WorldWideScience

Sample records for beta sheet structure

  1. Orientation determination of interfacial beta-sheet structures in situ.

    Science.gov (United States)

    Nguyen, Khoi Tan; King, John Thomas; Chen, Zhan

    2010-07-01

    Structural information such as orientations of interfacial proteins and peptides is important for understanding properties and functions of such biological molecules, which play crucial roles in biological applications and processes such as antimicrobial selectivity, membrane protein activity, biocompatibility, and biosensing performance. The alpha-helical and beta-sheet structures are the most widely encountered secondary structures in peptides and proteins. In this paper, for the first time, a method to quantify the orientation of the interfacial beta-sheet structure using a combined attenuated total reflectance Fourier transformation infrared spectroscopic (ATR-FTIR) and sum frequency generation (SFG) vibrational spectroscopic study was developed. As an illustration of the methodology, the orientation of tachyplesin I, a 17 amino acid peptide with an antiparallel beta-sheet, adsorbed to polymer surfaces as well as associated with a lipid bilayer was determined using the regular and chiral SFG spectra, together with polarized ATR-FTIR amide I signals. Both the tilt angle (theta) and the twist angle (psi) of the beta-sheet at interfaces are determined. The developed method in this paper can be used to obtain in situ structural information of beta-sheet components in complex molecules. The combination of this method and the existing methodology that is currently used to investigate alpha-helical structures will greatly broaden the application of optical spectroscopy in physical chemistry, biochemistry, biophysics, and structural biology.

  2. Structural analysis of alanine tripeptide with antiparallel and parallel beta-sheet structures in relation to the analysis of mixed beta-sheet structures in Samia cynthia ricini silk protein fiber using solid-state NMR spectroscopy.

    Science.gov (United States)

    Asakura, Tetsuo; Okonogi, Michi; Nakazawa, Yasumoto; Yamauchi, Kazuo

    2006-05-10

    The structural analysis of natural protein fibers with mixed parallel and antiparallel beta-sheet structures by solid-state NMR is reported. To obtain NMR parameters that can characterize these beta-sheet structures, (13)C solid-state NMR experiments were performed on two alanine tripeptide samples: one with 100% parallel beta-sheet structure and the other with 100% antiparallel beta-sheet structure. All (13)C resonances of the tripeptides could be assigned by a comparison of the methyl (13)C resonances of Ala(3) with different [3-(13)C]Ala labeling schemes and also by a series of RFDR (radio frequency driven recoupling) spectra observed by changing mixing times. Two (13)C resonances observed for each Ala residue could be assigned to two nonequivalent molecules per unit cell. Differences in the (13)C chemical shifts and (13)C spin-lattice relaxation times (T(1)) were observed between the two beta-sheet structures. Especially, about 3 times longer T(1) values were obtained for parallel beta-sheet structure as compared to those of antiparallel beta-sheet structure, which could be explicable by the difference in the hydrogen-bond networks of both structures. This very large difference in T(1) becomes a good measure to differentiate between parallel or antiparallel beta-sheet structures. These differences in the NMR parameters found for the tripeptides may be applied to assign the parallel and antiparallel beta-sheet (13)C resonances in the asymmetric and broad methyl spectra of [3-(13)C]Ala silk protein fiber of a wild silkworm, Samia cynthia ricini.

  3. Evidence for novel beta-sheet structures in Iowa mutant beta-amyloid fibrils.

    Science.gov (United States)

    Tycko, Robert; Sciarretta, Kimberly L; Orgel, Joseph P R O; Meredith, Stephen C

    2009-07-07

    Asp23-to-Asn mutation within the coding sequence of beta-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Abeta40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Abeta40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10(-3) min(-1) and 1.07 x 10(-4) min(-1) for D23N-Abeta40 and the wild-type peptide WT-Abeta40, respectively) and without a lag phase. Electron microscopy shows that D23N-Abeta40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-beta pattern, with a sharp reflection at 4.7 A and a broad reflection at 9.4 A, which is notably smaller than the value for WT-Abeta40 fibrils (10.4 A). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Abeta40 fibrils containing the in-register, parallel beta-sheet structure commonly found in WT-Abeta40 fibrils and most other amyloid fibrils. Antiparallel beta-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through (13)C-(13)C and (15)N-(13)C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Abeta40 fibrils and the unusual vasculotropic clinical picture in these patients.

  4. Ranking beta sheet topologies of proteins

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Helles, Glennie; Winter, Pawel

    2010-01-01

    One of the challenges of protein structure prediction is to identify long-range interactions between amino acids. To reliably predict such interactions, we enumerate, score and rank all beta-topologies (partitions of beta-strands into sheets, orderings of strands within sheets and orientations...... of paired strands) of a given protein. We show that the beta-topology corresponding to the native structure is, with high probability, among the top-ranked. Since full enumeration is very time-consuming, we also suggest a method to deal with proteins with many beta-strands. The results reported...... in this paper are highly relevant for ab initio protein structure prediction methods based on decoy generation. The top-ranked beta-topologies can be used to find initial conformations from which conformational searches can be started. They can also be used to filter decoys by removing those with poorly...

  5. Interactions between two beta-sheets. Energetics of beta/beta packing in proteins.

    Science.gov (United States)

    Chou, K C; Némethy, G; Rumsey, S; Tuttle, R W; Scheraga, H A

    1986-04-20

    The analysis of the interactions between regularly folded segments of the polypeptide chain contributes to an understanding of the energetics of protein folding. Conformational energy-minimization calculations have been carried out to determine the favorable ways of packing two right-twisted beta-sheets. The packing of two five-stranded beta-sheets was investigated, with the strands having the composition CH3CO-(L-Ile)6-NHCH3 in one beta-sheet and CH3CO-(L-Val)6-NHCH3 in the other. Two distinct classes of low-energy packing arrangements were found. In the class with lowest energies, the strands of the two beta-sheets are aligned nearly parallel (or antiparallel) with each other, with a preference for a negative orientation angle, because this arrangement corresponds to the best complementary packing of the two twisted saddle-shaped beta-sheets. In the second class, with higher interaction energies, the strands of the two beta-sheets are oriented nearly perpendicular to each other. While the surfaces of the two beta-sheets are not complementary in this arrangement, there is good packing between the corner of one beta-sheet and the interior part of the surface of the other, resulting in a favorable energy of packing. Both classes correspond to frequently observed orientations of beta-sheets in proteins. In proteins, the second class of packing is usually observed when the two beta-sheets are covalently linked, i.e. when a polypeptide strand passes from one beta-sheet to the other, but we have shown here that a large contribution to the stabilization of this packing arrangement arises from noncovalent interactions.

  6. Rapid model building of beta-sheets in electron-density maps.

    Science.gov (United States)

    Terwilliger, Thomas C

    2010-03-01

    A method for rapidly building beta-sheets into electron-density maps is presented. beta-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C(beta) atoms along the strand averaged over all repeats present in the strand. The beta-strands obtained are then assembled into a single atomic model of the beta-sheet regions. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 A. The beta-sheet regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5 A resolution in which a third of the residues in beta-sheets were built and a structure at 3.8 A in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5 A.

  7. Probing alpha-helical and beta-sheet structures of peptides at solid/liquid interfaces with SFG.

    Science.gov (United States)

    Chen, Xiaoyun; Wang, Jie; Sniadecki, Jason J; Even, Mark A; Chen, Zhan

    2005-03-29

    We demonstrated that sum frequency generation (SFG) vibrational spectroscopy can distinguish different secondary structures of proteins or peptides adsorbed at solid/liquid interfaces. The SFG spectrum for tachyplesin I at the polystyrene (PS)/solution interface has a fingerprint peak corresponding to the B1/B3 mode of the antiparallel beta-sheet. This peak disappeared upon the addition of dithiothreitol, which can disrupt the beta-sheet structure. The SFG spectrum indicative of the MSI594 alpha-helical structure was observed at the PS/MSI594 solution interface. This research validates SFG as a powerful technique for revealing detailed secondary structures of interfacial proteins and peptides.

  8. Interactions between an alpha-helix and a beta-sheet. Energetics of alpha/beta packing in proteins.

    Science.gov (United States)

    Chou, K C; Némethy, G; Rumsey, S; Tuttle, R W; Scheraga, H A

    1985-12-05

    Conformational energy computations have been carried out to determine the favorable ways of packing a right-handed alpha-helix on a right-twisted antiparallel or parallel beta-sheet. Co-ordinate transformations have been developed to relate the position and orientation of the alpha-helix to the beta-sheet. The packing was investigated for a CH3CO-(L-Ala)16-NHCH3 alpha-helix interacting with five-stranded beta-sheets composed of CH3CO-(L-Val)6-NHCH3 chains. All internal and external variables for both the alpha-helix and the beta-sheet were allowed to change during energy minimization. Four distinct classes of low-energy packing arrangements were found for the alpha-helix interacting with both the parallel and the anti-parallel beta-sheet. The classes differ in the orientation of the axis of the alpha-helix relative to the direction of the strands of the right-twisted beta-sheet. In the class with the most favorable arrangement, the alpha-helix is oriented along the strands of the beta-sheet, as a result of attractive non-bonded side-chain-side-chain interactions along the entire length of the alpha-helix. A class with nearly perpendicular orientation of the helix axis to the strands is also of low energy, because it allows similarly extensive attractive interactions. In the other two classes, the helix is oriented diagonally relative to the strands of the beta-sheet. In one of them, it interacts with the convex surface near the middle of the saddle-shaped twisted beta-sheet. In the other, it is oriented along the concave diagonal of the beta-sheet and, therefore, it interacts only with the corner regions of the sheet, so that this packing is energetically less favorable. The packing arrangements involving an antiparallel and a parallel beta-sheet are generally similar, although the antiparallel beta-sheet has been found to be more flexible. The major features of 163 observed alpha/beta packing arrangements in 37 proteins are accounted for in terms of the computed

  9. A new perspective on beta-sheet structures using vibrational Raman optical activity: From poly(L-lysine) to the prion protein

    DEFF Research Database (Denmark)

    McColl, L.H.; Blanch, E.W.; Gill, A.C.

    2003-01-01

    -sheet poly(L-lysine) contains up-and-down antiparallel beta-sheets based on the hairpin motif. The ROA spectrum of beta-sheet poly(L-lysine) was compared with ROA data on a number of native proteins containing different types of beta-sheet. Amide I and amide II ROA band patterns observed in beta-sheet poly(L-ly...

  10. Effect of secondary structure on the potential of mean force for poly-L-lysine in the alpha-Helix and beta-sheet conformations

    Energy Technology Data Exchange (ETDEWEB)

    Grigsby, J.J.; Blanch, H.W.; Prausnitz, J.M.

    2001-10-30

    Because poly-L-lysine (PLL) can exist in the {alpha}-helix or {beta}-sheet conformation depending on solution preparation and solution conditions, PLL is a suitable candidate to probe the dependence of protein interactions on secondary structure. The osmotic second virial coefficient and weight-average molecular weight are reported from low-angle laser-light scattering measurements for PLL as a function of NaCl concentration, pH, and {alpha}-helix or {beta}-sheet content. Interactions between PLL molecules become more attractive as salt concentration increases due to screening of PLL charge by salt ions and at low salt concentration become more attractive as pH increases due to decreased net charge on PLL. The experimental results show that interactions are stronger for the {beta}-sheet conformation than for the {alpha}-helix conformation. A spherically-symmetric model for the potential of mean force is used to account for specific interactions not described by DLVO theory and to show how differences in secondary structure affect PLL interactions.

  11. Thermally Induced Alpha-Helix to Beta-Sheet Transition in Regenerated Silk Fibers and Films

    Energy Technology Data Exchange (ETDEWEB)

    Drummy,L.; Phillips, D.; Stone, M.; Farmer, B.; Naik, R.

    2005-01-01

    The structure of thin films cast from regenerated solutions of Bombyx mori cocoon silk in hexafluoroisopropyl alcohol (HFIP) was studied by synchrotron X-ray diffraction during heating. A solid-state conformational transition from an alpha-helical structure to the well-known beta-sheet silk II structure occurred at a temperature of approximately 140 degrees C. The transition appeared to be homogeneous, as both phases do not coexist within the resolution of the current study. Modulated differential scanning calorimetry (DSC) of the films showed an endothermic melting peak followed by an exothermic crystallization peak, both occurring near 140 degrees C. Oriented fibers were also produced that displayed this helical molecular conformation. Subsequent heating above the structural transition temperature produced oriented beta-sheet fibers very similar in structure to B. mori cocoon fibers. Heat treatment of silk films at temperatures well below their degradation temperature offers a controllable route to materials with well-defined structures and mechanical behavior.

  12. Protein Secondary Structures (alpha-helix and beta-sheet) at a Cellular Levle and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    Energy Technology Data Exchange (ETDEWEB)

    Yu,P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S

  13. A folding pathway for betapep-4 peptide 33mer: from unfolded monomers and beta-sheet sandwich dimers to well-structured tetramers.

    OpenAIRE

    Mayo, K. H.; Ilyina, E.

    1998-01-01

    It was recently reported that a de novo designed peptide 33mer, betapep-4, can form well-structured beta-sheet sandwich tetramers (Ilyina E, Roongta V, Mayo KH, 1997b, Biochemistry 36:5245-5250). For insight into the pathway of betapep-4 folding, the present study investigates the concentration dependence of betapep-4 self-association by using 1H-NMR pulsed-field gradient (PFG)-NMR diffusion measurements, and circular dichroism. Downfield chemically shifted alphaH resonances, found to arise o...

  14. Modeling the Alzheimer Abeta17-42 fibril architecture: tight intermolecular sheet-sheet association and intramolecular hydrated cavities.

    Science.gov (United States)

    Zheng, Jie; Jang, Hyunbum; Ma, Buyong; Tsai, Chung-Jun; Nussinov, Ruth

    2007-11-01

    We investigate Abeta(17-42) protofibril structures in solution using molecular dynamics simulations. Recently, NMR and computations modeled the Abeta protofibril as a longitudinal stack of U-shaped molecules, creating an in-parallel beta-sheet and loop spine. Here we study the molecular architecture of the fibril formed by spine-spine association. We model in-register intermolecular beta-sheet-beta-sheet associations and study the consequences of Alzheimer's mutations (E22G, E22Q, E22K, and M35A) on the organization. We assess the structural stability and association force of Abeta oligomers with different sheet-sheet interfaces. Double-layered oligomers associating through the C-terminal-C-terminal interface are energetically more favorable than those with the N-terminal-N-terminal interface, although both interfaces exhibit high structural stability. The C-terminal-C-terminal interface is essentially stabilized by hydrophobic and van der Waals (shape complementarity via M35-M35 contacts) intermolecular interactions, whereas the N-terminal-N-terminal interface is stabilized by hydrophobic and electrostatic interactions. Hence, shape complementarity, or the "steric zipper" motif plays an important role in amyloid formation. On the other hand, the intramolecular Abeta beta-strand-loop-beta-strand U-shaped motif creates a hydrophobic cavity with a diameter of 6-7 A, allowing water molecules and ions to conduct through. The hydrated hydrophobic cavities may allow optimization of the sheet association and constitute a typical feature of fibrils, in addition to the tight sheet-sheet association. Thus, we propose that Abeta fiber architecture consists of alternating layers of tight packing and hydrated cavities running along the fibrillar axis, which might be possibly detected by high-resolution imaging.

  15. Glycation induces formation of amyloid cross-beta structure in albumin.

    Science.gov (United States)

    Bouma, Barend; Kroon-Batenburg, Loes M J; Wu, Ya-Ping; Brünjes, Bettina; Posthuma, George; Kranenburg, Onno; de Groot, Philip G; Voest, Emile E; Gebbink, Martijn F B G

    2003-10-24

    Amyloid fibrils are components of proteinaceous plaques that are associated with conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis. Amyloid polypeptides share a specific quarternary structure element known as cross-beta structure. Commonly, fibrillar aggregates are modified by advanced glycation end products (AGE). In addition, AGE formation itself induces protein aggregation. Both amyloid proteins and protein-AGE adducts bind multiligand receptors, such as receptor for AGE, CD36, and scavenger receptors A and B type I, and the serine protease tissue-type plasminogen activator (tPA). Based on these observations, we hypothesized that glycation induces refolding of globular proteins, accompanied by formation of cross-beta structure. Using transmission electron microscopy, we demonstrate here that glycated albumin condensates into fibrous or amorphous aggregates. These aggregates bind to amyloid-specific dyes Congo red and thioflavin T and to tPA. In contrast to globular albumin, glycated albumin contains amino acid residues in beta-sheet conformation, as measured with circular dichroism spectropolarimetry. Moreover, it displays cross-beta structure, as determined with x-ray fiber diffraction. We conclude that glycation induces refolding of initially globular albumin into amyloid fibrils comprising cross-beta structure. This would explain how glycated ligands and amyloid ligands can bind to the same multiligand "cross-beta structure" receptors and to tPA.

  16. PB1-F2 influenza A virus protein adopts a beta-sheet conformation and forms amyloid fibers in membrane environments.

    Science.gov (United States)

    Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard

    2010-04-23

    The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an alpha-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display beta-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a beta-sheet structure. Dynamic light scattering revealed that the presence of beta-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation.

  17. High-beta plasma blobs in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    G. Haerendel

    1999-12-01

    Full Text Available Equator-S frequently encountered, i.e. on 30% of the orbits between 1 March and 17 April 1998, strong variations of the magnetic field strength of typically 5–15-min duration outside about 9RE during the late-night/early-morning hours. Very high-plasma beta values were found, varying between 1 and 10 or more. Close conjunctions between Equator-S and Geotail revealed the spatial structure of these "plasma blobs" and their lifetime. They are typically 5–10° wide in longitude and have an antisymmetric plasma or magnetic pressure distribution with respect to the equator, while being altogether low-latitude phenomena  (≤ 15°. They drift slowly sunward, exchange plasma across the equator and have a lifetime of at least 15–30 min. While their spatial structure may be due to some sort of mirror instability, little is known about the origin of the high-beta plasma. It is speculated that the morningside boundary layer somewhat further tailward may be the source of this plasma. This would be consistent with the preference of the plasma blobs to occur during quiet conditions, although they are also found during substorm periods. The relation to auroral phenomena in the morningside oval is uncertain. The energy deposition may be mostly too weak to generate a visible signature. However, patchy aurora remains a candidate for more disturbed periods.Key words. Magnetospheric physics (plasma convection; plasma sheet; plasma waves and instabilities

  18. High-beta plasma blobs in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    G. Haerendel

    Full Text Available Equator-S frequently encountered, i.e. on 30% of the orbits between 1 March and 17 April 1998, strong variations of the magnetic field strength of typically 5–15-min duration outside about 9RE during the late-night/early-morning hours. Very high-plasma beta values were found, varying between 1 and 10 or more. Close conjunctions between Equator-S and Geotail revealed the spatial structure of these "plasma blobs" and their lifetime. They are typically 5–10° wide in longitude and have an antisymmetric plasma or magnetic pressure distribution with respect to the equator, while being altogether low-latitude phenomena 
    (≤ 15°. They drift slowly sunward, exchange plasma across the equator and have a lifetime of at least 15–30 min. While their spatial structure may be due to some sort of mirror instability, little is known about the origin of the high-beta plasma. It is speculated that the morningside boundary layer somewhat further tailward may be the source of this plasma. This would be consistent with the preference of the plasma blobs to occur during quiet conditions, although they are also found during substorm periods. The relation to auroral phenomena in the morningside oval is uncertain. The energy deposition may be mostly too weak to generate a visible signature. However, patchy aurora remains a candidate for more disturbed periods.

    Key words. Magnetospheric physics (plasma convection; plasma sheet; plasma waves and instabilities

  19. Incorporating beta-turns and a turn mimetic out of context in loop 1 of the WW domain affords cooperatively folded beta-sheets.

    Science.gov (United States)

    Kaul, R; Angeles, A R; Jäger, M; Powers, E T; Kelly, J W

    2001-06-06

    To probe the conformational requirements of loop 1 in the Pin1 WW domain, the residues at the i + 2 and i + 3 positions of a beta-turn within this loop were replaced by dPro-Gly and Asn-Gly, which are known to prefer the conformations required at the i + 1 and i + 2 positions of type II' and type I' beta-turns. Conformational specificity or lack thereof was further examined by incorporating into the i + 2 and i + 3 positions a non-alpha-amino acid-based beta-turn mimetic (4-(2'-aminoethyl)-6-dibenzofuran propionic acid residue, 1), which was designed to replace the i + 1 and i + 2 positions of beta-turns. All these Pin WW variants are monomeric and folded as discerned by analytical ultracentrifugation, NMR, and CD. They exhibit cooperative two-state transitions and display thermodynamic stability within 0.5 kcal/mol of the wild-type WW domain, demonstrating that the acquisition of native structure and stability does not require a specific sequence and, by extension, conformation within loop 1. However, it could be that these loop 1 mutations alter the kinetics of antiparallel beta-sheet folding, which will be addressed by subsequent kinetic studies.

