron anti-neutrino mass by means of a unique electron spectrometer with sensitivity of 0.2 eV/c$^2$. This is an improvement of one order of magnitude over the last results. Important part of the measurement will rest in continuous precise monitoring of high voltage of the KATRIN main spectrometer. The monitoring will be done by means of conversion electrons emitted from a solid source based on $^{83}$Rb decay. Properties of several of these sources are studied in this thesis by means of the semiconductor $\\gamma$-ray spectroscopy. Firstly, measurement of precise energy of the 9.4 keV nuclear transition observed in $^{83}$Rb decay, from which the energy of conversion electrons is derived, is reported. Secondly, measurement of activity distribution of the solid sources by means of the Timepix detector is described. Finally, a report on measurement of r...

  4. A Low Cost Grism Spectrometer for Small Telescopes

    Science.gov (United States)

    Ludovici, Dominic

    2016-06-01

    We have designed and built a low cost (appx. $500) low resolution (R ~ 300) grating-prism (grism) spectrometer for the University of Iowa's robotic observatory. Grism spectrometers differ from simple transmission grating systems by partially compensating for the curved focal plane using a wedge prism. The spectrometer has five optical elements, and was designed using a ray tracing program. The collimating and focusing optics are easily modified for other telescope optics. The optics are mounted in an enclosure made with a 3-d printer. The spectrometer was installed in a modified (extended) filter wheel and has been in routine operation since January 2016. I will show sample spectra using this system and discuss spectral calibration, and optical design considerations for other telescopes. I will also discuss how low-resolution spectrometers can be used in undergraduate teaching laboratories.

  5. Artificial intelligence for geologic mapping with imaging spectrometers

    Science.gov (United States)

    Kruse, F. A.

    1993-01-01

    This project was a three year study at the Center for the Study of Earth from Space (CSES) within the Cooperative Institute for Research in Environmental Science (CIRES) at the University of Colorado, Boulder. The goal of this research was to develop an expert system to allow automated identification of geologic materials based on their spectral characteristics in imaging spectrometer data such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This requirement was dictated by the volume of data produced by imaging spectrometers, which prohibits manual analysis. The research described is based on the development of automated techniques for analysis of imaging spectrometer data that emulate the analytical processes used by a human observer. The research tested the feasibility of such an approach, implemented an operational system, and tested the validity of the results for selected imaging spectrometer data sets.

  6. Electronic characterization of mercuric iodide gamma ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Gerrish, V.M.

    1993-01-01

    During the past four years the yield of high resolution mercuric iodide (HgI[sub 2]) gamma ray spectrometers produced at EG G/EM has increased dramatically. Data is presented which demonstrates a strong correlation between starting material and spectrometer performance. Improved spectrometer yields are attributed to the method of HgI[sub 2] synthesis and to material purification procedures. Data is presented which shows that spectrometer performance is correlated with hole mobility-lifetime products. In addition, the measurement of Schottky barrier heights on HgI[sub 2] spectrometers has been performed using I-V curves and the photoelectric method. Barrier heights near 1.1 eV have been obtained using various contacts and contact deposition methods. These data suggest the pinning of the Fermi level at midgap at the HgI[sub 2] surface, probably due to surface states formed prior to contact deposition.

  7. Electronic characterization of mercuric iodide gamma ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Gerrish, V.M.

    1993-06-01

    During the past four years the yield of high resolution mercuric iodide (HgI{sub 2}) gamma ray spectrometers produced at EG&G/EM has increased dramatically. Data is presented which demonstrates a strong correlation between starting material and spectrometer performance. Improved spectrometer yields are attributed to the method of HgI{sub 2} synthesis and to material purification procedures. Data is presented which shows that spectrometer performance is correlated with hole mobility-lifetime products. In addition, the measurement of Schottky barrier heights on HgI{sub 2} spectrometers has been performed using I-V curves and the photoelectric method. Barrier heights near 1.1 eV have been obtained using various contacts and contact deposition methods. These data suggest the pinning of the Fermi level at midgap at the HgI{sub 2} surface, probably due to surface states formed prior to contact deposition.

  8. A wide spectral range photoacoustic aerosol absorption spectrometer.

    Science.gov (United States)

    Haisch, C; Menzenbach, P; Bladt, H; Niessner, R

    2012-11-06

    A photoacoustic spectrometer for the measurement of aerosol absorption spectra, based on the excitation of a pulsed nanosecond optical parametrical oscillator (OPO), will be introduced. This spectrometer is working at ambient pressure and can be used to detect and characterize different classes of aerosols. The spectrometer features a spectral range of 410 to 2500 nm and a sensitivity of 2.5 × 10(-7) m(-1) at 550 nm. A full characterization of the system in the visible spectral range is demonstrated, and the potential of the system for near IR measurement is discussed. In the example of different kinds of soot particles, the performance of the spectrometer was assessed. As we demonstrate, it is possible to determine a specific optical absorption per particle by a combination of the new spectrometer with an aerosol particle counter.

  9. A Fourier transform Raman spectrometer with visible laser excitation

    CERN Document Server

    Dzsaber, S; Bernáth, B; Gyüre, B; Fehér, T; Kramberger, C; Pichler, T; Simon, F

    2014-01-01

    We present the development and performance of a Fourier transformation (FT) based Raman spectrometer working with visible laser (532 nm) excitation. It is generally thought that FT-Raman spectrometers are not viable in the visible range where shot-noise limits the detector performance and therein they are outperformed by grating based, dispersive ones. We show that contrary to this common belief, the recent advances of high-performance interference filters makes the FT-Raman design a valid alternative to dispersive Raman spectrometers for samples which do not luminesce. We critically compare the performance of our spectrometer to two dispersive ones: a home-built single channel and a state-of-the-art CCD based instruments. We demonstrate a similar or even better sensitivity than the CCD based dispersive spectrometer particularly when the laser power density is considered. The instrument possesses all the known advantages of the FT principle of spectral accuracy, high throughput, and economic design. We also d...

  10. Evolution of outer membrane beta-barrels from an ancestral beta beta hairpin.

    Science.gov (United States)

    Remmert, M; Biegert, A; Linke, D; Lupas, A N; Söding, J

    2010-06-01

    Outer membrane beta-barrels (OMBBs) are the major class of outer membrane proteins from Gram-negative bacteria, mitochondria, and plastids. Their transmembrane domains consist of 8-24 beta-strands forming a closed, barrel-shaped beta-sheet around a central pore. Despite their obvious structural regularity, evidence for an origin by duplication or for a common ancestry has not been found. We use three complementary approaches to show that all OMBBs from Gram-negative bacteria evolved from a single, ancestral beta beta hairpin. First, we link almost all families of known single-chain bacterial OMBBs with each other through transitive profile searches. Second, we identify a clear repeat signature in the sequences of many OMBBs in which the repeating sequence unit coincides with the structural beta beta hairpin repeat. Third, we show that the observed sequence similarity between OMBB hairpins cannot be explained by structural or membrane constraints on their sequences. The third approach addresses a longstanding problem in protein evolution: how to distinguish between a very remotely homologous relationship and the opposing scenario of "sequence convergence." The origin of a diverse group of proteins from a single hairpin module supports the hypothesis that, around the time of transition from the RNA to the protein world, proteins arose by amplification and recombination of short peptide modules that had previously evolved as cofactors of RNAs.

  11. Questions Students Ask: Beta Decay.

    Science.gov (United States)

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  12. Beta Function and Anomalous Dimensions

    CERN Document Server

    Pica, Claudio

    2010-01-01

    We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalous dimension of the fermion masses at the infrared fixed point, and the resulting values compare well with the lattice determinations.

  13. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, Ionel Dragos [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  14. Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Morant, Marc

    2017-02-07

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. A Fast Neutron Spectrometer for Underground Science

    Science.gov (United States)

    Langford, Thomas; Beise, Elizabeth; Breuer, Herbert; Erwin, Dylan; Bass, Christopher; Heimbach, Craig; Nico, Jeff

    2010-02-01

    The characterization of the fast neutron fluence has become a critical issue for experiments that require extreme low-background environments, such as neutrino-less double-beta decay, dark matter searches, and solar neutrino experiments. In such experiments, fast neutrons may be the dominant and a potentially irreducible background, thus necessitating precise information about the fast neutron fluence and energy spectrum. The most reasonable approach to addressing the problem is through the complete characterization of the neutrons through both site-specific measurement and benchmarking of simulation codes. We will discuss the progress toward the development of a large-volume, segmented detector consisting of plastic scintillator and ^3He proportional counters. The detector will be placed in an underground environment to measure the fast neutron flux and energy spectrum. A prototype detector has been constructed and testing is in progress. We will discuss the status of the project and present data from the prototype detector. )

  16. The High-Acceptance Dielectron Spectrometer HADES

    CERN Document Server

    Agakichiev, G; Bannier, B; Bassini, R; Belver, D; Belyaev, A V; Blanco, A; Boehmer, M; Boyard, J L; Braun-Munzinger, P; Cabanelas, P; Castro, E; Chernenko, S; Christ, T; Destefanis, M; Díaz, J; Dohrmann, F; Dybczak, A; Eberl, T; Enghardt, W; Fabbietti, L; Fateev, O V; Finocchiaro, P; Fonte, Paulo J R; Friese, J; Fröhlich, I; Galatyuk, T; Garzón, J A; Gernhäuser, R; Gil1, A; Gilardi, C; Golubeva, M; Gonzalez-Diaz, D; Guber, F; Heilmann, M; Heinz, T; Hennino, T; Holzmann, R; Ierusalimov, A; Iori, I; Ivashkin, A; Jurkovic, M; Kämpfer, B; Kanaki, K; Karavicheva, T; Kirschner, D; König, I; König, W; Kolb, B W; Kotte, R; Krizek, F; Krücken, R; Kühn, W; Kugler, A; Kurepin, A; Lang, S; Lange, J S; Lapidus, K; Liu, T; Lopes, L; Lorenz, M; Maier, L; Mangiarotti, A; Markert, J; Metag, V; Michalska, B; Michel, J; Mishra, D; Moriniere, E; Mousa, J; Müntz, C; Naumann, Lutz; Otwinowski, J; Pachmayer, Y C; Palka, M; Parpottas, Y; Pechenov, V; Pechenova, O; PerezCavalcanti, T; Pietraszko, J; Przygoda, W; Ramstein, B; Reshetin, A; Roy-Stephan, M; Rustamov, A; Sadovskii, A; Sailer, B; Salabura, P; Schmah, A; Schwab, E; Sobolev, Yu G; Spataro, S; Spruck, B; Ströbele, H; Stroth, J; Sturm, C; Sudol, M; Tarantola, A; Teilab, K; Tlustý, P; Traxler, M; Trebac, R; Tsertos, H; Wagner, V; Weber, M; Wisniowski, M; Wojcik, T; Wuestenfel, J; Yurevich, S; Zanevsky, Yu V; Zhou, P; Zumbruch, P

    2009-01-01

    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 degree, a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main featur...

  17. THIS: a tuneable heterodyne infrared spectrometer.

    Science.gov (United States)

    Wirtz, Daniel; Sonnabend, Guido; Schieder, Rudolf T

    2002-09-01

    With the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) we present a newly developed setup of a transportable heterodyne receiver. Competitiveness with regard to sensitivity, was reached for the first time with a semiconductor laser pumped system. Frequency tuneability of the local oscillator (LO) laser over a wide range of wavelengths is thus provided. This allows a variety of molecules, e.g. O3, NH3, CH4, N2O,.... in the earth's atmosphere, in planetary atmospheres or even in interstellar space to be observed with very high frequency resolution either from aboard the Stratospheric Observatory For Infrared Astronomy (SOFIA) or other ground based telescopes. Besides the good results with tuneable lead salt laser (TDL) operation there's room to improve: the power provided by such devices is not sufficient for a sensitivity close to the quantum limit. Therefore, first tests with recently developed high power quantum-cascade lasers (QCL) were carried out and further substantial improvement of the system noise temperature seems to be in reach.

  18. TIRSPEC : TIFR Near Infrared Spectrometer and Imager

    CERN Document Server

    Ninan, J P; Ghosh, S K; D'Costa, S L A; Naik, M B; Poojary, S S; Sandimani, P R; Meshram, G S; Jadhav, R B; Bhagat, S B; Gharat, S M; Bakalkar, C B; Prabhu, T P; Anupama, G C; Toomey, D W

    2014-01-01

    We describe the TIFR Near Infrared Spectrometer and Imager (TIRSPEC) designed and built in collaboration with M/s. Mauna Kea Infrared LLC, Hawaii, USA, now in operation on the side port of the 2-m Himalayan Chandra Telescope (HCT), Hanle (Ladakh), India at an altitude of 4500 meters above mean sea level. The TIRSPEC provides for various modes of operation which include photometry with broad and narrow band filters, spectrometry in single order mode with long slits of 300" length and different widths, with order sorter filters in the Y, J, H and K bands and a grism as the dispersing element as well as a cross dispersed mode to give a coverage of 1.0 to 2.5 microns at a resolving power R of ~1200. The TIRSPEC uses a Teledyne 1024 x 1024 pixel Hawaii-1 PACE array detector with a cutoff wavelength of 2.5 microns and on HCT, provides a field of view of 307" x 307" with a plate scale of 0.3"/pixel. The TIRSPEC was successfully commissioned in June 2013 and the subsequent characterization and astronomical observatio...

  19. The CEBAF large acceptance spectrometer (CLAS)

    Energy Technology Data Exchange (ETDEWEB)

    Mecking, B.A.; Adams, G.; Ahmad, S.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Auger, T.; Avakian, H.; Ball, J.P.; Barbosa, F.J.; Barrow, S.; Battaglieri, M.; Beard, K.; Berman, B.L.; Bianchi, N.; Boiarinov, S.; Bonneau, P.; Briscoe, W.J.; Brooks, W.K.; Burkert, V.D.; Carman, D.S.; Carstens, T.; Cetina, C.; Christo, S.B.; Cole, P.L.; Coleman, A.; Connelly, J.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cuevas, R.C.; Degtyarenko, P.V.; Dennis, L.; DeSanctis, E.; DeVita, R.; Distelbrink, J.; Dodge, G.E.; Dodge, W.; Doolittle, G.; Doughty, D.; Dugger, M.; Duncan, W.S.; Dytman, S.; Egiyan, H.; Egiyan, K.S.; Elouadrhiri, L.; Feuerbach, R.J.; Ficenec, J.; Frolov, V.; Funsten, H.; Gilfoyle, G.P.; Giovanetti, K.L.; Golovatch, E.; Gram, J.; Guidal, M.; Gyurjyan, V.; Heddle, D.; Hemler, P.; Hersman, F.W.; Hicks, K.; Hicks, R.S.; Holtrop, M.; Hyde-Wright, C.E.; Insley, D.; Ito, M.M.; Jacobs, G.; Jenkins, D.; Joo, K.; Joyce, D.; Kashy, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F.J.; Klusman, M.; Kossov, M.; Kramer, L.; Koubarovski, V.; Kuhn, S.E.; Lake, A.; Lawrence, D.; Longhi, A.; Lukashin, K.; Lachniet, J.; Magahiz, R.A.; Major, W.; Manak, J.J.; Marchand, C.; Martin, C.; Matthews, S.K.; McMullen, M.; McNabb, J.W.C.; Mestayer, M.D.; Minehart, R.; Mirazita, M.; Miskimen, R.; Muccifora, V.; Mueller, J.; Murphy, L.Y.; Mutchler, G.S.; Napolitano, J.; Niculescu, I.; Niczyporuk, B.B.; Nozar, M.; O' Brien, J.T.; Opper, A.K.; O' Meara, J.E.; Pasyuk, E.; Philips, S.A.; Polli, E.; Price, J.W.; Pozdniakov, S.; Qin, L.M.; Raue, B.A.; Riccardi, G.; Ricco, G.; Riggs, C.; Ripani, M.; Ritchie, B.G.; Robb, J.; Ronchetti, F.; Rossi, P.; Roudot, F.; Salgado, C.; Sapunenko, V.; Schumacher, R.A.; Serov, V.S.; Sharabian, Y.G.; Smith, E.E.S. E-mail: elton@jlab.org; Smith, L.C.; Smith, T.; Sober, D.I.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Taiuti, M.; Taylor, W.M.; Taylor, S.; Tedeschi, D.J.; Thoma, U.; Thompson, R.; Tilles, D.; Todor, L. [and others

    2003-05-11

    The CEBAF large acceptance spectrometer (CLAS) is used to study photo- and electro-induced nuclear and hadronic reactions by providing efficient detection of neutral and charged particles over a good fraction of the full solid angle. A collaboration of about 30 institutions has designed, assembled, and commissioned CLAS in Hall B at the Thomas Jefferson National Accelerator Facility. The CLAS detector is based on a novel six-coil toroidal magnet which provides a largely azimuthal field distribution. Trajectory reconstruction using drift chambers results in a momentum resolution of 0.5% at forward angles. Cherenkov counters, time-of-flight scintillators, and electromagnetic calorimeters provide good particle identification. Fast triggering and high data-acquisition rates allow operation at a luminosity of 10{sup 34} nucleon cm{sup -2} s{sup -1}. These capabilities are being used in a broad experimental program to study the structure and interactions of mesons, nucleons, and nuclei using polarized and unpolarized electron and photon beams and targets. This paper is a comprehensive and general description of the design, construction and performance of CLAS.

  20. A dual purpose Compton suppression spectrometer

    CERN Document Server

    Parus, J; Raab, W; Donohue, D

    2003-01-01

    A gamma-ray spectrometer with a passive and an active shield is described. It consists of a HPGe coaxial detector of 42% efficiency and 4 NaI(Tl) detectors. The energy output pulses of the Ge detector are delivered into the 3 spectrometry chains giving the normal, anti- and coincidence spectra. From the spectra of a number of sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co sources a Compton suppression factor, SF and a Compton reduction factor, RF, as the parameters characterizing the system performance, were calculated as a function of energy and source activity and compared with those given in literature. The natural background is reduced about 8 times in the anticoincidence mode of operation, compared to the normal spectrum which results in decreasing the detection limits for non-coincident gamma-rays up to a factor of 3. In the presence of other gamma-ray activities, in the range from 5 to 11 kBq, non- and coincident, the detection limits can be decreased for some nuclides by a factor of 3 to 5.7.

  1. Remote Nuclear Spectrometer for Martian Moon Exploration

    Science.gov (United States)

    Hasebe, Nobuyuki; Okada, Tatsuaki; Kameda, Shingo; Karouji, Yuzuru; Amano, Yoshiharu; Shibamura, Eido; Cho, Yuichiro; Ohta, Toru; Naito, Masayuki; Kusano, Hiroki; Nagaoka, Hiroshi; Yoshida, Kohei; Adachi, Takuto; Kuno, Haruyoshi; Martínez-Frías, Jesus; Nakamura, Tomoki; Takashi, Mikouchi; Shimizu, Sota; Shirai, Naoki; Fagan, Timothy J.; Hitachi, Akira; Matias Lopes, José A.; Miyamoto, Hideaki; Niihara, Takafumi; Kim, Kyeong

    2016-07-01

    The Gamma-ray and Neutron Spectrometer (GNS) on the Mars Moon eXploration (MMX) forms part of the geochemistry investigation. The remote observation from spacecraft orbit provides us global information of the Moons showing evidence of their origin. The Gamma-Ray Sensor (GS) detects gamma-ray emissions in the 0.2- to 10-MeV energy range with an energy resolution of plastic scintillation detector surrounding the main detector as an anticoincidence detector. The HPGe crystal is cooled by a compact mechanical cooler below 90K. The Neutron Sensor (NS) consists of a Li-glass scintillator to measure thermal neutrons, and a borated plastic scintillator to measure epithermal and fast neutrons. The GNS measures elements such as O, Mg, Si, Ca, Ti, Fe, K, Th and volatile elements such as H, S and Cl. The GNS shows distinct features of light weight, low power, excellent energy resolution and high hydrogen-sensitivity. The high concentration of such volatile elements as H and S in their Moons shows the evidence that they are primordial bodies in the solar system and low values of Ca/F and Si/Fe-ratios also suggest the primordial origin. The present status of the GNS development will be reviewed.

  2. CMS-TOTEM Precision Proton Spectrometer

    CERN Document Server

    Albrow, M; Avati, V; Baechler, J; Cartiglia, N; Deile, M; Gallinaro, M; Hollar, J; Lo Vetere, M; Oesterberg, K; Turini, N; Varela, J; Wright, D; CMS-TOTEM, Collaboration; CERN. Geneva. The LHC experiments Committee; LHCC

    2014-01-01

    This report describes the technical design and outlines the expected performance of the CMS-TOTEM Precision Proton Spectrometer (CT-PPS). CT-PPS adds precision proton tracking and timing detectors in the very forward region on both sides of CMS at about 200m from the IP to study central exclusive production (CEP) in proton-proton collisions. CEP provides a unique method to access a variety of physics topics at high luminosity LHC, such as new physics via anomalous production of $W$ and $Z$ boson pairs, high-$p_T$ jet production, and possibly the production of new resonances. The CT-PPS detector consists of a silicon tracking system to measure the position and direction of the protons, and a set of timing counters to measure their arrival time with a precision of the order of 10 ps. This in turn allows the reconstruction of the mass and momentum as well as of the $z$ coordinate of the primary vertex of the centrally produced system. The framework for the development and exploitation of CT-PPS is defined i...

