WorldWideScience

Sample records for beta spectrometers

  1. A semiconductor beta ray spectrometer

    International Nuclear Information System (INIS)

    Measurement of energy spectra of beta particles emitted from nuclei in beta-decay processes provides information concerning the mass difference of these nuclei between initial and final state. Moreover, experimental beta spectra yield information on the feeding of the levels in the daughter nucleus. Such data are valuable in the construction and checking of the level schemes. This thesis describes the design, construction, testing and usage of a detector for the accurate measurement of the mentioned spectra. In ch. 2 the design and construction of the beta spectrometer, which uses a hyper-pure germanium crystal for energy determination, is described. A simple wire chamber is used to discriminate beta particles from gamma radiation. Disadvantages arise from the large amounts of scattered beta particles deforming the continua. A method is described to minimize the scattering. In ch. 3 some theoretical aspects of data analysis are described and the results of Monte-Carlo simulations of the summation of annihilation radiation are compared with experiments. Ch. 4 comprises the results of the measurements of the beta decay energies of 103-108In. 87 refs.; 34 figs.; 7 tabs

  2. The high sensitivity double beta spectrometer TGV

    Science.gov (United States)

    Briancon, Ch.; Brudanin, V. B.; Egorov, V. G.; Janout, Z.; Koníček, J.; Kovalík, A.; Kovalenko, V. E.; Kubašta, J.; Pospíšil, S.; Revenko, A. V.; Rukhadze, N. I.; Salamatin, A. V.; Sandukovsky, V. G.; Štekl, I.; Timkin, V. V.; Tsupko-Sitnikov, V. V.; Vorobel, V.; Vylov, Ts.

    1996-02-01

    A high sensitivity double beta spectrometer TGV (Telescope Germanium Vertical) has been developed. It is based on 16 HPGe detectors of volume 1200 × 6 mm 3 each in the same cryostat. The TGV spectrometer was proposed for the study of ultrarare nuclear processes (e.g. 2νββ, 0νββ, 2νEC/EC). Details of the TGV spectrometer construction are described, the principles of background suppression, the results of Monte Carlo simulations and the results of test background measurements (in Dubna and Modane underground laboratory) are provided.

  3. The high sensitivity double beta spectrometer TGV

    International Nuclear Information System (INIS)

    A high sensitivity double beta spectrometer TGV (Telescope Germanium Vertical) has been developed. It is based on 16 HPGe detectors of volume 1200 x 6 mm3 each in the same cryostat. The TGV spectrometer was proposed for the study of ultrarare nuclear processes (e.g. 2νββ, 0νββ, 2νEC/EC). Details of the TGV spectrometer construction are described, the principles of background suppression, the results of Monte Carlo simulations and the results of test background measurements (in Dubna and Modane underground laboratory) are provided. (orig.)

  4. A proportional-scintillation counter beta spectrometer

    International Nuclear Information System (INIS)

    Using a proportional counter for coincidence gating of events in a plastic scintillator provides selective registration of beta interactions in the scintillator. This technique has been used to construct a field instrument that can selectively collect beta spectra (coincidence gating) or gamma spectra (anticoincidence gating). Associated dose rates are calculated from the spectra

  5. MONSTER: a TOF Spectrometer for beta-delayed Neutron Spetroscopy

    CERN Document Server

    Martinez, T; Castilla, J; Garcia, A R; Marin, J; Martinez, G; Mendoza, E; Santos, C; Tera, F; Jordan, M D; Rubio, B; Tain, J L; Bhattacharya, C; Banerjee, K; Bhattacharya, S; Roy, P; Meena, J K; Kundu, S; Mukherjee, G; Ghosh, T K; Rana, T K; Pandey, R; Saxena, A; Behera, B; Penttila, H; Jokinen, A; Rinta-Antila, S; Guerrero, C; Ovejero, M C; Villamarin, D; Agramunt, J; Algora, A

    2014-01-01

    Beta-delayed neutron (DN) data, including emission probabilities, P-n, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

  6. The low background spectrometer TGV II for double beta decay measurements

    Energy Technology Data Exchange (ETDEWEB)

    Benes, P. [Institute of Experimental and Applied Physics, CTU in Prague, Horska 3a/22, 128 00 Prague (Czech Republic); Cermak, P. [Institute of Experimental and Applied Physics, CTU in Prague, Horska 3a/22, 128 00 Prague (Czech Republic)]. E-mail: pavel.cermak@utef.cvut.cz; Gusev, K.N. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Klimenko, A.A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Kovalenko, V.E. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Kovalik, A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nuclear Physics Institute of the CAS, 25263 Rez near Prague (Czech Republic); Rukhadze, N.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Salamatin, A.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Simkovic, F. [Comenius University in Bratislava, SK-842 15 Bratislava (Slovakia); Stekl, I. [Institute of Experimental and Applied Physics, CTU in Prague, Horska 3a/22, 128 00 Prague (Czech Republic); Timkin, V.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Vylov, Ts. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2006-12-21

    The low-background multi-HPGe spectrometer TGVII installed in the Modane Underground Laboratory (France) is described in detail and the results of the background measurements are reported. The spectrometer is focused on the double beta decay measurements with two isotopes-{sup 106}Cd (2{nu}EC/EC mode) and {sup 48}Ca ({beta}{beta} mode). A basic summary of the physics of {beta}{beta} decay (especially EC/EC mode) is also given.

  7. On some corrections to beta spectra measured by toroidal inron-free beta spectrometer

    International Nuclear Information System (INIS)

    In the investigations of the features of neutron-deficient isotopes to study low-intensity branches of positron decay ST-2 the iron-free beta spectrometer with toroidal magnetic field (light intensity approximately 20%, resolution ability approximately 1%) is used. The influence of the factors distorting β-spectra in case of the ST-2 spectrometer has been studied. In using the sources without the carriers the source thickness at Esub(β) > 100 keV doesn't distort the spectrum. The investigation of the dependence of 22Na positron counting at different energies on theckness of the substrate made it possible to determine the paremeters of backscattering. It was shown that the backgroud of the spectrometer in positron measuring regime at energies Esub(β) > 100 keV didn't depend on the energy. The measurements at the energies higher than maximum positron energy give directly the background value. According to experimental distribution of the lines of conversion electrons the analytical kind of response function of the spectrometer has been obtained. Spectral distribution of monochromatic electrons consists of the peak, described by Gauss distribution, and exponential ''tail'' in the direction of small energies. The investigations showed that with the help of the ST-2 beta spectrometer the decay positron btanches with the intensity up to 0.01% per decay may be determined with the accuracy 2-3 keV. There is principal possibility to study form factors of β-spectra

  8. Field transportable beta spectrometer. Innovative technology summary report

    International Nuclear Information System (INIS)

    The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Test Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies. One such capability being addressed by the D and D Focus Area is rapid characterization for facility contaminants. The technology was field demonstrated during the period January 7 through January 9, 1997, and offers several potential benefits, including faster turn-around time, cost reduction, and reduction in secondary waste. This report describes a PC controlled, field-transportable beta counter-spectrometer which uses solid scintillation coincident counting and low-noise photomultiplier tubes to count element-selective filters and other solid media. The dry scintillation counter used in combination with an element-selective technology eliminates the mess and disposal costs of liquid scintillation cocktails. Software in the instrument provides real-time spectral analysis. The instrument can detect and measure Tc-99, Sr-90, and other beta emitters reaching detection limits in the 20 pCi range (with shielding). Full analysis can be achieved in 30 minutes. The potential advantages of a field-portable beta counter-spectrometer include the savings gained from field generated results. The basis for decision-making is provided with a rapid turnaround analysis in the field. This technology would be competitive with the radiometric analysis done in fixed laboratories and the associated chain of custody operations

  9. Field transportable beta spectrometer. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Test Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies. One such capability being addressed by the D and D Focus Area is rapid characterization for facility contaminants. The technology was field demonstrated during the period January 7 through January 9, 1997, and offers several potential benefits, including faster turn-around time, cost reduction, and reduction in secondary waste. This report describes a PC controlled, field-transportable beta counter-spectrometer which uses solid scintillation coincident counting and low-noise photomultiplier tubes to count element-selective filters and other solid media. The dry scintillation counter used in combination with an element-selective technology eliminates the mess and disposal costs of liquid scintillation cocktails. Software in the instrument provides real-time spectral analysis. The instrument can detect and measure Tc-99, Sr-90, and other beta emitters reaching detection limits in the 20 pCi range (with shielding). Full analysis can be achieved in 30 minutes. The potential advantages of a field-portable beta counter-spectrometer include the savings gained from field generated results. The basis for decision-making is provided with a rapid turnaround analysis in the field. This technology would be competitive with the radiometric analysis done in fixed laboratories and the associated chain of custody operations.

  10. Efficiency Calibration of a Mini-Orange Type beta-Spectrometer by the $\\beta^{-}$-Spectrum of $^{90}$Sr

    CERN Document Server

    Kalinnikov, V G; Solnyshkin, A A; Sereeter, Z; Lebedev, N A; Chumin, V G; Ibrakhin, Ya S

    2002-01-01

    A specific method for efficiency calibration of a mini-orange type beta-spectrometer by means of the continuous beta^{-}-spectrum of ^{90}Sr and the conversion electron spectrum of ^{207}Bi in the energy range from 500 to 2200 keV has been elaborated. In the experiment typical SmCo_5 magnets (6A and 8A) were used. An accuracy of efficiency determination was 5-10 %.

  11. The low background spectrometer TGV II for double beta decay measurements

    Science.gov (United States)

    Beneš, P.; Čermák, P.; Gusev, K. N.; Klimenko, A. A.; Kovalenko, V. E.; Kovalík, A.; Rukhadze, N. I.; Salamatin, A. V.; Šimkovic, F.; Štekl, I.; Timkin, V. V.; Vylov, Ts.

    2006-12-01

    The low-background multi-HPGe spectrometer TGV II installed in the Modane Underground Laboratory (France) is described in detail and the results of the background measurements are reported. The spectrometer is focused on the double beta decay measurements with two isotopes— 106Cd ( 2νEC/EC mode) and 48Ca ( ββ mode). A basic summary of the physics of ββ decay (especially EC/EC mode) is also given.

  12. The low background spectrometer TGV II for double beta decay measurements

    International Nuclear Information System (INIS)

    The low-background multi-HPGe spectrometer TGVII installed in the Modane Underground Laboratory (France) is described in detail and the results of the background measurements are reported. The spectrometer is focused on the double beta decay measurements with two isotopes-106Cd (2νEC/EC mode) and 48Ca (ββ mode). A basic summary of the physics of ββ decay (especially EC/EC mode) is also given

  13. On relative detection efficiency of a channel electron multiplier for electrostatic beta spectrometer

    International Nuclear Information System (INIS)

    The relative detection efficiency of the Bendix CEM 4503 type channel electron multiplier (CEM) which serves as an electron detector in an electrostatic beta spectrometer is studied in the 60-1000 eV energy range. A decreasing of the quantity studied by a factor 3 is observed at low electron energies. To increase the CEM efficiency resulting in increasing the total spectrometer efficiency the acceleration of detected electrons is applied. Optimum operation conditions of the CEM permiting to increase the signal-to-background ratio by a factor 2 without any visible change of the resolution and the response function of the spectrometer have been determined as well

  14. Realisation of a {beta} spectrometer solenoidal and a double {beta} spectrometer at coincidence; Realisation d'un spectrometre {beta} solenoidal et d'un double spectrometre {beta} a coincidence

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-06-15

    The two spectrometers have been achieved to tackle numerous problems of nuclear spectrometry. They possess different fields of application that complete themselves. The solenoidal spectrometer permits the determination of the energy limits of {beta} spectra and of their shape; it also permits the determination of the coefficients of internal conversion and reports {alpha}{sub K} / {alpha}{sub L} and it is especially efficient for the accurate energy levels of the {gamma} rays by photoelectric effect. The double coincidence spectrometer has been conceived to get a good efficiency in coincidence: indeed, the sum of the solid angles used for the {beta} and {gamma} emission is rather little lower to 4{pi} steradians. To get this efficiency, one should have sacrificed a little the resolution that is lower to the one obtained with the solenoidal spectrometer for a same brightness. Each of the elements of the double spectrometer can also be adapted to the study of angular correlations {beta}{gamma} and e{sup -}{gamma}. In this use, it is superior to the thin magnetic lens used up to here. The double spectrometer also permits the survey of the coincidences e{sup -}e{sup -}, e{sup -}{beta} of a equivalent way to a double lens; it can also be consider some adaptation for the survey of the angular correlations e{sup -}e{sup -}, e{sup -}{beta}. Finally, we applied the methods by simple spectrometry and by coincidence spectrometry, to the study of the radiances of the following radioelements: {sup 76}As (26 h), {sup 122}Sb (2,8 j), {sup 124}Sb (60 j), {sup 125}Sb (2,7 years). (M.B.) [French] Les deux spectrometres qui ont ete realises permettent d'aborder un grand nombre de problemes de spectrometrie nucleaire. Ils possedent des champs d'application tres differents qui se completent. Le spectrometre solenoidal permet la determination des energies limites des spectres {beta} et de leur forme; il permet aussi la determination des coefficients de conversion interne et

  15. Flight time beta spectrometer with position sensitive detectors for electronic structure investigation at points of hydrogen adsorption on surface

    International Nuclear Information System (INIS)

    The basis of flight time beta spectrometer for investigation of electronic emission with energy not over 500 eV have been created. This device will be used for carrying out the first study of electronic structure at the points of hydrogen adsorption through the measuring of spectra of Auger relaxation electrons emitted by the system investigated surface-tritium. The momentum resolution of beta spectrometer accounts for (0,1 - 0,2)% at 'traditional' solid angle equals to 0,25% from 4π sr owing to the use positron sensitive start and stop detectors on a basis of microchannel plates. Taking into consideration that the area of our beta source is minimum 100 times larger as compared to 'traditional' spectrometers and a spectrum here is registered simultaneously over all energy interval containing useful information, we obtain high quality beta spectrometer. (author)

  16. Efficiency calibration of a mini-orange type beta-spectrometer by the beta sup - -spectrum of sup 9 sup 0 Sr

    CERN Document Server

    Kalinnikov, V G; Ibrakhim, Y S; Lebedev, N A; Samatov, Z K; Sehrehehtehr, Z; Solnyshkin, A A

    2002-01-01

    A specific method for efficiency calibration of a mini-orange type beta-spectrometer by means of the continuous beta sup - -spectrum of sup 9 sup 0 Sr and the conversion electron spectrum of sup 2 sup 0 sup 7 Bi in the energy range from 500 to 2200 keV has been elaborated. In the experiment typical SmCo sub 5 magnets (6A and 8A) were used. An accuracy of efficiency determination was 5-10 %.

  17. An application of the swept-current method to a DuMond type magnetic beta ray spectrometer

    International Nuclear Information System (INIS)

    The ''combination magnetic-Si(Li), swept current electron spectrometer'' method has been applied to a DuMond type magnetic beta ray spectrometer without depriving the spectrometer of the function of high resolution measurements by usual uses. Properties of the system have been examined by observing conversion lines of sup(110m)Ag and good performances of the system have been confirmed. By adopting this method, intensive sources with large area can be used and entire momentum spectra can be obtained rapidly irrespective of the existences of gamma rays and so weak conversion lines can be found more easily. For nuclei with high beta ray backgrounds, the method is not so powerful that an experiment to combine the electron-beta coincidence method with this one is now in progress. (auth.)

  18. 'aspect' - a new spectrometer for the measurement of the angular correlation coefficient a in neutron beta decay

    CERN Document Server

    Zimmer, O; Grinten, M G D; Heil, W; Glück, F

    2000-01-01

    The combination of the coefficient a of the antineutrino/electron angular correlation with the beta asymmetry of the neutron provides a sensitive test for scalar and tensor contributions to the electroweak Lagrangian, as well as for right-handed currents. A method is given for measuring a with high sensitivity from the proton recoil spectrum. The method is based on a magnetic spectrometer with electrostatic retardation potentials such as used for searches of the neutrino mass in tritium beta decay. The spectrometer can also be used for similar studies using radioactive nuclei.

  19. Low-background multidetector spectrometer TGV-2 for investigation of double beta decay

    International Nuclear Information System (INIS)

    The low-background highly sensitive multidetector spectrometer TGV-2 (germanium vertical telescope) is created for studying very rare nuclear processes such as the double β-decay and double electron capture. The spectrometer consists basically of 32 planar HPGe-detectors with the sensitive volume of approximately 2040 mm2 x 6 mm each, assembled vertically one over another in the ultralow-background U-shape cryostat. The description of the spectrometer design, its basic characteristics and preliminary results of the phase measurements are presented

  20. Measurement of the proton recoil spectrum in neutron beta decay with the spectrometer aSPECT. Study of systematic effects

    International Nuclear Information System (INIS)

    Free neutron decay, n→pe anti νe, is the simplest nuclear beta decay, well described as a purely left-handed, vector minus axial-vector interaction within the framework of the Standard Model (SM) of elementary particles and fields. Due to its highly precise theoretical description, neutron beta decay data can be used to test certain extensions to the SM. Possible extensions require, e.g., new symmetry concepts like left-right symmetry, new particles, leptoquarks, supersymmetry, or the like. Precision measurements of observables in neutron beta decay address important open questions of particle physics and cosmology, and are generally complementary to direct searches for new physics beyond the SM in high-energy physics. In this doctoral thesis, a measurement of the proton recoil spectrum with the neutron decay spectrometer aSPECT is described. From the proton spectrum the antineutrinoelectron angular correlation coefficient a can be derived. In our first beam time at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany (2005-2006), background instabilities due to particle trapping and the electronic noise level of the proton detector prevented us from presenting a new value for a. In the latest beam time at the Institut Laue-Langevin (ILL) in Grenoble, France (2007-2008), the trapped particle background has been reduced sufficiently and the electronic noise problem has essentially been solved. For the first time, a silicon drift detector was used. As a result of the data analysis, we identified and fixed a problem in the detector electronics which caused a significant systematic error. The target figure of the latest beam time was a new value for a with a total relative error well below the present literature value of 4 %. A statistical accuracy of about 1.4% was reached, but we could only set upper limits on the correction of the problem in the detector electronics, which are too high to determine a meaningful result. The present doctoral

  1. Measurement of the proton recoil spectrum in neutron beta decay with the spectrometer aSPECT. Study of systematic effects

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Gertrud Emilie

    2012-01-24

    Free neutron decay, n{yields}pe anti {nu}{sub e}, is the simplest nuclear beta decay, well described as a purely left-handed, vector minus axial-vector interaction within the framework of the Standard Model (SM) of elementary particles and fields. Due to its highly precise theoretical description, neutron beta decay data can be used to test certain extensions to the SM. Possible extensions require, e.g., new symmetry concepts like left-right symmetry, new particles, leptoquarks, supersymmetry, or the like. Precision measurements of observables in neutron beta decay address important open questions of particle physics and cosmology, and are generally complementary to direct searches for new physics beyond the SM in high-energy physics. In this doctoral thesis, a measurement of the proton recoil spectrum with the neutron decay spectrometer aSPECT is described. From the proton spectrum the antineutrinoelectron angular correlation coefficient a can be derived. In our first beam time at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany (2005-2006), background instabilities due to particle trapping and the electronic noise level of the proton detector prevented us from presenting a new value for a. In the latest beam time at the Institut Laue-Langevin (ILL) in Grenoble, France (2007-2008), the trapped particle background has been reduced sufficiently and the electronic noise problem has essentially been solved. For the first time, a silicon drift detector was used. As a result of the data analysis, we identified and fixed a problem in the detector electronics which caused a significant systematic error. The target figure of the latest beam time was a new value for a with a total relative error well below the present literature value of 4 %. A statistical accuracy of about 1.4% was reached, but we could only set upper limits on the correction of the problem in the detector electronics, which are too high to determine a meaningful result. The present

  2. Studies of the $\\beta$-decay of Kr and Sr nuclei on and near the N=Z line with a Total Absorption $\\gamma$-ray Spectrometer

    CERN Multimedia

    2002-01-01

    It is proposed to measure the Gamow-Teller strength distribution in the decays of $^{71-75}$Kr and $^{75,76}$Sr using a Total Absorption Gamma-ray Spectrometer (TAGS) based on a large NaI(TI) detector. The $\\gamma$-rays emitted in these decays will be detected in the TAGS in coincidence with positrons and X-rays from electron capture. Measurements of $\\beta$-delayed particles will also be performed in coincidence with the TAGS. Comparison with theoretical calculations based on the mean field approach, Tamm-Dancoff and QRPA method should allow a determination of the shapes of the ground states of these nuclei.

  3. Measurement of the electron-antineutrino angular correlation coefficient a in neutron beta decay with the spectrometer aSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, G.

    2007-08-29

    In the four beam times we performed at the FRM-II, we were able to show that the spectrometer works in principle and that a determination of a with it is possible. A set of routines has been written for decoding and analyzing the raw data. The routines are written in C using the ROOT libraries and can be easily adapted or expanded. We have found a reliable way to extract the proton count rates from the data by building pulseheight spectra for each measurement, subtracting background measurements from those and fitting the resulting peak with a Gaussian. The background of the measurements was studied in detail. The background caused by electrons from neutron decay is very well understood and conforms quantitatively to our expectation. Due to the spatial resolution of our detector and the time resolution provided by our DAQ electronics, we were able to study correlated electron-proton pairs from one neutron decay event. They form a clearly visible peak in a time- and channel-distance spectrum, which can be shifted in the channel-dimension by varying the voltages applied to the lower and upper E x B electrodes. Performing a pulseheight analysis for both involved particles allowed us to obtain a fairly clean energy spectrum of the background caused by electrons from neutron decay in our detector. Using these correlations for data analysis may be of interest for future neutron decay experiments which use segmented detectors. (orig.)

  4. Measurement of the electron-antineutrino angular correlation coefficient a in neutron beta decay with the spectrometer aSPECT

    International Nuclear Information System (INIS)

    In the four beam times we performed at the FRM-II, we were able to show that the spectrometer works in principle and that a determination of a with it is possible. A set of routines has been written for decoding and analyzing the raw data. The routines are written in C using the ROOT libraries and can be easily adapted or expanded. We have found a reliable way to extract the proton count rates from the data by building pulseheight spectra for each measurement, subtracting background measurements from those and fitting the resulting peak with a Gaussian. The background of the measurements was studied in detail. The background caused by electrons from neutron decay is very well understood and conforms quantitatively to our expectation. Due to the spatial resolution of our detector and the time resolution provided by our DAQ electronics, we were able to study correlated electron-proton pairs from one neutron decay event. They form a clearly visible peak in a time- and channel-distance spectrum, which can be shifted in the channel-dimension by varying the voltages applied to the lower and upper E x B electrodes. Performing a pulseheight analysis for both involved particles allowed us to obtain a fairly clean energy spectrum of the background caused by electrons from neutron decay in our detector. Using these correlations for data analysis may be of interest for future neutron decay experiments which use segmented detectors. (orig.)

  5. Operations of the thermal control system for Alpha Magnetic Spectrometer electronics following the beta angle of the International Space Station

    International Nuclear Information System (INIS)

    The Alpha Magnetic Spectrometer (AMS) has been running and measuring cosmic rays on the International Space Station (ISS) since May 19, 2011. The thermal control system (TCS) plays an important role in keeping all components and equipment working in an operational temperature range. Since the AMS started working on the ISS, AMS thermal engineers have been monitoring the on-orbit status of the TCS. During normal operation, the local temperature of AMS components regularly varies along with the β angle of the ISS. Based on the collected temperature data, the general characteristics of local temperature variations of TCS for AMS Electronics following the β of the ISS are discussed with the statistics of the orbit-averaged temperature and the orbit standard deviation of temperature. Furthermore some temperature anomalies at specific β are also studied. - Highlights: • The variation of the main radiators temperature is statistically analyzed. • The hot case and cold case for the main radiators are found in normal operations. • The solar illumination falling on the inner sheet of RAM radiator leads to temperature jump. • The temperature anomalies on the WAKE radiator show a uniform trend except WR3 sensor. • The regularity of the temperature variation is described with fitted equations

  6. Studies of the $\\beta$-decay of Sr nuclei on and near the N=Z Line with a Total Absorption Gamma-ray Spectrometer

    CERN Multimedia

    Marechal, F; Caballero ontanaya, L

    2002-01-01

    In the framework of the investigation of the shapes of the ground states of the parent nucleus, we propose to carry out measurements of the complete Gamow-Teller strength distribution for the $^{76-80}$Sr isotopes, with a new Total Absorption Gamma Spectrometer installed on a new beam line. The results will be compared with theoretical calculations based on the mean field approach. A brief report on the IS370 experiment on $^{72-75}$Kr decay, which was recently performed at ISOLDE, will be given and the performance of the sum spectrometer will be presented.

  7. Chopper spectrometers

    International Nuclear Information System (INIS)

    Chopper spectrometers are devices which measure the dynamics of condensed systems expressed in terms of the scattering function. The scattering function depends on the energy and momentum transfers which are related to the initial and final neutron wave vectors. The resolution of the instrument is limited by the time-of-flight measurements on the scattered beam but the wide range of accessible energy and momentum transfers make chopper spectrometers popular. Several examples of experiments using chopper spectrometers are presented

  8. Study and construction of a {beta}-spectrometer of uniform axial magnetic field fitted with a {beta}-{gamma} coincidence selector. Study of the {beta} spectra of {sup 32}P, {sup 203}Hg, {sup 198}Au. Measurement of the conversion coefficients of {sup 203}Ti and of {sup 198}Hg; Etude et realisation d'un spectrometre-{beta} a champ magnetique axial uniforme, muni d'un selecteur de coincidence {beta}-{gamma}. Etude des spectres {beta} du {sup 32}p, {sup 203}Hg, {sup 198}Au. Mesure des coefficients de conversion du {sup 203}Ti et du {sup 198}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Parsignault, D. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-01

    In the first part is given the principle of the beta spectrometer with uniform axial field using systematically the idea of caustics. The apparatus is described and its properties compared to those deduced from trajectory calculations. The {beta}-ray and {gamma}-ray detectors and the device for selecting coincidences with a 2 {tau} resolution of 5 nanoseconds are also presented. In the second part, the spectrometer is used for studying reference elements and the most accurate results are confirmed. The {beta} spectrum of {sup 60}Co has a statistical form with an accuracy of 1 per cent; the maximum energy E{sub 0} is 316.5 {+-} 1.5 keV. That of the 7/2 + {yields} 11/2 transition for {sup 137}Cs has a unique form, once forbidden. E{sub 0}= 522 {+-} 3 keV. Conversion coefficients {alpha}{sub k} = 96 {+-} 1 X 10{sup -3} {alpha}L + M + N = 20.9 {+-} 0.5 X 10{sup -3}. The two {beta} spectra of {sup 59}Fe, separated by coincidence with the gamma, have the statistical form E{sub 0} = 462 {+-} 2 keV (55.1 + 0,3 per cent) and E{sub 1} = 275 {+-} 4 keV (44.9 {+-} 0.3 per cent). It is then verified whether the l selection rule is apparent in the shape of the phosphorus 32 beta spectrum. It is found in fact that it is not of statistical shape and its shape coefficient is determined. For a theoretical interpretation it is necessary to have better approximations than those generally used and this interpretation will not be unique. This work has also made it possible to show that the source contains a small proportion of {sup 33}P. The study of the {sup 203}Hg {beta} spectrum followed by the 279 keV gamma spectrum is designed to determine the conversion coefficients. The interior spectrum of gold 198 is not of statistical shape either. The form coefficient is determined together with the conversion coefficients which are in slight disagreement with those calculated by Rose or Sliv. An interpretation of the spectrum is put forward which proposes an imperfect compensation for the

  9. Spectrometer gun

    Science.gov (United States)

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  10. Spectrometer gun

    International Nuclear Information System (INIS)

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters

  11. Beta measurements at Department of Energy facilities

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory performed a two-step process to characterize the current beta measurement practices at DOE facilities. PNL issued a survey questionnaire on beta measurement practices to DOE facilities and reported the results. PNL measured beta doses and spectra at seven selected DOE facilities and compared selected measurement techniques in the facility environment. This report documents the results of the radiation field measurements and the comparison of measurement techniques at the seven facilities. Data collected included beta dose and spectral measurements at seven DOE facilities that had high beta-to-gamma ratios (using a silicon surface barrier spectrometer, a plastic scintillator spectrometer, and a multielement beta dosimeter). Other dosimeters and survey meters representative of those used at DOE facilities or under development were also used for comparison. Field spectra were obtained under two distinct conditions. Silicon- and scintillation-based spectrometer systems were used under laboratory conditions where high beta-to-gamma dose ratios made the beta spectra easier to observe and analyze. In the second case, beta spectrometers were taken into actual production and maintenance areas of DOE facilities. Analyses of beta and gamma spectra showed that 234Th- /sup 234m/Pa, 231Th, 137Cs, and 90Sr/90Y were the major nuclides contributing to beta doses at the facilities visited. Beta doses from other fission products and 60Co were also measured, but the potential for exposure was less significant. 21 refs., 64 figs., 18 tabs

  12. Moessbauer spectrometers

    International Nuclear Information System (INIS)

    The recent advances in Moessbauer spectrometers, their parameters and electronic circuits are reviewed. The transfer functions of two mathematical models of electromechanical transducers (with discrete and continuously distributed parameters) are given. The problems of drive and pick-up parts optimisation are discussed. The electronic circuits for reference triangle wave generators with reduced nonlinearity are described. The influence of the positive and negative corrections of the Moessbauer spectrometer feedback loop on the error-signal is discussed. A flow chart for adaptive minimization of the error-signal is presented. In addition a special drive system using piezoelements with an appropriate digital sinusoidal generator is also included. A flow chart of the system for data acquisition is shown. (author)

  13. Moessbauer spectrometers

    International Nuclear Information System (INIS)

    The recent advances in Moessbauer spectrometers, their parameters and electronic circuits are reviewed. The transfer functions of two mathematical models of electromechanical transducers (with discrete and continuously distributed parameters) are given. The problem of optimization of the drive and pick-up parts is discussed. The electronic circuits for reference triangle wave generators with reduced nonlinearity are described. A Moessbauer spectrometer with both positive and negative corrections in the feedback loop is described. The influence of these corrections on the error-signal is discussed. A flow chart for adaptive minimization of the error-signal is presented. In addition a special drive system using piezo elements with an appropriate digital sinusoidal generator is also included. A flow chart of the system using PC for data accumulation is shown. (author)

  14. Electron spectrometers

    International Nuclear Information System (INIS)

    Measurements made using electron spectrometers can lead to the determination of all the parameters that fully characterize the photoionization process. The measurements fall into three categories: the angular independent flux of the photoelectrons which leads to the partial cross section, the angular distribution of the photoelectrons, and the spin of the photoelectrons. The majority of this paper is concerned with electron energy analyzers which can be used to measure both the partial cross section and the angular distribution

  15. Beta Thalassemia

    Science.gov (United States)

    ... South Asian (Indian, Pakistani, etc.), Southeast Asian and Chinese descent. 1 Beta Thalassemia ßß Normal beta globin ... then there is a 25% chance with each pregnancy that their child will inherit two abnormal beta ...

  16. Development of Miniature Spectrometers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-guo

    2007-01-01

    Spectrometer is an essential and necessary optical element used for measuring the chemical components and content of the matter.The development of miniature spectrometers can be traced back to 1980s.The development state and different manufacturing methods of micro-spectrometers are presented.Finally,we analyze the miniaturization trend of spectrometers.Some groundwork for the scientific research is offered by introducing micro-spectrometers development.

  17. Simultaneous beta/gamma digital spectroscopy

    Science.gov (United States)

    Farsoni, Abdollah T.

    A state-of-the-art radiation detection system for simultaneous spectroscopy of beta-particles and gamma-rays has been developed. The system utilizes a triple-layer phoswich detector and a customized Digital Pulse Processor (DPP) built in our laboratory. The DPP board was designed to digitally capture the analog signal pulses and, following several digital preprocessing steps, transfer valid pulses to the host computer for further digital processing. A MATLAB algorithm was developed to digitally discriminate beta and gamma events and reconstruct separate beta and gamma-ray energy spectra with minimum crosstalk. The spectrometer proved to be an effective tool for recording separate beta and gamma-ray spectra from mixed radiation fields. The system as a beta-gamma spectrometer will have broad-ranging applications in nuclear non-proliferation, radioactive waste management, worker safety, systems reliability, dose assessment, and risk analysis.

  18. Commissioning Measurements of the KATRIN Main Spectrometer

    Science.gov (United States)

    Wierman, Kevin; Katrin Collaboration

    2013-10-01

    Beginning in May 2013, the KArlsruhe TRItium Neutrino experiment (KATRIN) collaboration began measurements to commission the 10-m diameter main spectrometer. KATRIN utilizes the spectrometer to provide magnetic adiabatic collimation and electrostatic filtering designed to analyze the tritium beta decay spectrum for contributions from the neutrino mass. In order to achieve an order-of-magnitude improvement on previous neutrino mass experiments the desired sensitivity of the apparatus must be 200 meV in the decay endpoint region. Goals of the recent measurements include identification and reduction of backgrounds and determination of the spectrometer transfer function. Backgrounds have been probed by utilizing electromagnetic field configurations to explore decays in the spectrometer, Penning traps and field emission. A 148-pixel PIN diode array is employed to detect particles exiting the spectrometer, which permits angular and radial distributions of particles to be analyzed. This has allowed for high precision comparison between measurements and simulations of expected backgrounds to be investigated in order to commission the spectrometer. This work is supported by grants from the DOE Office of Nuclear Physics and the Helmholtz Association.

  19. Beta-gamma discriminator circuit

    International Nuclear Information System (INIS)

    The major difficulty encountered in the determination of beta-ray dose in field conditions is generally the presence of a relatively high gamma-ray component. Conventional dosimetry instruments use a shield on the detector to estimate the gamma-ray component in comparison with the beta-ray component. More accurate dosimetry information can be obtained from the measured beta spectrum itself. At Los Alamos, a detector and discriminator circuit suitable for use in a portable spectrometer have been developed. This instrument will discriminate between gammas and betas in a mixed field. The portable package includes a 256-channel MCA which can be programmed to give a variety of outputs, including a spectral display, and may be programmed to read dose directly

  20. Portable triple silicon detector telescope spectrometer for skin dosimetry

    DEFF Research Database (Denmark)

    Helt-Hansen, J.; Larsen, H.E.; Christensen, P.

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50 mu m/150 mu m/7000 mu m covered by a 2 mu m thick titanium window. Rejection of photon contributions from mixed beta/photon exposures is...... achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact...... detectors. The LabVIEW(TM) software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer to...

  1. The SAGE spectrometer

    International Nuclear Information System (INIS)

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  2. The SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, J.; Papadakis, P. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2014-03-15

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  3. Digital positron annihilation spectrometer

    International Nuclear Information System (INIS)

    With the high speed development of digital signal process, the technique of the digitization and processing of signals was applied in the domain of a broad class of nuclear technique. The development of digital positron lifetime spectrometer (DPLS) is more promising than the conventional positron lifetime spectrometer equipped with nuclear instrument modules. And digital lifetime spectrometer has many advantages, such as low noise, long term stability, flexible online or offline digital processing, simple setup, low expense, easy to setting, and more physical information. Digital constant fraction discrimination is for timing. And a new method of optimizing energy windows setting for digital positron lifetime spectrometer is also developed employing the simulated annealing for the convenient use. The time resolution is 220ps and the count rate is 200cps. (authors)

  4. Magnetron mass spectrometer

    International Nuclear Information System (INIS)

    A magnetron mass-spectrometer characterized by increased sensitivity at low power is described. The mass-spectrometer contains ion source cylindrical analyzer located on its axis, ion collector and magnetic system. For decreasing consumed power the ion source is fixed at the end of the analyzer and it represents two coaXial cylinders located between plane electrodes, in one of which a ring slot takes place and the other one is connected with positive terminal of discharge voltage source. The magnetic system represents ring-form magnets fixed by similar poles to each other and separated by washers of magnetic-soft material, the washers being placed in the plane of the ion source. The analyzed ions in the described mass-spectrometer are obtained mainly at the expense of resonance recharge that increases accuracy of measurements due to decrease of fragment peak intensity

  5. Compact Grism Spectrometer

    Science.gov (United States)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  6. A system for simultaneous beta and gamma spectroscopy

    Science.gov (United States)

    Farsoni, A. T.; Hamby, D. M.

    2007-08-01

    A state-of-the-art radiation detection system for real-time and simultaneous spectroscopy of beta-particles and gamma-rays has been developed. The system utilizes a triple-layer phoswich detector and a customized Digital Pulse Processor (DPP) designed and built in our laboratory. The DPP board digitally captures the analog signal pulses and, following several digital preprocessing steps, transfers valid pulses to the host computer for further digital processing. A resolving algorithm also was developed to digitally discriminate beta and gamma events, and reconstruct separate beta and gamma-ray energy spectra with minimal crosstalk. The spectrometer has proven to be an effective tool for recording separate beta and gamma-ray spectra from mixed radiation fields. The system as a beta-gamma spectrometer will have broad-ranging applications in nuclear non-proliferation, radioactive waste management, worker safety, systems reliability, dose assessment, and risk analysis.

  7. The HERMES Spectrometer

    OpenAIRE

    Ackerstaff, K.

    1998-01-01

    The HERMES experiment is collecting data on inclusive and semi-inclusive deep inelastic scattering of polarised positrons from polarised targets of H, D, and He. These data give information on the spin structure of the nucleon. This paper describes the forward angle spectrometer built for this purpose. The spectrometer includes numerous tracking chambers (micro-strip gas chambers, drift and proportional chambers) in front of and behind a 1.3 T.m magnetic field, as well as an extensive set of ...

  8. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    CERN Document Server

    Arenz, M; Bahr, M; Barrett, J P; Bauer, S; Beck, M; Beglarian, A; Behrens, J; Bergmann, T; Besserer, U; Blümer, J; Bodine, L I; Bokeloh, K; Bonn, J; Bornschein, B; Bornschein, L; Büsch, S; Burritt, T H; Chilingaryan, S; Corona, T J; De Viveiros, L; Doe, P J; Dragoun, O; Drexlin, G; Dyba, S; Ebenhöch, S; Eitel, K; Ellinger, E; Enomoto, S; Erhard, M; Eversheim, D; Fedkevych, M; Felden, A; Fischer, S; Formaggio, J A; Fränkle, F; Furse, D; Ghilea, M; Gil, W; Glück, F; Urena, A Gonzalez; Görhardt, S; Groh, S; Grohmann, S; Grössle, R; Gumbsheimer, R; Hackenjos, M; Hannen, V; Harms, F; Hauÿmann, N; Heizmann, F; Helbing, K; Herz, W; Hickford, S; Hilk, D; Hillen, B; Höhn, T; Holzapfel, B; Hötzel, M; Howe, M A; Huber, A; Jansen, A; Kernert, N; Kippenbrock, L; Kleesiek, M; Klein, M; Kopmann, A; Kosmider, A; Kovalík, A; Krasch, B; Kraus, M; Krause, H; Krause, M; Kuckert, L; Kuffner, B; La Cascio, L; Lebeda, O; Leiber, B; Letnev, J; Lobashev, V M; Lokhov, A; Malcherek, E; Mark, M; Martin, E L; Mertens, S; Mirz, S; Monreal, B; Müller, K; Neuberger, M; Neumann, H; Niemes, S; Noe, M; Oblath, N S; Off, A; Ortjohann, H -W; Osipowicz, A; Otten, E; Parno, D S; Plischke, P; Poon, A W P; Prall, M; Priester, F; Ranitzsch, P C -O; Reich, J; Rest, O; Robertson, R G H; Röllig, M; Rosendahl, S; Rupp, S; Rysavy, M; Schlösser, K; Schlösser, M; Schönung, K; Schrank, M; Schwarz, J; Seiler, W; Seitz-Moskaliuk, H; Sentkerestiova, J; Skasyrskaya, A; Slezak, M; Spalek, A; Steidl, M; Steinbrink, N; Sturm, M; Suesser, M; Telle, H H; Thümmler, T; Titov, N; Tkachev, I; Trost, N; Unru, A; Valerius, K; Venos, D; Vianden, R; Vöcking, S; Wall, B L; Wandkowsky, N; Weber, M; Weinheimer, C; Weiss, C; Welte, S; Wendel, J; Wierman, K L; Wilkerson, J F; Winzen, D; Wolf, J; Wüstling, S; Zacher, M; Zadoroghny, S; Zboril, M

    2016-01-01

    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of t...

  9. Beta spectrum of 185W

    International Nuclear Information System (INIS)

    The measurement of the shape of the first forbidden beta transition of 185W is interesting from the point of view of the fact that this nucleus belongs to the deformed region 150185W is carried out employing an optimized Siegbahn-Slatis beta ray spectrometer and the result is compared with the theoretical shape factor incorporating Nilsson's wavefunctions using Simms formalism. The experimental shape factor is fitted to the correction factor C(W)=k(1+aW) with α=0.0026+-0.0432. The theoretical shape factor computed following the matrix elements due to Nilsson model is in good agreement with the present experimental shape factor. The value Λ(2.358) computed in the present measurement in the light of Nilsson model matrix elements of 185W is in agreement with the predicted value (2.4) of J.J. Fujita. (author)

  10. Cyclotrons as mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.J.

    1984-04-01

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures.