  20. Sequence swapping does not result in conformation swapping for the beta4/beta5 and beta8/beta9 beta-hairpin turns in human acidic fibroblast growth factor.

    Science.gov (United States)

    Kim, Jaewon; Lee, Jihun; Brych, Stephen R; Logan, Timothy M; Blaber, Michael

    2005-02-01

    The beta-turn is the most common type of nonrepetitive structure in globular proteins, comprising ~25% of all residues; however, a detailed understanding of effects of specific residues upon beta-turn stability and conformation is lacking. Human acidic fibroblast growth factor (FGF-1) is a member of the beta-trefoil superfold and contains a total of five beta-hairpin structures (antiparallel beta-sheets connected by a reverse turn). beta-Turns related by the characteristic threefold structural symmetry of this superfold exhibit different primary structures, and in some cases, different secondary structures. As such, they represent a useful system with which to study the role that turn sequences play in determining structure, stability, and folding of the protein. Two turns related by the threefold structural symmetry, the beta4/beta5 and beta8/beta9 turns, were subjected to both sequence-swapping and poly-glycine substitution mutations, and the effects upon stability, folding, and structure were investigated. In the wild-type protein these turns are of identical length, but exhibit different conformations. These conformations were observed to be retained during sequence-swapping and glycine substitution mutagenesis. The results indicate that the beta-turn structure at these positions is not determined by the turn sequence. Structural analysis suggests that residues flanking the turn are a primary structural determinant of the conformation within the turn.

  1. Markov analysis of alpha-helical, beta-sheet and random coil regions of proteins

    International Nuclear Information System (INIS)

    Macchiato, M.; Tramontano, A.

    1983-01-01

    The rules up to now used to predict the spatial configuration of proteins from their primary structure are mostly based on the recurrence analysis of some doublets, triplets and so on of contiguous amino acids, but they do not take into account the correlation characteristics of the whole amino acid sequence. A statistical analysis of amino acid sequences for the alpha-helical, beta-sheet and random coil regions of about twenty proteins with known secondary structure by considering correlations effects has been carried out. The obtained results demonstrate that these sequences are at least a second-order Markov chain, i.e. they appear as if they were generated by a source that remembers at least the two aminoacids before the one being generated and that these two previous symbols influence the present choice

  2. TURBULENT DYNAMICS IN SOLAR FLARE SHEET STRUCTURES MEASURED WITH LOCAL CORRELATION TRACKING

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D. E., E-mail: mckenzie@physics.montana.edu [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717-3840 (United States)

    2013-03-20

    High-resolution observations of the Sun's corona in extreme ultraviolet and soft X-rays have revealed a new world of complexity in the sheet-like structures connecting coronal mass ejections (CMEs) to the post-eruption flare arcades. This article presents initial findings from an exploration of dynamic flows in two flares observed with Hinode/XRT and SDO/AIA. The flows are observed in the hot ({approx}> 10 MK) plasma above the post-eruption arcades and measured with local correlation tracking. The observations demonstrate significant shears in velocity, giving the appearance of vortices and stagnations. Plasma diagnostics indicate that the plasma {beta} exceeds unity in at least one of the studied events, suggesting that the coronal magnetic fields may be significantly affected by the turbulent flows. Although reconnection models of eruptive flares tend to predict a macroscopic current sheet in the region between the CME and the flare arcade, it is not yet clear whether the observed sheet-like structures are identifiable as the current sheets or 'thermal halos' surrounding the current sheets. Regardless, the relationship between the turbulent motions and the embedded magnetic field is likely to be complicated, involving dynamic fluid processes that produce small length scales in the current sheet. Such processes may be crucial for triggering, accelerating, and/or prolonging reconnection in the corona.

  3. Density functional calculations of backbone 15N shielding tensors in beta-sheet and turn residues of protein G

    International Nuclear Information System (INIS)

    Cai Ling; Kosov, Daniel S.; Fushman, David

    2011-01-01

    We performed density functional calculations of backbone 15 N shielding tensors in the regions of beta-sheet and turns of protein G. The calculations were carried out for all twenty-four beta-sheet residues and eight beta-turn residues in the protein GB3 and the results were compared with the available experimental data from solid-state and solution NMR measurements. Together with the alpha-helix data, our calculations cover 39 out of the 55 residues (or 71%) in GB3. The applicability of several computational models developed previously (Cai et al. in J Biomol NMR 45:245–253, 2009) to compute 15 N shielding tensors of alpha-helical residues is assessed. We show that the proposed quantum chemical computational model is capable of predicting isotropic 15 N chemical shifts for an entire protein that are in good correlation with experimental data. However, the individual components of the predicted 15 N shielding tensor agree with experiment less well: the computed values show much larger spread than the experimental data, and there is a profound difference in the behavior of the tensor components for alpha-helix/turns and beta-sheet residues. We discuss possible reasons for this.

  4. beta-sheet preferences from first principles

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Bækgaard, Iben Sig Buur; Gregersen, Misha Marie

    2003-01-01

    The natural amino acids have different preferences of occurring in specific types of secondary protein structure. Simulations are performed on periodic model â-sheets of 14 different amino acids, at the level of density functional theory, employing the generalized gradient approximation. We find ...

  5. Computational study of the fibril organization of polyglutamine repeats reveals a common motif identified in beta-helices.

    Science.gov (United States)

    Zanuy, David; Gunasekaran, Kannan; Lesk, Arthur M; Nussinov, Ruth

    2006-04-21

    The formation of fibril aggregates by long polyglutamine sequences is assumed to play a major role in neurodegenerative diseases such as Huntington. Here, we model peptides rich in glutamine, through a series of molecular dynamics simulations. Starting from a rigid nanotube-like conformation, we have obtained a new conformational template that shares structural features of a tubular helix and of a beta-helix conformational organization. Our new model can be described as a super-helical arrangement of flat beta-sheet segments linked by planar turns or bends. Interestingly, our comprehensive analysis of the Protein Data Bank reveals that this is a common motif in beta-helices (termed beta-bend), although it has not been identified so far. The motif is based on the alternation of beta-sheet and helical conformation as the protein sequence is followed from the N to the C termini (beta-alpha(R)-beta-polyPro-beta). We further identify this motif in the ssNMR structure of the protofibril of the amyloidogenic peptide Abeta(1-40). The recurrence of the beta-bend suggests a general mode of connecting long parallel beta-sheet segments that would allow the growth of partially ordered fibril structures. The design allows the peptide backbone to change direction with a minimal loss of main chain hydrogen bonds. The identification of a coherent organization beyond that of the beta-sheet segments in different folds rich in parallel beta-sheets suggests a higher degree of ordered structure in protein fibrils, in agreement with their low solubility and dense molecular packing.

  6. Structural Biology Fact Sheet

    Science.gov (United States)

    ... NIGMS NIGMS Home > Science Education > Structural Biology Structural Biology Tagline (Optional) Middle/Main Content Area PDF Version (688 KB) Other Fact Sheets What is structural biology? Structural biology is the study of how biological ...

  7. Beta-structures in fibrous proteins.

    Science.gov (United States)

    Kajava, Andrey V; Squire, John M; Parry, David A D

    2006-01-01

    The beta-form of protein folding, one of the earliest protein structures to be defined, was originally observed in studies of silks. It was then seen in early studies of synthetic polypeptides and, of course, is now known to be present in a variety of guises as an essential component of globular protein structures. However, in the last decade or so it has become clear that the beta-conformation of chains is present not only in many of the amyloid structures associated with, for example, Alzheimer's Disease, but also in the prion structures associated with the spongiform encephalopathies. Furthermore, X-ray crystallography studies have revealed the high incidence of the beta-fibrous proteins among virulence factors of pathogenic bacteria and viruses. Here we describe the basic forms of the beta-fold, summarize the many different new forms of beta-structural fibrous arrangements that have been discovered, and review advances in structural studies of amyloid and prion fibrils. These and other issues are described in detail in later chapters.

  8. Multiple native-like conformations trapped via self-association-induced hydrophobic collapse of the 33-residue beta-sheet domain from platelet factor 4.

    OpenAIRE

    Ilyina, E; Mayo, K H

    1995-01-01

    Native platelet factor 4 (PF4) (70 residues) has a hydrophobic three-stranded anti-parallel beta-sheet domain on to which is folded an amphipathic C-terminal alpha-helix and an aperiodic N-terminal domain. The 33-amino acid beta-sheet domain from PF4 (residues 23-55) has been synthesized and studied by c.d. and n.m.r. At 10 degrees C and low concentration, peptide 23-55 appears to exist in aqueous solution in a random-coil distribution of highly flexible conformational states. Some preferred ...

  9. Characterization of the conformational space of a triple-stranded beta-sheet forming peptide with molecular dynamics simulations

    NARCIS (Netherlands)

    Soto, P; Colombo, G

    2004-01-01

    Molecular dynamics (MD) simulations have been performed on a series of mutants of the 20 amino acid peptide Betanova in order to critically assess the ability of MD simulations to reproduce the folding and stability of small beta-sheet-forming peptides on currently accessible timescales. Simulations

  10. Corrosion Behavior of Brazed Zinc-Coated Structured Sheet Metal

    Directory of Open Access Journals (Sweden)

    A. Nikitin

    2017-01-01

    Full Text Available Arc brazing has, in comparison to arc welding, the advantage of less heat input while joining galvanized sheet metals. The evaporation of zinc is reduced in the areas adjacent to the joint and improved corrosion protection is achieved. In the automotive industry, lightweight design is a key technology against the background of the weight and environment protection. Structured sheet metals have higher stiffness compared to typical automobile sheet metals and therefore they can play an important role in lightweight structures. In the present paper, three arc brazing variants of galvanized structured sheet metals were validated in terms of the corrosion behavior. The standard gas metal arc brazing, the pulsed arc brazing, and the cold metal transfer (CMT® in combination with a pulsed cycle were investigated. In experimental climate change tests, the influence of the brazing processes on the corrosion behavior of galvanized structured sheet metals was investigated. After that, the corrosion behavior of brazed structured and flat sheet metals was compared. Because of the selected lap joint, the valuation of damage between sheet metals was conducted. The pulsed CMT brazing has been derived from the results as the best brazing method for the joining process of galvanized structured sheet metals.

  11. 47 CFR 32.101 - Structure of the balance sheet accounts.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Structure of the balance sheet accounts. 32.101... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.101 Structure of the balance sheet accounts. The Balance Sheet accounts shall be maintained as follows...

  12. Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure.

    Science.gov (United States)

    Cobb, Nathan J; Sönnichsen, Frank D; McHaourab, Hassane; Surewicz, Witold K

    2007-11-27

    Transmissible spongiform encephalopathies (TSEs) represent a group of fatal neurodegenerative diseases that are associated with conformational conversion of the normally monomeric and alpha-helical prion protein, PrP(C), to the beta-sheet-rich PrP(Sc). This latter conformer is believed to constitute the main component of the infectious TSE agent. In contrast to high-resolution data for the PrP(C) monomer, structures of the pathogenic PrP(Sc) or synthetic PrP(Sc)-like aggregates remain elusive. Here we have used site-directed spin labeling and EPR spectroscopy to probe the molecular architecture of the recombinant PrP amyloid, a misfolded form recently reported to induce transmissible disease in mice overexpressing an N-terminally truncated form of PrP(C). Our data show that, in contrast to earlier, largely theoretical models, the con formational conversion of PrP(C) involves major refolding of the C-terminal alpha-helical region. The core of the amyloid maps to C-terminal residues from approximately 160-220, and these residues form single-molecule layers that stack on top of one another with parallel, in-register alignment of beta-strands. This structural insight has important implications for understanding the molecular basis of prion propagation, as well as hereditary prion diseases, most of which are associated with point mutations in the region found to undergo a refolding to beta-structure.

  13. BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis.

    Directory of Open Access Journals (Sweden)

    Allen W Bryan

    2009-03-01

    Full Text Available Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Recent work has indicated the utility of pairwise probabilistic statistics in beta-structure prediction. We develop here a new strategy for beta-structure prediction, emphasizing the determination of beta-strands and pairs of beta-strands as fundamental units of beta-structure. Our program, BETASCAN, calculates likelihood scores for potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The program then determines the strands and pairs with the greatest local likelihood for all of the sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns relative a priori probabilities based solely on amino acid sequence, probability tables, and pre-chosen parameters. The algorithm compares favorably with the results of previous algorithms (BETAPRO, PASTA, SALSA, TANGO, and Zyggregator in beta-structure prediction and amyloid propensity prediction. Accurate prediction is demonstrated for experimentally determined amyloid beta-structures, for a set of known beta-aggregates, and for the parallel beta-strands of beta-helices, amyloid-like globular proteins. BETASCAN is able both to detect beta-strands with higher sensitivity and to detect the edges of beta-strands in a richly beta-like sequence. For two proteins (Abeta and Het-s, there exist multiple sets of experimental data implying contradictory structures; BETASCAN is able to detect each competing structure as a potential structure variant. The ability to correlate multiple alternate beta-structures to experiment opens the possibility of computational investigation of prion strains and structural heterogeneity of amyloid

  14. Bessel light sheet structured illumination microscopy

    Science.gov (United States)

    Noshirvani Allahabadi, Golchehr

    Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in

  15. Microphase Separation Controlled beta-Sheet Crystallization Kinetics in Fibrous Proteins

    International Nuclear Information System (INIS)

    Hu, X.; Lu, Q.; Kaplan, D.; Cebe, P.

    2009-01-01

    Silk is a naturally occurring fibrous protein with a multiblock chain architecture. As such, it has many similarities with synthetic block copolymers, including the possibility for e-sheet crystallization restricted within the crystallizable blocks. The mechanism of isothermal crystallization kinetics of e-sheet crystals in silk multiblock fibrous proteins is reported in this study. Kinetics theories, such as Avrami analysis which was established for studies of synthetic polymer crystal growth, are for the first time extended to investigate protein self-assembly in e-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and synchrotron real-time wide-angle X-ray scattering (WAXS). The Avrami exponent, n, was close to 2 for all methods and crystallization temperatures, indicating formation of e-sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic polymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to block copolymers: crystallization of e-sheets occurs under conditions of geometrical restriction caused by phase separation of the crystallizable and uncrystallizable blocks. This crystallization model could be widely applicable in other proteins with multiblock (i.e., crystallizable and noncrystallizable) domains.

  16. On Jovian plasma sheet structure

    International Nuclear Information System (INIS)

    Khurana, K.K.; Kivelson, M.G.

    1989-01-01

    The authors evaluate several models of Jovian plasma sheet structure by determining how well they organize several aspects of the observed Voyager 2 magnetic field characteristics as a function of Jovicentric radial distance. It is shown that in the local time sector of the Voyager 2 outbound pass (near 0300 LT) the published hinged-magnetodisc models with wave (i.e., models corrected for finite wave velocity effects) are more successful than the published magnetic anomaly model in predicting locations of current sheet crossings. They also consider the boundary between the plasma sheet and the magnetotail lobe which is expected to vary slowly with radial distance. They use this boundary location as a further test of the models of the magnetotail. They show that the compressional MHD waves have much smaller amplitude in the lobes than in the plasma sheet and use this criterion to refine the identification of the plasma-sheet-lobe boundary. When the locations of crossings into and out of the lobes are examined, it becomes evident that the magnetic-anomaly model yields a flaring plasma sheet with a halfwidth of ∼ 3 R J at a radial distance of 20 R J and ∼ 12 R J at a radial distance of 100 R J . The hinged-magnetodisc models with wave, on the other hand, predict a halfwidth of ∼ 3.5 R J independent of distance beyond 20 R J . New optimized versions of the two models locate both the current sheet crossings and lobe encounters equally successfully. The optimized hinged-magnetodisc model suggests that the wave velocity decreases with increasing radial distance. The optimized magnetic anomaly model yields lower velocity contrast than the model of Vasyliunas and Dessler (1981)

  17. Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets

    Science.gov (United States)

    Sharma, Aditya; Varshney, Mayora; Nanda, Sitansu Sekhar; Shin, Hyun Joon; Kim, Namdong; Yi, Dong Kee; Chae, Keun-Hwa; Ok Won, Sung

    2018-04-01

    Correlation between the structural/electronic structure properties and bio-activity of graphene-based materials need to be thoroughly evaluated before their commercial implementation in the health and environment precincts. To better investigate the local hybridization of sp2/sp3 orbitals of the functional groups of graphene-oxide (GO) and their execution in the antimicrobial mechanism, we exemplify the antibacterial activity of GO sheets towards the Escherichia coli bacteria (E. coli) by applying the field-emission scanning electron microscopy (FESEM), near edge X-ray absorption fine structure (NEXAFS) and scanning transmission X-ray microscope (STXM) techniques. C K-edge and O K-edge NEXAFS spectra have revealed lesser sp2 carbon atoms in the aromatic ring and attachment of functional oxygen groups at GO sheets. Entrapment of E. coli bacteria by GO sheets is evidenced by FESEM investigations and has also been corroborated by nano-scale imaging of bacteria using the STXM. Spectroscopy evidence of functional oxygen moieties with GO sheets and physiochemical entrapment of E. coli bacteria have assisted us to elaborate the mechanism of cellular oxidative stress-induced disruption of bacterial membrane.

  18. Financing gas plants using off balance sheet structures

    International Nuclear Information System (INIS)

    Best, R.J.; Malcolm, V.

    1999-01-01

    A means by which to finance oil and gas facilities using off balance sheet structures was presented. Off balance sheet facility financing means the sale by an oil and gas producer of a processing and/or transportation facility to a financial intermediary, who under a Management Agreement, appoints the producer as the operator of the facility. The financial intermediary charges a fixed processing fee to the producer and all the benefits and upside of ownership are retained by the producer. This paper deals specifically with a flexible off balance sheet facility financing structure that can be used to make effective use of discretionary capital which is committed to gas processing and to the construction of new gas processing facilities. Off balance sheet financing is an attractive alternative method of ownership that frees up capital that is locked into the facilities while allowing the producer to retain strategic control of the processing facility

  19. High-beta linac structures

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1979-01-01

    Accelerating structures for high-beta linacs that have been and are in use are reviewed in terms of their performance. Particular emphasis is given to room-temperature structures and the disk-and-washer structure. The disk-and-washer structure has many attractive features that are discussed for pulsed high-gradient linacs, for 100% duty-cycle medium-gradient linacs and for high-current linacs requiring maximal amounts of stored energy in the electric fields available to the beam

  20. Evidence for Intramolecular Antiparallel Beta-Sheet Structure in Alpha-Synuclein Fibrils from a Combination of Two-Dimensional Infrared Spectroscopy and Atomic Force Microscopy

    Science.gov (United States)

    Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander

    2017-01-01

    The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies.

  1. Structural and sequence features of two residue turns in beta-hairpins.

    Science.gov (United States)

    Madan, Bharat; Seo, Sung Yong; Lee, Sun-Gu

    2014-09-01

    Beta-turns in beta-hairpins have been implicated as important sites in protein folding. In particular, two residue β-turns, the most abundant connecting elements in beta-hairpins, have been a major target for engineering protein stability and folding. In this study, we attempted to investigate and update the structural and sequence properties of two residue turns in beta-hairpins with a large data set. For this, 3977 beta-turns were extracted from 2394 nonhomologous protein chains and analyzed. First, the distribution, dihedral angles and twists of two residue turn types were determined, and compared with previous data. The trend of turn type occurrence and most structural features of the turn types were similar to previous results, but for the first time Type II turns in beta-hairpins were identified. Second, sequence motifs for the turn types were devised based on amino acid positional potentials of two-residue turns, and their distributions were examined. From this study, we could identify code-like sequence motifs for the two residue beta-turn types. Finally, structural and sequence properties of beta-strands in the beta-hairpins were analyzed, which revealed that the beta-strands showed no specific sequence and structural patterns for turn types. The analytical results in this study are expected to be a reference in the engineering or design of beta-hairpin turn structures and sequences. © 2014 Wiley Periodicals, Inc.