  3. The high-acceptance dielectron spectrometer HADES

    Science.gov (United States)

    Agakichiev, G.; Agodi, C.; Alvarez-Pol, H.; Atkin, E.; Badura, E.; Balanda, A.; Bassi, A.; Bassini, R.; Bellia, G.; Belver, D.; Belyaev, A. V.; Benovic, M.; Bertini, D.; Bielcik, J.; Böhmer, M.; Boiano, C.; Bokemeyer, H.; Bartolotti, A.; Boyard, J. L.; Brambilla, S.; Braun-Munzinger, P.; Cabanelas, P.; Castro, E.; Chepurnov, V.; Chernenko, S.; Christ, T.; Coniglione, R.; Cosentino, L.; Dahlinger, M.; Daues, H. W.; Destefanis, M.; Díaz, J.; Dohrmann, F.; Dressler, R.; Durán, I.; Dybczak, A.; Eberl, T.; Enghardt, W.; Fabbietti, L.; Fateev, O. V.; Fernández, C.; Finocchiaro, P.; Friese, J.; Fröhlich, I.; Fuentes, B.; Galatyuk, T.; Garabatos, C.; Garzón, J. A.; Genolini, B.; Gernhäuser, R.; Gilardi, C.; Gilg, H.; Golubeva, M.; González-Díaz, D.; Grosse, E.; Guber, F.; Hehner, J.; Heidel, K.; Heinz, T.; Hennino, T.; Hlavac, S.; Hoffmann, J.; Holzmann, R.; Homolka, J.; Hutsch, J.; Ierusalimov, A. P.; Iori, I.; Ivashkin, A.; Jaskula, M.; Jourdain, J. C.; Jurkovic, M.; Kämpfer, B.; Kajetanowicz, M.; Kanaki, K.; Karavicheva, T.; Kastenmüller, A.; Kidon, L.; Kienle, P.; Kirschner, D.; Koenig, I.; Koenig, W.; Körner, H. J.; Kolb, B. W.; Kopf, U.; Korcyl, K.; Kotte, R.; Kozuch, A.; Krizek, F.; Krücken, R.; Kühn, W.; Kugler, A.; Kulessa, R.; Kurepin, A.; Kurtukian-Nieto, T.; Lang, S.; Lange, J. S.; Lapidus, K.; Lehnert, J.; Leinberger, U.; Lichtblau, C.; Lins, E.; Lippmann, C.; Lorenz, M.; Magestro, D.; Maier, L.; Maier-Komor, P.; Maiolino, C.; Malarz, A.; Marek, T.; Markert, J.; Metag, V.; Michalska, B.; Michel, J.; Migneco, E.; Mishra, D.; Morinière, E.; Mousa, J.; Münch, M.; Müntz, C.; Naumann, L.; Nekhaev, A.; Niebur, W.; Novotny, J.; Novotny, R.; Ott, W.; Otwinowski, J.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pérez Cavalcanti, T.; Petri, M.; Piattelli, P.; Pietraszko, J.; Pleskac, R.; Ploskon, M.; Pospísil, V.; Pouthas, J.; Prokopowicz, W.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Ritman, J.; Roche, G.; Rodriguez-Prieto, G.; Rosenkranz, K.; Rosier, P.; Roy-Stephan, M.; Rustamov, A.; Sabin-Fernandez, J.; Sadovsky, A.; Sailer, B.; Salabura, P.; Salz, C.; Sánchez, M.; Sapienza, P.; Schäfer, D.; Schicker, R. M.; Schmah, A.; Schön, H.; Schön, W.; Schroeder, C.; Schroeder, S.; Schwab, E.; Senger, P.; Shileev, K.; Simon, R. S.; Skoda, M.; Smolyankin, V.; Smykov, L.; Sobiella, M.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Stelzer, H.; Ströbele, H.; Stroth, J.; Sturm, C.; Sudoł, M.; Suk, M.; Szczybura, M.; Taranenko, A.; Tarantola, A.; Teilab, K.; Tiflov, V.; Tikhonov, A.; Tlusty, P.; Toia, A.; Traxler, M.; Trebacz, R.; Troyan, A. Yu.; Tsertos, H.; Turzo, I.; Ulrich, A.; Vassiliev, D.; Vázquez, A.; Volkov, Y.; Wagner, V.; Wallner, C.; Walus, W.; Wang, Y.; Weber, M.; Wieser, J.; Winkler, S.; Wisniowski, M.; Wojcik, T.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y. V.; Zeitelhack, K.; Zentek, A.; Zhou, P.; Zovinec, D.; Zumbruch, P.

    2009-08-01

    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion-induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18° to 85° , a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range ( 0.1 < p < 1.0 GeV/ c . This paper describes the main features and the performance of the detector system.

  4. The Polaris-H imaging spectrometer

    Science.gov (United States)

    Wahl, Christopher G.; Kaye, Willy R.; Wang, Weiyi; Zhang, Feng; Jaworski, Jason M.; King, Alexis; Boucher, Y. Andy; He, Zhong

    2015-06-01

    Recently, H3D has designed and introduced a gamma-ray imaging spectrometer system named Polaris-H. Polaris-H was designed to perform gamma spectroscopy and imaging throughout nuclear power plants. It integrates a 3D-position-sensitive pixelated CZT detector (20 mm×20 mm×15 mm), associated readout electronics, an embedded computer, a 5-h battery, and an optical camera in a portable water-proof enclosure. The total mass is about 4 kg, and the system startup time is 2 min. Additionally, it has a connection for a tablet, which displays a gamma-ray spectrum and isotope-specific images of the gamma-ray distribution in all directions in real time. List-mode data is saved to an external USB memory stick. Based on pixelated depth-sensing technology, spectroscopy is routinely better than 1.1% FWHM at 662 keV, and imaging efficiency at 662 keV varies less than a factor of two for all directions, except through the battery. Measurements have been performed in contaminated environments, in high radiation fields, and in cramped quarters.

  5. Multi-GeV Electron Spectrometer

    CERN Document Server

    Faccini, R; Bacci, A; Batani, D; Bellaveglia, M; Benocci, R; Benedetti, C; Cacciotti, L; Cecchetti, C A; Clozza, A; Cultrera, L; Di~Pirro, G; Drenska, N; Anelli, F; Ferrario, M; Filippetto, D; Fioravanti, S; Gallo, A; Gamucci, A; Gatti, G; Ghigo, A; Giulietti, A; Giulietti, D; Gizzi, L A; Koester, P; Labate, L; Levato, T; Lollo, V; Londrillo, P; Martellotti, S; Pace, E; Patack, N; Rossi, A; Tani, F; Serafini, L; Turchetti, G; Vaccarezza, C; Valente, P

    2010-01-01

    The advance in laser plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular the upcoming experiments with the FLAME laser at LNF will enter the GeV regime with almost 1pC of electrons. From the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need to develop a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV) under still unknown angular divergences. Within the PlasmonX experiment at LNF a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence present unprecedented challenges in the design and construction of such a device. We will present the design ...

  6. The high-acceptance dielectron spectrometer HADES

    Energy Technology Data Exchange (ETDEWEB)

    Agakichiev, G.; Destefanis, M.; Gilardi, C.; Kirschner, D.; Kuehn, W.; Lange, J.S.; Lehnert, J.; Lichtblau, C.; Lins, E.; Metag, V.; Mishra, D.; Novotny, R.; Pechenov, V.; Pechenova, O.; Perez Cavalcanti, T.; Petri, M.; Ritman, J.; Salz, C.; Schaefer, D.; Skoda, M.; Spataro, S.; Spruck, B.; Toia, A. [Justus-Liebig-Univ. Giessen, II. Physikalisches Inst., Giessen (Germany); Agodi, C.; Coniglione, R.; Cosentino, L.; Finocchiaro, P.; Maiolino, C.; Piattelli, P.; Sapienza, P.; Vassiliev, D. [Lab. Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Alvarez-Pol, H.; Belver, D.; Cabanelas, P.; Castro, E.; Duran, I.; Fernandez, C.; Fuentes, B.; Garzon, J.A.; Kurtukian-Nieto, T.; Rodriguez-Prieto, G.; Sabin-Fernandez, J.; Sanchez, M.; Vazquez, A. [Univ. de Santiago de Compostela, Dept. de Fisica de Particulas, Santiago de Compostela (Spain); Atkin, E.; Volkov, Y. [State Univ., Moscow Engineering Physics Inst., Moscow (Russian Federation); Badura, E.; Bertini, D.; Bielcik, J.; Bokemeyer, H.; Dahlinger, M.; Daues, H.W.; Galatyuk, T.; Garabatos, C.; Gonzalez-Diaz, D.; Hehner, J.; Heinz, T.; Hoffmann, J.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B.W.; Kopf, U.; Lang, S.; Leinberger, U.; Magestro, D.; Muench, M.; Niebur, W.; Ott, W.; Pietraszko, J.; Rustamov, A.; Schicker, R.M.; Schoen, H.; Schoen, W.; Schroeder, C.; Schwab, E.; Senger, P.; Simon, R.S.; Stelzer, H.; Traxler, M.; Yurevich, S.; Zovinec, D.; Zumbruch, P. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Balanda, A.; Kozuch, A.; Przygoda, W. [Jagiellonian Univ. of Krakow, Smoluchowski Inst. of Physics, Krakow (Poland); Pantwowa Wyzsza Szkola Zawodowa, Nowy Sacz (Poland); Bassi, A.; Bassini, R.; Boiano, C.; Bartolotti, A.; Brambilla, S. [Sezione di Milano, Istituto Nazionale di Fisica Nucleare, Milano (Italy); Bellia, G.; Migneco, E. [Lab. Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Univ. di Catania (Italy)] (and others)

    2009-08-15

    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion-induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 , a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range (0.1< p< 1.0 GeV/c). This paper describes the main features and the performance of the detector system. (orig.)

  7. Towards establishing compact imaging spectrometer standards

    Science.gov (United States)

    Slonecker, E. Terrence; Allen, David W.; Resmini, Ronald G.

    2016-01-01

    Remote sensing science is currently undergoing a tremendous expansion in the area of hyperspectral imaging (HSI) technology. Spurred largely by the explosive growth of Unmanned Aerial Vehicles (UAV), sometimes called Unmanned Aircraft Systems (UAS), or drones, HSI capabilities that once required access to one of only a handful of very specialized and expensive sensor systems are now miniaturized and widely available commercially. Small compact imaging spectrometers (CIS) now on the market offer a number of hyperspectral imaging capabilities in terms of spectral range and sampling. The potential uses of HSI/CIS on UAVs/UASs seem limitless. However, the rapid expansion of unmanned aircraft and small hyperspectral sensor capabilities has created a number of questions related to technological, legal, and operational capabilities. Lightweight sensor systems suitable for UAV platforms are being advertised in the trade literature at an ever-expanding rate with no standardization of system performance specifications or terms of reference. To address this issue, both the U.S. Geological Survey and the National Institute of Standards and Technology are eveloping draft standards to meet these issues. This paper presents the outline of a combined USGS/NIST cooperative strategy to develop and test a characterization methodology to meet the needs of a new and expanding UAV/CIS/HSI user community.

  8. The GERDA experiment on 0{nu}{beta}{beta} decay

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Kai [Eberhard Karls Universitaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2012-07-01

    The Gerda (Germanium Detector Array) collaboration searches for the neutrinoless double beta decay (0{nu}{beta}{beta}) of {sup 76}Ge. The existence of this decay would give rise to the assumption that the neutrino is a Majorana particle, i.e. its own antiparticle. A measured half-life could be used to determine the effective neutrino mass and hence resolve the neutrino mass hierarchy problem. Germanium diodes, isotopically enriched in {sup 76}Ge, are used as both source and detector. Due to the low rate of this decay (T{sub 1/2}>10{sup 25} y), the experimental background must be reduced to a level of 10{sup -2}counts/(kg y keV) or better in the region around Q{sub {beta}{beta}}. To minimize background from cosmogenically produced secondary particles, a low Z shielding is employed. Thus, the naked diodes are operated in a liquid argon cryostat, which is surrounded by a water tank acting as both passive shield and active muon Cherenkov veto. Gerda started the commissioning runs in 2010 and in November 2011, the first phase of data taking with enriched detectors has begun. In this talk, the first year of the experiment is summarized.

  9. Infrared fiber coupled acousto-optic tunable filter spectrometer

    Science.gov (United States)

    Levin, K. H.; Kindler, E.; Ko, T.; Lee, F.; Tran, D. C.; Tapphorn, R. M.

    A spectrometer design is introduced which combines an acoustooptic tunable filter (AOTF) and IR-transmitting flouride-glass fibers. The AOTF crystal is fabricated from TeO2 and permits random access to any wavelength in less than 50 microseconds, and the resulting spectrometer is tested for the remote analysis of gases and hydrocarbons. The AOTF spectrometer, when operated with a high-speed frequency synthesizer and optimized algorithms, permits accurate high-speed spectroscopy in the mid-IR spectral region.

  10. Inficon Transpector MPH Mass Spectrometer Random Vibration Test Report

    Science.gov (United States)

    Santiago-Bond, Jo; Captain, Janine

    2015-01-01

    The purpose of this test report is to summarize results from the vibration testing of the INFICON Transpector MPH100M model Mass Spectrometer. It also identifies requirements satisfied, and procedures used in the test. As a payload of Resource Prospector, it is necessary to determine the survivability of the mass spectrometer to proto-qualification level random vibration. Changes in sensitivity of the mass spectrometer can be interpreted as a change in alignment of the instrument. The results of this test will be used to determine any necessary design changes as the team moves forward with flight design.

  11. Czerny-Turner imaging spectrometer for broadband spectral simultaneity

    Institute of Scientific and Technical Information of China (English)

    Qingsheng Xue; Shurong Wang; Futian Li

    2009-01-01

    A modified asymmetrical Czerny-Turner arrangement with a fixed plane grating is proposed to correct aberrations over a broadband spectral range by analyzing the dependence of aberrations for different wavelengths.The principle of design is deduced in detail.We compare the performance of this modified Czerny-Turner imaging spectrometer with that of the existing Czerny-Turner arrangement by using a practical Czerny-Turner imaging spectrometer example.The excellent performance of the modified imaging spectrometer is confirmed by simulation with ZEMAX software.

  12. Alignment and Characterization of High Uniformity Imaging Spectrometers

    Science.gov (United States)

    Bender, Holly A.; Mouroulis, Pantazis; Eastwood, Michael L.; Green, Robert O.; Geier, Sven; Hochberg, Eric B.

    2011-01-01

    Imaging spectrometers require precise adjustments, in some cases at the sub-micrometer level, in order to achieve auniform response over both the spectral and spatial dimensions. We describe a set of measurement techniques and theircorresponding alignment adjustments to achieve the 95% or higher uniformity specifications required for Earthobservingimaging spectrometers. The methods are illustrated with measurements from the Next Generation Imaging Spectrometer system that has been built at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  13. Opening the terahertz window on the OSIRIS spectrometer

    Directory of Open Access Journals (Sweden)

    Demmel F.

    2015-01-01

    Full Text Available A cooled and mechanically retractable beryllium filter has been installed and commissioned on the low-energy OSIRIS spectrometer at ISIS. This instrument development extends the energy-transfer range of the spectrometer up to ca. 20 meV (∼ 5 THz, leading to an excellent resolution at THz frequencies and substantial gains in detected flux relative to existing capabilities on the neighbouring IRIS spectrometer. Herein, we provide a concise account of this new capability for high-resolution neutron spectroscopy in the THz domain, as well as outline a number of ongoing and potential scientific opportunities in condensed-matter physics, chemistry, and materials science.

  14. In-trap decay spectroscopy for {beta}{beta} decays

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Thomas

    2011-01-18

    The presented work describes the implementation of a new technique to measure electron-capture (EC) branching ratios (BRs) of intermediate nuclei in {beta}{beta} decays. This technique has been developed at TRIUMF in Vancouver, Canada. It facilitates one of TRIUMF's Ion Traps for Atomic and Nuclear science (TITAN), the Electron Beam Ion Trap (EBIT) that is used as a spectroscopy Penning trap. Radioactive ions, produced at the radioactive isotope facility ISAC, are injected and stored in the spectroscopy Penning trap while their decays are observed. A key feature of this technique is the use of a strong magnetic field, required for trapping. It radially confines electrons from {beta} decays along the trap axis while X-rays, following an EC, are emitted isotropically. This provides spatial separation of X-ray and {beta} detection with almost no {beta}-induced background at the X-ray detector, allowing weak EC branches to be measured. Furthermore, the combination of several traps allows one to isobarically clean the sample prior to the in-trap decay spectroscopy measurement. This technique has been developed to measure ECBRs of transition nuclei in {beta}{beta} decays. Detailed knowledge of these electron capture branches is crucial for a better understanding of the underlying nuclear physics in {beta}{beta} decays. These branches are typically of the order of 10{sup -5} and therefore difficult to measure. Conventional measurements suffer from isobaric contamination and a dominating {beta} background at theX-ray detector. Additionally, X-rays are attenuated by the material where the radioactive sample is implanted. To overcome these limitations, the technique of in-trap decay spectroscopy has been developed. In this work, the EBIT was connected to the TITAN beam line and has been commissioned. Using the developed beam diagnostics, ions were injected into the Penning trap and systematic studies on injection and storage optimization were performed. Furthermore, Ge

  15. Analysis of betaS and betaA genes in a Mexican population with African roots.

    Science.gov (United States)

    Magaña, María Teresa; Ongay, Zoyla; Tagle, Juan; Bentura, Gilberto; Cobián, José G; Perea, F Javier; Casas-Castañeda, Maricela; Sánchez-López, Yoaly J; Ibarra, Bertha

    2002-01-01

    To investigate the origin of the beta(A) and beta(S) genes in a Mexican population with African roots and a high frequency of hemoglobin S, we analyzed 467 individuals (288 unrelated) from different towns in the states of Guerrero and Oaxaca in the Costa Chica region. The frequency of the sickle-cell trait was 12.8%, which may represent a public health problem. The frequencies of the beta-haplotypes were determined from 350 nonrelated chromosomes (313 beta(A) and 37 beta(S)). We observed 15 different beta(A) haplotypes, the most common of which were haplotypes 1 (48.9%), 2 (13.4%), and 3 (13.4%). The calculation of pairwise distributions and Nei's genetic distance analysis using 32 worldwide populations showed that the beta(A) genes are more closely related to those of Mexican Mestizos and North Africans. Bantu and Benin haplotypes and haplotype 9 were related to the beta(S) genes, with frequencies of 78.8, 18.2, and 3.0%, respectively. Comparison of these haplotypes with 17 other populations revealed a high similitude with the population of the Central African Republic. These data suggest distinct origins for the beta(A) and beta(S) genes in Mexican individuals from the Costa Chica region.

  16. beta (+)-Thalassaemia in the Po river delta region (northern Italy): genotype and beta globin synthesis.

    Science.gov (United States)

    Del Senno, L; Pirastu, M; Barbieri, R; Bernardi, F; Buzzoni, D; Marchetti, G; Perrotta, C; Vullo, C; Kan, Y W; Conconi, F

    1985-01-01

    Six beta(+)-thalassaemic patients from the Po river delta region have been studied. Using synthetic oligonucleotides as specific hybridisation probes, the beta(+) IVS I mutation (G----A at position 108) was demonstrated. This lesion and the enzyme polymorphism pattern in the subjects examined are the same as have been described for other Mediterranean beta(+)-thalassaemias. Antenatal diagnosis through DNA analysis of beta(+)-thalassaemia is therefore possible. The production of beta globin in a beta(+), homozygote and in a beta (+), beta(0) 39 (nonsense mutation at codon 39) double heterozygote is approximately 20% and 10% respectively of total non-alpha globin synthesis. Despite some overlapping of the results, similar beta globin synthesis levels have been obtained in 43 beta(+)-thalassaemia patients. This suggests that in the Po river delta region the most common thalassaemic genes are beta(0) 39 and beta(+) IVS I. Images PMID:2580095

  17. Preliminary Analysis of the Multisphere Neutron Spectrometer

    Science.gov (United States)

    Goldhagen, P.; Kniss, T.; Wilson, J. W.; Singleterry, R. C.; Jones, I. W.; VanSteveninck, W.

    2003-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the Atmospheric Ionizing Radiation (AIR) Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to greater than 10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was 8 times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56 - 201 grams per square centimeter atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  18. TREX: A small antenna RF spectrometer

    Science.gov (United States)

    Nedeljkovic, Sasa

    2007-07-01

    TREX (21 cm Reionization EXperiment/Trail Reflection EXperiment) is a digital spectrometer with a broadband antenna optimized for frequencies of 70--250 MHz. A frequency-independent rectangular approximation of a two arm conical spiral antenna has been designed, built and tested. I have developed a short integer fast Fourier transform which performs faster than any other known algorithm on Intel platforms. There are two primary scientific goals for TREX: detection of the reionization epoch, and observations of forward scattering of meteors at multiple frequencies. A method to detect the reionization signature via the red-shifted 21 cm hydrogen line is discussed in detail. If the spectrum signature due to this line is in the form of a sharp "temperature step" of ˜ 0.02 K, it should be possible to detect it by using two specially designed antennas each rescaled by 1% in the frequency range of 150-250 MHz. I have measured the levels of noise in Algonquin Park, Canada, and concluded that activity in the sporadic E layer of the ionosphere seriously affects observations of the 21 cm reionization signature. Meteor forward-scattering is a well known method of detecting meteors using a radio telescope to receive signals emitted by distant transmitters and scattered from a meteor trail. If the same meteoroid is detected at additional frequencies due to forward scattering of rays coming from spatially separated transmitters, it is possible to estimate where the scattering occurred, and find the meteoroid velocity vector. Previously, there were no known methods to estimate orbital parameters from forward-scattering observations. In this project, a pipeline to find orbital parameters from the observations is developed. I performed a set of meteor observations at the Algonquin Radio Telescope site and used data to demonstrate the method of measuring the speed of a meteoroid. The data gathered show increased activity during the Lyrid meteor shower as expected. Finally, no

  19. THOR Ion Mass Spectrometer instrument - IMS

    Science.gov (United States)

    Retinò, Alessandro; Kucharek, Harald; Saito, Yoshifumi; Fraenz, Markus; Verdeil, Christophe; Leblanc, Frederic; Techer, Jean-Denis; Jeandet, Alexis; Macri, John; Gaidos, John; Granoff, Mark; Yokota, Shoichiro; Fontaine, Dominique; Berthomier, Matthieu; Delcourt, Dominique; Kistler, Lynn; Galvin, Antoniette; Kasahara, Satoshi; Kronberg, Elena

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. Specifically, THOR will study how turbulent fluctuations at kinetic scales heat and accelerate particles in different turbulent environments within the near-Earth space. To achieve this goal, THOR payload is being designed to measure electromagnetic fields and particle distribution functions with unprecedented resolution and accuracy. Here we present the Ion Mass Spectrometer (IMS) instrument that will measure the full three-dimensional distribution functions of near-Earth main ion species (H+, He+, He++ and O+) at high time resolution (~ 150 ms for H+ , ~ 300 ms for He++) with energy resolution down to ~ 10% in the range 10 eV/q to 30 keV/q and angular resolution ~ 10°. Such high time resolution is achieved by mounting multiple sensors around the spacecraft body, in similar fashion to the MMS/FPI instrument. Each sensor combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCP) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification, discrimination and time-to-digital conversion (TDC). IMS is being designed to address many of THOR science requirements, in particular ion heating and acceleration by turbulent fluctuations in foreshock, shock and magnetosheath regions. The IMS instrument is being designed and will be built by an international consortium of scientific institutes with main hardware contributions from France, USA, Japan and Germany.

  20. Cryogenic Scan Mechanism for Fourier Transform Spectrometer

    Science.gov (United States)

    Brasunas, John C.; Francis, John L.

    2011-01-01

    A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear

  1. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch [Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Brown, M. A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Bokhoven, J. A. van [Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich (Switzerland); Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  2. Design of a Pushbroom Imaging Spectrometer that Exceeds AVIRIS Performance

    Science.gov (United States)

    Green, Robert O.

    2004-01-01

    This slide presentation reviews the design of a Pushbroom Imaging Spectrometer, that will exceed the performance of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The approach for the AVIRIS-II instrument is reviewed as are the specifications for the new spectrometer. Even though the pushbroom spectrometer is inherently non-uniform, the design of the AVIRIS-II provides for uniformity. Spot diagrams at the slit and at the detector inside the 27micron box are presented. A few of the challenges in the mechanical design and the making of the slit are discussed. The specifications of the 6604A detector array are reviewed. Slides showing the expected Signal to Noise Ratio performance are presented.

  3. Hadron distributions at higher rapidity using the BRAHMS forward spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, B. [Brookhaven National Lab., Upton, NY (United States)

    1995-07-15

    Different conditions, and therefore different physics, are expected to exist over the range of rapidities at RHIC. The BRAHMS Forward Spectrometer will measure identified hadron distributions up to y=4, giving it a unique place in the RHIC experimental program.

  4. Electron spectrometer for “in-beam” spectroscopy

    Science.gov (United States)

    Andrzejewski, J.; Król, A.; Perkowski, J.; Sobczak, K.; Wojtkiewicz, R.; Kisieliński, M.; Kowalczyk, M.; Kownacki, J.; Korman, A.