  11. The Omega spectrometer

    CERN Multimedia

    1972-01-01

    The Omega spectrometer which came into action during the year. An array of optical spark chambers can be seen withdrawn from the magnet aperture. In the 'igloo' above the magnet is located the Plumbicon camera system which collects information from the spark chambers.

  12. Speckle-based spectrometer

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2015-01-01

    A novel spectrometer concept is analyzed and experimentally verified. The method relies on probing the speckle displacement due to a change in the incident wavelength. A rough surface is illuminated at an oblique angle, and the peak position of the covariance between the speckle patterns observed...

  13. Cyclotrons as mass spectrometers

    International Nuclear Information System (INIS)

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures

  14. Spherical electrostatic electron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T.S.; Kolk, B.; Kachnowski, T.; Trooster, J.; Benczer-Koller, N. (Rutgers - the State Univ., New Brunswick, NJ (USA). Dept. of Physics)

    1982-06-15

    A high transmission, low energy spherical electrostatic electron spectrometer particularly suited to the geometry required for Moessbauer-conversion electron spectroscopy was built. A transmission of 13% at an energy resolution of 2% was obtained with an 0.5 cm diameter source of 13.6 keV electrons. Applications to the study of hyperfine interactions of surfaces and interfaces are discussed.

  15. In Situ Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The In Situ Mass Spectrometer projects focuses on a specific subsystem to leverage advanced research for laser-based in situ mass spectrometer development...

  16. Simulation of the SAGE spectrometer

    Science.gov (United States)

    Cox, D. M.; Konki, J.; Greenlees, P. T.; Hauschild, K.; Herzberg, R.-D.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J.

    2015-06-01

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations.

  17. Effective mass spectrometer

    International Nuclear Information System (INIS)

    The history and major accomplishments of the Effective Mass Spectrometer (EMS) are described. In the eight years since the EMS turned on, 21 experiments have been completed by groups from nine institutions in 32 months of operation. Over 400 million triggers have been recorded on magnetic tape, resulting in 29 journal publications to date. A list of experimental proposals for the EMS and a sampling of results are presented. 12 figures, 4 tables

  18. Spherical electrostatic electron spectrometer

    Science.gov (United States)

    Yang, T.-S.; Kolk, B.; Kachnowski, T.; Trooster, J.; Benczer-Koller, N.

    1982-06-01

    A high transmission, low energy spherical electrostatic electron spectrometer particularly suited to the geometry required for Mössbauer-conversion electron spectroscopy was built. A transmission of 13% at an energy resolution of 2% was obtained with an 0.5 cm diameter source of 13.6 keV electrons. Applications to the study of hyperfine interactions of surfaces and interfaces are discussed.

  19. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  20. Magnetic spectrometer control system

    International Nuclear Information System (INIS)

    The design and implementation of a new computerized control system for the several devices of the magnetic spectrometer at TANDAR Laboratory is described. This system, as a main difference from the preexisting one, is compatible with almost any operating systems of wide spread use available in PC. This allows on-line measurement and control of all signals from any terminal of a computer network. (author)

  1. Mass spectrometers: instrumentation

    Science.gov (United States)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  2. Overview of the Axial Field Spectrometer in the ISR tunnel

    CERN Multimedia

    1980-01-01

    A view of the Axial Field Spectrometer – the last large experiment at the ISR. The horizontal top and vertical outer arrays of the uranium-scintillator hadron calorimeter are clear to be seen, with the blue cylindrical pole piece of the magnet just visible. The pipes that are visible in front of the pole piece are cryogenic feed pipes for the superconducting low-beta quadrupoles.

  3. Development of a portable triple silicon detector telescope for beta spectroscopy and skin dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Helt-Hansen, J

    2000-11-01

    It is now recognized that beta radiation can be a significant radiation problem for exposure of the skin. There is thus a need for a portable and rugged active beta dosemeter-spectrometer to carry out immediate measurements of doses and energies of beta particles even in the presence of photon radiation. The main objective of this report is to describe the development of such an instrument. A beta-spectrometer has been developed consisting of three silicon surface barrier detectors with the thickness: 50{mu}m/150{mu}m/7000{mu}m covered by a 2 {mu}m thick titanium window. The spectrometer is capable of measuring electron energies from 50 keV to 3.5 MeV. The spectrometer is characterized by a compact low weight design, achieved by digital signal processing beginning at an early stage in the signal chain. 255 channels are available for each of the three detectors. The spectrometer is controlled by a laptop computer, which also handles all subsequent data analysis. By use of coincidence/anti-coincidence considerations of the absorbed energy in the three detector elements, counts caused by electrons are separated from those originating from photons. The electron energy distribution is multiplied by a set of conversion coefficients to obtain the dose at 0.07 mm tissue. Monte Carlo calculations has been used to derive the conversion coefficients and to investigate the influence of noise and the design of detector assembly on the performance of the spectrometer. This report describes the development of the spectrometer and its mode of operation, followed by a description of the Monte Carlo calculations carried out to obtain the conversion coefficients. Finally is the capability of the telescope spectrometer to measure beta and photon spectra as well as beta dose rates in pure beta and mixed beta/photon radiation fields described. (au)

  4. Development of a portable triple silicon detector telescope for beta spectroscopy and skin dosimetry

    International Nuclear Information System (INIS)

    It is now recognized that beta radiation can be a significant radiation problem for exposure of the skin. There is thus a need for a portable and rugged active beta dosemeter-spectrometer to carry out immediate measurements of doses and energies of beta particles even in the presence of photon radiation. The main objective of this report is to describe the development of such an instrument. A beta-spectrometer has been developed consisting of three silicon surface barrier detectors with the thickness: 50μm/150μm/7000μm covered by a 2 μm thick titanium window. The spectrometer is capable of measuring electron energies from 50 keV to 3.5 MeV. The spectrometer is characterized by a compact low weight design, achieved by digital signal processing beginning at an early stage in the signal chain. 255 channels are available for each of the three detectors. The spectrometer is controlled by a laptop computer, which also handles all subsequent data analysis. By use of coincidence/anti-coincidence considerations of the absorbed energy in the three detector elements, counts caused by electrons are separated from those originating from photons. The electron energy distribution is multiplied by a set of conversion coefficients to obtain the dose at 0.07 mm tissue. Monte Carlo calculations has been used to derive the conversion coefficients and to investigate the influence of noise and the design of detector assembly on the performance of the spectrometer. This report describes the development of the spectrometer and its mode of operation, followed by a description of the Monte Carlo calculations carried out to obtain the conversion coefficients. Finally is the capability of the telescope spectrometer to measure beta and photon spectra as well as beta dose rates in pure beta and mixed beta/photon radiation fields described. (au)

  5. An alpha–gamma coincidence spectrometer based on the photon–electron rejecting alpha liquid scintillation (PERALS®) system

    International Nuclear Information System (INIS)

    An alpha–gamma coincidence spectrometer has been developed for the measurement of selected actinide isotopes in the presence of high beta/gamma fields. The system is based on a PERALS® liquid scintillation counter for beta/alpha discrimination and was successfully tested with both high purity germanium and bismuth germanate, gamma-ray detectors using conventional analog electronics

  6. Measurement of the beta asymmetry in neutron beta decay

    International Nuclear Information System (INIS)

    Neutron beta decay is the simplest semi-leptonic weak decay and described accurately by the standard model using the first CKM-matrix element and the ratio of vector and axial vector couplings, λ. With more than a dozen observables it is a sensitive probe for investigating the nature of weak interaction and to search for physics beyond the standard model. In the past, measuring the beta asymmetry A in polarized neutron decay has been the most precise way of determining λ and nowadays it allows - together with other observables - to derive limits on non-standard model interactions, such as scalar and tensor couplings. The neutron decay spectrometer Perkeo III was installed at the PF1B cold neutron beam site at the Institut Laue-Langevin to measure the beta asymmetry. By using a pulsed beam combined with an improved detector design a significant reduction of several systematic uncertainties has been achieved compared to the predecessor, Perkeo II. In this talk recent results of the measurements with Perkeo III will be presented. In particular, we show the energy distribution of the electrons together with the calibration tools for the detectors.

  7. Triple axis spectrometers

    International Nuclear Information System (INIS)

    Conventional triple-axis neutron spectroscopy was developed by Brockhouse over thirty years ago' and remains today a versatile and powerful tool for probing the dynamics of condensed matter. The original design of the triple axis spectrometer is technically simple and probes momentum and energy space on a point-by-point basis. This ability to systematically probe the scattering function in a way which only requires a few angles to be moved under computer control and where the observed data in general can be analysed using a pencil and graph paper or a simple fitting routine, has been essential for the success of the method. These constraints were quite reasonable at the time the technique was developed. Advances in computer based data acquisition, neutron beam optics, and position sensitive area detectors have been gradually implemented on many triple axis spectrometer spectrometers, but the full potential of this has not been fully exploited yet. Further improvement in terms of efficiency (beyond point by point inspection) and increased sensitivity (use of focusing optics whenever the problem allows it) could easily be up to a factor of 10-20 over present instruments for many problems at a cost which is negligible compared to that of increasing the flux of the source. The real cost will be in complexity - finding the optimal set-up for a given scan and interpreting the data as the they are taken. On-line transformation of the data for an appropriate display in Q, ω space and analysis tools will be equally important for this task, and the success of these new ideas will crucially depend on how well we solve these problems. (author)

  8. Mossbauer spectrometer radiation detector

    Science.gov (United States)

    Singh, J. J. (Inventor)

    1973-01-01

    A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided.

  9. Broadband multimode fiber spectrometer

    CERN Document Server

    Liew, Seng Fatt; Choma, Michael A; Tagare, Hemant D; Cao, Hui

    2016-01-01

    A general-purpose all-fiber spectrometer is demonstrated to overcome the trade-off between spectral resolution and bandwidth. By integrating a wavelength division multiplexer with five multimode optical fibers, we have achieved 100 nm bandwidth with 0.03 nm resolution at wavelength 1500 nm. An efficient algorithm is developed to reconstruct the spectrum from the speckle pattern produced by interference of guided modes in the multimode fibers. Such algorithm enables a rapid, accurate reconstruction of both sparse and dense spectra in the presence of noise.

  10. Improvements to mass spectrometers

    International Nuclear Information System (INIS)

    This invention concerns mass spectrometers and, specifically, an ion beam analyser that facilitates the use of these spectrometers. Its object is to provide an improved apparatus for determining the desorption characteristics by field effect of a sample. It also aims to provide an improved system for carrying out sample analyses by using field effect desorption. Under the invention, facilities are added to the analyser to put out of action a part at least of the separation facilities so that the ion beam coming from the source of ions is not deflected. Detection means are located along the non deflected ion beam to detect the ions of the sample when they effectively appear and finally, actuating facilities are coupled to the out-of-action system so that the mass separation facilities may be brought back into action. This enables the operator to vary the parameters, such as the position of the source (emitter), the temperature and the electric field intensity until ions are released by the unknown sample

  11. BETA-S, Multi-Group Beta-Ray Spectra

    International Nuclear Information System (INIS)

    1 - Description of program or function: BETA-S calculates beta-decay source terms and energy spectra in multigroup format for time-dependent radionuclide inventories of actinides, fission products, and activation products. Multigroup spectra may be calculated in any arbitrary energy-group structure. The code also calculates the total beta energy release rate from the sum of the average beta-ray energies as determined from the spectral distributions. BETA-S also provides users with an option to determine principal beta-decaying radionuclides contributing to each energy group. The CCC-545/SCALE 4.3 (or SCALE4.2) code system must be installed on the computer before installing BETA-S, which requires the SCALE subroutine library and nuclide-inventory generation from the ORIGEN-S code. 2 - Methods:Well-established models for beta-energy distributions are used to explicitly represent allowed, and 1., 2. - and 3. -forbidden transition types. Forbidden non-unique transitions are assumed to have a spectral shape of allowed transitions. The multigroup energy spectra are calculated by numerically integrating the energy distribution functions using an adaptive Simpson's Rule algorithm. Nuclide inventories are obtained from a binary interface produced by the ORIGEN-S code. BETA-S calculates the spectra for all isotopes on the binary interface that have associated beta-decay transition data in the ENSDF-95 library, developed for the BETA-S code. This library was generated from ENSDF data and contains 715 materials, representing approximately 8500 individual beta transition branches. 3 - Restrictions on the complexity of the problem: The algorithms do not treat positron decay transitions or internal conversion electrons. The neglect of positron transitions in inconsequential for most applications involving aggregate fission products, since most of the decay modes are via electrons. The neglect of internal conversion electrons may impact on the accuracy of the spectrum in the low

  12. Simulation of the SAGE spectrometer

    International Nuclear Information System (INIS)

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  13. Simulation of the SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.M.; Herzberg, R.D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Hauschild, K. [Universite Paris-Sud, CSNSM-IN2P3-CNRS, Orsay (France)

    2015-06-15

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  14. Laser spectrometer of ion mobility

    International Nuclear Information System (INIS)

    The process of ion packet broadening in longitudinal laser spectrometer of ion mobility is studied. The contributions of diffusion, Coulomb and other broadening mechanisms are compared. The resolution of the developed spectrometer is measured (R ∼ 45) in atmospheres of both purified air and pure nitrogen. The dependence of the spectrometer resolution on the drift voltage is studied. The recorded spectra of some explosives with an extremely low pressure of saturated vapors indicate a high sensitivity of this spectrometer (no worse than 10-14 g/cm3)

  15. The GT resonance revealed in beta sup + -decay using new experimental techniques

    CERN Document Server

    Algora, A; Rubio, B; Taín, J L; Agramunt, J; Blomqvist, J M; Batist, L; Borcea, R; Collatz, R; Gadea, A; Gerl, J; Gierlik, M; aGórska, M; Guilbaud, O; Grawe, H; Hellström, M; Hu, Z; Janas, Z; Karny, M; Kirchner, R; Kleinheinz, P; Liu, W; Martínez, T; Moroz, F; Plochocki, A; Rejmund, M; Roeckl, E; Rykaczewski, K; Shibata, M; Szerypo, J; Wittmann, V

    1999-01-01

    The GT beta decay of sup 1 sup 5 sup 0 Ho has been studied with a Total Absorption Spectrometer (TAS), with an array of 6 Euroball CLUSTER Ge detectors (the CLUSTER CUBE), and with an alpha detector. The three techniques complement each other. The results provide the first observation of an extremely sharp resonance in GT beta decay.

  16. Optical fiber smartphone spectrometer.

    Science.gov (United States)

    Hossain, Md Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2016-05-15

    An optical fiber-based smartphone spectrometer incorporating an endoscopic fiber bundle is demonstrated. The endoscope allows transmission of the smartphone camera LED light to a sample, removing complications from varying background illumination. The reflected spectra collected from a surface or interface is dispersed onto the camera CMOS using a reflecting diffraction grating. A spectral resolution as low as δλ∼2.0  nm over a bandwidth of Δλ∼250  nm is obtained using a slit width, ωslit=0.7  mm. The instrument has vast potential in a number of industrial applications including agricultural produce analysis. Spectral analysis of apples shows straightforward measurement of the pigments anthocyanins, carotenoid, and chlorophyll, all of which decrease with increasing storage time. PMID:27176971

  17. BNL multiparticle spectrometer software

    International Nuclear Information System (INIS)

    This paper discusses some solutions to problems common to the design, management and maintenance of a large high energy physics spectrometer software system. The experience of dealing with a large, complex program and the necessity of having the program controlled by various people at different levels of computer experience has led us to design a program control structure of mnemonic and self-explanatory nature. The use of this control language in both on-line and off-line operation of the program will be discussed. The solution of structuring a large program for modularity so that substantial changes to the program can be made easily for a wide variety of high energy physics experiments is discussed. Specialized tools for this type of large program management are also discussed

  18. Thermoluminescence emission spectrometer.

    Science.gov (United States)

    Prescott, J R; Fox, P J; Akber, R A; Jensen, H E

    1988-08-15

    A sensitive thermoluminescence (TL) emission spectrometer based on Fourier transform spectroscopy is described. It employs a modified scanning Twyman-Green interferometer with photomultiplier detection in a photon-counting mode. The etendue is 180pi mm(2), and it covers the 350-600-nm wavelength range. The output can be displayed either as a 3-D isometric plot of intensity vs temperature and wavelength, as a contour diagram, or as a conventional TL glow curve of intensity vs temperature. It is sufficiently sensitive to record thermoluminescence spectra of dosimeter phosphors and minerals for thermoluminescence dating at levels corresponding to those found during actual use as radiation monitors or in dating. Examples of actual spectra are given. PMID:20539405

  19. Applications of TAGS data in beta decay energies and decay heat calculations

    OpenAIRE

    Pham, N. S.; 片倉 純一

    2007-01-01

    The recent data of beta-decay intensity measured by using the total absorption gamma-ray spectrometer (TAGS), for several fission products (FP), has been applied for calculations of the average energies and spectra, and decay heat summations. The calculations were performed based on the Gross theory of beta decay, in which the beta strength functions were experimentally derived from TAGS data. The deviations of decay heat power predictions from the original decay data of JENDL Decay Data File...

  20. Total absorption γ-ray spectroscopy of beta delayed neutron emitters

    Science.gov (United States)

    Valencia, E.; Algora, A.; Tain, J. L.; Rice, S.; Agramunt, J.; Zakari-Issoufou, A.-A.; Porta, A.; Fallot, M.; Jordan, M. D.; Molina, F.; Estevez, E.; Bowry, M.; Bui, V. M.; Caballero-Folch, R.; Cano-Ott, D.; Eloma, V.; Eronen, T.; Garcia, A.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Kondev, F. G.; Martinez, T.; Moore, I.; Rissanen, J.; Ńystö, J.; Penttilä, H.; Kankainen, A.; Rubio, B.; Gelletly, W.; Perez, A.; Podolyak, Zs.; Regan, P. H.; Farrelly, G. F.; Weber, C.; Mendoza, E.; Igisol People

    2013-06-01

    Preliminary results of the data analysis of the beta decay of 94Rb using a novel - segmented- total absorption spectrometer are shown in this contribution. This result is part of a systematic study of important contributors to the decay heat problem in nuclear reactors. In this particular case the goal is to determine the beta intensity distribution below the neutron separation energy and the gamma/beta competition above.

  1. Penning Trap Searches in the KATRIN Main Spectrometer

    Science.gov (United States)

    Wierman, Kevin; Katrin Collaboration

    2015-10-01

    The Karlsruhe Tritium Neutrino Experiment (KATRIN) aims to make a precision measurement of the tritium beta decay spectrum with a projected sensitivity to neutrino mass of 200 meV. Meeting this goal requires low backgrounds in the beta decay endpoint region. In KATRIN, spatially confined charged particles represent a potential source of backgrounds and systematic errors. Trapping conditions can occur in KATRIN's 10m diameter main spectrometer due to the high magnetic and electrostatic fields required to momentum analyze the electrons. Backgrounds are generated by trapped particles due to scattering off residual gas in the spectrometer causing negative ions to be accelerated towards KATRIN's detector system. Additionally, systematic errors in the neutrino mass measurement can be caused by the electrostatic field generated by trapped electrons. To search for these conditions, the spectrometer was probed by a monoenergetic electron source to determine trapping probabilities as a function of the applied electric and magnetic fields. We acknowledge the support of the German Helmholtz Association, the German Ministry for Education and Research, the Helmholtz Alliance for Astroparticle Physics, the Grant Agency of the Czech Republic, and the US Department of Energy.

  2. VEGAS: VErsatile GBT Astronomical Spectrometer

    Science.gov (United States)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  3. Spectrometers and Polyphase Filterbanks in Radio Astronomy

    CERN Document Server

    Price, Danny C

    2016-01-01

    This review gives an introduction to spectrometers and discusses their use within radio astronomy. While a variety of technologies are introduced, particular emphasis is given to digital systems. Three different types of digital spectrometers are discussed: autocorrelation spectrometers, Fourier transform spectrometers, and polyphase filterbank spectrometers. Given their growing ubiquity and significant advantages, polyphase filterbanks are detailed at length. The relative advantages and disadvantages of different spectrometer technologies are compared and contrasted, and implementation considerations are presented.

  4. The OPERA muon spectrometers

    International Nuclear Information System (INIS)

    The OPERA experiment will study νμ to ντ oscillations through τ appearance on the 732km long CERN to Gran Sasso baseline. The magnet yokes of the two muon spectrometers are instrumented with 48 planes of high resistivity bakelite Resistive Plate Chambers (RPC) operated in streamer mode. Each plane covers about 70m2. A general introduction to the system installation and commissioning will be given. Four RPC planes were instrumented and the first tests were performed confirming a good behavior of the installed RPCs in terms of intrinsic noise and operating currents. The measured noise maps agree with those obtained in the extensive quality test performed at surface. Counting rates are below 20Hz/m2. Single and multiple cosmic muon tracks were also reconstructed. The estimated efficiency is close to the geometrical limit and the very first measurements of the absolute and differential muon flux are in agreement with the expectations. Finally, a description of the readout electronics and of the slow control system is given

  5. The OPERA muon spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Garfagnini, A. [Padova University and INFN, Padova (Italy)]. E-mail: alberto.garfagnini@pd.infn.it; Bergnoli, A. [Padova University and INFN, Padova (Italy); Brugnera, R. [Padova University and INFN, Padova (Italy); Carrara, E. [Padova University and INFN, Padova (Italy); Ciesielski, R. [Padova University and INFN, Padova (Italy); Dal Corso, F. [Padova University and INFN, Padova (Italy); Dusini, S. [Padova University and INFN, Padova (Italy); Fanin, C. [Padova University and INFN, Padova (Italy); Longhin, A. [Padova University and INFN, Padova (Italy); Stanco, L. [Padova University and INFN, Padova (Italy); Cazes, A. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Cecchetti, A. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Di Troia, C. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Dulach, B. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Felici, G. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Mengucci, A. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Orecchini, D. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Paoloni, A. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Spinetti, M. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Terranova, F. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Ventura, M. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Votano, L. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Candela, A. [INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); D' Incecco, M. [INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Gustavino, C. [INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Lindozzi, M. [INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy)

    2007-03-01

    The OPERA experiment will study {nu}{sub {mu}} to {nu}{sub {tau}} oscillations through {tau} appearance on the 732km long CERN to Gran Sasso baseline. The magnet yokes of the two muon spectrometers are instrumented with 48 planes of high resistivity bakelite Resistive Plate Chambers (RPC) operated in streamer mode. Each plane covers about 70m{sup 2}. A general introduction to the system installation and commissioning will be given. Four RPC planes were instrumented and the first tests were performed confirming a good behavior of the installed RPCs in terms of intrinsic noise and operating currents. The measured noise maps agree with those obtained in the extensive quality test performed at surface. Counting rates are below 20Hz/m{sup 2}. Single and multiple cosmic muon tracks were also reconstructed. The estimated efficiency is close to the geometrical limit and the very first measurements of the absolute and differential muon flux are in agreement with the expectations. Finally, a description of the readout electronics and of the slow control system is given.

  6. Aerosol mobility size spectrometer

    Science.gov (United States)

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  7. Adaptive Computed Tomography Imaging Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The present proposal describes the development of an adaptive Computed Tomography Imaging Spectrometer (CTIS), or "Snapshot" spectrometer which can...

  8. Novel Micro Fourier Transform Spectrometers

    Institute of Scientific and Technical Information of China (English)

    KONG Yan-mei; LIANG Jing-qiu; LIANG Zhong-zhu; WANG-Bo; ZHANG Jun

    2008-01-01

    The miniaturization of spectrometer opens a new application area with real-time and on-site measurements. The Fourier transform spectrometer(FTS) is much attractive considering its particular advantages among the approaches. This paper reviews the current status of micro FTS in worldwide and describes its developments; In addition, analyzed are the key problems in designing and fabricating FTS to be settled during the miniaturization. Finally, a novel model of micro FTS with no moving parts is proposed and analyzed, which may provide new concepts for the design of spectrometers.

  9. Automated transportable mass spectrometer

    International Nuclear Information System (INIS)

    The need has been identified for a Mass Spectrometer (MS) which can be conveniently transported among several facilities for rapid verification of the isotopic composition of Special Nuclear Material. This requirement for a light weight, transportable MS for U and Pu mass analysis was met by deleting the gas chromatograph (GC) portions of a Hewlett-Packard (H-P) Model 5992 Quadrupole GCMS and substituting a vacuum lock sample entry system. A programmable power supply and vacuum gauge were added and circuitry modifications were made to enable use of the supplied software. The single rhenium filament plug-in source is loaded with either a nominal microliter of sample solution and evaporated, or with a prepared resin bead. Using a resin bead in a specially dimpled filament, copious sensitivity is obtained with 30 nanogram uranium samples. After sample insertion the analysis is completely controlled by an H-P Model 9825 calculator. Source vacuum of 2 x 10-7 torr or better is regained within 2 minutes after sample insertion, and total time for a complete analysis is about 7 minutes. Accuracy is better than 1% for isotope ratios less than 20 and better than 2% for ratios of 100. Ions are accelerated at about 1.8 volts into the mass filter which has pole pieces of hyperbolic cross section. Collection is by a Galileo Channeltron multiplier into a log preamp. During a normal run, 1.4 x 106 data point are observed and averaged. Weight of the instrument excluding the calculator is 88 Kg which allows relatively easy transportation over short distances by two persons. The instrument can be carried into a facility and be ready to analyze samples in less than 3 hours

  10. Levered and unlevered Beta

    OpenAIRE

    Fernandez, Pablo

    2003-01-01

    We prove that in a world without leverage cost the relationship between the levered beta ( L) and the unlevered beta ( u) is the No-costs-of-leverage formula: L = u + ( u - d) D (1 - T) / E. We also analyze 6 alternative valuation theories proposed in the literature to estimate the relationship between the levered beta and the unlevered beta (Harris and Pringle (1985), Modigliani and Miller (1963), Damodaran (1994), Myers (1974), Miles and Ezzell (1980), and practitioners) and prove that all ...

  11. High energy electron crystal spectrometer

    International Nuclear Information System (INIS)

    A spectrometer has been developed to measure relativistic electrons produced in different types of plasmas, such as tokamak plasmas and laser produced plasmas. The spectrometer consists of nine Y2SiO5:Ce crystals, which are shielded by stainless steel filters. The absolute calibration of the spectrometer was performed at the superconducting electron linear accelerator Electron Linac for beams with high Brilliance and low Emittance. The spectrometer can provide information about energy distribution of electrons and their numbers for the energy range between 4 and 30 MeV. The spectrum is analyzed by means of the Monte Carlo three-dimensional GEANT4 code. An energy resolution of about 10% is achieved.

  12. Semiconductor spectrometer for radiation protection

    International Nuclear Information System (INIS)

    The radiation fields on aircraft board and for other radiation protection application are complexes they contain the particles with energies up to few hundreds MeV. Obviously, one distinguishes the components with low resp. high linear energy transfer (LET). Recently, we have acquired a new measuring instrument, MDU-LIULIN, an energy deposition spectrometer base on a Si-detector. The spectrometer was originally developed and largely tested onboard of cosmic vehicles, its sensitive element is a Si-diode. The spectrometer has been calibrated in photon, neutron and high-energy radiation reference fields (CERN). The energy deposited in the detector by a particle is analysed by a 256-channel spectrum analyser, it permits to distinguish the contribution of different types of radiation to integral dosimetry quantities. The spectrometer has been, since April 2000 used for some radiation protection applications, mostly on aircraft board. Results obtained are presented, discussed and analysed. Materials and methods. (authors)

  13. An antimatter spectrometer in space

    International Nuclear Information System (INIS)

    We discuss a simple magnetic spectrometer to be installed on a satellite or space station. The purpose of this spectrometer is to search for primordial antimatter to the level of antimatter/matter ∼10-9, improving the existing limits obtained with balloon flights by a factor of 104 to 105. The design of the spectrometer is based on an iron-free, Nd-Fe-B permanent magnet, scintillation counters, drift tubes, and silicon or time projection chambers. Different design options are discussed. Typically, the spectrometer has a weight of about 2 tons and an acceptance of about 1.0 m2 sr. The availability of the new Nd-Fe-B material makes it possible for the first time to put a magnet into space economically and reliably. ((orig.))

  14. Polarimetric spectrometer for Italian Radiotelescopes .

    Science.gov (United States)

    Russo, A.

    A new spectrometer has been designed and tested at the Radioastronomy Laboratory of Arcetri Astrophysical Observatory. It provides a resolution of 4096 spectral points over a bandwidth selectable between 0.5 and 125 MHz. It can analyze up to 8 independent signals with full polarimetric capabilities. This spectrometer can be used as back-end for a 7 channels double polarization radio receiver,working in the frequency range 18-26 GHz, implemented in the same laboratory.

  15. Betting Against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    .S. equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures; (2) A betting-against-beta (BAB) factor, which is long leveraged low beta assets and short high-beta assets, produces significant positive risk-adjusted returns; (3) When funding constraints tighten, the return of the...

  16. Forward-Looking Betas

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Vainberg, Gregory

    Few issues are more important for finance practice than the computation of market betas. Existing approaches compute market betas using historical data. While these approaches differ in terms of statistical sophistication and the modeling of the time-variation in the betas, they are all backward-...

  17. The MAGNEX spectrometer: Results and perspectives

    Science.gov (United States)

    Cappuzzello, F.; Agodi, C.; Carbone, D.; Cavallaro, M.

    2016-06-01

    This review discusses the main achievements and future perspectives of the MAGNEX spectrometer at the INFN-LNS laboratory in Catania (Italy). MAGNEX is a large-acceptance magnetic spectrometer for the detection of the ions emitted in nuclear collisions below Fermi energy. In the first part of the paper an overview of the MAGNEX features is presented. The successful application to the precise reconstruction of the momentum vector, to the identification of the ion masses and to the determination of the transport efficiency is demonstrated by in-beam tests. In the second part, an overview of the most relevant scientific achievements is given. Results from nuclear elastic and inelastic scattering as well as from transfer and charge-exchange reactions in a wide range of masses of the colliding systems and incident energies are shown. The role of MAGNEX in solving old and new puzzles in nuclear structure and direct reaction mechanisms is emphasized. One example is the recently observed signature of the long searched Giant Pairing Vibration. Finally, the new challenging opportunities to use MAGNEX for future experiments are briefly reported. In particular, the use of double charge-exchange reactions toward the determination of the nuclear matrix elements entering in the expression of the half-life of neutrinoless double beta decay is discussed. The new NUMEN project of INFN, aiming at these investigations, is introduced. The challenges connected to the major technical upgrade required by the project in order to investigate rare processes under high fluxes of detected heavy ions are outlined.

  18. High-effective position time spectrometer in actual measurements of low intensity region of electron spectra

    International Nuclear Information System (INIS)

    Magnetic position-time spectrometer was proposed in previous work, where not only electron coordinates in focal plane are measured by position sensitive detector (PSD) but places of their birth in beta source plane of a large area are fixed using another PSD, situated behind it, by quick effects, accompanying radioactive decay. PSD on the basis of macro-channel plates are used. It is succeeded in position-time spectrometer to combine beta sources of a large area with multichannel registration for a wide energy interval, that efficiency of measurements was two orders of magnitude increase d in comparison magnetic apparatus having PSD only in focal plane. Owing to two detectors' switching on coincidence the relation effect/background in increased minimum on two orders of magnitude in comparison with the same apparatus. At some complication of mathematical analysis it was obtained, that high characteristics of position-time spectrometer are kept during the use the magnetic field, providing double focusing. Owning to this focusing the gain the efficiency of measurements will make one more order of magnitude. Presented high-effective position-time spectrometer is supposed to use in the measurements of low-intensity region of electron spectra, which are important for development of fundamental physics. This is the first of all estimation of electron anti-neutrino mass by the form of beta spectrum of tritium in the region of boundary energy. Recently here there was problem of non physical negative values. This problem can be solved by using in measurement of different in principle high-effective spectrometers, which possess improved background properties. A position-time spectrometers belongs to these apparatus, which provides the best background conditions at very large effectiveness of the measurements of tritium beta spectrum in the region of boundary energy with acceptable high resolution. An important advantage of position-time spectrometer is the possibility of

  19. Portable smartphone optical fibre spectrometer

    Science.gov (United States)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-09-01

    A low cost, optical fibre based spectrometer has been developed on a smartphone platform for field-portable spectral analysis. Light of visible wavelength is collected using a multimode optical fibre and diffracted by a low cost nanoimprinted diffraction grating. A measurement range over 300 nm span (λ = 400 to 700 nm) is obtained using the smartphone CMOS chip. The spectral resolution is Δλ ~ 0.42 nm/screen pixel. A customized Android application processed the spectra on the same platform and shares with other devices. The results compare well with commercially available spectrometer.

  20. The Bruny Island Radio Spectrometer

    Science.gov (United States)

    Erickson, W. C.

    1997-11-01

    A radio spectrometer has been built on Bruny Island, south of Hobart, for the study of solar bursts in the rarely observed frequency range from 3 to 20 MHz. This spectrometer is an adaptive device that employs digital techniques to avoid most of the strong terrestrial interference prevalent in this frequency range. The residual interference that cannot be avoided is excised during off-line processing. As a result, successful observations are made down to the minimum frequency that can propagate through the ionosphere to the antenna. This minimum frequency depends upon the zenith distance of the Sun and it is usually between 4 and 8 MHz.

  1. Koedam {beta} factors revisited

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, J.E. [Physics Department, University of Wisconsin, Madison, WI (United States); Doughty, D.A. [Perkin-Elmer Optoelectronics, Santa Clara, CA (United States); Lister, G.G. [OSRAM SYLVANIA Inc., Beverly, MA (United States)

    2002-07-21

    A Koedam {beta} factor makes it possible to compute the total output power in line radiation from a positive column discharge using a single radiance measurement normal to an aperture in the wall. The results of analytic derivations of {beta} factors are presented for columns with uniform ({beta}=1.0) and parabolic ({beta}=0.75) excitation rates per unit volume and with negligible opacity. A Monte Carlo code for simulating radiation trapping with a spatially uniform density of absorbing atoms is then used to determine {beta} factors as a function of opacity. The code includes partial frequency redistribution and a Voigt line shape with radiative broadening, resonance collisional broadening, and Doppler broadening. The resulting {beta} factors are found to be nearly independent of opacity over a wide range of column radii for spectral line shapes dominated by Doppler broadening or by resonance collisional broadening. Additional Monte Carlo simulations are used to study {beta} factors as a function of a non-uniform density of absorbing atoms from radial cataphoresis with line shapes dominated by Doppler broadening, foreign gas broadening, and resonance collisional broadening. Radial cataphoresis is found to increase {beta} factors in all cases. Geometrical effects, refraction, and imperfect transmission at the glass wall are studied and found to decrease {beta} factors. (author)

  2. Beta-energy averaging and beta spectra

    International Nuclear Information System (INIS)

    A simple yet highly accurate method for approximately calculating spectrum-averaged beta energies and beta spectra for radioactive nuclei is presented. This method should prove useful for users who wish to obtain accurate answers without complicated calculations of Fermi functions, complex gamma functions, and time-consuming numerical integrations as required by the more exact theoretical expressions. Therefore, this method should be a good time-saving alternative for investigators who need to make calculations involving large numbers of nuclei (e.g., fission products) as well as for occasional users interested in restricted number of nuclides. The average beta-energy values calculated by this method differ from those calculated by ''exact'' methods by no more than 1 percent for nuclides with atomic numbers in the 20 to 100 range and which emit betas of energies up to approximately 8 MeV. These include all fission products and the actinides. The beta-energy spectra calculated by the present method are also of the same quality

  3. JAERI Tandem neutron TOF spectrometer

    International Nuclear Information System (INIS)

    The layout of the neutron TOF spectrometer at JAERI Tandem Accelerator for the scattering measurement in 10-40 MeV and the data acquisition/process system are described. The result of the 28Si(n,n) and (n,n') at En=13 MeV is shown and the great improvement of the counting efficiency is obtained. (author)

  4. Mirrors for pion spectrometer DIRAC

    Czech Academy of Sciences Publication Activity Database

    Pech, Miroslav; Schovánek, Petr; Hrabovský, Miroslav; Řídký, Jan; Mandát, Dušan; Nožka, Libor; Palatka, Miroslav

    1. Olomouc : Univerzita Palackého v Olomouci, 2006 - (Křepelka, J.), s. 109-110 ISBN 80-244-1544-5 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : mirrors * pion spectrometer DIRAC Subject RIV: BH - Optics, Masers, Lasers

  5. The GRAD gamma ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rester, A.C.; Piercey, R.B.; Eichhorn, G.; Coldwell, R.L.; McKisson, J.M.; Ely, D.W.; Mann, H.M.; Jenkins, D.A.

    1986-02-01

    A gamma-ray spectrometer for an upcoming space shuttle mission is described. Consisting of a 150 cm/sup 3/ n-type germanium detector set inside active shielding of bismuth germanate and plastic scintillator, the instrument will be used in studies of the Orbiter background and the galactic center.

  6. The GRAD gamma ray spectrometer

    International Nuclear Information System (INIS)

    A gamma-ray spectrometer for an upcoming space shuttle mission is described. Consisting of a 150 cm3 n-type germanium detector set inside active shielding of bismuth germanate and plastic scintillator, the instrument will be used in studies of the Orbiter background and the galactic center

  7. G-Fresnel smartphone spectrometer.

    Science.gov (United States)

    Zhang, Chenji; Cheng, Gong; Edwards, Perry; Zhou, Ming-Da; Zheng, Siyang; Liu, Zhiwen

    2016-01-21

    We report a smartphone spectrometer with nanometer resolution working in the visible range. A G-Fresnel device with the dual functionality of focusing and dispersion is used to enable miniaturization. Proof of principle application to Bradford assay of protein concentration is also demonstrated. PMID:26645747

  8. The smallsat TIR spectrometer MIBS

    NARCIS (Netherlands)

    Leijtens, J.A.P.; Court, A.J.; Lucas, J.W.

    2005-01-01

    In frame of the ESA Earthcare MSI study, TNO Science and Industry has developed a compact spectrometer which is optimized for operation in the 7 to 14 μm wavelength region. By optimizing the throughput of the system, and using the advantages of modern manufacturing technologies to the largest extend

  9. Double beta decay experiments

    OpenAIRE

    Barabash, A. S.

    2011-01-01

    The present status of double beta decay experiments is reviewed. The results of the most sensitive experiments are discussed. Proposals for future double beta decay experiments with a sensitivity to the $$ at the level of (0.01--0.1) eV are considered.

  10. Negative Beta Encoder

    CERN Document Server

    Kohda, Tohru; Aihara, Kazuyuki

    2008-01-01

    A new class of analog-digital (A/D), digital-analog (D/A) converters as an alternative to conventional ones, called $\\beta$-encoder, has been shown to have exponential accuracy in the bit rates while possessing self-correction property for fluctuations of amplifier factor $\\beta$ and quantizer threshold $\

  11. Betting against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    2014-01-01

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model's five central predictions: (1) Because constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for...

  12. Scintillation forward spectrometer of the SPHERE setup

    International Nuclear Information System (INIS)

    The construction of the forward spectrometer for the 4π SPHERE setup to study multiple production of particles in nucleus-nucleus interactions is described. The measured parameters of the spectrometer detectors are presented. 7 refs.; 14 figs.; 1 tab

  13. Sample rotating turntable kit for infrared spectrometers

    Science.gov (United States)

    Eckels, Joel Del; Klunder, Gregory L.

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  14. Status of the Los Alamos tritium beta decay experiment

    International Nuclear Information System (INIS)

    The Los Alamos tritium experiment employs a gaseous tritium source and a magnetic spectrometer to determine the mass of the electron antineutrino from the shape of the tritium beta spectrum. Since publication of the first result from this apparatus (m/sub nu/ < 27 eV at 95% confidence), work has concentrated on improving the data rates. A 96-element Si microstrip array detector has been installed to replace the single proportional counter at the spectrometer focus, resulting in greatly increased efficiency. Measurements of the 1s photoionization spectrum of Kr now obviate the need for reliance on the theoretical shakeup and shakeoff spectrum of Kr in determining the spectrometer resolution. 19 refs., 3 figs

  15. Rapid synthesis of beta zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  16. Lessons learned with the SAGE spectrometer

    International Nuclear Information System (INIS)

    The SAGE spectrometer combines a high-efficiency γ-ray detection system with an electron spectrometer. Some of the design features have been known to be problematic and surprises have come up during the early implementation of the spectrometer. Tests related to bismuth germanate Compton-suppression shields, electron detection efficiency and an improved cooling system are discussed in the paper. (paper)

  17. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  18. New schemes of static mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Baisanov, O.A. [Military Institute of Air Defense Forces, Aktobe (Kazakhstan); Doskeyev, G.A. [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan); Spivak-Lavrov, I.F., E-mail: baisanov@mail.ru [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan)

    2011-07-21

    Different possibilities to increase the 'quality', or Q-quantity, of static mass spectrometers by expanding the ion beam before it enters the magnetic field are analyzed. The design of mass spectrometers using a cone-shaped achromatic prism is discussed. Different variants of achromatic mass spectrometers using electrostatic prisms and sector magnetic fields are also considered.

  19. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  20. New schemes of static mass spectrometers

    International Nuclear Information System (INIS)

    Different possibilities to increase the 'quality', or Q-quantity, of static mass spectrometers by expanding the ion beam before it enters the magnetic field are analyzed. The design of mass spectrometers using a cone-shaped achromatic prism is discussed. Different variants of achromatic mass spectrometers using electrostatic prisms and sector magnetic fields are also considered.