  2. Structural Transitions Induced by a Recombinant Methionine-Trigger in Silk Spidroin

    Science.gov (United States)

    Wilson, Donna; Winkler, Stefan; Valluzzi, Regina; Kaplan, David

    2000-03-01

    Control of beta sheet formation is an important factor in the understanding and prediction of structural transitions and protein folding. In genetically engineered silk proteins this control has been achieved using oxidative triggers. A genetically engineered variant of a spider silk protein, and a peptide analog, based on the consensus sequence of Nephila clavipes dragline silk, were modified to include methionines flanking the beta sheet forming polyalanine regions. These methionines could be selectively reduced and oxidized, altering the bulkiness and charge of the sulfhydryl group to control beta sheet formation by steric hindrance. Biophysical characterization and monitoring of structural transitions and intermediates were accomplished through attenuated total reflectance infrared spectroscopy (ATR-IR) for solution state structures in both oxidized and reduced forms. For solid state structural characterization, IR microscopy and reflectance IR experiments were performed. Electron diffraction data as well as circular dichroism studies provide structural corroboration for all experiments in which reproducible sample preparation was achieved.

  3. Genetic engineering combined with deep UV resonance Raman spectroscopy for structural characterization of amyloid-like fibrils.

    Science.gov (United States)

    Sikirzhytski, Vitali; Topilina, Natalya I; Higashiya, Seiichiro; Welch, John T; Lednev, Igor K

    2008-05-07

    Elucidating the structure of the cross-beta core in large amyloid fibrils is a challenging problem in modern structural biology. For the first time, a set of de novo polypeptides was genetically engineered to form amyloid-like fibrils with similar morphology and yet different strand length. Differential ultraviolet Raman spectroscopy allowed for separation of the spectroscopic signatures of the highly ordered beta-sheet strands and turns of the fibril core. The relationship between Raman frequencies and Ramachandran dihedral angles of the polypeptide backbone indicates the nature of the beta-sheet and turn structural elements.

  4. Natural polypeptide scaffolds: beta-sheets, beta-turns, and beta-hairpins.

    Science.gov (United States)

    Rotondi, Kenneth S; Gierasch, Lila M

    2006-01-01

    This paper provides an introduction to fundamental conformational states of polypeptides in the beta-region of phi,psi space, in which the backbone is extended near to its maximal length, and to more complex architectures in which extended segments are linked by turns and loops. There are several variants on these conformations, and they comprise versatile scaffolds for presentation of side chains and backbone amides for molecular recognition and designed catalysts. In addition, the geometry of these fundamental folds can be readily mimicked in peptidomimetics. Copyright 2005 Wiley Periodicals, Inc.

  5. Tuning peptide amphiphile supramolecular structure for biomedical applications

    Science.gov (United States)

    Pashuck, Eugene Thomas, III

    The use of biomaterials in regenerative medicine has been an active area of research for more than a decade. Peptide amphiphiles, which are short peptide sequences coupled to alkyl tails, have been studied in the Stupp group since the beginning of the decade and been used for a variety of biomedical applications. Most of the work has focused on the bioactive epitopes places on the periphery of the PA molecules, but the interior amino acids, known as the beta-sheet region, give the PA nanofiber gel much of its mechanical strength. To study the important parameters in the beta-sheet region, six PA molecules were constructed to determine the influence of beta-sheet length and order of the amino acids in the beta-sheet. It was found that having beta-sheet forming amino acids near the center of the fiber improves PA gel stiffness, and that having extra amino acids that have preferences for other secondary structures, like alpha-helix decreased the gels stiffness. Using FTIR and circular dichroism it was found that the mechanical properties are influenced by the amount of twist in the beta-sheet, and PAs that have more twisted beta-sheets form weaker gels. The effect amino acid properties have on peptide amphiphile self-assembly where studied by synthesizining molecules with varying side group size and hydrophobicity. It was found that smaller amino acids lead to stiffer gels and when two amino acids had the same size the amino acid with the larger beta-sheet propensity lead to a stiffer gel. Furthermore, small changes in peptide structure were found to lead to big changes in nanostructure, as leucine and isoleucine, which have the same size but slightly different structures, form flat ribbons and cylindrical nanofibers, respectively. Phenylalanine and alanine were studied more indepth because they represent the effects of adding an aromatic group to amino acids in the beta-sheet regon. These phenylalanine PAs formed short, twisted ribbons when freshly dissolved in water

  6. NMR structure of the first Ig module of mouse FGFR1

    DEFF Research Database (Denmark)

    Kiselyov, V.V.; Bock, Elisabeth Marianne; Berezin, V.

    2006-01-01

    of this module. We describe here the NMR structure of the Ig1 module of mouse FGFR1. The three-dimensional fold of the module belongs to the intermediate Ig subgroup and can be described as a beta-barrel consisting of two beta-sheets. One sheet is formed by A', G, F, C, and C', and the other by A, B, B', E...

  7. beta-Thalassemia present in cis to a new beta-chain structural variant, Hb Vicksburg [beta 75 (E19)Leu leads to 0].

    Science.gov (United States)

    Adams, J G; Steinberg, M H; Newman, M V; Morrison, W T; Benz, E J; Iyer, R

    1981-01-01

    Hemoglobin Vicksburg was discovered in a 6-year-old Black boy who had been anemic since infancy. Examination of his hemolysate revealed 87.5% Hb F, 2.4% Hb A2, and 7.6% Hb Vicksburg, which had the electrophoretic and chromatographic properties of Hb A. Structural analysis of Hb Vicksburg demonstrated a deletion of leucine at beta 75(E19), a new variant. Hb Vicksburg was neither unstable nor subject to posttranslational degradation. The alpha/non-alpha biosynthetic ratio was 2.6. Because the proband appeared to be a mixed heterozygote for Hb Vicksburg and beta 0-thalassemia, Hb Vicksburg should have comprised the major portion of the hemolysate. Thus, Hb Vicksburg was synthesized at a rate considerably lower than would be expected on the basis of gene dosage. There was no reason to suspect abnormal translation of beta Vicksburg mRNA; in individuals with Hb St. Antoine (beta 74 and beta 75 deleted), the abnormal hemoglobin comprised 25% of the hemolysate in the simple heterozygote yet was unstable. Deletion of beta 75, therefore, would not in itself appear to lead to diminished synthesis. There was a profound deficit of beta Vicksburg mRNA when measured by liquid hybridization analysis with beta cDNA. The most plausible explanation for the low output of Hb Vicksburg is that a mutation for beta +-thalassemia is present in cis to the structural mutation.

  8. Current and high-β sheets in CIR streams: statistics and interaction with the HCS and the magnetosphere

    Science.gov (United States)

    Potapov, A. S.

    2018-04-01

    Thirty events of CIR streams (corotating interaction regions between fast and slow solar wind) were analyzed in order to study statistically plasma structure within the CIR shear zones and to examine the interaction of the CIRs with the heliospheric current sheet (HCS) and the Earth's magnetosphere. The occurrence of current layers and high-beta plasma sheets in the CIR structure has been estimated. It was found that on average, each of the CIR streams had four current layers in its structure with a current density of more than 0.12 A/m2 and about one and a half high-beta plasma regions with a beta value of more than five. Then we traced how and how often the high-speed stream associated with the CIR can catch up with the heliospheric current sheet (HCS) and connect to it. The interface of each fourth CIR stream coincided in time within an hour with the HCS, but in two thirds of cases, the CIR connection with the HCS was completely absent. One event of the simultaneous observation of the CIR stream in front of the magnetosphere by the ACE satellite in the vicinity of the L1 libration point and the Wind satellite in the remote geomagnetic tail was considered in detail. Measurements of the components of the interplanetary magnetic field and plasma parameters showed that the overall structure of the stream is conserved. Moreover, some details of the fine structure are also transferred through the magnetosphere. In particular, the so-called "magnetic hole" almost does not change its shape when moving from L1 point to a neighborhood of L2 point.

  9. Tube sheet structural analysis of intermediate heat exchanger for fast breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    Nakagawa, Y.; Ueno, T.; Fukuda, Y.; Ichimiya, M.

    1983-01-01

    The Prototype Fast Breeder Reactor 'Monju' is the first power generating fast breeder reactor in Japan. We have been designing the components of the plant for manufacturing. Among these is the intermediate heat exchanger (IHX) which exchanges heat between primary and secondary sodium loop. The tube sheet of IHX (shell to ligament junction) is a difficult area from the view point of structural strength design under elevated temperature. To validate the structural integrity of tube sheet we performed the series of inelastic analysis and tube sheet thermal shock test using test pieces and half scale model of actual design. The results of inelastic analyses showed there is little progressive deformation around shell to ligament structural discontinuous junction. Furthermore, thermal shock tests showed no increase of an accumulative deformation. By these analyses and experiments, structural reliability of tube sheet could be shown. (author)

  10. Protein structure predictions with Monte Carlo simulated annealing: Case for the β-sheet

    Science.gov (United States)

    Okamoto, Y.; Fukugita, M.; Kawai, H.; Nakazawa, T.

    Work is continued for a prediction of three-dimensional structure of peptides and proteins with Monte Carlo simulated annealing using only a generic energy function and amino acid sequence as input. We report that β-sheet like structure is successfully predicted for a fragment of bovine pancreatic trypsin inhibitor which is known to have the β-sheet structure in nature. Together with the results for α-helix structure reported earlier, this means that a successful prediction can be made, at least at a qualitative level, for two dominant building blocks of proteins, α-helix and β-sheet, from the information of amino acid sequence alone.

  11. A new uranyl phosphate sheet in the crystal structure of furongite

    Energy Technology Data Exchange (ETDEWEB)

    Dal Bo, Fabrice; Hatert, Frederic [Liege Univ. (Belgium). Lab. de Mineralogie; Philippo, Simon [Musee National d' Historie Naturelle, Luxembourg (Luxembourg). Section Mineralogie

    2017-06-15

    The crystal structure of furongite, Al{sub 4}[(UO{sub 2}){sub 4}(PO{sub 4}){sub 6}](OH){sub 2}(H{sub 2}O){sub 19.5}, from the Kobokobo pegmatite, Kivu, Democratic Republic of Congo, was solved for the first time. Furongite is triclinic, the space group P anti 1, Z=2, a = 12.1685(8), b = 14.1579(6), c = 17.7884(6) Aa, α = 79.822(3), β = 77.637(4), γ = 67.293(2) , and V = 2746.2(2)Aa{sup 3}. The crystal structure was refined from single crystal X-ray diffraction data to R{sub 1} = 0.0733 for 7716 unique observed reflections, and to wR{sub 2} = 0.2081 for all 12,538 unique reflections. The structure of furongite contains infinite uranyl phosphate sheets of composition [(UO{sub 2}){sub 4}(PO{sub 4}){sub 6}]{sup 10-} which are parallel to (1 0 1). The sheets are constituted by UrO{sub 5} pentagonal bipyramids and PO{sub 4} tetrahedra which share edges and vertices, and adjacent sheets are linked by a dense network of hydrogen bonds. Running through the sheets and connected mainly to the free apical oxygen atom of PO4 tetrahedra are Al octahedra connected together to form remarkable Al{sub 2}O{sub 5}(OH)(H{sub 2}O){sub 5} and Al{sub 4}O{sub 8}(OH){sub 2}(H{sub 2}O){sub 10} clusters. These Al clusters are only bonded to one sheet, and do not connect two adjacent sheets together. The topology of the uranyl phosphate sheets is related to the uranophane anion topology, and can be described as a new geometrical isomer of the uranophane group. Furongite is the first uranyl phosphate reported in nature with a U:P ratio of 2:3.

  12. Characterization of arrangement and expression of the beta-2 microglobulin locus in the sandbar and nurse shark.

    Science.gov (United States)

    Chen, Hao; Kshirsagar, Sarika; Jensen, Ingvill; Lau, Kevin; Simonson, Caitlin; Schluter, Samuel F

    2010-02-01

    Beta 2 microglobulin (beta2m) is an essential subunit of major histocompatibility complex (MHC) type I molecules. In this report, beta2m cDNAs were identified and sequenced from sandbar shark spleen cDNA library. Sandbar shark beta2m gene encodes one amino acid less than most teleost beta2m genes, and 3 amino acids less than mammal beta2m genes. Although sandbar shark beta2m protein contains one beta sheet less than that of human in the predicted protein structure, the overall structure of beta2m proteins is conserved during evolution. Germline gene for the beta2m in sandbar and nurse shark is present as a single locus. It contains three exons and two introns. CpG sites are evenly distributed in the shark beta2m loci. Several DNA repeat elements were also identified in the shark beta2m loci. Sequence analysis suggests that the beta2m locus is not linked to the MHC I loci in the shark genome.

  13. Origin of life. Primordial genetics: Information transfer in a pre-RNA world based on self-replicating beta-sheet amyloid conformers.

    Science.gov (United States)

    Maury, Carl Peter J

    2015-10-07

    The question of the origin of life on Earth can largely be reduced to the question of what was the first molecular replicator system that was able to replicate and evolve under the presumably very harsh conditions on the early Earth. It is unlikely that a functional RNA could have existed under such conditions and it is generally assumed that some other kind of information system preceded the RNA world. Here, I present an informational molecular system that is stable, self-replicative, environmentally responsive, and evolvable under conditions characterized by high temperatures, ultraviolet and cosmic radiation. This postulated pregenetic system is based on the amyloid fold, a functionally unique polypeptide fold characterized by a cross beta-sheet structure in which the beta strands are arranged perpendicular to the fiber axis. Beside an extraordinary structural robustness, the amyloid fold possesses a unique ability to transmit information by a three-dimensional templating mechanism. In amyloidogenesis short peptide monomers are added one by one to the growing end of the fiber. From the same monomeric subunits several structural variants of amyloid may be formed. Then, in a self-replicative mode, a specific amyloid conformer can act as a template and confer its spatially encoded information to daughter molecular entities in a repetitive way. In this process, the specific conformational information, the spatially changed organization, is transmitted; the coding element is the steric zipper structure, and recognition occurs by amino acid side chain complementarity. The amyloid information system fulfills several basic requirements of a primordial evolvable replicator system: (i) it is stable under the presumed primitive Earth conditions, (ii) the monomeric building blocks of the informational polymer can be formed from available prebiotic compounds, (iii) the system is self-assembling and self-replicative and (iv) it is adaptive to changes in the environment and

  14. Toxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure.

    Science.gov (United States)

    Celej, María Soledad; Sarroukh, Rabia; Goormaghtigh, Erik; Fidelio, Gerardo D; Ruysschaert, Jean-Marie; Raussens, Vincent

    2012-05-01

    Parkinson's disease is an age-related movement disorder characterized by the presence in the mid-brain of amyloid deposits of the 140-amino-acid protein AS (α-synuclein). AS fibrillation follows a nucleation polymerization pathway involving diverse transient prefibrillar species varying in size and morphology. Similar to other neurodegenerative diseases, cytotoxicity is currently attributed to these prefibrillar species rather than to the insoluble aggregates. Nevertheless, the underlying molecular mechanisms responsible for cytotoxicity remain elusive and structural studies may contribute to the understanding of both the amyloid aggregation mechanism and oligomer-induced toxicity. It is already recognized that soluble oligomeric AS species adopt β-sheet structures that differ from those characterizing the fibrillar structure. In the present study we used ATR (attenuated total reflection)-FTIR (Fourier-transform infrared) spectroscopy, a technique especially sensitive to β-sheet structure, to get a deeper insight into the β-sheet organization within oligomers and fibrils. Careful spectral analysis revealed that AS oligomers adopt an antiparallel β-sheet structure, whereas fibrils adopt a parallel arrangement. The results are discussed in terms of regions of the protein involved in the early β-sheet interactions and the implications of such conformational arrangement for the pathogenicity associated with AS oligomers.

  15. Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy

    Directory of Open Access Journals (Sweden)

    L. M. Zelenyi

    2004-01-01

    Full Text Available Thin current sheets represent important and puzzling sites of magnetic energy storage and subsequent fast release. Such structures are observed in planetary magnetospheres, solar atmosphere and are expected to be widespread in nature. The thin current sheet structure resembles a collapsing MHD solution with a plane singularity. Being potential sites of effective energy accumulation, these structures have received a good deal of attention during the last decade, especially after the launch of the multiprobe CLUSTER mission which is capable of resolving their 3D features. Many theoretical models of thin current sheet dynamics, including the well-known current sheet bifurcation, have been developed recently. A self-consistent 1D analytical model of thin current sheets in which the tension of the magnetic field lines is balanced by the ion inertia rather than by the plasma pressure gradients was developed earlier. The influence of the anisotropic electron population and of the corresponding electrostatic field that acts to restore quasi-neutrality of the plasma is taken into account. It is assumed that the electron motion is fluid-like in the direction perpendicular to the magnetic field and fast enough to support quasi-equilibrium Boltzmann distribution along the field lines. Electrostatic effects lead to an interesting feature of the current density profile inside the current sheet, i.e. a narrow sharp peak of electron current in the very center of the sheet due to fast curvature drift of the particles in this region. The corresponding magnetic field profile becomes much steeper near the neutral plane although the total cross-tail current is in all cases dominated by the ion contribution. The dependence of electrostatic effects on the ion to electron temperature ratio, the curvature of the magnetic field lines, and the average electron magnetic moment is also analyzed. The implications of these effects on the fine structure of thin current sheets

  16. Thermal properties of highly structured composite and aluminium sheets in an aerodynamic tunnel

    Science.gov (United States)

    Kulhavy, Petr; Egert, Josef

    This article deals with the thermodynamic behaviour of heat shields - structured metal and composite plates. Experiments have been carried out in a wind tunnel with an additional heating, which simulates the heat source from engine or exhaust pipe and simultaneously the airflow generated during a car movement. The tested sheets with hexagonal structure were a standard commercial made of aluminium and a second manufactured by replication (lamination, diffusion) from glass fabric. The airflow in a parallel way along the sheets was analysed experimentally in order to determine the heat transfer efficiency between surfaces of sheets and surrounding airflow. The temperature on the sheets was chosen to observe the effects of different sheets material, various heat power and airflow velocity. During the experiment a thermal input below the sheets and airflow velocity through the tunnel have been changed. The thermal field distribution on the metal sheet is different than in case of composite sheet. For the composite material the thermal field distribution was more homogeneous. This article describe briefly also methods of obtaining real composite geometry based on scanned data and their reconstruction for using in some future numerical models.

  17. Thermal properties of highly structured composite and aluminium sheets in an aerodynamic tunnel

    Directory of Open Access Journals (Sweden)

    Kulhavy Petr

    2017-01-01

    Full Text Available This article deals with the thermodynamic behaviour of heat shields - structured metal and composite plates. Experiments have been carried out in a wind tunnel with an additional heating, which simulates the heat source from engine or exhaust pipe and simultaneously the airflow generated during a car movement. The tested sheets with hexagonal structure were a standard commercial made of aluminium and a second manufactured by replication (lamination, diffusion from glass fabric. The airflow in a parallel way along the sheets was analysed experimentally in order to determine the heat transfer efficiency between surfaces of sheets and surrounding airflow. The temperature on the sheets was chosen to observe the effects of different sheets material, various heat power and airflow velocity. During the experiment a thermal input below the sheets and airflow velocity through the tunnel have been changed. The thermal field distribution on the metal sheet is different than in case of composite sheet. For the composite material the thermal field distribution was more homogeneous. This article describe briefly also methods of obtaining real composite geometry based on scanned data and their reconstruction for using in some future numerical models.

  18. Filament structure, organization, and dynamics in MreB sheets.

    Science.gov (United States)

    Popp, David; Narita, Akihiro; Maeda, Kayo; Fujisawa, Tetsuro; Ghoshdastider, Umesh; Iwasa, Mitsusada; Maéda, Yuichiro; Robinson, Robert C

    2010-05-21

    In vivo fluorescence microscopy studies of bacterial cells have shown that the bacterial shape-determining protein and actin homolog, MreB, forms cable-like structures that spiral around the periphery of the cell. The molecular structure of these cables has yet to be established. Here we show by electron microscopy that Thermatoga maritime MreB forms complex, several mum long multilayered sheets consisting of diagonally interwoven filaments in the presence of either ATP or GTP. This architecture, in agreement with recent rheological measurements on MreB cables, may have superior mechanical properties and could be an important feature for maintaining bacterial cell shape. MreB polymers within the sheets appear to be single-stranded helical filaments rather than the linear protofilaments found in the MreB crystal structure. Sheet assembly occurs over a wide range of pH, ionic strength, and temperature. Polymerization kinetics are consistent with a cooperative assembly mechanism requiring only two steps: monomer activation followed by elongation. Steady-state TIRF microscopy studies of MreB suggest filament treadmilling while high pressure small angle x-ray scattering measurements indicate that the stability of MreB polymers is similar to that of F-actin filaments. In the presence of ADP or GDP, long, thin cables formed in which MreB was arranged in parallel as linear protofilaments. This suggests that the bacterial cell may exploit various nucleotides to generate different filament structures within cables for specific MreB-based functions.