    2008-02-01

    A spectrometer that uses a set of silicon detectors and a combination of two magnetic fields for separation and for transportation of electrons from the target position to the silicon detectors has been constructed at the University of Lodz for "in-beam" studies of internal conversion electrons. The separation of electrons from positrons is achieved in a simplified mini-orange set-up. The transportation field is produced by a set of permanent magnets arranged in a form of coaxial rings. The background from delta electrons and gamma rays is highly reduced. The spectrometer was designed to be coupled to OSIRIS-II, the array of gamma-ray detectors at the Warsaw Heavy Ion Laboratory. The performance of the spectrometer is illustrated by examples of spectra obtained from the conversion electron spectrometer and also the OSIRIS-II array, which were recorded in- and off- beam.

  5. White light spectral interferometry as a spectrometer calibration tool.

    Science.gov (United States)

    de la Fuente, Raúl

    2014-01-01

    For this paper, we used a white light interferometer in combination with spectral lamps to perform the wavelength calibration of a dispersive spectrometer. Illuminating the spectrometer with suitable spectral lamps gives the wavelength-pixel number relationship at discrete positions of the spectrometer detector array, and the wavelength-dependent phase difference at the output of the white light interferometer allows for a complete spectral calibration at any point on the detector (i.e., for every wavelength in the spectral range of the spectrometer). The details of this new calibration procedure are discussed, and two practical examples exhibiting the robustness of the method are presented. In addition, certain issues relating to minimizing the number of spectral lines used in the calibration procedure are examined.

  6. Advanced Multi-beam Spectrometer for the Green Bank Telescope

    CERN Document Server

    Roshi, D Anish; Brandt, Patrick; Bussa, Srikanth; Chen, Hong; Demorest, Paul; Desvignes, Gregory; Filiba, Terry; Fisher, Richard J; Ford, John; Frayer, David; Garwood, Robert; Gowda, Suraj; Jones, Glenn; Mallard, Billy; Masters, Joseph; McCullough, Randy; Molera, Guifre; O'Neil, Karen; Ray, Jason; Scott, Simon; Shelton, Amy; Siemion, Andrew; Wagner, Mark; Watts, Galen; Werthimer, Dan; Whitehead, Mark

    2012-01-01

    A new spectrometer for the Green Bank Telescope (GBT) is being built jointly by the NRAO and the CASPER, University of California, Berkeley. The spectrometer uses 8 bit ADCs and will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams. This mode will be used to process data from focal plane arrays. The spectrometer supports observing mode with 8 tunable digital sub-bands within the 1.25 GHz bandwidth. The spectrometer can also be configured to process a bandwidth of up to 10 GHz with 64 tunable sub-bands from a dual polarized beam. The vastly enhanced backend capabilities will support several new science projects with the GBT.

  7. High Resolution Stellar Spectroscopy with VBT Echelle Spectrometer

    Indian Academy of Sciences (India)

    N. Kameswara Rao; S. Sriram; K. Jayakumar; F. Gabriel

    2005-06-01

    The optical design and performance of the recently commissioned fiber fed echelle spectrometer of 2.34 meter Vainu Bappu Telescope are described. The use of it for stellar spectroscopic studies is discussed.

  8. Compact, Dual Channel, Mid-IR Laser Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Small Business Innovative Research Phase II proposal seeks to develop a dual channel, compact mid-infrared laser spectrometer for planetary atmosphere...

  9. Miniature Mass Spectrometer for Earth Science Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — By drastically reducing the physical footprint of a mass spectrometer to the size of a beverage can, Ceramitron could set a new performance/price standard in the...

  10. Tunable light source for use in photoacoustic spectrometers

    Science.gov (United States)

    Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.

    2005-12-13

    The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.

  11. Compact, Dual Channel, Mid-IR Laser Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Small Business Innovative Research Phase I proposal seeks to develop a dual channel, compact mid-infrared laser spectrometer for planetary atmosphere...

  12. 4 pi β-spectrometer with Li-Si counters

    DEFF Research Database (Denmark)

    Andersen, Verner; Christensen, Carl Jørgen

    1968-01-01

    Spectrometer has been developed; provided with solid-state detectors, it has resolution of 2% at 1 Mev; because of 4 pi-geometry it is well suited for absolute measurements and for measurement of conversion coefficients. (14005)...

  13. Spatial Heterodyne Spectrometer for Aviation Hazard Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc (PSI) proposes the development of a longwave infrared (LWIR) imaging spatial heterodyne spectrometer (I-SHS) for standoff detection of clear...

  14. Titan's Topside Ionospheric Composition: Cassini Plasma Spectrometer Ion Mass Spectrometer Measurements

    Science.gov (United States)

    Sittler, Edward; Hartle, Richard; Ali, Ashraf; Cooper, John; Lipatov, Alexander; Simpson, David; Sarantos, Menelaos; Chornay, Dennis; Smith, Todd

    2017-01-01

    We present ion composition measurements of Titan's topside ionosphere using both T9 and T15 Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) measurements. The IMS is able to make measurements of Titan's ionosphere due to ionospheric outflows as originally reported for the T9 flyby. This allows one to take advantage of the unique capabilities of the CAPS IMS which measures both the mass-per-charge (M/Q) of the ions and the fragments of the ions produced inside the sensor such as carbon, nitrogen and oxygen fragments. Specific attention will be given to such ions as NH4 +, N +, O +, CH4 +, CxHy +, and HCNH + ions as examples. The CAPS IMS uses a time-of-flight (TOF) technique which accelerates ions up to 14.6 kV, so they can pass through ultra-thin carbon foils. Neutral fragments are used to measure the ion M/Q and positive fragments to measure the atomic components. We preliminarily find, by using IMS measurements of T9 and T15 ionospheric outflows, evidence for methane group ions, nitrogen ions, ammonium ions, water group ions and CnHm + ions with n = 2, 3, and 4 within Titan's topside ionosphere. E.C. Sittler acknowledges support at Goddard Space Flight Center by the CAPS Cassini Project from JPL funds under contract # NAS703001TONMO711123/1405851.

  15. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    Science.gov (United States)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  16. Remote sensing solutions for when spectrometers no longer are affordable

    Science.gov (United States)

    van Brug, Hedser; Visser, Huib

    2016-10-01

    This paper describes one of the issues that are facing the remote sensing community in the not so far future; scientists ask for certain requirement that cannot be fulfilled either due to cost issues or technological issues. The paper starts with giving a short and quick historical overview of the development of spectrometer based remote sensing systems. Next, the likely end of the spectrometers will be explained, followed by a possible alternative.

  17. Assembling the muon spectrometer branch of R702

    CERN Multimedia

    1976-01-01

    The experiment R702 by the CERN-Saclay CEN-ETH Zurich Collaboration was set up to search for charmed particles and elrctron pairs, with two magnetic spectrometers at 90 deg, threshold Cerenkov counters, drift and proportional chambers, hodoscopes and lead glass counters. Early in 1976 a special iron-plate muon magnet (shown in the photo) was fitted between the two electron spectrometers to extend the experiment to detect muon-electron coincidences. Ludwig Dumps stays on the right.

  18. Mass measurements with a Penning trap mass spectrometer at ISOLDE

    CERN Document Server

    Bollen, G; Audi, G; Beck, D; Herfurth, F; Kluge, H J; Kohl, A; Lunney, M D; Moore, R B; De Saint-Simon, M; Schark, E; Schwarz, S; Szerypo, J

    1998-01-01

    Penning trap mass measurements on radioactive isotopes are performed with the ISOLTRAP mass spectrometer at ISOLDE/CERN. In the last years the applicability of the spectrometer has been considerably extended. The most recent measurements were carried out on isotopes of rare earth elements and on isotopes with Z=80-85. An accuracy of $\\delta$ m/m approximately=1$\\cdot$10$^{-7}$was achieved. (19 refs).

  19. Validation of virtual spectrometer created in RADlab1.03.

    Science.gov (United States)

    Pandey, Anil Kumar; Patel, Chetan; Bal, Chandrasekhar; Kumar, Rakesh

    2015-01-01

    Spectrometer is used to perform various in vitro tests. The ability to successfully perform these tests depends on technologist's skill. Therefore, proper training of technologists is mandatory in gamma spectrometry. During the training, they need to have sufficient practice to gain sound theoretical and practical knowledge. High cost of spectrometer and risk of their damage during independent practice may hamper the process of proper training. Hence, there is a need of cheaper and more feasible option. Virtual spectrometer created in RADlab1.03 can address this issue. The immediate objective of this paper is to validate this virtual spectrometer so as to be used as an educational and research tool for trainees. Virtual spectrometer was calibrated using Cs-137 standard source and Cs-137 spectrum was recorded by positioning 28106 Bq Cs-137 source at 2.35 cm above top surface of the well, 1 cm above from the bottom of the well and at the bottom of the well. Ba-133 and Co-60 spectrum were also recorded. The experiments were repeated with real spectrometer for exactly the same conditions as applied to the virtual spectrometer. The paired t-test was applied to find the difference in mean photopeak at 5% level of significance. The sample data provided satisfactory evidence that mean photopeak obtained with real as well as virtual spectrometer were same at P value of 4.641 × 10(-4),1.57 × 10(-12),1.40 × 10(-24), 1.26 × 10(-16), and 8.7 × 10(-9) for Cs-137 (photopeak: 664 keV, Co-60 (photopeak: 1181 keV), Co-60 (photopeak: Co-1348 keV), Ba-133 (photopeak: 304 keV) and Ba-133 (photopeak: 364 keV) respectively.

  20. BAMBUS: a new inelastic multiplexed neutron spectrometer for PANDA

    Science.gov (United States)

    Lim, J. A.; Siemensmeyer, K.; Čermák, P.; Lake, B.; Schneidewind, A.; Inosov, D. S.

    2015-03-01

    We report on plans for a multiplexed neutron analyser option for the PANDA spectrometer. The key design concept is to have many analysers positioned to give a large coverage in the scattering plane, and multiple arcs of these analysers to measure different energy transfers simultaneously. The main goal is to bring intensity gains and improved reciprocal-space and energy mapping capabilities to the existing cold triple-axis spectrometer.

  1. Magnetic suspension based Fourier Transform Infrared Spectrometer mechanism (FTIS)

    Science.gov (United States)

    Köker, Ingo; Langenbach, Harald; Schmid, Manfred; Lautier, Jean-Michel

    2005-07-01

    In the frame of an ESTEC technology contract the development of a Magnetically Suspended Fourier Transform Spectrometer Mechanism (FTIS) was carried out. The aim of the development is to avoid the issues found in mechanically suspended systems and to provide an active alignment and disturbance rejection capability for spectrometer applications. In the frame of FTIS an actively controlled suspension system based on the use of magnetic bearings was defined, developed and built as a demonstration model.

  2. A system for pulsed NQR spectrometer control and signal processing

    Science.gov (United States)

    Gourdji, M.; Péneau, A.

    The system described was built at the IEF around a HP-21OOA computer and is presently used with a nitrogen-14 pulsed NQR spectrometer. Two main functions are provided: spectrometer control (radio-frequency, pulse sequence repetition rate, sample temperature settings) and signal processing (accumulation of the NQR signals, Fourier transform). Results are presented which show typical uses of the system for the observation of complex signals.

  3. Smart Beta or Smart Alpha

    DEFF Research Database (Denmark)

    Winther, Kenneth Lillelund; Steenstrup, Søren Resen

    2016-01-01

    Smart beta has become the flavor of the decade in the investment world with its low fees, easy access to rewarded risk premiums, and appearance of providing good investment results relative to both traditional passive benchmarks and actively managed funds. Although we consider it well documented...... that smart beta investing probably will do better than passive market capitalization investing over time, we believe many are coming to a conclusion too quickly regarding active managers. Institutional investors are able to guide managers through benchmarks and risk frameworks toward the same well......-documented smart beta risk premiums and still motivate active managers to avoid value traps, too highly priced small caps, defensives, etc. By constructing the equity portfolios of active managers that resemble the most widely used risk premiums, we show that the returns and risk-adjusted returns measures...

  4. The microbial oxidation of (-)-beta-pinene by Botrytis cinerea.

    Science.gov (United States)

    Farooq, Afgan; Choudhary, M Iqbal; Tahara, Satoshi; Rahman, Atta-ur; Başer, K Hüsnü Can; Demirci, Fatih

    2002-01-01

    (-)-beta-pinene, a flavor and fragrance monoterpene is an important constituent of essential oils of many aromatic plants. It was oxidized by a plant-pathogenic fungus, Botrytis cinerea to afford four metabolites characterized as (-)-6a-hydroxy-beta-pinene, (-)-4beta,5beta-dihydroxy-beta-pinene, (-)-2beta,3beta-dihydroxypinane, and (-)-4beta-hydroxy-beta-pinene-6-one by detailed spectroscopic studies along with other known metabolites.

  5. Neutrinoless double beta decay experiments

    CERN Document Server

    Zuber, K

    2006-01-01

    The study of neutrinoless double beta decay is of outmost importance for neutrino physics. It is considered to be the gold plated channel to probe the fundamental character of neutrinos and to determine the neutrino mass. From the experimental point about nine different isotopes are explored for the search. After a general introduction follows a short discussion on nuclear matrix element calculations and supportive measurements. The current experimental status of double beta searches is presented followed by a short discussion of the ideas and proposals for large scale experiments.

  6. A {beta} - {gamma} coincidence; Metodo de coincidencias {beta} - {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Agullo, F.

    1960-07-01

    A {beta} - {gamma} coincidence method for absolute counting is given. The fundamental principles are revised and the experimental part is detailed. The results from {sup 1}98 Au irradiated in the JEN 1 Swimming pool reactor are given. The maximal accuracy is 1 per cent. (Author) 11 refs.

  7. Beta thalassaemia mutations in Turkish Cypriots.

    Science.gov (United States)

    Sozuoz, A; Berkalp, A; Figus, A; Loi, A; Pirastu, M; Cao, A

    1988-01-01

    Using oligonucleotide hybridisation or restriction endonuclease analysis, we have characterised the molecular defect in 94 patients with thalassaemia major and four with thalassaemia intermedia of Turkish Cypriot descent. We found that four mutations, namely beta+ IVS-1 nt 110, beta zero IVS-1 nt, beta+ IVS-1 nt 6, and beta+ IVS-2 nt 745 were prevalent, accounting for 69.9%, 11.7%, 8.7%, and 5.6% respectively of the beta thalassaemia chromosomes. This information may help in the organisation of a large scale prevention programme based on fetal diagnosis of beta thalassaemia by DNA analysis in the Turkish population. PMID:3236356

  8. Synchronised Aerosol Mass Spectrometer Measurements across Europe

    Science.gov (United States)

    Nemitz, Eiko

    2010-05-01

    Up to twelve Aerodyne Aerosol Mass Spectrometers (AMSs) were operated simultaneously at rural and background stations (EMEP and EUSAAR sites) across Europe. Measurements took place during three intensive periods, in collaboration between the European EUCAARI IP and the EMEP monitoring activities under the UNECE Convention for Long-Range Transboundary Air Pollution (CLRTAP) during three contrasting months (May 2008, Sep/Oct 2008, Feb/Mar 2009). These measurements were conducted, analysed and quality controlled carefully using a unified protocol, providing the largest spatial database of aerosol chemical composition measured with a unified online technique to date, and a unique snapshots of the European non-refractory submicron aerosol climatology. As campaign averages over all active monitoring sites, organics represent 28 to 43%, sulphate 18 to 25%, ammonium 13 to 15% and nitrate 15 to 36% of the resolved aerosol mass, with the highest relative nitrate contribution during the Feb/Mar campaign. The measurements demonstrate that in NW Europe (e.g. Ireland, UK, The Netherlands, Germany, Switzerland) the regional submicron aerosol tends to be neutralised and here nitrates make a major contribution to the aerosol mass. By contrast, periods with low nitrate and acidic aerosol were observed at sites in S and E Europe (e.g. Greece, Finland), presumably due to a combination of larger SO2 point sources in Easter Europe, smaller local NH3 sources and, in the case of Greece, higher temperatures. While at the more marine and remote sites (Ireland, Scotland, Finland) nitrate concentrations were dominated by episodic transport phenomena, at continental sites (Switzerland, Germany, Hungary) nitrate followed a clear diurnal cycle, reflecting the thermodynamic behaviour of ammonium nitrate. The datasets clearly shows spatially co-ordinated, large-scale pollution episodes of organics, sulphate and nitrate, the latter being most pronounced during the Feb/Mar campaign. At selected

  9. Design of a miniaturized integrated spectrometer for spectral tissue sensing

    Science.gov (United States)

    Belay, Gebirie Yizengaw; Hoving, Willem; Ottevaere, Heidi; van der Put, Arthur; Weltjens, Wim; Thienpont, Hugo

    2016-04-01

    Minimally-invasive image-guided procedures become increasingly used by physicians to obtain real-time characterization feedback from the tissue at the tip of their interventional device (needle, catheter, endoscopic or laparoscopic probes, etc…) which can significantly improve the outcome of diagnosis and treatment, and ultimately reduce cost of the medical treatment. Spectral tissue sensing using compact photonic probes has the potential to be a valuable tool for screening and diagnostic purposes, e.g. for discriminating between healthy and tumorous tissue. However, this technique requires a low-cost broadband miniature spectrometer so that it is commercially viable for screening at point-of-care locations such as physicians' offices and outpatient centers. Our goal is therefore to develop a miniaturized spectrometer based on diffractive optics that combines the functionalities of a visible/near-infrared (VIS/NIR) and shortwave-infrared (SWIR) spectrometer in one very compact housing. A second goal is that the hardware can be produced in high volume at low cost without expensive time consuming alignment and calibration steps. We have designed a miniaturized spectrometer which operates both in the visible/near-infrared and shortwave-infrared wavelength regions ranging from 400 nm to 1700 nm. The visible/near-infrared part of the spectrometer is designed for wavelengths from 400 nm to 800 nm whereas the shortwave-infrared segment ranges from 850 nm to 1700 nm. The spectrometer has a resolution of 6 nm in the visible/near-infrared wavelength region and 10 nm in the shortwave-infrared. The minimum SNR of the spectrometer for the intended application is about 151 in the VIS/NIR range and 6000 for SWIR. In this paper, the modelling and design, and power budget analysis of the miniaturized spectrometer are presented. Our work opens a door for future affordable micro- spectrometers which can be integrated with smartphones and tablets, and used for point

  10. Copper L X-ray spectra measured by a high resolution ion-induced X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Hamaguchi, Dai; Kageyama, Hiroyoshi [Kyoto Inst. of Tech. (Japan)] [and others

    1997-03-01

    High resolution L X-ray emission spectra of Cu have been measured by 0.75 MeV/u H, He, and F, 0.73 MeV/u Ar, 0.64 MeV/u Si, and 0.073 MeV/u Si ion impacts with a crystal spectrometer. The X-ray transition energies in the Cu target for L{iota}, L{eta}, L{alpha}{sub 1,2}, L{beta}{sub 1}, and L{beta}{sub 3,4} diagram lines induced by light ion impacts are determined, which are in good agreement with those given in the reference. The difference in L X-ray emission spectra produced by H, He, F, Si, and Ar ions are considered and the L{alpha}{sub 1,2} and L{beta}{sub 1} emission spectra are compared with the calculated ones based on the multiconfiguration Dirac-Fock method. (author)

  11. Beta Cell Workshop 2013 Kyoto

    DEFF Research Database (Denmark)

    Heller, R Scott; Madsen, Ole D; Nielsen, Jens Høiriis

    2013-01-01

    The very modern Kyoto International Conference Center provided the site for the 8th workshop on Beta cells on April 23-26, 2013. The preceding workshops were held in Boston, USA (1991); Kyoto, Japan (1994); Helsingør, Denmark (1997); Helsinki, Finland (2003); El Perello, Spain (2006); Peebles...

  12. Estimating $\\beta$-mixing coefficients

    CERN Document Server

    McDonald, Daniel J; Schervish, Mark

    2011-01-01

    The literature on statistical learning for time series assumes the asymptotic independence or ``mixing' of the data-generating process. These mixing assumptions are never tested, nor are there methods for estimating mixing rates from data. We give an estimator for the $\\beta$-mixing rate based on a single stationary sample path and show it is $L_1$-risk consistent.

  13. Beta-carotene as antioxidant

    NARCIS (Netherlands)

    Bast, A.; Plas, R.M. van der; Berg, H. van den; Haenen, G.R.M.M.

    1996-01-01

    Objective: Beta-carotene has been shown to exhibit a good radical-trapping antioxidant activity in vitro. We were interested to see if dietary β-carotene in combination with various intake levels for vitamin A would also inhibit lipid peroxidation. Design: Sixty male Wistar rats received vitamin A (

  14. Broad-Bandwidth FPGA-Based Digital Polyphase Spectrometer

    Science.gov (United States)

    Jamot, Robert F.; Monroe, Ryan M.

    2012-01-01

    With present concern for ecological sustainability ever increasing, it is desirable to model the composition of Earth s upper atmosphere accurately with regards to certain helpful and harmful chemicals, such as greenhouse gases and ozone. The microwave limb sounder (MLS) is an instrument designed to map the global day-to-day concentrations of key atmospheric constituents continuously. One important component in MLS is the spectrometer, which processes the raw data provided by the receivers into frequency-domain information that cannot only be transmitted more efficiently, but also processed directly once received. The present-generation spectrometer is fully analog. The goal is to include a fully digital spectrometer in the next-generation sensor. In a digital spectrometer, incoming analog data must be converted into a digital format, processed through a Fourier transform, and finally accumulated to reduce the impact of input noise. While the final design will be placed on an application specific integrated circuit (ASIC), the building of these chips is prohibitively expensive. To that end, this design was constructed on a field-programmable gate array (FPGA). A family of state-of-the-art digital Fourier transform spectrometers has been developed, with a combination of high bandwidth and fine resolution. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved analog-to-digital converters (ADCs). This 6-Gsps (gigasample per second) digital representation of the analog signal is then processed through an FPGA-based streaming fast Fourier transform (FFT). Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers.

  15. The Asteroid Thermal Mapping Spectrometer: An Imaging Mid-IR Spectrometer for the Marco Polo NEO Sample Return Cosmic Vision Candidate Mission

    Science.gov (United States)

    Bowles, N. E.; Calcutt, S.; Reininger, F.; Green, S. F.; Mortimer, H.

    2009-03-01

    We describe the Asteroid Thermal Mapping Spectrometer (ATMS) instrument, a compact imaging mid-IR Fourier transform spectrometer currently being developed at the University of Oxford for NEO remote sensing applications.

  16. The beta-decay of Al-22

    NARCIS (Netherlands)

    Achouri, NL; Santos, FDO; Lewitowicz, M; Blank, B; Aysto, J; Canchel, G; Czajkowski, S; Dendooven, P; Emsallem, A; Giovinazzo, J; Guillet, N; Jokinen, A; Larid, AM; Longour, C; Perajarvi, K; Smirnova, N; Stanoiu, M

    2006-01-01

    In an experiment performed at the LISE3 facility of GANIL, we studied the decay of Al-22 produced by the fragmentation of a Ar-36 primary beam. A beta-decay half-life of T-1/2 = 91.1 +/- 0.5ms was measured. The beta-delayed one- and two-proton emission as well as beta-alpha and beta-delayed gamma-de

  17. Traumatic Brain Injury, Microglia, and Beta Amyloid

    OpenAIRE

    Mannix, Rebekah C.; Whalen, Michael J

    2012-01-01

    Recently, there has been growing interest in the association between traumatic brain injury (TBI) and Alzheimer's Disease (AD). TBI and AD share many pathologic features including chronic inflammation and the accumulation of beta amyloid (A\\(\\beta\\)). Data from both AD and TBI studies suggest that microglia play a central role in A\\(\\beta\\) accumulation after TBI. This paper focuses on the current research on the role of microglia response to A\\(\\beta\\) after TBI.