  1. Temporal dispersion of a spectrometer.

    Science.gov (United States)

    Visco, A; Drake, R P; Froula, D H; Glenzer, S H; Pollock, B B

    2008-10-01

    The temporal dispersion of an optical spectrometer has been characterized for a variety of conditions related to optical diagnostics to be fielded at the National Ignition Facility (e.g., full-aperture backscatter station, Thomson scattering). Significant time smear is introduced into these systems by the path length difference through the spectrometer. The temporal resolution is shown to depend only on the order of the grating, wavelength, and the number of grooves illuminated. To enhance the temporal resolution, the spectral gratings can be masked limiting the number of grooves illuminated. Experiments have been conducted to verify these calculations. The size and shape of masks are investigated and correlated with the exact shape of the temporal instrument function, which is required when interpreting temporally resolved data. The experiments used a 300 fs laser pulse and a picosecond optical streak camera to determine the temporal dispersion. This was done for multiple spectral orders, gratings, and optical masks. PMID:19044687

  2. Temporal Dispersion of a Spectrometer

    International Nuclear Information System (INIS)

    The temporal dispersion of an optical spectrometer has been characterized for a variety of conditions related to optical diagnostics to be fielded at the National Ignition Facility (e.g., Full-Aperture Backscatter Station, Thomson Scattering). Significant time smear is introduced into these systems by the path length difference through the spectrometer. The temporal resolution can be calculated to depend only on the order of the grating, wavelength, and the number of grooves illuminated. To enhance the temporal dispersion, the spectral gratings can be masked limiting the number of grooves illuminated. Experiments have been conducted to verify these calculations. The size and shape of masks are investigated and correlated to the exact shape of the temporal instrument function, which is required when interpreting temporally resolved data. The experiments used a 300fs laser pulse and a picosecond optical streak camera to determine the temporal dispersion. This was done for multiple spectral orders, gratings, and optical masks

  3. Airborne gamma ray spectrometer surveying

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) in its role as collector and disseminator of information on nuclear techniques has long had an interest in gamma ray spectrometer methods and has published a number of Technical Reports on various aspects of the subject. At an Advisory Group Meeting held in Vienna in November 1986 to review appropriate activities the IAEA could take following the Chernobyl accident, it was recommended that preparation begin on a new Technical Report on airborne gamma ray spectrometer surveying, taking into account the use of the technique for environmental monitoring as well as for nuclear emergency response requirements. Shortly thereafter the IAEA became the lead organization in the Radioelement Geochemical Mapping section of the International Geological Correlation Programme/United Nations Educational, Scientific and Cultural Organization (UNESCO) Project on International Geochemical Mapping. These two factors led to the preparation of the present Technical Report. 18 figs, 4 tabs

  4. On-chip spiral spectrometer

    CERN Document Server

    Redding, Brandon; Bromberg, Yaron; Sarma, Raktim; Cao, Hui

    2016-01-01

    We designed an on-chip spectrometer based on an evanescently-coupled multimode spiral waveguide. Interference between the modes in the waveguide forms a wavelength-dependent speckle pattern which can be used as a fingerprint to identify the input wavelength after calibration. Evanescent coupling between neighboring arms of the spiral enhances the temporal spread of light propagating through the spiral, leading to a dramatic increase in the spectral resolution. Experimentally, we demonstrated that a 250 {\\mu}m radius spiral spectrometer provides a resolution of 0.01 nm at a wavelength of 1520 nm. Spectra containing 40 independent spectral channels can be recovered simultaneously and the operation bandwidth can be increased further when measuring sparse spectra.

  5. Velocity selector for SANS spectrometer

    International Nuclear Information System (INIS)

    Mechanical velocity selector, designed firstly at the beginning of the neutron age (the end of 40-th - 50-th, see and references herein) are nowadays of wide use at SANS spectrometers on steady state neutron sources. The present report is devoted to the description of the construction and parameters of the selector, designed for SANS spectrometer at the 1 MW research reactor (URGN, Draria, Algeria). The design of selector provides high transmission (more then 90%) and wavelength resolution of Δλ,/λ ∼ 14%, allowing the neutron wavelength to be selected between 4 A and 10 A. The rotor of selector is an aluminium cylinder rotating in a vacuum jacket around the horizontal axis. The rotor slits of helical shape are formed by absorbing plates with thickness 0.5 mm and made of Gd (10%)-Al alloy. (author)

  6. Development of cold neutron spectrometers

    International Nuclear Information System (INIS)

    □ Cold Neutron Triple Axsis Spectrometer (Cold-TAS) Development Ο Fabrication and Installation of the Major Cold-TAS Components Ο Performance Test of the Cold-TAS □ Cold Neutron Time-of-Flight Spectrometer(DC-TOF) Development Ο Fabrication of the Major DC-TOF Components Ο Development DC-TOF Data Reduction Software □ Expected Contribution The two world-class inelastic neutron scattering instruments measure atomic or molecular scale dynamics of meV energy range. This unprecedented measurement capability in the country will enable domestic and international scientists to observe new phenomena in their materials research to obtain world class results. Especially those who work in the fields of magnetic properties of superconductors and multiferroics, molecular dynamics, etc. will get more benefit from these two instruments

  7. A Double Slow Neutron Spectrometer

    International Nuclear Information System (INIS)

    The neutron spectrometer described in the paper is intended for measurements of the angular and energy distribution of monochromatic slow neutrons, inelasticaily scattered by liquid and solid bodies. Experiments of this type permit detailed information to be obtained concerning the dynamics of the atoms in various aggregate states of a substance. The spectromeeter is based on the time-of-flight method. The pulse source of neutrons is the IBR (1) reactor. A mechanical interrupter, rotating synchronously with the disc of the IBR and having a prescribed phase shift, serves as the monochromator. A special phasing system ensures a phasee stability better than 0.5o. The neutrons scattered by the sample are recorded by a scintillation detector set at a given angle to the neutron beam. The resolving power of the spectrometer is - 15 μs/m. The paper gives a detailed description of the construction of the spectroscope and its characteristics. (author)

  8. Far From 'Easy' Spectroscopy with the 8 pi and GRIFFIN Spectrometers at TRIUMF-ISAC

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Paul [University of Guelph, Canada; Radich, A.J. [University of Guelph, Canada; Allmond, James M [ORNL; Andreoiu, C. [Simon Fraser University, Canada; Ball, G.C. [TRIUMF, Canada; Bender, P.C. [TRIUMF, Canada; Bianco, L. [University of Guelph, Canada; Bildstein, V. [University of Guelph, Canada; Bidaman, H. [University of Guelph, Canada; Braid, R. [Colorado School of Mines, Golden; Burbadge, C. [University of Guelph, Canada; Chagnon-Lessard, S. [University of Guelph, Canada; Cross, D.S. [Simon Fraser University, Canada; Deng, G. [University of Guelph, Canada; Demand, G.A. [University of Guelph, Canada; Diaz Varela, A. [University of Guelph, Canada; Dunlop, R. [University of Guelph, Canada; Dunlop, M.R. [University of Guelph, Canada; Finlay, P. [University of Guelph, Canada; Garnsworthy, A.B. [TRIUMF, Canada; Grinyer, G.F. [University of Guelph, Canada; Hackman, G. [TRIUMF, Canada; Hadinia, B. [University of Guelph, Canada; Ilyushkin, S. [Colorado School of Mines, Golden; Jigmeddorj, B. [University of Guelph, Canada; Kisliuk, D. [University of Guelph, Canada; Kuhn, K. [Colorado School of Mines, Golden; Laffoley, A.T. [University of Guelph, Canada; Leach, K.G. [University of Guelph, Canada; Maclean, A.D. [University of Guelph, Canada; Michetti-Wilson, J. [University of Guelph, Canada; Miller, D. [TRIUMF, Canada; Moore, W. [Colorado School of Mines, Golden; Olaizola, B. [University of Guelph, Canada; Orce, J.N. [University of the Western Cape, South Africa; Pearson, C.J. [TRIUMF, Canada; Pore, J.L. [Simon Fraser University, Canada; Rajabali, M.M. [TRIUMF, Canada; Rand, E.T. [University of Guelph, Canada; Sarazin, F. [Colorado School of Mines, Golden; Smith, J.K. [TRIUMF, Canada; Starosta, K. [Simon Fraser University, Canada; Sumithrarachchi, C.S. [University of Guelph, Canada; Svensson, C.E. [University of Guelph, Canada; Triambak, S. [TRIUMF, Canada; Turko, J. [University of Guelph, Canada; Wang, Z.M. [Simon Fraser University, Canada; Wood, J. L. [Georgia Institute of Technology, Atlanta; Wong, J. [University of Guelph, Canada; Williams, S.J. [TRIUMF, Canada; Yates, S.W. [University of Kentucky, Lexington; Zganjar, E. F. [Louisiana State University

    2015-01-01

    The 8 pi spectrometer, installed at the TRIUMF-ISAC facility, was the world's most sensitive gamma-ray spectrometer dedicated to beta-decay studies. A description is given of the 8 pi spectrometer and its auxiliary detectors including the plastic scintillator array SCEPTAR used for beta-particle tagging and the Si(Li) array PACES for conversion electron measurements, its moving tape collector, and its data acquisition system. The recent investigation of the decay of Cs-124 to study the nuclear structure of Xe-124, and how the beta-decay measurements complemented previous Coulomb excitation studies, is highlighted, including the extraction of the deformation parameters for the excited 0(+) bands in Xe-124. As a by-product, the decay scheme of the (7(+)) Cs-124 isomeric state, for which the data from the PACES detectors were vital, was studied. Finally, a description of the new GRIFFIN spectrometer, which uses the same auxiliary detectors as the 8 pi spectrometer, is given.

  9. Heavy-ion-spectrometer system

    International Nuclear Information System (INIS)

    LBL safety policy (Pub 300 Appendix E) states that every research operation with a Class A risk potential (DOE 5484.1) should identify potentially hazardous procedures associated with the operation and develop methods for accomplishing the operation safely without personnel injury or property damage. The rules and practices that management deems to be minimally necessary for the safe operations of the Heavy Ion Spectrometer System (HISS) in the Bevatron Experimental Hall (51B) are set forth in this Operation Safety Procedures

  10. Medium energy charged particle spectrometer

    International Nuclear Information System (INIS)

    The charged particle spectrometer E8 on HELIOS A and B will be described in some detail. It covers proton energies from 80 keV to 6 MeV, electrons from 20 keV to 2 MeV, and positrons from 150 to 550 keV. Its flight performance will be discussed. From examples of measurements the capability of the instrument will be demonstrated. (orig.)

  11. Very large solid angle spectrometers

    International Nuclear Information System (INIS)

    The basic conditions of coincidence experiments are discussed and some of the properties of specific detectors covering up to 90% of 4π steradian and presenting a very large momentum bite are shown. It will appear that such detectors, compared to classical iron dipole spectrometers, present larger acceptances, but a smaller resolving power and a rather low background rejection. The choice of which of these two solutions is to be used depends on the conditions of the specific experiments

  12. Experiments TGV I (double-beta decay of 48Ca) and TGV II (double-beta decay of 106Cd and 48Ca)

    Science.gov (United States)

    Štekl, I.; Čermák, P.; Beneš, P.; Brudanin, V. B.; Rukhadze, N. I.; Egorov, V. G.; Kovalenko, V. E.; Kovalík, A.; Salamatin, A. V.; Tsoupko-Sitnikov, V. V.; Vylov, Ts.; Briancon, Ch.; Šimkovic, F.

    2000-04-01

    Present status of experiments TGV I and TGV II is given. The TGV I collaboration has studied the double-beta decay of 48Ca with a low-background and high sensitivity Ge multi-detector spectrometer TGV (Telescope Germanium Vertical). The preliminary results of years and years (90% CL) for double-beta decay of 48 Ca has been found after the processing of experimental data obtained after 8700 hours of measuring time using approximately 1 gramme of 48Ca. The aim of the experiment TGV II is the development of the experimental methods, construction of spectrometers and measurement of the decay (++, β+/EC, EC/EC) of 106Cd particularly the 2νEC/EC mode. The theoretical description and performance of the TGV II spectrometer are also given.

  13. Beta-carotene

    Science.gov (United States)

    ... and deterioration of the lining of the mouth (oral mucositis). Taking beta-carotene by mouth doesn’t appear to prevent the development of oral mucositis during radiation therapy or chemotherapy. Pancreatic cancer. Taking ...

  14. Neutrinoless double beta decay

    International Nuclear Information System (INIS)

    The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given. (author)

  15. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    Kai Zuber

    2012-10-01

    The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given.

  16. [High beta tokamak research

    International Nuclear Information System (INIS)

    Our activities on High Beta Tokamak Research during the past 20 months of the present grant period can be divided into six areas: reconstruction and modeling of high beta equilibria in HBT; measurement and analysis of MHD instabilities observed in HBT; measurements of impurity transport; diagnostic development on HBT; numerical parameterization of the second stability regime; and conceptual design and assembly of HBT-EP. Each of these is described in some detail in the sections of this progress report

  17. High beta multipoles

    International Nuclear Information System (INIS)

    Multipoles are being employed as devices to study fusion issues and plasma phenomena at high values of beta (plasma pressure/magnetic pressure) in a controlled manner. Due to their large volume, low magnetic field (low synchrotron radiation) region, they are also under consideration as potential steady state advanced fuel (low neutron yield) reactors. Present experiments are investigating neoclassical (bootstrap and Pfirsch-Schlueter) currents and plasma stability at extremely high beta

  18. Autoregressive conditional beta

    OpenAIRE

    Yunmi Kim

    2012-01-01

    The capital asset pricing model provides various predictions about equilibrium expected returns on risky assets. One key prediction is that the risk premium on a risky asset is proportional to the nondiversifiable market risk measured by the asset's beta coefficient. This paper proposes a new method for estimating and drawing inferences from a time-varying capital asset pricing model. The proposed method, which can be considered a vector autoregressive model for multiple beta coefficients, is...

  19. The Pickup Ion Composition Spectrometer

    Science.gov (United States)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  20. The VERDI fission fragment spectrometer

    OpenAIRE

    Frégeau M.O.; Bryś T.; Gamboni Th.; Geerts W.; Oberstedt S.; Oberstedt A.; Borcea R.

    2013-01-01

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This conf...

  1. High-Resolution Imaging Spectrometer

    Science.gov (United States)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  2. The Alpha Magnetic Spectrometer (AMS)

    CERN Document Server

    Alcaraz, J; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Crespo, P; Cristinziani, M; Cunha, J P D; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; Dantone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu, H T; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mourao, A; Mujunen, A; Palmonari, F; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Postolache, V; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Sartorelli, G; Schwering, G; Scolieri, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Vandenhirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Gunten, H V; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan, L G; Yang, C G; Yang, M; Ye, S W; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B

    2002-01-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m sup 2) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  3. The Alpha Magnetic Spectrometer (AMS)

    International Nuclear Information System (INIS)

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m2) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS

  4. The Alpha Magnetic Spectrometer (AMS)

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Bene, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buenerd, M.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y.H.; Chen, H.F.; Chen, H.S.; Chen, Z.G.; Chernoplekov, N.A.; Chiueh, T.H.; Chuang, Y.L.; Cindolo, F.; Commichau, V.; Contin, A. E-mail: contin@bo.infn.it; Crespo, P.; Cristinziani, M.; Cunha, J.P. da; Dai, T.S.; Deus, J.D.; Dinu, N.; Djambazov, L.; DAntone, I.; Dong, Z.R.; Emonet, P.; Engelberg, J.; Eppling, F.J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P.H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W.Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M.A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, W.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lee, S.C.; Levi, G.; Levtchenko, P.; Liu, C.L.; Liu, H.T.; Lopes, I.; Lu, G.; Lu, Y.S.; Luebelsmeyer, K.; Luckey, D.; Lustermann, W.; Mana, C.; Margotti, A.; Mayet, F.; McNeil, R.R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, I.H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postolache, V.; Produit, N.; Rancoita, P.G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J.P.; Riihonen, E.; Ritakari, J.; Roeser, U.; Roissin, C.; Sagdeev, R.; Sartorelli, G.; Schultz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E.S.; Shoutko, V.

    2002-02-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m{sup 2}) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  5. Experiment TGV-2 - Search for double beta decay of 106Cd

    Science.gov (United States)

    Rukhadze, N. I.; Briançon, Ch.; Brudanin, V. B.; Čermák, P.; Egorov, V. G.; Klimenko, A. A.; Kovalík, A.; Rukhadze, E. N.; Shitov, Yu. A.; Šimkovic, F.; Štekl, I.; Timkin, V. V.

    2012-08-01

    New limits (at 90% C.L.) on double beta decay of Cd106-T(0νEC/EC)>1.7×1020 yr and T(2νEC/EC)>4.2×1020 yr were obtained in a preliminary calculation of data accumulated for 12900 h on the TGV-2 spectrometer.

  6. Experiment TGV-2 – Search for double beta decay of 106Cd

    International Nuclear Information System (INIS)

    New limits (at 90% C.L.) on double beta decay of 106Cd−T1/2(0νEC/EC)>1.7×1020yr and T1/2(2νEC/EC)>4.2×1020yr were obtained in a preliminary calculation of data accumulated for 12900 h on the TGV-2 spectrometer.

  7. Photonic bandgap fiber bundle spectrometer

    CERN Document Server

    Hang, Qu; Syed, Imran; Guo, Ning; Skorobogatiy, Maksim

    2010-01-01

    We experimentally demonstrate an all-fiber spectrometer consisting of a photonic bandgap fiber bundle and a black and white CCD camera. Photonic crystal fibers used in this work are the large solid core all-plastic Bragg fibers designed for operation in the visible spectral range and featuring bandgaps of 60nm - 180nm-wide. 100 Bragg fibers were chosen to have complimentary and partially overlapping bandgaps covering a 400nm-840nm spectral range. The fiber bundle used in our work is equivalent in its function to a set of 100 optical filters densely packed in the area of ~1cm2. Black and white CCD camera is then used to capture spectrally "binned" image of the incoming light at the output facet of a fiber bundle. To reconstruct the test spectrum from a single CCD image we developed an algorithm based on pseudo-inversion of the spectrometer transmission matrix. We then study resolution limit of this spectroscopic system by testing its performance using spectrally narrow test peaks (FWHM 5nm-25nm) centered at va...

  8. Characteristics of the GALLEX spectrometer

    International Nuclear Information System (INIS)

    A description is given of the spectrometer used for the detection of 71Ge in the Solar Neutrino experiment GALLEX being performed in the Gran Sasso Underground Laboratory. The spectrometer consists of miniaturized proportional counters and a shield with a large well-type NaI pair (Tl) detector (active side) and an inner pure copper shield (passive side). Very careful material selection for the proportional counter- and shield-construction and radon suppression resulted in total background rates (>0.5 keV) between 0.4 and 1 count per day for many proportional counters. With energy and rise time cuts, the average rates for the relevant L- and K-peak of the 71Ge spectrum are 0.1 cpd and 0.03 cpd, respectively, and thus, are far below the signal predicted by the Standard Solar Model. Eight counter positions within the NaI pair detector have the option to detect also 69Ge and 68Ga (positron emitteres) in the coincidence mode, though with slightly higher background for the 71Ge decay mode. An analysis of the different background components cannot fully account for the measured background of the proportional counters so that presumably a part of it is due to contamination during the assembling process. Here is a potential for further background reduction. After introduction, the basic concept of the experiment and the present status as of December 1991 are briefly outlined. (orig.)

  9. Digital Spectrometers for Interplanetary Science Missions

    Science.gov (United States)

    Jarnot, Robert F.; Padmanabhan, Sharmila; Raffanti, Richard; Richards, Brian; Stek, Paul; Werthimer, Dan; Nikolic, Borivoje

    2010-01-01

    A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection.

  10. GEANT4 Monte Carlo simulations of sources measured with the GSI total absorption spectrometer

    CERN Document Server

    Algora, A; Taín, J L; Nacher, E; Rubio, B; Cano-Ott, D; Gadea, A

    2003-01-01

    Beta decay experiments are a primary source of information for nuclear structure studies and at the same time complementary to in-beam investigations far from stability. Although both types of experiment are mainly based on gamma-ray spectroscopy, they face different experimental problems. The solution to these experimental problems is to create a device, a Total Absorption Gamma Spectrometer (TAGS), which ideally is sensitive to the beta population of the nuclear levels rather than to the individual gamma rays. A TAGS can be constructed using a big scintillator crystal (4 pi geometry), which acts as a calorimeter for gamma-ray cascades that follow the beta-decay process. (R.P.)

  11. Double beta decay experiments

    International Nuclear Information System (INIS)

    The great sensitivity of double beta decay to neutrino mass and right handed currents has motivated many new and exciting attempts to observe this elusive nuclear phenomenon directly. Experiments in operation and other coming on line in the next one or two years are expected to result in order-of-magnitude improvements in detectable half lives for both the two-neutrino and no-neutrino modes. A brief history of double beta decay experiments is presented together with a discussion of current experimental efforts, including a gas filled time projection chamber being used to study selenium-82. (author)

  12. Plasma beta HCG determination

    International Nuclear Information System (INIS)

    There are three important indications for the early diagnosis of pregnancy through the determination of the beta sub-unit of chorionic gonadotrophin using radioimmunoassay: 1) some patient's or doctor's anxiety to discover the problem; 2) when it will be necessary to employ diagnostic or treatment procedures susceptible to affect the ovum; and 3) in the differential diagnosis of amenorrhoea, uterine hemorrhage and abdominal tumors. Other user's are the diagnosis of missed absortion, and the diagnosis and follow-up of chrorioncarcinoma. The AA. studied 200 determinations of plasma beta-HCG, considering the main difficulties occuring in the clinical use of this relevant laboratory tool in actual Obstetrics. (author)

  13. Beta and Gamma Gradients

    DEFF Research Database (Denmark)

    Løvborg, Leif; Gaffney, C. F.; Clark, P. A.;

    1985-01-01

    Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions of...... differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears that the...

  14. A computer controlled Moessbauer spectrometer

    International Nuclear Information System (INIS)

    This paper describes a computer controlled data acquisition system for Moessbauer spectroscopy. In addition to reporting the fundamental ideas behind, and the construction of the system, this paper intends to serve as a manual for the user. The main unit is the 'Mark-VII' multiscaler/function generator, constructed as a double width NIM-unit. For the control of this unit we use an Apple IIe++ microcomputer equipped with a specially designed interface 'Kart-7'. The information supplied here should, however, be sufficient to interface other suitable microcomputers to the Mark-VII unit. The Kart-7 interface is described in this paper together with some details concerning its programming. The system is controlled by a program called 'HIN-5', which is also described in some detail. The manual section gives the details of how to start up and operate the spectrometer. (author)

  15. Multimode optical fiber based spectrometers

    CERN Document Server

    Redding, Brandon; Cao, Hui

    2013-01-01

    A standard multimode optical fiber can be used as a general purpose spectrometer after calibrating the wavelength dependent speckle patterns produced by interference between the guided modes of the fiber. A transmission matrix was used to store the calibration data and a robust algorithm was developed to reconstruct an arbitrary input spectrum in the presence of experimental noise. We demonstrate that a 20 meter long fiber can resolve two laser lines separated by only 8 pm. At the other extreme, we show that a 2 centimeter long fiber can measure a broadband continuous spectrum generated from a supercontinuum source. We investigate the effect of the fiber geometry on the spectral resolution and bandwidth, and also discuss the additional limitation on the bandwidth imposed by speckle contrast reduction when measuring dense spectra. Finally, we demonstrate a method to reduce the spectrum reconstruction error and increase the bandwidth by separately imaging the speckle patterns of orthogonal polarizations. The mu...

  16. Neutron measurement by transportable spectrometer

    International Nuclear Information System (INIS)

    Two levels of neutron spectrometry are in regular use at nuclear power plants: some techniques used in the laboratory produce detailed spectra but require specialist operators, while simple instruments used by non-specialists to measure the neutron dose-rate to operators provide little spectral information. The standard portable instruments are therefore of no use when anomalous readings are obtained which require further investigation. AEA Technology at Winfrith has developed a Transportable Neutron Spectrometer (TNS) which is designed to produce reasonable spectra in routine use by staff with no specialist skill in spectroscopy, and high-quality spectra in the hands of skilled staff. The TNS provides a level of information intermediate between those currently available, and is also designed to solve the problem of imperfect dose response which is common in portable dosimeters. The TNS system consists of a power supply, a probe and a signal processing and data acquisition unit. (author)

  17. A colloidal quantum dot spectrometer

    Science.gov (United States)

    Bao, Jie; Bawendi, Moungi G.

    2015-07-01

    Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.

  18. Background reduction of the KATRIN spectrometers. Transmission function of the pre-spectrometer and systematic tests of the main-spectrometer wire electrode

    Energy Technology Data Exchange (ETDEWEB)

    Prall, Matthias

    2011-07-04

    The KArlsruhe TRItium Neutrino experiment, KATRIN will determine the mass of the anti {nu}{sub e} with a sensitivity of 0.2 eV (90% C.L.) via a measurement of the {beta}-spectrum of tritium decaying in a windowless gaseous molecular tritium source near its endpoint of 18.57 keV. This approach relies exclusively on the relativistic kinematics of the decay products rendering the experiment model independent and reducing the systematic uncertainty. An ultra-low background of a few mHz and an energy resolution of 0.93 eV are among the requirements to reach the sensitivity. These demands are fulfilled with the main spectrometer (MS). While the {beta}-decay electrons are guided by a magnetic field through the experiment, the MS acts as a high-pass filter for the {beta}-decay electrons. Only those above an energy barrier, the retarding potential, are transmitted to the detector. The last about 30 eV of the T{sub 2} {beta}-spectrum will be scanned in this way. The MS is equipped with a 650 m{sup 2}, two-layered, UHV compatible and quasi-massless wire electrode suppressing secondary electron background originating at the main-spectrometer walls and caused by residual radioactivity and cosmic muons. Its energy resolution of 0.93 eV is only achieved, if a large part of the 248 wire electrode modules, which determine the electric field inside the MS, has a mechanical precision of 0.2 mm. Not a single of the about 28.000 wires of the electrode must break during the lifetime of KATRIN. A 2-dimensional laser sensor for contact-less position (precision about 0.01 mm) and tension (precision about 0.04 N) measurements was developed and applied, to firstly, verify the mechanical precision of the electrode modules and secondly, to examine their reliability. A 3-dimensional coordinate measurement table was automated to perform these measurements in a clean room. This table was also used to verify the precision of components using a camera system and image recognition methods (0.05 mm

  19. Evaluation of neutrino masses from $m_{\\beta\\beta}$ values

    CERN Document Server

    Khrushchov, V V

    2008-01-01

    A neutrino mass matrix is considered under conditions of the CP invariance and the negligible reactor mixing $\\theta_{13}$ angle. Absolute mass values for three neutrinos are evaluated in normal and inverted hierarchy spectra on the ground of data for oscillation mixing neutrino parameters and effective neutrino mass entering into a probability of neutrinoless two beta decay $m_{\\beta\\beta}$ values.

  20. Portable triple silicon detector telescope spectrometer for skin dosimetry

    CERN Document Server

    Helt-Hansen, J; Christensen, P

    1999-01-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50 mu m/150 mu m/7000 mu m covered by a 2 mu m thick titanium window. Rejection of photon contributions from mixed beta/photon exposures is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact, portable processing unit including a laptop computer executing control, monitor, histogram and display tasks. The use of digital signal processing at an early stage of the signal chain has facilitated the achievement of a compact, low-weight device. 256 channels are available for each of the three detectors. The LabVIEW sup T sup M software distributed by National Instruments was used for all program developments for the sp...

  1. Tests of the standard model with the spectrometer PERKEO II

    International Nuclear Information System (INIS)

    The results of measurements of the beta asymmetry A = -0.1189(12) in the decay of free neutrons are discussed. The measurements are conducted using the PERKEO II spectrometer. The neutrons are polarized by a supermirror polarizer, then pass a collimation system and enter the decay volume. In the decay volume a magnetic field (B ≅ 1 T) separates the decay neutrons: some gyrated in the direction of the magnetic field, the others in the opposite direction. The prospects for improving the experimental installation in order to refine this result and provide capabilities for measuring the weak magnetism term k and the neutrino asymmetry B are considered as well. The results obtained are used for verification of the standard model of the elementary particles and their interactions. It is shown that the neutron decay may be described as an interaction between a hadronic and a leptonic current each consisting of a vector and an axial vector part. The vector part is considered to be conserved. The axial vector part of the hadronic current is renormalized by a constant λ. The best way to find λ experimentally is to measure the beta asymmetry A in the decay of free polarized neutrons. With the result values for the other coupling constants in the same process, the neutrino asymmetry B and the electron neutrino correlation coefficient a are also fixed. A comparison of their predicted values with experimental ones tests the consistency of the theory

  2. Objective Crystal Spectrometer on the SRG satellite

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Westergaard, Niels Jørgen Stenfeldt; Rasmussen, I.; Rasmussen, Ib Lundgaard; Schnopper, Herbert W.; Wiebicke, Hans-Joachim; Halm, Ingolf; Geppert, U.R.; Borozdin, K.N.

    1994-01-01

    The flight version of the Objective Crystal Spectrometer (OXS) on the SPECTRUM-X- GAMMA satellite is presented. The spectrometer is a panel that is placed in front of one of the SODART telescopes. It is composed of an array of the three Bragg crystals, LiF(220), Si(111) and RAP(001) for high...

  3. High resolution magnetic spectrometer SHARAQ in RIBF

    International Nuclear Information System (INIS)

    For a new spectroscopy of nuclei using intense RI beams at RIBF, we started the SHARAQ project where a high-resolution SHARAQ spectrometer is being constructed together with a high-resolution secondary beam line. Physics motivation and the specification of the spectrometer are presented

  4. Spin Spectrometer at the ALS and APS

    OpenAIRE

    Tobin, James G; Lawrence Livermore National Laboratory; University of Missouri-Rolla; Boyd Technologies

    2008-01-01

    A spin-resolving photoelectron spectrometer, the "Spin Spectrometer," has been designed and built. It has been utilized at both the Advanced Light Source in Berkeley, CA, and the Advanced Photon Source in Argonne, IL. Technical details and an example of experimental results are presented here.

  5. A compact lightweight aerosol spectrometer probe (CLASP)

    NARCIS (Netherlands)

    Hill, M.K.; Brooks, B.J.; Norris, S.J.; Smith, M.H.; Brooks, I.M.; Leeuw, G. de

    2008-01-01

    The Compact Lightweight Aerosol Spectrometer Probe (CLASP) is an optical particle spectrometer capable of measuring size-resolved particle concentrations in 16 user-defined size bins spanning diameters in the range 0.24 < D < 18.5 μm at a rate of 10 Hz. The combination of its compact nature and ligh

  6. Laboratory EXAFS Spectrometer, Principles and Applications

    NARCIS (Netherlands)

    Koningsberger, D.C.; Kampers, F.W.H.; Duivenvoorden, F.B.M.; Zon, J.B.A.D. van; Brinkgreve, P.; Viegers, M.P.A.

    1985-01-01

    In order to be independent of poor availability of synchrotron beamtime a laboratory EXAFS spectrometer has been developed. The X-ray source is a rotating anode generator (max. voltage 60 kV, max. current 300 mA). Monochromatisation and focusing is done with a linear spectrometer, based upon the Row

  7. Introductory lecture on triple-axis spectrometer

    International Nuclear Information System (INIS)

    Triple-axis spectrometer is a multi-purpose instrument for powder neutron diffraction, single crystal neutron diffraction, powder inelastic neutron scattering, single crystal inelastic neutron scattering, and neutron polarization analysis. In this lecture how to use the triple-axis spectrometer is explained for the beginners. (author)

  8. Low-beta structures

    OpenAIRE

    M. Vretenar(CERN, Geneva, Switzerland)

    2012-01-01

    'Low-beta' radio-frequency accelerating structures are used in the sections of a linear accelerator where the velocity of the particle beam increases with energy. The requirement for space periodicity to match the increasing particle velocity led to the development of a large variety of structures, both normal and superconducting, which are described in this lecture.

  9. Applied Beta Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rich, B.L.

    1986-01-01

    Measurements of beta and/or nonpenetrating exposure results is complicated and past techniques and capabilities have resulted in significant inaccuracies in recorded results. Current developments have resulted in increased capabilities which make the results more accurate and should result in less total exposure to the work force. Continued development of works in progress should provide equivalent future improvements.

  10. Roughing up Beta

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Li, Sophia Zhengzi; Todorov, Viktor

    Motivated by the implications from a stylized equilibrium pricing framework, we investigate empirically how individual equity prices respond to continuous, or \\smooth," and jumpy, or \\rough," market price moves, and how these different market price risks, or betas, are priced in the cross-section...

  11. Neutrinoless Double Beta Decay

    CERN Document Server

    Päs, Heinrich

    2015-01-01

    We review the potential to probe new physics with neutrinoless double beta decay $(A,Z) \\to (A,Z+2) + 2 e^-$. Both the standard long-range light neutrino mechanism as well as short-range mechanisms mediated by heavy particles are discussed. We also stress aspects of the connection to lepton number violation at colliders and the implications for baryogenesis.

  12. Applied Beta Dosimetry

    International Nuclear Information System (INIS)

    Measurements of beta and/or nonpenetrating exposure results is complicated and past techniques and capabilities have resulted in significant inaccuracies in recorded results. Current developments have resulted in increased capabilities which make the results more accurate and should result in less total exposure to the work force. Continued development of works in progress should provide equivalent future improvements

  13. Interferon Beta-1b Injection

    Science.gov (United States)

    Interferon beta-1b injection is used to reduce episodes of symptoms in patients with relapsing-remitting (course ... and problems with vision, speech, and bladder control). Interferon beta-1b is in a class of medications ...

  14. Genetics Home Reference: beta thalassemia

    Science.gov (United States)

    ... for Disease Control and Prevention Centre for Genetics Education (Australia) Cold Spring Harbor Laboratory: Your Genes Your Health Disease InfoSearch: Beta Thalassemia Genomics Education Programme (UK) MalaCards: dominant beta-thalassemia Merck Manual ...

  15. Detector and spectrometer development for QED tests

    International Nuclear Information System (INIS)

    Full text: The curved crystal spectrometer will be implemented, calibrated and analyzed for further work to be carried out upon it at NIST in Washington for accurate precision tests of QED in highly charged ions. At the moment using the fluorescent source we are able to resolve characteristic x-ray lines for inner shell transitions Ka1, Ka2, and Kβ1,3 for differing elements. The curved crystal spectrometer has a Germanium crystal operating along the principle of Bragg's law. Using this spectrometer a second stage will be combining the backgammon detector with the curved crystal spectrometer and therefore experimental and theoretical work on curved crystal dynamical diffraction for the state of the art spectrometer will also be achieved

  16. Beta gets better with age

    OpenAIRE

    Tomunen, Tuomas

    2015-01-01

    The objective of my thesis is to study the cause for the low beta anomaly, which is an observation that the high beta stocks perform poorly relative to the low beta stocks. Based on earlier findings, I hypothesize that if a stock has high investor attention, its price overreacts to market-wide shocks, which results in a positive measurement error in its beta. Simultaneously, high attention causes overpricing, because the stock overreacts more often to positive shocks than to negat...

  17. An inelastic X-ray scattering spectrometer for materials science on BL11XU at SPring-8

    CERN Document Server

    Inami, T; Mizuki, J; Nakao, H; Matsumura, T; Murakami, Y; Hirota, K; Endoh, Y

    2001-01-01

    An inelastic X-ray scattering spectrometer on the beamline BL11XU at the SPring-8 is described. The typical energy resolution and energy transfer are 0.1-1 eV and approx 30 eV, respectively. The main aim of this spectrometer is the measurement of electronic excitations, such as charge-transfer excitation and interband transition, especially using resonant X-ray scattering. As a test experiment, the resonant X-ray scattering spectra of LaMnO sub 3 including Mn K beta sub 5 emission are given.

  18. Misleading Betas: An Educational Example

    Science.gov (United States)

    Chong, James; Halcoussis, Dennis; Phillips, G. Michael

    2012-01-01

    The dual-beta model is a generalization of the CAPM model. In the dual-beta model, separate beta estimates are provided for up-market and down-market days. This paper uses the historical "Anscombe quartet" results which illustrated how very different datasets can produce the same regression coefficients to motivate a discussion of the…

  19. Miniature Ion-Mobility Spectrometer

    Science.gov (United States)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to

  20. Neutrino mass studied by measuring tritium beta-decay with an iron-free beta-ray spectrometer

    International Nuclear Information System (INIS)

    The second measurement of the neutrino mass at INS has been carried out. Combining the new data with the result of the first measurement, a preliminary upper limit of 25 eV at the 95% confidence level has been obtained for the neutrino mass from only statistical consideration. (orig.)

  1. Handheld spectrometers: the state of the art

    Science.gov (United States)

    Crocombe, Richard A.

    2013-05-01

    "Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.

  2. A spark-chamber spectrometer

    International Nuclear Information System (INIS)

    A programme of developing techniques for the construction and use of spark chambers in high-energy physics experiments has been undertaken. Several methods of construction have been tested and found satisfactory. One method is to cement aluminium plates to frames made from glass or Plexiglas strips. Another is to place the aluminium plates in grooves machined in Plexiglas, forming a ''shelf'' design. A chamber made of rows of wires was successfully operated with a He-alcohol mixture. These chambers can either be filled with gas and sealed, or gas can be passed through them continuously. Chambers have been constructed with plates of various thicknesses ranging from 0.032 in downwards. The operation of the chambers with various spacings between the plates was also investigated. The performance of these chambers, when filled with several different gases (Ne, He, A) and with gas-alcohol mixtures, has been investigated. Several methods of applying high-voltage pulses to the chambers have been attempted. The results of these investigations are presented. Spark chambers placed in a magnetic field can be used in principle to determine the momentum of charged particles and if lead converter-plates are incorporated with them, the resulting system should serve as a gamma-ray spectrometer of high resolution and high efficiency. A magnet with an 18-in useful diameter and a 13000-G field is being fitted with spark chambers, whose performance will be tested with cosmic rays and with an accelerator beam. Results from such tests are presented. (author)

  3. Airborne fourier infrared spectrometer system

    International Nuclear Information System (INIS)

    A commercial Fourier Transform Infrared (FTIR) spectrometer has been interfaced to a 35 cm aperture telescope and a digital data processing and display system and flown in a downward-viewing configuration on a Queen Air aircraft. Real-time spectral analysis and display software were developed to provide the means to direct aircraft flight operations based on atmospheric and/or surface features identified on 1 to 8 cm-1 resolution infrared spectra. Data are presented from ground-based tests consisting of simultaneous horizontal path measurements by the FTIR system and an infrared differential absorption lidar (DIAL) observing gas volumes generated in an open-ended chamber. Airborne FUR data are presented on the tracking of a surface-released puff of SF6 gas to a downwind distance of 45 km in a time period of 1.5 hours. The experiment demonstrated the real time tracking of a gas tracer cloud to provide atmospheric transport and diffusion information and for directing airborne in-situ sensors for optimum cloud sampling. 5 refs., 5 figs

  4. Beta-thalassemia

    Directory of Open Access Journals (Sweden)

    Origa Raffaella

    2010-05-01

    Full Text Available Abstract Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands, dilated myocardiopathy, liver fibrosis and cirrhosis. Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes, gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely

  5. Beta and muon decays

    International Nuclear Information System (INIS)

    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  6. Integration of BETA with Eclipse

    DEFF Research Database (Denmark)

    Andersen, Peter; Madsen, Ole Lehrmann; Enevoldsen, Mads Brøgger

    2004-01-01

    This paper presents language interoperability issues appearing in order to implement support for the BETA language in the Java-based Eclipse integrated development environment. One of the challenges is to implement plug-ins in BETA and be able to load them in Eclipse. In order to do this, some form...... of language interoperability between Java and BETA is required. The first approach is to use the Java Native Interface and use C to bridge between Java and BETA. This results in a workable, but complicated solution. The second approach is to let the BETA compiler generate Java class files. With this...... approach it is possible to implement plug-ins in BETA and even inherit from Java classes. In the paper the two approaches are described together with part of the mapping from BETA to Java class files. http://www.sciencedirect.com/science/journal/15710661...

  7. COM Support in BETA

    DEFF Research Database (Denmark)

    Madsen, Ole Lehrmann

    1999-01-01

    Component technologies based on binary units of independent production are some of the most important contributions to software architecture and reuse during recent years. Especially the COM technologies and the CORBA standard from the Object Management Group have contributed new and interesting ...... principles for software architecture, and proven to be useful in parctice. In this paper ongoing work with component support in the BETA language is described....

  8. Beta decay for pedestrians

    CERN Document Server

    Lipkin, Harry Jeannot

    1962-01-01

    The ""pedestrian approach"" was developed to describe some essentially simple experimental results and their theoretical implications in plain language. In this graduate-level text, Harry J. Lipkin presents simply, but without oversimplification, the aspects of beta decay that can be understood without reference to the formal theory; that is, the reactions that follow directly from conservation laws and elementary quantum mechanics.The pedestrian treatment is neither a substitute for a complete treatment nor a watered-down version.