  19. Synthesis of conformationally restricted beta-turn mimics

    NARCIS (Netherlands)

    IJsselstijn, M.

    2006-01-01

    This thesis aims at developing methods for introducing conformational restriction in Beta-turns, the turn elements present in Beta-sheets. A conformationally restricted peptide might either be formed via incorporation of a bridging diamino acids in a growing peptide chain, or via covalent bond

  20. Laminated multilayer sheet structure and its utilization

    International Nuclear Information System (INIS)

    Chiba, K.; Itoh, K.; Mitani, Y.; Sobajima, S.; Yonemura, U.

    1980-01-01

    A laminated multilayer sheet structure is described comprising (A) an opaque flexible sheet layer, and (B) a flexible layer laminated on the surface of layer (A) and composed of a transparent thermic ray reflecting layer (B 1 ) bonded to a transparent synthetic resin layer (B 2 ), said layer (B 1 ) being a transparent thermic ray reflecting layer composed of (I) a layer of a metal having a thickness of about 50 to about 600 A, said metal being selected from the group consisting of gold, silver, copper, aluminum and a mixture of alloy of at least two of said metals, and (II) a high refractive substance layer having a thickness of about 50 to about 600 A, of an oxide of titanium derived from a layer of an organic titanium compound of the formula Ti 1 O/sub m/R/sub n/, where R is alkyl of 1-20 carbon atoms, l=1-30, m=4+3(1-1), and n=4+2(1-1), and containing the organic residual moiety of the organic titanium compound, the amount of said organic residual moiety being 0.1 to 30% by weight based on the weight of the high refractive substance layer; or said layer (B 1 ) being a transparent semiconductive layer having a thickness of about 500 to about 5,000 a and being composed of a compound selected from the group consisting of indium oxide, tin oxide, cadmium oxide, antimony oxide, copper iodide, and a mixture of at least two of said compounds. A method is described for heat-insulating a room, which comprises applying to the surface of a floor, wall, ceiling or partition in the room a laminated multilayer sheet structure comprising (A) an opaque flexible sheet layer, and (B) a flexible layer laminated on the surface of layer (A) and composed of a transparent thermic ray reflecting layer (B 1 ) bonded to a transparent synthetic resin layer

  1. Folding control in cyclic peptides through N-methylation pattern selection: formation of antiparallel beta-sheet dimers, double reverse turns and supramolecular helices by 3alpha,gamma cyclic peptides.

    Science.gov (United States)

    Amorín, Manuel; Castedo, Luis; Granja, Juan R

    2008-01-01

    Peptide foldamers constitute a growing class of nanomaterials with potential applications in a wide variety of chemical, medical and technological fields. Here we describe the preparation and structural characteristics of a new class of cyclic peptide foldamers (3alpha,gamma-CPs) that, depending on their backbone N-methylation patterns and the medium, can either remain as flat rings that dimerize through arrays of hydrogen bonds of antiparallel beta-sheet type, or can fold into twisted double reverse turns that, in the case of double gamma-turns, associate in nonpolar solvents to form helical supramolecular structures. A 3alpha,gamma-CP consists of a number of multiples of a repeat unit made up of four amino acid residues of alternating chirality: three corresponding to alpha-amino acids and one to a gamma-amino acid (a cis-3-aminocycloalkanecarboxylic acid).

  2. Single crystalline electronic structure and growth mechanism of aligned square graphene sheets

    Science.gov (United States)

    Yang, H. F.; Chen, C.; Wang, H.; Liu, Z. K.; Zhang, T.; Peng, H.; Schröter, N. B. M.; Ekahana, S. A.; Jiang, J.; Yang, L. X.; Kandyba, V.; Barinov, A.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Peng, H. L.; Liu, Z. F.; Chen, Y. L.

    2018-03-01

    Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES) to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation). Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001) copper surface structure but also discovered that the square graphene sheets' sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures)

  3. Structural elements regulating amyloidogenesis: a cholinesterase model system.

    Directory of Open Access Journals (Sweden)

    Létitia Jean

    2008-03-01

    Full Text Available Polymerization into amyloid fibrils is a crucial step in the pathogenesis of neurodegenerative syndromes. Amyloid assembly is governed by properties of the sequence backbone and specific side-chain interactions, since fibrils from unrelated sequences possess similar structures and morphologies. Therefore, characterization of the structural determinants driving amyloid aggregation is of fundamental importance. We investigated the forces involved in the amyloid assembly of a model peptide derived from the oligomerization domain of acetylcholinesterase (AChE, AChE(586-599, through the effect of single point mutations on beta-sheet propensity, conformation, fibrilization, surfactant activity, oligomerization and fibril morphology. AChE(586-599 was chosen due to its fibrilization tractability and AChE involvement in Alzheimer's disease. The results revealed how specific regions and residues can control AChE(586-599 assembly. Hydrophobic and/or aromatic residues were crucial for maintaining a high beta-strand propensity, for the conformational transition to beta-sheet, and for the first stage of aggregation. We also demonstrated that positively charged side-chains might be involved in electrostatic interactions, which could control the transition to beta-sheet, the oligomerization and assembly stability. Further interactions were also found to participate in the assembly. We showed that some residues were important for AChE(586-599 surfactant activity and that amyloid assembly might preferentially occur at an air-water interface. Consistently with the experimental observations and assembly models for other amyloid systems, we propose a model for AChE(586-599 assembly in which a steric-zipper formed through specific interactions (hydrophobic, electrostatic, cation-pi, SH-aromatic, metal chelation and polar-polar would maintain the beta-sheets together. We also propose that the stacking between the strands in the beta-sheets along the fiber axis could

  4. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure.

    Science.gov (United States)

    Akahane, M; Shimizu, T; Kira, T; Onishi, T; Uchihara, Y; Imamura, T; Tanaka, Y

    2016-11-01

    To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis.Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569-576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1. © 2016 Akahane et al.

  5. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Rasmussen, Søren Gøgsig Faarup; Choi, Hee-Jung; Rosenbaum, Daniel M

    2007-01-01

    Structural analysis of G-protein-coupled receptors (GPCRs) for hormones and neurotransmitters has been hindered by their low natural abundance, inherent structural flexibility, and instability in detergent solutions. Here we report a structure of the human beta2 adrenoceptor (beta2AR), which was ...

  6. Nanostructure characterization of beta-sheet crystals in silk under various temperatures

    Directory of Open Access Journals (Sweden)

    Zhang Yan

    2014-01-01

    Full Text Available This paper studies the nanostructure characterizations of β-sheet in silk fiber with different reaction temperatures. A molecular dynamic model is developed and simulated by Gromacs software packages. The results reveal the change rules of the number of hydrogen bonds in β-sheet under different temperatures. The best reaction temperature for the β-sheet crystals is also found. This work provides theoretical basis for the designing of materials based on silk.

  7. Structural stabilities and electronic properties of fully hydrogenated SiC sheet

    International Nuclear Information System (INIS)

    Wang, Xin-Quan; Wang, Jian-Tao

    2011-01-01

    The intriguing structural and electronic properties of fully hydrogenated SiC honeycomb sheet are studied by means of ab initio calculations. Based on structure optimization and phonon dispersion analysis, we find that both chair-like and boat-like configurations are dynamically stable, and the chair-like conformer is energetically more favored with an energy gain of 0.03 eV per C atom relative to the boat-like one. The chair-like and boat-like conformers are revealed to be nonmagnetic semiconductors with direct band gaps of 3.84 and 4.29 eV, respectively, both larger than 2.55 eV of pristine SiC sheet. The charge density distributions show that the bondings are characterized with covalency for both chair-like and boat-like conformers. -- Highlights: → Structural and electronic properties of fully hydrogenated SiC sheet are studied. → Both chair-like and boat-like configurations are dynamically stable. → While the chair-like conformer is energetically more favored. → The chair-like and boat-like conformers are nonmagnetic semiconductors. → The bondings are characterized with covalency.

  8. Structure modeling and mutational analysis of gap junction beta 2 ...

    African Journals Online (AJOL)

    Yomi

    2012-04-03

    Apr 3, 2012 ... Three dimensional (3 D) structure is very useful for understanding biological functions. Gap junction beta 2 (GJB2), human gene encoding for gap junction beta 2 protein is involved in ... Research in deafness became real.

  9. Effect of conformational propensity of peptide antigens in their interaction with MHC class II molecules. Failure to document the importance of regular secondary structures

    DEFF Research Database (Denmark)

    Sette, A; Lamont, A; Buus, S

    1989-01-01

    the binding capacity, but no correlation was found between their effect and their alpha-helical, beta-sheet, or beta-turn conformational propensity as calculated by the Chou and Fasman algorithm. In summary, all the data presented herein suggest that, at least in the case of OVA 323-336 and IAd......, the propensity of the antigen molecule to form secondary structures such as alpha-helices, beta-sheets, or beta-turns does not correlate with its capacity to bind MHC molecules....

  10. Development of manufacturing process for production of 500 MWe calandria sheets

    International Nuclear Information System (INIS)

    Hariharan, R.; Ramesh, P.; Lakshminarayana, B.; Bhaskara Rao, C.V.; Pande, P.; Agarwala, G.C.

    1992-01-01

    Calandria tubes made of zircaloy-2 are being used as structural components in pressurised heavy water power reactors. The sheets required for producing calandria tube for 235 MWe reactors are being manufactured at Zircaloy Fabrication Plant (ZFP), NFC utilizing a 2 Hi/4 Hi rolling mill procured for the purpose, by carrying out cold rolling process to achieve the required size after hot rolling suitable extruded slabs. Due to limitation of width of the sheet that can be rolled with the mill as well as the size of the slab that can be extruded with the existing press, difficulties arose in producing acceptable full length sheets of size 6600 mm long x 435 mm wide x 1.6 mm thick for manufacturing 500 MWe calandria tube. This paper deals with the details of the process problem resolved. They are: (a)designing of suitable hot and cold rolling pass schedules, (b)selection and standardization of process parameters such as beta quenching, hot rolling and cold rolling, and (c)details of the overall manufacturing process. Due to implementation of above, sheets required for manufacturing 500 MWe calandria tube sheets were successfully rolled. About 40 nos. of acceptable full length sheets have already been manufactured. (author). 1 fig., 3 tabs

  11. Single crystalline electronic structure and growth mechanism of aligned square graphene sheets

    Directory of Open Access Journals (Sweden)

    H. F. Yang

    2018-03-01

    Full Text Available Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation. Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001 copper surface structure but also discovered that the square graphene sheets’ sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures

  12. Preliminary Investigation of Impact on Multiple-Sheet Structures and an Evaluation of the Meteoroid Hazard to Space Vehicles

    Science.gov (United States)

    Nysmith, C. Robert; Summers, James L.

    1961-01-01

    Small pyrex glass spheres, representative of stoney meteoroids, were fired into 2024-T3 aluminum alclad multiple-sheet structures at velocities to 11,000 feet per second to evaluate the effectiveness of multisheet hull construction as a means of increasing the resistance of a spacecraft to meteoroid penetrations. The results of these tests indicate that increasing the number of sheets in a structure while keeping the total sheet thickness constant and increasing the spacing between sheets both tend to increase the penetration resistance of a structure of constant weight per unit area. In addition, filling the space between the sheets with a light filler material was found to substantially increase structure penetration resistance with a small increase in weight. An evaluation of the meteoroid hazard to space vehicles is presented in the form of an illustrative-example for two specific lunar mission vehicles, a single-sheet, monocoque hull vehicle and a glass-wool filled, double-sheet hull vehicle. The evaluation is presented in terms of the "best" and the "worst" conditions that might be expected as determined from astronomical and satellite measurements, high-speed impact data, and hypothesized meteoroid structures and compositions. It was observed that the vehicle flight time without penetration can be increased significantly by use of multiple-sheet rather than single-sheet hull construction with no increase in hull weight. Nevertheless, it is evident that a meteoroid hazard exists, even for the vehicle with the selected multiple-sheet hull.

  13. Monitoring dc stray current corrosion at sheet pile structures

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2012-01-01

    Steel is discarded by railway owners as a material for underground structures near railway lines, due to uncertainty over increased corrosion by DC stray currents stemming from the traction power system. This paper presents a large scale field test in which stray currents interference of a sheet

  14. MHD Ballooning Instability in the Plasma Sheet

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Zaharia, S.

    2003-01-01

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum

  15. AFM observation of silk fibroin on mica substrates: morphologies reflecting the secondary structures

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kazushi; Tsuboi, Yasuyuki; Itaya, Akira

    2003-09-01

    Bombyx mori silk fibroin was fixed on mica substrates by cast of aqueous fibroin solutions, and the microscopic morphologies of the samples were revealed by means of atomic force microscopy. By adjusting the method used to prepare the solution, we succeeded in forming quasi-2-dimensional thin films in which a network of fibroin molecules developed over the substrate. The film network consisted of fibroin in a random coil structure. The morphology of the network changed after thermal or methanol treatments, which are known to convert the secondary structure of fibroin from the random coil to the {beta}-sheet type. In both of these cases, the network morphology disappeared and characteristic island-like morphologies appeared. On the other hand, temporally evolving gelation occurred in a fibroin solution due to the formation of {beta}-sheet crystals. Such islands were also observable in a specimen prepared by the cast of the gel-containing solution. Based on these results, it was concluded that the islands consist of {beta}-sheet crystals. Of particular interest is the observation that all of the islands had a common thickness value of 1.3 nm. These morphologies are discussed in terms of the secondary structure of fibroin.

  16. [Effect of sulfonation of polyethersulfone sheets on the adsorption of beta2-microglobulin].

    Science.gov (United States)

    Cheng, Liping; Sun, Shudong; Yue, Yilun; Huang, Jia; Mao, Huayi; Liang, Bo

    2005-06-01

    This study was performed to evaluate the adsorption of beta2-microglobulin(beta2 M) by blood dialysis membrane materials which are polyethersulfone (PES), sulfonated polyethersulfones, (PES-SO3Na-I and PES-SO3Na-I ) in vitro incubated in human serum and radiolabeled beta2M (125I-beta2 M) solution respectively. In these experiments, the materials were incubated in 125I-beta2 M solution and human serum at the appointed time ranging from 15 minutes to four hours at 37 degrees C, and then the amounts of 125I-beta2M and serum beta2M adsorbed by materials were measured by radioimmunoassay (RIA). In the 125I-beta2 M system, amounts of 125I-beta2M adsorbed by the materials decreased in sequence of PES-SO3 Na-II > PES-SO3Na-I > PES. In the serum system, amounts of beta2M adsorbed reached maximums at 30 minutes and the final adsorptions decreased in sequence of PES-SO3Na-II > PES-SO3Na-I > PES. Sulfonated PES removes beta2M more than PES does and the adsorption of beta2M increases with the increase in the degree of sulfonation. Its ability to remove significant amount of beta2M may result in less beta2M available for incorporation into amyloid. The use of PES-SO3Na membranes lessens the likelihood of dialysis-related amyloidosis (DRA) development, which remains a major source of morbidity for patients treated with long-term hemodialysis.

  17. Simulation of auroral current sheet equilibria and associated V-shaped potential structures

    International Nuclear Information System (INIS)

    Singh, N.; Thiemann, H.; Schunk, R.W.

    1983-01-01

    Results from numerical simulations of auroral current sheet equilibrium and associated V-shaped potential structures are presented. It is shown that with allowance for both hot magnetospheric ion and cold ionospheric ion populations, the perpendicular potential drop, assiciated with a non-neutral auroral current sheet is critically controlled by the temperature of the 'heated' ionospheric ions. The heating is caused by the wave turbulence excited by the auroral current sheet. In the presence of heated ionospheric ions, a relatively large variation in the temperature of the hot magnetospheric ion population causes a very small variation in the potential drop thetam. The perpendicular potential drop acts to produce a V-shaped double layer with multiple potential steps parallel to the magnetic field when a zero potential boundary condition is imposed at the ionospheric boundary. Outside the V-shaped potential structure, ionospheric return currents develop self-consistently

  18. Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber.

    Science.gov (United States)

    Papanikolopoulou, Katerina; Schoehn, Guy; Forge, Vincent; Forsyth, V Trevor; Riekel, Christian; Hernandez, Jean-François; Ruigrok, Rob W H; Mitraki, Anna

    2005-01-28

    Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.

  19. Primary structure of the hemoglobin beta-chain of rose-ringed parakeet (Psittacula krameri).

    Science.gov (United States)

    Islam, A; Persson, B; Zaidi, Z H; Jörnvall, H

    1989-08-01

    The primary structure of Rose-ringed Parakeet hemoglobin beta-chain was established, completing the analysis of this hemoglobin. Comparison with other avian beta-chains show variations smaller than those for the corresponding alpha-chains. There are 11 amino acid exchanges in relationship to the only other characterized psittaciform beta-chain, and a total of 35 positions are affected by differences among all avian beta-chains analyzed (versus 61 for the alpha-chains). At three positions, the Psittacula beta-chain has residues unique to this species. Three alpha 1 beta 1 contacts are modified, by substitutions at positions beta 51, beta 116, and beta 125.

  20. Hydrogen diffusion in a one domain. beta. -V sub 2 H single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Richter, D.; Mahling-Ennaoui, S. (Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)); Hempelmann, R. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Festkoerperforschung)

    1989-01-01

    The authors present first quasielastic neutron scattering experiments on hydrogen diffusion in a one-domain crystal of the ordered metal hydride {beta}-V{sub 2}H. The experiments led to a detailed evaluation of the microscopic jump geometries. At temperatures at which the structure is still intact the main diffusion channel leads across antistructural sites situated in empty layers in between occupied H-sheets. (orig.).

  1. Structure of a WW domain-containing fragment of dystrophin complexed with {beta}-dystroglycan.

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.; Poy, F.; Zhang, R.; Joachimiak, A.; Sudol, M.; Eck, M. J.; Biosciences Division; Dana Farber Cancer Inst.; Harvard Medical School; Mount Sinai School of Medicine

    2000-08-01

    Dystrophin and {beta}-dystroglycan are components of the dystrophin--glycoprotein complex (DGC), a multimolecular assembly that spans the cell membrane and links the actin cytoskeleton to the extracellular basal lamina. Defects in the dystrophin gene are the cause of Duchenne and Becker muscular dystrophies. The C-terminal region of dystrophin binds the cytoplasmic tail of {beta}-dystroglycan, in part through the interaction of its WW domain with a proline-rich motif in the tail of {beta}-dystroglycan. Here we report the crystal structure of this portion of dystrophin in complex with the proline-rich binding site in {beta}-dystroglycan. The structure shows that the dystrophin WW domain is embedded in an adjacent helical region that contains two EF-hand-like domains. The {beta}-dystroglycan peptide binds a composite surface formed by the WW domain and one of these EF-hands. Additionally, the structure reveals striking similarities in the mechanisms of proline recognition employed by WW domains and SH3 domains.

  2. Influence of Philosamia ricini silk fibroin components on morphology, secondary structure and thermal properties of chitosan biopolymer film.

    Science.gov (United States)

    Prasong, S; Nuanchai, K; Wilaiwan, S

    2009-09-15

    This study aimed to prepare Eri (Philosamia ricini) Silk Fibroin (SF)/chitosan (CS) blend films by a solvent evaporation method and to compare the blend films with both native SF and CS films. Influence of SF ratios on the morphology, secondary structure and thermal decomposition of the CS blend films were investigated. The native SF and CS films were uniform and homogeneous without phase separation. For the blend films, the uniform can be found less than 60% of SF composition. All of SF/CS blend films showed both SF and CS characteristics. FT-IR results showed that the blend films composed of both random coil and beta-sheet with predominant of beta-sheet form. Interaction of intermolecular between SF and CS have occurred which were measured by thermogravimetric thermograms. Increasing of SF contents was leading to the increase of beta-sheet structures which were enhanced the thermal stability of the CS blend films.