  18. First Measurement of the Neutron $\\beta$-Asymmetry with Ultracold Neutrons

    CERN Document Server

    Pattie, R W

    2008-01-01

    We report the first measurement of angular correlation parameters in neutron $\\beta$-decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for $\\sim 30$ s in a Cu decay volume. The $\\vec{\\mu}_n \\cdot \\vec{B}$ potential of a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage (AFP) spin-flipper and enter a decay volume, situated within a 1 T, $2 \\times 2\\pi$ superconducting solenoidal spectrometer. We determine a value for the $\\beta$-asymmetry parameter $A_0$, proportional to the angular correlation between the neutron polarization and the electron momentum, of $A_0 = -0.1138 \\pm 0.0051$.

  19. THE ALPHA/BETA-HYDROLASE FOLD

    NARCIS (Netherlands)

    OLLIS, DL; CHEAH, E; CYGLER, M; FROLOW, F; FRANKEN, SM; HAREL, M; REMINGTON, SJ; SILMAN, [No Value; SCHRAG, J; SUSSMAN, JL; VERSCHUEREN, KHG; GOLDMAN, A

    1992-01-01

    We have identified a new protein fold-the alpha/beta-hydrolase fold-that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an alpha/beta-sheet, not barrel, of eight beta-sheets connected by alpha-helices. These

  20. Beta-lactamases in Enterobacteriaceae in broilers

    NARCIS (Netherlands)

    Dierikx, C.M.

    2013-01-01

    Resistance to cephalosprins due to the production of extended spectrum beta-lactamases (ESBLs) or plasmid mediated AmpC beta-lactamases is increasingly found in infections in humans outside the hospital. The genes encoding for these beta-lactamases are located on mobile DNA (plasmids), which can be

  1. Higher-Order Beta Matching with Solutions in Long Beta-Eta Normal Form

    DEFF Research Database (Denmark)

    Støvring, Kristian

    2006-01-01

    up to beta-eta equivalence is a long-standing open problem.We show that higher-order matching up to beta-eta equivalence is decidable if and only if a restricted form of higher-order matching up to beta equivalence is decidable: the restriction is that solutions must be in long beta-eta normal form....

  2. Molecular mass distribution and epitopes of the beta lactoglobulin submitted to hydrolysis pre-transglutaminase treatment

    Energy Technology Data Exchange (ETDEWEB)

    Villas-Boas, M.B.; Zollner, R.L.; Netto, F.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Paes Leme, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Benede, S.; Molina, E. [Universidad Autonoma de Madrid (Spain)

    2012-07-01

    Full text: The {beta}-Lactoglobulin ({beta}-Lg) is a whey protein with important nutritional proper ties but very resistant to pepsin digestion and consequently highly antigenic. This protein can be modified by transglutaminase (TG) although it is required a pretreatment to increase their susceptibility to the TG action. In the present study the hydrolysis pre-TG treatment was used to improve the TG accessibility on {beta}-Lg and the MM distribution and antigenic fragments were evaluated. For pre-TG treatment, the {beta}-Lg (Davisco Inc.) was hydrolyzed with bromelain (3% of {beta}-Lg w/w in distilled water; 25 U enzyme g{sup 1} of substrate, pH 7.5, 240 min) and then polymerized by TG (7% hydrolysate, 10U TG g{sup 1} protein, 50 C/180 min). The samples were evaluated by SDS-PAGE/tricine and by RP-nanoUPLC (nanoAcquity UPLC, Waters) coupled with nano-electrospray tandem mass spectrometry on a Q-Tof Ultima API mass spectrometer (MicroMass/Waters) at LNBio. The products were also submitted to pepsin digestion and the peptide identification was performed by RP-HPLC-tandem mass spectrometry (RP-HPLC-MS/MS, Brucker) with support from CIAL. The {beta}-Lg hydrolysed by bromelain and polymerized by TG had a broad MM distribution. The intact mass analysis indicated that the non modified {beta}Lg -A showed 18.362 Da and the non modified {beta}Lg -B 18.274 Da, which is in agreement with the theoretical corresponding masses. The use of bromelain pre-TG treatment resulted in polymers with MM from 61.052 to 67.654 Da, although some non modified protein was still present. In addition, the non modified {beta}-Lg showed fragments that present high antigenicity (such as Leu{sub 95} - Leu{sub 104}, Asp{sub 95} - Phe{sub 105}, Tyr{sub 42} - Leu{sub 54}, lle{sub 29} - Val{sub 41}), previously identified as IgE-binding epitopes. After hydrolysis following by TG treatment the fragment Tyr{sub 42} - Leu{sub 54} was still present, however the other fragments that were observed in the non

  3. CHIRON – A new high resolution spectrometer for CTIO

    Directory of Open Access Journals (Sweden)

    Marcy G.W.

    2011-07-01

    Full Text Available Small telescopes can play an important role in the search for exoplanets because they offer an opportunity for high cadence observations that are not possible with large aperture telescopes. However, there is a shortage of high resolution spectrometers for precision Doppler planet searches. We report on an innovative design for CHIRON, an inexpensive spectrometer that we are building for the 1.5-m telescope at CTIO in Chile. The resolution will be R >80.000, the spectral format spanning 410 to 880 nm. The total throughput of the telescope and spectrometer will be better than 12%, comparable with the efficiency of state-of-the-art spectrometers. The design is driven by the requirements for precision Doppler searches for exoplanets using an iodine cell. The optical layout is a classical echelle with 140 mm beam size. The bench-mounted spectrometer will be fibre-fed followed by an image slicer. An apochromatic refractor is used as the camera. Image quality and throughput of the design are excellent over the full spectral range. Extensive use of commercially available components and avoidance of complicated custom optics are key for quick and resource-efficient implementation.

  4. Electro-Optical Imaging Fourier-Transform Spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  5. [Fourier Transform Spectrometer Based on Rotating Parallel-Mirror-Pair].

    Science.gov (United States)

    Zhao, Bao-wei; Xiangli, Bin; Cai, Qi-sheng; Lü, Qun-bo; Zhou, Jin-song

    2015-11-01

    In the temporally-modulated Fourier transform spectroscopy, the translational moving mirror is difficult to drive accurately, causing tilt and shear problems. While, a rotational moving mirror can solve these problems. A rotary Fourier transform spectrometer is recommanded in this paper. Its principle is analyzed and the optical path difference is deduced. Also, the constrains for engineering realization are presented. This spectrometer consists of one beamsplitter, two fixed mirrors, one rotating parallel mirror pair, a collimating lens, a collecting lens, and one detector. From it's principle, this spectrometer show a simple structure, and it is assembled and adjustmented easily because the two split light are interfered with each other after reflected through the same plane mirror; By calculating the expression of it's optical path difference, the spectrometer is easy to realize large optical path difference, meaning high spectral resolution; Through analyzing it's engineering design constraints and computer simulation, it is known that the spectrometer should get the high resolution sample by high-speed spinning motor, so it is easy to achieve precise motion control, good stability, fast measurement speed.

  6. AD5933-based spectrometer for electrical bioimpedance applications

    Science.gov (United States)

    Ferreira, J.; Seoane, F.; Ansede, A.; Bragos, R.

    2010-04-01

    To build an Electrical Bioimpedance (EBI) spectrometer using the Impedance Measurement System-On-Chip AD5933 together with a 4-Electrode Analog Front End (4E-AFE) has been proven practicable. Such small measurement devices can make possible several new applications of EBI technology, especially when combined with functional textiles, which can enable wearable applications for personal health and home monitoring. After the implementation and functional validation of the 4E-AFE-enabled spectrometer, the next natural step is to validate for which EBI applications the 4E-AFE-enabled system is suitable. To test the applicability of this novel spectrometer on several EBI applications, 2R1C equivalent models have been experimentally obtained and impedance spectroscopy measurements have been performed with the system under study and with the SFB7 EBI spectrometer manufactured by ImpediMed. The 2R1C circuit parameters have been estimated with the BioImp software from the spectra obtained with both EBI spectrometers and the estimated values have been compared with the original values used in each circuit model implementation. The obtained results indicated that the 4E-AFE-enabled system cannot beat the performance of the SFB7 in accuracy but it performs better in preciseness. In any case the overall performance indicates that the 4E-AFE-enabled system can perform spectroscopy measurements in the frequency range from 5 to 100 kHz.

  7. Two crystal x-ray spectrometers for OMEGA experiments

    Science.gov (United States)

    Reverdin, C.; Casner, A.; Girard, F.; Lecherbourg, L.; Loupias, B.; Tassin, V.; Philippe, F.

    2016-11-01

    Two x-ray spectrometers have been built for x-ray spectroscopy of laser-produced plasmas on OMEGA at the Laboratory for Laser Energetics (LLE) by Commissariat a ̀ l'Energie Atomique et aux énergies alternatives (CEA). The accessible photon energy range is from 1.5 to 20 keV. The first spectrometer, called X-ray CEA Crystal Spectrometer with a Charge-Injection Device (XCCS-CID), records three spectra with three crystals coupled to a time integrated CID camera. The second one, called X-ray CEA Crystal Spectrometer (XCCS) with a framing camera, is time resolved and records four spectra with two crystals on the four frames of a framing camera. Cylindrical crystals are used in Johan geometry. Each spectrometer is positioned with a ten-inch manipulator inside the OMEGA target chamber. In each experiment, after choosing a spectral window, a specific configuration is designed and concave crystals are precisely positioned on a board with angled wedges and spacers. Slits on snouts enable 1D spatial resolution to distinguish spectra emitted from different parts of the target.

  8. Studies of {beta}-delayed proton decays of N{approx_equal}Z nuclei around {sup 100}Sn at the GSI-ISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Mukha, I. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Batist, L. [St. Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Universita ' Federico II' and INFN Napoli, Naples (Italy); Becker, F. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Blazhev, A. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); University of Sofia, Sofia (Bulgaria); Bruechle, A. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Doering, J. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Gorska, M. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Grawe, H. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Faestermann, T. [Technical University, Munich (Germany); Hoffman, C. [Florida State University, Tallahassee, FL (United States); Janas, Z. [Warsaw University, Warsaw (Poland); Jungclaus, A. [Universidad Autonoma de Madrid (Spain); Karny, M. [Warsaw University, Warsaw (Poland); Kavatsyuk, M. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); National T. Shevchenko University, Kiev (Ukraine); Kavatsyuk, O. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Kirchner, R. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); La Commara, M. [Universita ' Federico II' and INFN Napoli, Naples (Italy); Mazzocchi, C. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Plettner, C. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Plochocki, A. [Warsaw University, Warsaw (Poland); Roeckl, E. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Romoli, M. [Universita ' Federico II' and INFN Napoli, Naples (Italy); Schaedel, M. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Schwengner, R. [Inst. fuer Kern und Hadronenphysik, Forschungzentrum Rossendorf, Dresden (Germany)] [and others

    2004-12-27

    Beta decays of {sup 94,96}Ag and {sup 103}Sn nuclei into proton channels have been studied in the recent experiments at the GSI-ISOL facility. New efficient and chemically selective ion sources provided the highest yields of light silver and tin isotopes. Large arrays of germanium {gamma}-ray and silicon charged-particle detectors, as well as a total absorption spectrometer (TAS) were used to measure {beta}-proton, proton-{gamma}, {beta}-proton-{gamma} and proton-{gamma}-{gamma} spectra. For the decay of {sup 94}Ag, we observed high-spin states in {sup 93}Rh populated by proton emission following {beta} decay, whose largest spin value ({>=}39/2) yields an experimental proof for the existence of a second high-spin isomer in {sup 94}Ag with I{>=}17. Its {beta}-decay energy is at least 16.8 MeV, corresponding to an excitation energy {>=}5.5 MeV. For {sup 103}Sn, the {gamma} rays measured in coincidence with {beta}-delayed protons allowed us to establish the {beta}-decay properties of this isotope. In particular, a Q{sup EC} value of 7.5(6) MeV is derived from the intensity ratio of protons that are preceded either by EC or by {beta}{sup +} decays and populate the 2{sup +} state in {sup 102}Cd.

  9. beta (+)-Thalassaemia in the Po river delta region (northern Italy): genotype and beta globin synthesis.

    OpenAIRE

    del Senno, L; Pirastu, M; Barbieri, R.; De Bernardi, F.; Buzzoni, D; Marchetti, G.; Perrotta, C; Vullo, C; Kan, Y W; Conconi, F

    1985-01-01

    Six beta(+)-thalassaemic patients from the Po river delta region have been studied. Using synthetic oligonucleotides as specific hybridisation probes, the beta(+) IVS I mutation (G----A at position 108) was demonstrated. This lesion and the enzyme polymorphism pattern in the subjects examined are the same as have been described for other Mediterranean beta(+)-thalassaemias. Antenatal diagnosis through DNA analysis of beta(+)-thalassaemia is therefore possible. The production of beta globin in...

  10. New determination of double-beta-decay properties in 48Ca: high-precision Q-value measurement and improved nuclear matrix element calculations

    CERN Document Server

    Kwiatkowski, A A; Holt, J D; Chaudhuri, A; Chowdhury, U; Eibach, M; Engel, J; Gallant, A T; Grossheim, A; Horoi, M; Lennarz, A; Macdonald, T D; Pearson, M R; Schultz, B E; Simon, M C; Senkov, R A; Simon, V V; Zuber, K; Dilling, J

    2013-01-01

    We report a direct measurement of the Q-value of the neutrinoless double-beta-decay candidate 48Ca at the TITAN Penning-trap mass spectrometer, with the result that Q = 4267.98(32) keV. We measured the masses of both the mother and daughter nuclides, and in the latter case found a 1 keV deviation from the literature value. In addition to the Q-value, we also present results of a new calculation of the neutrinoless double-beta-decay nuclear matrix element of 48Ca. Using diagrammatic many-body perturbation theory to second order to account for physics outside the valence space, we constructed an effective shell-model double-beta-decay operator, which increased the nuclear matrix element by about 75% compared with that produced by the bare operator. The new Q-value and matrix element strengthen the case for a 48Ca double-beta-decay experiment.

  11. The AGATA Spectrometer: next generation gamma-ray spectroscopy

    Science.gov (United States)

    Simpson, J.; AGATA Collaboration

    2015-05-01

    The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. The spectrometer will have an unparalleled level of detection power for electromagnetic nuclear radiation. The tracking technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances and the spectrometer is now operational. AGATA has been operated in a series of scientific campaigns at Legnaro National Laboratory in Italy and GSI in Germany and is presently being assembled at GANIL in France. The status of the instrument will be reviewed.

  12. Broadband EUV survey spectrometer for short-timescale experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, B.E.; Hartog, D.J. Den; Fonck, R.J.

    1993-11-01

    A fast and inexpensive spectrometer system has been developed to record EUV impurity spectra in a magnetic fusion research device. To simplify the vacuum system, light is passed out of the spectrometer`s vacuum to the detector using a sodium-salicylate-coated fiber optic coupler. This coupler is positioned such that the focal field is nearly flat over its aperture. The system`s detector is a microchannel-plate-intensified, linear, self-scanning photodiode array. The 1024-pixel array covers a bandwidth of over 80 nm and is read out once every millisecond. The readout, which is four times faster than the manufacturer`s maximum rating, is fully synchronized to the experiment using a locally-designed control circuit.

  13. Progress on characterization of a dualband IR imaging spectrometer

    Science.gov (United States)

    Beecken, Brian P.; LeVan, Paul D.; Lindh, Cory; Johnson, Randall S.

    2008-04-01

    A dualband infrared focal plane array is the central component of a compact, low mass, multispectral imaging spectrometer with perfect spectral registration. The prototype spectrometer design uses a grating blaze chosen to be efficient over both 3.75-6.05 and 7.5-12.1 μm, although the mercury cadmium telluride focal plane array limits the bandwidths with cutoff wavelengths near 5.2 and 10.5 μm. The spectrometer has been spectrally calibrated with flooded blackbody illumination and offset and gain corrections have been performed. The wavelength resolution is +/-0.024 μm in the MWIR and +/-0.083 μm in the LWIR, however this limitation is caused by the calibration method and not by the design. The potential for determining the temperature of a blackbody or greybody from the ratio of two narrow wavebands has been demonstrated.

  14. Dualband infrared imaging spectrometer: observations of the moon

    Science.gov (United States)

    LeVan, Paul D.; Beecken, Brian P.; Lindh, Cory

    2008-08-01

    We reported previously on full-disk observations of the sun through a layer of black polymer, used to protect the entrance aperture of a novel dualband spectrometer while transmitting discrete wavelength regions in the MWIR & LWIR1. More recently, the spectrometer was used to assess the accuracy of recovery of unknown blackbody temperatures2. Here, we briefly describe MWIR observations of the full Moon made in Jan 2008. As was the case for the solar observations, the Moon was allowed to drift across the spectrometer slit by Earth's rotation. A detailed sensor calibration performed prior to the observations accounts for sensor non-uniformities; the spectral images of the Moon therefore include atmospheric transmission features. Our plans are to repeat the observations at liquid helium temperatures, thereby allowing both MWIR & LWIR spectral coverage.

  15. A GPU-Based Wide-Band Radio Spectrometer

    CERN Document Server

    Chennamangalam, Jayanth; Jones, Glenn; Chen, Hong; Ford, John; Kepley, Amanda; Lorimer, D R; Nie, Jun; Prestage, Richard; Roshi, D Anish; Wagner, Mark; Werthimer, Dan

    2014-01-01

    The Graphics Processing Unit (GPU) has become an integral part of astronomical instrumentation, enabling high-performance online data reduction and accelerated online signal processing. In this paper, we describe a wide-band reconfigurable spectrometer built using an off-the-shelf GPU card. This spectrometer, when configured as a polyphase filter bank (PFB), supports a dual-polarization bandwidth of up to 1.1 GHz (or a single-polarization bandwidth of up to 2.2 GHz) on the latest generation of GPUs. On the other hand, when configured as a direct FFT, the spectrometer supports a dual-polarization bandwidth of up to 1.4 GHz (or a single-polarization bandwidth of up to 2.8 GHz).

  16. Compact silicon multimode waveguide spectrometer with enhanced bandwidth

    Science.gov (United States)

    Piels, Molly; Zibar, Darko

    2017-01-01

    Compact, broadband, and high-resolution spectrometers are appealing for sensing applications, but difficult to fabricate. Here we show using calibration data a spectrometer based on a multimode waveguide with 2 GHz resolution, 250 GHz bandwidth, and a 1.6 mm × 2.1 mm footprint. Typically, such spectrometers have a bandwidth limited by the number of modes supported by the waveguide. In this case, an on-chip mode-exciting element is used to repeatably excite distinct collections of waveguide modes. This increases the number of independent spectral channels from the number of modes to this number squared, resulting in an extension of the usable range. PMID:28290537

  17. Data acquisition and instrument control system for neutron spectrometers

    Science.gov (United States)

    Naik, S. S.; Kotwal, Ismat; Chandak, R. M.; Gaonkar, V. G.

    2004-08-01

    A personal computer (PC)-based data acquisition and instrument control system has been developed for neutron spectrometers in Dhruva reactor hall and Guide Tube laboratory. Efforts have been made to make the system versatile so that it can be used for controlling various neutron spectrometers using single end-on detector in step scan mode. Commercially available PC add-on cards have been used for input--output and timer-counter operations. An interface card and DC motor driver card have been developed indigenously. Software for the system has been written in Visual C++ language using MS Windows operating system. This data acquisition and instrument control system is successfully controlling four spectrometers at Dhruva reactor.

  18. The MARTE VNIR Imaging Spectrometer Experiment: Design and Analysis

    CERN Document Server

    Brown, Adrian J; Dunagan, Stephen

    2014-01-01

    We report on the design, operation, and data analysis methods employed on the VNIR imaging spectrometer instrument that was part of the Mars Astrobiology Research and Technology Experiment (MARTE). The imaging spectrometer is a hyperspectral scanning pushbroom device sensitive to VNIR wavelengths from 400-1000 nm. During the MARTE project, the spectrometer was deployed to the Rio Tinto region of Spain. We analyzed subsets of 3 cores from Rio Tinto using a new band modeling technique. We found most of the MARTE drill cores to contain predominantly goethite, though spatially coherent areas of hematite were identified in Core 23. We also distinguished non Fe-bearing minerals that were subsequently analyzed by X-ray diffraction (XRD) and found to be primarily muscovite. We present drill core maps that include spectra of goethite, hematite, and non Fe-bearing minerals.

  19. A direct digital synthesis chirped pulse Fourier transform microwave spectrometer.

    Science.gov (United States)

    Finneran, Ian A; Holland, Daniel B; Carroll, P Brandon; Blake, Geoffrey A

    2013-08-01

    Chirped pulse Fourier transform microwave (CP-FTMW) spectrometers have become the instrument of choice for acquiring rotational spectra, due to their high sensitivity, fast acquisition rate, and large bandwidth. Here we present the design and capabilities of a recently constructed CP-FTMW spectrometer using direct digital synthesis (DDS) as a new method for chirped pulse generation, through both a suite of extensive microwave characterizations and deep averaging of the 10-14 GHz spectrum of jet-cooled acetone. The use of DDS is more suited for in situ applications of CP-FTMW spectroscopy, as it reduces the size, weight, and power consumption of the chirp generation segment of the spectrometer all by more than an order of magnitude, while matching the performance of traditional designs. The performance of the instrument was further improved by the use of a high speed digitizer with dedicated signal averaging electronics, which facilitates a data acquisition rate of 2.1 kHz.

  20. Data acquisition and instrument control system for neutron spectrometers

    Indian Academy of Sciences (India)

    S S Naik; Ismat Kotwal; R M Chandak; V G Gaonkar

    2004-08-01

    A personal computer (PC)-based data acquisition and instrument control system has been developed for neutron spectrometers in Dhruva reactor hall and Guide Tube laboratory. Efforts have been made to make the system versatile so that it can be used for controlling various neutron spectrometers using single end-on detector in step scan mode. Commercially available PC add-on cards have been used for input–output and timer-counter operations. An interface card and DC motor driver card have been developed indigenously. Software for the system has been written in Visual C++ language using MS Windows operating system. This data acquisition and instrument control system is successfully controlling four spectrometers at Dhruva reactor.

  1. Beam-transport optimization for cold-neutron spectrometer

    Directory of Open Access Journals (Sweden)

    Nakajima Kenji

    2015-01-01

    Full Text Available We report the design of the beam-transport system (especially the vertical geometry for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  2. Mass spectrometers based on a cone-shaped acromatic prism

    Energy Technology Data Exchange (ETDEWEB)

    Spivak-Lavrov, I.F. [Pedagogical Inst. of Aktyubinsk (Kazakhstan)

    1995-09-01

    We have elaborated a mass spectrometer without lenses consisting of one conic achromatic prism. It has a specific mass dispersion which is equal to 67.5 mm/m per 1% change of mass. (By specific dispersion we mean linear dispersion related to the main path.) The pass of charged particles with different emittance is investigated with the help of integrating precise equations for tracks of charged particles in natural curvilinear coordinates. We have calculated the resolving power and aberration of a mass spectrometer for different beams of particles. It is evident that the mass spectrometer is particularly effective in use when we deal with rather wide ion beams having an insignificant angular divergence in the mean plane. (orig.).