  9. Mini-Orange Spectrometer at CIAE

    CERN Document Server

    Zheng, Yun; Li, Guang-Sheng; Li, Cong-Bo; He, Chuang-Ye; Chen, Qi-Ming; Zhong, Jian; Zhou, Wen-Kui; Deng, Li-Tao; Zhu, Bao-Ji

    2016-01-01

    A Mini-Orange spectrometer used for in-beam measurements of internal conversion electrons, which consists of a Si(Li) detector and different sets of SmO$_5$ permanent magnets for filtering and transporting the conversion electrons to the Si(Li) detector, has been developed at China Institute of Atomic Energy. The working principle and configuration of the Mini-Orange spectrometer are described. The performance of the setup is illustrated by measured singles conversion electron spectra using the Mini-Orange spectrometer.

  10. Mini-orange spectrometer at CIAE

    Science.gov (United States)

    Zheng, Yun; Wu, Xiao-Guang; Li, Guang-Sheng; Li, Cong-Bo; He, Chuang-Ye; Chen, Qi-Ming; Zhong, Jian; Zhou, Wen-Kui; Deng, Li-Tao; Zhu, Bao-Ji

    2016-08-01

    A mini-orange spectrometer used for in-beam measurements of internal conversion electrons, consisting of a Si(Li) detector and different sets of SmO5 permanent magnets for filtering and transporting the conversion electrons to the Si(Li) detector, has been developed at the China Institute of Atomic Energy. The working principles and configuration of the mini-orange spectrometer are described. The performance of the setup is illustrated by measured singles conversion electron spectra using the mini-orange spectrometer. Supported by National Natural Science Foundation of China (11305269, 11375267, 11475072, 11405274, 11205068, 11175259)

  11. Complex Response Function of Magnetic Resonance Spectrometers

    CERN Document Server

    Annino, G; Fittipaldi, M; Martinelli, M

    2002-01-01

    A vectorial analysis of magnetic resonance spectrometers, based on traveling wave resonators and including the reference arm and the automatic control of frequency, has been developed. The proposed modelization, valid also for stationary wave resonators, gives the response function of the spectrometer for any working condition, including scalar detectors with arbitrary responsivity law and arbitrary excitation frequency. The purely dispersive and purely absorptive linear responses are discussed in detail for different scalar detectors. The developed approach allows to optimize the performances of the spectrometer and to obtain the intrinsic lineshape of the sample in a very broad range of working conditions. More complex setups can be modelized following the proposed scheme.

  12. Computer-controlled neutron spectrometer SV 22

    International Nuclear Information System (INIS)

    The neutron spectrometer SV22 is a combined time of flight and back scattering spectrometer. It is located at the tangential beam tube TAN2 of the research reactor FRJ2 DIDO at Kernforschungsanlage Juelich (West-Germany). Both versions are described in their hardware layout. The neutron optical characteristics of the already functioning time of flight spectrometer are summarized. Selected experiments show some possible fields for further research with this instrument. Experimental data for the backscattering version is not yet available. The features of the operating system RSX11M are explained. Examples show the use of indirect command files in control of the experiment. (orig.)

  13. PAC Spectrometer for Condensed Matter Study

    CERN Document Server

    Kochetov, O I; Tsvyashchenko, A V; Akselrod, Z Z; Antuhov, V A; Busa, J; Velichkov, A I; Korolev, N A; Milanov, M V; Novgorodov, A F; Ostrovskii, I V; Pavlov, V N; Skrivanek, J; Timkin, V V; Filossofov, D V; Fomicheva, L N; Shirani, E N; Stekl, I; Brudanin, V B

    2002-01-01

    A four-detector perturbed angular \\gamma\\gamma-correlations (PAC) spectrometer for condensed matter study is described. The timing resolution (full-width at half-maximum) is 200 ps for ^{60}Co if BaF_2 scintillators coupled to photomultiplier XP2020Q are used. The spectrometer is equipped with a press; a specially-designed pressure vessel permits one to perform PAC-studies of samples under pressure up to 60 GPa in the on-line mode. In contrast to the common case (usage of single-channel analyzers) the software-controlled energy selection makes the spectrometer easy to use, to control and to adjust.

  14. LHCb: $2\\beta_s$ measurement at LHCb

    CERN Multimedia

    Conti, G

    2009-01-01

    A measurement of $2\\beta_s$, the phase of the $B_s-\\bar{B_s}$ oscillation amplitude with respect to that of the ${\\rm b} \\rightarrow {\\rm c^{+}}{\\rm W^{-}}$ tree decay amplitude, is one of the key goals of the LHCb experiment with first data. In the Standard Model (SM), $2\\beta_s$ is predicted to be $0.0360^{+0.0020}_{-0.0016} \\rm rad$. The current constraints from the Tevatron are: $2\\beta_{s}\\in[0.32 ; 2.82]$ at 68$\\%$CL from the CDF experiment and $2\\beta_{s}=0.57^{+0.24}_{-0.30}$ from the D$\\oslash$ experiment. Although the statistical uncertainties are large, these results hint at the possible contribution of New Physics in the $B_s-\\bar{B_s}$ box diagram. After one year of data taking at LHCb at an average luminosity of $\\mathcal{L}\\sim2\\cdot10^{32}\\rm cm^{-2} \\rm s^{-1}$ (integrated luminosity $\\mathcal{L}_{\\rm int}\\sim 2 \\rm fb^{-1}$), the expected statistical uncertainty on the measurement is $\\sigma(2\\beta_s)\\simeq 0.03$. This uncertainty is similar to the $2\\beta_s$ value predicted by the SM.

  15. Precision Study of the $\\beta$-decay of $^{62}$Ga

    CERN Multimedia

    2002-01-01

    It is proposed to perform a precision study of the $\\beta$-decay of $\\,^{62}$Ga taking advantage of recent developments of the ISOLDE Laser Ion Source. The goal is to eventually extend the high-precision knowledge of superallowed $\\beta$-decays beyond the nine decays that presently are used for extracting the V$_{ud}$ quark mixing matrix element of the CKM matrix. The scientific motivations are the current deviation of more than 2$\\sigma$ of the unitary condition of this matrix, which could be an indication of non-standard-model physics, and a test of the theoretical corrections applied to the experimental data. The experiment will utilise the Total Absorption $\\gamma$-ray (TAG) spectrometer in order to determine weak branchings to excited states in $^{62}$Zn and the ISOLDE spectroscopy station to perform half-life measurements and detailed spectroscopy of this nucleus.

  16. The VERDI fission fragment spectrometer

    International Nuclear Information System (INIS)

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD) diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD) show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution. (authors)

  17. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  18. Multidetector calibration for mass spectrometers

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency's Safeguards Analytical Laboratory has performed calibration experiments to measure the different efficiencies among multi-Faraday detectors for a Finnigan-MAT 261 mass spectrometer. Two types of calibration experiments were performed: (1) peak-shift experiments and (2) peak-jump experiments. For peak-shift experiments, the ion intensities were measured for all isotopes of an element in different Faraday detectors. Repeated measurements were made by shifting the isotopes to various Faraday detectors. Two different peak-shifting schemes were used to measure plutonium (UK Pu5/92138) samples. For peak-jump experiments, ion intensities were measured in a reference Faraday detector for a single isotope and compared with those measured in the other Faraday detectors. Repeated measurements were made by switching back-and-forth between the reference Faraday detector and a selected Faraday detector. This switching procedure is repeated for all Faraday detectors. Peak-jump experiments were performed with replicate measurements of 239Pu, 187Re, and 238U. Detector efficiency factors were estimated for both peak-jump and peak-shift experiments using a flexible calibration model to statistically analyze both types of multidetector calibration experiments. Calculated detector efficiency factors were shown to depend on both the material analyzed and the experimental conditions. A single detector efficiency factor is not recommended for each detector that would be used to correct routine sample analyses. An alternative three-run peak-shift sample analysis should be considered. A statistical analysis of the data from this peak-shift experiment can adjust the isotopic ratio estimates for detector differences due to each sample analysis

  19. The GIANO-TNG spectrometer

    Science.gov (United States)

    Oliva, E.; Origlia, L.; Baffa, C.; Biliotti, C.; Bruno, P.; D'Amato, F.; Del Vecchio, C.; Falcini, G.; Gennari, S.; Ghinassi, F.; Giani, E.; Gonzalez, M.; Leone, F.; Lolli, M.; Lodi, M.; Maiolino, R.; Mannucci, F.; Marcucci, G.; Mochi, I.; Montegriffo, P.; Rossetti, E.; Scuderi, S.; Sozzi, M.

    2006-06-01

    GIANO is an infrared (0.9-2.5 μm cross-dispersed echelle spectrometer designed to achieve high resolution, high throughput, wide band coverage and very high stability for accurate radial velocity measurements. It also includes polarimetric capabilities and a low resolution mode with RS ~ 400 and complete 0.75-2.5 μm coverage. This makes it a very versatile, common user instrument which will be permanently mounted and available on the Nasmyth-B foci of the Telescopio Nazionale Galileo (TNG) located at Roque de Los Muchachos Observatory (ORM), La Palma, Spain. The project is fast-track and relies on well known, relatively standard technologies. It has been recognized as one of the top priority instrumental projects of INAF (the Italian National Institute of Astronomy) and received its first financing for the phase-A study in October 2003. Integration in the laboratory is planned to start before the end of 2006, commissioning at the telescope is foreseen within 2007 and scientific operations in 2008. One of the most important scientific goals is the search for rocky planets with habitable conditions around low-mass stars. If completed on time, GIANO will be the first and only IR instrument operating worldwide providing the combination of efficiency, spectral resolution, wavelength coverage and stability necessary for this type of research. With its unique combination of high and low resolution modes, GIANO will also be a very flexible common-user instrument ideal e.g. for quantitative spectroscopy of brown dwarfs, stars and stellar clusters as well as for the determination of the spectral energy distribution of faint/red objects such as high redshift galaxies. The expected limiting magnitudes are such that GIANO will be able to deliver good quality HR spectra of any 2MASS object and LR spectra of any object detected in the UKIDSS large area survey.

  20. Portable Remote Imaging Spectrometer (PRISM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an UV-NIR (350nm to 1050 nm) portable remote imaging spectrometer (PRISM) for flight on a variety of airborne platforms with high SNR and response...

  1. Calibration of a photomultiplier array spectrometer

    Science.gov (United States)

    Bailey, Steven A.; Wright, C. Wayne; Piazza, Charles R.

    1989-01-01

    A systematic approach to the calibration of a photomultiplier array spectrometer is presented. Through this approach, incident light radiance derivation is made by recognizing and tracing gain characteristics for each photomultiplier tube.

  2. Remote UV Fluorescence Lifetime Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop, demonstrate, and deliver to NASA an innovative, portable, and power efficient Remote UV Fluorescence Lifetime Spectrometer...

  3. Low Power Mass Spectrometer employing TOF Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A low power Mass Spectrometer employing multiple time of flight circuits for parallel processing is possible with a new innovation in design of the Time of flight...

  4. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  5. Low Power FPGA Based Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a general purpose reconfigurable wide bandwidth spectrometer for use in NASA's passive microwave missions, deep space network and radio...

  6. A cryogenic microcalorimeter for tritium beta decay experiments

    International Nuclear Information System (INIS)

    Recent tritium beta decay spectrometer experiments have produced puzzling results, making it desirable to perform a similar experiment with a completely different type of detector. Cryogenic microcalorimeters offer a possible detector technology for this type of experiment. Presented here is a design for, and results of experiments with, a cryogenic microcalorimeter designed for use in tritium beta decay experiments. The biggest challenge in designing a microcalorimeter for beta decay experiments is the speed at which the detector operates. A fast detector is essential to obtain the necessary statistics near the beta spectrum endpoint. .The detector was designed with a normal metal absorber and a bilayer super-conducting transition-edge sensor. These design elements are meant to minimize the pulse rise time and decay time, respectively. Two different detector designs were built and tested in order to determine their operating parameters. These operating parameters were compared to a model describing the operation of these devices and were shown to be in reasonable agreement with it. The model predicts that the detector properties can be improved to the point where a tritium neutrino mass experiment can be performed. Suggestions are given for design modifications that will allow this level of performance. (author)

  7. A Spectrometer Based on Diffractive Lens

    Institute of Scientific and Technical Information of China (English)

    WANG Daoyi; YAN Yingbai; JIN Guofan; WU Minxian

    2001-01-01

    A novel spectrometer is designed based on diffractive lens. It is essentially a flat field spectrometer. All the focal points are along the optical axis. Besides, all the asymmetrical aberrations vanish in our mounting. Thus low aberration can be obtained. In this article a diffractive lens is modeled as a special grating and analyzed by using a grating-based method. And a stigmatic point is introduced to reduce the aberrations.

  8. Mass Spectrometer for Airborne Micro-Organisms

    Science.gov (United States)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  9. Design and construction of a NIR spectrometer

    CERN Document Server

    Barcala-Riveira, J M; Fernandez-Marron, J L; Molero-Menendez, F; Navarrete-Marin, J J; Oller-Gonzalez, J C

    2003-01-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  10. A digital control system for neutron spectrometers

    DEFF Research Database (Denmark)

    Hansen, Knud Bent; Skaarup, Per

    1968-01-01

    A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer.......A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer....

  11. Design and construction of a NIR spectrometer

    International Nuclear Information System (INIS)

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs

  12. Ruggedized Spectrometers Are Built for Tough Jobs

    Science.gov (United States)

    2015-01-01

    The Mars Curiosity Chemistry and Camera instrument, or ChemCam, analyzes the elemental composition of materials on the Red Planet by using a spectrometer to measure the wavelengths of light they emit. Principal investigator Roger Wiens worked with Ocean Optics, out of Dunedin, Florida, to rework the company's spectrometer to operate in cold and rowdy conditions and also during the stresses of liftoff. Those improvements have been incorporated into the firm's commercial product line.

  13. Complex Response Function of Magnetic Resonance Spectrometers

    OpenAIRE

    Annino, G.; Cassettari, M.; Fittipaldi, M.; M. Martinelli

    2002-01-01

    A vectorial analysis of magnetic resonance spectrometers, based on traveling wave resonators and including the reference arm and the automatic control of frequency, has been developed. The proposed model, valid also for stationary wave resonators, gives the response function of the spectrometer for any working condition, including scalar detectors with arbitrary response law and arbitrary excitation frequency. The purely dispersive and purely absorptive linear responses are discussed in detai...

  14. Development of multi-channel electron spectrometer

    International Nuclear Information System (INIS)

    In order to obtain the angular dependent electron energy distributions, we developed a multichannel electron spectrometer (MCESM) with high energy and angular resolutions. The MCESM consists of seven small electron spectrometers set in every 5 deg. on the basement, each of which detection range is up to 25 MeV. In the experiment, we successfully obtained electron spectra from imploded cone-shell target as well as gold plane target irradiated by ultraintense (300 J/5 ps) laser beam.

  15. The TNG Near Infrared Camera Spectrometer

    OpenAIRE

    Baffa, C.; Comoretto, G.; Gennari, S.; F. Lisi; Oliva, E; Biliotti, V.; Checcucci, A.; Gavrioussev, V.; Giani, E; Ghinassi, F.; Hunt, L. K.; Maiolino, R.; Mannuci, F.; Marcucci, G.; Sozzi, M.

    2001-01-01

    NICS (acronym for Near Infrared Camera Spectrometer) is the near-infrared cooled camera-spectrometer that has been developed by the Arcetri Infrared Group at the Arcetri Astrophysical Observatory, in collaboration with the CAISMI-CNR for the TNG (the Italian National Telescope Galileo at La Palma, Canary Islands, Spain). As NICS is in its scientific commissioning phase, we report its observing capabilities in the near-infrared bands at the TNG, along with the measured performance and the limi...

  16. The role of electron scattering from registration detector in a MAC-E type spectrometer

    CERN Document Server

    Grigorieva, P V; Pantuev, V S; Skasyrskaya, A K

    2015-01-01

    There is a proposal to search for a sterile neutrino in a few keV mass range by the "Troitsk nu-mass" facility. In order to estimate sterile neutrino mixing one needs to make precision spectrum measurements well below the endpoint using the existing electrostatic spectrometer with a magnetic adiabatic collimation, or MAC-E filter. The expected signature will be a kink in the electron energy spectrum in tritium beta-decay. In this article we consider the systematic effect of electron backscattering on the detector used in the spectrometer. For this purpose we provide a set of Monte-Carlo simulation results of electron backscattering on a silicon detector with a thin golden window with realistic electric and magnetic fields in the spectrometer. We have found that the probability of such an effect reaches up to 20-30\\%. The scattered electron could be reflected backwards to the detector by electrostatic field or by magnetic mirror. There is also a few percent probability to escape from the spectrometer through i...

  17. Investigation of UV-laser induced electrons in the KATRIN main spectrometer

    International Nuclear Information System (INIS)

    The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to determine the effective mass of the electron anti neutrino with a sensitivity of 200 meV/c2 via the precise measurement of the tritium beta decay spectrum close to its endpoint energy of 18.6 keV. To achieve the desired sensitivity a very low background rate of 10-2 electrons per second is necessary. Cosmic muons produce a large number of secondary electrons at the inner surface of the KATRIN main spectrometer. These secondary electrons are mostly suppressed via magnetic shielding effects, however some of these electrons can reach the focal plane detector and contribute to the background. In order to shield these electrons, an electrostatic retarding potential is produced by a dual-layer wire electrode system, installed at the inner surface of the spectrometer vessel. An UV laser system is used to generate a large number of low-energy secondary electrons via photoelectric effect at dedicated positions inside the main spectrometer vessel. These electrons are used to investigate the efficiency of the electrostatic shielding for different electrode potentials. This talk presents measurement results recently obtained in context of the second commissioning phase of the main spectrometer.

  18. Study of neutron spectrometers for ITER

    International Nuclear Information System (INIS)

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation

  19. SUB 1-Millimeter Size Fresnel Micro Spectrometer

    Science.gov (United States)

    Park, Yeonjoon; Koch, Laura; Song, Kyo D.; Park, Sangloon; King, Glen; Choi, Sang

    2010-01-01

    An ultra-small micro spectrometer with less than 1mm diameter was constructed using Fresnel diffraction. The fabricated spectrometer has a diameter of 750 nmicrometers and a focal length of 2.4 mm at 533nm wavelength. The micro spectrometer was built with a simple negative zone plate that has an opaque center with an ecliptic shadow to remove the zero-order direct beam to the aperture slit. Unlike conventional approaches, the detailed optical calculation indicates that the ideal spectral resolution and resolving power do not depend on the miniaturized size but only on the total number of rings. We calculated 2D and 3D photon distribution around the aperture slit and confirmed that improved micro-spectrometers below 1mm size can be built with Fresnel diffraction. The comparison between mathematical simulation and measured data demonstrates the theoretical resolution, measured performance, misalignment effect, and improvement for the sub-1mm Fresnel micro-spectrometer. We suggest the utilization of an array of micro spectrometers for tunable multi-spectral imaging in the ultra violet range.

  20. Study of neutron spectrometers for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kaellne, Jan

    2005-11-15

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation.

  1. Q_EC values of the Superallowed beta-Emitters 10-C, 34-Ar, 38-Ca and 46-V

    CERN Document Server

    Eronen, T; Hakala, J; Hardy, J C; Jokinen, A; Kankainen, A; Moore, I D; Penttila, H; Reponen, M; Rissanen, J; Saastamoinen, A; Aysto, J

    2011-01-01

    The Q_EC values of the superallowed beta+ emitters 10-C, 34-Ar, 38-Ca and 46-V have been measured with a Penning-trap mass spectrometer to be 3648.12(8), 6061.83(8), 6612.12(7) and 7052.44(10) keV, respectively. All four values are substantially improved in precision over previous results.

  2. Xeroradiography in. beta. -thalassaemia

    Energy Technology Data Exchange (ETDEWEB)

    Scutellari, P.N.; Orzincolo, C.; Tamarozzi, R.

    1985-01-01

    Xeroradiographic investigations of the skull, hand, and elbow were performed on 27 patients with homozygous ..beta..-thalassaemia. The results were compared with plain radiographic examinations. Xeroradiography, because of its technical properties (i.e. edge contrast enhancement and wide latitude), was shown to demonstrate cortical thinning of long bones, swelling of the diploic space in the skull, and reticulated patterns in the elbow better than standard radiography. Moreover, the use of 'positive' mode imaging was shown to have advantages in the study of the skull and extremities.

  3. Realized Beta GARCH

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger; Voev, Valeri Radkov

    2014-01-01

    particularly useful for modeling financial returns during periods of rapid changes in the underlying covariance structure. When applied to market returns in conjunction with returns on an individual asset, the model yields a dynamic model specification of the conditional regression coefficient that is known as...... conditional beta series during the financial crises.......We introduce a multivariate generalized autoregressive conditional heteroskedasticity (GARCH) model that incorporates realized measures of variances and covariances. Realized measures extract information about the current levels of volatilities and correlations from high-frequency data, which is...

  4. A PHOTOEMISSIVE MONOENERGETIC ELECTRON SOURCE FOR CALIBRATING THE BETA—MAGNETIC SPECTROMETER

    Institute of Scientific and Technical Information of China (English)

    陈志才; 孙汉城; 等

    1994-01-01

    A new kind of electron source,the photoemissive monoenergetic electron source has been inverted for calibrating the beta-magnetic spectrometer.It produces electrons in the form of simulating a radioactive monoenergetic electron source and can be made in any shape and size according to the demands of experiments.In this paper.the principles and basic constructions of the photoemissive monoenergetic electron source are listed.a new way for determining resolution function of experimental system in the resarch of neutrino rest mass has been posed and one of its actual applications is also given.

  5. PIBETA spectrometer for investigation of rare and forbidden decays of muons and pions

    International Nuclear Information System (INIS)

    Design, contribution and performance of the PIBETA spectrometer intended for the precise measurement of the pion beta decay, π+→π0+e++νe, at the Paul Scherrer Institute (PSI, Switzerland) are described. The central part of the detector is a 240-module spherical pure CsI calorimeter covering ∼3π sr solid angle. The calorimeter is supplemented with active collimator/beam degrader, an active segmented plastic target, a pair of low-mass cylindrical multiwire chambers, a 20-element cylindrical plastic scintillator hodoscope and cosmic muon plastic veto counters. (author)

  6. Double beta decay: present status

    OpenAIRE

    Barabash, A. S.

    2008-01-01

    The present status of double beta decay experiments (including the search for $2\\beta^{+}$, EC$\\beta^{+}$ and ECEC processes) are reviewed. The results of the most sensitive experiments are discussed. Average and recommended half-life values for two-neutrino double beta decay are presented. Conservative upper limits on effective Majorana neutrino mass and the coupling constant of the Majoron to the neutrino are established as $ < 0.75$ eV and $ < 1.9 \\cdot 10^{-4}$, respectively. Proposals fo...

  7. Simultaneous beta and gamma spectroscopy

    Science.gov (United States)

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  8. Double-beta decay of 48Ca in the TGV experiment

    International Nuclear Information System (INIS)

    The low-background, high-sensitivity Ge multidetector spectrometer TGV is used to study the double-beta decay of 48Ca. Additional suppression of the recorded background is achieved with neutron shielding and a method for distinguishing β particles from γ rays by detector-pulse rise time. The estimates T1sol2ββ2v= (4.2 ± 2.4) x 1019 yr and T1sol2ββ0v > 1.5 x 1021 yr (at a 90% C.L.) for the double-beta decay of 48Ca are obtained

  9. Search for double beta decay of 48Ca in the TGV experiment

    Science.gov (United States)

    Brudanin, V. B.; Rukhadze, N. I.; Briançon, C.; Egorov, V. G.; Kovalenko, V. E.; Kovalik, A.; Salamatin, A. V.; Štekl, I.; Tsoupko-Sitnikov, V. V.; Vylov, T.; Čermák, P.

    2000-12-01

    This Letter describes a collaborative TGV (Telescope Germanium Vertical) study of the double beta decay of 48Ca with a low-background and high sensitivity Ge multi-detector spectrometer. The results of T1/22νββ=(4.2+3.3- 1.3)×1019 years and T1/20νββ>1.5×1021 years (90% CL) for double beta decay of 48Ca were found after processing experimental data obtained after 8700 hours of measuring time, using approximately 1 gramme of 48Ca. The features of a TGV-2 experiment are also presented.

  10. Double-beta decay of 48Ca in the TGV experiment

    International Nuclear Information System (INIS)

    The low-background, high-sensitivity Ge multi-detector spectrometer TVG was used to study the double-beta decay of 48Ca. Additional suppression of the registered background was achieved with a neutron shielding and a method of distinguishing β-particles from γ-rays by detector pulse rise time. The estimates T1/2ββ2ν = (4.2 ±2.4) x 1019 yr and T1/2ββ0ν > 1.5 x 1021 yr (90% C.L.) for the double-beta decay of 48Ca were obtained

  11. Analysis method for beta-gamma coincidence spectra from radio-xenon isotopes

    International Nuclear Information System (INIS)

    Radio-xenon isotopes monitoring is one important method for the verification of CTBT, what includes the measurement methods of HPGe γ spectrometer and β-γ coincidence. The article describes the analytic flowchart and method of three-dimensional beta-gamma coincidence spectra from β-γ systems, and analyses in detail the principles and methods of the regions of interest of coincidence spectra and subtracting the interference, finally gives the formula of radioactivity of Xenon isotopes and minimum detectable concentrations. Studying on the principles of three-dimensional beta-gamma coincidence spectra, which can supply the foundation for designing the software of β-γ coincidence systems. (authors)

  12. The LASS [Larger Aperture Superconducting Solenoid] spectrometer

    International Nuclear Information System (INIS)

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K+ and K- interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K-p interactions during 1977 and 1978, which is also described briefly

  13. Scintillator based beta batteries

    Science.gov (United States)

    Rensing, Noa M.; Tiernan, Timothy C.; Shirwadkar, Urmila; O'Dougherty, Patrick; Freed, Sara; Hawrami, Rastgo; Squillante, Michael R.

    2013-05-01

    Some long-term, remote applications do not have access to conventional harvestable energy in the form of solar radiation (or other ambient light), wind, environmental vibration, or wave motion. Radiation Monitoring Devices, Inc. (RMD) is carrying out research to address the most challenging applications that need power for many months or years and which have undependable or no access to environmental energy. Radioisotopes are an attractive candidate for this energy source, as they can offer a very high energy density combined with a long lifetime. Both large scale nuclear power plants and radiothermal generators are based on converting nuclear energy to heat, but do not scale well to small sizes. Furthermore, thermo-mechanical power plants depend on moving parts, and RTG's suffer from low efficiency. To address the need for compact nuclear power devices, RMD is developing a novel beta battery, in which the beta emissions from a radioisotope are converted to visible light in a scintillator and then the visible light is converted to electrical power in a photodiode. By incorporating 90Sr into the scintillator SrI2 and coupling the material to a wavelength-matched solar cell, we will create a scalable, compact power source capable of supplying milliwatts to several watts of power over a period of up to 30 years. We will present the latest results of radiation damage studies and materials processing development efforts, and discuss how these factors interact to set the operating life and energy density of the device.

  14. A high resolution TOF diffractometer and spectrometer

    International Nuclear Information System (INIS)

    A combined high resolution TOF-diffractometer and -spectrometer is proposed for the new Munich reactor FRM II. The setup consists of a back scattering detector for the diffractometer and analyser crystals around the sample for the spectrometer (similar to IRIS from ISIS). The instrument uses a time of flight monochromator with a long flight path and a fast first chopper. The resolution of the diffractometer will be Δd/d ∼ 2 x 10-4 and the best energy resolution of the spectrometer will be 1-2 μeV with a silicon analyser system in near back scattering geometry. The dynamic range of the silicon system will be 110 μeV, but it can be shifted with the TOF monochromator in the range of several meV. With a second analyser system of graphite out of back scattering the energy resolution of the secondary spectrometer can be relaxed. One of the main applications of the diffractometer may be line shifts and line shape modifications relating to defect structures in crystals. The spectrometer opens up the possibility of inelastic measurements with μeV resolution and the investigation of diffusion and relaxation from ns to ps in one instrument. (author)

  15. Scintillation time-of-flight spectrometers

    International Nuclear Information System (INIS)

    The time characteristics of time-of-flight scintillation spectrometers fo two types, which differ in the scintillator size, the length of the light guides, and the distance between the PM, are described. The investigations were carried out on π-meson beams at a current feeding the analyzing magnet of the meson track of 550 and 485 A. The time resolution for the C1 spectrometer, as determined from the electron spectrum, is 130 ns, and for the C2 spectrometer 280 ns. The results obtained in this work are compared with those of other investigations. The mean energies of the π--meson beams have been measured, and the analyzing magnet of the meson track has been calibrated. It is demonstrated that the simplest and most reliable method for accurate determination of the energy of the beam particles is the time-of-flight measurement. The initial values of the mean energies of the π--mesons are found to be 274.5+-2.0 MeV for the C1F spectrometer and 227.3+-1.5 MeV for the C2 spectrometer

  16. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  17. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  18. The best-beta CAPM

    NARCIS (Netherlands)

    L. Zou

    2006-01-01

    The issue of 'best-beta' arises as soon as potential errors in the Sharpe-Lintner-Black capital asset pricing model (CAPM) are acknowledged. By incorporating a target variable into the investor preferences, this study derives a best-beta CAPM (BCAPM) that maintains the CAPM's theoretical appeal and

  19. New miniaturized alpha/beta spectrometric system for the surface contamination monitoring and radon personal dosimeter

    International Nuclear Information System (INIS)

    The heart of the new miniaturized alpha/beta spectroscopic system is a Smart Card MCA having a 12 bit resolution and a 32 bit memory for each channel with the size of a cheque card. The system consists of a single or up to 12 alpha spectrometers in a battery powered casing with connectors for direct detector/amplifier module plugging. Surface contamination in the order of 1 Bq/cm2 of 239Pu can be measured. (M.D.)

  20. Measurement of beta-decay energies using total gamma-absorption spectrometer

    International Nuclear Information System (INIS)

    An application of the total γ-absorption (TGA) technique to measurements of the β-decay energies, Qβ, for nuclei far from stability region is considered. The proposed technique provides the precision of 0.06-0.25 MeV. The results of measurements of the Qβ values for decay of 64 nuclides in the mass range A=76-165 are presented. 16 refs.; 6 figs.; 1 tab

  1. The PERC spectrometer for the study of the neutron beta decay

    International Nuclear Information System (INIS)

    The precise investigation of the weak interaction in free neutron decay allows to intensively test the Standard Modell and find physics beyond. In this work, the magnet system of the bright and clean proton- and electron source PERC (Proton-Electron-Radiation-Channel) was developed. It will be installed in 2016 at the research reactor FRM II. Due to improvements in systematics and statistics in comparison to its predecessor PERKEO III, observables of free neutron decay can be determined with the worldwide best precision of 10-4. In this thesis, the technical and physical properties of the magnet system will be discussed. As a major part of this work, an efficient geometry for a back-scatter detector was developed. Undetected back-scatter events for electrons would disturb the spectra in the order of 10-3 for a plastic scintillator. Here, the geometry will be introduced and back-scatter events will be analyzed by simulations. For the experimental part of the present work, titanium sublimation pumps and ion getter pumps were constructed and tested. As components of the over 12 m long ultra-high vacuum system of PERC they can effectively reduce the pressure to the order of 10-9 mbar over the complete length. Therefore collisions of electrons and protons with gas particles will be strongly suppressed.

  2. RAVEN Beta Release

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert Arthur [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Congjian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Daniel Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, Paul William [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This documents the release of the Risk Analysis Virtual Environment (RAVEN) code. A description of the RAVEN code is provided, and discussion of the release process for the M2LW-16IN0704045 milestone. The RAVEN code is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is capable of investigating the system response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. RAVEN has now increased in maturity enough for the Beta 1.0 release.

  3. RAVEN Beta Release

    International Nuclear Information System (INIS)

    This documents the release of the Risk Analysis Virtual Environment (RAVEN) code. A description of the RAVEN code is provided, and discussion of the release process for the M2LW-16IN0704045 milestone. The RAVEN code is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is capable of investigating the system response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. RAVEN has now increased in maturity enough for the Beta 1.0 release.

  4. A compact multichannel spectrometer for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  5. Miniature, sub-nanometer resolution Talbot spectrometer.

    Science.gov (United States)

    Ye, Erika; Atabaki, Amir H; Han, Ningren; Ram, Rajeev J

    2016-06-01

    Miniaturization of optical spectrometers has a significant practical value as it can enable compact, affordable spectroscopic systems for chemical and biological sensing applications. For many applications, the spectrometer must gather light from sources that span a wide range of emission angles and wavelengths. Here, we report a lens-free spectrometer that is simultaneously compact (3), of high resolution (<1  nm), and has a clear aperture (of 10×10  mm). The wavelength-scale pattern in the dispersive element strongly diffracts the input light to produce non-paraxial mid-field diffraction patterns that are then recorded using an optimally matched image sensor and processed to reconstruct the spectrum. PMID:27244382

  6. Partial pressure measurements with an active spectrometer

    International Nuclear Information System (INIS)

    Partial pressure neutral ga measurements have been made using a commercial Penning gauge in conjunction with an active spectrometer. In prior work utilizing bandpass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitations by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra

  7. Partial pressure measurements with an active spectrometer

    International Nuclear Information System (INIS)

    Partial pressure neutral gas measurements have been made using a commercial Penning gauge in conjunction with an open-quotes active spectrometer.close quotes In prior work utilizing band pass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne, and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitation by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra. copyright 1999 American Institute of Physics

  8. An All-Cryogenic THz Transmission Spectrometer

    CERN Document Server

    Burke, P J; Pfeiffer, L N; West, K W

    2001-01-01

    This paper describes a THz transmission spectrometer for the spectral range of 2-65 cm^-1 (100 GHz to 2 THz) with a spectral resolution of at least 1.8 cm^-1 (50 GHz) where the source, sample, and detector are all fully contained in a cryogenic environment. Cyclotron emission from a two-dimensional electron gas heated with an electrical current serves as a magnetic field tunable source. The spectrometer is demonstrated at 4.2 K by measuring the resonant cyclotron absorption of a second two dimensional electron gas. Unique aspects of the spectrometer are that 1) an ultra-broadband detector is used and 2) the emitter is run quasi-continuously with a chopping frequency of only 1 Hz. Since optical coupling to room temperature components is not necessary, this technique is compatible with ultra-low temperature (sub 100 mK) operation.

  9. Digital Logarithmic Airborne Gamma Ray Spectrometer

    CERN Document Server

    Zeng, GuoQiang; Li, Chen; Tan, ChengJun; Ge, LiangQuan; Gu, Yi; Cheng, Feng

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energy calibration. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, effectively measuring energy from 20keV to 10MeV is possible.

  10. Plasma Spectrochemistry with a Fourier Transform Spectrometer.

    Science.gov (United States)

    Manning, Thomas Joseph John

    1990-01-01

    This dissertation can be interpreted as being two-dimensional. The first dimension uses the Los Alamos Fourier Transform Spectrometer to uncover various physical aspects of a Inductively Coupled Plasma. The limits of wavenumber accuracy and resolution are pushed to measure line shifts and line profiles in an Inductively Coupled Argon Plasma. This is new physical information that the plasma spectroscopy community has been seeking for several years. Other plasma spectroscopy carried out includes line profile studies, plasma diagnostics, and exact identification of diatomic molecular spectra. The second aspect of the dissertation involves studies of light sources for Fourier Transform Spectroscopy. Sources developed use an inductively coupled plasma (ICP) power supply. New sources (neon ICP, closed cell ICP, and helium ICP) were developed and new methods to enhance the performance and understand a Fourier Transform Spectrometer were studied including a novel optical filter, a spectrum analyzer to study noises, and a standard to calibrate and evaluate a Fourier Transform Spectrometer.

  11. Compact snapshot birefringent imaging Fourier transform spectrometer

    Science.gov (United States)

    Kudenov, Michael W.; Dereniak, Eustace L.

    2010-08-01

    The design and implementation of a compact multiple-image Fourier transform spectrometer (FTS) is presented. Based on the multiple-image FTS originally developed by A. Hirai, the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. The theory of the birefringent FTS is provided, followed by details of its specific embodiment. A laboratory proof of concept of the sensor, designed and developed at the Optical Detection Lab, is also presented. Spectral measurements of laboratory sources are provided, including measurements of light-emitting diodes and gas-discharge lamps. These spectra are verified against a calibrated Ocean Optics USB2000 spectrometer. Other data were collected outdoors, demonstrating the sensor's ability to resolve spectral signatures in standard outdoor lighting and environmental conditions.

  12. Adaptive Tunable Laser Spectrometer for Space Applications

    Science.gov (United States)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  13. An EUV spectrometer for atmospheric remote sensing

    International Nuclear Information System (INIS)

    This paper describes the Berkeley EUV Airglow Rocket Spectrometer (BEARS) experiment, designed to investigate the interactions between the solar ionizing radiation and the earth's upper atmosphere. The primary objective of this experiment is the verification the feasibility of using EUV observations as a quantitative diagnostic of the terrestrial atmosphere and its plasma environment. The expected information provided by spectroscopic measurements of EUV emission will include data on the excitation mechanisms, excitation rates, and branching ratios. The BEARS experimental package consists of a high-resolution EUV airglow spectrometer, a hydrogen Lyman-alpha photometer to measure both the solar radiations and the geocoronal emissions, and a moderate-resolution solar EUV spectrometer. In a test experiment, the instruments were carried aboard a four-stage sounding rocket to a peak altitude of about 960 km and obtained airglow spectra in the 980-1060 A range and in the 1300-1360 range. 34 refs

  14. NQR spectrometer controlled by a computer

    International Nuclear Information System (INIS)

    The design of a pulsed nuclear quadrupole resonance (NQR) spectrometer prototype is presented. All operations performed by the spectrometer will be controlled by a computer. Main features of the software and hardware design are reported. The scanning frequency range, amplitude and width of the RF pulse and sample temperature can be controlled by the software. Also it is possible to improve the ratio signal-to-noise using digital filtering applied to the data stored. Automatic operation eliminates operator skill and uncertainty of manual operation. The software is a stand alone executable file, runs on Windows 95/98 platform and does not require the existence of another software package. A graphical interface allows to user an easy control over the spectrometer operations

  15. Fast neutron detection with a segmented spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Langford, T.J., E-mail: thomas.langford@yale.edu [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Bass, C.D. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Beise, E.J.; Breuer, H.; Erwin, D.K. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Heimbach, C.R.; Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2015-01-21

    A fast neutron spectrometer consisting of segmented plastic scintillator and {sup 3}He proportional counters was constructed for the measurement of neutrons in the energy range 1–200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  16. Fast Neutron Detection with a Segmented Spectrometer

    CERN Document Server

    Langford, T J; Beise, E J; Breuer, H; Erwin, D K; Heimbach, C R; Nico, J S

    2014-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination The spectrometer was characterized for energy resolution and efficiency in fast neutron fields of 2.5 MeV, 14 MeV, and fission spectrum neutrons, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  17. Miniaturized Energy Spectrometer for Space Plasma Measurements

    Science.gov (United States)

    Goes de Lima, Raphaela; Scime, Earl; Keesee, Amy; Lusk, Greg

    2015-11-01

    Taking advantage of technological developments in lithographic fabrication techniques over the past two decades, we have designed an ultra-compact plasma spectrometer that requires only low voltage power supplies, no microchannel plates, and has a high aperture area to instrument area ratio. The designed target is for ions in the 3- 20 keV range with a highly directional field of view. In addition to reducing mass, size, and voltage requirements, the new design will revolutionize the manufacturing process of plasma spectrometers, enabling large quantities of identical instruments to be manufactured at low individual unit cost. Such a plasma spectrometer is ideal for Heliophysics plasma investigations, particularly for small satellite and multi-spacecraft missions. Here we present initial measurements of the performance of the instrument components and designs of the electronics for the low energy threshold solid state detector. Work Support under NASA grant - NNX14AJ36G.

  18. Beta Beams Implementation at CERN

    CERN Document Server

    Hansen, Christian

    2011-01-01

    Beta Beam,the concept of generating a pure and intense (anti) neutrino beam by letting accelerated radioactive ions beta decay in a storage ring, called Decay Ring (DR), is the base of one of the proposed next generation neutrino oscillation facilities, necessary for a complete study of the neutrino oscillation parameter space. Sensitivities of the unknown neutrino oscillation parameters depend on the Decay Ring's ion intensity and of it's duty factor (the filled ratio of the ring). Therefore efficient ion production, stripping, bunching, acceleration and storing are crucial sub-projects under study and development within the Beta Beam collaboration. Specifically the feasibility of these tasks as parts of a Beta Beam implementation at CERN will be discussed in this report. The positive impact of the large {\\theta}13 indications from T2K on the Beta Beam performance will also be discussed.

  19. Development of an ion mobility spectrometer for use in an atmospheric pressure ionization ion mobility spectrometer/mass spectrometer instrument for fast screening analysis

    NARCIS (Netherlands)

    Sysoev, A; Adamov, A; Vildanoja, J; Ketoja, RA; Kostiainen, R; Kotiaho, T

    2004-01-01

    An ion mobility spectrometer that can easily be installed as an intermediate component between a commercial triple-quadrupole mass spectrometer and its original atmospheric pressure ionization (API) sources was developed. The curtain gas from the mass spectrometer is also used as the ion mobility sp

  20. Degradation Free Spectrometers for Solar EUV Measurements

    Science.gov (United States)

    Wieman, S. R.; Didkovsky, L. V.; Judge, D. L.; McMullin, D. R.