  3. Conformational changes of the amyloid beta-peptide (1-40) adsorbed on solid surfaces

    NARCIS (Netherlands)

    Giacomelli, CE; Norde, W

    2005-01-01

    The conformational change of the 39-43 residues of the amyloid beta-peptide (A beta) toward a beta-sheet enriched state promotes self-aggregation of the peptide molecules and constitutes the major peptide component of the amyloid plaques in Alzheimer patients. The crucial question behind the

  4. Conformational changes of the amyloid beta-peptide (1-40) adsorbed on solid surfaces

    NARCIS (Netherlands)

    Giacomelli, C.E.; Norde, W.

    2005-01-01

    The conformational change of the 39-43 residues of the amyloid beta -peptide (A beta) toward a beta -sheet enriched state promotes self-aggregation of the peptide molecules and constitutes the major peptide component of the amyloid plaques in Alzheimer patients. The crucial question behind the

  5. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function

    DEFF Research Database (Denmark)

    Rosenbaum, Daniel M; Cherezov, Vadim; Hanson, Michael A

    2007-01-01

    The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its cr...

  6. Structure of poly (. beta. -alanine) polymerized in the solid state. Koso jugo shita. beta. -alanine no kozo

    Energy Technology Data Exchange (ETDEWEB)

    Sakabe, Hiroshi; Nakamura, Hiroyoshi; Kimura, Hirokazu; Konishi, Takashi [Kyoto Inst. of Tech., Kyoto (Japan). Faculty of Textile Science

    1989-12-05

    The structure of poly({beta}-alanine) polymerized in the solid state was studied. This polymerization was carried out on a single crystal of {beta}-alanine at 170 centigrade for 40 h in an evacuated tube. The crystal structure of the polymer was assigned to I-type crystal of Nylon 3. The polymer chains were oriented vertical to the crystal side and different to monomer crystal orientation. This may be caused by the molecular layer slipping along the cleavage plane of monomer crystal. A scanning electron microscope(SEM) showed the band structure of hundreds nm width of same orientation, but X ray showed only unoriented rings, so that they are estimated to be the structure of fine fibril like assembly or necklace like continuous chain structure of grains. Near the surface, whiskers which were thought to be oligomer of low degree of polymerization, were observed. The SEM of end view of the etched surface did not show the laminated structure but showed the network structure of about 1 mu-m which is thought to be fibril precursor. 12 refs., 10 figs.

  7. Superplastic Forming/Adhesive Bonding of Aluminum (SPF/AB) Multi-Sheet Structures

    Science.gov (United States)

    Wagner, John A. (Technical Monitor); Will, Jeff D.; Cotton, James D.

    2003-01-01

    A significant fraction of airframe structure consists of stiffened panels that are costly and difficult to fabricate. This program explored a potentially lower-cost processing route for producing such panels. The alternative process sought to apply concurrent superplastic forming and adhesive bonding of aluminum alloy sheets. Processing conditions were chosen to balance adequate superplasticity of the alloy with thermal stability of the adhesive. As a first objective, an air-quenchable, superplastic aluminum-lithium alloy and a low-volatile content, low-viscosity adhesive with compatible forming/curing cycles were identified. A four-sheet forming pack was assembled which consisted of a welded two-sheet core separated from the face sheets by a layer of adhesive. Despite some preliminary success, of over 30 forming trials none was completely successful. The main problem was inadequate superplasticity in the heat-affected zones of the rib welds, which generally fractured prior to completion of the forming cycle. The welds are a necessary component in producing internal ribs by the 'four-sheet' process. Other challenges, such as surface preparation and adhesive bonding, were adequately solved. But without the larger issue of tearing at the weld locations, complex panel fabrication by SPF/AB does not appear viable.

  8. Phoswich Detector for Simultaneous Counting of Alpha- and Beta-ray in a Pipe during Decommissioning

    International Nuclear Information System (INIS)

    Seo, B.K.; Kim, G.H.; Woo, Z.H.; Jung, Y.H.; Oh, W.Z.; Lee, K.W.; Han, M.J.

    2006-01-01

    A great quantity of waste has been generated during the decommissioning of nuclear facilities. These wastes are contaminated with various types of alpha, beta, and gamma nuclides. The contamination level of the decommissioning wastes must be surveyed for free release, but it is very difficult to monitor the radioactive contamination level of the pipe inside using conventional counting methods because of the small diameter. In this study a Phoswich detector for simultaneous counting of alpha- and beta-rays in a pipe was developed. The Phoswich detector is convenient for monitoring of alpha and beta contamination using only a single detector, which was composed of thin cylindrical ZnS(Ag) and plastic scintillator. The scintillator for counting an alpha particle has been applied a cylindrical polymer composite sheet, having a double layer structure of an inorganic scintillator ZnS(Ag) layer adhered onto a polymer sub-layer. The sub-layer in an alpha particle counting sheet is made of polysulfone, working as a mechanical and optical support. The ZnS(Ag) layer is formed by coating a ternary mixture of ZnS(Ag), cyano resin as a binder and solvent onto the top of a sub-layer via the screen printing method. The other layer for counting a beta particle used a commercially available plastic scintillator. The plastic scintillator was simulated by using the Monte Carlo simulation method for detection of beta radiation emitted from internal surfaces of small diameter pipe. Simulation results predicted the optimum thickness and geometry of plastic scintillator at which energy absorption for beta radiation was maximized. Characteristics of the detector fabricated were also estimated. As a result, it was confirmed that detector capability was suitable for counting the beta ray. The overall counting results reveal that the developed Phoswich detector is efficient for simultaneous counting of alpha and beta ray in a pipe. (authors)

  9. EGCG Inhibited Lipofuscin Formation Based on Intercepting Amyloidogenic β-Sheet-Rich Structure Conversion.

    Directory of Open Access Journals (Sweden)

    Shuxian Cai

    Full Text Available Lipofuscin (LF is formed during lipid peroxidation and sugar glycosylation by carbonyl-amino crosslinks with biomacrolecules, and accumulates slowly within postmitotic cells. The environmental pollution, modern dietary culture and lifestyle changes have been found to be the major sources of reactive carbonyl compounds in vivo. Irreversible carbonyl-amino crosslinks induced by carbonyl stress are essentially toxiferous for aging-related functional losses in modern society. Results show that (--epigallocatechin gallate (EGCG, the main polyphenol in green tea, can neutralize the carbonyl-amino cross-linking reaction and inhibit LF formation, but the underlying mechanism is unknown.We explored the mechanism of the neutralization process from protein, cell, and animal levels using spectrofluorometry, infrared spectroscopy, conformation antibodies, and electron microscopy. LF demonstrated an amyloidogenic β-sheet-rich with antiparallel structure, which accelerated the carbonyl-amino crosslinks formation and disrupted proteolysis in both PC12 cells and D-galactose (D-gal-induced brain aging mice models. Additionally, EGCG effectively inhibited the formation of the amyloidogenic β-sheet-rich structure of LF, and prevented its conversion into toxic and on-pathway aggregation intermediates, thereby cutting off the carbonyl-amino crosslinks.Our study indicated that the amyloidogenic β-sheet structure of LF may be the core driving force for carbonyl-amino crosslinks further formation, which mediates the formation of amyloid fibrils from native state of biomacrolecules. That EGCG exhibits anti-amyloidogenic β-sheet-rich structure properties to prevent the LF formation represents a novel strategy to impede the development of degenerative processes caused by ageing or stress-induced premature senescence in modern environments.

  10. Improvement of formability for fabricating thin continuously corrugated structures in sheet metal forming process

    International Nuclear Information System (INIS)

    Choi, Sung Woo; Park, Sang Hu; Park, Seong Hun; Ha, Man Yeong; Jeong, Ho Seung; Cho, Jong Rae

    2012-01-01

    A stamping process is widely used for fabricating various sheet metal parts for vehicles, airplanes, and electronic devices by the merit of low processing cost and high productivity. Recently, the use of thin sheets with a corrugated structure for sheet metal parts has rapidly increased for use in energy management devices, such as heat exchangers, separators in fuel cells, and many others. However, it is not easy to make thin corrugated structures directly using a single step stamping process due to their geometrical complexity and very thin thickness. To solve this problem, a multi step stamping (MSS) process that includes a heat treatment process to improve formability is proposed in this work: the sequential process is the initial stamping, heat treatment, and final shaping. By the proposed method, we achieved successful results in fabricating thin corrugated structures with an average thickness of 75μm and increased formability of about 31% compared to the single step stamping process. Such structures can be used in a plate-type heat exchanger requiring low weight and a compact shape

  11. Sheet-like carbon particles with graphene structures obtained from a Bunsen flame

    DEFF Research Database (Denmark)

    Ossler, Frederik; Wagner, Jakob Birkedal; Canton, Sophie E.

    2010-01-01

    for structural and elemental analysis. They were found to be several hundreds of nanometers in size. Such large structures are not easily explained from gas-phase kinetic models, yet the sheets occurred relatively frequent in the images. Some pictures also showed interesting polygonal few-layered graphitic...

  12. Prediction and analysis of beta-turns in proteins by support vector machine.

    Science.gov (United States)

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao

    2003-01-01

    Tight turn has long been recognized as one of the three important features of proteins after the alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns. Analysis and prediction of beta-turns in particular and tight turns in general are very useful for the design of new molecules such as drugs, pesticides, and antigens. In this paper, we introduce a support vector machine (SVM) approach to prediction and analysis of beta-turns. We have investigated two aspects of applying SVM to the prediction and analysis of beta-turns. First, we developed a new SVM method, called BTSVM, which predicts beta-turns of a protein from its sequence. The prediction results on the dataset of 426 non-homologous protein chains by sevenfold cross-validation technique showed that our method is superior to the other previous methods. Second, we analyzed how amino acid positions support (or prevent) the formation of beta-turns based on the "multivariable" classification model of a linear SVM. This model is more general than the other ones of previous statistical methods. Our analysis results are more comprehensive and easier to use than previously published analysis results.

  13. Three-residue turns in alpha/beta-peptides and their application in the design of tertiary structures.

    Science.gov (United States)

    Sharma, Gangavaram V M; Nagendar, Pendem; Ramakrishna, Kallaganti V S; Chandramouli, Nagula; Choudhary, Madavi; Kunwar, Ajit C

    2008-06-02

    A new three-residue turn was serendipitously discovered in alpha/beta hybrid peptides derived from alternating C-linked carbo-beta-amino acids (beta-Caa) and L-Ala residues. The three-residue beta-alpha-beta turn at the C termini, nucleated by a helix at the N termini, resulted in helix-turn (HT) supersecondary structures in these peptides. The turn in the HT motif is stabilized by two H bonds-CO(i-2)-NH(i), with a seven-membered pseudoring (gamma turn) in the backward direction, and NH(i-2)-CO(i), with a 13-membered pseudoring in the forward direction (i being the last residue)--at the C termini. The study was extended to generalize the new three-residue turn (beta-alpha-beta) by using different alpha- and beta-amino acids. Furthermore, the HT motifs were efficiently converted, by an extension with helical oligomers at the C termini, into peptides with novel helix-turn-helix (HTH) tertiary structures. However, this resulted in the destabilization of the beta-alpha-beta turn with the concomitant nucleation of another three-residue turn, alpha-beta-beta, which is stabilized by 11- and 15-membered bifurcated H bonds. Extensive NMR spectroscopic studies were carried out to delineate the secondary and tertiary structures in these peptides, which are further supported by molecular dynamics (MD) investigations.

  14. SHEETSPAIR: A Database of Amino Acid Pairs in Protein Sheet Structures

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2007-10-01

    Full Text Available Within folded strands of a protein, amino acids (AAs on every adjacent two strands form a pair of AAs. To explore the interactions between strands in a protein sheet structure, we have established an Internet-accessible relational database named SheetsPairs based on SQL Server 2000. The database has collected AAs pairs in proteins with detailed information. Furthermore, it utilizes a non-freetext database structure to store protein sequences and a specific database table with a unique number to store strands, which provides more searching options and rapid and accurate access to data queries. An IIS web server has been set up for data retrieval through a custom web interface, which enables complex data queries. Also searchable are parallel or anti-parallel folded strands and the list of strands in a specified protein.

  15. Modelling of rational economic proportions of the balance sheet structure of the petrochemical enterprises

    Directory of Open Access Journals (Sweden)

    G. S. Tsvetkova

    2016-01-01

    Full Text Available The paper provides the assessment of the balance sheet structure of rival companies of a petrochemical complex of the Russian Federation. J. Aubert-Kriye's method is chosen as a main methodical tool. Practical demonstration of the method is offered on the example of the enterprises of petrochemical business of PJSC “Sibur”, PJSC “Nizhnekamskneftekhim” and JSC “Sterlitamak Petrochemical Plant”. The analysis of balance sheets showed that the enterprises have elements of irrational structure. “Sibur” differs in a low share of owner’s equity and a high share of long-term liabilities. “Nizhnekamskneftekhim” is characterized by the high share of owner’s equity which use for the purposes of development of the company and it is more expensive in comparison with liabilities. “Sterlitamak Petrochemical Plant” has excessive values of liquidity rates that demonstrates accumulation of a money, their derivation in receivables. At the same time, processes of ongoing investment in upgrade of the equipment and expansion of capacities require cause necessity of support of a rational balance sheet structure of the enterprises of a petrochemical complex. On the example of “Nizhnekamskneftekhim” modeling of a rational balance sheet structure of the company is carried out. The sequence of calculations included performing diagnostics of structural distribution of current assets and sources of means; determination of structure of financial and active elements of the entity; establishment of permissible limit of change of basic proportions and ratios by criterion of solvency and financial stability. Modeling of structure of a liability and current assets on the basis of the J. Aubert-Kriye's method showed a possibility of improvement of economic indicators of “Nizhnekamskneftekhim”. Further determination of range of tolerance for elements of the liabilities and current assets will allow to provide balance of economic proportions and

  16. Rapid fold and structure determination of the archaeal translation elongation factor 1{beta} from Methanobacterium thermoautotrophicum

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, Guennadi [McGill University, Department of Biochemistry (Canada); Ekiel, Irena [National Research Council of Canada, Biomolecular NMR Group, Sector of Pharmaceutical Biotechnology, Biotechnology Research Institute (Canada); Beglova, Natalia [McGill University, Department of Biochemistry (Canada); Yee, Adelinda; Dharamsi, Akil; Engel, Asaph [University of Toronto, Department of Medical Biophysics (Canada); Siddiqui, Nadeem; Nong, Andrew; Gehring, Kalle [McGill University, Department of Biochemistry (Canada)

    2000-07-15

    The tertiary fold of the elongation factor, aEF-1{beta}, from Methanobacterium thermoautotrophicum was determined in a high-throughput fashion using a minimal set of NMR experiments. NMR secondary structure prediction, deuterium exchange experiments and the analysis of chemical shift perturbations were combined to identify the protein fold as an alpha-beta sandwich typical of many RNA binding proteins including EF-G. Following resolution of the tertiary fold, a high resolution structure of aEF-1{beta} was determined using heteronuclear and homonuclear NMR experiments and a semi-automated NOESY assignment strategy. Analysis of the aEF-1{beta} structure revealed close similarity to its human analogue, eEF-1{beta}. In agreement with studies on EF-Ts and human EF-1{beta}, a functional mechanism for nucleotide exchange is proposed wherein Phe46 on an exposed loop acts as a lever to eject GDP from the associated elongation factor G-protein, aEF-1{alpha}. aEF-1{beta} was also found to bind calcium in the groove between helix {alpha}2 and strand {beta}4. This novel feature was not observed previously and may serve a structural function related to protein stability or may play a functional role in archaeal protein translation.

  17. Self-diagnosis of structures strengthened with hybrid carbon-fiber-reinforced polymer sheets

    Science.gov (United States)

    Wu, Z. S.; Yang, C. Q.; Harada, T.; Ye, L. P.

    2005-06-01

    The correlation of mechanical and electrical properties of concrete beams strengthened with hybrid carbon-fiber-reinforced polymer (HCFRP) sheets is studied in this paper. Two types of concrete beams, with and without reinforcing bars, are strengthened with externally bonded HCFRP sheets, which have a self-structural health monitoring function due to the electrical conduction and piezoresistivity of carbon fibers. Parameters investigated include the volume fractions and types of carbon fibers. According to the investigation, it is found that the hybridization of uniaxial HCFRP sheets with several different types of carbon fibers is a viable method for enhancing the mechanical properties and obtaining a built-in damage detection function for concrete structures. The changes in electrical resistance during low strain ranges before the rupture of carbon fibers are generally smaller than 1%. Nevertheless, after the gradual ruptures of carbon fibers, the electrical resistance increases remarkably with the strain in a step-wise manner. For the specimens without reinforcing bars, the electrical behaviors are not stable, especially during the low strain ranges. However, the electrical behaviors of the specimens with reinforcing bars are relatively stable, and the whole range of self-sensing function of the HCFRP-strengthened RC structures has realized the conceptual design of the HCFRP sensing models and is confirmed by the experimental investigations. The relationships between the strain/load and the change in electrical resistance show the potential self-monitoring capacity of HCFRP reinforcements used for strengthening concrete structures.

  18. Regulation of Neurexin 1[beta] Tertiary Structure and Ligand Binding through Alternative Splicing

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Kaiser C.; Kuczynska, Dorota A.; Wu, Irene J.; Murray, Beverly H.; Sheckler, Lauren R.; Rudenko, Gabby (Michigan)

    2008-08-04

    Neurexins and neuroligins play an essential role in synapse function, and their alterations are linked to autistic spectrum disorder. Interactions between neurexins and neuroligins regulate inhibitory and excitatory synaptogenesis in vitro through a splice-insert signaling code. In particular, neurexin 1{beta} carrying an alternative splice insert at site SS{number_sign}4 interacts with neuroligin 2 (found predominantly at inhibitory synapses) but much less so with other neuroligins (those carrying an insert at site B and prevalent at excitatory synapses). The structure of neurexin 1{beta}+SS{number_sign}4 reveals dramatic rearrangements to the 'hypervariable surface', the binding site for neuroligins. The splice insert protrudes as a long helix into space, triggers conversion of loop {beta}10-{beta}11 into a helix rearranging the binding site for neuroligins, and rearranges the Ca{sup 2+}-binding site required for ligand binding, increasing its affinity. Our structures reveal the mechanism by which neurexin 1{beta} isoforms acquire neuroligin splice isoform selectivity.

  19. Early Stages of Microstructure and Texture Evolution during Beta Annealing of Ti-6Al-4V

    Science.gov (United States)

    Pilchak, A. L.; Sargent, G. A.; Semiatin, S. L.

    2018-03-01

    The early stages of microstructure evolution during annealing of Ti-6Al-4V in the beta phase field were established. For this purpose, a series of short-time heat treatments was performed using sheet samples that had a noticeable degree of alpha-phase microtexture in the as-received condition. Reconstruction of the beta-grain structure from electron-backscatter-diffraction measurements of the room-temperature alpha-phase texture revealed that microstructure evolution at short times was controlled not by general grain growth, but rather by nucleation-and-growth events analogous to discontinuous recrystallization. The nuclei comprised a small subset of beta grains that were highly misoriented relative to those comprising the principal texture component of the beta matrix. From a quantitative standpoint, the transformation kinetics were characterized by an Avrami exponent of approximately unity, thus suggestive of metadynamic recrystallization. The recrystallization process led to the weakening and eventual elimination of the initial beta texture through the growth of a population of highly misoriented grains.

  20. Selected aspects in the structure of beta-delayed particle spectra

    International Nuclear Information System (INIS)

    Honkanen, J.; Aeystoe, J.; Eskola, K.

    1986-01-01

    Some weak beta-delayed particle emitters in the T z =-3/2, -1, -1/2, +1/2 and +5/2 series are reviewed. Selected features of the delayed particle emission are discussed in terms of experimental delayed particle data and (p,γ), (p,p') and (p,n) reaction data. Experimental beta transition strengths are compared with the existing complete shell-model calculations for the sd-shell nuclei. The effect of the Gamow-Teller giant resonance on the structure of the delayed particle spectra is considered. The correlation between the widths of two decay channels, protons and alpha particles, and the preceeding beta decay is studied in the case of the 40 Sc decay. (orig.)

  1. Research, development and application of noncombustible Beta fiber structures. [for Apollo

    Science.gov (United States)

    Dillon, J. J.; Cobb, E. S.

    1975-01-01

    Beta fiber was selected as the primary material for flexible fibrous structures used in spacecraft and crew systems applications in the Apollo program because it was noncombustible in a 100 percent oxygen atmosphere up to 16.5 psia. It met NASA criteria for outgassing, toxicity, odor, and crew comfort, and possessed sufficient durability to last through the mission. Topics discussed include: study of spacecraft applications; design of Beta fiber textile structures to meet the requirements; selection of surface treatments (finishes, coatings, and printing systems) to impart the required durability and special functional use to the textile structures; development of sewing and fabrication techniques; and testing and evaluation programs, and development of production sources.