  3. Study of a gold-foil-based multisphere neutron spectrometer.

    Science.gov (United States)

    Wang, Z; Hutchinson, J D; Hertel, N E; Burgett, E; Howell, R M

    2008-01-01

    Multisphere neutron spectrometers with active thermal neutron detectors cannot be used in high-intensity radiation fields due to pulse pile-up and dead-time effects. Thus, a multisphere spectrometer using a passive detection system, specifically gold foils, has been investigated in this work. The responses of a gold-foil-based Bonner sphere neutron spectrometer were studied for two different gold-foil holder designs; an aluminium-polyethylene holder and a polyethylene holder. The responses of the two designs were calculated for four incident neutron beam directions, namely, parallel, perpendicular and at +/-45 degrees relative to the flat surface of the foil. It was found that the use of polyethylene holder resulted in a more isotropic response to neutrons for the four incident directions considered. The computed responses were verified by measuring the neutron spectrum of a 252Cf source with known strength.

  4. Note: A new angle-resolved proton energy spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.; Su, L. N.; Liu, M.; Liu, B. C.; Shen, Z. W.; Fan, H. T.; Li, Y. T.; Chen, L. M.; Lu, X.; Ma, J. L.; Wang, W. M.; Wang, Z. H.; Wei, Z. Y. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, J. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory for Laser Plasmas (MoE) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2013-09-15

    In typical laser-driven proton acceleration experiments Thomson parabola proton spectrometers are used to measure the proton spectra with very small acceptance angle in specific directions. Stacks composed of CR-39 nuclear track detectors, imaging plates, or radiochromic films are used to measure the angular distributions of the proton beams, respectively. In this paper, a new proton spectrometer, which can measure the spectra and angular distributions simultaneously, has been designed. Proton acceleration experiments performed on the Xtreme light III laser system demonstrates that the spectrometer can give angle-resolved spectra with a large acceptance angle. This will be conductive to revealing the acceleration mechanisms, optimization, and applications of laser-driven proton beams.

  5. Optical design of MWIR imaging spectrometer with a cold slit

    Science.gov (United States)

    Zhou, Shiyao; Wang, Yueming; Qian, Liqun; Yuan, Liyin; Wang, Jianyu

    2016-05-01

    MWIR imaging spectrometer is promising in detecting spectral signature of high temperature object such as jet steam, guided missile and explosive gas. This paper introduces an optical design of a MWIR imaging spectrometer with a cold slit sharply reducing the stray radiation from exterior environment and interior structure. The spectrometer is composed of a slit, a spherical prism as disperser, two concentric spheres and a correction lens. It has a real entrance pupil to match the objective and for setting the infrared cold shield near the slit and a real exit pupil to match the cold shield of the focal plane array (FPA). There are two cooled parts, one includes the aperture stop and slit, and the other is the exit pupil and the FPA with two specially positioned cooled shields. A detailed stray radiation analysis is represented which demonstrates the outstanding effect of this system in background radiation restraint.

  6. Grazing-incidence spectrometer on the SSPX spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, J; Beiersdorfer, P; Magee, E W

    2008-05-02

    The Silver Flat Field Spectrometer (SFFS) is a high-resolution grazing-incidence diagnostic for magnetically confined plasmas. It covers the wavelength range of 25-450 {angstrom} with a resolution of {Delta}{lambda} = 0.3 {angstrom} FWHM. The SFFS employs a spherical 1200 lines/mm grating for flat-field focusing. The imaging is done using a back-illuminated Photometrics CCD camera allowing a bandwidth of around 200 {angstrom} per spectrum. The spectrometer has been used for atomic spectroscopy on electron beam ion traps and for plasma spectroscopy on magnetic confinement devices. The design of the SFFS and the spectrometer setup at the Sustained Spheromak Physics Experiment (SSPX) in Livermore will be presented.

  7. Imaging telescope-spectrometer for infrared sky surveys

    Science.gov (United States)

    Maslov, Igor A.; Sholomitskii, Gennadii B.; Kuznetsov, Arkadii E.; Patrashin, Michail A.; Olejnikov, Leonid S.

    1995-06-01

    A new type of imaging telescope-spectrometer for surviving the sky aboard a satellite is described. A static Michelson interferometer in front of an objective with 2D-arrays in its focal plane is capable of providing interferograms both for point and extended sources. As an example, the telescope-spectrometer based on the 15-cm telescope of the IKON project and a plane-parallel Ge plate as a beamsplitter may have approximately equals 30 cm(superscript -1 spectral resolution in the range 3 - 20 micrometers . For higher resolution, such an objective interferometer has advantage over a dispersion spectrometer in the signal-to-noise ratio and is free from the disadvantage of an objective prism not providing spectra of extended sources.

  8. Development of portable HPGe spectrometer for in situ measurements

    Directory of Open Access Journals (Sweden)

    Kail Artjoms

    2015-01-01

    Full Text Available In situ applications require a very high level of portability of high-resolution spectrometric equipment. Usage of HPGe detectors for radioactivity measurements in the environment or for nuclear safeguard applications, to combat illicit trafficking of nuclear materials or uranium and plutonium monitoring in nuclear wastes, has become a norm in the recent years. Portable HPGe-based radionuclide spectrometer with electrical cooling has lately appeared on the market for in situ applications. At the same time deterioration of energy resolution associated with vibrations produced by cryocooler or high weight of the instrument, short time of autonomous operation and high price of these spectrometers are limiting their usage in many cases. In this paper we present development results of ultra compact hand held all-in-one spectrometer for in situ measurements based on HPGe detector cooled by liquid nitrogen without listing the above disadvantages.

  9. Specific Triazine Herbicides Induce Amyloid-beta(42) Production

    NARCIS (Netherlands)

    Portelius, Erik; Durieu, Emilie; Bodin, Marion; Cam, Morgane; Pannee, Josef; Leuxe, Charlotte; Mabondzo, Aloise; Oumata, Nassima; Galons, Herve; Lee, Jung Yeol; Chang, Young-Tae; Stuber, Kathrin; Koch, Philipp; Fontaine, Gaelle; Potier, Marie-Claude; Manousopoulou, Antigoni; Garbis, Spiros D.; Covaci, Adrian; Van Dam, Debby; De Deyn, Peter; Karg, Frank; Flajolet, Marc; Omori, Chiori; Hata, Saori; Suzuki, Toshiharu; Blennow, Kaj; Zetterberg, Henrik; Meijer, Laurent

    2016-01-01

    Proteolytic cleavage of the amyloid-beta protein precursor (A beta PP) ecretases leads to extracellular release of amyloid-beta (A beta) peptides. Increased production of A beta(42) over A beta(40) and aggregation into oligomers and plaques constitute an Alzheimer's disease (AD) hallmark. Identifyin

  10. Future double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal, F. [Laboratoire Souterrain de Modane, Modane (France); Centre d' Etudes Nucleaire, Bordeaux-Gradignan (France)

    2013-02-15

    The search of neutrinoless double beta decay is very challenging because of the expected half-life of the process and the backgrounds from the natural radioactivity. Many projects exist to try to reach a sensitivity of ∼50 meV on the effective neutrino mass corresponding to a mass of isotopes of ∼100 kg. In this article some of the futur projects are presented.

  11. Event reconstruction in the PHENIX central arm spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.T. E-mail: mitchell@bnl.gov; Akiba, Y.; Aphecetche, L.; Averbeck, R.; Awes, T.C.; Baublis, V.; Bazilevsky, A.; Bennett, M.J.; Buesching, H.; Burward-Hoy, J.; Butsyk, S.; Chiu, M.; Christ, T.; Chujo, T.; Constantin, P.; David, G.; Denisov, A.; Drees, A.; Hansen, A.G.; Hemmick, T.K.; Jia, J.; Johnson, S.C.; Kistenev, E.; Kiyomichi, A.; Kohama, T.; Lajoie, J.G.; Lauret, J.; Lebedev, A.; Maguire, C.F.; Messer, F.; Nilsson, P.; Ohnishi, H.; Park, J.; Rosati, M.; Rose, A.A.; Ryu, S.S.; Sakaguchi, A.; Sato, S.; Shigaki, K.; Silvermyr, D.; Sugitate, T.; Sullivan, J.P.; Suzuki, M.; Tydesjoe, H.; Van Hecke, H.W.; Velkovska, J.; Volkov, M.A.; White, S.; Xie, W

    2002-04-11

    The central arm spectrometers for the PHENIX experiment at the Relativistic Heavy Ion Collider have been designed for the optimization of particle identification in relativistic heavy ion collisions. The spectrometers present a challenging environment for event reconstruction due to a very high track multiplicity in a complicated, focusing, magnetic field. In order to meet this challenge, nine distinct detector types are integrated for charged particle tracking, momentum reconstruction, and particle identification. The techniques which have been developed for the task of event reconstruction are described.

  12. High-Resolution, Low-Cost Spectrometer-on-Chip

    Science.gov (United States)

    2015-01-02

    AFRL-AFOSR-VA-TR-2016-0063 High-Resolution, Low-Cost Spectrometer-on- Chip Christophe Peroz ABEAM TECHNOLOGIES INC. Final Report 01/02/2015...HIGH-RESOLUTION, LOW-COST SPECTROMETERS-ON- CHIP 5a. CONTRACT NUMBER FA9550-12C-0077 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. C... chips has been developed that are suitable for numerous laser-monitoring applications. The technology is based on the integration of digital planar

  13. Development of multichannel low-energy neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Arikawa, Y., E-mail: arikawa-y@ile.osaka-u.ac.jp; Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan); Murata, T. [Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555 (Japan)

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  14. Standalone Vertex Finding in the ATLAS Muon Spectrometer

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Aefsky, Scott; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahmadov, Faig; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Astbury, Alan; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Bittner, Bernhard; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Caso, Carlo; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coelli, Simone; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Colas, Jacques; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costa Batalha Pedro, Rute; Costanzo, Davide; Côté, David; Cottin, Giovanna; Courneyea, Lorraine; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Crispin Ortuzar, Mireia; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliot, Frederic; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Dwuznik, Michal; Ebke, Johannes; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giunta, Michele; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haefner, Petra; Hageboeck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jeng, Geng-yuan; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koenig, Sebastian; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Dörthe; Ludwig, Inga; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lundberg, Johan; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madar, Romain; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mazzanti, Marcello; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Molfetas, Angelos; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisin, Hernan; Reisinger, Ingo; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schroer, Nicolai; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Joel; Snyder, Scott; Sobie, Randall; Socher, Felix; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sood, Alexander; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Whittington, Denver; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-01-01

    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to b bbar final states, and pp collision data at $\\sqrt{s}$ = 7 TeV collected with the ATLAS detector at the LHC during 2011.

  15. Wide-angle spectrometer at intersection I-2

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    The members of the British-Scandinavian ISR Collaboration "manning the rails" of the wide-angle spectrometer at intersection I-2, whose vacuum chamber is visible to theleft. The equipment of this high-momentum version of experiment R203 consists of scintillation counter hodoscopes, wire spark chambers, and spherical high-pressure threshold Cerenkov counters before and after an analysing magnet. The equipment is mounted on a movable platform. The smaller magnet suspended above the spectrometer measures the momentum of cosmic rays.

  16. Differential optical absorption spectrometer for measurement of tropospheric pollutants.

    Science.gov (United States)

    Evangelisti, F; Baroncelli, A; Bonasoni, P; Giovanelli, G; Ravegnani, F

    1995-05-20

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO(2), NO(2), O(3), and HNO(2) averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  17. Performance of a BGO-NaI {eta} spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Leitch, M.J. [Los Alamos National Lab., NM (United States). Div. of Physics; Anderson, M.E. [Los Alamos National Lab., NM (United States). Div. of Physics; Kapustinsky, J. [Los Alamos National Lab., NM (United States). Div. of Physics; Li, T.K. [Los Alamos National Lab., NM (United States). Div. of Physics; Mishra, C.S. [Los Alamos National Lab., NM (United States). Div. of Physics; Peng, J.C. [Los Alamos National Lab., NM (United States). Div. of Physics; Simmons, J.E. [Los Alamos National Lab., NM (United States). Div. of Physics; Dytman, S.A. [Pittsburgh Univ., PA (United States). Dept. of Physics; Hardie, J.G. [Pittsburgh Univ., PA (United States). Dept. of Physics; Von Reden, K.F. [Pittsburgh Univ., PA (United States). Dept. of Physics; Smith, C. [University of Virginia, Charlottesville, VA 22901 (United States)

    1996-06-01

    A two-arm spectrometer, designed to detect {eta} and {pi}{sup 0} mesons, has been built and used in ({pi},{eta}) measurements at LAMPF. This spectrometer contains BGO active converters and NaI total-energy counters. Its construction and performance for ({pi}{sup -},{pi}{sup 0}) and ({pi}{sup -},{eta}) measurements on CH{sub 2} are described. Novel techniques to monitor the gains of the BGO and NaI counters are also presented. (orig.).

  18. The NIF x-ray spectrometer calibration campaign at Omega.

    Science.gov (United States)

    Pérez, F; Kemp, G E; Regan, S P; Barrios, M A; Pino, J; Scott, H; Ayers, S; Chen, H; Emig, J; Colvin, J D; Bedzyk, M; Shoup, M J; Agliata, A; Yaakobi, B; Marshall, F J; Hamilton, R A; Jaquez, J; Farrell, M; Nikroo, A; Fournier, K B

    2014-11-01

    The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the Omega laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2-18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.

  19. Bragg x-ray survey spectrometer for ITER.

    Science.gov (United States)

    Varshney, S K; Barnsley, R; O'Mullane, M G; Jakhar, S

    2012-10-01

    Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

  20. GEMS: Underwater spectrometer for long-term radioactivity measurements

    OpenAIRE

    2010-01-01

    GEMS (Gamma Energy Marine Spectrometer) is a prototype of an autonomous radioactivity sensor for underwater measurements, developed in the framework of the KM3NeT Design Study (DS) EC project. The spectrometer is sensitive to gamma rays produced by 40K decays and it is also able to detect other natural (e.g., 238U, 232Th) and anthropogenic radionuclides (e.g. 137Cs). The decay of 40K, contained in sea salt, particulate and sediments, is one of the main sources of photon background...

  1. A broadband FFT spectrometer for radio and millimeter astronomy

    CERN Document Server

    Benz, A O; Hungerbühler, V; Meyer, H; Monstein, C; Stuber, B; Zardet, D; Benz, Arnold O.; Grigis, Paolo C.; Meyer, Hansueli; Monstein, Cristian; Stuber, Bruno

    2005-01-01

    The core architecture, tests in the lab and first results of a Fast Fourier Transform (FFT) spectrometer are described. It is based on a commercially available fast digital sampler (AC240) with an on-board Field Programmable Gate Array (FPGA). The spectrometer works continuously and has a remarkable total bandwidth of 1 GHz, resolved into 16384 channels. The data is sampled with 8 bits, yielding a dynamic range of 48 dB. An Allan time of more than 2000 s and an SFDR of 37 dB were measured. First light observations with the KOSMA telescope show a perfect spectrum without internal or external spurious signals.

  2. Beam profile for the Herschel-SPIRE Fourier transform spectrometer.

    Science.gov (United States)

    Makiwa, Gibion; Naylor, David A; Ferlet, Marc; Salji, Carl; Swinyard, Bruce; Polehampton, Edward; van der Wiel, Matthijs H D

    2013-06-01

    One of the instruments on board the Herschel Space Observatory is the Spectral and Photometric Imaging Receiver (SPIRE). SPIRE employs a Fourier transform spectrometer with feed-horn-coupled bolometers to provide imaging spectroscopy. To interpret the resultant spectral images requires knowledge of the wavelength-dependent beam, which in the case of SPIRE is complicated by the use of multimoded feed horns. In this paper we describe a series of observations and the analysis conducted to determine the wavelength dependence of the SPIRE spectrometer beam profile.

  3. MONSTER: a TOF Spectrometer for β-delayed Neutron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, T., E-mail: trino.martinez@ciemat.es [Centro de Investigaciones Energéticas, MedioAmbientales y Tecnológicas, CIEMAT, Madrid 28040 (Spain); Cano-Ott, D.; Castilla, J.; Garcia, A.R.; Marin, J.; Martinez, G.; Mendoza, E.; Santos, C.; Tera, F.J.; Villamarin, D. [Centro de Investigaciones Energéticas, MedioAmbientales y Tecnológicas, CIEMAT, Madrid 28040 (Spain); Agramunt, J.; Algora, A.; Domingo, C.; Jordan, M.D.; Rubio, B.; Taín, J.L. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia (Spain); Bhattacharya, C.; Banerjee, K.; Bhattacharya, S.; Roy, P. [Variable Energy Cyclotron Centre (VECC), Kolkata (India); and others

    2014-06-15

    β-delayed neutron (DN) data, including emission probabilities, Pn, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

  4. Initial measurements with the SUERC accelerator mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Stewart E-mail: toodeep@suerc.gla.ac.uk; Xu, Sheng; Schnabel, Christoph; Dougans, Andrew; Tait, Andrew; Kitchen, Richard; Klody, George; Loger, Roger; Pollock, Tom; Schroeder, James; Sundquist, Mark

    2004-08-01

    {sup 10}Be, {sup 14}C, {sup 36}Cl and {sup 129}I test measurements have been made with a new Pelletron-based accelerator mass spectrometer operating at up to 5.2 MV. All ion detection was with a versatile gas ionization detector. Low-background radiocarbon measurements with 2% scatter of identical samples was performed with both spectrometer ion sources. {sup 10}Be/Be backgrounds of 3 x 10{sup -15} were achieved using a gas cell adjoining the detector for {sup 10}B suppression. High sample-throughput Cl AMS with {sup 36}Cl/Cl backgrounds of 4 x 10{sup -15} was accomplished.

  5. NQR Spectrometer with a Two Integrated Circuits Radio Frequency Head

    Science.gov (United States)

    Zikumaru, Yushi

    1990-04-01

    An NQR spectrometer has been constructed using two linear integrated circuits in its oscillator-detector. This is very simple and compact and works in range 3-65 MHz. The radio frequency voltage can be varied from 10 mVp-p to 15 V p-p by changing the supply-voltage of an integrated circuit μA 733. The utility of the spectrometer is demonstrated by recording 35Cl NQR spectra in p-C6H4Cl2 , NaClO3 , and KClO3 .

  6. Myokardinfarkt und Beta-Blocker

    Directory of Open Access Journals (Sweden)

    Stühlinger H-G

    2003-01-01

    Full Text Available Im Rahmen eines akuten koronaren Syndroms (akuter Herzinfarkt, Angina pectoris kommt es, aufgrund eines Ungleichgewichtes zwischen Angebot und Bedarf, zu einem akuten Mangel an Sauerstoff im Herzmuskel. Ursache ist eine reduzierte Sauerstoffzufuhr durch verengte bzw. verschlossene Gefäße. Bis zur Behebung der Ursache vergehen oft mehrere Stunden. In dieser Phase muß - durch Verminderung des Sauerstoffbedarfs im Herzmuskel - eine Verlangsamung der Nekroseentwicklung erreicht werden. Das Ausmaß der Nekrose wird reduziert, somit die für die Langzeitprognose wichtige Linksventrikelfunktion verbessert. Eine Verminderung des Sauerstoffbedarfs erreicht man durch kontrollierte Frequenzsenkung mittels intravenöser Beta-Blockade. In optimaler Weise wird diese Methode durch die Anwendung eines kardioselektiven Beta-Blockers mit kurzer Halbwertszeit durchgeführt. Beta-Blocker haben nicht nur auf die Nekroseentwicklung, sondern auch auf die Inzidenz von Rhythmusstörungen - besonders in der Akutphase - Auswirkungen. Vor allem die mit dieser therapeutischen Maßnahme verbundene Reduktion von Kammerflimmern ist von großer Bedeutung.

  7. Upgrade of the primary spectrometer of the cold triple-axis spectrometer FLEX at the BER II reactor

    Energy Technology Data Exchange (ETDEWEB)

    Skoulatos, M., E-mail: markos.skoulatos@helmholtz-berlin.de [Helmholtz Zentrum Berlin for Materials and Energy-Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Habicht, K. [Helmholtz Zentrum Berlin for Materials and Energy-Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2011-08-11

    Monte Carlo simulation results for the upgrade of the FLEX/V2 cold neutron triple-axis spectrometer are presented. The main goals are increased flux and energy resolution, while keeping a low background. In the same time the energy transfer range is significantly increased, bridging the gap between cold and thermal neutrons. We aim towards a flexible instrument, by employing the virtual source concept defining a beam before a double-focusing monochromator. This enables fine-tuning according to energy resolution, intensity and sample size requirements. A velocity selector adds the extra flexibility of tuning the spectrometer to any desired fixed wavevector. Neutron ray-tracing programs McStas and VITESS were extensively used and tested in this process. - Highlights: > Monte Carlo simulations of the FLEX triple-axis spectrometer. > Increased flux and better energy resolution, low background. > Increased energy transfer range.

  8. $\\beta$-particle energy-summing correction for $\\beta$-delayed proton emission measurements

    CERN Document Server

    Meisel, Z; Crawford, H L; Cyburt, R H; Grinyer, G F; Langer, C; Montes, F; Schatz, H; Smith, K

    2016-01-01

    A common approach to studying $\\beta$-delayed proton emission is to measure the energy of the emitted proton and corresponding nuclear recoil in a double-sided silicon-strip detector (DSSD) after implanting the $\\beta$-delayed proton emitting ($\\beta$p) nucleus. However, in order to extract the proton-decay energy, the measured energy must be corrected for the additional energy implanted in the DSSD by the $\\beta$-particle emitted from the $\\beta$p nucleus, an effect referred to here as $\\beta$-summing. We present an approach to determine an accurate correction for $\\beta$-summing. Our method relies on the determination of the mean implantation depth of the $\\beta$p nucleus within the DSSD by analyzing the shape of the total (proton + recoil + $\\beta$) decay energy distribution shape. We validate this approach with other mean implantation depth measurement techniques that take advantage of energy deposition within DSSDs upstream and downstream of the implantation DSSD.

  9. Ultra-compact visible chiral spectrometer with meta-lenses

    Science.gov (United States)

    Zhu, Alexander Y.; Chen, Wei-Ting; Khorasaninejad, Mohammadreza; Oh, Jaewon; Zaidi, Aun; Mishra, Ishan; Devlin, Robert C.; Capasso, Federico

    2017-03-01

    Conventional compact spectrometers have a fixed spectral resolution and cannot resolve the polarization properties of light without additional optical elements, while their larger counterparts are bulky and costly. Here, we demonstrate multiple off-axis meta-lenses in the visible integrated on a single planar substrate. They possess both focusing and strongly dispersive properties and are designed to provide different spectral resolutions as well as working wavelength ranges on the same chip. We realize a compact spectrometer using only these meta-lenses and a CMOS camera and achieve detector-limited spectral resolutions as small as 0.3 nm and a total working wavelength range exceeding 170 nm for a beam propagation length of only a few cm. In addition, this spectrometer has the capability to resolve different helicities of light in a single measurement. This chip-camera setup represents the most compact configuration so far achieved for a spectrometer with similar performance and functionality, and its compatibility with large-scale fabrication processes makes it broadly applicable.

  10. SPICA/SAFARI fourier transform spectrometer mechanism evolutionary design

    NARCIS (Netherlands)

    Dool, T.C. van den; Kruizinga, B.; Braam, B.C.; Hamelinck, R.F.M.M.; Loix, N.; Loon, D. van; Dams, J.