    2011-12-01

    Solar EUV observations will be made using two new degradation-free EUV spectrometers on a sounding rocket flight scheduled for summer 2012. The two instruments, a rare gas photoionization-based Optics-Free Spectrometer (OFS) and a Dual Grating Spectrometer (DGS), are filter-free and optics-free. OFS can measure the solar EUV spectrum with a spectral resolution comparable to that of grating-based EUV spectrometers. The DGS selectable spectral bandwidth is designed to provide solar irradiance in a 10 nm band centered on the Lyman-alpha 121.6 nm line and a 4 nm band centered on the He-II 30.4 nm line to overlap EUV observations from the SDO/EUV Variability Experiment (EVE) and the SOHO/Solar EUV Monitor (SEM). A clone of the SOHO/SEM flight instrument and a Rare Gas Ionization Cell (RGIC) absolute EUV detector will also be flown to provide additional measurements for inter-comparison. Program delays related to the sounding rocket flight termination system, which was no longer approved by the White Sands Missile Range prevented the previously scheduled summer 2011 launch of these instruments. During this delay several enhancements have been made to the sounding rocket versions of the DFS instruments, including a lighter, simplified vacuum housing and gas system for the OFS and an improved mounting for the DGS, which allows more accurate co-alignment of the optical axes of the DGS, OFS, and the SOHO/SEM clone. Details of these enhancements and results from additional lab testing of the instruments are reported here. The spectrometers are being developed and demonstrated as part of the Degradation Free Spectrometers (DFS) project under NASA's Low Cost Access to Space (LCAS) program and are supported by NASA Grant NNX08BA12G.

  1. Dyson spectrometers for infrared earth remote sensing

    Science.gov (United States)

    Warren, David W.; Gutierrez, David J.; Hall, Jeffrey L.; Keim, Eric R.

    2008-08-01

    The Dyson spectrometer form is capable of providing high throughput, excellent image quality, low spatial and spectral distortions, and high tolerance to fabrication and alignment errors in a compact format with modest demands for weight, volume, and cooling resources. These characteristics make it attractive for hyperspectral imaging from a space-based platform. After a brief discussion of history and basic principles, we present two examples of Dyson spectrometers being developed for airborne applications. We conclude with a concept for an earth science instrument soon to begin development under the Instrument Incubator Program of NASA's Earth Science Technology Office.

  2. Time-of-flight Fourier UCN spectrometer

    CERN Document Server

    Kulin, G V; Goryunov, S V; Kustov, D V; Geltenbort, P; Jentschel, M; Lauss, B; Schmidt-Wellenburg, Ph

    2016-01-01

    We describe a new time-of-flight Fourier spectrometer for investigation of UCN diffraction by a moving grating. The device operates in the regime of a discrete set of modulation frequencies. The results of the first experiments show that the spectrometer may be used for obtaining UCN energy spectra in the energy range of 60$\\div$200 neV with a resolution of about 5 neV. The accuracy of determination of the line position was estimated to be several units of $10^{-10}$ eV

  3. Single spectrometer station for neutrino-tagging

    International Nuclear Information System (INIS)

    A neutrino tagging station built with respect to the following scheme is proposed. A beam of muons and kaons passes through a magnetic spectrometer, where the energy of each particle is measured. There are coordinate detectors behind the spectrometer in several planes, where the direction of the trajectory of a given particle is determined. Thus, mesons enter the decay point wth the known 4-momentum. Behind the decay point the direction of μ-meson generated by the decay of parent mesons is measured. It is shown that information is sufficient for determining the kind of parent particle (pion or kaon), the energy and the direction of trajectory of the neutrino

  4. An all-cryogenic THz transmission spectrometer

    OpenAIRE

    Burke, P. J.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K.W.

    2002-01-01

    This paper describes a THz transmission spectrometer for the spectral range of 2-65 cm^-1 (100 GHz to 2 THz) with a spectral resolution of at least 1.8 cm^-1 (50 GHz) where the source, sample, and detector are all fully contained in a cryogenic environment. Cyclotron emission from a two-dimensional electron gas heated with an electrical current serves as a magnetic field tunable source. The spectrometer is demonstrated at 4.2 K by measuring the resonant cyclotron absorption of a second two di...

  5. Objective Crystal Spectrometer on the SRG satellite

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Westergaard, Niels Jørgen Stenfeldt; Rasmussen, I.;

    1994-01-01

    The flight version of the Objective Crystal Spectrometer (OXS) on the SPECTRUM-X- GAMMA satellite is presented. The spectrometer is a panel that is placed in front of one of the SODART telescopes. It is composed of an array of the three Bragg crystals, LiF(220), Si(111) and RAP(001) for high...... Si crystals will be coated with a multilayer that will allow spectroscopy with an energy resolution of approximately 80 in the energy band immediately below the C-K absorption edge of 0.284 keV. All the flight crystals are available and detailed calibrations have been obtained for each crystal. They...

  6. Time-of-flight Fourier UCN spectrometer

    Science.gov (United States)

    Kulin, G. V.; Frank, A. I.; Goryunov, S. V.; Kustov, D. V.; Geltenbort, P.; Jentschel, M.; Lauss, B.; Schmidt-Wellenburg, P.

    2016-05-01

    We describe a new time-of-flight Fourier spectrometer for investigation of UCN diffraction by a moving grating. The device operates in the regime of a discrete set of modulation frequencies. The results of the first experiments show that the spectrometer may be used for obtaining UCN energy spectra in the energy range of 60 - 200 neV with a resolution of about 5 neV. The accuracy of determination of the line position was estimated to be several units of 10-10 eV.

  7. Software Polarization Spectrometer "PolariS"

    OpenAIRE

    Mizuno, Izumi; Kameno, Seiji; Kano, Amane; Kuroo, Makoto; Nakamura, Fumitaka; KAWAGUCHI, Noriyuki; Shibata, Katsunori M.; Kuji, Seisuke; Kuno, Nario

    2014-01-01

    We have developed a software-based polarization spectrometer, PolariS, to acquire full-Stokes spectra with a very high spectral resolution of 61 Hz. The primary aim of PolariS is to measure the magnetic fields in dense star-forming cores by detecting the Zeeman splitting of molecular emission lines. The spectrometer consists of a commercially available digital sampler and a Linux computer. The computer is equipped with a graphics processing unit (GPU) to process FFT and cross-correlation usin...

  8. MICE Spectrometer Solenoid Magnetic Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Leonova, M. [Fermilab

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  9. A proposed neutron spectrometer system for JET

    International Nuclear Information System (INIS)

    A neutron spectrometer system is proposed primarily for measurements of ion temperature and density and ion beam energy distribution in extended fusion plasmas like e.g. in JET. Three different spectrometers are involved: time of flight, proton recoil and 3He. Energy resolutions of a few percent both for DD and DT neutrons are provided. Six order of magnitudes in flux ranges will be covered by the system when employing multi-target systems. A neutron collimator and shielding system will be desirable in order to obtain relevant information. Due to the entire differences in energy and fluxes for DD and DT plasmas a flexible collimator-shielding system is recommended

  10. Streaked, x-ray-transmission-grating spectrometer

    International Nuclear Information System (INIS)

    A free standing x-ray transmission grating has been coupled with a soft x-ray streak camera to produce a time resolved x-ray spectrometer. The instrument has a temporal resolution of approx. 20 psec, is capable of covering a broad spectral range, 2 to 120 A, has high sensitivity, and is simple to use requiring no complex alignment procedure. In recent laser fusion experiments the spectrometer successfully recorded time resolved spectra over the range 10 to 120 A with a spectral resolving power, lambda/Δlambda of 4 to 50, limited primarily by source size and collimation effects

  11. Compact Imaging Spectrometer Utilizing Immersed Gratings

    Energy Technology Data Exchange (ETDEWEB)

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR); Kuzmenko, Paul J. (Livermore, CA); Bennett, Charles L. (Livermore, CA)

    2006-03-21

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, a system for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through an optical element to the detector array.

  12. The five-Penning trap mass spectrometer PENTATRAP

    Energy Technology Data Exchange (ETDEWEB)

    Repp, Julia; Boehm, Christine; Goncharov, Mikhail; Roux, Christian; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Physikalisches Institut, Ruprecht-Karls-Universitaet, 69120 Heidelberg (Germany); Crespo Lopez-Urrutia, Jose; Eliseev, Sergey [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Doerr, Andreas [Physikalisches Institut, Ruprecht-Karls-Universitaet, 69120 Heidelberg (Germany); Novikov, Yuri [St. Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Sturm, Sven [Johannes Gutenberg-Universitaet, Institut fuer Physik, 55099 Mainz (Germany); Ulmer, Stefan [Physikalisches Institut, Ruprecht-Karls-Universitaet, 69120 Heidelberg (Germany); Johannes Gutenberg-Universitaet, Institut fuer Physik, 55099 Mainz (Germany)

    2011-07-01

    Currently the new mass spectrometer PENTATRAP is being developed at the Max-Planck-Institut fuer Kernphysik in Heidelberg. Ions of interest are stable and long-lived highly charged nuclides up to uranium. PENTATRAP aims for an accuracy of few parts in 10{sup 12} for mass ratios of mass doublets and a relative uncertainty of {approx} 10{sup -11} for absolute mass ratios. The measured mass values will contribute among others to Q-value determinations of relevant {beta}-processes for neutrino physics, stringent tests of quantum electrodynamics in the regime of extreme fields, and a test of special relativity. The five-trap setup allows to choose an optimal measurement scheme for each ionic species of interest. Main features of PENTATRAP are an access to highly charged ions, highly sensitive cryogenic non-destructive detection systems, a fast exchange between different ions and a continuous monitoring of magnetic field fluctuations. This talk presents the experimental setup and the present status of the PENTATRAP experiment.

  13. Intuitionistic Fuzzy Generalized Beta Closed Mappings

    OpenAIRE

    D. Jayanthi

    2014-01-01

    In this paper we introduce intuitionistic fuzzy generalized beta closed mappings and intuitionistic fuzzy generalized beta open mappings. We investigate some of their properties. We also introduce intuitionistic fuzzy M-generalized beta closed mappings as well as intuitionistic fuzzy M-generalized beta open mappings. We provide the relation between intuitionistic fuzzy M-generalized beta closed mappings and intuitionistic fuzzy generalized beta closed mappings.

  14. Derivatives of the Incomplete Beta Function

    Directory of Open Access Journals (Sweden)

    Robert J. Boik

    1998-03-01

    Full Text Available The incomplete beta function is defined as where Beta(p, q is the beta function. Dutka (1981 gave a history of the development and numerical evaluation of this function. In this article, an algorithm for computing first and second derivatives of Ix,p,q with respect to p and q is described. The algorithm is useful, for example, when fitting parameters to a censored beta, truncated beta, or a truncated beta-binomial model.

  15. Derivatives of the Incomplete Beta Function

    OpenAIRE

    Robison-Cox, James F.; Robert J. Boik

    1998-01-01

    The incomplete beta function is defined as where Beta(p, q) is the beta function. Dutka (1981) gave a history of the development and numerical evaluation of this function. In this article, an algorithm for computing first and second derivatives of Ix,p,q with respect to p and q is described. The algorithm is useful, for example, when fitting parameters to a censored beta, truncated beta, or a truncated beta-binomial model.

  16. High Temperature Stability of Potassium Beta Alumina

    Science.gov (United States)

    Williams, R. M.; Kisor, A.; Ryan, M. A.

    1996-01-01

    None. From Objectives section: Evaluate the stability of potassium beta alumina under potassium AMTEC operating conditions. Evaluate the stability regime in which potassium beta alumina can be fabricated.

  17. Gamma spectrometer for studying the MCF reactions

    International Nuclear Information System (INIS)

    A gamma spectrometer composed of two identical BGO-based gamma detectors and associated electronics is described. The main characteristics of the spectrometer are its high detection efficiency in the energy range of gamma rays Eγ≤ 30 MeV and low sensitivity to the accidental background. A distinctive feature of the detector is a plastic scintillator, which surrounds a BGO crystal and is viewed by the same photomultiplier tube. This provides effective protection of the detector against the charged particle background. The detector design allows for a compact experimental setup with a large solid angle of gamma-ray registration. The simulation of the spectrometer response function has been performed and experimentally verified using GEANT4 program. The spectrometer was used in a search for the rare muon-catalyzed fusion (MCF) reaction ddμ→4He+γ+23.8 MeV and is designed to study the ptμ→4He + γ + 19.8 MeV reaction

  18. Digital Signal Processing in the GRETINA Spectrometer

    Science.gov (United States)

    Cromaz, Mario

    2015-10-01

    Developments in the segmentation of large-volume HPGe crystals has enabled the development of high-efficiency gamma-ray spectrometers which have the ability to track the path of gamma-rays scattering through the detector volume. This technology has been successfully implemented in the GRETINA spectrometer whose high efficiency and ability to perform precise event-by-event Doppler correction has made it an important tool in nuclear spectroscopy. Tracking has required the spectrometer to employ a fully digital signal processing chain. Each of the systems 1120 channels are digitized by 100 Mhz, 14-bit flash ADCs. Filters that provide timing and high-resolution energies are implemented on local FPGAs acting on the ADC data streams while interaction point locations and tracks, derived from the trace on each detector segment, are calculated in real time on a computing cluster. In this presentation we will give a description of GRETINA's digital signal processing system, the impact of design decisions on system performance, and a discussion of possible future directions as we look towards soon developing larger spectrometers such as GRETA with full 4 π solid angle coverage. This work was supported by the Office of Science in the Department of Energy under grant DE-AC02-05CH11231.

  19. Resolution of a triple axis spectrometer

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans

    A new method for obtaining the resolution function for a triple-axis neutron spectrometer is described, involving a combination of direct measurement and analytical calculation. All factors which contribute to the finite resolution of the instrument may be taken into account, and Gaussian or...

  20. Triple-axis spectrometer DruechaL

    International Nuclear Information System (INIS)

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs

  1. Evaluation of Small Mass Spectrometer Systems

    Science.gov (United States)

    Arkin, C. Richard; Griffin, Timothy P.; Ottens, Andrew K.; Diaz, Jorge A.; Follistein, Duke W.; Adams, Fredrick W.; Helms, William R.; Voska, N. (Technical Monitor)

    2002-01-01

    Various mass analyzer systems were evaluated. Several systems show promise, including the Stanford Research Systems RGA-100, Inficon XPR-2, the University of Florida's Ion Trap, and the Compact Double Focus Mass Spectrometer. Areas that need improvement are the response time, recovery time, system volume, and system weight. Future work will investigate techniques to improve systems and will evaluate engineering challenges.

  2. IR Spectrometer Project for the BTA Telescope

    OpenAIRE

    Afanasiev, V.L.; Emelianov, E. V.; Murzin, V. A.; Vdovin, V. F.

    2013-01-01

    We introduce a project of new cooled infrared spectrometer-photometer for 6-m telescope BTA (Special Astrophysical Observatory of Russian Science Academy). The device would extend the wavelength range accessible for observations on the 6-m BTA telescope toward near infrared (0.8-2.5 um).

  3. HyTES: Thermal Imaging Spectrometer Development

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Realmuto, Vincent; Lamborn, Andy; Paine, Chris; Mumolo, Jason M.; Eng, Bjorn T.

    2011-01-01

    The Jet Propulsion Laboratory has developed the Hyperspectral Thermal Emission Spectrometer (HyTES). It is an airborne pushbroom imaging spectrometer based on the Dyson optical configuration. First low altitude test flights are scheduled for later this year. HyTES uses a compact 7.5-12 micrometer m hyperspectral grating spectrometer in combination with a Quantum Well Infrared Photodetector (QWIP) and grating based spectrometer. The Dyson design allows for a very compact and optically fast system (F/1.6). Cooling requirements are minimized due to the single monolithic prism-like grating design. The configuration has the potential to be the optimal science-grade imaging spectroscopy solution for high altitude, lighter-than-air (HAA, LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The QWIP sensor allows for optimum spatial and spectral uniformity and provides adequate responsivity which allows for near 100mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. The QWIP's repeatability and uniformity will be helpful for data integrity since currently an onboard calibrator is not planned. A calibration will be done before and after eight hour flights to gage any inconsistencies. This has been demonstrated with lab testing. Further test results show adequate NEDT, linearity as well as applicable earth science emissivity target results (Silicates, water) measured in direct sunlight.

  4. Development of a portable neutron spectrometer

    International Nuclear Information System (INIS)

    A new portable neutron spectrometer has been developed for the evaluation of neutron background and the exposure dose in case of accident at the surrounding areas of power plants or accelerator facilities. This spectrometer consists of one Bonner sphere, a Position Sensitive 3He Proportional Counter (PSPC), an electronic circuit for pulse processing and a PC for spectrum unfolding and displaying. The total weight is 25.7 including boxes and cables. This spectrometer is small and light enough for high portability and available for obtaining accurate neutron spectra in the energy range between thermal and 15 MeV neutron. The Bonner sphere is minimized so as to evaluate a spectrum with reasonable accuracy and decided 23 cm in diameter of polyethylene. The PSPC was divided into 6 regions and one of the regions was outside of Bonner sphere to have higher sensitivity for thermal neutrons in the spectrum. The response functions for each regions were calculated using Monte Carlo Method. It was found that the unfolded spectrum data reasonably agreed with the slowing down neutron spectrum from 252Cf fission and would contribute to the exposure neutron dose estimation in case of accident. In this paper, the general specification and capability of this portable neutron spectrometer is described. (author)

  5. Status of the CDF small angle spectrometer

    International Nuclear Information System (INIS)

    During the 1987 Tevatron collider period the CDF small angle spectrometer system was partially installed and elastic scattering events were recorded in a special high-β run. The design and physics goals of this system are described and results from an analysis of the elastic scattering data are discussed

  6. Imaging mass spectrometer with mass tags

    Science.gov (United States)

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  7. A compact positron annihilation lifetime spectrometer

    Institute of Scientific and Technical Information of China (English)

    李道武; 刘军辉; 章志明; 王宝义; 张天保; 魏龙

    2011-01-01

    Using LYSO scintillator coupled on HAMAMATSU R9800 (a fast photomultiplier) to form the small size γ-ray detectors, a compact lifetime spectrometer has been built for the positron annihilation experiments. The system time resolution FWHM=193 ps and the co

  8. Design of focusing SANS spectrometer at BNC

    International Nuclear Information System (INIS)

    A new SANS spectrometer is being constructed on a guide viewing the cold source at BNC. Focusing options of this instrument are investigated, taking into account the geometrical and flux constraints as well as feasibility. Reflective/selective, magnetic and geometric focusing options respectively are considered, while polarized neutron and time-resolved experiments are envisaged

  9. ELECTRONICS UPGRADE OF HIGH RESOLUTION MASS SPECTROMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Mcintosh, J; Joe Cordaro, J

    2008-03-10

    High resolution mass spectrometers are specialized systems that allow researchers to determine the exact mass of samples to four significant digits by using magnetic and electronic sector mass analyzers. Many of the systems in use today at research laboratories and universities were designed and built more than two decades ago. The manufacturers of these systems have abandoned the support for some of the mass spectrometers and parts to power and control them have become scarce or obsolete. The Savannah River National Laboratory has been involved in the upgrade of the electronics and software for these legacy machines. The Electronics Upgrade of High Resolution Mass Spectrometers consists of assembling high-end commercial instrumentation from reputable manufacturers with a minimal amount of customization to replace the electronics for the older systems. By taking advantage of advances in instrumentation, precise magnet control can be achieved using high resolution current sources and continuous feedback from a high resolution hall-effect probe. The custom equipment include a precision voltage divider/summing amplifier chassis, high voltage power supply chassis and a chassis for controlling the voltage emission for the mass spectrometer source tube. The upgrade package is versatile enough to interface with valve control, vacuum and other instrumentation. Instrument communication is via a combination of Ethernet and traditional IEEE-488 GPIB protocols. The system software upgrades include precision control, feedback and spectral waveform analysis tools.

  10. Triple-axis spectrometer DruechaL

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs.

  11. Multi-channel electric aerosol spectrometer

    Science.gov (United States)

    Mirme, A.; Noppel, M.; Peil, I.; Salm, J.; Tamm, E.; Tammet, H.

    Multi-channel electric mobility spectrometry is a most efficient technique for the rapid measurement of an unstable aerosol particle size spectrum. The measuring range of the spectrometer from 10 microns to 10 microns is achieved by applying diffusional and field charging mechanisms simultaneously. On-line data processing is carried out with a microcomputer. Experimental calibration ensures correctness of measurement.

  12. Spherical electrostatic electron spectrometer for Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Benczer-Koller, N.; Kolk, B.

    1977-01-01

    A high transmission spherical electrostatic electron spectrometer was constructed for combined Moessbauer and conversion electron spectroscopies. To date, a transmission of 7% and an energy resolution of 2.5% at 14 keV were achieved for a source of 1 cm diameter.

  13. Time of flight spherotron mass spectrometer

    International Nuclear Information System (INIS)

    The possibility of using the spherotron, the mass spectrometer with crossed spherical electric and inhomogeneous magnetic fields, as a TOF mass spectrometry instrument has been analyzed. The possibility of achieving triple isochronous focusing has been shown. The estimates for the mass dispersion and resolutions are derived. (author)

  14. Broadband Infrared Heterodyne Spectrometer: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, C G; Cunningham, C T; Tringe, J W

    2010-12-16

    This report summarizes the most important results of our effort to develop a new class of infrared spectrometers based on a novel broadband heterodyne design. Our results indicate that this approach could lead to a near-room temperature operation with performance limited only by quantum noise carried by the incoming signal. Using a model quantum-well infrared photodetector (QWIP), we demonstrated key performance features of our approach. For example, we directly measured the beat frequency signal generated by superimposing local oscillator (LO) light of one frequency and signal light of another through a spectrograph, by injecting the LO light at a laterally displaced input location. In parallel with the development of this novel spectrometer, we modeled a new approach to reducing detector volume though plasmonic resonance effects. Since dark current scales directly with detector volume, this ''photon compression'' can directly lead to lower currents. Our calculations indicate that dark current can be reduced by up to two orders of magnitude in an optimized ''superlens'' structure. Taken together, our spectrometer and dark current reduction strategies provide a promising path toward room temperature operation of a mid-wave and possibly long-wave infrared spectrometer.

  15. A superheterodyne spectrometer for electronic paramagnetic. Resonance

    International Nuclear Information System (INIS)

    After a few generalities about electron paramagnetic resonance, a consideration of different experimental techniques authorises the choice of a particular type of apparatus. An EPR superheterodyne spectrometer built in the laboratory and having a novel circuit is described in detail. With this apparatus, many experimental results have been obtained and some of these are described as example. (author)

  16. Effect of beta blockade and beta stimulation on stage fright.

    Science.gov (United States)

    Brantigan, C O; Brantigan, T A; Joseph, N

    1982-01-01

    Stage fright, physiologically the "fight or flight" reaction, is a disabling condition to the professional musician. Because it is mediated by the sympathetic nervous system, we have investigated the effects of beta blockade on musical performance with propranolol in a double blind fashion and the effects of beta stimulation using terbutaline. Stage fright symptoms were evaluated in two trials, which included a total of 29 subjects, by questionnaire and by the State Trai Anxiety Inventory. Quality of musical performance was evaluated by experienced music critics. Beta blockade eliminates the physical impediments to performance caused by stage fright and even eliminates the dry mouth so frequently encountered. The quality of musical performance as judged by experienced music critics is significantly improved. This effect is achieved without tranquilization. Beta stimulating drugs increase stage fright problems, and should be used in performing musicians only after consideration of the detrimental effects which they may have on musical performance. PMID:6120650

  17. Beta decay of 31Ar

    International Nuclear Information System (INIS)

    A complete study of 31Ar beta decay has been made by high-resolution charged-particle and gamma-ray spectroscopy. Beta-delayed radiation was detected by an array of three charged-particle detectors and a large-volume germanium detector. Fifteen new energy levels were discovered in 31Cl. The beta-strength distribution, measured to 14.5 MeV, is compared with a shell-model calculation in the full sd space. The quenching of the Gamow-Teller strength and the isospin impurity of the IAS in 31Cl are discussed. (orig.)

  18. The Age of Beta Pic

    OpenAIRE

    Navascues, D. Barrado y; Stauffer, J. R.; Song, I.; Caillault, J-P.

    1999-01-01

    We have reanalyzed data for the proposed moving group associated with beta Pic in order to determine if the group (or part of it) is real, and, if so, to derive an improved age estimate for beta Pic. By using new, more accurate proper motions from PPM and Hipparcos and a few new radial velocities, we conclude that on kinematic grounds, two M dwarfs have space motions that coincide with that of beta Pic to within 1 km/s with small error bars. Based on a CM diagram derived from accurate photome...

  19. Smart Beta or Smart Alpha

    DEFF Research Database (Denmark)

    Winther, Kenneth Lillelund; Steenstrup, Søren Resen

    2016-01-01

    that smart beta investing probably will do better than passive market capitalization investing over time, we believe many are coming to a conclusion too quickly regarding active managers. Institutional investors are able to guide managers through benchmarks and risk frameworks toward the same well...... only superior to the common capitalization weighted index but also to their smart beta benchmark, even after cost for value, size, and low volatility funds. We encourage investors to increase the use of smart beta as benchmarks while still obtaining extra performance through active management—a concept...

  20. Experiments on double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Busto, J. [Neuchatel Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The Double Beta Decay, and especially ({beta}{beta}){sub 0{nu}} mode, is an excellent test of Standard Model as well as of neutrino physics. From experimental point of view, a very large number of different techniques are or have been used increasing the sensitivity of this experiments quite a lot (the factor of 10{sup 4} in the last 20 years). In future, in spite of several difficulties, the sensitivity would be increased further, keeping the interest of this very important process. (author) 4 figs., 5 tabs., 21 refs.

  1. Dosimetry of {beta} extensive sources; Dosimetria de fuentes {beta} extensas

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E.L.; Lallena R, A.M. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain)

    2002-07-01

    In this work, we have been studied, making use of the Penelope Monte Carlo simulation code, the dosimetry of {beta} extensive sources in situations of spherical geometry including interfaces. These configurations are of interest in the treatment of the called cranealfaringyomes of some synovia leisure of knee and other problems of interest in medical physics. Therefore, its application can be extended toward problems of another areas with similar geometric situation and beta sources. (Author)

  2. Resistance training & beta-hydroxy-beta-methylbutyrate supplementation on hormones

    OpenAIRE

    Hamid Arazi; Hadi Rohani; Ahmad Ghiasi; Nasrin Abdi Keikanloo

    2015-01-01

    RESUMOIntroduction:In recent years, there was an increased interest on the effects of beta-hydroxy-beta-methylbutyrate (HMB) supplementation on skeletal muscle due to its anti-catabolic effects.Objectives:To investigate the effect of HMB supplementation on body composition, muscular strength and anabolic-catabolic hormones after resistance training.Methods:Twenty amateur male athletes were randomly assigned to supplement and control groups in a double-blind crossover design and participated i...

  3. Failure of the gross theory of beta decay in neutron deficient nuclei

    International Nuclear Information System (INIS)

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ≈1 MeV for the even-even decays; 3–4 MeV for even-Z, odd-N decays; 4–5 MeV for the odd-Z, even-N decays; and 7–8 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Beta Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=51–64 to a precision of 20% with respect to the measured values

  4. Beta particle monitor for surfaces

    International Nuclear Information System (INIS)

    A beta radiation detector which is capable of reliably detecting beta radiation emitted from a surface. An electrically conductive signal collector is adjustably mounted inside an electrically conductive enclosure which may define a single large opening for placing against a surface. The adjustable mounting of the electrically conductive signal collector can be based on the distance from the surface or on the expected beta energy range. A voltage source is connected to the signal collector through an electrometer or other display means for creating an electric field between the signal collector and the enclosure. Air ions created by the beta radiation are collected and the current produced is indicated on the electrometer or other display means. 2 figs

  5. Peginterferon Beta-1a Injection

    Science.gov (United States)

    ... symptoms such as headaches, bone or muscle aches, fever, chills, and tiredness during your treatment with peginterferon beta- ... not go away: headache muscle or joint pain fever chills weakness Some side effects can be serious. If ...

  6. Low-Power Wideband Digital Spectrometer for Planetary Science Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a wideband digital spectrometer to support space-born measurements of planetary atmospheric composition. The spectrometer...

  7. Experiments TGV I (double-beta decay of 48Ca) and TGV II (double-beta decay of 106Cd and 48Ca)

    International Nuclear Information System (INIS)

    Present status of experiments TGV I and TGV II is given. The TGV I collaboration has studied the double-beta decay of 48Ca with a low-background and high sensitivity Ge multi-detector spectrometer TGV (Telescope Germanium Vertical). The preliminary results of T1/22νββ = (4.2 (+3.3) (-1.3)) x 1019 years and T1/20νββ > 1.5 x 1021 years (90% CL) for double-beta decay of 48Ca has been found after the processing of experimental data obtained after 8700 hours of measuring time using approximately 1 gram of 48Ca. The aim of the experiment TGV II is the development of the experimental methods, construction of spectrometers and measurement of the ββ decay (β+β+, β+ /EC, EC/EC) of 106Cd particularly the 2νEC/EC mode. The theoretical description and performance of the TGV II spectrometer are also given. (author)

  8. Recent double beta decay results

    Energy Technology Data Exchange (ETDEWEB)

    Balysh, A. (Kurchatov Institute, 123 182 Moscow (Russian Federation)); Beck, M. (Max-Planck-Institut fuer Kernphysik, W-6900 Heidelberg (Germany)); Belyaev, S.T. (Kurchatov Institute, 123 182 Moscow (Russian Federation)); Bensch, F.; Bockholt, J. (Max-Planck-Institut fuer Kernphysik, W-6900 Heidelberg (Germany)); Demehin, A.; Gurov, A. (Kurchatov Institute, 123 182 Moscow (Russian Federation)); Heusser, G.; Hirsch, M.; Klapdor-Kleingrothaus, H.V. (Max-Planck-Institut fuer Kernphysik, W-6900 Heidelberg (Germany)); Kondratenko, I.; Lebedev, V.I. (Kurchatov Institute, 123 182 Moscow (Russian Federation)); Maier, B. (Max-Planck-Institut fuer Kernphysik, W-6900 Heidelberg (Germany)); Mueller, A. (Istituto Nazionale di Fisica Nucleare LNGS, 67010 Assergi (Italy)); Petry, F.; Piepke, A.; Strecker, H.; Voellinger, M.; Zuber, K. (Max-Planck-Institut fuer Kernphysik, W-6900 Heidelberg (Germany))

    1992-02-01

    The status and recent results of second generation [beta][beta]-experiments using isotopically enriched source materials are described. These experiments are at present the most sensitive tools to distinguish Dirac from Majorana neutrinos. The at present most advanced experimental techniques, namely the use of high-resolution calorimetric detectors and of time projection chambers are compared. New limits on the Majorana neutrino mass as well as for the Majoron-neutrino coupling are presented.

  9. Apollo applications of beta fiber glass

    Science.gov (United States)

    Naimer, J.

    1971-01-01

    The physical characteristics of Beta fiber glass are discussed. The application of Beta fiber glass for fireproofing the interior of spacecraft compartments is described. Tests to determine the flammability of Beta fiber glass are presented. The application of Beta fiber glass for commercial purposes is examined.

  10. Synthesis of Beta Pyridyl Carbinol Tartrate

    Directory of Open Access Journals (Sweden)

    S. K. Shukla

    1968-04-01

    Full Text Available A process for the synthesis of Beta pyridine carboxylic acid ethy1 ester starting from quinoline has been developed. Beta-pyridine carboxylic acid ethy1 ester on reduction with lithium aluminium hydride gave Beta-pyridy1 carbinol which on treatment tartaric acid yielded Beta-pyridy1 carbinol tartrate, a vaso dilator known in trade as "Ronicoltartrate".

  11. Hand-held high resolution gamma ray spectrometer

    International Nuclear Information System (INIS)

    A fully portable and a semi-portable high resolution gamma spectrometer are described. These instruments have the resolving capabilities that are inherent to germanium spectrometers and have the portability needed for health physics. The instruments are usable as a gamma-ray or x-ray fluorescence spectrometer

  12. 21 CFR 862.2860 - Mass spectrometer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mass spectrometer for clinical use. 862.2860... Instruments § 862.2860 Mass spectrometer for clinical use. (a) Identification. A mass spectrometer for... by means of an electrical and magnetic field according to their mass. (b) Classification. Class...

  13. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  14. Direct mass measurements of cadmium and palladium isotopes and their double-beta transition Q-values

    OpenAIRE

    Smorra, C.; Beyer, T.; Blaum, K.; Block, M.; Düllmann, Ch.E.(Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Mainz, 55128, Germany); Eberhardt, K.; Eibach, M.; Eliseev, S.; Nagy, Sz.; Nörtershäuser, W; Renisch, D.

    2012-01-01

    The Q-value of the double-electron capture in Cd-108 has been determined to be (272.04 +/- 0.55) keV in a direct measurement with the double-Penning trap mass spectrometer TRIGA-TRAP. Based on this result a resonant enhancement of the decay rate of Cd-108 is excluded. We have confirmed the double-beta transition Q-values of Cd-106 and Pd-110 recently measured with the Penning-trap mass spectrometers SHIPTRAP and ISOLTRAP, respectively. Furthermore, the atomic masses of the involved nuclides C...

  15. Vasodilatory mechanisms of beta receptor blockade.

    OpenAIRE

    Rath, Géraldine; Balligand, Jean-Luc; Dessy, Chantal

    2012-01-01

    Beta-blockers are widely prescribed for the treatment of a variety of cardiovascular pathologies. Compared to traditional beta-adrenergic antagonists, beta-blockers of the new generation exhibit ancillary properties such as vasodilation through different mechanisms. This translates into a more favorable hemodynamic profile. The relative affinities of beta-adrenoreceptor antagonists towards the three beta-adrenoreceptor isotypes matter for predicting their functional impact on vasomotor contro...

  16. Tables of double beta decay data

    Energy Technology Data Exchange (ETDEWEB)

    Tretyak, V.I. [AN Ukrainskoj SSR, Kiev (Ukraine)]|[Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Zdesenko, Y.G. [AN Ukrainskoj SSR, Kiev (Ukraine)

    1995-12-31

    A compilation of experimental data on double beta decay is presented. The tables contain the most stringent known experimental limits or positive results of 2{beta} transitions of 69 natural nuclides to ground and excited states of daughter nuclei for different channels (2{beta}{sup -}; 2{beta}{sup +}; {epsilon}{beta}{sup +}; 2{epsilon}) and modes (0{nu}; 2{nu}; 0{nu}M) of decay. (authors). 189 refs., 9 figs., 3 tabs.

  17. The Harwell back-scattering spectrometer

    International Nuclear Information System (INIS)

    Neutron diffraction spectra in which both high resolution (Δ Q/Q approximately equal to 0.003) and high intensity are maintained up to scattering vectors as high as 30A-1(sin theta/lambda = 2.5) have been obtained with the back-scattering spectrometer (BSS) recently installed on the Harwell electron linac. The theory behind the spectrometer design is described, and it is shown how the above resolution requirement leads to its basic features of a 12m incident flight path, a 2m scattering flight path and a scattering angle (2theta) acceptance from 1650 to 1750. Examples of the resolution, intensity and background are given. It is shown that the problem of frame overlap may be overcome by using an absorbing filter. (author)

  18. Quench anaylsis of MICE spectrometer superconducting solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir; Bross, Alan; /Fermilab; Prestemon, Soren; / /LBL, Berkeley

    2011-09-01

    MICE superconducting spectrometer solenoids fabrication and tests are in progress now. First tests of the Spectrometer Solenoid discovered some issues which could be related to the chosen passive quench protection system. Both solenoids do not have heaters and quench propagation relied on the 'quench back' effect, cold diodes, and shunt resistors. The solenoids have very large inductances and stored energy which is 100% dissipated in the cold mass during a quench. This makes their protection a challenging task. The paper presents the quench analysis of these solenoids based on 3D FEA solution of coupled transient electromagnetic and thermal problems. The simulations used the Vector Fields QUENCH code. It is shown that in some quench scenarios, the quench propagation is relatively slow and some areas can be overheated. They describe ways of improving the solenoids quench protection in order to reduce the risk of possible failure.

  19. Data Reduction with the MIKE Spectrometer

    CERN Document Server

    Bernstein, Rebecca A; Prochaska, J Xavier

    2015-01-01

    This manuscript describes the design, usage, and data-reduction pipeline developed for the Magellan Inamori Kyocera Echelle (MIKE) spectrometer used with the Magellan telescope at the Las Campanas Observatory. We summarize the basic characteristics of the instrument and discuss observational procedures recommended for calibrating the standard data products. We detail the design and implementation of an IDL based data-reduction pipeline for MIKE data (since generalized to other echelle spectrometers, e.g. Keck/HIRES, VLT/UVES). This includes novel techniques for flat-fielding, wavelength calibration, and the extraction of echelle spectroscopy. Sufficient detail is provided in this manuscript to enable inexperienced observers to understand the strengths and weaknesses of the instrument and software package and an assessment of the related systematics.

  20. Semiconductor telescope spectrometer for β ray spectra

    International Nuclear Information System (INIS)

    A semiconductor telescope spectrometer for β ray spectra and the associated program for analysis of δ spectra have been built and tested. The spectrometer consists of a ΔE detector (0.3 mm x 200 mm2 Si (Au)) and an E detector (15 mm x 500 mm2 Hp Ge). Its energy resolution for single energy electrons is 20 keV. Multibranch β spectra can conveniently be analyzed, and then their endpoint energies and branching ratios can be obtained by means of the program, in which the response function of the telescope has been taken into account. The endpoint energies and branching ratios for three well known β emitters, i. e. 152Eu, 90Y and 56Mn, have been extracted experimentally, which are in good agreement with published results. Since the HP Ge detector is rather thin, it can also be used as a low energy γ ray detector

  1. Mapping Imaging Spectrometer for Europa (MISE)

    Science.gov (United States)

    Blaney, D. L.; Clark, R. N.; Dalton, J. B.; Davies, A. G.; Green, R. O.; Hedman, M. M.; Hibbits, C. A.; Langevin, Y. J.; Lunine, J. I.; McCord, T. B.; Soderblom, J. M.; Cable, M. L.; Mouroulis, P.; Kim, W.; Dorsky, L. I.; Strohbehn, K.

    2015-10-01

    The Mapping Imaging Spectrometer for Europa(MISE) instrument is designed to be able to unravel the composition of Europa, and to provide new insight into the processes that have in the past and continue to shape Europa, and on the habitability of Europa's ocean. The MISE design is the result of collaboration between NASA's Jet Propulsion Laboratory (California Institute of Technology) and the Applied Physics Laboratory (John Hopkins' University). JPL's Discovery Moon Mineralogy Mapper (M3) on Chandrayan-1 and APL's Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) comprise the technical basis for MISE. Internal JPL and APL investments in conjunction with NASA support under the ICEE program has allowed for instrument technology development and testing to achieve a design which would perform in Europa's radiation environment and meet potential sterilization requirements due to planetary protection.

  2. High efficiency neutron spectrometer with low background

    International Nuclear Information System (INIS)

    A neutron energy spectrometer with a geometry close to 4π solid angle operated in the (1-5) MeV energy range at a suitable for a cold fusion experiment configuration and a very good n/γ discrimination, has been constructed. Tests of registration efficiency, energy resolution and radiation type identification have been made with a help of low intensity neutron and gamma sources. The spectrometer has shown the efficiency of about 10% at the 2x10-3s-1 background level and permits one to measure a neutron energy spectrum at a very low intensity of the source. Physical principles, design of the neutron detector system and results of its testing are described. 6 refs.; 6 figs.; 1 tab

  3. Nuclear magnetic resonance spectrometer and method

    International Nuclear Information System (INIS)

    A nuclear magnetic resonance techniis described that allows simultaneous temperature determination and spectral acquisition. The technique employs a modification of the lock circuit of a varian xl-100 spectrometer which permits accurate measurement of the difference in resonance frequency between a primary lock nucleus and another , secondary, nucleus. The field stabilization function of the main lock circuit is not compromised. A feedback signal having a frequency equal to the frequency difference is substituted for the normal power supply in the spectrometer's existing radio frequency transmitter to modulate that transmitter. Thus, the transmitter's radio frequency signal is enhanced in a frequency corresponding to the resonance peak of the secondary nucleus. Determination of the frequency difference allows the determination of temperature without interference with the observed spectrum. The feedback character of the circuit and the presence of noise make the circuit self-activating

  4. Miniaturization of holographic Fourier-transform spectrometers.

    Science.gov (United States)

    Agladze, Nikolay I; Sievers, Albert J

    2004-12-20

    Wave propagation equations in the stationary-phase approximation have been used to identify the theoretical bounds of a miniature holographic Fourier-transform spectrometer (HFTS). It is demonstrated that the HFTS throughput can be larger than for a scanning Fourier-transform spectrometer. Given room- or a higher-temperature constraint, a small HFTS has the potential to outperform a small multichannel dispersive spectrograph with the same resolving power because of the size dependence of the signal-to-noise ratio. These predictions are used to analyze the performance of a miniature HFTS made from simple optical components covering a broad spectral range from the UV to the near IR. The importance of specific primary aberrations in limiting the HFTS performance has been both identified and verified. PMID:15646777

  5. Cryogenic system for a superconducting spectrometer

    International Nuclear Information System (INIS)

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. This paper describes the cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy. The system normally operates with a 4 K heat load of 150 watts; the LN2 circuits absorb an additional 4000 watts. 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations

  6. Thomson parabola: a high resolution ion spectrometer

    International Nuclear Information System (INIS)

    A compact high resolution and high dispersion Thomson parabola ion spectrometer (TPS) comprising of Time-of-Flight diagnostics has been developed for simultaneously resolving protons and low-Z ions of energy from 1 keV/nucleon to 1 MeV/nucleon and incorporated in the Laser plasma experimental chamber. The ion spectrometer was optimized with carbon target. The carbon ions of charge states 1+ to 6+ were measured in the energy range from 3 keV to 300 keV, which were verified by time-of-flight measurements. The energy resolution (E/dE) of TPS was achieved up to 50 depending on the energy and charge states of the ions. The experimental results were in fairly good agreement with the theoretical simulations. (author)

  7. Dds-Based Fast Scan Spectrometer

    Science.gov (United States)

    Alekseev, E. A.; Motiyenko, R. A.; Margulès, L.