  2. Structure of the T cell receptor in a Ti alpha V beta 2, alpha V beta 8-positive T cell line

    DEFF Research Database (Denmark)

    Hou, X; Dietrich, J; Kuhlmann, J

    1994-01-01

    not known; however, it has been suggested that each TcR contains two Ti dimers. To gain insight into the structure of the TcR we constructed a Ti alpha V beta 2, alpha V beta 8-positive T cell line which expressed the endogenous human TiV beta 8 and the transfected mouse TiV beta 2 both in association......The T cell receptor (TcR) is composed of at least six different polypeptide chains consisting of the clonotypic Ti heterodimer (Ti alpha beta or Ti gamma delta) and the noncovalently associated CD3 chains (CD3 gamma delta epsilon zeta). The exact number of subunits constituting the TcR is still...... with the endogenous Ti alpha and CD3 chains at the cell surface. Preclearing experiments with radioiodinated cell lysate prepared with digitonin lysis buffer demonstrated that depleting the lysate of Ti alpha V beta 8 by immunoprecipitation with anti V beta 8 monoclonal antibody (mAb) did not reduce the amount of Ti...

  3. Structure of the EMMPRIN N-terminal domain 1: Dimerization via [beta]-strand swapping

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jinquan; Teplyakov, Alexey; Obmolova, Galina; Malia, Thomas; Wu, Sheng-Jiun; Beil, Eric; Baker, Audrey; Swencki-Underwood, Bethany; Zhao, Yonghong; Sprenkle, Justin; Dixon, Ken; Sweet, Raymond; Gilliland, Gary L.; (Centocor)

    2010-09-27

    Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as Hab18G, CD147, Basigin, M6, and neurothelin, is a membrane glycoprotein expressed on the surface of various cell types and many cancer cells. EMMPRIN stimulates adjacent fibroblasts and tumor cells to produce matrix metalloproteinases and plays an important role in tumor invasion and metastasis, angiogenesis, spermatogensis and fertilization, cell-cell adhesion and communication, and other biological processes (reviewed in Ref. 1 and references therein). It was demonstrated that the EMMPRIN extracellular domain (ECD), which structurally belongs to the IgG superfamily, can form homo-oligomers in a cis dependent manner and the N-terminal domain 1 (residues 22-101) was necessary and sufficient to mediate this interaction. The crystal structure of the ECD of recombinant human EMMPRIN (Hab18G/CD147) expressed in E. coli was reported at 2.8 {angstrom} resolution (Yu et al. 2008). The construct consists of residues 22-205 of the mature protein and has both an N-terminal IgC2 domain (ND1, residues 22-101) and a C-terminal IgC2 domain (ND2, residues 107-205). The two domains are joined by a five amino acid residue linker that constitutes a flexible hinge between the two domains. The crystal form has four copies of the molecule in the asymmetric unit, each of which has a different inter-domain angle that varies from 121{sup o} to 144{sup o}. The two domains each have a conserved disulfide bridge and both are comprised of two {beta}-sheets formed by strands EBA and GFCC, and DEBA and AGFCC for ND1 and ND2, respectively. Based on the crystal packing in this structure, the authors proposed that lateral packing between the two IgG domains of EMMPRIN ECD represents a potential mechanism for cell adhesion. Here we report the 2.0-{angstrom} crystal structure of the N-terminal domain of EMMPRIN ECD (ND1) expressed in mammalian cells. The overall structure of the domain is very similar to that in the full length

  4. Support vector machines for prediction and analysis of beta and gamma-turns in proteins.

    Science.gov (United States)

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao

    2005-04-01

    Tight turns have long been recognized as one of the three important features of proteins, together with alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns and most of the rest are gamma-turns. Analysis and prediction of beta-turns and gamma-turns is very useful for design of new molecules such as drugs, pesticides, and antigens. In this paper we investigated two aspects of applying support vector machine (SVM), a promising machine learning method for bioinformatics, to prediction and analysis of beta-turns and gamma-turns. First, we developed two SVM-based methods, called BTSVM and GTSVM, which predict beta-turns and gamma-turns in a protein from its sequence. When compared with other methods, BTSVM has a superior performance and GTSVM is competitive. Second, we used SVMs with a linear kernel to estimate the support of amino acids for the formation of beta-turns and gamma-turns depending on their position in a protein. Our analysis results are more comprehensive and easier to use than the previous results in designing turns in proteins.

  5. Simulated Nano scale Peeling Process of Monolayer Graphene Sheet: Effect of Edge Structure and Lifting Position

    International Nuclear Information System (INIS)

    Sasaki, N.; Okamoto, H.; Masuda, S.; Itamura, N.; Miura, K.

    2010-01-01

    The nanoscale peeling of the graphene sheet on the graphite surface is numerically studied by molecular mechanics simulation. For center-lifting case, the successive partial peelings of the graphene around the lifting center appear as discrete jumps in the force curve, which induce the arched deformation of the graphene sheet. For edge-lifting case, marked atomic-scale friction of the graphene sheet during the nanoscale peeling process is found. During the surface contact, the graphene sheet takes the atomic-scale sliding motion. The period of the peeling force curve during the surface contact decreases to the lattice period of the graphite. During the line contact, the graphene sheet also takes the stick-slip sliding motion. These findings indicate the possibility of not only the direct observation of the atomic-scale friction of the graphene sheet at the tip/surface interface but also the identification of the lattice orientation and the edge structure of the graphene sheet.

  6. Interaction of the chaperone calreticulin with proteins and peptides of different structural classes

    DEFF Research Database (Denmark)

    Duus, K; Sandhu, N; Jørgensen, C S

    2009-01-01

    The interaction of calreticulin with native and denatured forms and polypeptides in proteolytic digests of proteins representing structural classes of all-alpha-helix (hemoglobin, serum albumin), all-beta-sheet (IgG) and alpha-helix + beta-sheets (lysozyme, ovalbumin) was investigated. The binding...... of calreticulin to denatured proteins was found to depend on conformation and structural class of the protein. No interaction was observed with the native proteins, whereas binding was seen for the denatured proteins, the order of interaction being lysozyme = IgG > ovalbumin >> hemoglobin = serum albumin....... Moreover, the interaction between calreticulin and the heat-denatured proteins depended on the temperature and time used for denaturation and the degree of proteolytic fragmentation. Calreticulin bound well to peptides in proteolytic digests from protease K or chymotrypsin treatment of lysozyme, Ig...

  7. Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluoroethylene sheet

    Science.gov (United States)

    Mohammadian-Kohol, M.; Asgari, M.; Shakur, H. R.

    2018-04-01

    In this study, the effects of gamma radiation on the chemical structure, mechanical and optical properties of polytetrafluoroethylene (PTFE) sheet were investigated with various doses up to 12 kGy. The chemical changes in the structure were studied by FTIR spectroscopy. Also, effects of radiation on the different mechanical parameters such as Young's modulus, toughness, strain, and stress were studied at the maximum tolerable force and the fracture points. Furthermore, changing the various optical parameters such as absorption coefficient, Urbach energy, optical band gaps, refractive index, optical dispersion parameters and plasma resonance frequency were studied by UV-visible spectroscopy. Formation of a band at 1594 cm-1, which was belonged to double carbon bonds, indicated that chain-scission was occurred at 12 kGy gamma irradiation dose. As well, the mechanical results showed an increase in the elastic behavior of PTFE sheets and a decrease in the plastic behavior of it with absorbed dose increasing. Moreover, the results showed that gamma irradiation can effectively change the various optical properties of PTFE sheets due to different phenomena such as degradation of the main chains, occurring chain-scission, formation of free radicals and cross-linking in the polymer structure.

  8. Energy-driven surface evolution in beta-MnO2 structures

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Wentao; Yuan, Yifei; Asayesh-Ardakani, Hasti; Huang, Zhennan; Long, Fei; Friedrich, Craig; Amine, Khalil; Lu, Jun; Shahbazian-Yassar, Reza

    2018-01-01

    Exposed crystal facets directly affect the electrochemical/catalytic performance of MnO2 materials during their applications in supercapacitors, rechargeable batteries, and fuel cells. Currently, the facet-controlled synthesis of MnO2 is facing serious challenges due to the lack of an in-depth understanding of their surface evolution mechanisms. Here, combining aberration-corrected scanning transmission electron microscopy (STEM) and high-resolution TEM, we revealed a mutual energy-driven mechanism between beta-MnO2 nanowires and microstructures that dominated the evolution of the lateral facets in both structures. The evolution of the lateral surfaces followed the elimination of the {100} facets and increased the occupancy of {110} facets with the increase in hydrothermal retention time. Both self-growth and oriented attachment along their {100} facets were observed as two different ways to reduce the surface energies of the beta-MnO2 structures. High-density screw dislocations with the 1/2 < 100 > Burgers vector were generated consequently. The observed surface evolution phenomenon offers guidance for the facet-controlled growth of beta-MnO2 materials with high performances for its application in metal-air batteries, fuel cells, supercapacitors, etc.

  9. Field reversing magnetotail current sheets: earth, Venus, and Comet Giacobini-Zinner

    International Nuclear Information System (INIS)

    McComas, D.J.

    1986-09-01

    This dissertation examines the field reversing magnetotail current sheets at the earth, Venus, and Comet Giacobini-Zinner. In the near earth study a new analysis technique is developed to calculate the detailed current density distributions within the cross tail current sheet for the first time. This technique removes the effects of a variable sheet velocity by inverting intersatellite timings between the co-orbiting satellites ISEE-1 and -2. Case studies of three relatively geomagnetically quiet crossings are made; sheet thicknesses and peak current densities are ∼1-5 x 10 4 km and ∼5-50 nA/m 2 . Current density distributions reveal a high density central region, lower density shoulders, and considerable fine structure throughout. In the Venus study another new analysis technique is developed to reconstruct the average tail configuration from a correlation between field magnitude and draping angle in a large statistical data set. In the comet study, high resolution magnetic field and plasma electron data from the ICE traversal of Giacobini-Zinner are combined for the first time to determine the tail/current sheet geometry and calculate certain important but unmeasured local ion and upstream properties. Pressure balance across the tail gives ion temperatures and betas of ∼1.2 x 10 5 K and ∼40 in the center of the current sheet to ∼1 x 10 6 K and ∼3 in the outer lobes. Axial stress balance shows that the velocity shear upstream near the nucleus is >6 (∼1 at ICE), and that a region of strongly enhanced mass loading (ion source rate ∼24 times that upstream from lobes) exists upstream from the current sheet. The integrated downtail mass flux is ∼2.6 x 10 26 H 2 O+/sec, which is only ∼1% of the independently determined total cometary efflux. 79 refs., 37 figs

  10. The Structural Basis of Substrate Recognition in an exo-beta-d-Glucosaminidase Involved in Chitosan Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lammerts van Bueren, A.; Ghinet, M; Gregg, K; Fleury, A; Brzezinski, R; Boraston, A

    2009-01-01

    Family 2 of the glycoside hydrolase classification is one of the largest families. Structurally characterized members of this family include enzymes with beta-galactosidase activity (Escherichia coli LacZ), beta-glucuronidase activity (Homo sapiens GusB), and beta-mannosidase activity (Bacteroides thetaiotaomicron BtMan2A). Here, we describe the structure of a family 2 glycoside hydrolase, CsxA, from Amycolatopsis orientalis that has exo-beta-D-glucosaminidase (exo-chitosanase) activity. Analysis of a product complex (1.85 A resolution) reveals a unique negatively charged pocket that specifically accommodates the nitrogen of nonreducing end glucosamine residues, allowing this enzyme to discriminate between glucose and glucosamine. This also provides structural evidence for the role of E541 as the catalytic nucleophile and D469 as the catalytic acid/base. The structures of an E541A mutant in complex with a natural beta-1,4-D-glucosamine tetrasaccharide substrate and both E541A and D469A mutants in complex with a pNP-beta-D-glucosaminide synthetic substrate provide insight into interactions in the +1 subsite of this enzyme. Overall, a comparison with the active sites of other GH2 enzymes highlights the unique architecture of the CsxA active site, which imparts specificity for its cationic substrate.

  11. The structure of nuclei far from beta stability

    International Nuclear Information System (INIS)

    Zganjar, E.F.

    1991-01-01

    This report discusses the structural of nuclei for from beta stability of the following isotopes: thallium isotopes; mercury isotopes; gold isotopes; platinum isotopes; iridium isotopes; the neutron deficient rare-earth, Z = 57-72 region, and the neutron deficient Z = 50-56 region; also discussed are in-beam spectroscopy in the A = 70 region and shape coexistence, intruder states, and EO transitions

  12. NMR solution structure of the mitochondrial F1beta presequence from Nicotiana plumbaginifolia.

    Science.gov (United States)

    Moberg, Per; Nilsson, Stefan; Ståhl, Annelie; Eriksson, Anna-Carin; Glaser, Elzbieta; Mäler, Lena

    2004-03-05

    We have isolated, characterized and determined the three-dimensional NMR solution structure of the presequence of ATPsynthase F1beta subunit from Nicotiana plumbaginifolia. A general method for purification of presequences is presented. The method is based on overexpression of a mutant precursor containing a methionine residue introduced at the processing site, followed by CNBr-cleavage and purification of the presequence on a cation-exchange column. The F1beta presequence, 53 amino acid residues long, retained its native properties as evidenced by inhibition of in vitro mitochondrial import and processing at micromolar concentrations. CD spectroscopy revealed that the F1beta presequence formed an alpha-helical structure in membrane mimetic environments such as SDS and DPC micelles (approximately 50% alpha-helix), and in acidic phospholipid bicelles (approximately 60% alpha-helix). The NMR solution structure of the F1beta presequence in SDS micelles was determined on the basis of 518 distance and 21 torsion angle constraints. The structure was found to contain two helices, an N-terminal amphipathic alpha-helix (residues 4-15) and a C-terminal alpha-helix (residues 43-53), separated by a largely unstructured 27 residue long internal domain. The N-terminal amphipathic alpha-helix forms the putative Tom20 receptor binding site, whereas the C-terminal alpha-helix is located upstream of the mitochondrial processing peptidase cleavage site.

  13. Designed beta-boomerang antiendotoxic and antimicrobial peptides: structures and activities in lipopolysaccharide.

    Science.gov (United States)

    Bhunia, Anirban; Mohanram, Harini; Domadia, Prerna N; Torres, Jaume; Bhattacharjya, Surajit

    2009-08-14

    Lipopolysaccharide (LPS), an integral part of the outer membrane of Gram-negative bacteria, is involved in a variety of biological processes including inflammation, septic shock, and resistance to host-defense molecules. LPS also provides an environment for folding of outer membrane proteins. In this work, we describe the structure-activity correlation of a series of 12-residue peptides in LPS. NMR structures of the peptides derived in complex with LPS reveal boomerang-like beta-strand conformations that are stabilized by intimate packing between the two aromatic residues located at the 4 and 9 positions. This structural feature renders these peptides with a high ability to neutralize endotoxicity, >80% at 10 nM concentration, of LPS. Replacements of these aromatic residues either with Ala or with Leu destabilizes the boomerang structure with the concomitant loss of antiendotoxic and antimicrobial activities. Furthermore, the aromatic packing stabilizing the beta-boomerang structure in LPS is found to be maintained even in a truncated octapeptide, defining a structured LPS binding motif. The mode of action of the active designed peptides correlates well with their ability to perturb LPS micelle structures. Fourier transform infrared spectroscopy studies of the peptides delineate beta-type conformations and immobilization of phosphate head groups of LPS. Trp fluorescence studies demonstrated selective interactions with LPS and the depth of insertion into the LPS bilayer. Our results demonstrate the requirement of LPS-specific structures of peptides for endotoxin neutralizations. In addition, we propose that structures of these peptides may be employed to design proteins for the outer membrane.

  14. Two distinct β-sheet structures in Italian-mutant amyloid-beta fibrils : a potential link to different clinical phenotypes

    NARCIS (Netherlands)

    Hubin, Ellen; Deroo, Stéphanie; Schierle, Gabriele Kaminksi; Kaminski, Clemens; Serpell, Louise; Subramaniam, Vinod; van Nuland, Nico; Broersen, Kerensa; Raussens, Vincent; Sarroukh, Rabia

    2015-01-01

    Most Alzheimer's disease (AD) cases are late-onset and characterized by the aggregation and deposition of the amyloid-beta (Aβ) peptide in extracellular plaques in the brain. However, a few rare and hereditary Aβ mutations, such as the Italian Glu22-to-Lys (E22K) mutation, guarantee the development

  15. Secondary structure of spiralin in solution, at the air/water interface, and in interaction with lipid monolayers.

    Science.gov (United States)

    Castano, Sabine; Blaudez, Daniel; Desbat, Bernard; Dufourcq, Jean; Wróblewski, Henri

    2002-05-03

    The surface of spiroplasmas, helically shaped pathogenic bacteria related to the mycoplasmas, is crowded with the membrane-anchored lipoprotein spiralin whose structure and function are unknown. In this work, the secondary structure of spiralin under the form of detergent-free micelles (average Stokes radius, 87.5 A) in water and at the air/water interface, alone or in interaction with lipid monolayers was analyzed. FT-IR and circular dichroism (CD) spectroscopic data indicate that spiralin in solution contains about 25+/-3% of helices and 38+/-2% of beta sheets. These measurements are consistent with a consensus predictive analysis of the protein sequence suggesting about 28% of helices, 32% of beta sheets and 40% of irregular structure. Brewster angle microscopy (BAM) revealed that, in water, the micelles slowly disaggregate to form a stable and homogeneous layer at the air/water interface, exhibiting a surface pressure up to 10 mN/m. Polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) spectra of interfacial spiralin display a complex amide I band characteristic of a mixture of beta sheets and alpha helices, and an intense amide II band. Spectral simulations indicate a flat orientation for the beta sheets and a vertical orientation for the alpha helices with respect to the interface. The combination of tensiometric and PMIRRAS measurements show that, when spiroplasma lipids are used to form a monolayer at the air/water interface, spiralin is adsorbed under this monolayer and its antiparallel beta sheets are mainly parallel to the polar-head layer of the lipids without deep perturbation of the fatty acid chains organization. Based upon these results, we propose a 'carpet model' for spiralin organization at the spiroplasma cell surface. In this model, spiralin molecules anchored into the outer leaflet of the lipid bilayer by their N-terminal lipid moiety are composed of two colinear domains (instead of a single globular domain) situated at

  16. Controlled bending and folding of a bilayer structure consisting of a thin stiff film and a heat shrinkable polymer sheet

    Science.gov (United States)

    Cui, Jianxun; Adams, John G. M.; Zhu, Yong

    2018-05-01

    Bending pre-designed flat sheets into three-dimensional (3D) structures is attracting much interest, as it provides a simple approach to make 3D devices. Here we report controlled bending and folding of a bilayer structure consisting of a heat shrinkable polymer sheet and a thin stiff film (not thermally responsive). Upon heating, the prestrained polymer sheet shrinks, leading to bending or folding of the bilayer. We studied the effect of relative dimensions of the two layers on the bending behavior and demonstrated the transition from longitudinal bending to transverse bending of the bilayer strip. Transverse bending was utilized to fold origami structures, including several flat letters, a crane, and a corrugated metal sheet via Miura-ori folding. We developed a method to further control the bending orientation based on bio-inspired anisotropic bending stiffness. By bending the metal foil in different orientations, several structures were obtained, including cylindrical surfaces and left-handed/right-handed helical structures.

  17. Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection.