    2012-01-01

    TNO, together with its partners, have designed a cryogenic scanning mechanism for use in the SAFARI Fourier Transform Spectrometer (FTS) on board of the SPICA mission. SPICA is one of the M-class missions competing to be launched in ESA's Cosmic Vision Programme in 2022. JAXA leads the development o

  11. DEVELOPMENT OF A SPECIAL ANTI-COMPTON SPECTROMETER

    NARCIS (Netherlands)

    MICEK, SL; VERHOEF, BAW; DEVOIGT, MJA; BACELAR, JC; VERPLANCKE, J; SCHOTANUS, P

    1992-01-01

    This paper describes the investigation of the possibility to build a compact anti-Compton spectrometer consisting of a Ge detector and a cooled BGO suppressor. Monte Carlo calculations were carried out to obtain information about the performance of two different detector configurations. Light output

  12. Atomic Beam Laser Spectrometer for In-field Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group

    2016-06-22

    This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft3, < 1000W.

  13. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Virostek, S.P.; Green, M.A.; Trillaud, F.; Zisman, M.S.

    2010-05-16

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniform field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.

  14. Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS

    Science.gov (United States)

    Cotton, D. M.; Chakrabarti, S.

    1992-01-01

    The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.

  15. Miniature high-performance infrared spectrometer for space applications

    Science.gov (United States)

    Kruzelecky, Roman V.; Haddad, Emile; Wong, Brian; Lafrance, Denis; Jamroz, Wes; Ghosh, Asoke K.; Zheng, Wanping; Phong, Linh

    2004-06-01

    Infrared spectroscopy probes the characteristic vibrational and rotational modes of chemical bonds in molecules to provide information about both the chemical composition and the bonding configuration of a sample. The significant advantage of the Infrared spectral technique is that it can be used with minimal consumables to simultaneously detect a large variety of chemical and biochemical species with high chemical specificity. To date, relatively large Fourier Transform (FT-IR) spectrometers employing variations of the Michelson interferometer have been successfully employed in space for various IR spectroscopy applications. However, FT-IR systems are mechanically complex, bulky (> 15 kg), and require considerable processing. This paper discusses the use of advanced integrated optics and smart optical coding techniques to significantly extend the performance of miniature IR spectrometers by several orders of magnitude in sensitivity. This can provide the next-generation of compact, high-performance IR spectrometers with monolithically integrated optical systems for robust optical alignment. The entire module can weigh under 3 kg to minimize the mass penalty for space applications. Miniaturized IR spectrometers are versatile and very convenient for small and micro satellite based missions. They can be dedicated to the monitoring of the CO2 in an Earth Observation mission, to Mars exobiology exploration, as well as to vital life support in manned space system; such as the cabin air quality and the quality of the recycled water supply.

  16. View of the Axial Field Spectrometer (R807)

    CERN Multimedia

    1980-01-01

    In this view of the Axial Field Spectrometer at I8, the vertical uranium/scintillator hadron calorimeter (just left of centre) is retracted to give access to the cylindrical central drift chamber. The yellow iron structure served as a filter to identify muons, with MWPCs and the array of Cherenkov counters to the right.

  17. Neutron Time of Flight Spectrometer for Velocity Selector Calibration

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Small angle neutron spectrometer on China Advanced Research Reactor (CARR) is located at neutron guide hall and is installed on the end of cold neutron guide. Velocity selector which can purify white light neutron beam into monochromatic neutron beam with wavelength

  18. Developing Tools for Undergraduate Spectroscopy: An Inexpensive Visible Light Spectrometer

    Science.gov (United States)

    Vanderveen, Jesse R.; Martin, Brian; Ooms, Kristopher J.

    2013-01-01

    The design and implementation of an inexpensive, high-resolution Littrow-type visible light spectrometer is presented. The instrument is built from low-cost materials and interfaced with the program RSpec for real-time spectral analysis, making it useful for classroom and laboratory exercises. Using a diffraction grating ruled at 1200 lines/mm and…

  19. Injection system of the minicyclotron accelerator mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    LIUYonghao; LIDeming; 等

    1999-01-01

    The existing injection system of the SMCAMS(super-sensitive minicyclotron accelerator mass spectrometer)is described together with the discussion of its disadvantages exposed after having been operating for five years.which provides a basis for consideration of improvements to the injection system.An optimized injection system with an analytical magent added prior to the minicryclotron has been proposed and calculated.

  20. Fast temperature spectrometer for samples under extreme conditions.

    Science.gov (United States)

    Zhang, Dongzhou; Jackson, Jennifer M; Zhao, Jiyong; Sturhahn, Wolfgang; Alp, E Ercan; Toellner, Thomas S; Hu, Michael Y

    2015-01-01

    We have developed a multi-wavelength Fast Temperature Readout (FasTeR) spectrometer to capture a sample's transient temperature fluctuations, and reduce uncertainties in melting temperature determination. Without sacrificing accuracy, FasTeR features a fast readout rate (about 100 Hz), high sensitivity, large dynamic range, and a well-constrained focus. Complimenting a charge-coupled device spectrometer, FasTeR consists of an array of photomultiplier tubes and optical dichroic filters. The temperatures determined by FasTeR outside of the vicinity of melting are, generally, in good agreement with results from the charge-coupled device spectrometer. Near melting, FasTeR is capable of capturing transient temperature fluctuations, at least on the order of 300 K/s. A software tool, SIMFaster, is described and has been developed to simulate FasTeR and assess design configurations. FasTeR is especially suitable for temperature determinations that utilize ultra-fast techniques under extreme conditions. Working in parallel with the laser-heated diamond-anvil cell, synchrotron Mössbauer spectroscopy, and X-ray diffraction, we have applied the FasTeR spectrometer to measure the melting temperature of (57)Fe0.9Ni0.1 at high pressure.

  1. Study of Multi Total Reflection X-ray Fluorescence Spectrometer

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A total reflection X-ray spectrometer was set up, in which Mo tube was used as excitation source, Zr with the thickness of 100 μm was as filter, and λ/20 glabrous silicon was as reflector, λ/100 glabrous silicon was as sample carrier.

  2. Installation of Mechanical System of Beijing Spectrometer Ⅲ Successful

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The mechanical system of the Beijing Spectrometer Ⅲ(BESⅢ) recently passed the evaluation of a panel of experts at the CAS Institute of High Energy Physics (IHEP) in Beijing, marking a breakthrough in the renovation of the Beijing Electron Positron Collider (BEPC).

  3. Neutron guide shielding for the BIFROST spectrometer at ESS

    DEFF Research Database (Denmark)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C.P.;

    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding...

  4. Lead-Tungstate Crystal of the ALICE Photon Spectrometer (PHOS)

    CERN Multimedia

    2003-01-01

    The photon spectrometer (PHOS) is designed to measure the temperature of collisions by detecting photons emerging from them. It will be made of lead tungstate crystals like these. When high-energy photons strike lead tungstate, they make it glow, or scintillate, and this glow can be measured. Lead tungstate is extremely dense (denser than iron), stopping most photons that reach it.

  5. Parallel Computing for the Computed-Tomography Imaging Spectrometer

    Science.gov (United States)

    Lee, Seungwon

    2008-01-01

    This software computes the tomographic reconstruction of spatial-spectral data from raw detector images of the Computed-Tomography Imaging Spectrometer (CTIS), which enables transient-level, multi-spectral imaging by capturing spatial and spectral information in a single snapshot.

  6. Doppler calibration method for Spectral Domain OCT spectrometers

    NARCIS (Netherlands)

    D.J. Faber; T.G. van Leeuwen

    2009-01-01

    We present a calibration method for SD-OCT domain spectrometers based on the M-scan of a moving mirror. This method allows determination of the wavenumber sampling increment which determines the depth axis assigned to the structural image. It also allows wavelength calibration of individual pixels w

  7. Organic photo detectors for an integrated thin-film spectrometer

    Science.gov (United States)

    Peters, Sabine; Sui, Yunwu; Glöckler, Felix; Lemmer, Uli; Gerken, Martina

    2007-09-01

    We introduce a thin-film spectrometer that is based on the superprism effect in photonic crystals. While the reliable fabrication of two and three dimensional photonic crystals is still a challenge, the realization of one-dimensional photonic crystals as thin-film stacks is a relatively easy and inexpensive approach. Additionally, dispersive thin-film stacks offer the possibility to custom-design the dispersion profile according to the application. The thin-film stack is designed such that light incident at an angle experiences a wavelength-dependent spatial beam shift at the output surface. We propose the monolithic integration of organic photo detectors to register the spatial beam position and thus determine the beam wavelength. This thin-film spectrometer has a size of approximately 5 mm2. We demonstrate that the output position of a laser beam is determined with a resolution of at least 20 μm by the fabricated organic photo detectors. Depending on the design of the thin-film filter the wavelength resolution of the proposed spectrometer is at least 1 nm. Possible applications for the proposed thin-film spectrometer are in the field of absorption spectroscopy, e.g., for gas analysis or biomedical applications.

  8. Pair spectrometer hodoscope for Hall D at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, F.; Hutton, C.; Sitnikov, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Somov, A., E-mail: somov@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Somov, S.; Tolstukhin, I. [National Research Nuclear University MEPhI, Moscow (Russian Federation)

    2015-09-21

    We present the design of the pair spectrometer hodoscope fabricated at Jefferson Lab and installed in the experimental Hall D. The hodoscope consists of thin scintillator tiles; the light from each tile is collected using wave-length shifting fibers and detected using a Hamamatsu silicon photomultiplier. Light collection was measured using relativistic electrons produced in the tagger area of the experimental Hall B.

  9. Ion Mass Spectrometer Development for JEO Class Missions

    Science.gov (United States)

    Sittler, E. C.; Cooper, J. F.; Paschalidis, N.; Coplan, M. A.; Chornay, D. J.; Sturner, S. J.; Brown, S. K.; Hartle, R. E.; Paterson, W. R.

    2012-10-01

    Under the Astrobiology Instrument Development Program we have been developing an advanced 3-D ion mass spectrometer (IMS) from 10 V to 30 kV, that can be proposed for missions to Jupiter's icy moons, Uranus, Titan, asteroids, comets, and solar wind.

  10. CUSB-II: A high precision electromagnetic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Schamberger, R.D.; Heintz, U.; Lee-Franzini, J.; Lovelock, D.M.J.; Narain, M.; Willins, J.; Yanagisawa, C. (SUNY, Stony Brook, NY (United States)); Tuts, P.M.; Franzini, P.; Kanekal, S.; Wu, Q.W. (Columbia Univ., New York, NY (United States))

    1991-11-15

    The design, construction and performance of a very compact precision electromagnetic spectrometer is described. The CUSB-II detectors has been used to study {gamma} spectroscopy, search for exotic particles and measure properties of the B and B{sup *} mesons at the Cornell Electron Storage Ring. (orig.).

  11. [Sub-field imaging spectrometer design based on Offner structure].

    Science.gov (United States)

    Wu, Cong-Jun; Yan, Chang-Xiang; Liu, Wei; Dai, Hu

    2013-08-01

    To satisfy imaging spectrometers's miniaturization, lightweight and large field requirements in space application, the current optical design of imaging spectrometer with Offner structure was analyzed, and an simple method to design imaging spectrometer with concave grating based on current ways was given. Using the method offered, the sub-field imaging spectrometer with 400 km altitude, 0.4-1.0 microm wavelength range, 5 F-number of 720 mm focal length and 4.3 degrees total field was designed. Optical fiber was used to transfer the image in telescope's focal plane to three slits arranged in the same plane so as to achieve subfield. The CCD detector with 1 024 x 1 024 and 18 microm x 18 microm was used to receive the image of the three slits after dispersing. Using ZEMAX software optimization and tolerance analysis, the system can satisfy 5 nm spectrum resolution and 5 m field resolution, and the MTF is over 0.62 with 28 lp x mm(-1). The field of the system is almost 3 times that of similar instruments used in space probe.

  12. ZeroDegree spectrometer at RIKEN RI Beam Factory

    Science.gov (United States)

    Kubo, Toshiyuki; Ohnishi, Tetsuya; Takeda, Hiroyuki; Fukuda, Naoki; Kameda, Daisuke; Kusaka, Kensuke; Yoshida, Atsushi; Yoshida, Koichi; Ohtake, Masao; Inabe, Naohito; Yanagisawa, Yoshiyuki; Tanaka, Kanenobu

    2009-10-01

    At RI Beam Factory (RIBF) [1] at RIKEN Nishina Center, a variety of fast rare isotope (RI) beams are produced using the BigRIPS in-flight separator [2] for studies of exotic nuclei. The beam line following BigRIPS is designed to work as a forward spectrometer named ZeroDegree, so that it can be used for reaction studies with RI beams. The ZeroDegree spectrometer consists of two dipoles and six superconducting quadrupole triplets, of which designs are essentially the same as those of BigRIPS. It analyzes and indentifies projectile reaction residues, often in coincidence with gamma rays, and can be operated in different optics modes, depending on experimental requirements. The ZeroDegree spectrometer has recently been commissioned and used for a series of full-dress RI-beam experiments. Overview and status of the ZeroDegree spectrometer will be reported.[4pt] [1] Y. Yano: Nucl. Instr. and Meth. B 261 (2007) 1009. [0pt] [2] T. Kubo: Nucl. Instr. and Meth. B 204 (2003) 97 and T. Ohnishi et al.: J. Phys. Soc. Japan, 77 (2008) 083201.

  13. Design of and data reduction from compact Thomson parabola spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, J. T.; Willis, C.; Freeman, R. R.; Van Woerkom, L. [Physics Department, Ohio State University, Columbus, Ohio 43210 (United States)

    2011-03-15

    Thomson parabola spectrometers are used to characterize MeV ion beams produced in high intensity laser interactions. These spectrometers disperse multiple ion species according to their charge to mass ratio through the use of parallel electric and magnetic fields. Analytical solutions for ion deflection in electric and magnetic fields have been used to extract ion spectra with the assumption that fringing effects are negligible. Experimental space restrictions and dynamic range requirements necessitate designs that stress the analytical assumptions. Depending on design parameters, the error in the analytical assumption can be comparable to the energy resolution. Estimates are provided to approximate the error on the total ion deflection. A method for modeling ion trajectories including fringing effects is presented using software freely available or in common use. The magnetostatic fields are modeled in 3D, including material properties of nearby magnetic materials using RADIA. Electrostatic fields are modeled in 2D for a spectrometer implementing angled plates using the partial differential equation toolbox in MATLAB. Using these models to calculate the ion trajectory allows for analysis of a Thomson parabola spectrometer with an arbitrary field configuration.

  14. Study of the photon identification efficiency with ALICE photon spectrometer

    Institute of Scientific and Technical Information of China (English)

    MAO Ya-Xian; ZHOU Dai-Cui; XU Chun-Cheng; YIN Zhong-Bao

    2008-01-01

    The efficiency for the detection and identification of photons with the ALICE PHOton Spectrometer PHOS has been studied with the Monte-Carlo generated data. In particular, the influence on the efficiency of the PHOS-module edge-effect and of the material in front of PHOS have been examined.

  15. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Finlay, P.; Breitenfeldt, M.; Porobic, T.; Wursten, E.; Couratin, C.; Soti, G.; Severijns, N. [KU Leuven University, Instituut voor Kern-en Stralingsfysica, Leuven (Belgium); Ban, G.; Fabian, X.; Flechard, X.; Lienard, E. [Normandie Univ., ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, Caen (France); Beck, M.; Friedag, P.; Weinheimer, C. [Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Glueck, F.; Kozlov, V.Y. [Karlsruhe Institute of Technology, Institut fuer Kernphysik, Karlsruhe (Germany); Herlert, A. [FAIR, Darmstadt (Germany); Knecht, A. [KU Leuven University, Instituut voor Kern-en Stralingsfysica, Leuven (Belgium); CERN, PH Department, Geneva (Switzerland); Tandecki, M. [TRIUMF, Vancouver BC (Canada); Traykov, E. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Van Gorp, S. [RIKEN, Atomic Physics Laboratory, Saitama (Japan); Zakoucky, D. [ASCR, Nuclear Physics Institute, Rez (Czech Republic)

    2016-07-15

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β{sup +} decay of {sup 35}Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2 ns and position resolution of 0.1 mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for {sup 35}Ar decay using the WITCH spectrometer. (orig.)

  16. A new generation of MEMS middle-infrared spectrometers

    Science.gov (United States)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Seider, Thomas; Gessner, Thomas

    2014-03-01

    Mid infrared spectroscopy has been developed to a powerful and essential method of material analysis, with a steadily increasing number of industrial and scientific application fields. The so called spectral fingerprint range enables identification of chemical compounds by their unique spectral pattern. To provide a suitable miniaturized and portable MIR spectrometer solution at an affordable price, an existing MEMS NIR spectrometer module which already bases on micro system technology has been expanded in its wavelength range. The developed spectrometer belongs to the category of scanning grating spectrometers. Main component is a fast oscillating micro-mirror which moves sinusoidal with high mechanical precision enabling a high stability of according wavelength axis. This is supported by a highly precise optical tracking of the actual motion. Mono-crystalline silicon guarantees a long-life operation with no wear even under harsh environmental conditions. Spectral signal acquisition is realized by using a TE-cooled MCT single element detector assisted by low noise trans-impedance amplifier. With the help of integrated logic components a data pre-processing takes place, such as averaging, offset subtraction, detector transfer characteristic correction and noise shaping. Due the compact and flexible setup, the spectrometer is suitable for the use in various applications, such as process control in chemical industry, gas mixture analysis or liquid verification. The portability of the device opens up new application possibilities in mobile environment. The advances of the promising technology and its specific applications will be described in this paper. Advanced performance issues of the device be reviewed in detail.

  17. [Design of a Component and Transmission Imaging Spectrometer].

    Science.gov (United States)

    Sun, Bao-peng; Zhang, Yi; Yue, Jiang; Han, Jing; Bai, Lian-fa

    2015-05-01

    In the reflection-based imaging spectrometer, multiple reflection(diffraction) produces stray light and it is difficult to assemble. To address that, a high performance transmission spectral imaging system based on general optical components was developed. On the basis of simple structure, the system is easy to assemble. And it has wide application and low cost compared to traditional imaging spectrometers. All components in the design can be replaced according to different application situations, having high degree of freedom. In order to reduce the influence of stray light, a method based on transmission was introduced. Two sets of optical systems with different objective lenses were simulated; the parameters such as distortion, MTF and aberration.were analyzed and optimized in the ZEMAX software. By comparing the performance of system with different objective len 25 and 50 mm, it can be concluded that the replacement of telescope lens has little effect on imaging quality of whole system. An imaging spectrometer is developed successfully according design parameters. The telescope lens uses double Gauss structures, which is beneficial to reduce field curvature and distortion. As the craftsmanship of transmission-type plane diffraction grating is mature, it can be used without modification and it is easy to assemble, so it is used as beam-split. component of the imaging spectrometer. In addition, the real imaging spectrometer was tested for spectral resolution and distortion. The result demonstrates that the system has good ability in distortion control, and spectral resolution is 2 nm. These data satisfy the design requirement, and obtained spectrum of deuterium lamp through calibrated system are ideal results.

  18. MAJIS (Moons and Jupiter Imaging Spectrometer): the VIS-NIR imaging spectrometer of the JUICE mission

    Science.gov (United States)

    Langevin, Yves; Piccioni, Giuseppe; Dumesnil, Cydalise; Filacchione, Gianrico; Poulet, Francois; MAJIS Team

    2016-10-01

    MAJIS is the VIS-NIR imaging spectrometer of JUICE. This ambitious mission of ESA's « cosmic vision » program will investigate Jupiter and its system with a specific focus on Ganymede. After a tour of more than 3 years including 2 fly-bys of Europa and up to 20 flybys of Ganymede and Callisto, the end of the nominal mission will be dedicated to an orbital phase around Ganymede with 120 days in a near-circular, near-polar orbit at an altitude of 5000 km and 130 days in a circular near-polar orbit at an altitude of 500 km. MAJIS will adress 17 of the 19 primary science objectives of JUICE, investigating the surface and exosphere of the Galilean satellites (Ganymede during the orbital phase, Europa and Callisto during close flybys, Io from a minimum distance of 570,000 km), the atmosphere / exosphere of Jupiter, small satellites and rings, and their role as sources and sinks of particles in the Jupiter magnetosphere.The main technical characteristics are the following:Spectral range : 0.5 - 5.7 µm with two overlapping channels (VIS-NIR : 0.5 - 2.35 µm ; IR : 2.25 - 5.7 µm)Spatial resolution : 0.125 to 0.15 mradSpectral sampling (VIS-NIR channel) : 2.9 to 3.45 nmSpectral sampling (IR channel) : 5.4 to 6.45 nmThe spectral and spatial resolution will be finalized in october 2016 after the selection of the MAJIS detectors.Passive cooling will provide operating temperatures noise model will be larger than 100 over most of the spectral range except for high resolution observations of icy moons at low altitude due to limitations on the integration time even with motion compensation provided by a scanner and for exospheric observations due to intrinsic low signal levels.

  19. Resistance training & beta-hydroxy-beta-methylbutyrate supplementation on hormones

    Directory of Open Access Journals (Sweden)

    Hamid Arazi

    2015-10-01

    Full Text Available RESUMOIntroduction:In recent years, there was an increased interest on the effects of beta-hydroxy-beta-methylbutyrate (HMB supplementation on skeletal muscle due to its anti-catabolic effects.Objectives:To investigate the effect of HMB supplementation on body composition, muscular strength and anabolic-catabolic hormones after resistance training.Methods:Twenty amateur male athletes were randomly assigned to supplement and control groups in a double-blind crossover design and participated in four weeks resistance training. Before and after the test period fasting blood samples were obtained to determine anabolic (the growth hormone and testosterone and catabolic (cortisol hormones, and fat mass, lean body mass (LBM and muscular strength were measured. Dependent and independent t-tests were used to analyze data.Results:After the training period, there were no significant differen-ces between the groups with respect to fat mass, LBM and anabolic-catabolic hormones. HMB supplementation resulted in a significantly greater strength gain (p≤0.05.Conclusion:Greater increase in strength for HMB group was not accompanied by body composition and basal circulating anabolic-catabolic hormonal changes. It seems that HMB supplementation may have beneficial effects on neurological adaptations of strength gain.

  20. Abstraction Mechanisms in the BETA Programming Language

    DEFF Research Database (Denmark)

    Kristensen, Bent Bruun; Madsen, Ole Lehrmann; Møller-Pedersen, Birger

    1983-01-01

    ]) --- covering both data, procedural and control abstractions, substituting constructs like class, procedure, function and type. Correspondingly objects, procedure activation records and variables are all regarded as special cases of the basic building block of program executions: the entity. A pattern thus......The BETA programming language is developed as part of the BETA project. The purpose of this project is to develop concepts, constructs and tools in the field of programming and programming languages. BETA has been developed from 1975 on and the various stages of the language are documented in [BETA...... a]. The application area of BETA is programming of embedded as well as distributed computing systems. For this reason a major goal has been to develop constructs that may be efficiently implemented. Furthermore the BETA language is intended to have a few number of basic but general constructs...

  1. Experimental characterization of a prototype secondary spectrometer for vertically scattering multiple energy analysis at cold-neutron triple axis spectrometers

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Groitl, Felix; Kure, Mathias;

    2016-01-01

    A thorough experimental characterization of a multiplexing backend with multiple energy analysis on a cold-neutron triple axis spectrometer (cTAS) is presented. The prototype employs two angular segments (2 theta-segments) each containing five vertically scattering analyzers (energy channels), wh...