    2010-06-01

    The technique of direct digital synthesis (DDS) has two important features which enable its application in microwave spectroscopy: micro-Hz tuning resolution and extremely fast frequency switching with continuous phase. We have applied a direct digital synthesizer in a PLL-spectrometer based on backward-wave oscillator (BWO). As result we have obtained an instrument that can cover a 100 GHz bandwidth in less than one hour with high spectral resolution and high precision of frequency measurement. The application of the spectrometer to sub-millimeter wave survey spectra records of several isotopic species of astrophysical molecules (methanol, formamide, methyl formate, aziridine) will be discussed. The support of Université de Lille 1 and le Programme National de Physique Chimie du Milieu Interstellaire is gratefully acknowledged.

  8. High-resolving mass spectrographs and spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Wollnik, Hermann, E-mail: hwollnik@gmail.com [New Mexico State University, Department of Chemistry & Biochemistry (United States)

    2015-11-15

    Discussed are different types of high resolving mass spectrographs and spectrometers. In detail outlined are (1) magnetic and electric sector field mass spectrographs, which are the oldest systems, (2) Penning Trap mass spectrographs and spectrometers, which have achieved very high mass-resolving powers, but are technically demanding (3) time-of-flight mass spectrographs using high energy ions passing through accelerator rings, which have also achieved very high mass-resolving powers and are equally technically demanding, (4) linear time-of-flight mass spectrographs, which have become the most versatile mass analyzers for low energy ions, while the even higher performing multi-pass systems have only started to be used, (5) orbitraps, which also have achieved remarkably high mass-resolving powers for low energy ions.

  9. Description of a multimode gamma spectrometer

    International Nuclear Information System (INIS)

    A 'multimode' gamma spectrometer known as the 'SGMM 10' has been studied and built. It can detect photons by one of three different modes: total absorption, photoelectric and anti-Compton effect, or the pair effect. These results are recorded in such a way that the experimenter can interpret the measurements according to the mode which is the best adapted to the energy of the photons under study. The instrument is made up of a central detector, a Ge(Li) semi-conductor with its cryostat, and an annular crystal, a large volume NaI(Tl) scintillator consisting of four optically isolated sectors. The energy and time data produced by these detectors are processed by an electronic unit. The document entitled 'description of a multi-mode gamma spectrometer' gives an overall description of the SGMM 10 type device and its mode of operation; it also details the laboratory results obtained with this apparatus. (authors)

  10. High-resolving mass spectrographs and spectrometers

    Science.gov (United States)

    Wollnik, Hermann

    2015-11-01

    Discussed are different types of high resolving mass spectrographs and spectrometers. In detail outlined are (1) magnetic and electric sector field mass spectrographs, which are the oldest systems, (2) Penning Trap mass spectrographs and spectrometers, which have achieved very high mass-resolving powers, but are technically demanding (3) time-of-flight mass spectrographs using high energy ions passing through accelerator rings, which have also achieved very high mass-resolving powers and are equally technically demanding, (4) linear time-of-flight mass spectrographs, which have become the most versatile mass analyzers for low energy ions, while the even higher performing multi-pass systems have only started to be used, (5) orbitraps, which also have achieved remarkably high mass-resolving powers for low energy ions.

  11. Imaging spectrometer wide field catadioptric design

    Science.gov (United States)

    Chrisp; Michael P.

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  12. Neutron spectrometer for improved SNM search.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  13. Biopolymer mass spectrometer with cryogenic particle detectors

    International Nuclear Information System (INIS)

    A novel type of biopolymer mass spectrometer is proposed for massive proteins, polypeptides and DNA-fragments by replacing standard ionizing detectors with cryogenic particle detectors. The detection efficiency in ionizing detectors decreases rapidly with increasing biopolymer mass owing to the biopolymer's decreasing velocity. Cryogenic particle detectors, however, record the total kinetic energy deposited by the accelerated biopolymer. In a given electric acceleration field, this kinetic energy is independent of mass and depends only on the biopolymer's charged state. Using the intrinsic properties of cryogenic particle detectors and their specific fabrication techniques, a mass spectrometer has been designed specifically for high-throughput DNA-sequencing. The calculated DNA-fragment separation rate would be increased by several orders of magnitude as compared to standard gel-electrophoresis DNA-sequencers. (orig.)

  14. The QQDDQ magnet spectrometer 'BIG KARL'

    International Nuclear Information System (INIS)

    A magnet spectrometer consisting of two quadrupoles, two dipole magnets and another larger quadrupole in front of the detector was designed and installed at the nuclear research institute of the KFA Juelich. It has been used for charged-particle spectroscopy at the isochronous cyclotron since early 1979. Special features of the spectrometer are variable and high dispersion, coils for higher order field corrections in the dipole magnets and a focal plane perpendicular to the optical axis. A large mass-energy product of mE/q2 4 and the possibility of kinematical corrections up to K=0.8 make the instrument a very versatile tool for many experiments in the fields of nuclear and atomic physics. (orig.)

  15. WSPEC: A Waveguide Filter Bank Spectrometer

    CERN Document Server

    Che, George; Underhill, Matthew; Mauskopf, Philip; Groppi, Christopher; Jones, Glenn; Johnson, Bradley; McCarrick, Heather; Flanigan, Daniel; Day, Peter

    2015-01-01

    We have designed, fabricated, and measured a 5-channel prototype spectrometer pixel operating in the WR10 band to demonstrate a novel moderate-resolution (R=f/{\\Delta}f~100), multi-pixel, broadband, spectrometer concept for mm and submm-wave astronomy. Our design implements a transmission line filter bank using waveguide resonant cavities as a series of narrow-band filters, each coupled to an aluminum kinetic inductance detector (KID). This technology has the potential to perform the next generation of spectroscopic observations needed to drastically improve our understanding of the epoch of reionization (EoR), star formation, and large-scale structure of the universe. We present our design concept, results from measurements on our prototype device, and the latest progress on our efforts to develop a 4-pixel demonstrator instrument operating in the 130-250 GHz band.

  16. High-resolution spectrometer for atmospheric studies

    Science.gov (United States)

    Di Carlo, Piero; Barone, Massimiliano; D'Altorio, Alfonso; Dari-Salisburgo, Cesare; Pietropaolo, Ermanno

    2009-08-01

    A high-resolution spectrometer (0.0014 nm at 313 nm) has been developed at the University of L'Aquila (Italy) for atmospheric spectroscopic studies. The layout, optics and software for the instrument control are described. Measurements of the mercury low-pressure lamp lines from 200 to 600 nm show the high performances of the spectrometer. Laboratory measurements of OH and NO2 spectrums demonstrate that the system could be used for cross-section measurements and to detect these species in the atmosphere. The first atmospheric application of the system was the observation of direct solar and sky spectrums that shows a filling-in of the sky lines due to rotational Raman scattering. The measurements have been done with clear and cloudy sky and in both there was a strong dependence of the filling-in from the solar zenith angle whereas no dependence from the wavelengths was evident at low solar zenith angles (less than 85°).

  17. PAC Spectrometer for Condensed Matter Investigation

    CERN Document Server

    Brudanin, V B; Kochetov, O I; Korolev, N A; Milanov, M; Ostrovsky, I V; Pavlov, V N; Salamatin, A V; Timkin, V V; Velichkov, A I; Fomicheva, L N; Tsvyaschenko, A V; Akselrod, Z Z

    2005-01-01

    A four-detector spectrometer of perturbed angular $\\gamma \\gamma $ correlations is developed for investigation of hyperfine interactions in condensed matter. It allows measurements with practically any types of detectors. A unique circuit design involving a specially developed Master PAC unit combined with a computer allows a substantially higher efficiency, reduced setup time and simpler operation in comparison with traditional PAC spectrometers. A cryostat and a high-temperature oven allow measurements in the temperature range from 120 to 1300 K. An encased electromagnet makes it possible to generate a magnetic field up to 2 T on a sample. The measurement system includes a press with a specially designed high-pressure chamber allowing on-line PAC measurements in samples under pressure up to 60 GPa.

  18. The MIRI Medium Resolution Spectrometer calibration pipeline

    CERN Document Server

    Labiano, A; Bailey, J I; Beard, S; Dicken, D; García-Marín, M; Geers, V; Glasse, A; Glauser, A; Gordon, K; Justtanont, K; Klaassen, P; Lahuis, F; Law, D; Morrison, J; Müller, M; Rieke, G; Vandenbussche, B; Wright, G

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments, such as fringe corrections and wavelength offsets, with different algorithms for point source or extended source data. The MRS pipeline has also two different variants: the baseline pipeline, optimized for most foreseen science cases, and the optimal pipeline, where extra steps will be needed for specific science cases. This paper provides a comprehensive description of the MRS Calibration Pipeline from uncalibrated slope images to final scientific products, with brief descriptions of its algorithms, input and output data, and the accessory data and calibration data products necessary to run the pipeline.

  19. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  20. Compact imaging spectrometer utilizing immersed gratings

    Energy Technology Data Exchange (ETDEWEB)

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR); Kuzmenko, Paul J. (Livermore, CA); Bennett, Charles L. (Livermore, CA)

    2007-07-03

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, means for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the means for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the means for receiving the light and the means for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light to the means for receiving the light, and the means for receiving the light directs the light to the detector array.

  1. Mass spectrometer for the analyses of gases

    International Nuclear Information System (INIS)

    A 6-in-radius, 600 magnetic-sector mass spectrometer (designated as the MS-200) has been constructed for the quantitative and qualitative analyses of fixed gases and volatile organics in the concentration range from 1 ppM (by volume) to 100%. A partial pressure of 1 x 10-6 torr in the inlet expansion volume is required to achieve a useful signal at an electron-multiplier gain of 10,000

  2. Midrapidity measurements with the BRAHMS spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, D. [Brookhaven National Lab., Upton, NY (United States)

    1995-07-15

    The forward- and midrapidity-arms of the BRAHMS experiment are designed to measure charged particle production over a wide range of transverse momentum for rapidities, 0{le}y{le}4. Details of the midrapidity spectrometer, which provides coverage for 0{le}{eta}{le}1.3, are presented here. The capabilities for inclusive {pi}{sup +-}, K{sup +-}, and p{sup +-} measurements and boson pair correlations are discussed.

  3. Compact, self-contained optical spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Baird, W.; Nogar, N.S. [Chemical Sciences and Technology, CST-1 MSJ565, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1995-11-01

    We describe the construction and performance of a self-contained, battery-operated, hand-held optical spectrometer. This unit contains an on-board optical excitation source, miniaturized monochromator, CCD detector, Peltier cooler, LCD display module, and microprocessor control. We demonstrate capabilities for qualitative fluorescence determinations and semiquantitative fluorescence and absorption measurements. Resolution is {lambda}/{delta}{lambda}{approx_equal}1200 at 434 nm. {copyright} {ital 1995 Society for Applied Spectroscopy.}

  4. An intense transmission spectrometer for ISIS

    International Nuclear Information System (INIS)

    The report seeks to outline a design for an intense transmission spectrometer (ITS) suitable for installation on the pulsed neutron source ISIS. The performance of the instrument is evaluated and several examples of the areas of science made accessible are discussed. It is shown that the proposed design will represent a scientifically valuable and cost-effective addition to the present suite of ISIS instruments. (author)

  5. Frequency-feedback cavity enhanced spectrometer

    Science.gov (United States)

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  6. Calibration of a leak detection spectrometer

    International Nuclear Information System (INIS)

    This paper describes a study of the possible methods for calibrating a leak detection spectrometer, and the estimation of outputs from the leaks is considered. With this in mind the question of sensitivity of leak detection is tackled on a very general level; first the sensitivity of the isolated instrument is determined, and then the sensitivity of an instrument connected to an installation where leaks may be suspected. Finally, practical solutions are proposed. (author)

  7. Paramagnetic resonance spectrometers operating under irradiation

    International Nuclear Information System (INIS)

    Two laboratory-constructed paramagnetic resonance spectrometers for in-situ studies of radiation induced defects are described, One of these instruments is associated with the core of a nuclear reactor, operating in a mixed flux of neutrons and gamma rays. The other is used in a gamma radiation source. Several experimental results obtained with these instruments are discussed as examples of their use. (author)

  8. Double focussing stigmatic image mass spectrometer

    International Nuclear Information System (INIS)

    The mass spectrometer for the analysis of ions, which occur in matetial pulverisation by a radiation micro probe, contains one lens a 450 spherical condenser lens, from which the ion beam emerhes as a parallel beam, an intermediate shutter, a 900 magnetic field and an outlet shutter. The angle of entry and energy bandwidth can be set independently of each other. An optimum transmission is obtained with the least possible image errors. (DG)

  9. One module of the ALICE photon spectrometer

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first module for the ALICE photon spectrometer has been completed. Each of the five modules will contain 3584 lead-tungstate crystals, a material as transparent as ordinary silica glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, allowing the energy of electrons, positrons and photons to be measured through the 17 920 detection channels.

  10. The heavy-ion magnetic spectrometer PRISMA

    International Nuclear Information System (INIS)

    PRISMA is a magnetic spectrometer for heavy ions under construction at Legnaro, with very large solid angle (80 msr), wide momentum acceptance (± 10%) and good mass resolution via TOF measurement; it will be dedicated to the study of nuclear dynamics and nuclear structure with stable and exotic ion beams. This is a review of its main features and of the present status of the project

  11. Superconducting RF separator for Omega Spectrometer

    CERN Multimedia

    1977-01-01

    The photo shows an Nb-deflector for the superconducting RF separator ready for installation in its cryostat (visible at the back). Each deflector was about 3 m long. L. Husson and P. Skacel (Karlsruhe) stand on the left, A. Scharding (CERN) stands on the right. This particle separator, the result of a collaboration between the Gesellshaft für Kernforschung, Karlsruhe, and CERN was installed in the S1 beam line to Omega spectrometer. (See Annual Report 1977.)

  12. Design of modern high resolution magnetic spectrometers

    International Nuclear Information System (INIS)

    The choice of correcting nonlinear aberrations in high resolution magnetic spectrometers with software or hardware is examined. The ability of raytracing methods, using realistic focal plane detector resolutions, is demonstrated for the S800 spectrograph under construction at the National Superconducting Cyclotron Laboratory (NSCL). Furthermore, Differential Algebraic methods are shown to reproduce the results for accurately known fields at a considerable savings in design time. (Author)

  13. Introduction to Subatomic-Particle Spectrometers

    OpenAIRE

    Kaplan, Daniel M.; Lane, Charles E.; Nelson, Kenneth S.

    1998-01-01

    An introductory review, suitable for the beginning student of high-energy physics or professionals from other fields who may desire familiarity with subatomic-particle detection techniques. Subatomic-particle fundamentals and the basics of particle interactions with matter are summarized, after which we review particle detectors. We conclude with three examples that illustrate the variety of subatomic-particle spectrometers and exemplify the combined use of several detection techniques to cha...

  14. Effective mass spectrometer. [History and accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, D.

    1979-10-12

    The history and major accomplishments of the Effective Mass Spectrometer (EMS) are described. In the eight years since the EMS turned on, 21 experiments have been completed by groups from nine institutions in 32 months of operation. Over 400 million triggers have been recorded on magnetic tape, resulting in 29 journal publications to date. A list of experimental proposals for the EMS and a sampling of results are presented. 12 figures, 4 tables.

  15. Fourier Transform Spectrometer Controller for Partitioned Architectures

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, Paul; Wadsworth, W.; Levy, R.

    2013-01-01

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle......, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture....

  16. The Bragg Crystal Spectrometer for AXAF

    International Nuclear Information System (INIS)

    MIT's High Resolution X-ray Spectroscopy investigation on AXAF involves two complementary dispersive instruments, a Bragg Crystal Spectrometer (BCS) and a High Energy Transmission Grating Spectrometer (HETGS). The overall goal of the investigation is to study the physical conditions in celestial sources by means of detailed measurements of their X-ray spectra. High spectral resolution measurements can be used to perform diagnostics of emitting and absorbing matter, leading to knowledge of temperature, ionization state, elemental abundance, density and optical depth. The Bragg Crystal Spectrometer gives resolving powers of 200-2000 over the energy band 0.5-8 keV and resolving powers of 50-70 over 0.14-0.5 keV. The effective collecting areas in a typical scanning observation are 4-60 cm/sup 2/, and the minimum detectable line flux is 4-30 X 10/sup -6/ photons cm/sup -2/ s/sup -1/. The BCS will be located at the AXAF focal plane. The instrument consists of 10 curved diffractors each of which has a quasi-toroidal geometry, two types of imaging proportional counters optimized for low background (one sealed and one flow), an internal monitor counter that can be inserted into the beam to measure total source flux, a mechanical system that maintains Rowland circle geometry and an appropriate command and data system. The BCS is an upgraded and improved version of the Focal Plane Crystal Spectrometer flown on the Einstein Observatory. It will be used to measure the strengths of individual lines from both point and extended objects in order to apply plasma diagnostic techniques to the study of cosmic X-ray sources

  17. Beta contamination monitor energy response

    International Nuclear Information System (INIS)

    Beta contamination is monitored at Los Alamos National Laboratory (LANL) with portable handheld probes and their associated counters, smear counters, air-breathing continuous air monitors (CAM), personnel contamination monitors (PCM), and hand and foot monitors (HFM). The response of these monitors was measured using a set of anodized-aluminum beta sources for the five isotopes: Carbon-14, Technetium-99, Cesium-137, Chlorine-36 and Strontium/Yttrium-90. The surface emission rates of the sources are traceable to the National Institute of Standards and Technology (NIST) with a precision of one relative standard deviation equal to 1.7%. All measurements were made in reproducible geometry, mostly using aluminum source holders. All counts, significantly above background, were collected to a precision of 1% or better. The study of the hand-held probes included measurements of six air gaps from 0.76 to 26.2 mm. The energy response of the detectors is well-parameterized as a function of the average beta energy of the isotopes (C14=50 keV, Tc99=85, Cs137=188, C136=246, and Sr/Y90=934). The authors conclude that Chlorine-36 is a suitable beta emitter for routine calibration. They recommend that a pancake Geiger-Mueller (GM) or gas-proportional counter be used for primarily beta contamination surveys with an air gap not to exceed 6 mm. Energy response varies about 30% from Tc99 to Sr/Y90 for the pancake GM detector. Dual alpha/beta probes have poor to negligible efficiency for low-energy betas. The rugged anodized sources represent partially imbedded contamination found in the field and they are provided with precise, NIST-traceable, emission rates for reliable calibration

  18. What Happened with Spectrometer Magnet 2B

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A

    2010-05-27

    The spectrometer solenoid is supposed to be the first magnets installed in MICE [1]-[4]. This report described what happened during the test of the MICE spectrometer solenoid 2B. First, the report describes the temperatures in the magnet, the cooler top plate and the shield during the run where the magnet quenched at 258 A. During this quench, a lead between the bottom of the HTS leads and the diode bank burned out causing the magnet to quench. Second, three methods for measuring the net heat flow into the cold mass are described. Third, there is a discussion of possible resistive heating in the HTS leads between liquid helium temperature and the copper plate, which is at about 50 K. Fourth, there is a discussion of the measured first stage heat loads in the magnet, when there is no current in the magnet. The first stage heat load calculations are based on knowing the first stage temperatures of the three two-stage pulse tube coolers and the single stage GM cooler. Fifth, the estimated heat load to the first stage when the magnet has current in it is discussed. Sixth, there is a comparison of the stage 1 heat loads in magnet 1A [5], magnet 2A [6], and magnet 2B [7]. Finally there is a discussion of recommended changes for improving the spectrometer solenoids so that the coolers can keep them cold.

  19. Multislit optimized spectrometer: fabrication and assembly update

    Science.gov (United States)

    Valle, Tim; Hardesty, Chuck; Good, William; Seckar, Chris; Shea, Don; Spuhler, Peter; Davis, Curtiss O.; Tufillaro, Nicholas

    2013-09-01

    The NASA ESTO funded Multi-slit Optimized Spectrometer (MOS) Instrument Incubator Program will advance a spatial multiplexing spectrometer for coastal ocean remote sensing from lab demonstration to flight like environment testing. Vibration testing to meet the GEVS requirements for a geostationary orbit launch will be performed. The multiple slit design reduces the required telescope aperture leading to mass and volume reductions over conventional spectrometers when applied to the GEO-CAPE oceans mission. The MOS program is entering year 3 of the 3-year program where assembly and test activities will demonstrate the performance of the MOS concept. This paper discusses the instrument design, fabrication and assembly. It outlines the test plan to realize a technology readiness level of 6. Testing focuses on characterizing radiometric impacts of the multiple slit images multiplexed onto a common focal plane, and assesses the resulting uncertainties imparted to the ocean color data products. The MOS instrument implementation for GEO-CAPE provides system benefits that can lead to cost savings and risk reduction while meeting the science objectives of understanding the dynamic coastal ocean environment.

  20. Sensing systems using chip-based spectrometers

    Science.gov (United States)

    Nitkowski, Arthur; Preston, Kyle J.; Sherwood-Droz, Nicolás.; Behr, Bradford B.; Bismilla, Yusuf; Cenko, Andrew T.; DesRoches, Brandon; Meade, Jeffrey T.; Munro, Elizabeth A.; Slaa, Jared; Schmidt, Bradley S.; Hajian, Arsen R.

    2014-06-01

    Tornado Spectral Systems has developed a new chip-based spectrometer called OCTANE, the Optical Coherence Tomography Advanced Nanophotonic Engine, built using a planar lightwave circuit with integrated waveguides fabricated on a silicon wafer. While designed for spectral domain optical coherence tomography (SD-OCT) systems, the same miniaturized technology can be applied to many other spectroscopic applications. The field of integrated optics enables the design of complex optical systems which are monolithically integrated on silicon chips. The form factors of these systems can be significantly smaller, more robust and less expensive than their equivalent free-space counterparts. Fabrication techniques and material systems developed for microelectronics have previously been adapted for integrated optics in the telecom industry, where millions of chip-based components are used to power the optical backbone of the internet. We have further adapted the photonic technology platform for spectroscopy applications, allowing unheard-of economies of scale for these types of optical devices. Instead of changing lenses and aligning systems, these devices are accurately designed programmatically and are easily customized for specific applications. Spectrometers using integrated optics have large advantages in systems where size, robustness and cost matter: field-deployable devices, UAVs, UUVs, satellites, handheld scanning and more. We will discuss the performance characteristics of our chip-based spectrometers and the type of spectral sensing applications enabled by this technology.

  1. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  2. Automation of a thermal ionisation mass spectrometer

    International Nuclear Information System (INIS)

    A thermal ionization mass spectrometer was upgraded in order to be monitored by a PC. A PC-LMP-16 National Instruments data acquisition board was used for the ion current channel and the Hall signal channel. A dedicated interface was built to allow commands from the computer to the current supply of the analyzing magnet and to the high voltage unit of the mass spectrometer. A software application was worked out to perform the adjustment of the spectrometer, magnetic scanning and mass spectra acquisition, data processing and isotope ratio determination. The apparatus is used for isotope ratio 235 U/238 U determination near the natural abundance. A peak jumping technique is applied to choose between the 235 U and 238 U signal, by switching the high voltage applied to the ion source between two preset values. This avoids the delay between the acquisition of the peaks of interest, a delay that would appear in the case of a 'pure' magnetic scanning. Corrections are applied for the mass discrimination effects and a statistical treatment of the data is achieved. (authors)

  3. What Happened with Spectrometer Magnet 2B

    International Nuclear Information System (INIS)

    The spectrometer solenoid is supposed to be the first magnets installed in MICE (1)-(4). This report described what happened during the test of the MICE spectrometer solenoid 2B. First, the report describes the temperatures in the magnet, the cooler top plate and the shield during the run where the magnet quenched at 258 A. During this quench, a lead between the bottom of the HTS leads and the diode bank burned out causing the magnet to quench. Second, three methods for measuring the net heat flow into the cold mass are described. Third, there is a discussion of possible resistive heating in the HTS leads between liquid helium temperature and the copper plate, which is at about 50 K. Fourth, there is a discussion of the measured first stage heat loads in the magnet, when there is no current in the magnet. The first stage heat load calculations are based on knowing the first stage temperatures of the three two-stage pulse tube coolers and the single stage GM cooler. Fifth, the estimated heat load to the first stage when the magnet has current in it is discussed. Sixth, there is a comparison of the stage 1 heat loads in magnet 1A (5), magnet 2A (6), and magnet 2B (7). Finally there is a discussion of recommended changes for improving the spectrometer solenoids so that the coolers can keep them cold.

  4. Cooled grating infrared spectrometer for astronomical observations

    Science.gov (United States)

    Houck, J. R.; Gull, G. E.

    A liquid helium-cooled infrared spectrometer for the 16 to 50 micron range is described. The instrument has six detectors, three each of Si:Sb and Ge:Ga and two diffraction gratings mounted back-to-back. Cold preoptics are used to match the spectrometer to the telescope. In its nominal configuration the system resolution is 0.03 micron from 16 to 30 microns and 0.07 micron from 28 to 50 microns. A cooled filter wheel is used to change order sorting filters. The gratings are driven by a steel band and gear train operating at 4 K. The detector outputs are amplified by a TIA, employing a matched pair of JFETs operating at 70 K inside the dewar. The external warm electronics include a gain stage for the TIA and dc-coupled gating circuit to remove charged-particle (cosmic-ray secondary)-induced noise spikes. The gating circuit reduces the overall system noise by a factor of two when the spectrometer is used on NASA's Kuiper Airborne Observatory. Sample spectra are presented and the deglitcher performance is illustrated.

  5. Prismatic analyser concept for neutron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Birk, Jonas O.; Jacobsen, Johan; Hansen, Rasmus L.; Lefmann, Kim [Nano Science Center, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø (Denmark); Markó, Márton; Niedermayer, Christof [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Freeman, Paul G. [Laboratory for Quantum Magnetism, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Christensen, Niels B. [Institute of Physics, Technical University of Denmark, DK-2800-Kgs. Lyngby (Denmark); Månsson, Martin [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Laboratory for Quantum Magnetism, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Rønnow, Henrik M. [Nano Science Center, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø (Denmark); Laboratory for Quantum Magnetism, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2014-11-15

    Developments in modern neutron spectroscopy have led to typical sample sizes decreasing from few cm to several mm in diameter samples. We demonstrate how small samples together with the right choice of analyser and detector components makes distance collimation an important concept in crystal analyser spectrometers. We further show that this opens new possibilities where neutrons with different energies are reflected by the same analyser but counted in different detectors, thus improving both energy resolution and total count rate compared to conventional spectrometers. The technique can readily be combined with advanced focussing geometries and with multiplexing instrument designs. We present a combination of simulations and data showing three different energies simultaneously reflected from one analyser. Experiments were performed on a cold triple axis instrument and on a prototype inverse geometry Time-of-flight spectrometer installed at PSI, Switzerland, and shows excellent agreement with the predictions. Typical improvements will be 2.0 times finer resolution and a factor of 1.9 in flux gain compared to a focussing Rowland geometry, or of 3.3 times finer resolution and a factor of 2.4 in flux gain compared to a single flat analyser slab.

  6. VERITAS: Versatile Triple-Axis Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Il

    2006-04-15

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, {approx} 5 m Curved Guide, {approx} 26 m w/ R 1500 m Straight Guide before the Instrument, {approx} 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world.

  7. VERITAS: Versatile Triple-Axis Spectrometer

    International Nuclear Information System (INIS)

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, ∼ 5 m Curved Guide, ∼ 26 m w/ R 1500 m Straight Guide before the Instrument, ∼ 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world

  8. In-trap decay spectroscopy for {beta}{beta} decays

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Thomas

    2011-01-18

    The presented work describes the implementation of a new technique to measure electron-capture (EC) branching ratios (BRs) of intermediate nuclei in {beta}{beta} decays. This technique has been developed at TRIUMF in Vancouver, Canada. It facilitates one of TRIUMF's Ion Traps for Atomic and Nuclear science (TITAN), the Electron Beam Ion Trap (EBIT) that is used as a spectroscopy Penning trap. Radioactive ions, produced at the radioactive isotope facility ISAC, are injected and stored in the spectroscopy Penning trap while their decays are observed. A key feature of this technique is the use of a strong magnetic field, required for trapping. It radially confines electrons from {beta} decays along the trap axis while X-rays, following an EC, are emitted isotropically. This provides spatial separation of X-ray and {beta} detection with almost no {beta}-induced background at the X-ray detector, allowing weak EC branches to be measured. Furthermore, the combination of several traps allows one to isobarically clean the sample prior to the in-trap decay spectroscopy measurement. This technique has been developed to measure ECBRs of transition nuclei in {beta}{beta} decays. Detailed knowledge of these electron capture branches is crucial for a better understanding of the underlying nuclear physics in {beta}{beta} decays. These branches are typically of the order of 10{sup -5} and therefore difficult to measure. Conventional measurements suffer from isobaric contamination and a dominating {beta} background at theX-ray detector. Additionally, X-rays are attenuated by the material where the radioactive sample is implanted. To overcome these limitations, the technique of in-trap decay spectroscopy has been developed. In this work, the EBIT was connected to the TITAN beam line and has been commissioned. Using the developed beam diagnostics, ions were injected into the Penning trap and systematic studies on injection and storage optimization were performed. Furthermore, Ge

  9. [Design of Dual-Beam Spectrometer in Spectrophotometer for Colorimetry].

    Science.gov (United States)

    Liu, Yi-xuan; Yan, Chang-xiang

    2015-07-01

    Spectrophotometers for colorimetry are usually composed of two independent and identical spectrometers. In order to reduce the volume of spectrophotometer for colorimetry, a design method of double-beam spectrometer is put forward. A traditional spectrometer is modified so that a new spectrometer can realize the function of double spectrometers, which is especially suitable for portable instruments. One slit is replaced by the double-slit, than two beams of spectrum can be detected. The working principle and design requirement of double-beam spectrometer are described. A spectrometer of portable spectrophotometer is designed by this method. A toroidal imaging mirror is used for the Czerny-Turner double-beam spectrometer in this paper, which can better correct astigmatism, and prevent the dual-beam spectral crosstalk. The results demonstrate that the double-beam spectrometer designed by this method meets the design specifications, with the spectral resolution less than 10 nm, the spectral length of 9.12 mm, and the volume of 57 mm x 54 mm x 23 mm, and without the dual-beam spectral overlap in the detector either. Comparing with a traditional spectrophotometer, the modified spectrophotometer uses a set of double-beam spectrometer instead of two sets of spectrometers, which can greatly reduce the volume. This design method can be specially applied in portable spectrophotometers, also can be widely applied in other double-beam spectrophotometers, which offers a new idea for the design of dual-beam spectrophotometers. PMID:26717779

  10. Cardiac glycoside-like structure and function of 5 beta,14 beta-pregnanes

    International Nuclear Information System (INIS)

    5 beta-Reduction and 14 beta-substitution convert the planar progesterone molecule to the cardiac glycoside configuration--A and D rings of the steroid moiety are bent toward the alpha-face relative to the B and C rings. Potency of the 5 beta,14 beta-derivative in a [3H]ouabain binding assay or its ability to inhibit the sodium pump in red blood cells is enhanced by 3 beta-hydroxylation, 20 beta-hydroxylation, and 3 beta-glycosidation. Synthesis of 14,20 beta-dihydroxy-3 beta-(beta-D-glucopyranosyloxy)- 5 beta,14 beta-pregnane from digitoxin is described. The glucoside is 1/20 as potent as ouabain and elicits prominent, sustained, positive inotropy in isolated cardiac muscle

  11. Beta-induced luminescence of some crystalline inorganic materials

    International Nuclear Information System (INIS)

    The beta-particle-induced luminescence spectra of a number of crystalline solids have been recorded using a single-photon -counting spectrometer in the search for high-stability u.v. light sources for use in analytical instrumentation. Of particular interest are the emissions from CaF2,sapphire and spinel, all of which produce useful emission intensities below 300 nm. The kinetic behaviour of the emissions from 1:1 and 1.8:1 spinels have been studied in some detail, and it is found that the noise level of the emitted light is significantly reduced by the 'smoothing' action of a long luminescence decay time. The results are consistent with the view that the spinel emission is associated with the recombination of electrons trapped on [AL]+sub(Mg) with holes trapped on [Mg]-sub(Al) centres. (author)

  12. Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip

    Science.gov (United States)

    Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

    2012-01-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  13. Mathematical simulation for integrated linear Fresnel spectrometer chip

    Science.gov (United States)

    Park, Yeonjoon; Yoon, Hargsoon; Lee, Uhn; King, Glen C.; Choi, Sang

    2012-04-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1mm3 of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/λ), while the conventional spectrometers are proportional to the wavelength scale (λ). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  14. Ultra-low kinetic energy photoelectron angular distribution measurements in He and Ne using a Velocity Map Imaging spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, A M; Hoyos-Campo, L M [Institute de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor. 62210 (Mexico); Redt, E; Hoenert, M; Aguilar, A [Lawrence Berkeley National Laboratory, Berkeley CA-94720 (United States); Rolles, D [Max Planck Advanced Study Group, CFEL, D-22761 Hamburg (Germany); Berrah, N, E-mail: aaguilar@lbl.go [Department of Physics, Western Michigan University, Kalamazoo MI-49008 (United States)

    2009-11-01

    We present photoelectron angular distributions (PADs) in Helium and Neon for electrons with excess energies between 5 and 100 meV. These ultra-low kinetic energy PAD measurements were obtained with a modified Velocity Map Imaging spectrometer (VMI) and VUV light from the Advanced Light Source (ALS) synchrotron radiation source. The efficiency and reliability of the spectrometer at this ultra-low kinetic energy range has been tested by determining the variation with energy of the asymmetry, {beta}, parameter of photoelectrons from the s-shell direct ionization in Helium. For Neon, we determined the energy dependent asymmetry parameters across the 's' and 'd' autoionizing resonances between the P{sub 3/2} and P{sub 1/2} ionic states. Furthermore, we measured the asymmetry parameter for photoelectrons produced from the n = 2 to n = 6 satellite states of He. These measurements were performed at values of excess kinetic energy previously unexplored.

  15. 50 years forward: beta cells.

    Science.gov (United States)

    Halban, Philippe A

    2015-08-01

    Our understanding of beta cell development and function has increased substantially these past 50 years but much remains to be learned before this knowledge can be put to clinical use. A comprehensive business plan will be necessary to develop a detailed molecular and functional blueprint of the beta cell in health and disease based on an integrated approach involving all necessary research disciplines. This blueprint will provide a platform for the development of novel therapeutic strategies for the treatment of both major forms of diabetes, foremost among them beta cell replacement therapy. This is one of a series of commentaries under the banner '50 years forward', giving personal opinions on future perspectives in diabetes, to celebrate the 50th anniversary of Diabetologia (1965-2015). PMID:25957776

  16. Predicting Neutrinoless Double Beta Decay

    CERN Document Server

    Hirsch, M; Valle, J W F; Moral, A V; Ma, Ernest

    2005-01-01

    We give predictions for the neutrinoless double beta decay rate in a simple variant of the A_4 family symmetry model. We show that there is a lower bound for the neutrinoless double beta decay amplitude even in the case of normal hierarchical neutrino masses, corresponding to an effective mass parameter |m_{ee}| >= 0.17 \\sqrt{\\Delta m^2_{ATM}}. This result holds both for the CP conserving and CP violating cases. In the latter case we show explicitly that the lower bound on |m_{ee}| is sensitive to the value of the Majorana phase. We conclude therefore that in our scheme, neutrinoless double beta decay may be accessible to the next generation of high sensitivity experiments.

  17. Development of a Gas Filled Magnet spectrometer coupled with the Lohengrin spectrometer for fission study

    Directory of Open Access Journals (Sweden)

    Materna T.

    2013-03-01

    Full Text Available The accurate knowledge of the fission of actinides is necessary for studies of innovative nuclear reactor concepts. The fission yields have a direct influence on the evaluation of the fuel inventory or the reactor residual power after shutdown. A collaboration between the ILL, LPSC and CEA has developed a measurement program on fission fragment distributions at ILL in order to measure the isotopic and isomeric yields. The method is illustrated using the 233U(n,f98Y reaction. However, the extracted beam from the Lohengrin spectrometer is not isobaric ions which limits the low yield measurements. Presently, the coupling of the Lohengrin spectrometer with a Gas Filled Magnet (GFM is studied at the ILL in order to define and validate the enhanced purification of the extracted beam. This work will present the results of the spectrometer characterisation, along with a comparison with a dedicated Monte Carlo simulation especially developed for this purpose.

  18. Realisation of a β spectrometer solenoidal and a double β spectrometer at coincidence

    International Nuclear Information System (INIS)

    The two spectrometers have been achieved to tackle numerous problems of nuclear spectrometry. They possess different fields of application that complete themselves. The solenoidal spectrometer permits the determination of the energy limits of β spectra and of their shape; it also permits the determination of the coefficients of internal conversion and reports αK / αL and it is especially efficient for the accurate energy levels of the γ rays by photoelectric effect. The double coincidence spectrometer has been conceived to get a good efficiency in coincidence: indeed, the sum of the solid angles used for the β and γ emission is rather little lower to 4π steradians. To get this efficiency, one should have sacrificed a little the resolution that is lower to the one obtained with the solenoidal spectrometer for a same brightness. Each of the elements of the double spectrometer can also be adapted to the study of angular correlations βγ and e-γ. In this use, it is superior to the thin magnetic lens used up to here. The double spectrometer also permits the survey of the coincidences e-e-, e-β of a equivalent way to a double lens; it can also be consider some adaptation for the survey of the angular correlations e-e-, e-β. Finally, we applied the methods by simple spectrometry and by coincidence spectrometry, to the study of the radiances of the following radioelements: 76As (26 h), 122Sb (2,8 j), 124Sb (60 j), 125Sb (2,7 years). (M.B.)

  19. Mechanism of inactivation of alanine racemase by beta, beta, beta-trifluoroalanine

    International Nuclear Information System (INIS)

    The alanine racemases are a group of PLP-dependent bacterial enzymes that catalyze the racemization of alanine, providing D-alanine for cell wall synthesis. Inactivation of the alanine racemases from the Gram-negative organism Salmonella typhimurium and Gram-positive organism Bacillus stearothermophilus with beta, beta, beta-trifluoroalanine has been studied. The inactivation occurs with the same rate constant as that for formation of a broad 460-490-nm chromophore. Loss of two fluoride ions per mole of inactivated enzyme and retention of [1-14C]trifluoroalanine label accompany inhibition, suggesting a monofluoro enzyme adduct. Partial denaturation (1 M guanidine) leads to rapid return of the initial 420-nm chromophore, followed by a slower (t1/2 approximately 30 min-1 h) loss of the fluoride ion and 14CO2 release. At this point, reduction by NaB3H4 and tryptic digestion yield a single radiolabeled peptide. Purification and sequencing of the peptide reveals that lysine-38 is covalently attached to the PLP cofactor. A mechanism for enzyme inactivation by trifluoroalanine is proposed and contrasted with earlier results on monohaloalanines, in which nucleophilic attack of released aminoacrylate on the PLP aldimine leads to enzyme inactivation. For trifluoroalanine inactivation, nucleophilic attack of lysine-38 on the electrophilic beta-difluoro-alpha, beta-unsaturated imine provides an alternative mode of inhibition for these enzymes

  20. Ion optics for large-acceptance magnetic spectrometers application to the MAGNEX spectrometer

    CERN Document Server

    Cunsolo, A; Foti, A; Lazzaro, A; Melita, A L; Nociforo, C; Shchepunov, V A; Winfield, J S

    2002-01-01

    The ion optics of large-acceptance magnetic spectrometers are discussed. General techniques based on a minimum of multi-purpose magnetic elements are described. The aberrations should be minimised by shaping the entrance and exit effective field boundaries of bending magnets, the residual terms being corrected by software. Field clamps, shims and surface coils (the latter to provide kinematic compensation) are also discussed. The results and formulae which we obtain are applied to the case of the large-acceptance (approx 50 msr) high-resolution magnetic spectrometer 'MAGNEX' at INFN-LNS Catania.

  1. Metrology for terahertz time-domain spectrometers

    Science.gov (United States)

    Molloy, John F.; Naftaly, Mira

    2015-12-01

    In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.

  2. Compact snapshot real-time imaging spectrometer

    Science.gov (United States)

    Kudenov, Michael W.; Dereniak, Eustace L.