    Science.gov (United States)

    Schröter, Tobias J; Johnson, Shane B; John, Kerstin; Santi, Peter A

    2012-01-01

    We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. 2011 Optical Society of America

  18. Correction of thickness measurement errors for two adjacent sheet structures in MR images

    International Nuclear Information System (INIS)

    Cheng Yuanzhi; Wang Shuguo; Sato, Yoshinobu; Nishii, Takashi; Tamura, Shinichi

    2007-01-01

    We present a new method for measuring the thickness of two adjacent sheet structures in MR images. In the hip joint, in which the femoral and acetabular cartilages are adjacent to each other, a conventional measurement technique based on the second derivative zero crossings (called the zero-crossings method) can introduce large underestimation errors in measurements of cartilage thickness. In this study, we have developed a model-based approach for accurate thickness measurement. We model the imaging process for two adjacent sheet structures, which simulate the two articular cartilages in the hip joint. This model can be used to predict the shape of the intensity profile along the sheet normal orientation. Using an optimization technique, the model parameters are adjusted to minimize the differences between the predicted intensity profile and the actual intensity profiles observed in the MR data. The set of model parameters that minimize the difference between the model and the MR data yield the thickness estimation. Using three phantoms and one normal cadaveric specimen, the usefulness of the new model-based method is demonstrated by comparing the model-based results with the results generated using the zero-crossings method. (author)

  19. Predicting beta-turns and their types using predicted backbone dihedral angles and secondary structures.

    Science.gov (United States)

    Kountouris, Petros; Hirst, Jonathan D

    2010-07-31

    Beta-turns are secondary structure elements usually classified as coil. Their prediction is important, because of their role in protein folding and their frequent occurrence in protein chains. We have developed a novel method that predicts beta-turns and their types using information from multiple sequence alignments, predicted secondary structures and, for the first time, predicted dihedral angles. Our method uses support vector machines, a supervised classification technique, and is trained and tested on three established datasets of 426, 547 and 823 protein chains. We achieve a Matthews correlation coefficient of up to 0.49, when predicting the location of beta-turns, the highest reported value to date. Moreover, the additional dihedral information improves the prediction of beta-turn types I, II, IV, VIII and "non-specific", achieving correlation coefficients up to 0.39, 0.33, 0.27, 0.14 and 0.38, respectively. Our results are more accurate than other methods. We have created an accurate predictor of beta-turns and their types. Our method, called DEBT, is available online at http://comp.chem.nottingham.ac.uk/debt/.

  20. Flexible Engineering Structures from the Corrugated Metal Sheets - Comparison of Costs of Solutions used in the Road Building

    Science.gov (United States)

    Ołdakowska, E.

    2017-11-01

    The flexible structures from the corrugated metal sheets are used in particular in the road building, especially as passages for animals. Easy and quick assembly, as well as lower realization costs when compared to the traditional solutions increase interest in such structures. Availability and variety of systems allows for searching for solutions which are the best and optimal in the economical range. The article presents the comparison of costs of the basic materials used in various systems of flexible structures from the corrugated metal sheets. In order to determine the costs of the material solutions the data for two systems used in Poland (for construction of the upper passages for animals) since 2008 have been used. The cost estimation for the basic materials required for realization of 1 m2 of the flexible structure from the corrugated steel sheets have been prepared with use of prices obtained directly from the Polish contractors and manufacturers, as well as process included in the quarterly information (Sekocenbud). The difference of prices of materials available on the market allows the investor for selecting the structure depending on the needs and financial possibilities, as well as for achieving some savings. The savings in case of purchasing sheets of identical parameters (thickness, profile characteristics) are from approx. 4% to 8% per 1 m2 of sheet. The connectors in form of bolts M20 cl. 8.8 of various lengths are an expense from 3.00 PLN to 3.50 PLN. Those values may seem low, but taking into consideration amounts connected with construction of many square meters of structure they may become very important factor in the total investment costs.

  1. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine [beta]-synthase

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma (Michigan-Med)

    2011-08-17

    The catalytic potential for H{sub 2}S biogenesis and homocysteine clearance converge at the active site of cystathionine {beta}-synthase (CBS), a pyridoxal phosphate-dependent enzyme. CBS catalyzes {beta}-replacement reactions of either serine or cysteine by homocysteine to give cystathionine and water or H{sub 2}S, respectively. In this study, high-resolution structures of the full-length enzyme from Drosophila in which a carbanion (1.70 {angstrom}) and an aminoacrylate intermediate (1.55 {angstrom}) have been captured are reported. Electrostatic stabilization of the zwitterionic carbanion intermediate is afforded by the close positioning of an active site lysine residue that is initially used for Schiff base formation in the internal aldimine and later as a general base. Additional stabilizing interactions between active site residues and the catalytic intermediates are observed. Furthermore, the structure of the regulatory 'energy-sensing' CBS domains, named after this protein, suggests a mechanism for allosteric activation by S-adenosylmethionine.

  2. Extração, estruturas e propriedades de alfa- e beta-quitina Extraction, structures and properties of alpha- AND beta-chitin

    Directory of Open Access Journals (Sweden)

    Sergio P. Campana-Filho

    2007-06-01

    Full Text Available The fact that alpha- and beta-chitin adopt different arrays in the solid state is explored to emphasize their different properties and distinct spectral characteristics and X ray diffraction patterns. The methods for their extraction from the biomass in view of the preservation of their native structures and aiming to fulfill the claims of purity and uniformity for potential applications are discussed. The different arrays adopted by alpha- and beta-chitin also result in distinct reactivities toward the deacetylation reaction. Thus, the deacetylation of beta-chitin is more efficient owing to the better accessibility to amide groups due to the lower crystallinity of this polymorph.

  3. Embedded Aligned Carbon Nanotube Sheets for Strain and Damage sensing in Composite Structures

    Science.gov (United States)

    Aly, Karim Aly Abdelomoaty Elsayed

    The world demand for fiber reinforced composite materials has been steadily increasing because of the widespread adoption of this class of material in many markets. The automotive, aerospace, marine and energy sectors account for a large percentage of this grow. Outstanding fatigue performance, high specific stiffness and strength, and low density are among the most important properties that fiber reinforced polymer composites offer. Furthermore, their properties can be tailored to meet the specific needs of the final applications. However, this class of material is composed of multiple layers of inhomogeneous and anisotropic constituents, i.e. fibers and matrix. Therefore, this laminated nature make the composite material prone to intrinsic damage including interfacial debonding and delamination and their strength and failure are dependent on the fiber architecture and direction of the applied stresses. Consequently, it is of prime importance to monitor the health of these structures. New and improved methods for early detection of damage and structural health monitoring of composite materials may allow for enhanced reliability, lifetime and performance while minimizing maintenance time during a composite part's service life. Over the last few decades different non-destructive methods and materials have been investigated for use as strain sensors. Since the discovery of carbon nanotubes (CNTs), they have attracted much research interest due to their superior electrical, thermal and mechanical properties as well as their high aspect ratio. In this context, CNTs have been used in the recent years to enable sensing capabilities. In this dissertation, the usage of CNTs for performing strain and damage sensing in composites is evaluated. This was enabled by embedding aligned sheets of two millimeters long, interconnected CNTs into laminated structures that were then subjected to different forms of mechanical loading. The localization of the CNT sheets inside the host

  4. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation.

    Science.gov (United States)

    Vergara, José; Favieres, Cristina; Magén, César; de Teresa, José María; Ibarra, Manuel Ricardo; Madurga, Vicente

    2017-12-05

    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  5. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation

    Directory of Open Access Journals (Sweden)

    José Vergara

    2017-12-01

    Full Text Available We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM. Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  6. Pressure effects on the structure, kinetic, and thermodynamic properties of heat-induced aggregation of protein studied by FT-IR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Y [Applied Chemistry Department, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Okuno, A [Research Department 3, Central Research, Bridgestone Co. Kodaira, Tokyo 187-8531 (Japan); Kato, M, E-mail: taniguti@sk.ritsumei.ac.j [Pharmaceutical Sciences Department, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2010-03-01

    Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the {alpha}-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular {beta}-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation ({Delta}V'' = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates ({Delta}V=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular {beta}-sheet is unfavorable under high pressure.

  7. Generation of shock/discontinuity compound structures through magnetic reconnection in the geomagnetic tail

    Energy Technology Data Exchange (ETDEWEB)

    Weng, C. J. [Department of Physics, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Space Science, National Central University, Jungli 320, Taiwan (China); Lin, C. C. [Chemical Systems Research Division, Chung-Shan Institute of Science and Technology, Longtan 325, Taiwan (China); Lee, L. C. [Institute of Earth Science, Academia Sinica, Nankang 115, Taiwan (China); Institute of Space Science, National Central University, Jungli 320, Taiwan (China); Chao, J. K. [Institute of Space Science, National Central University, Jungli 320, Taiwan (China)

    2012-12-15

    We use 1-D hybrid code to simulate the generation and evolution of MHD discontinuities associated with magnetic reconnection in a current sheet. It is found that the leakage of slow shock (SS) downstream particles to upstream region tends to increase the ion parallel temperature and temperature anisotropy with {beta}{sub i||}/{beta}{sub i Up-Tack } Much-Greater-Than 1, where {beta}{sub i||}({beta}{sub i Up-Tack }) is the ion parallel (perpendicular) beta. As a result, the propagation speed of rotational discontinuity (RD) is highly reduced and RD becomes attached to SS, leading to formation of various compound structures in the reconnection outflow region. Four types of compound structure are found in our simulations: (a) RD-SS compound structure: the RD is attached to the leading part of SS, (b) SS-RD (DD) compound structure: RD is attached to the rear part of SS, (c) SS-RD-SS compound structure: RD is trapped inside SS, and (d) switch-off slow shock (SSS) with a rotational wave train. The type of compound structure generated depends on initial ion beta {beta}{sub i0} and magnetic shear angle {phi}. RD tends to move in front of SS to form an RD-SS compound structure for cases with low {beta}{sub i0}. RD stays behind SS and form an SS-RD (DD) compound structure for large {beta}{sub i0}. The SS-RD-SS compound structure is formed for intermediate values of {beta}{sub i0}. When the shear angle is 180 Degree-Sign , SSS with a wave train is formed.

  8. An Experimental Study on Hybrid Noncompression CF Bracing and GF Sheet Wrapping Reinforcement Method to Restore Damaged RC Structures

    Directory of Open Access Journals (Sweden)

    Kang Seok Lee

    2015-01-01

    Full Text Available We describe a novel technique for restoration of reinforced concrete (RC structures that have sustained damage during an earthquake. The reinforcement scheme described here is a hybrid seismic retrofitting technique that combines noncompression X-bracing using CF with externally bonded GF sheets to strengthen RC structures that have sustained damage following an earthquake. The GF sheet is used to improve the ductility of columns, and the noncompression CF X-bracing system, which consists of CF bracing and anchors to replace the conventional steel bracing and bolt connections, is used to increase the lateral strength of the framing system. We report seismic restoration capacity, which enables reuse of the damaged RC frames via the hybrid CF X-bracing and GF sheet wrapping system. Cyclic loading tests were carried out to investigate hysteresis of the lateral load-drift relations, as well as the ductility. The GF sheet significantly improved the ductility of columns, resulting in a change in failure mode. The strengthening effect of conventional CF sheets used in columns is not sufficient with respect to lateral strength and stiffness. However, this study results in a significant increase in the strength of the structure due to the use of CF X-bracing and inhibited buckling failure of the bracing. This result can be exploited to develop guidelines for the application of the reinforcement system to restore damaged RC structures.

  9. Photovoltage versus microprobe sheet resistance measurements on ultrashallow structures

    DEFF Research Database (Denmark)

    Clarysse, T.; Moussa, A.; Parmentier, B.

    2010-01-01

    on ultrashallow (sub-50-nm) chemical-vapor-deposited layers [T. Clarysse , Mater. Res. Soc. Symp. Proc. 912, 197 (2006)], especially in the presence of medium/highly doped underlying layers (representative for well/halo implants). Here the authors examine more closely the sheet resistance anomalies which have...... recently been observed between junction photovoltage (JPV) based tools and a micrometer-resolution four-point probe (M4PP) tool on a variety of difficult, state-of-the-art sub-32-nm complementary metal-oxide semiconductor structures (low energy and cluster implants, with/without halo, flash- and laser...

  10. Interaction between bradykinin potentiating nonapeptide (BPP9a) and {beta}-cyclodextrin: A structural and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Lula, Ivana; De Sousa, Frederico B. [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG (Brazil); Denadai, Angelo M.L. [Centro Federal de Educacao Tecnologica de Minas Gerais, CEFET-MG, Campus VII, 35.183-006, Timoteo, MG (Brazil); Ferreira de Lima, Guilherme; Duarte, Helio Anderson [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG (Brazil); Mares Guia, Thiago R. dos [Departamento de Bioquimica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG (Brazil); Faljoni-Alario, Adelaide [Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, 05508-900, Sao Paulo, SP (Brazil); Santoro, Marcelo M. [Departamento de Bioquimica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG (Brazil); Camargo, Antonio C.M. de [Center for Applied Toxinology CAT-CEPID, Laboratorio Especial de Toxicologia Aplicada, Instituto Butantan, 05503-900, Sao Paulo, SP (Brazil); Santos, Robson A.S. dos [Departamento de Fisiologia e Biofisica, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG (Brazil); and others

    2012-02-01

    Herein, we demonstrate the physical and chemical characterizations of the supramolecular complex formed between {beta}-cyclodextrin ({beta}CD) and bradykinin potentiating nonapeptide (BPP9a), an endogenous toxin found in Bothrops jararaca. Circular dichroism results indicate a conformational change in the BPP9a secondary structure upon its complexation with {beta}CD. Nuclear magnetic resonance results, mainly from NOESY experiments, and theoretical calculations showed a favorable interaction between the tryptophan residue of BPP9a and the {beta}CD cavity. Thermodynamic inclusion parameters were investigated by isothermal titration calorimetry, demonstrating that {beta}CD/BPP9a complex formation is an exothermic process that results in a reduction in entropy. Additionally, in vitro degradation study of BPP9a against trypsin (37 Degree-Sign C, pH 7.2) showed higher stability of peptide in presence of {beta}CD. This {beta}CD/BPP9a complex, which presents new chemical properties arising from the peptide inclusion process, may be useful as an antihypertensive drug in oral pharmaceutical formulations. Highlights: Black-Right-Pointing-Pointer Cd and NMR showed evidences for the existence of more than one structure in solution. Black-Right-Pointing-Pointer Complexation with {beta}CD reduces the conformational rigidity of the peptide. Black-Right-Pointing-Pointer {beta}CD cavity recognize Trp and/or Pro segments of BPP9a. Black-Right-Pointing-Pointer Interactions involving disaggregation of BPP9a assemblies and binding with {beta}CD.

  11. On the structure of the magnetotail current sheet

    International Nuclear Information System (INIS)

    Ashour-Abdalla, M.; Peroomian, V.; Richard, R.L.; Zelenyi, L.M.

    1993-01-01

    Results from modeling ion distribution functions in a two-dimensional reduction of the Tsyganenko magnetic field model have enabled the authors to calculate the full ion pressure tensor inside the model magnetotail. A thin current sheet is formed in the distant tail and the pressure tensor within this sheet has significant off-diagonal terms. These terms resulting from quasiadiabatic ion trajectories create azimuthally asymmetric distribution functions which are capable of maintaining stress-balance. Outside the current sheet the off-diagonal terms disappear and moderate anisotropy builds up with P perpendicular/P parallel ∼ 0.8. Closer to the Earth rapid isotropization of the distribution occurs

  12. Current Sheet Structures Observed by the TESIS EUV Telescope during a Flux Rope Eruption on the Sun

    Science.gov (United States)

    Reva, A. A.; Ulyanov, A. S.; Kuzin, S. V.

    2016-11-01

    We use the TESIS EUV telescope to study the current sheet signatures observed during flux rope eruption. The special feature of the TESIS telescope was its ability to image the solar corona up to a distance of 2 {R}⊙ from the Sun’s center in the Fe 171 Å line. The Fe 171 Å line emission illuminates the magnetic field lines, and the TESIS images reveal the coronal magnetic structure at high altitudes. The analyzed coronal mass ejection (CME) had a core with a spiral—flux rope—structure. The spiral shape indicates that the flux rope radius varied along its length. The flux rope had a complex temperature structure: cold legs (70,000 K, observed in He 304 Å line) and a hotter core (0.7 MK, observed in Fe 171 Å line). Such a structure contradicts the common assumption that the CME core is a cold prominence. When the CME impulsively accelerated, a dark double Y-structure appeared below the flux rope. The Y-structure timing, location, and morphology agree with the previously performed MHD simulations of the current sheet. We interpreted the Y-structure as a hot envelope of the current sheet and hot reconnection outflows. The Y-structure had a thickness of 6.0 Mm. Its length increased over time from 79 Mm to more than 411 Mm.

  13. Preparation of a thin polysulfone phosphor sheet for the detection of alpha particles using adhesive process

    International Nuclear Information System (INIS)

    Seo, B. K.; Woo, Z. H.; Kim, G. H.; Chang, U. S.; Oh, W. Z.; Lee, K. W.; Han, M. J.

    2005-01-01

    According to atomic energy law and connection regs, the surface contamination of nuclear facilities should be monitored routinely. Surface contamination is divided into removable and fixed contamination. Fixed contamination is measured by a direct method with a survey meter. And removable contamination is measured by an indirect method using smear paper and a low background proportional counter. Also, in the decommissioning process of a nuclear research facilities, such as Korean Research Reactor 1 and 2 and Uranium Conversion Plant, a significant amount of nuclear wastes is produced. The wastes contaminated must be surveyed for the disposal and reuse in the future. In the previous study the medium, scintillatorembedded polymer membrane for detecting the alpharay, was prepared by impregnating organic scintillators in a membrane structure. The plastic scintillator consists of polysulfone(PSF) as a matrix with PPO as an organic scintillator and POPOP as a wave shifting agent dissolved in the matrix. But, an organic plastic scintillator was inadequate to detect the alpha particle in the alpha-beta mixing field because its light output is smaller than beta ray one. So, a thin phosphor sheet was prepared, which consisted of a very uniform deposit of silver activated zinc sulfide (ZnS(Ag)) phosphor applied to on side of clear polysulfone plastic sheet

  14. Ranking beta sheet topologies with applications to protein structure prediction

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Helles, Glennie; Winter, Pawel

    2011-01-01

    One reason why ab initio protein structure predictors do not perform very well is their inability to reliably identify long-range interactions between amino acids. To achieve reliable long-range interactions, all potential pairings of ß-strands (ß-topologies) of a given protein are enumerated......, including the native ß-topology. Two very different ß-topology scoring methods from the literature are then used to rank all potential ß-topologies. This has not previously been attempted for any scoring method. The main result of this paper is a justification that one of the scoring methods, in particular......, consistently top-ranks native ß-topologies. Since the number of potential ß-topologies grows exponentially with the number of ß-strands, it is unrealistic to expect that all potential ß-topologies can be enumerated for large proteins. The second result of this paper is an enumeration scheme of a subset of ß-topologies...

  15. The 2.0-A resolution structure of soybean beta-amylase complexed with alpha-cyclodextrin.

    Science.gov (United States)

    Mikami, B; Hehre, E J; Sato, M; Katsube, Y; Hirose, M; Morita, Y; Sacchettini, J C

    1993-07-13

    New crystallographic findings are presented which offer a deeper understanding of the structure and functioning of beta-amylase, the first known exo-type starch-hydrolyzing enzyme. A refined three-dimensional structure of soybean beta-amylase, complexed with the inhibitor alpha-cyclodextrin, has been determined at 2.0-A resolution with a conventional R-value of 17.5%. The model contains 491 amino acid residues, 319 water molecules, 1 sulfate ion, and 1 alpha-cyclodextrin molecule. The protein consists of a core with an (alpha/beta)8 supersecondary structure, plus a smaller globular region formed by long loops (L3, L4, and L5) extending from beta-strands beta 3, beta 4, and beta 5. Between the two regions is a cleft that opens into a pocket whose floor contains the postulated catalytic center near the carboxyl group of Glu 186. The annular alpha-cyclodextrin binds in (and partly projects from) the cleft with its glucosyl O-2/O-3 face abutting the (alpha/beta)8 side and with its alpha-D(1 --> 4) glucosidic linkage progression running clockwise as viewed from that side. The ligand does not bind deeply enough to interact with the carboxyl group of Glu 186. Rather, it occupies most of the cleft entrance, strongly suggesting that alpha-cyclodextrin inhibits catalysis by blocking substrate access to the more deeply located reaction center. Of the various alpha-cyclodextrin interactions with protein residues in loops L4, L5, L6, and L7, most notable is the shallow inclusion complex formed with Leu 383 (in L7, on the core side of the cleft) through contacts of its methyl groups with the C-3 atoms of four of the ligand's D-glucopyranosyl residues. All six residues of the bound alpha-cyclodextrin are of 4C1 conformation and are joined by alpha-1,4 linkages with similar torsional angles to form a nearly symmetrical torus as reported for crystalline inclusion complexes with alpha-cyclodextrin. We envision a significant role for the methyl groups of Leu 383 at the cleft entrance

  16. The refined 2.0 A X-ray crystal structure of the complex formed between bovine beta-trypsin and CMTI-I, a trypsin inhibitor from squash seeds (Cucurbita maxima). Topological similarity of the squash seed inhibitors with the carboxypeptidase A inhibitor from potatoes.