  2. Design and applications of an anticoincidence shielded low background gamma-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Petri, H. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen

    1997-03-01

    A low background gamma-ray spectrometer has been constructed for measuring artificial and natural radioative isotopes. The design of the spectrometer, its properties and the application to the determination of natural radioactivity of dental ceramics are described. (orig.)

  3. Milk Intolerance, Beta-Casein and Lactose.

    Science.gov (United States)

    Pal, Sebely; Woodford, Keith; Kukuljan, Sonja; Ho, Suleen

    2015-08-31

    True lactose intolerance (symptoms stemming from lactose malabsorption) is less common than is widely perceived, and should be viewed as just one potential cause of cows' milk intolerance. There is increasing evidence that A1 beta-casein, a protein produced by a major proportion of European-origin cattle but not purebred Asian or African cattle, is also associated with cows' milk intolerance. In humans, digestion of bovine A1 beta-casein, but not the alternative A2 beta-casein, releases beta-casomorphin-7, which activates μ-opioid receptors expressed throughout the gastrointestinal tract and body. Studies in rodents show that milk containing A1 beta-casein significantly increases gastrointestinal transit time, production of dipeptidyl peptidase-4 and the inflammatory marker myeloperoxidase compared with milk containing A2 beta-casein. Co-administration of the opioid receptor antagonist naloxone blocks the myeloperoxidase and gastrointestinal motility effects, indicating opioid signaling pathway involvement. In humans, a double-blind, randomized cross-over study showed that participants consuming A1 beta-casein type cows' milk experienced statistically significantly higher Bristol stool values compared with those receiving A2 beta-casein milk. Additionally, a statistically significant positive association between abdominal pain and stool consistency was observed when participants consumed the A1 but not the A2 diet. Further studies of the role of A1 beta-casein in milk intolerance are needed.

  4. Sawtooth crashes at high beta on JET

    Energy Technology Data Exchange (ETDEWEB)

    Alper, B.; Huysmans, G.T.A.; Sips, A.C.C. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Nave, M.F.F. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior Tecnico

    1994-07-01

    The sawtooth crashes on JET display features which depend on beta. The main observation is a transient bulging of flux surfaces (duration inferior to 30 microsec.), which is predominantly on the low field side and extends to larger radii as beta increases. This phenomenon reaches the plasma boundary when beta{sub N} exceeds 0.5 and in these cases is followed by an ELM within 50 microsec. These sawtooth/ELM events limit plasma performance. Modelling of mode coupling shows qualitative agreement between observations of the structure of the sawtooth precursor and the calculated internal kink mode at high beta. (authors). 6 refs., 5 figs.

  5. Milk Intolerance, Beta-Casein and Lactose

    Directory of Open Access Journals (Sweden)

    Sebely Pal

    2015-08-01

    Full Text Available True lactose intolerance (symptoms stemming from lactose malabsorption is less common than is widely perceived, and should be viewed as just one potential cause of cows’ milk intolerance. There is increasing evidence that A1 beta-casein, a protein produced by a major proportion of European-origin cattle but not purebred Asian or African cattle, is also associated with cows’ milk intolerance. In humans, digestion of bovine A1 beta-casein, but not the alternative A2 beta-casein, releases beta-casomorphin-7, which activates μ-opioid receptors expressed throughout the gastrointestinal tract and body. Studies in rodents show that milk containing A1 beta-casein significantly increases gastrointestinal transit time, production of dipeptidyl peptidase-4 and the inflammatory marker myeloperoxidase compared with milk containing A2 beta-casein. Co-administration of the opioid receptor antagonist naloxone blocks the myeloperoxidase and gastrointestinal motility effects, indicating opioid signaling pathway involvement. In humans, a double-blind, randomized cross-over study showed that participants consuming A1 beta-casein type cows’ milk experienced statistically significantly higher Bristol stool values compared with those receiving A2 beta-casein milk. Additionally, a statistically significant positive association between abdominal pain and stool consistency was observed when participants consumed the A1 but not the A2 diet. Further studies of the role of A1 beta-casein in milk intolerance are needed.

  6. Challenges in Double Beta Decay

    Directory of Open Access Journals (Sweden)

    Oliviero Cremonesi

    2014-01-01

    Full Text Available In the past ten years, neutrino oscillation experiments have provided the incontrovertible evidence that neutrinos mix and have finite masses. These results represent the strongest demonstration that the electroweak Standard Model is incomplete and that new Physics beyond it must exist. In this scenario, a unique role is played by the Neutrinoless Double Beta Decay searches which can probe lepton number conservation and investigate the Dirac/Majorana nature of the neutrinos and their absolute mass scale (hierarchy problem with unprecedented sensitivity. Today Neutrinoless Double Beta Decay faces a new era where large-scale experiments with a sensitivity approaching the so-called degenerate-hierarchy region are nearly ready to start and where the challenge for the next future is the construction of detectors characterized by a tonne-scale size and an incredibly low background. A number of new proposed projects took up this challenge. These are based either on large expansions of the present experiments or on new ideas to improve the technical performance and/or reduce the background contributions. In this paper, a review of the most relevant ongoing experiments is given. The most relevant parameters contributing to the experimental sensitivity are discussed and a critical comparison of the future projects is proposed.

  7. Synthesis of corrected multi-wavelength spectrometers for atmospheric trace gases

    Institute of Scientific and Technical Information of China (English)

    Hikmat H.Asadov; Islam M.Mirzabalayev; Davud Z.Aliyev; Javid A.Agayev; Sima R.Azimova; Nabi A.Nabiyev; Sevinj N.Abdullayeva

    2009-01-01

    The method for synthesis of corrected three-wavelengths spectrometers for trace gas components of atmo sphere on the basis of development of mathematical model has been suggested.The classification table for possible structures of corrected spectrometers is considered.The synthesis allows to reveal some new variants for development of three-wavelength spectrometers for trace gas components of atmosphere.For experimental checkup of achieved theoretical results,a laboratory pattern of three-wavelength spectrometer is developed and tested.

  8. Combined inclusive diffractive cross sections measured with foreward proton spectrometers in deep inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (DE)] (and others)

    2012-07-15

    A combination of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA is presented. The analysis uses samples of diffractive deep inelastic ep scattering data at a centre-of-mass energy {radical}(s)=318 GeV where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account, resulting in an improved precision of the cross section measurement which reaches 6% for the most precise points. The combined data cover the range 2.5beta}<0.816 in {beta}=x/x{sub P}, where x is the Bjorken scaling variable.

  9. Neutron spectrometry and dosimetry study at two research nuclear reactors using Bonner sphere spectrometer (BSS), rotational spectrometer (ROSPEC) and cylindrical nested neutron spectrometer (NNS).

    Science.gov (United States)

    Atanackovic, J; Matysiak, W; Hakmana Witharana, S S; Aslam, I; Dubeau, J; Waker, A J

    2013-01-01

    Neutron spectrometry and subsequent dosimetry measurements were undertaken at the McMaster Nuclear Reactor (MNR) and AECL Chalk River National Research Universal (NRU) Reactor. The instruments used were a Bonner sphere spectrometer (BSS), a cylindrical nested neutron spectrometer (NNS) and a commercially available rotational proton recoil spectrometer. The purposes of these measurements were to: (1) compare the results obtained by three different neutron measuring instruments and (2) quantify neutron fields of interest. The results showed vastly different neutron spectral shapes for the two different reactors. This is not surprising, considering the type of the reactors and the locations where the measurements were performed. MNR is a heavily shielded light water moderated reactor, while NRU is a heavy water moderated reactor. The measurements at MNR were taken at the base of the reactor pool, where a large amount of water and concrete shielding is present, while measurements at NRU were taken at the top of the reactor (TOR) plate, where there is only heavy water and steel between the reactor core and the measuring instrument. As a result, a large component of the thermal neutron fluence was measured at MNR, while a negligible amount of thermal neutrons was measured at NRU. The neutron ambient dose rates at NRU TOR were measured to be between 0.03 and 0.06 mSv h⁻¹, while at MNR, these values were between 0.07 and 2.8 mSv h⁻¹ inside the beam port and <0.2 mSv h⁻¹ between two operating beam ports. The conservative uncertainty of these values is 15 %. The conservative uncertainty of the measured integral neutron fluence is 5 %. It was also found that BSS over-responded slightly due to a non-calibrated response matrix.

  10. The pharmacokinetics of beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin in the rat

    NARCIS (Netherlands)

    Frijlink, H W; Visser, J; Hefting, N R; Oosting, R; Meijer, D K; Lerk, C F

    1990-01-01

    Hydroxypropyl-beta-cyclodextrin was analyzed by HPLC using postcolumn complexation with phenolphthalein and negative colorimetric detection, with a detection limit of 20 micrograms/ml. The pharmacokinetics of beta-cyclodextrin and of hydroxypropyl-beta-cyclodextrin were studied after intravenous adm

  11. The impact of beta-elemene on beta-tubulin of human hepatoma hepg2 cells

    Institute of Scientific and Technical Information of China (English)

    Yuqiu Mao; Liying Ban; Jielin Zhang; Li Hou; Xiaonan Cui

    2014-01-01

    Objective:The aim of this study was to investigate the impact of beta-elemene injection on the growth and beta-tubulin of human hepatocarcinoma HepG2 cells. Methods:cellproliferation was assessed by MTT assay. cellcycle distribution was detected by flow cytometry (FCM). The mRNA expression of beta-tubulin was measured by RT-PCR. West-ern blot analysis was used to determine protein expression of beta-tubulin and the polymerization of beta-tubulin. Results:Beta-elemene injection inhibited HepG2 cells proliferation in a dose-and time-dependent manner;FCM analysis indicated beta-elemene injection induced cellcycle arrested at S phase. RT-PCR and western-blot analysis showed that beta-elemene injection down-regulated beta-tubulin expression at both mRNA and protein levels, presenting a dose-dependent manner. Moreover, beta-elemene injection reduced the polymerization of microtubules in a dose-dependent manner. Conclusion:Beta-elemene injection can inhibit the proliferation of hepatoma HepG2 cells, the mechanism might be partly related to the down-regulation of beta-tubulin and inhibition of microtubular polymerization.

  12. Expressions of GSK-3beta, Beta-Catenin and PPAR-Gamma in Medulloblastoma

    Institute of Scientific and Technical Information of China (English)

    Xiong Zhang; Lu Si; Yu Li; Can Mi

    2009-01-01

    Objective: To investigate the expressions of GSK-3beta, Beta-catenin and PPAR-gamma, and their relationship in medulloblastoma, and to explore their value in clinic application.Methods: Immunohistochemical staining with SP method was conducted to determine the expressions of GSK-3beta, Beta-catenin and PPAR-gamma in 48 cases of medulloblastoma and 10 normal cerebellar tissues.Results: The rate of abnormal expressions of beta-catenin and PPAR-gamma in MB was higher than that in normal. Conversely, GSK-3beta in MB was lower than that in the normal (P<0.05). Furthermore, in medulloblastoma, beta-catenin and GSK-3beta showed a negative correlation, PPAR-gamma and beta-catenin had a positive correlation.Conclusion: Abnormal expression of beta-catenin plays a crucial role in the development of medulloblastoma. Meanwhile, PPAR-gamma and GSK-3beta which are tightly related with beta-catenin are both involved in the genesis and development of medulloblastoma.

  13. FOCUS: neutron time-of-flight spectrometer at SINQ: recent progress

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Mesot, J.; Holitzner, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Hempelmann, R. [Saarbruecken Univ. (Germany)

    1997-09-01

    At the Swiss neutron spallation source SINQ a time-of-flight spectrometer for cold neutrons is under construction. The design foresees a Hybrid solution combining a Fermi chopper with a doubly focusing crystal monochromator. During 1996 important progress has been made concerning the main spectrometer components such as the spectrometer housing and the detector system. (author) 2 figs., 3 refs.

  14. Phonon Dispersion Relation for Copper Measured by Triple Axis Spectrometer at CARR

    Institute of Scientific and Technical Information of China (English)

    MA; Xiao-bai; HAO; Li-jie; GAO; Jian-bo; LI; Yu-qing; LIU; Xin-zhi; WU; Li-qi

    2013-01-01

    In 2013,the triple axis spectrometer at China Advanced Research Reactor has been put into operation successfully.After spectrometer commissioning,including modification of the scan programs and determination of the zero point of the spectrometer angles,the frequency/wave-vector dispersion relation in copper at room temperature has been measured.The results are shown in Fig.1.As the

  15. Radiation-induced polymerization of {beta}(+)-pinene and synthesis of optically active {beta}(+)/{beta}(-)pinene polymers and copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Franco, E-mail: franco.cataldo@fastwebnet.i [Lupi Chemical Research, Via Casilina 1626/A, 00133 Rome (Italy); Lilla, Edo; Ursini, Ornella [Institute of Chemical Methodologies, CNR, Via Salaria Km. 29300, Monterotondo Stazione 00016, Rome (Italy)

    2011-06-15

    Poly-{beta}(+)-pinene (pB(+)p) was synthesized with {gamma} irradiation of the monomer {beta}(+)-pinene in bulk under vacuum at 1181 kGy. Also scalemic mixtures of {beta}(+)-pinene and {beta}(-)-pinene were irradiated at 1181 kGy to obtain synthetic copolymers of pB(+)/B(-)p. For comparison also {beta}(-)-pinene was converted into poly-{beta}(-)-pinene (pB(-)p) under the identical conditions adopted for its enantiomer. Furthermore pB(+)p and pB(-)p were also synthesized by thermal processing under the action of a chemical free radical initiator. The optical rotatory dispersion (ORD) of all pBp resins synthesized were accurately studied in the spectral range comprised between 375 and 625 nm and a curious asymmetry in the ORD of pB(+)p versus the ORD of pB(-)p is reported. Furthermore, it is shown that (+)-p-menth-1-ene and (-)-p-menth-1-ene are useful as a model compounds for the pBp resins and for the explanation of the amplification of the optical activity of the {beta}(+)-pinene and {beta}(-)-pinene after their ring-opening polymerization to pB(+)p and pB(-)p. The pBp resins were studied also by FT-IR spectroscopy and by thermal analysis (TGA and DTG).

  16. Imperfect World of beta beta-decay Nuclear Data Sets

    Energy Technology Data Exchange (ETDEWEB)

    Pritychenko, B. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC

    2015-01-03

    The precision of double-beta ββ-decay experimental half lives and their uncertainties is reanalyzed. The method of Benford's distributions has been applied to nuclear reaction, structure and decay data sets. First-digit distribution trend for ββ-decay T2v1/2 is consistent with large nuclear reaction and structure data sets and provides validation of experimental half-lives. A complementary analysis of the decay uncertainties indicates deficiencies due to small size of statistical samples, and incomplete collection of experimental information. Further experimental and theoretical efforts would lead toward more precise values of-decay half-lives and nuclear matrix elements.

  17. Direct mass measurements of cadmium and palladium isotopes and their double-beta transition $Q$-values

    CERN Document Server

    Smorra, C; Blaum, K; Block, M; Düllmann, Ch E; Eberhardt, K; Eibach, M; Eliseev, S; Nagy, Sz; Nörtershäuser, W; Renisch, D

    2012-01-01

    The $Q$-value of the double-electron capture in $^{108}$Cd has been determined to be (272.04 $\\pm$ 0.55) keV in a direct measurement with the double-Penning trap mass spectrometer TRIGA-TRAP. Based on this result a resonant enhancement of the decay rate of $^{108}$Cd is excluded. We have confirmed the double-beta transition $Q$-values of $^{106}$Cd and $^{110}$Pd recently measured with the Penning-trap mass spectrometers SHIPTRAP and ISOLTRAP, respectively. Furthermore, the atomic masses of the involved nuclides ($^{106, 108, 110}$Cd, $^{106, 108, 110}$Pd) have been directly linked to the atomic mass standard.

  18. Beta-glucosidase I variants with improved properties

    Energy Technology Data Exchange (ETDEWEB)

    Bott, Richard R.; Kaper, Thijs; Kelemen, Bradley; Goedegebuur, Frits; Hommes, Ronaldus Wilhelmus; Kralj, Slavko; Kruithof, Paulien; Nikolaev, Igor; Van Der Kley, Wilhelmus Antonious Hendricus; Van Lieshout, Johannes Franciscus Thomas; Van Stigt Thans, Sander

    2016-09-20

    The present disclosure is generally directed to enzymes and in particular beta-glucosidase variants. Also described are nucleic acids encoding beta-glucosidase variants, compositions comprising beta-glucosidase variants, methods of using beta-glucosidase variants, and methods of identifying additional useful beta-glucosidase variants.

  19. Dosimetry of low-energy beta radiation

    Energy Technology Data Exchange (ETDEWEB)

    Borg, J.

    1996-08-01

    Useful techniques and procedures for determination of absorbed doses from exposure in a low-energy {beta} radiation field were studied and evaluated in this project. The four different techniques included were {beta} spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical low-energy {beta} radiation field a moderated spectrum from a {sup 14}C source (E{sub {beta}},{sub max} =156 keV) was chosen for the study. The measured response of a Si(Li) detector to photons (bremsstrahlung) showed fine agreement with the MC calculated photon response, whereas the difference between measured and MC calculated responses to electrons indicates an additional dead layer thickness of about 12 {mu}m in the Si(Li) detector. The depth-dose profiles measured with extrapolation chambers at two laboratories agreed very well, and it was confirmed that the fitting procedure previously reported for {sup 147}Pm depth-dose profiles is also suitable for {beta} radiation from {sup 14}C. An increasing difference between measured and MC calculated dose rates for increasing absorber thickness was found, which is explained by limitations of the EGS4 code for transport of very low-energy electrons (below 10-20 keV). Finally a study of the thermally stimulated exoelectron emission (TSEE) response of BeO thin film dosemeters to {beta} radiation for radiation fields with maximum {beta} energies ranging from 67 keV to 2.27 MeV is reported. For maximum {beta} energies below approximately 500 keV, a decrease in the response amounting to about 20% was observed. It is thus concluded that a {beta} dose higher than about 10 {mu}Gy can be measured with these dosemeters to within 0 to -20% independently of the {beta}energy for E{sub {beta}},{sub max} values down to 67 keV. (au) 12 tabs., 38 ills., 71 refs.

  20. Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Adorisio, Cristina; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahmed, Hossain; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov , Andrei; Aktas, Adil; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antos, Jaroslav; Antunovic, Bijana; Anulli, Fabio; Aoun, Sahar; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Theodoros; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Arutinov, David; Asai, Makoto; Asai, Shoji; Silva, José; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asner, David; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Badescu, Elisabeta; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Mark; Baker, Oliver Keith; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Baranov, Sergey; Baranov, Sergei; Barashkou, Andrei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Bartsch, Detlef; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Bazalova, Magdalena; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Becerici, Neslihan; Bechtle, Philip; Beck, Graham; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Ayda; Beddall, Andrew; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benincasa, Gianpaolo; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bocci, Andrea; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodet, Eyal; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Byatt, Tom; Caballero, Jose; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Camarri, Paolo; Cameron, David; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D.; Carron Montero, Sebastian; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Tcherniatine, Valeri; Chesneanu, Daniela; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chevallier, Florent; Chiarella, Vitaliano; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Clark, Allan G.; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H.; Coggeshall, James; Cogneras, Eric; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Consonni, Michele; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Cranshaw, Jack; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dallison, Steve; Daly, Colin; Dam, Mogens; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Merlin; Davison, Adam; Dawson, Ian; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De Mora, Lee; De Oliveira Branco, Miguel; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Deng, Wensheng; Denisov, Sergey; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Doglioni, Caterina; Doherty, Tom; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Dris, Manolis; Dubbert, Jörg; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen , Michael; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Dushkin, Andrei; Duxfield, Robert; Dwuznik, Michal; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Egorov, Kirill; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ermoline, Iouri; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facius, Katrine; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Fayard, Louis; Fayette, Florent; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Feligioni, Lorenzo; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernandes, Bruno; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Fiascaris, Maria; Fiedler, Frank; Filipcic, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; Freestone, Julian; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, K.K.; Gao, Yongsheng; Gaponenko, Andrei; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gautard, Valerie; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; Georgatos, Fotios; George, Simon; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Girtler, Peter; Giugni, Danilo; Giusti, Paolo; Gjelsten, Borge Kile; Gladilin, Leonid; Glasman, Claudia; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goggi, Virginio; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Gonella, Laura; Gong, Chenwei; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorisek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Green, Barry; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Grishkevich, Yaroslav; Groh, Manfred; Groll, Marius; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Gupta, Ambreesh; Gusakov, Yury; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Härtel, Roland; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, Jorgen Beck; Hansen, Jorn Dines; Hansen, John Renner; Hansen, Peter Henrik; Hansl-Kozanecka, Traudl; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hashemi, Kevan; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Takashi; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Hemperek, Tomasz; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henss, Tobias; Hernández Jiménez, Yesenia; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Horazdovsky, Tomas; Hori, Takuya; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howe, Travis; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Hughes, Emlyn; Hughes, Gareth; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Irles Quiles, Adrian; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Isobe, Tadaaki; Issakov, Vladimir; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jenni, Peter; Jez, Pavel; Jézéquel, Stéphane; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jorge, Pedro; Joseph, John; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kalinowski, Artur; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kastoryano, Michael; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kayumov, Fred; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kersevan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoriauli, Gia; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kind, Oliver; Kind, Peter; King, Barry; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiyamura, Hironori; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Klute, Markus; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Koblitz, Birger; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kolos, Serguei; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Kondo, Takahiko; Kono, Takanori; Konoplich, Rostislav; Konovalov, Serguei; Konstantinidis, Nikolaos; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostka, Peter; Kostyukhin, Vadim; Kotov, Serguei; Kotov, Vladislav; Kotov, Konstantin; Kourkoumelis, Christine; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Henri; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumshteyn, Zinovii; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurchaninov, Leonid; Kurochkin, Yurii; Kus, Vlastimil; Kwee, Regina; La Rotonda, Laura; Labbe, Julien; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; Le Vine, Micheal; Lebedev, Alexander; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lefebvre, Michel; Legendre, Marie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Leyton, Michael; Li, Haifeng; Li, Shumin; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lilley, Joseph; Lim, Heuijin; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Tiankuan; Liu, Yanwen; Livan, Michele; Lleres, Annick; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Lovas, Lubomir; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Luehring, Frederick; Luisa, Luca; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Macek, Bostjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magalhaes Martins, Paulo Jorge; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahmood, A.; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makouski, Mikhail; Makovec, Nikola; Malecki, Piotr; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mambelli, Marco; Mameghani, Raphael; Mamuzic, Judita; Mandelli, Luciano; Mandic, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March , Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Marti-Garcia, Salvador; Martin, Alex; Martin, Andrew; Martin, Brian; Martin, Brian; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Tim; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martini, Agnese; Martyniuk, Alex; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCubbin, Norman; McFarlane, Kenneth; McGlone, Helen; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Menke, Sven; Meoni, Evelin; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W. Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijovic, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuz, Marko; Miller, David; Mills, Corrinne; Mills, Bill; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Misawa, Shigeki; Miscetti, Stefano; Misiejuk, Andrzej; Mitrevski, Jovan; Mitsou, Vasiliki A.; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Mladenov, Dimitar; Moa, Torbjoern; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murillo Garcia, Raul; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakamura, Koji; Nakano, Itsuo; Nakatsuka, Hiroki; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nderitu, Simon Kirichu; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicoletti, Giovanni; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforov, Andriy; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Notz, Dieter; Novakova, Jana; Nozaki, Mitsuaki; Nozicka, Miroslav; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver, John; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Ottersbach, John; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Oyarzun, Alejandro; Ozcan, Veysi Erkcan; Ozone, Kenji; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadopoulou, Theodora; Park, Su-Jung; Park, Woochun; Parker, Andy; Parker, Sherwood; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor , Gabriella; Pataraia, Sophio; Pater, Joleen; Patricelli, Sergio; Patwa, Abid; Pauly, Thilo; Peak, Lawrence; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Piacquadio, Giacinto; Piccinini, Maurizio; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Pleier, Marc-Andre; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poffenberger, Paul; Poggioli, Luc; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Ponsot, Patrick; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Popule, Jiri; Portell Bueso, Xavier; Porter, Robert; Pospelov, Guennady; Pospisil, Stanislav; Potekhin, Maxim; Potrap, Igor; Potter, Christina; Potter, Christopher; Potter, Keith; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Pribyl, Lukas; Price, Darren; Price, Lawrence; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Puigdengoles, Carles; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qi, Ming; Qian, Jianming; Qian, Weiming; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renkel, Peter; Rescia, Sergio; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richards, Ronald; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Roa Romero, Diego Alejandro; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosenbaum, Gabriel; Rosselet, Laurent; Rossetti, Valerio; Rossi, Leonardo Paolo; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryan, Patrick; Rybkin, Grigori; Rzaeva, Sevda; Saavedra, Aldo; Sadrozinski, Hartmut; Sadykov, Renat; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandhu, Pawan; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sanny, Bernd; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Savard, Pierre; Savine, Alexandre; Savinov, Vladimir; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R.~Dean; Schamov, Andrey; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitz, Martin; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schreiner, Alexander; Schroeder, Christian; Schroer, Nicolai; Schroers, Marcel; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Sluka, Tomas; Smakhtin, Vladimir; Smirnov, Sergei; Smirnov, Yuri; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soluk, Richard; Sondericker, John; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spencer, Edwin; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St. Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stancu, Stefan Nicolae; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stastny, Jan; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Su, Dong; Soh, Dart-yin; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Takuya; Suzuki, Yu; Sykora, Ivan; Sykora, Tomas; Szymocha, Tadeusz; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Ryan P.; Taylor, Wendy; Teixeira-Dias, Pedro; Ten Kate, Herman; Teng, Ping-Kun; Tennenbaum-Katan, Yaniv-David; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Stan; Thompson, Emily; Thompson, Peter; Thompson, Paul; Thompson, Ray; Thomson, Evelyn; Thun, Rudolf; Tic, Tomas; Tikhomirov, Vladimir; Tikhonov, Yury; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomasek, Lukas; Tomasek, Michal; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torrence, Eric; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tuggle, Joseph; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Tuts, Michael; Twomey, Matthew Shaun; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; van der Graaf, Harry; van der Kraaij, Erik; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasilyeva, Lidia; Vassilakopoulos, Vassilios; Vazeille, Francois; Vellidis, Constantine; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Villa, Mauro; Villani, Giulio; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Viret, Sébastien; Virzi, Joseph; Vitale , Antonio; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Matteo; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vudragovic, Dusan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Walbersloh, Jorg; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Wang, Chiho; Wang, Haichen; Wang, Jin; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Wastie, Roy; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Manuel; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Werthenbach, Ulrich; Wessels, Martin; Whalen, Kathleen; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Williams, Eric; Williams, Hugh; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wright, Dennis; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wulf, Evan; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xu, Da; Xu, Neng; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Zhaoyu; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yuan, Li; Yurkewicz, Adam; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zambrano, Valentina; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Zenis, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Qizhi; Zhang, Xueyao; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zivkovic, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu

    2010-01-01

    The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.

  1. Buckling failure of the automated planet finder spectrometer determinate spaceframe

    Science.gov (United States)

    Radovan, Matthew V.; Cabak, Gerald F.

    2012-09-01

    The Ken and Gloria Levy Spectrometer is now operational at a new 2.4 meter telescope on Mt. Hamilton. Together the spectrometer and telescope comprise the Automated Planet Finder (APF), a radial velocity instrument. A catastrophic failure occurred during transit as the instrument was being shipped to the observatory. Several struts buckled in the space frame that supported the echelle grating. This event has caused UCO/Lick to re-evaluate design methodology and how engineering safety factors apply to this type of structure. This paper describes the shipping container design, events during shipment, the failure mechanism, testing and analysis of a remedy, and its implementation. We also suggest design changes to prevent similar failures in the future.

  2. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    Science.gov (United States)

    Sorri, J.; Greenlees, P. T.; Papadakis, P.; Konki, J.; Cox, D. M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P. J.; Barton, C. J.; Jenkins, D. G.

    2016-03-01

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of 154Sm, 152Sm and 166Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  3. A Computer-based Tutorial on Double-Focusing Spectrometers

    Science.gov (United States)

    Silbar, Richard R.; Browman, Andrew A.; Mead, William C.; Williams, Robert A.

    1998-10-01

    WhistleSoft is developing a set of computer-based, self-paced tutorials on particle accelerators that targets a broad audience, including undergraduate science majors and industrial technicians. (See http://www.whistlesoft.com/s~ilbar/.) We use multimedia techniques to enhance the student's rate of learning and retention of the material. The tutorials feature interactive On-Screen Laboratories and use hypertext, colored graphics, two- and three-dimensional animations, video, and sound. Parts of our Dipoles module deal with the double-focusing spectrometer and occur throughout the piece. Radial focusing occurs in the section on uniform magnets, while vertical focusing is in the non-uniform magnets section. The student can even understand the √2π bend angle on working through the (intermediate-level) discussion on the Kerst-Serber equations. This talk will present our discussion of this spectrometer, direct to you from the computer screen.

  4. SPectrometer for Internal Conversion Electrons (SPICE) at TRIUMF-ISAC

    Science.gov (United States)

    Smallcombe, J.; Moukaddam, M.; Evitts, L. J.; Garnsworthy, A. B.; Hallam, S.; Andreoiu, C.; Ball, G. C.; Bolton, C.; Caballero-Folch, R.; Constable, M.; Cross, D. S.; Garrett, P. E.; Hackman, G.; Henderson, J.; Henderson, R.; Ketelhut, S.; Kruecken, R.; Kurchaninov, L.; Park, J.; Pore, J. L.; Rand, E. T.; Ruotsalainen, P.; Smith, J. K.; Svensson, C. E.; Williams, M.

    2016-09-01

    A new ancillary detector, SPICE (SPectrometer for Internal Conversion Electrons) has been constructed and recently commissioned for use with radioactive ion beams at the TRIUMF-ISAC II facility. SPICE is designed to be operated in conjunction with the TIGRESS High-Purity Germanium (HPGe) spectrometer to perform combined in-beam γ-ray and internal-conversion-electron spectroscopy. The main feature of SPICE is high effciency over a wide range of electron energies from 100 to 3500 keV, with an effective reduction of beam-induced backgrounds. SPICE will be a powerful tool to measure conversion coeffcients and E0 transitions in atomic nuclei. A recent in-beam commissioning experiment demonstrates the effectiveness of the basic design concept of SPICE in background suppression.

  5. Anamorphic integral field spectrometer for diffuse ultraviolet astronomy.

    Science.gov (United States)

    Cook, Timothy

    2013-12-20

    We present the design of a novel anamorphic integral field spectrometer for diffuse ultraviolet astronomy. The system is designed to be able to measure emissions from faint diffuse astrophysical sources across a large field with good spectral resolving power. The design uses a standard focal plane image slicer and an anamorphic relay mirror and spectrometer to achieve an exceptional area, field of view, resolving power (AΩR) product, the key figure of merit for a spectroscopic system intended to study line emission from extended or diffuse sources. We present a typical design with R∼1000 and an effective etendue (AΩ) of 1.5×10(-4)cm2 sr.

  6. Commissioning of the magnetic field in the ATLAS muon spectrometer

    CERN Document Server

    Arnaud, M; Bergsma, F; Bobbink, G; Bruni, A; Chevalier, L; Ennes, P; Fleischmann, P; Fontaine, M; Formica, A; Gautard, V; Groenstege, H; Guyot, C; Hart, R; Kozanecki, W; Iengo, P; Legendre, M; Nikitina, T; Perepelkin, E; Ponsot, P; Richardson, A; Vorozhtsov, A; Vorozthsov, S

    2008-01-01

    ATLAS is a general-purpose detector at the 14 TeV proton-proton Large Hadron Collider at CERN. The muon spectrometer will operate in the magnetic field provided by a large, eight-coil barrel toroid magnet bracketed by two smaller toroidal end-caps. The toroidal field is non-uniform, with an average value of about 0.5 T in the barrel region, and is monitored using three-dimensional Hall sensors which must be accurate to 1 mT. The barrel coils were installed in the cavern from 2004 to 2006, and recently powered up to their nominal current. The Hall-sensor measurements are compared with calculations to validate the magnetic models, and used to reconstruct the position and shape of the coil windings. Field perturbations by the magnetic materials surrounding the muon spectrometer are found in reasonable agreement with finite-element magnetic-field simulations.

  7. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Sorri, J., E-mail: juha.m.t.sorri@jyu.fi [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyvaskyla (Finland); Greenlees, P.T.; Papadakis, P.; Konki, J. [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyvaskyla (Finland); Cox, D.M. [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyvaskyla (Finland); Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J. [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyvaskyla (Finland); Herzberg, R.-D. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Smallcombe, J.; Davies, P.J.; Barton, C.J.; Jenkins, D.G. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2016-03-11

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of {sup 154}Sm, {sup 152}Sm and {sup 166}Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  8. Long-term radiation damage to a spaceborne germanium spectrometer

    CERN Document Server

    Kurczynski, P; Hull, E L; Palmer, D; Harris, M J; Seifert, H; Teegarden, B J; Gehrels, N; Cline, T L; Ramaty, R; Sheppard, D; Madden, N W; Luke, P N; Cork, C P; Landis, D A; Malone, D F; Hurley, K

    1999-01-01

    The Transient Gamma-Ray Spectrometer aboard the Wind spacecraft in deep space has observed gamma-ray bursts and solar events for four years. The germanium detector in the instrument has gradually deteriorated from exposure to the approx 10 sup 8 p/cm sup 2 /yr(>100 MeV) cosmic-ray flux. Low-energy tailing and loss of efficiency, attributed to hole trapping and conversion of the germanium from n- to p-type as a result of crystal damage, were observed. Raising the detector bias voltage ameliorated both difficulties and restored the spectrometer to working operation. Together, these observations extend our understanding of the effects of radiation damage to include the previously unsuccessfully studied regime of long-term operation in space. (author)

  9. Cavity BPM System Tests for the ILC Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Slater, M.

    2007-12-21

    The main physics program of the International Linear Collider (ILC) requires a measurement of the beam energy at the interaction point with an accuracy of 10{sup -4} or better. To achieve this goal a magnetic spectrometer using high resolution beam position monitors (BPMs) has been proposed. This paper reports on the cavity BPM system that was deployed to test this proposal. We demonstrate sub-micron resolution and micron level stability over 20 hours for a 1 m long BPM triplet. We find micron-level stability over 1 hour for 3 BPM stations distributed over a 30 m long baseline. The understanding of the behavior and response of the BPMs gained from this work has allowed full spectrometer tests to be carried out.

  10. GEMS: Underwater spectrometer for long-term radioactivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sartini, Ludovica, E-mail: ludovica.sartini@ingv.i [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect.Roma 2, Roma (Italy); Genoa University, Genoa (Italy); Simeone, Francesco; Pani, Priscilla [' Sapienza' University and Istituto Nazionale di Fisica Nucleare (INFN), Sect.Roma, Roma (Italy); Lo Bue, Nadia; Marinaro, Giuditta [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect.Roma 2, Roma (Italy); Grubich, Andry; Lobko, Alexander [Institute for Nuclear Problems (INP), Belarus State University, Minsk (Belarus); Etiope, Giuseppe [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect.Roma 2, Roma (Italy); Capone, Antonio [' Sapienza' University and Istituto Nazionale di Fisica Nucleare (INFN), Sect.Roma, Roma (Italy); Favali, Paolo [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect.Roma 2, Roma (Italy); Gasparoni, Francesco; Bruni, Federico [Tecnomare S.p.A., Venice (Italy)

    2011-01-21

    GEMS (Gamma Energy Marine Spectrometer) is a prototype of an autonomous radioactivity sensor for underwater measurements, developed in the framework for a development of a submarine telescope for neutrino detection (KM3NeT Design Study Project). The spectrometer is highly sensitive to gamma rays produced by {sup 40}K decays but it can detect other natural (e.g., {sup 238}U,{sup 232}Th) and anthropogenic radio-nuclides (e.g., {sup 137}Cs). GEMS was firstly tested and calibrated in the laboratory using known sources and it was successfully deployed for a long-term (6 months) monitoring at a depth of 3200 m in the Ionian Sea (Capo Passero, offshore Eastern Sicily). The instrument recorded data for the whole deployment period within the expected specifications. This monitoring provided, for the first time, a continuous time-series of radioactivity in deep-sea.

  11. Data Acquisition System for Electron Energy Loss Coincident Spectrometers

    Institute of Scientific and Technical Information of China (English)

    Zhang Chi; Yu Xiaoqi; Yang Tao

    2005-01-01

    A Data Acquisition System (DAQ) for electron energy loss coincident spectrometers (EELCS) has been developed. The system is composed of a Multiplex Time-Digital Converter (TDC) that measures the flying time of positive and negative ions and a one-dimension positionsensitive detector that records the energy loss of scattering electrons. The experimental data are buffered in a first-in-first-out(FIFO) memory module, then transferred from the FIFO memory to PC by the USB interface. The DAQ system can record the flying time of several ions in one collision, and allows of different data collection modes. The system has been demonstrated at the Electron Energy Loss Coincident Spectrometers at the Laboratory of Atomic and Molecular Physics, USTC. A detail description of the whole system is given and experimental results shown.

  12. The Monitor online system of the OPERA muon magnetic spectrometer

    CERN Document Server

    Ugolino, U.; Acquafredda, R.; Masone, v.

    2008-01-01

    The OPERA muon magnetic spectrometer has been designed for muon detection, tracking and timing. The 44 bakelite Resistive Chambers (RPC) planes, imbibed inside the magnet iron slabs, must provide the tracking of the muon curved in the magnetic field to ease the momentum and charge measurement provided by the HPT. Furthermore, it provides the momentum for muons stopping in the iron. RPC signals will be also used as start of drift tube acquisition thanks to the very good time resolution of RPC detectors. Due to the required performances the tracking detector must be fully efficient and stable. In this conditions an online monitor is mandatory to continuously control stability of run conditions. We report the main characteristics and performances of the monitor system for the OPERA spectrometer and capabilities of the software developed for settings and data acquisition.

  13. Fourier and Hadamard transform spectrometers - A limited comparison

    Science.gov (United States)

    Tai, M. H.; Harwit, M.

    1976-01-01

    An encoding figure of merit is established for a detector-noise limited Fourier transform spectrometer (FTS) and compared to the comparable figure for a Hadamard transform spectrometer (HTS). The limitation of the Fourier system is partly that it does not truly Fourier analyze the radiation. Instead a cosine squared modulation is imposed on the different spectral frequencies. An additional difficulty is that neither the cosine nor the cosine squared functions form an orthonormal set. This makes the Fellgett's advantage (root-mean-squared figure of merit) for a single detector Michelson interferometer a factor of the square root of (N/8) greater than for a conventional grating instrument - rather than the square root of (N/2). The theoretical limit would be the square root of N.

  14. Preliminary results from LADEE's Neutral Mass Spectrometer (NMS)

    Science.gov (United States)

    Benna, Mehdi; Mahaffy, Paul; Hodges, Richard

    2014-05-01

    The Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission is a high sensitivity quadrupole mass spectrometer designed to measure the composition and variability of the tenuous lunar atmosphere. The instrument has been observing the lunar exosphere since 10/17/2013, initially from a near circular 250 km altitude orbit and since 11/11/2013 from an elliptical orbit that reaches to 30-60 km altitude near the sunrise terminator. During its first four months in orbit, the NMS instrument successfully detected exospheric helium, argon and neon and mapped their spatial and temporal variability. Furthermore, the NMS instrument was able to establish new upper limits for many other exospheric species either sputtered or thermally evolved from the lunar surface. This talk will summarize these preliminary results from the NMS measurements.

  15. Fourier transform spectrometer based on Fabry-Perot interferometer.

    Science.gov (United States)

    Al-Saeed, Tarek A; Khalil, Diaa A

    2016-07-10

    We analyze the Fourier transform spectrometer based on a symmetric/asymmetric Fabry-Perot interferometer. In this spectrometer, the interferogram is obtained by recording the intensity as a function of the interferometer length. Then, we recover the spectrum by applying the discrete Fourier transform (DFT) directly on the interferogram. This technique results in spectral harmonic overlap and fictitious wavenumber components outside the original spectral range. For this purpose, in this work, we propose a second method to recover the spectrum. This method is based on expanding the DFT of the interferogram and the spectrum by a Haar or box function. By this second method, we recovered the spectrum and got rid of the fictitious spectral components and spectral harmonic overlap.

  16. Results and present status of the spectrometer aSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Ayala Guardia, Fidel; Borg, Michael; Glueck, Ferenc; Heil, Werner; Konrad, Gertrud; Munoz Horta, Raquel; Sobolev, Yury [Institut fuer Physik, Universitaet Mainz (Germany); Angerer, Heinz; Konorov, Igor; Petzoldt, Gerd; Simson, Martin; Wirth, Hans-Friedrich; Zimmer, Oliver [Physik Department, Technische Universitaet Muenchen (Germany); Baessler, Stefan [Department of Physics, University of Virginia, Charlottesville (United States); Eberhardt, Klaus [Institut fuer Kernchemie, Universitaet Mainz (Germany)

    2008-07-01

    The aim of the aSPECT spectrometer is a precise measurement of the proton recoil spectrum in free neutron decay. For kinematic reasons, the shape of the proton spectrum depends on the angular correlation coefficient between the momenta of the electron antineutrino and the electron, a. An accurate measurement of the angular correlation coefficient a is of great interest in order to test the unitarity of the Cabibbo Kobayashi Maskawa Matrix (CKM-Matrix). A first test beam time was performed during 2005/06 at the beam line MEPHISTO at the neutron research reactor FRM-II in Garching. Results of the data analysis as well as the present status of the aSPECT spectrometer are presented in this talk.

  17. The neutron decay spectrometer aSPECT: latest results

    Energy Technology Data Exchange (ETDEWEB)

    Borg, M.; Guardia, F.A.; Baessler, S.; Brito, L.C.; Glueck, F.; Heil, W.; Konrad, G.; Brito, L.C.; Horta, R.M.; Palmer, C.A.; Sobolev, Y. [Inst. fuer Physik, Univ. Mainz (Germany); Angerer, H.; Konorov, I.; Petzoldt, G.; Simson, M.; Wirth, H.F.; Zimmer, O. [Physik Dept. E18, TU Muenchen (Germany); Eberhardt, K. [Inst. fuer Kernchemie, Univ. Mainz (Germany); Rich, D. [FRM-II, TU Muenchen (Germany)

    2007-07-01

    The intention of the neutron decay spectrometer aSPECT is the measurement of the proton spectrum in the decay of free neutrons. The proton spectrum is used to deduce the value of the neutrino electron correlation coefficient a, an important experimental quantity which is useful to resolve the problem with the unitarity of the Cabbibo-Kobayashi-Maskawa Matrix. In a beam time in 2005/ 2006 at the neutron beam MEPHISTO of the research reactor ''Forschungsneutronenquelle Heinz Maier-Leibnitz'' (FRM-II), first proton spectra have been measured and several systematic tests were performed. In my talk, I will present the physical motivation and the design of our spectrometer, but mainly I will discuss our latest results and the on-going optimizations for the next beam time. (orig.)

  18. The Cosmic Infrared Background Experiment (CIBER): the Narrow Band Spectrometer

    CERN Document Server

    Korngut, P M; Arai, T; Battle, J; Bock, J; Brown, S W; Cooray, A; Hristov, V; Keating, B; Kim, M G; Lanz, A; Lee, D H; Levenson, L R; Lykke, K R; Mason, P; Matsumoto, T; Matsuura, S; Nam, U W; Shultz, B; Smith, A W; Sullivan, I; Tsumura, K; Wada, T; Zemcov, M

    2013-01-01

    We have developed a near-infrared spectrometer designed to measure the absolute intensity of the Solar 854.2 nm CaII Fraunhofer line, scattered by interplanetary dust, in the Zodiacal light spectrum. Based on the known equivalent line width in the Solar spectrum, this measurement can derive the Zodiacal brightness, testing models of the Zodiacal light based on morphology that are used to determine the extragalactic background light in absolute photometry measurements. The spectrometer is based on a simple high-resolution tipped filter placed in front of a compact camera with wide-field refractive optics to provide the large optical throughput and high sensitivity required for rocket-borne observations. We discuss the instrument requirements for an accurate measurement of the absolute Zodiacal light brightness, the measured laboratory characterization, and the instrument performance in flight.

  19. Observing Extended Sources with the \\Herschel SPIRE Fourier Transform Spectrometer

    CERN Document Server

    Wu, Ronin; Etxaluze, Mireya; Makiwa, Gibion; Naylor, David A; Salji, Carl; Swinyard, Bruce M; Ferlet, Marc; van der Wiel, Matthijs H D; Smith, Anthony J; Fulton, Trevor; Griffin, Matt J; Baluteau, Jean-Paul; Benielli, Dominique; Glenn, Jason; Hopwood, Rosalind; Imhof, Peter; Lim, Tanya; Lu, Nanyao; Panuzzo, Pasquale; Pearson, Chris; Sidher, Sunil; Valtchanov, Ivan

    2013-01-01

    The Spectral and Photometric Imaging Receiver (SPIRE) on the European Space Agency's Herschel Space Observatory utilizes a pioneering design for its imaging spectrometer in the form of a Fourier Transform Spectrometer (FTS). The standard FTS data reduction and calibration schemes are aimed at objects with either a spatial extent much larger than the beam size or a source that can be approximated as a point source within the beam. However, when sources are of intermediate spatial extent, neither of these calibrations schemes is appropriate and both the spatial response of the instrument and the source's light profile must be taken into account and the coupling between them explicitly derived. To that end, we derive the necessary corrections using an observed spectrum of a fully extended source with the beam profile and the source's light profile taken into account. We apply the derived correction to several observations of planets and compare the corrected spectra with their spectral models to study the beam c...

  20. High Accuracy Wavelength Calibration For A Scanning Visible Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Filippo Scotti and Ronald Bell

    2010-07-29

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤ 0.2Â. An automated calibration for a scanning spectrometer has been developed to achieve a high wavelength accuracy overr the visible spectrum, stable over time and environmental conditions, without the need to recalibrate after each grating movement. The method fits all relevant spectrometer paraameters using multiple calibration spectra. With a steping-motor controlled sine-drive, accuracies of ~0.025 Â have been demonstrated. With the addition of high resolution (0.075 aresec) optical encoder on the grading stage, greater precision (~0.005 Â) is possible, allowing absolute velocity measurements with ~0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.