    2011-11-01

    The described spectral imaging system, referred to as a Snapshot Hyperspectral Imaging Fourier Transform (SHIFT) spectrometer, is capable of acquiring spectral image data of a scene in a single integration of a camera, is ultra-compact, inexpensive (commercial off-the-shelf), has no moving parts, and can produce datacubes (x, y, λ) in real time. Based on the multiple-image FTS originally developed by A. Hirai [1], the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. By combining a birefringent interferometer with a lenslet array, the entire spectrometer consumes approximately 15×15×20 mm3, excluding the imaging camera. The theory of the birefringent FTS is provided, followed by details of its specific embodiment and a laboratory proof of concept of the sensor. Post-processing is currently accomplished in Matlab, but progress is underway in developing real-time reconstruction capabilities with software programmed on a graphics processing unit (GPU). It is anticipated that processing of >30 datacubes per second can be achieved with modest GPU hardware, with spatial/spectral data of or exceeding 256×256 spatial resolution elements and 60 spectral bands over the visible (400-800 nm) spectrum. Data were collected outdoors, demonstrating the sensor's ability to resolve spectral signatures in standard outdoor lighting and environmental conditions as well as retinal imaging.

  3. Bonner sphere spectrometer: A CONRAD project intercomparison

    International Nuclear Information System (INIS)

    The most widely used system in neutrons measurements for radiological protection is the Bonner Sphere Spectrometer (BSS). The BSS is applied to characterise neutron fields from thermal to hundreds of MeVs. The Nuclear Regulatory Authority of Argentina has developed and calibrated its own BSS system, which has been used in many Argentine facilities during the last eleven years when the regulatory activities have been carried out. Following this line of work, the present development has been done in the framework of the International Intercomparison ''Uncertainty Assessment in Computational Dosimetry: A Comparison of Approaches'', organised by the CONRAD project (Coordinated Network for Radiation Dosimetry). The aim of intercomparison was to study the response of a proposed widespread neutron spectrometer exposed to arbitrary neutron sources. With this goal in mind, the experimental system has been modelled in detail according to the provided layout. The modelled neutron spectrometer consists of 8 Bonner spheres made of high-density polyethylene (δ=0.95gc/m3). The spheres diameter range between 2' and 12' in addition to a 12' diameter leadloaded sphere. The defined active thermal neutron detector, a 6LiI(Eu) scintillation crystal, was according to provided dimensions (4 mm (diameter) by 4 mm (height)), and located at each sphere centre. Irradiation geometry has been according to measurements carried out during the experimental part of the intercomparison. The theoretical neutron response has been calculated applying the well-known MCNPX code. The complete response matrix of the system has been obtained in the energy range between thermal neutron and 17.77 MeV. The obtained system theoretical response to ISO standard 241Am-Be and 252Cf sources shows an excellent agreement with experimental results provided by EURADOS. This response can be used to calibrate the system. The obtained matrix response can be coupled to any unfolding code to complete the BSS system used in

  4. Spectrometers for RF breakdown studies for CLIC

    Science.gov (United States)

    Jacewicz, M.; Ziemann, V.; Ekelöf, T.; Dubrovskiy, A.; Ruber, R.

    2016-08-01

    An e+e- collider of several TeV energy will be needed for the precision studies of any new physics discovered at the LHC collider at CERN. One promising candidate is CLIC, a linear collider which is based on a two-beam acceleration scheme that efficiently solves the problem of power distribution to the acceleration structures. The phenomenon that currently prevents achieving high accelerating gradients in high energy accelerators such as the CLIC is the electrical breakdown at very high electrical field. The ongoing experimental work within the CLIC collaboration is trying to benchmark the theoretical models focusing on the physics of vacuum breakdown which is responsible for the discharges. In order to validate the feasibility of accelerating structures and observe the characteristics of the vacuum discharges and their eroding effects on the structure two dedicated spectrometers are now commissioned at the high-power test-stands at CERN. First, the so called Flashbox has opened up a possibility for non-invasive studies of the emitted breakdown currents during two-beam acceleration experiments. It gives a unique possibility to measure the energy of electrons and ions in combination with the arrival time spectra and to put that in context with accelerated beam, which is not possible at any of the other existing test-stands. The second instrument, a spectrometer for detection of the dark and breakdown currents, is operated at one of the 12 GHz stand-alone test-stands at CERN. Built for high repetition rate operation it can measure the spatial and energy distributions of the electrons emitted from the acceleration structure during a single RF pulse. Two new analysis tools: discharge impedance tracking and tomographic image reconstruction, applied to the data from the spectrometer make possible for the first time to obtain the location of the breakdown inside the structure both in the transversal and longitudinal direction thus giving a more complete picture of the

  5. Electro-optic imaging Fourier transform spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  6. Photoacoustic Soot Spectrometer (PASS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, M [Los Alamos National Laboratory; Springston, S [Brookhaven National Laboratory; Koontz, A [Pacific Northwest National Laboratory; Aiken, A [Los Alamos National Laboratory

    2013-01-17

    The photoacoustic soot spectrometer (PASS) measures light absorption by aerosol particles. As the particles pass through a laser beam, the absorbed energy heats the particles and in turn the surrounding air, which sets off a pressure wave that can be detected by a microphone. The PASS instruments deployed by ARM can also simultaneously measure the scattered laser light at three wavelengths and therefore provide a direct measure of the single-scattering albedo. The Operator Manual for the PASS-3100 is included here with the permission of Droplet Measurement Technologies, the instrument’s manufacturer.

  7. Calibration and intercomparison of neutron moderation spectrometers

    International Nuclear Information System (INIS)

    Results have been reported of comparative measurements of neutron fields from bare PuBe and Cf sources using multisphere (Bonner) spectrometers. The experiments were carried out by the Institute of Biophysics and Nuclear Medicine at Charles University in Prague and the National Board for Atomic Safety and Radiation Protection in Berlin. Both sides agreed upon uniform measuring conditions and calibration factors thus rendering possible the comparability of the dosimetric parameters which have been determined and verified, respectively, to an accuracy of ± 10%. 20 refs., 10 tabs., 2 figs. (author)

  8. The Omega spectrometer in the West Hall.

    CERN Multimedia

    1976-01-01

    Inside the hut which sits on top of the superconducting magnet are the TV cameras that observe the particle events occurring in the spark chambers in the magnet gap below. On the background the two beam lines feeding the spectrometer target, for separated hadrons up to 40 GeV, on the right, for 80 GeV electrons, on the left, respectively. The latter strikes a radiator thus sending into Omega tagged photons up to 80 GeV. On the foreground, the two sections of the large gas Cerenkov counter working at atmospheric pressure, used for trigger purpose.

  9. Recent developments in thick mercuric iodine spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hull, K.; Beyerle, A.; Lopez, B.; Markakis, J.; Ortale, C.; Schnepple, W.; Van den Berg, L.

    1983-02-01

    Thick (about 1 cm) mercuric iodide gamma-ray detectors have been produced which show spectroscopic qualities at moderate detector biases (about 5 kV) comparable to those of thin spectrometers. Efficiency measurements indicate that the entire volume of the detectors is active. Spectra resolutions of less than 10% have been obtained for gamma-ray energies above 1 MeV. Short charge collection times have produced the best results. Measurement of crystal charge transport properties is discussed. A small amount of bias conditioning is necessary for best performance. Operating parameters of the detectors have been investigated.

  10. Recent developments in thick mercuric iodide spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hull, K.; Beyerle, A.; Lopez, B.; Markakis, J.; Ortale, C.; Schnepple, W.; van den Berg, L.

    1982-01-01

    Thick (approx. 1 cm) mercuric iodide gamma-ray detectors have been produced which show spectroscopic qualities at moderate detector biases (approx. 5 kV) comparable to those of thin spectrometers. Efficiency measurements indicate that the entire volume of the detectors is active. Spectra resolutions of less than 10% have been obtained for gamma-ray energies above 1 MeV. Short charge collection times have produced the best results. Measurement of crystal charge transport properties is discussed. A small amount of bias conditioning is necessary for best performance. Operating parameters of the detectors have been investigated.

  11. Micro-optical-mechanical system photoacoustic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

    2013-01-01

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

  12. Gamma ray spectrometer for Lunar Scout 2

    Science.gov (United States)

    Moss, C. E.; Burt, W. W.; Edwards, B. C.; Martin, R. A.; Nakano, George H.; Reedy, R. C.

    1993-01-01

    We review the current status of the Los Alamos program to develop a high-resolution gamma-ray spectrometer for the Lunar Scout-II mission, which is the second of two Space Exploration Initiative robotic precursor missions to study the Moon. This instrument will measure gamma rays in the energy range of approximately 0.1 - 10 MeV to determine the composition of the lunar surface. The instrument is a high-purity germanium crystal surrounded by an CsI anticoincidence shield and cooled by a split Stirling cycle cryocooler. It will provide the abundance of many elements over the entire lunar surface.

  13. Conceptual design of a Disk Chopper Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Copley, J.R.D. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1997-09-01

    We describe methods that we have used for the conceptual design of the Disk Chopper Spectrometer at the Cold Neutron Research Facility, National Institute of Standards and Technology. Most of the discussion concerns the multiple chopper system. No single design method is best in every situation. We believe that an analytical approach is preferable, whenever possible. Graphical methods of expressing problems have been very instructive. We have also found it useful, and occasionally invaluable, to cross-check results obtained using different methods, such as analytical integration and ray-tracing.

  14. Compact proton spectrometers for measurements of shock

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Zylstra, A; Frenje, J A; Seguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M G; Casey, D T; Sinenian, N; Manuel, M; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G; Dewald, E; Doeppner, T; Edwards, M J; Glenzer, S H; Hicks, D; Landen, O L; London, R; Meezan, N B

    2012-05-02

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign (NIC) diagnostic. The WRF measures the spectrum of protons from D-{sup 3}He reactions in tuning-campaign implosions containing D and {sup 3}He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total {rho}R through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  15. The crystal barrel spectrometer at LEAR

    International Nuclear Information System (INIS)

    The Crystal Barrel spectrometer used at LEAR, CERN to study the products of anti pp and anti pd annihilations is described. A 1380 element array of CsI crystals measures photons from the decay of π0, η, η' and ω mesons. A segmented drift chamber in a 1.5 T magnetic field is used to identify and measure charged particles. A fast on-line trigger on charged and neutral multiplicities and on the invariant mass of secondary particles is available. The performance of the detector is discussed. (orig.)

  16. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  17. Remote Nuclear Spectrometer for Martian Moon Exploration

    Science.gov (United States)

    Hasebe, Nobuyuki; Okada, Tatsuaki; Kameda, Shingo; Karouji, Yuzuru; Amano, Yoshiharu; Shibamura, Eido; Cho, Yuichiro; Ohta, Toru; Naito, Masayuki; Kusano, Hiroki; Nagaoka, Hiroshi; Yoshida, Kohei; Adachi, Takuto; Kuno, Haruyoshi; Martínez-Frías, Jesus; Nakamura, Tomoki; Takashi, Mikouchi; Shimizu, Sota; Shirai, Naoki; Fagan, Timothy J.; Hitachi, Akira; Matias Lopes, José A.; Miyamoto, Hideaki; Niihara, Takafumi; Kim, Kyeong

    2016-07-01

    The Gamma-ray and Neutron Spectrometer (GNS) on the Mars Moon eXploration (MMX) forms part of the geochemistry investigation. The remote observation from spacecraft orbit provides us global information of the Moons showing evidence of their origin. The Gamma-Ray Sensor (GS) detects gamma-ray emissions in the 0.2- to 10-MeV energy range with an energy resolution of solar system and low values of Ca/F and Si/Fe-ratios also suggest the primordial origin. The present status of the GNS development will be reviewed.

  18. The High Rigidity Spectrometer for FRIB

    Science.gov (United States)

    Baumann, T.

    2016-06-01

    The High Rigidity Spectrometer (HRS) is being developed to make optimum use of the fast rare-isotope beams that will be available at the Facility for Rare-Isotope Beams (FRIB) and will be the key experimental tool to study the most exotic, neutron-rich nuclei. The HRS will accommodate detector systems for charged particles, neutrons, and gamma rays. This will enable coincidence measurements of reaction products that stem from a variety of reactions such as knockout, breakup, charge exchange or Coulomb excitation. First-order ion optical studies are under way and this paper will offer some details on the current design ideas.

  19. Electrical aerosol spectrometer of Tartu University

    Science.gov (United States)

    Tammet, H.; Mirme, A.; Tamm, E.

    The electrical aerosol spectrometer (EAS) of the parallel measuring principle at Tartu University is an efficient instrument for rapid measurement of the unstable size spectrum of aerosol particles. The measuring range from 10 nm to 10 μm is achieved by simultaneously using a pair of differential mobility analyzers with two different particle chargers. The particle spectrum is calculated and measurement errors are estimated in real time by using a least-squares method. Experimental calibration ensures reliability of measurement. The instrument is well suited for continuous monitoring of atmospheric aerosol.

  20. The 8-18 GHz radar spectrometer

    Science.gov (United States)

    Bush, T. F.; Ulaby, F. T.

    1973-01-01

    The design, construction, testing, and accuracy of an 8-18 GHz radar spectrometer, an FM-CW system which employs a dual antenna system, is described. The antennas, transmitter, and a portion of the receiver are mounted at the top of a 26 meter hydraulic boom which is in turn mounted on a truck for system mobility. HH and VV polarized measurements are possible at incidence angles ranging from 0 deg. to 80 deg. Calibration is accomplished by referencing the measurements against a Luneberg lens of known radar cross section.

  1. Constraining neutrinoless double beta decay

    International Nuclear Information System (INIS)

    A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.

  2. *608440 LACTAMASE, BETA; LACTB [OMIM

    Lifescience Database Archive (English)

    Full Text Available FIELD NO 608440 FIELD TI 608440 LACTAMASE, BETA; LACTB ;;MITOCHONDRIAL RIBOSOMAL PROTEIN L56; MR ... Chen et al. (2008) recorded weight, fat mass, and lean ... mass for Lpl heterozygous null mice, Lactb transge ... ifferent from those of controls, with the fat mass/lean ... mass ratio difference generally increasing over ti ...

  3. Total absorption study of beta decays relevant for nuclear applications

    International Nuclear Information System (INIS)

    In this contribution we will present an overview of recent studies of the beta decay of nuclei relevant for the calculation of the decay heat in nuclear reactors as a continuation of the work presented in (1). The measurements are performed using the best available technique to detect the beta feeding probability, the total absorption technique (TAS). In our studies we have combined the TAS technique with the use of a Penning Trap (JYFLTRAP, Univ. of Jyvaeskylae) as a high-resolution isobaric separator in order to guarantee high purity of the sources. A brief summary of the latest results of the measurements using a new segmented total absorption spectrometer, the faced challenges depending of the particular nuclei as well as new developments of the techniques of analysis will be discussed. The impact of the measurements on summation calculations of the decay heat in reactors, and in possible non-proliferation applications will be addressed. Future plans and the development of a new modular TAS detector (DTAS) for the DEcay SPECtroscopy (DESPCE) experiment at FAIR will also presented. (author)

  4. Monitor for alpha beta contamination of hands

    International Nuclear Information System (INIS)

    The following specifications of hands alpha beta contamination monitor are presented: the position of the hands, the detection and separation of alpha and beta, the information processing, the programming, the results presentation and general characteristics. (A.L.B.)

  5. How Do Beta Blocker Drugs Affect Exercise?

    Science.gov (United States)

    ... Stroke More How do beta blocker drugs affect exercise? Updated:Aug 5,2015 Beta blockers are a ... about them: Do they affect your ability to exercise? The answer can vary a great deal, depending ...

  6. Interferon Beta-1a Intramuscular Injection

    Science.gov (United States)

    Interferon beta-1a intramuscular injection is used to reduce the number of episodes of symptoms and slow ... and problems with vision, speech, and bladder control). Interferon beta-1a is in a class of medications ...

  7. Interferon Beta-1a Subcutaneous Injection

    Science.gov (United States)

    Interferon beta-1a subcutaneous injection is used to reduce episodes of symptoms and slow the development of ... and problems with vision, speech, and bladder control). Interferon beta-1a is in a class of medications ...

  8. The MAGNEX spectrometer: results and perspectives

    CERN Document Server

    Cappuzzello, F; Carbone, D; Cavallaro, M

    2016-01-01

    This article discusses the main achievements and future perspectives of the MAGNEX spectrometer at the INFN-LNS laboratory in Catania (Italy). MAGNEX is a large acceptance magnetic spectrometer for the detection of the ions emitted in nuclear collisions below Fermi energy. In the first part of the paper an overview of the MAGNEX features is presented. The successful application to the precise reconstruction of the momentum vector, to the identification of the ion masses and to the determination of the transport efficiency is demonstrated by in-beam tests. In the second part, an overview of the most relevant scientific achievements is given. Results from nuclear elastic and inelastic scattering as well as from transfer and charge exchange reactions in a wide range of masses of the colliding systems and incident energies are shown. The role of MAGNEX in solving old and new puzzles in nuclear structure and direct reaction mechanisms is emphasized. One example is the recently observed signature of the long search...

  9. Local tracking in the ATLAS muon spectrometer

    CERN Document Server

    Primor, David; Mikenberg, Giora

    2007-01-01

    The LHC, the largest hadron collider accelerator ever built, presents new challenges for scientists and engineers. With the anticipated luminosity of the LHC, it is expected to have as many as one billion total collisions per second, of which at most 10 to 100 per second might be of potential scientific interest. One of the two major, general-purpose experiments at LHC is called ATLAS. Since muons are one of the important signs of new physics, the need of their detection has lead to the construction of a stand- alone Muon Spectrometer. This system is located in a high radiation background environment (mostly neutrons and photons) which makes the muon tracking a very challenging task. The Muon Spectrometer consists of two types of precision chambers, the Monitor Drift Tube (MDT) chambers, and the Cathode Strip Chambers (CSC). In order to detect the muon and estimate its track parameters, it is very important to detect and precisely estimate its local tracks within the CSC and MDT chambers. Using advanced signa...

  10. Comb-locked Lamb-dip spectrometer

    Science.gov (United States)

    Gatti, Davide; Gotti, Riccardo; Gambetta, Alessio; Belmonte, Michele; Galzerano, Gianluca; Laporta, Paolo; Marangoni, Marco

    2016-06-01

    Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm2, which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10‑11 cm‑1 absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10‑23 cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed.

  11. A rotatable electron spectrometer for multicoincidence experiments

    International Nuclear Information System (INIS)

    We have developed a rotatable hemispherical spectrometer with good energy and angular resolution, which can be positioned with the lens axis arbitrarily within a solid angle of 1 π. The collection angle of the emitted electrons with respect to the polarization axis of the light is set by means of a three-axes goniometer, operating under vacuum. An important requirement for this setup was the possibility to perform coincidences between the electron analyzed by the spectrometer and one or several other particles, such as ions, electrons, or photons. The lens system and the hemispheres have been designed to accommodate such experimental demands, regarding parameters such as the resolving power, the acceptance angle, or the width of the kinetic energy window which can be recorded for a given pass energy. We have chosen to detect the impact position of the electron at the focal plane of the hemispherical analyzer with a delay line detector and a time-to-digital converter as acquisition card rather than using a conventional charge-coupled device camera.

  12. A rotatable electron spectrometer for multicoincidence experiments.

    Science.gov (United States)

    Céolin, D; Forsell, J-O; Wannberg, B; Legendre, S; Palaudoux, J; Ohrwall, G; Svensson, S; Piancastelli, M N

    2010-06-01

    We have developed a rotatable hemispherical spectrometer with good energy and angular resolution, which can be positioned with the lens axis arbitrarily within a solid angle of 1 pi. The collection angle of the emitted electrons with respect to the polarization axis of the light is set by means of a three-axes goniometer, operating under vacuum. An important requirement for this setup was the possibility to perform coincidences between the electron analyzed by the spectrometer and one or several other particles, such as ions, electrons, or photons. The lens system and the hemispheres have been designed to accommodate such experimental demands, regarding parameters such as the resolving power, the acceptance angle, or the width of the kinetic energy window which can be recorded for a given pass energy. We have chosen to detect the impact position of the electron at the focal plane of the hemispherical analyzer with a delay line detector and a time-to-digital converter as acquisition card rather than using a conventional charge-coupled device camera. PMID:20590230

  13. Software Polarization Spectrometer "PolariS"

    CERN Document Server

    Mizuno, Izumi; Kano, Amane; Kuroo, Makoto; Nakamura, Fumitaka; Kawaguchi, Noriyuki; Shibata, Katsunori M; Kuji, Seisuke; Kuno, Nario

    2014-01-01

    We have developed a software-based polarization spectrometer, PolariS, to acquire full-Stokes spectra with a very high spectral resolution of 61 Hz. The primary aim of PolariS is to measure the magnetic fields in dense star-forming cores by detecting the Zeeman splitting of molecular emission lines. The spectrometer consists of a commercially available digital sampler and a Linux computer. The computer is equipped with a graphics processing unit (GPU) to process FFT and cross-correlation using the CUDA (Compute Unified Device Architecture) library developed by NVIDIA. Thanks to a high degree of precision in quantization of the analog-to-digital converter and arithmetic in the GPU, PolariS offers excellent performances in linearity, dynamic range, sensitivity, bandpass flatness and stability. The software has been released under the MIT License and is available to the public. In this paper, we report the design of PolariS and its performance verified through engineering tests and commissioning observations.

  14. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    陈和生

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirem

  15. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2 ·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirements from AMS, and satisfies the strict safety standards of NASA.

  16. Development of a junction β - spectrometer

    International Nuclear Information System (INIS)

    A β spectrometry unit using junctions of the silicon surface barrier type has been built. The resolving power of this spectrometer has been studied as well as the influence of a certain number of parameters (temperature, polarization voltage) on its characteristics. A study with this unit of some internal conversion electron spectra (113Sn, 137Cs, 139Ce, 195Au, 207Bi) has led both to a determination of its characteristics and of an energy calibration, and to the determination of certain internal conversion ratios of these radionuclides. This spectrometer was then used for a study of (5-spectra in particular that of 35S and 14C. The calculations and corrections required for the setting-up of Kuries representation are described. The programmes required for the carrying-out of these calculations with an I.B.M. computer are given. It has been verified that Kuries representation for 14C above 90 keV is in fact linear. The non-linear aspect observed by certain authors is probably due to the 'quality' of the sources used. The Fierz interference term has been determined. The maximum β energies found are respectively: 167 ± 1 keV for 35S and 155 ± 2 keV for 14C. (author)

  17. Neutron Beam Conditioning for Focusing SANS Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Fuezi, Janos; Rosta, Laszlo, E-mail: fuzi@szfki.hu

    2010-11-01

    Multibeam focusing offers an appealing compromise between high resolution and high incident flux configurations for SANS spectrometers. In fact so many 'spectrometers' operate in parallel as the number of channels in the collimator. Each channel provides high resolution by small spot size on the detector and long sample-to-detector distance, involving significant limitation of the transmitted beam phase space volume, thus reducing the flux. The flux on the sample is increased by the large number of channels. In view of the multibeam collimation it is beneficial to increase the beam cross section and decrease the divergence at the same time. Two aspects related to the use of rotational velocity selectors are investigated. First the transmitted phase space is determined from the selector parameters. It is found that the beam azimuthal divergence with respect to the rotor axis has a significant effect on the selectivity. Neutrons flying along different paths are treated differently, leading eventually to energetic non-uniformity of the illumination of various collimator channels. Then the effect of the gap in the neutron guide at the selector location on the phase space uniformity at the collimator entrance is investigated and optimal selector location along the beam is proposed together with optimal neutron guide shape in the vicinity of the gap, which accommodates the selector.

  18. Imaging spectrometer - An advanced multispectral imaging concept

    Science.gov (United States)

    Wellman, J. B.; Breckinridge, J. B.; Kupferman, P. N.; Salazar, R.

    1982-01-01

    The concept of an imaging spectrometer, which is being studied as a potential Space Shuttle experiment, is evaluated as a 'push-broom' imager that includes a spectrometer to disperse each line of imaging information into its spectral components. Using this instrument, the dispersed energy falls upon a two-dimensional focal plane array that detects both spatial and spectral information. As the line field of view is advanced over the earth by the motion of the spacecraft, the focal plane is read out constantly, which produces 'push-broom' images at multiple wavelengths. Ground instantaneous fields of view of 10 m in the visual and 20 m in the infrared are provided by the system, at a spectral resolution of 20 nm over the range from 0.4-2.5 microns. The system utilizes a triple-pass Schmidt optical system with a mosaic focal plane. A subset of the data stream is selected and encoded for transmission by the use of onboard processing.

  19. The performance of the ATLAS muon spectrometer

    International Nuclear Information System (INIS)

    Full text: The ATLAS muon spectrometer is designed to measure muons with a momentum resolution of 10 % for a transverse momentum of pt = 1 TeV. The main components needed to master the stand-alone performance in a field of a super-conducting magnet system are the 1200 high precision drift chambers. An air core toroid magnet configuration will provide an integrated bending power, B.dl ranging from 2 Tm to 9 Tm. To fully exploit the chamber resolution of 80 micron, a complex alignment system is needed to constantly monitor the position of these chambers spaced in a volume of 10000 cubic meters. An optical alignment system is employed to determine the positions of these muon chambers with a precision of 30 micron. An example of the alignment system in the forward region of the spectrometer will be given, where the shape of the mechanical structures with a length of 10 m has to be known to 20 micron. The performance of a full-scale set up in a test beam will be presented. (author)

  20. The beta subunit of casein kinase II

    DEFF Research Database (Denmark)

    Boldyreff, B; Piontek, K; Schmidt-Spaniol, I; Issinger, O G

    1991-01-01

    cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies.......cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies....

  1. Beta adrenergic receptors in pigmented ciliary processes.

    OpenAIRE

    Trope, G. E.; Clark, B.

    1982-01-01

    Beta adrenergic receptors from membrane fragments of pigmented sheep eyes were studied and characterised by ligand binding techniques after the removal of melanin. In a representative experiment the beta max (total number of beta receptors) was 394.9 fmol/mg protein. The receptor affinity (Ka) was 440 pM. The potency series of drugs to displace 125I-HYP from the receptors was timolol = (-) propranolol greater than (+) propranolol greater than salbutamol greater than practolol. beta 1 Recepto...

  2. Study of light neutron-deficient nuclei with the LISE3 spectrometer

    International Nuclear Information System (INIS)

    Neutron-deficient isotopes with Z=21 to 26 are produced among the projectile-like fragments of an intense 58Ni GANIL beam of 69 MeV/nucleon. The nuclei selected by the upgraded LISE3 spectrometer are identified and implanted in a silicon detector telescope where their emitted charged particles are measured. 43Cr, 47Fe and 46Fe isotopes are synthesized for the first time, whereas 45Fe, 45Mn and 42V remain unobserved. The half-lives of 43Cr and 46Mn are measured, and the analysis of their beta-delayed proton spectra leads, through the isobaric multiplet mass equation, to an experimental value for their excess mass. (author) 13 refs., 5 figs., 3 tabs

  3. Operation of a high purity germanium crystal in liquid argon as a Compton suppressed radiation spectrometer

    CERN Document Server

    Orrell, J L; Amsbaugh, J F; Doe, P J; Hossbach, T W; Orrell, John L.; Aalseth, Craig E.; Amsbaugh, John F.; Doe, Peter J.; Hossbach, Todd W.

    2007-01-01

    A high purity germanium crystal was operated in liquid argon as a Compton suppressed radiation spectrometer. Spectroscopic quality resolution of less than 1% of the full-width half maximum of full energy deposition peaks was demonstrated. The construction of the small apparatus used to obtain these results is reported. The design concept is to use the liquid argon bath to both cool the germanium crystal to operating temperatures and act as a scintillating veto. The scintillation light from the liquid argon can veto cosmic-rays, external primordial radiation, and gamma radiation that does not fully deposit within the germanium crystal. This technique was investigated for its potential impact on ultra-low background gamma-ray spectroscopy. This work is based on a concept initially developed for future germanium-based neutrinoless double-beta decay experiments.

  4. MEMS mass spectrometers: the next wave of miniaturization

    Science.gov (United States)

    Syms, Richard R. A.; Wright, Steven

    2016-02-01

    This paper reviews mass spectrometers based on micro-electro-mechanical systems (MEMS) technology. The MEMS approach to integration is first briefly described, and the difficulties of miniaturizing mass spectrometers are outlined. MEMS components for ionization and mass filtering are then reviewed, together with additional components for ion detection, vacuum pressure measurement and pumping. Mass spectrometer systems containing MEMS sub-components are then described, applications for miniaturized and portable systems are discussed, and challenges and opportunities are presented.

  5. MEMS mass spectrometers: the next wave of miniaturization

    International Nuclear Information System (INIS)

    This paper reviews mass spectrometers based on micro-electro-mechanical systems (MEMS) technology. The MEMS approach to integration is first briefly described, and the difficulties of miniaturizing mass spectrometers are outlined. MEMS components for ionization and mass filtering are then reviewed, together with additional components for ion detection, vacuum pressure measurement and pumping. Mass spectrometer systems containing MEMS sub-components are then described, applications for miniaturized and portable systems are discussed, and challenges and opportunities are presented. (topical review)

  6. Wide swath imaging spectrometer utilizing a multi-modular design

    Science.gov (United States)

    Chrisp, Michael P.

    2010-10-05

    A wide swath imaging spectrometer utilizing an array of individual spectrometer modules in the telescope focal plane to provide an extended field of view. The spectrometer modules with their individual detectors are arranged so that their slits overlap with motion on the scene providing contiguous spatial coverage. The number of modules can be varied to take full advantage of the field of view available from the telescope.

  7. Study and operation of a mini portable germanium spectrometer

    International Nuclear Information System (INIS)

    The study allowed us to master a technique for analysis of radioactive element: this is the gamma ray spectrometry. The Gamma ray spectrometry allows us to determine the activities of gamma emitters. In this study we used a portable gamma spectrometer for measurements on site. The spectrometer requires two types of calibration. We conducted a comparative study of activity of soil samples obtained in the laboratory and the results made by the portable spectrometer.

  8. Theory of high-beta tokamaks

    International Nuclear Information System (INIS)

    The theoretical researches on high beta tokamak are reviewed. The ballooning mode instability is thought to be the most serious problem for the high beta tokamaks, and the theoretical results on the ballooning mode instability are discussed in detail. The experimental results in high beta belt pinch devices are also discussed. (author)

  9. Interferon Beta-1a Intramuscular Injection

    Science.gov (United States)

    Interferon beta-1a intramuscular injection is used to reduce the number of episodes of symptoms and slow the development of disability in patients ... Interferon beta-1a intramuscular injection comes as a powder in vials to be mixed into a solution for injection. Interferon beta-1a intramuscular ...

  10. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  11. Uncooled near- and mid-IR spectrometer engine. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Agiltron proposes to develop an extremely compact and high sensitivity uncooled near- and mid-infrared (NMIR) spectrometer engine for planetary compositional...

  12. The Results of Tests of the MICE Spectrometer Solenoids

    International Nuclear Information System (INIS)

    The Muon Ionization Cooling Experiment (MICE) spectrometer solenoid magnets will be the first magnets to be installed within the MICE cooling channel. The spectrometer magnets are the largest magnets in both mass and surface area within the MICE ooling channel. Like all of the other magnets in MICE, the spectrometer solenoids are kept cold using 1.5 W (at 4.2 K) pulse tube coolers. The MICE spectrometer solenoid is quite possibly the largest magnet that has been cooled using small coolers. Two pectrometer magnets have been built and tested. This report discusses the results of current and cooler tests of both magnets.

  13. NQR spectrometer controlled by a computer

    International Nuclear Information System (INIS)

    Nuclear quadrupole resonance (NQR) is one of the sensitive methods for studying physical and chemical properties of a substance, such as chemical composition, molecular structure, molecular motion and electronic environment. The specifications of the research project require the use of a nuclear quadrupole resonance spectrometer. Design and performances of a pulsed nuclear quadrupole resonance spectrometer prototype covering the range 1-10 MHz are presented. The pulsed NQR method offers considerably higher sensitivity than either the marginal oscillator or super-regenerative methods. Strong echoes are often observed directly with an oscilloscope or a simple receiver. The method allows us to observe two signal categories: free induction decay (fid) and echoes. The block diagram of the pulsed nuclear quadrupole resonance spectrometer is shown. All operations performed by the spectrometer are controlled by a computer. The scanning frequency range, amplitude and width of the RF pulse, additional magnetic field and sample temperature can be controlled by the software. Also it is possible to improve the signal-to-noise ratio using digital filtering applied to the data stored. Automatic operation eliminates operator skill and uncertainty of manual operation. The NQR spectrometer control software is a stand alone executable file, runs on Windows 95/98 platform and does not require the existence of another software package. A graphical interface allows to user an easy control over the spectrometer operations. All measured parameters by the control system interface are saved in the standard data files and can be processed further. The design is readily adaptable for other applications. The sample is contained within an aluminum cylindrical case. The upper end cap of the case can be removed and it allows introducing the sample. On the upper end cap RF and main temperature sensor connector are placed. On the internal side of the bottom end cap a thermoelectric cooler (MELCOR

  14. The source of monoenergetic electrons for the monitoring of spectrometer in the KATRIN neutrino experiment

    CERN Document Server

    Slezák, Martin

    The international project KATRIN (KArlsruhe TRItium Neutrino experiment) is a next-generation tritium $\\beta$-decay experiment. It is designed to measure the electron anti-neutrino mass by means of a unique electron spectrometer with sensitivity of 0.2 eV/c$^2$. This is an improvement of one order of magnitude over the last results. Important part of the measurement will rest in continuous precise monitoring of high voltage of the KATRIN main spectrometer. The monitoring will be done by means of conversion electrons emitted from a solid source based on $^{83}$Rb decay. Properties of several of these sources are studied in this thesis by means of the semiconductor $\\gamma$-ray spectroscopy. Firstly, measurement of precise energy of the 9.4 keV nuclear transition observed in $^{83}$Rb decay, from which the energy of conversion electrons is derived, is reported. Secondly, measurement of activity distribution of the solid sources by means of the Timepix detector is described. Finally, a report on measurement of r...

  15. Beta thalassaemia mutations in Turkish Cypriots.

    OpenAIRE

    Sozuoz, A; Berkalp, A; A. Figus; Loi, A; Pirastu, M.; Cao, A

    1988-01-01

    Using oligonucleotide hybridisation or restriction endonuclease analysis, we have characterised the molecular defect in 94 patients with thalassaemia major and four with thalassaemia intermedia of Turkish Cypriot descent. We found that four mutations, namely beta+ IVS-1 nt 110, beta zero IVS-1 nt, beta+ IVS-1 nt 6, and beta+ IVS-2 nt 745 were prevalent, accounting for 69.9%, 11.7%, 8.7%, and 5.6% respectively of the beta thalassaemia chromosomes. This information may help in the organisation ...

  16. Molecular mass distribution and epitopes of the beta lactoglobulin submitted to hydrolysis pre-transglutaminase treatment

    Energy Technology Data Exchange (ETDEWEB)

    Villas-Boas, M.B.; Zollner, R.L.; Netto, F.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Paes Leme, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Benede, S.; Molina, E. [Universidad Autonoma de Madrid (Spain)

    2012-07-01

    Full text: The {beta}-Lactoglobulin ({beta}-Lg) is a whey protein with important nutritional proper ties but very resistant to pepsin digestion and consequently highly antigenic. This protein can be modified by transglutaminase (TG) although it is required a pretreatment to increase their susceptibility to the TG action. In the present study the hydrolysis pre-TG treatment was used to improve the TG accessibility on {beta}-Lg and the MM distribution and antigenic fragments were evaluated. For pre-TG treatment, the {beta}-Lg (Davisco Inc.) was hydrolyzed with bromelain (3% of {beta}-Lg w/w in distilled water; 25 U enzyme g{sup 1} of substrate, pH 7.5, 240 min) and then polymerized by TG (7% hydrolysate, 10U TG g{sup 1} protein, 50 C/180 min). The samples were evaluated by SDS-PAGE/tricine and by RP-nanoUPLC (nanoAcquity UPLC, Waters) coupled with nano-electrospray tandem mass spectrometry on a Q-Tof Ultima API mass spectrometer (MicroMass/Waters) at LNBio. The products were also submitted to pepsin digestion and the peptide identification was performed by RP-HPLC-tandem mass spectrometry (RP-HPLC-MS/MS, Brucker) with support from CIAL. The {beta}-Lg hydrolysed by bromelain and polymerized by TG had a broad MM distribution. The intact mass analysis indicated that the non modified {beta}Lg -A showed 18.362 Da and the non modified {beta}Lg -B 18.274 Da, which is in agreement with the theoretical corresponding masses. The use of bromelain pre-TG treatment resulted in polymers with MM from 61.052 to 67.654 Da, although some non modified protein was still present. In addition, the non modified {beta}-Lg showed fragments that present high antigenicity (such as Leu{sub 95} - Leu{sub 104}, Asp{sub 95} - Phe{sub 105}, Tyr{sub 42} - Leu{sub 54}, lle{sub 29} - Val{sub 41}), previously identified as IgE-binding epitopes. After hydrolysis following by TG treatment the fragment Tyr{sub 42} - Leu{sub 54} was still present, however the other fragments that were observed in the non

  17. Plan beta: Core or Cusp?

    CERN Document Server

    Richardson, Thomas; Lehnert, Matt

    2013-01-01

    The inner profile of Dark Matter (DM) halos remains one of the central problems in small-scale cosmology. At present, the problem can not be resolved in dwarf spheroidal galaxies due to a degeneracy between the DM profile and the velocity anisotropy beta of the stellar population. We discuss a method which can break the degeneracy by exploiting 3D positions and 1D line-of-sight (LOS) velocities. With the full 3D spatial information, we can determine precisely what fraction of each stars LOS motion is in the radial and tangential direction. This enables us to infer the anisotropy parameter beta directly from the data. The method is particularly effective if the galaxy is highly anisotropic. Finally, we argue that such a test could be applied to Sagittarius and potentially other dwarfs with RR Lyrae providing the necessary depth information.

  18. A compact neutron–gamma spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Cester, D., E-mail: dcester@pd.infn.it [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Stevanato, L. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Pino, F.; Sajo-Bohus, L. [Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Apartado 89000, 1080A Caracas (Venezuela, Bolivarian Republic of); Viesti, G. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2013-08-11

    A compact neutron/gamma detector has been developed using a liquid scintillator cell coupled to a Flat Panel PMT; performances have been compared with a second cell coupled to a traditional linearly-focused 12 dynodes PMT. Energy resolution and pulse shape discrimination (PSD) measured by using a fast digitizer are very similar for the two detectors with the time resolution of the Flat Panel PMT slightly worse. The new detector results to be weakly affected by the influence of a moderate magnetic field while the traditional PMT exhibits strong pulse reduction. The compact size and the low power consumption obtained by using the Flat Panel PMT are very useful in portable neutron/gamma spectrometers.

  19. A solid state pulsed NMR spectrometer

    International Nuclear Information System (INIS)

    A 10 MHz pulsed NMR spectrometer, built using mostly solid state devices, is described. The pulse programmer provides 2-pulse, 3-pulse, saturation burst and Carr-Purcell sequences both in repetitive and manual modes of operation. The transmitter has a maximum power output of approximately 2 kW with a 75Ω output impedance termination. The total gain of the receiver system is around 120 dB with a minimum band width of 2 MHz. The recovery time of the receiver is approximately 7μsec. A two-channel boxcar integrator capable of working in the single channel, differential and double boxcar modes provides signal to noise ratio improvement. The sensitivity and the linearity of the boxcar integrator are approximately 2 mV and approximately 0.1% respectively. (auth.)

  20. Results from a Bragg Curve Spectrometer

    International Nuclear Information System (INIS)

    The Bragg Curve Spectrometer (BCS) is an ionization chamber long enough to stop particles of interest. Particles enter through the cathode window and leave an ionization track parallel to the electric field. The ionization electrons drift through a Frisch grid and are collected on an anode. The anode current, as a function of time, is split and used as input for two amplifiers, one with a long integration time constant for energy measurement, and one with a short time constant to pick off the maximum ionization or Bragg peak. The Bragg peak, which is proportional to the nuclear charge, is used for particle identification. We have constructed and tested several versions of the BCS. The results are described

  1. The 4π-fragment-spectrometer FOBOS

    International Nuclear Information System (INIS)

    The 4π-fragment-spectrometer FOBOS developed for heavy ion research at beam energies of 10-100AMeV has been commissioned for physical experiments at the FLNR of the Joint Institute for Nuclear Research. Based on the logarithmic detector principle, it is able to register charged fragments from protons up to heavy residual nuclei in a large dynamic range. Position sensitive avalanche counters, axial ionization chambers and CsI(Tl) scintillation detectors are arranged in three concentric detector shells. An array of phoswich detectors is used as a more granular forward detector at narrow polar angles. The modular concept of FOBOS allows for different experimental application in the field of exclusive fragment spectroscopy at medium multiplicities

  2. Results from a Bragg curve spectrometer

    Science.gov (United States)

    Leach, D. D.; Davis, K. J.

    The Bragg Curve Spectrometer (BCS) is an ionization chamber long enough to stop particles of interest. Particles enter through the cathode window and leave an ionization track parallel to the electric field. The ionization electrons drift through a Frisch grid and are collected on an anode. The anode current, as a function of time, is split and used as input for two amplifiers, one with a long integration time constant for energy measurement, and one with a short time constant to pick off the maximum ionization or Bragg peak. The Bragg peak, which is proportional to the nuclear charge, is used for particle identification. Several versions of the BCS have been constructed and tested. The results are described.

  3. A Bonner Sphere Spectrometer for pulsed fields.

    Science.gov (United States)

    Aza, E; Dinar, N; Manessi, G P; Silari, M

    2016-02-01

    The use of conventional Bonner Sphere Spectrometers (BSS) in pulsed neutron fields (PNF) is limited by the fact that proportional counters, usually employed as the thermal neutron detectors, suffer from dead time losses and show severe underestimation of the neutron interaction rate, which leads to strong distortion of the calculated spectrum. In order to avoid these limitations, an innovative BSS, called BSS-LUPIN, has been developed for measuring in PNF. This paper describes the physical characteristics of the device and its working principle, together with the results of Monte Carlo simulations of its response matrix. The BSS-LUPIN has been tested in the stray neutron field at the CERN Proton Synchrotron, by comparing the spectra obtained with the new device, the conventional CERN BSS and via Monte Carlo simulations. PMID:25948828

  4. Position Sensitive Detector for Polarized Neutrons Spectrometer

    CERN Document Server

    Cheremukhina, G A; Kozhevnikov, S V; Lauter, H J; Lauter, V V; Nikitenko, Yu V; Petrenko, A V; Zanevsky, Yu V

    2000-01-01

    The linear detector of thermal neutrons described in this paper, as well as the readout electronics and data acquisition system were developed at High Energy Laboratory of Joint Institute for Nuclear Reserach. The detector is intended for registration of thermal neutrons on the polarized neutrons spectrometer of IBR-2 reactor in JINR. Data readout is carried out in the frame survey routine for separation of neutrons with wavelength \\lambda = 1\\div 12\\AA by time of flight. Efficiency of neutrons registration is \\sim 70% for wavelength 2\\AA. The detector has low gamma radiation sensitivity, differential nonlinearity \\sim 1.5% and spatial resolution \\sim 1.5 mm under count rate up to \\sim 10^5 ev/s.

  5. Recent exploits of the ISOLTRAP mass spectrometer

    CERN Document Server

    Kreim, S; Naimi, S; Blaum, K; Breitenfeldt, M; Rossel, R E; Fink, D; Stanja, J; Atanasov, D; Borgmann, Ch; Cocolios, T E; Zuber, K; Wolf, R N; George, S; Neidherr, D; Nicol, T; Rosenbusch, M; Lunney, D; Boehm, Ch; Manea, V; Herlert, A; Koester, U; Beck, D; Wienholtz, F; Kellerbauer, A; Ramirez, E Minaya; Schweikhard, L

    2013-01-01

    The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for beam analysis. (C) 2013 Elsevier B.V. All rights reserved.

  6. Progress with the PENTATRAP mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bekker, Hendrik; Crespo Lopez-Urrutia, Jose; Doerr, Andreas; Eliseev, Sergey; Goncharov, Mikhail; Repp, Julia; Rischka, Alexander; Roux, Christian; Sturm, Sven; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Boehm, Christine [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); ExtreMe Matter Institute EMMI, Helmholtz Gemeinschaft, 64291 Darmstadt (Germany); Novikov, Yuri [PNPI, Gatchina, 188300 St. Petersburg (Russian Federation)

    2014-07-01

    The five-trap mass spectrometer PENTATRAP has been constructed and is currently being characterized at the Max-Planck-Institut fuer Kernphysik, Heidelberg. It aims for high-precision mass ratio measurements with a relative mass uncertainty of a few 10{sup -12}. Long-lived and stable, highly charged nuclides with masses up to uranium will be addressed to perform e.g. stringent tests of quantum electrodynamics and neutrino oriented mass measurements. The main part of the experiment is a stack of five cylindrical cryogenic Penning traps. An ultra-stable voltage source is required to supply the Penning trap electrodes with appropriate and stable potentials. Therefore, an elaborated source was developed and built at MPIK. Recently, first ions have been successfully trapped. Details about the progress of the installation, especially the status of the voltage source and first ion signals are presented in the talk.

  7. Large magnetic spectrometer group. Convenors report

    International Nuclear Information System (INIS)

    This working group concentrated its efforts on possible large magnetic spectrometers for studying charged particle production in high energy nucleus-nucleus collisions at RHIC. In particular, the major efforts of the group were divided into two parts: (1) one group concentrated on a detector for tracking charged particles near mid-rapidity only, while (2) the other group considered a device for tracking particles over as much of the 4π solid angle as possible. Both groups were interested in being able to detect and track as wide a range of particles (primarily hadrons) as practical, in order to isolate the possible production of a quark-gluon phase in central nucleus-nucleus collisions

  8. Recent exploits of the ISOLTRAP mass spectrometer

    International Nuclear Information System (INIS)

    Highlights: • Update on ISOLTRAP. • Reference carbon clusters for heavy species. • Ion-beam yield analysis with MR-TOF MS. Q -- Abstract: The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for beam analysis

  9. Imaging spectrometer for process industry applications

    Science.gov (United States)

    Herrala, Esko; Okkonen, Jukka T.; Hyvarinen, Timo S.; Aikio, Mauri; Lammasniemi, Jorma

    1994-11-01

    This paper presents an imaging spectrometer principle based on a novel prism-grating-prism (PGP) element as the dispersive component and advanced camera solutions for on-line applications. The PGP element uses a volume type holographic plane transmission grating made of dichromated gelatin (DCG). Currently, spectrographs have been realized for the 400 - 1050 nm region but the applicable spectral region of the PGP is 380 - 1800 nm. Spectral resolution is typically between 1.5 and 5 nm. The on-axis optical configuration and simple rugged tubular optomechanical construction of the spectrograph provide a good image quality and resistance to harsh environmental conditions. Spectrograph optics are designed to be interfaced to any standard CCD camera. Special camera structures and operating modes can be used for applications requiring on-line data interpretation and process control.

  10. Data analysis for Skylab proton spectrometer

    Science.gov (United States)

    Hill, C. W.

    1975-01-01

    The measured values are compared to values derived from a proton environment model. Spectral data are compared, the omni-directional fluxes are found, a range of assumed pitch angle distributions are established, and the values which would be seen by an idealized proton spectrometer immersed in the model environment are computed. The measured values and calculated values are summed over time, then ratiod to provide spectral correction factors. The data are tabulated according to location, pitch angle, energy, assumed pitch angle distribution, and orientation in the earth-fixed coordinate system. With the aid of this data, detailed corrections to the proton model environment are derived. Best-fit, energy-dependent pitch angle distributions are also obtained. Some information is derived concerning the east-west asymmetry.

  11. The Alpha Magnetic Spectrometer Silicon Tracker

    International Nuclear Information System (INIS)

    The Alpha Magnetic Spectrometer (AMS) is designed as a independent module for installation on the International Space Station Alpha (ISSA) in the year 2002 for an operational period of three years. The principal scientific objectives are the searches for antimatter and dark matter in cosmic rays. The AMS uses 5.5 m2 of silicon microstrip sensors to reconstruct charged particle trajectories in the field of a permanent magnet. The detector design and construction covered a 3 yr period which terminated with a test flight on the NASA space shuttle Discovery during June 2-12, 1988. In this contribution, we describe the shuttle version of the AMS silicon tracker, including preliminary results of the tracker performance during the flight. (author)

  12. Transport efficiency in large acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Cavallaro, M., E-mail: manuela.cavallaro@lns.infn.i [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Cappuzzello, F.; Carbone, D.; Cunsolo, A. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy); INFN-Sezione di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Linares, R. [Instituto de Fisica, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, Niteroi, RJ 24210-340 (Brazil)

    2011-05-01

    A general technique to study the transmission efficiency of charged particles through a large acceptance magnetic device is presented. This basically involves the measurement of the impact positions and angles of the particles in any plane normal to the optical axis and the use of a powerful algorithm for the reconstruction of the trajectories. This latter is designed to perform the calculations of highly non-linear transport functions and is essential when high-order aberrations are not negligible. The technique is applied to study the transport efficiency of the heavy ions produced in different nuclear reactions and analyzed by the MAGNEX large acceptance spectrometer. Both the angular integral and differential efficiency have been deduced with overall accuracy of about {+-}1.5% and {+-}5%, respectively.

  13. Spectrometer for new gravitational experiment with UCN

    CERN Document Server

    Kulin, G V; Goryunov, S V; Kustov, D V; Geltenbort, P; Jentschel, M; Strepetov, A N; Bushuev, V A

    2015-01-01

    We describe an experimental installation for a new test of the weak equivalence principle for neutron. The device is a sensitive gravitational spectrometer for ultra-cold neutrons allowing to precisely compare the gain in kinetic energy of free falling neutrons to quanta of energy ${\\hbar}{\\Omega}$ transferred to the neutron via a non stationary device, i.e. a quantum modulator. The results of first test experiments indicate a collection rate allowing measurements of the factor of equivalence $ { \\gamma}$ with a statistical uncertainty in the order of $5{\\times}10^{-3}$ per day. A number of systematic effects were found, which partially can be easily corrected. For the elimination of others more detailed investigations and analysis are needed. Some possibilities to improve the device are also discussed.

  14. Moessbauer-Spectrometer MIMOS II: Future applications

    Energy Technology Data Exchange (ETDEWEB)

    Klingelhoefer, Goestar; Blumers, Mathias; Schroeder, Christian; Fleischer, Iris; Lopez, Jordi G.; Sanchez, Jose F.; Hahn, Michaela; Upadhyay, Chandan [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universitaet, Staudinger Weg 9, 55128 Mainz (Germany); Rodionov, Daniel [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universitaet, Staudinger Weg 9, 55128 Mainz (Germany); Space Research Institute IKI, 117997 Moskau (Russian Federation)

    2007-07-01

    The Miniaturized Moessbauer Spectrometer MIMOS II operates on the surface of Mars for the last three years (part of NASA Mars Exploration Rovers scientific payload). Successful application of MIMOS II as a tool for detection/analysis of Fe-bearing minerals on the extraterrestrial surfaces has proven its use for other missions. Currently MIMOS II is a part of ExoMars and Phobos-Grunt missions. ExoMars is managed by the European Space Agency and planned to be launched in 2013. It involves the development of a sophisticated Mars rover with set of instruments to further characterize the biological environment on Mars in preparation for robotic missions and human exploration. Data from the mission should provide an input for broader studies of exobiology. Phobos-Grunt is developed by Russian Space Agency. Currently, launch is planned in 2009. The main goals of the mission are Phobos regolith sample return, Phobos in situ study and Mars/Phobos remote sensing.

  15. Research highlights with the spin spectrometer

    International Nuclear Information System (INIS)

    The excitation energy and angular momentum dependence of the entry states in fusion reactions measured with the spin spectrometer is discussed. A new decay mode involving the onset of localized stretched dipole radiation at half the accompanying stretched E2 collective radiation is found in 157-161Yb. The appearance of this mode correlates smoothly with neutron number and spin. Possible interpretations are presented in terms of the evolution of the nuclear shapes from prolate to aligned-quasiparticle oblate to collective oblate and then to triaxial. Evidence for nuclear deformation that increases with spin at very high excitation is presented based on α-particle angular distributions measured relative to the spin direction, using a new method for deriving the spin alignment

  16. Fourier transform spectrometer controller for partitioned architectures

    Science.gov (United States)

    Tamas-Selicean, D.; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, P.; Wadsworth, W.; Levy, R.

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Researchers at ESA and NASA advocated for the use of partitioned architecture to reduce this complexity. Partitioned architectures rely on platform mechanisms to provide robust temporal and spatial separation between applications. Such architectures have been successfully implemented in several industries, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture.

  17. Alpha particles spectrometer with photodiode PIN

    International Nuclear Information System (INIS)

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  18. Automatic Gain Control in Compact Spectrometers.

    Science.gov (United States)

    Protopopov, Vladimir

    2016-03-01

    An image intensifier installed in the optical path of a compact spectrometer may act not only as a fast gating unit, which is widely used for time-resolved measurements, but also as a variable attenuator-amplifier in a continuous wave mode. This opens the possibility of an automatic gain control, a new feature in spectroscopy. With it, the user is relieved from the necessity to manually adjust signal level at a certain value that it is done automatically by means of an electronic feedback loop. It is even more important that automatic gain control is done without changing exposure time, which is an additional benefit in time-resolved experiments. The concept, algorithm, design considerations, and experimental results are presented. PMID:26810181

  19. Polarized triple-axis spectrometer TASP

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    The polarized triple-axis spectrometer TASP at SINQ has been optimized for measuring magnetic cross sections in condensed matter. The neutrons are polarized or analyzed either by means of benders or Heusler monochromators. The beam divergence, i.e. the intensity, and the spectral range of the neutrons is rather large because of the supermirror coatings of the feeding neutron guide. The intensity can be further increased at the sample position by means of a focussing monochromator and a focussing anti-trumpet. The end position of TASP allows the tailoring of the neutron beam already before the monochromator and to scatter neutrons over very wide ranges of angles. (author) 6 figs., 1 tab., 8 refs.

  20. Geometrically weighted semiconductor Frisch grid radiation spectrometers

    International Nuclear Information System (INIS)

    A new detector geometry is described with relatively high gamma ray energy resolution at room temperature. The device uses the geometric weighting effect, the small pixel effect and the Frisch grid effect to produce high gamma ray energy resolution. The design is simple and easy to construct. The device performs as a gamma ray spectrometer without the need for pulse shape rejection or correction, and it requires only one signal output to any commercially available charge sensitive preamplifier. The device operates very well with conventional NIM electronic systems. Presently, room temperature (23 deg. C) energy resolutions of 2.68% FWHM at 662 keV and 2.45% FWHM at 1.332 MeV have been measured with a 1 cm3 prism shaped CdZnTe device

  1. An imaging spectrometer for microgravity application

    Science.gov (United States)

    Wong, Wallace K.

    1995-01-01

    Flame structure is the result of complex interaction of mechanisms operating in both unwanted fires and controlled combustion systems. The scientific study of gas-jet diffusion flames in reduced-gravity environment is of interest because the effects of buoyancy on flow entrainment and acceleration are lessened. Measurements of flames have been restricted to cinematography, thermocouples, and radiometers. SSG, Inc. is developing an MWIR imaging spectrometer (MIS) for microgravity flame measurements. The device will be delivered to NASA Lewis at the end of this project to demonstrate flame measurements in the laboratory. With proper modifications, the MIS can be used to monitor a gas-jet flame under microgravity on a NASA Learjet or DC-9.

  2. The CEBAF Large Acceptance Spectrometer (CLAS)

    CERN Document Server

    Mecking, B

    2003-01-01

    The CEBAF Large Acceptance Spectrometer (CLAS) is used to study photo- and electro-induced nuclear and hadronic reactions by providing efficient detection of neutral and charged particles over a good fraction of the full solid angle. A collaboration of about thirty institutions has designed, assembled, and commissioned CLAS in Hall B at the Thomas Jefferson National Accelerator Facility. The CLAS detector is based on a novel six-coil toroidal magnet which provides a largely azimuthal field distribution. Trajectory reconstruction using drift chambers results in a momentum resolution of 0.5% at forward angles. Cerenkov counters, time-of-flight scintillators, and electromagnetic calorimeters provide good particle identification. Fast triggering and high data acquisition rates allow operation at a luminosity of 10 sup 3 sup 4 nucleon cm sup - sup 2 s sup - sup 1. These capabilities are being used in a broad experimental program to study the structure and interactions of mesons, nucleons, and nuclei using polarize...

  3. A wide bandpass low energy electron spectrometer

    International Nuclear Information System (INIS)

    We have developed a high efficiency, wide bandpass solenoid spectrometer for the detection of electrons between 1 and 20 keV. The apparatus utilizes baffles to impose minimum and maximum constraints on the radii of the electron trajectories, and therefore on the component of their momentum perpendicular to the magnetic field. Electric fields parallel to the magnetic field and time-of-flight information are used to constrain the electron's momentum component along the magnetic axis. A microchannel plate detects the electrons with high efficiency and provides fast timing. The performance of the apparatus was studied through a comparison between binary encounter approximation (BEA) calculations and measurements of delta-electron emission in 5 MeV proton collisions with thin solid carbon targets. (orig.)

  4. The Radar Ocean-Wave Spectrometer

    Science.gov (United States)

    Jackson, Frederick C.

    1987-03-01

    The scanning-beam Radar Ocean-Wave Spectrometer (ROWS) technique is described. The derivation of a spectrum for the reflectivity modulation as a function of range is examined. The usefulness of the ROWS technique was initially validated using aircraft data obtained in 1978 with the GSFC Ku-band pulse-compression radar; additional examples of aircraft data which verify the effectiveness of the ROWS technique are presented. The development of a ROWS mode for Spectrasat is discussed. Consideration is given to the incidence angle, twin beam option for cross-section roll-off and wind vector determination, rotation rate, antenna and footprint dimensions, integration time, sphericity effects, and a processor configuration. A design for the ROWS-mode time-domain processor on Spectrasat is proposed. The performance of the system is evaluated, and it is determined that the system performs well.

  5. Air-ion counter and mobility spectrometer

    International Nuclear Information System (INIS)

    Mono-electrode self “zeroing” air-ion counter and mobility (size) scanning spectrometer (CDI-011) based on the Gerdien aspirated condenser principle has been developed. Instrument is intended for short- and long-term indoor and outdoor air-ion concentration measurements and scanning of air-ions by mobility. Measuring small currents (typically 10−14 A) generated by the air-ions in outdoor conditions is demanding and causes many problems related to change of temperature, relative humidity, wind and electromagnetic noise. Also, measuring of both ion polarities with mono electrode detector require alternate changes of the polarizing voltage sign which produces capacitive current spikes. Various techniques, including “zeroing” method, have been applied to successfully overcome most of these measuring interferences.

  6. Air-ion counter and mobility spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kolarz, Predrag, E-mail: kolarz@ipb.ac.rs [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Miljkovic, Budimir [Merni Instrumenti D.O.O., Ljube Stojanovica 38, 11000 Belgrade (Serbia); Curguz, Zoran [Faculty of Transport and Traffic Engineering, University of East Sarajevo, Vojvode Misica 52, 74000 Doboj (Bosnia and Herzegowina)

    2012-05-15

    Mono-electrode self 'zeroing' air-ion counter and mobility (size) scanning spectrometer (CDI-011) based on the Gerdien aspirated condenser principle has been developed. Instrument is intended for short- and long-term indoor and outdoor air-ion concentration measurements and scanning of air-ions by mobility. Measuring small currents (typically 10{sup -14} A) generated by the air-ions in outdoor conditions is demanding and causes many problems related to change of temperature, relative humidity, wind and electromagnetic noise. Also, measuring of both ion polarities with mono electrode detector require alternate changes of the polarizing voltage sign which produces capacitive current spikes. Various techniques, including 'zeroing' method, have been applied to successfully overcome most of these measuring interferences.

  7. Abstraction Mechanisms in the BETA Programming Language

    DEFF Research Database (Denmark)

    Kristensen, Bent Bruun; Madsen, Ole Lehrmann; Møller-Pedersen, Birger;

    1983-01-01

    The BETA programming language is developed as part of the BETA project. The purpose of this project is to develop concepts, constructs and tools in the field of programming and programming languages. BETA has been developed from 1975 on and the various stages of the language are documented in [BETA...... a]. The application area of BETA is programming of embedded as well as distributed computing systems. For this reason a major goal has been to develop constructs that may be efficiently implemented. Furthermore the BETA language is intended to have a few number of basic but general constructs...... to SMALLTALK, BETA is a language in the ALGOL 60 ([ALGOL]) family. SIMULA 67 is a system description and a programming language. The DELTA language ([DELTA]) is a system description language only, allowing description of full concurrency, continuous change and component interaction, developed from a SIMULA...

  8. Double focusing mass spectrometers of second order

    International Nuclear Information System (INIS)

    The resolution of the on-line mass spectrograph is normally several hundred and this is sufficient to separate nuclei having different mass number A. If the nuclei to be analyzed have the same A but different charge number Z, they can not be separated by this amount of resolution. However, the complete separation of nuclei (both A and Z) can be possible if the resolution is raised by about hundred times, that is, up to several ten thousands. The resolving power of about 30,000 would be sufficient to resolve all nuclei far from the valley of beta-stability. Besides, the direct mass measurement of short lived nuclei would be possible with such a high resolution mass spectrograph. The determination of masses of nuclei far from beta-stability is also a very interesting and important problem. For this purpose, a mass spectrograph which can collect many ions and still has a high resolution is necessary. In order to satisfy such conditions, it is essentially necessary to realize good focusing. Therefore, the possibility of correcting for second order image aberrations of a double focusing instrument is investigated and several suitable designs are found by computer calculation

  9. Beta emitters and radiation protection

    DEFF Research Database (Denmark)

    Jødal, Lars

    2009-01-01

    , and 90Y, using data from a freely available database. Bremsstrahlung yields were calculated for 90Y shielded by lead, aluminium, or perspex. Bremsstrahlung spectrum from 90Y shielded by perspex was measured, and attenuation of spectrum by lead was calculated. Whole-body and finger doses to persons...... the outside of the primary shielding material. If suitable shielding is used and larger numbers of handlings are divided among several persons, then handling of beta emitters can be a safe procedure....

  10. Review of double beta experiments

    OpenAIRE

    Sarazin, X.

    2012-01-01

    C13-10-22.1 International audience This paper gives a review of the double beta experimental techniques and projects, in the search for the Majorana neutrino. The purpose of this review is to detail, for each technique, the different origins of background, how they can be identified, and how they can be reduced. Advantages and limitations of the different techniques are discussed. 1. Introduction The neutrino is one of the most puzzling elementary particle with very unique properties. I...

  11. Electrolytic hydrogen in beta titanium

    International Nuclear Information System (INIS)

    Permeation of electrolytic hydrogen through beta titanium foils with palladium coated surfaces was studied using Ti--11.5 Mo--6 Zr--4.5 Sn. Ion bombardment etching followed by thin film vapor deposition of palladium were used to produce oxide-free titanium specimens for electrochemical hydrogen permeation and embrittlement studies. A thin metallic foil is cathodically charged with hydrogen on one side while the other side is maintained at a sufficiently anodic potential so that all the diffusing hydrogen is oxidized and turned into an equivalent current. The current is analyzed to determine diffusivity and solubility of hydrogen. X-ray diffraction was also used to determine the effects of hydrogen on the lattice parameter. Permeation experiments conducted with basic cyanide solutions exhibited simple diffusion behavior. The diffusivity at 210C for hydrogen through the beta alloy was 5.60 (+-1.92) x 10-7 cm2/s. Anomalous permeation occurred with hydrogen chemical potentials in acidic and basic solutions without cyanide during the later stages of the approach to steady state in the charging. This behavior is consistent with the trapping model of hydrogen in metals of McNabb and Foster. Plastic deformation and spontaneous cracking at the wetted portion of the specimen were observed under extreme conditions during this anomalous behavior. Part of the deformation is found to be reversible. In the mandrel bend experiments on the embrittlement phenomenon, the transgranular cleavage mode of fracture occurred. Interstitially dissolved hydrogen expanded the bcc lattice of the beta titanium with accompanying diffraction line broadening. The lattice contracted upon removal of the hydrogen. The satisfactory performance of the beta alloy Ti--11.5 Mo--6 Zr--4.5 Sn, in moderate electrochemical environments results principally from the protective oxide film

  12. Neutrinoless Double Beta Decay Experiments

    OpenAIRE

    Zuber, K.

    2014-01-01

    Neutrinoless double beta decay is the only process known so far able to test the neutrino intrinsic nature: its experimental observation would imply that the lepton number is violated by two units and prove that neutrinos have a Majorana mass components, being their own anti-particle. While several experiments searching for such a rare decay have been performed in the past, a new generation of experiments using different isotopes and techniques have recently released their results or are taki...

  13. Myokardinfarkt und Beta-Blocker

    Directory of Open Access Journals (Sweden)

    Stühlinger H-G

    2003-01-01

    Full Text Available Im Rahmen eines akuten koronaren Syndroms (akuter Herzinfarkt, Angina pectoris kommt es, aufgrund eines Ungleichgewichtes zwischen Angebot und Bedarf, zu einem akuten Mangel an Sauerstoff im Herzmuskel. Ursache ist eine reduzierte Sauerstoffzufuhr durch verengte bzw. verschlossene Gefäße. Bis zur Behebung der Ursache vergehen oft mehrere Stunden. In dieser Phase muß - durch Verminderung des Sauerstoffbedarfs im Herzmuskel - eine Verlangsamung der Nekroseentwicklung erreicht werden. Das Ausmaß der Nekrose wird reduziert, somit die für die Langzeitprognose wichtige Linksventrikelfunktion verbessert. Eine Verminderung des Sauerstoffbedarfs erreicht man durch kontrollierte Frequenzsenkung mittels intravenöser Beta-Blockade. In optimaler Weise wird diese Methode durch die Anwendung eines kardioselektiven Beta-Blockers mit kurzer Halbwertszeit durchgeführt. Beta-Blocker haben nicht nur auf die Nekroseentwicklung, sondern auch auf die Inzidenz von Rhythmusstörungen - besonders in der Akutphase - Auswirkungen. Vor allem die mit dieser therapeutischen Maßnahme verbundene Reduktion von Kammerflimmern ist von großer Bedeutung.

  14. Double-beta transition Q-value and direct mass measurements with TRIGA-TRAP

    International Nuclear Information System (INIS)

    Neutrinoless double-beta transitions are difficult to observe due to their long half-lives. In case of neutrinoless double-electron capture, a resonant enhancement of the decay rate by several orders of magnitude occurs if the energy levels of initial and final state are degenerate in energy. In order to search for nuclides undergoing a resonantly-enhanced double-electron capture the Q-values of the transitions in 106Cd, 108Cd, and 184Os were determined by the double-Penning trap mass spectrometer TRIGA-TRAP with a precision better than 1 keV. The double-beta decay Q-value of 110Pd was investigated as well. The recent results are presented.

  15. New method to study the photon strength function using the beta-decay of unstable nuclei

    Science.gov (United States)

    Liddick, Sean

    2015-10-01

    The photon strength function is a fundamental property of the atomic nucleus that can be linked with many different areas of nuclear science. In particular, a knowledge of the photon strength function can be applied in statistical-model reaction calculations to constrain neutron capture rates useful for nuclear astrophysics and other applications. A new method has been developed which takes advantage of beta-decay to populate high-energy states in a daughter nucleus. This preparation is combined with a total absorption spectrometer to record the subsequent gamma-ray cascade and the overall technique is the so-called beta-Oslo method. The technique is applicable to very low production rates (~1 pps) and, thus, can be used to look at trends across a wide range of neutron and proton numbers. A description of the technique, and preliminary results on neutron-rich nuclei near Z = 28 and N = 40 will be presented.

  16. First Measurement of the Neutron $\\beta$-Asymmetry with Ultracold Neutrons

    CERN Document Server

    Pattie, R W

    2008-01-01

    We report the first measurement of angular correlation parameters in neutron $\\beta$-decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for $\\sim 30$ s in a Cu decay volume. The $\\vec{\\mu}_n \\cdot \\vec{B}$ potential of a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage (AFP) spin-flipper and enter a decay volume, situated within a 1 T, $2 \\times 2\\pi$ superconducting solenoidal spectrometer. We determine a value for the $\\beta$-asymmetry parameter $A_0$, proportional to the angular correlation between the neutron polarization and the electron momentum, of $A_0 = -0.1138 \\pm 0.0051$.

  17. The nonlinear light output of NaI(Tl) detectors in the Modular Total Absorption Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rasco, B.C., E-mail: crasco@lsu.edu [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Fijałkowska, A.; Karny, M. [Faculty of Physics, University of Warsaw, Pasteura 5, PL-02093 Warszawa (Poland); Rykaczewski, K.P. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wolińska-Cichocka, M. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Oak Ridge Associated Universities, Oak Ridge, TN 37831 (United States); Heavy Ion Laboratory, University of Warsaw, Warsaw PL-02-093 (Poland); Grzywacz, R.; Goetz, K.C. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37966 (United States)

    2015-07-11

    A new detector array, the Modular Total Absorption Spectrometer (MTAS), was commissioned at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Lab (ORNL). Total absorption gamma spectra measured with MTAS are expected to improve beta-feeding patterns and beta strength functions in fission products. MTAS is constructed out of hexagonal NaI(Tl) detectors with a unique central module surrounded by 18 identical crystals assembled in three rings. The total NaI(Tl) mass of MTAS is over 1000 kg. The response of the central and other 18 MTAS modules to γ-radiation was simulated using the GEANT4 toolkit modified to analyze the nonlinear light output of NaI(Tl). A detailed description of the GEANT4 modifications made is discussed. Simulated energy resolution of MTAS modules is found to agree well with the measurements for single γ transitions of 662 keV ({sup 137}Cs) with 8.2% full width half maximum (FWHM), 835 keV ({sup 54}Mn) with FWHM of 7.5% FWHM, and 1115 keV ({sup 65}Zn) with FWHM of 6.5%. Simulations of single and multiple γ-rays from {sup 60}Co are also discussed.

  18. An improved computer controlled triple-axis neutron spectrometer

    International Nuclear Information System (INIS)

    A description is given of the computer-controlled triple-axis neutron spectrometer installed at the PLUTO reactor at Harwell. The reasons for an nature of recent major improvements are discussed. Following a general description of the spectrometer, details are then given of the new computerised control system, including the functions of the various programs which are now available to the user. (author)

  19. Standalone vertex finding in the ATLAS muon spectrometer

    NARCIS (Netherlands)

    G. Aad; . et al; R. Aben; L.J. Beemster; S. Bentvelsen; E. Berglund; G.J. Bobbink; K. Bos; H. Boterenbrood; A. Castelli; A.P. Colijn; P. de Jong; L. de Nooij; C. Deluca; P.O. Deviveiros; S. Dhaliwal; P. Ferrari; S. Gadatsch; D.A.A. Geerts; F. Hartjes; N.P. Hessey; N. Hod; O. Igonkina; P. Kluit; E. Koffeman; H. Lee; T. Lenz; F. Linde; J. Mahlstedt; J. Mechnich; I. Mussche; K.P. Oussoren; P. Pani; D. Salek; N. Valencic; P.C. van der Deijl; R. van der Geer; H. van der Graaf; R. van der Leeuw; I. van Vulpen; W. Verkerke; J.C. Vermeulen; M. Vranjes Milosavljevic; M. Vreeswijk; H. Weits

    2014-01-01

    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The perform

  20. Wide-aperture magnetic spectrometer with face position of MWPC

    International Nuclear Information System (INIS)

    A pair magnetic spectrometer with automated wire chambers for studying electron and positron interactions with monocrystals at the Erevan synchrotron is described. As a working gas the argon-methane mixture with methylal vapor addition is used. Results of modelling and experiments with spectrometer are presented. 2 refs.; 6 figs

  1. Status of the OCS Bragg-Spectrometer for SODART

    DEFF Research Database (Denmark)

    Wiebicke, H.J.; Halm, I.; Christensen, Finn Erland; Rasmussen, Inga; Rasmussen, H.E.

    OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented.......OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented....

  2. 34 First Callisto solar burst spectrometer station in Greenland

    Science.gov (United States)

    Monstein, Christian

    2016-04-01

    In mid of March 2016 a new long wavelength station in Greenland was set into operation. It is a dual circular polarization, frequency agile solar radio burst spectrometer based on two Callisto spectrometers and the Long Wavelength Array antenna. During the commissioning phase several nice radio burst observations proved that the system works as expected.

  3. BNL hypernuclear spectrometers and instrumentation present and future

    International Nuclear Information System (INIS)

    During the period 1981 to 1984 the BNL hypernuclear spectrometer system was upgraded resulting in an increase in kaon flux and an increase in solid angle and momentum acceptance. The modifications require drift chambers to be operated at rates up to 107 s-1. The performance of the spectrometer-drift chamber systems will be discussed

  4. Calibration of the fast 12-channel ECE spectrometer at JET

    International Nuclear Information System (INIS)

    Measurements on the 12-channel ECE grating polychromator at the Joint European Torus are reported. This report describes the performance of the spectrometer in terms of sensitivity and spectral resolution. Measures to improve the systems responsivity and to overcome some characteristic problems of the spectrometer are reported. In addition, a comparison between different methods of absolute calibration of the system is presented. (orig.)

  5. Status of the OCS Bragg-Spectrometer for SODART

    DEFF Research Database (Denmark)

    Wiebicke, H.J.; Halm, I.; Christensen, Finn Erland;

    1998-01-01

    OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented.......OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented....

  6. Inexpensive Raman Spectrometer for Undergraduate and Graduate Experiments and Research

    Science.gov (United States)

    Mohr, Christian; Spencer, Claire L.; Hippler, Michael

    2010-01-01

    We describe the construction and performance of an inexpensive modular Raman spectrometer that has been assembled in the framework of a fourth-year undergraduate project (costs below $5000). The spectrometer is based on a 4 mW 532 nm green laser pointer and a compact monochromator equipped with glass fiber optical connections, linear detector…

  7. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    Science.gov (United States)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  8. Analysis of corrosive materials on GD-150 mass spectrometer

    International Nuclear Information System (INIS)

    A study has been made to extend the use of Varian Mat GD-150 mass/spectrometer for the corrosive gas analysis. Chlorine, bromine and thiophosgene have been used for this purpose. The feasibility studies, calibration of mass spectrometer and the measuring techniques have been discussed for the aforesaid analysis. (author)

  9. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  10. Testing and installation of ZEUS Leading Proton Spectrometer detector planes

    International Nuclear Information System (INIS)

    The assembly and testing of the components which make up a detector plane for the Leading Proton Spectrometer is described. The spectrometer, a part of the ZEUS detector, utilizes single-sided DC-coupled silicon strip detectors and custom VLSI front-end electronics for readout. (orig.)

  11. Estimation of the Beam Width in Magnetic Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    O.N. Peregudov

    2010-01-01

    Full Text Available A method for estimation of the beam width in magnetic sector mass spectrometers is proposed. This method consists in the restoration of the initial ion density distribution function in a beam cross-section before the receiving collector slit and can be used for the qualitative estimation of the mass spectrometer ion-optical scheme.

  12. Zinc isotope discrimination effect in inductively coupled plasma mass spectrometer

    International Nuclear Information System (INIS)

    Inductively coupled plasma mass spectrometry (ICPMS) has recently been used for isotope ratio analysis. The isotope discrimination effect in the mass spectrometer is a primary factor contributing to loss of precision and accuracy in isotope ratio analysis. The discrimination effect of zinc isotopes was investigated by comparing the results obtained using a quadrupole type ICPMS with those obtained using a thermal ionization mass spectrometer

  13. Recent developments of multi e-gamma spectrometers

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Gueorguieva, E; Kaci, M; Kharraja, EB; Porquet, MG; Schuck, C; Lagrange, JM; Pautrat, M; Phillips, WR; Durell, JL; Dagnall, PG; Dorning, SJ; JONES, MA; Smith, AG; Varley, BJ; Bacelar, JCS; Rzaca-Urban, T; Minkova, A; Venkova, T; Folger, H; Vanhorenbeeck, J; Passoja, A; Urban, W

    1999-01-01

    A brief introductory survey of gamma-ray detector arrays and in-beam electron spectrometers developed during the last three lustra is followed by a broad discussion of the general requirements for single and multiple in-beam e-gamma spectrometers. A detailed analysis is made of a few important tools

  14. Augmenting Ion Trap Mass Spectrometers Using a Frequency Modulated Drift Tube Ion Mobility Spectrometer.

    Science.gov (United States)

    Morrison, Kelsey A; Siems, William F; Clowers, Brian H

    2016-03-15

    Historically, high pressure ion mobility drift tubes have suffered from low ion duty cycles and this problem is magnified when such instrumentation is coupled with ion trap mass spectrometers. To significantly alleviate these issues, we outline the result from coupling an atmospheric pressure, dual-gate drift tube ion mobility spectrometer (IMS) to a linear ion trap mass spectrometer (LIT-MS) via modulation of the ion beam with a linear frequency chirp. The time-domain ion current, once Fourier transformed, reveals a standard ion mobility drift spectrum that corresponds to the standard mode of mobility analysis. By multiplexing the ion beam, it is possible to successfully obtain drift time spectra for an assortment of simple peptide and protein mixtures using an LIT-MS while showing improved signal intensity versus the more common signal averaging technique. Explored here are the effects of maximum injection time, solution concentration, total experiment time, and frequency swept on signal-to-noise ratios (SNRs) and resolving power. Increased inject time, concentration, and experiment time all generally led to an improvement in SNR, while a greater frequency swept increases the resolving power at the expense of SNR. Overall, chirp multiplexing of a dual-gate IMS system coupled to an LIT-MS improves ion transmission, lowers analyte detection limits, and improves spectral quality. PMID:26854901

  15. The Astro-E2 X-ray spectrometer/EBIT microcalorimeter x-ray spectrometer

    International Nuclear Information System (INIS)

    The x-ray spectrometer (XRS) instrument is a revolutionary nondispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare XRS microcalorimeter spectrometer at the EBIT-I and SuperEBIT facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolving power. The XRS microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06 K and by carefully engineering the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration 'library' for the Astro-E2 observatory

  16. Method for Accurately Calibrating a Spectrometer Using Broadband Light

    Science.gov (United States)

    Simmons, Stephen; Youngquist, Robert

    2011-01-01

    A novel method has been developed for performing very fine calibration of a spectrometer. This process is particularly useful for modern miniature charge-coupled device (CCD) spectrometers where a typical factory wavelength calibration has been performed and a finer, more accurate calibration is desired. Typically, the factory calibration is done with a spectral line source that generates light at known wavelengths, allowing specific pixels in the CCD array to be assigned wavelength values. This method is good to about 1 nm across the spectrometer s wavelength range. This new method appears to be accurate to about 0.1 nm, a factor of ten improvement. White light is passed through an unbalanced Michelson interferometer, producing an optical signal with significant spectral variation. A simple theory can be developed to describe this spectral pattern, so by comparing the actual spectrometer output against this predicted pattern, errors in the wavelength assignment made by the spectrometer can be determined.

  17. Electronic characterization of mercuric iodide gamma ray spectrometers

    International Nuclear Information System (INIS)

    During the past four years the yield of high resolution mercuric iodide (HgI2) gamma ray spectrometers produced at EG ampersand G/EM has increased dramatically. Data is presented which demonstrates a strong correlation between starting material and spectrometer performance. Improved spectrometer yields are attributed to the method of HgI2 synthesis and to material purification procedures. Data is presented which shows that spectrometer performance is correlated with hole mobility-lifetime products. In addition, the measurement of Schottky barrier heights on HgI2 spectrometers has been performed using I-V curves and the photoelectric method. Barrier heights near 1.1 eV have been obtained using various contacts and contact deposition methods. These data suggest the pinning of the Fermi level at midgap at the HgI2 surface, probably due to surface states formed prior to contact deposition

  18. Artificial intelligence for geologic mapping with imaging spectrometers

    Science.gov (United States)

    Kruse, F. A.

    1993-01-01

    This project was a three year study at the Center for the Study of Earth from Space (CSES) within the Cooperative Institute for Research in Environmental Science (CIRES) at the University of Colorado, Boulder. The goal of this research was to develop an expert system to allow automated identification of geologic materials based on their spectral characteristics in imaging spectrometer data such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This requirement was dictated by the volume of data produced by imaging spectrometers, which prohibits manual analysis. The research described is based on the development of automated techniques for analysis of imaging spectrometer data that emulate the analytical processes used by a human observer. The research tested the feasibility of such an approach, implemented an operational system, and tested the validity of the results for selected imaging spectrometer data sets.

  19. Preliminary Test Results for the MICE Spectrometer Superconducting Solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Virostek, Steve P.; Green, Michael A; Li, Derun; Zisman, Michael S.; Wang, S.T.; Wahrer, R.; Taylor, Clyde; Lu, X.; Chen, J. Y.; Wang, Mimi; Juang, Tiki

    2008-08-02

    This report describes the MICE spectrometer solenoids as built. Each magnet consists of five superconducting coils. Two coils are used to tune the beam going from or to the MICE spectrometer from the rest of the MICE cooling channel. Three spectrometer coils (two end coils and a long center coil) are used to create a uniform 4 T field (to {+-}0.3 percent) over a length of 1.0 m within a diameter of 0.3 m. The three-coil spectrometer set is connected in series. The two end coils use small power supplies to tune the uniform field region where the scintillating fiber tracker is located. This paper will present the results of the preliminary testing of the first spectrometer solenoid.

  20. Preliminary Test Results for the MICE Spectrometer Superconducting Solenoids

    International Nuclear Information System (INIS)

    This report describes the MICE spectrometer solenoids as built. Each magnet consists of five superconducting coils. Two coils are used to tune the beam going from or to the MICE spectrometer from the rest of the MICE cooling channel. Three spectrometer coils (two end coils and a long center coil) are used to create a uniform 4 T field (to ±0.3 percent) over a length of 1.0 m within a diameter of 0.3 m. The three-coil spectrometer set is connected in series. The two end coils use small power supplies to tune the uniform field region where the scintillating fiber tracker is located. This paper will present the results of the preliminary testing of the first spectrometer solenoid