    Science.gov (United States)

    Bode, W; Greyling, H J; Huber, R; Otlewski, J; Wilusz, T

    1989-01-02

    The stoichiometric complex formed between bovine beta-trypsin and the Cucurbita maxima trypsin inhibitor I (CMTI-I) was crystallized and its X-ray crystal structure determined using Patterson search techniques. Its structure has been crystallographically refined to a final R value of 0.152 (6.0-2.0 A). CMTI-I is of ellipsoidal shape; it lacks helices or beta-sheets, but consists of turns and connecting short polypeptide stretches. The disulfide pairing is CYS-3I-20I, Cys-10I-22I and Cys-16I-28I. According to the polypeptide fold and disulfide connectivity its structure resembles that of the carboxypeptidase A inhibitor from potatoes. Thirteen of the 29 inhibitor residues are in direct contact with trypsin; most of them are in the primary binding segment Val-2I (P4)-Glu-9I (P4') which contains the reactive site bond Arg-5I-Ile-6I and is in a conformation observed also for other serine proteinase inhibitors.

  17. BetaTPred: prediction of beta-TURNS in a protein using statistical algorithms.

    Science.gov (United States)

    Kaur, Harpreet; Raghava, G P S

    2002-03-01

    beta-turns play an important role from a structural and functional point of view. beta-turns are the most common type of non-repetitive structures in proteins and comprise on average, 25% of the residues. In the past numerous methods have been developed to predict beta-turns in a protein. Most of these prediction methods are based on statistical approaches. In order to utilize the full potential of these methods, there is a need to develop a web server. This paper describes a web server called BetaTPred, developed for predicting beta-TURNS in a protein from its amino acid sequence. BetaTPred allows the user to predict turns in a protein using existing statistical algorithms. It also allows to predict different types of beta-TURNS e.g. type I, I', II, II', VI, VIII and non-specific. This server assists the users in predicting the consensus beta-TURNS in a protein. The server is accessible from http://imtech.res.in/raghava/betatpred/

  18. Electronic structures and band gaps of chains and sheets based on phenylacetylene units

    International Nuclear Information System (INIS)

    Kondo, Masakazu; Nozaki, Daijiro; Tachibana, Masamitsu; Yumura, Takashi; Yoshizawa, Kazunari

    2005-01-01

    We investigate the electronic structures of polymers composed of π-conjugated phenylacetylene (PA) units, m-PA-based and p-PA-based wires, at the extended Hueckel level of theory. It is demonstrated that these conjugated systems should have a variety of electric conductance. All of the one-dimensional (1D) chains and the two-dimensional (2D) sheet based on the m-PA unit are insulators with large band gaps of 2.56 eV because there is no effective orbital interaction with neighboring chains. On the other hand, p-PA-based 1D chains have relatively small band gaps that decrease with an increase in chain width (1.17-1.74 eV) and are semiconductive. The p-PA-based sheet called 'graphyne', a 2D-limit of the p-PA-based 1D chains, shows a small band gap of 0.89 eV. The variety of band electronic structures is discussed in terms of frontier crystal orbitals

  19. Structure and electronic properties of boron nitride sheet with grain boundaries

    International Nuclear Information System (INIS)

    Wang Zhiguo

    2012-01-01

    Using first-principles calculations, the structure, stability, and electronic properties of BN sheets with grain boundaries (GBs) are investigated. Two types of GBs, i.e., zigzag- and armchair-oriented GBs, are considered. Simulation results reveal that the zigzag-oriented GBs are more stable than the armchair-oriented ones. The GBs induce defect levels located within the band gap, which must be taken into account when building nanoelectronic devices.

  20. The structure of nuclei far from beta stability

    International Nuclear Information System (INIS)

    Zganjar, E.F.

    1990-01-01

    This report discusses the following topics: shape coexistence, intruder states, and E0 transitions; the Ir isotopes; the Pt isotopes; the Au isotopes; the Hg isotopes; the Tl isotopes; decay properties of 153 Yb and 153 Tm; non-yrast levels structure of 135 Nd via beta decay of 135 Pm; decay of mass-separated 137 Eu and 137 Sm; structure of 130,132 Ce, 132,134 Nd, and 134 Pm; decay of 127 Cs to levels of odd-neutron 127 Xe; level structure of 119 Te; conversion electron spectroscopy in 116 Xe and 126 Xe; signature of the shape coexistence in 72 Kr; identification of transitions in 73 Kr and search for large oblate; high spin states and multiple band structure in 68 Ge; high spin states in 65 Ga and 67 Ga; electron spectroscopy; ion sources; and the on-line nuclear orientation facility

  1. Nuclear structure and double beta decay

    International Nuclear Information System (INIS)

    Vogel, P.

    1988-01-01

    Double beta decay is a rare transition between two nuclei of the same mass number A involving a change of the nuclear charge Z by two units. It has long been recognized that the Oν mode of double beta decay, where two electrons and no neutrinos are emitted, is a powerful tool for the study of neutrino properties. Its observation would constitute a convincing proof that there exists a massive Majorana neutrino which couples to electrons. Double beta decay is a process involving an intricate mixture of particle physics and physics of the nucleus. The principal nuclear physics issues have to do with the evaluation of the nuclear matrix elements responsible for the decay. If the authors wish to arrive at quantitative answers for the neutrino properties the authors have no choice but to learn first how to understand the nuclear mechanisms. The authors describe first the calculation of the decay rate of the 2ν mode of double beta decay, in which two electrons and two antineutrinos are emitted

  2. Relativistic current sheets in electron-positron plasmas

    International Nuclear Information System (INIS)

    Zenitani, S.

    2008-01-01

    The current sheet structure with magnetic field reversal is one of the fundamental structure in space and astrophysical plasmas. It draws recent attention in high-energy astrophysical settings, where relativistic electron-positron plasmas are considered. In this talk we will review the recent progress of the physical processes in the relativistic current sheet. The kinetic stability of a single current sheet, the nonlinear behavior of these instabilities, and recent challenges on the multi current sheet systems are introduced. We will also introduce some problems of magnetic reconnection in these relativistic environments. (author)

  3. Imaging a seizure model in zebrafish with structured illumination light sheet microscopy

    Science.gov (United States)

    Liu, Yang; Dale, Savannah; Ball, Rebecca; VanLeuven, Ariel J.; Baraban, Scott; Sornborger, Andrew; Lauderdale, James D.; Kner, Peter

    2018-02-01

    Zebrafish are a promising vertebrate model for elucidating how neural circuits generate behavior under normal and pathological conditions. The Baraban group first demonstrated that zebrafish larvae are valuable for investigating seizure events and can be used as a model for epilepsy in humans. Because of their small size and transparency, zebrafish embryos are ideal for imaging seizure activity using calcium indicators. Light-sheet microscopy is well suited to capturing neural activity in zebrafish because it is capable of optical sectioning, high frame rates, and low excitation intensities. We describe work in our lab to use light-sheet microscopy for high-speed long-time imaging of neural activity in wildtype and mutant zebrafish to better understand the connectivity and activity of inhibitory neural networks when GABAergic signaling is altered in vivo. We show that, with light-sheet microscopy, neural activity can be recorded at 23 frames per second in twocolors for over 10 minutes allowing us to capture rare seizure events in mutants. We have further implemented structured illumination to increase resolution and contrast in the vertical and axial directions during high-speed imaging at an effective frame rate of over 7 frames per second.

  4. Structural phase transition and failure of nanographite sheets under high pressure: a molecular dynamics study

    International Nuclear Information System (INIS)

    Zhang Bin; Liang Yongcheng; Sun Huiyu

    2007-01-01

    Nanographite sheets under high compressive stresses at ambient temperature have been investigated through molecular dynamics simulations using the Tersoff-Brenner potential. Nanographite undergoes a soft to hard phase transition at a certain compressive stress, about 15 GPa. With increasing compressions, the bonding structures of nanographite are changed, interlayer sp 3 -bonds are formed, and nanographite transforms into a superhard carbon phase (SCP). Further compressions lead to the instabilities of the SCP. Although the detailed lattice structure of the SCP remains elusive, its compressive strength can approach 150 GPa, comparable to that of diamond. The maximum failure stresses of nanographite sheets are sensitive to the inter-and intra-layer interstices. Our results may explain paradoxical experimental results in the available literature

  5. Analysis of the structural organization and thermal stability of two spermadhesins. Calorimetric, circular dichroic and Fourier-transform infrared spectroscopic studies.

    Science.gov (United States)

    Menéndez, M; Gasset, M; Laynez, J; López-Zumel, C; Usobiaga, P; Töpfer-Petersen, E; Calvete, J J

    1995-12-15

    The CUB domain is a widespread 110-amino-acid module found in functionally diverse, often developmentally regulated proteins, for which an antiparallel beta-barrel topology similar to that in immunoglobulin V domains has been predicted. Spermadhesins have been proposed as a subgroup of this protein family built up by a single CUB domain architecture. To test the proposed structural model, we have analyzed the structural organization of two members of the spermadhesin protein family, porcine seminal plasma proteins I/II (PSP-I/PSP-II) heterodimer and bovine acidic seminal fluid protein (aSFP) homodimer, using differential scanning calorimetry, far-ultraviolet circular dichroism and Fourier-transform infrared spectroscopy. Thermal unfolding of PSP-I/PSP-II and aSFP were irreversible and followed a one-step process with transition temperatures (Tm) of 60.5 degrees C and 78.6 degrees C, respectively. The calorimetric enthalpy changes (delta Hcat) of thermal denaturation were 439 kJ/mol for PSP-I/PSP-II and 660 kJ/mol for aSFP dimer. Analysis of the calorimetric curves of PSP-I/PSP-II showed that the entire dimer constituted the cooperative unfolding unit. Fourier-transform infrared spectroscopy and deconvolution of circular dichroic spectra using a convex constraint analysis indicated that beta-structure and turns are the major structural element of both PSP-I/PSP-II (53% of beta-sheet, 21% of turns) and aSFP (44% of beta-sheet, 36% of turns), and that the porcine and the bovine proteins contain little, if any, alpha-helical structure. Taken together, our results indicate that the porcine and the bovine spermadhesin molecules are probably all-beta-structure proteins, and would support a beta-barrel topology like that predicted for the CUB domain. Other beta-structure folds, such as the Greek-key pattern characteristic of many carbohydrate-binding protein domains cannot be eliminated. Finally, the same combination of biophysical techniques was used to characterize the

  6. Thermodynamics and structure of inclusion compounds of tauro- and glyco-conjugated bile salts and beta-cyclodextrin

    DEFF Research Database (Denmark)

    Holm, Rene; Shi, Wei; Andersen Hartvig, Rune

    2009-01-01

    The interaction between natural beta-cyclodextrin and bile salts common in rat, dog and man, taurocholate, tauro-beta-muricholate, taurodeoxycholate, taurochenodeoxycholate, glycocholate, glycodeoxycholate and glycochenodeoxycholate, was studied using isothermal titration calorimetry, and the str......The interaction between natural beta-cyclodextrin and bile salts common in rat, dog and man, taurocholate, tauro-beta-muricholate, taurodeoxycholate, taurochenodeoxycholate, glycocholate, glycodeoxycholate and glycochenodeoxycholate, was studied using isothermal titration calorimetry......, and the structural differences in the interaction were investigated by H-1-ROESY NMR and molecular modeling. The beta-cyclodextrin was selected based upon its frequent use in preformulation and drug formulation as oral excipients for the solubilization of drug substances with low aqueous solubility. All...

  7. Observations of the Formation, Development, and Structure of a Current Sheet in an Eruptive Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Seaton, Daniel B.; Darnel, Jonathan M. [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO 80305 (United States); Bartz, Allison E., E-mail: daniel.seaton@noaa.gov [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States)

    2017-02-01

    We present Atmospheric Imaging Assembly observations of a structure we interpret as a current sheet associated with an X4.9 flare and coronal mass ejection that occurred on 2014 February 25 in NOAA Active Region 11990. We characterize the properties of the current sheet, finding that the sheet remains on the order of a few thousand kilometers thick for much of the duration of the event and that its temperature generally ranged between 8 and 10 MK. We also note the presence of other phenomena believed to be associated with magnetic reconnection in current sheets, including supra-arcade downflows and shrinking loops. We estimate that the rate of reconnection during the event was M{sub A} ≈ 0.004–0.007, a value consistent with model predictions. We conclude with a discussion of the implications of this event for reconnection-based eruption models.

  8. A computer graphics program system for protein structure representation.

    Science.gov (United States)

    Ross, A M; Golub, E E

    1988-01-01

    We have developed a computer graphics program system for the schematic representation of several protein secondary structure analysis algorithms. The programs calculate the probability of occurrence of alpha-helix, beta-sheet and beta-turns by the method of Chou and Fasman and assign unique predicted structure to each residue using a novel conflict resolution algorithm based on maximum likelihood. A detailed structure map containing secondary structure, hydrophobicity, sequence identity, sequence numbering and the location of putative N-linked glycosylation sites is then produced. In addition, helical wheel diagrams and hydrophobic moment calculations can be performed to further analyze the properties of selected regions of the sequence. As they require only structure specification as input, the graphics programs can easily be adapted for use with other secondary structure prediction schemes. The use of these programs to analyze protein structure-function relationships is described and evaluated. PMID:2832829

  9. Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein.

    Science.gov (United States)

    Massiah, M A; Starich, M R; Paschall, C; Summers, M F; Christensen, A M; Sundquist, W I

    1994-11-25

    The HIV-1 matrix protein forms an icosahedral shell associated with the inner membrane of the mature virus. Genetic analyses have indicated that the protein performs important functions throughout the viral life-cycle, including anchoring the transmembrane envelope protein on the surface of the virus, assisting in viral penetration, transporting the proviral integration complex across the nuclear envelope, and localizing the assembling virion to the cell membrane. We now report the three-dimensional structure of recombinant HIV-1 matrix protein, determined at high resolution by nuclear magnetic resonance (NMR) methods. The HIV-1 matrix protein is the first retroviral matrix protein to be characterized structurally and only the fourth HIV-1 protein of known structure. NMR signal assignments required recently developed triple-resonance (1H, 13C, 15N) NMR methodologies because signals for 91% of 132 assigned H alpha protons and 74% of the 129 assignable backbone amide protons resonate within chemical shift ranges of 0.8 p.p.m. and 1 p.p.m., respectively. A total of 636 nuclear Overhauser effect-derived distance restraints were employed for distance geometry-based structure calculations, affording an average of 13.0 NMR-derived distance restraints per residue for the experimentally constrained amino acids. An ensemble of 25 refined distance geometry structures with penalties (sum of the squares of the distance violations) of 0.32 A2 or less and individual distance violations under 0.06 A was generated; best-fit superposition of ordered backbone heavy atoms relative to mean atom positions afforded root-mean-square deviations of 0.50 (+/- 0.08) A. The folded HIV-1 matrix protein structure is composed of five alpha-helices, a short 3(10) helical stretch, and a three-strand mixed beta-sheet. Helices I to III and the 3(10) helix pack about a central helix (IV) to form a compact globular domain that is capped by the beta-sheet. The C-terminal helix (helix V) projects away

  10. Effect of Process Parameters on the Structure and Properties of Galvanized Sheets

    Science.gov (United States)

    Shukla, S. K.; Saha, B. B.; Triathi, B. D.; Avtar, Ram

    2010-07-01

    The effect of galvanizing parameters on the structure (spangle size and coating microstructure) and properties (formability and corrosion resistance) of galvanized sheets was studied in a hot dip process simulator (HDPS) in a conventional Pb bearing (0.08-0.10%) zinc bath by varying zinc bath Al level (0.10-0.28%), bath temperature (718-743 K), dipping time (1.5-3.5 s), wiping gas flow rate (200-450 lpm), nozzle distance (15-17 mm) and wiping delay time (0.1-2.1 s). Al level in the range of 0.18-0.24% in combination with dipping time of 1.5-2.5 s and bath temperature of 718-733 K results in superior formability ( E cv: ~9.3 mm) of the composite (thickness: 0.8 mm). High post-dip cooling rates (~25 K/s) suppress spangle growth (spangle size: ~2 mm). The spangle size of the GI sheet strongly influences the corrosion rate which increases from 5.8 to 9.2 mpy with a decrease in spangle size from 17.5 to 3 mm. By controlling the Al level (0.20%) in zinc bath and bath temperature (733 K), the corrosion rate of mini-spangle GI sheet can be controlled to a level of 5.5 mpy.

  11. Secondary Structure Preferences of Mn2+ Binding Sites in Bacterial Proteins

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Khrustaleva

    2014-01-01

    Full Text Available 3D structures of proteins with coordinated Mn2+ ions from bacteria with low, average, and high genomic GC-content have been analyzed (149 PDB files were used. Major Mn2+ binders are aspartic acid (6.82% of Asp residues, histidine (14.76% of His residues, and glutamic acid (3.51% of Glu residues. We found out that the motif of secondary structurebeta strand-major binder-random coil” is overrepresented around all the three major Mn2+ binders. That motif may be followed by either alpha helix or beta strand. Beta strands near Mn2+ binding residues should be stable because they are enriched by such beta formers as valine and isoleucine, as well as by specific combinations of hydrophobic and hydrophilic amino acid residues characteristic to beta sheet. In the group of proteins from GC-rich bacteria glutamic acid residues situated in alpha helices frequently coordinate Mn2+ ions, probably, because of the decrease of Lys usage under the influence of mutational GC-pressure. On the other hand, the percentage of Mn2+ sites with at least one amino acid in the “beta strand-major binder-random coil” motif of secondary structure (77.88% does not depend on genomic GC-content.

  12. Identification of active anti-inflammatory principles of beta- beta ...

    African Journals Online (AJOL)

    chromatography. Components of the extracts were identified by thin layer chromatography (TLC) scanner and UV-visible spectroscopy, using scopoletin as standard. Results: ... basic coumarin skeleton ring structure reduce ... Figure 2: Thin-layer chromatogram: (1) Ethanol extract; (2) Dichloromethane fraction; (3) Beta-beta.

  13. Various types of metal complexes based on chelating {beta}-diketones and their structural analogues

    Energy Technology Data Exchange (ETDEWEB)

    Skopenko, Viktor V; Amirkhanov, Vladimir M; Sliva, T Yu [Department of Chemistry, Kyiv National Taras Shevchenko University (Ukraine); Vasilchenko, Igor S; Anpilova, E L; Garnovskii, Alexander D [Institute of Physical and Organic Chemistry, Rostov State University, Rostov-on-Don (Russian Federation)

    2004-08-31

    Data on the synthesis and structures of {beta}-diketonates and their N,P-containing structural analogues are generalised and described systematically. The possibility of creating diverse metal complexes with various modes of coordination of typical chelating ligands is discussed.

  14. Electronic structure and driving forces in {beta}-cyclodextrin: Diclofenac inclusion complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bogdan, Diana [National Institute for Research and Development of Isotopic and Molecular Technologies, Donath street 71-103, 400293 Cluj-Napoca (Romania); Morari, C. [National Institute for Research and Development of Isotopic and Molecular Technologies, Donath street 71-103, 400293 Cluj-Napoca (Romania)]. E-mail: cristim@s3.itim-cj.ro

    2007-07-02

    We investigate the geometry and electronic structure for complexes of {beta}-cyclodextrin with diclofenac using DFT calculations. The effect of solvent is explicitly taken into account. This investigation allows us to draw meaningful conclusions upon the stability of the complex and the nature of the driving forces leading to the complexation process. In particular we emphasize the role of the water, by pointing out the changes in the solvent's electronic structure for different docking geometries.

  15. Crystal Structure of Human [Beta]-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay-Sachs Disease

    Energy Technology Data Exchange (ETDEWEB)

    Mark, Brian L.; Mahuran, Don J.; Cherney, Maia M.; Zhao, Dalian; Knapp, Spencer; James, Michael N.G.

    2010-12-01

    In humans, two major {beta}-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits {alpha} and {beta} (60% identity), whereas Hex B is a homodimer of {beta}-subunits. Interest in human {beta}-hexosaminidase stems from its association with Tay-Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G{sub M2}-ganglioside (G{sub M2}). Hex A degrades G{sub M2} by removing a terminal N-acetyl-D-galactosamine ({beta}-GalNAc) residue, and this activity requires the G{sub M2}-activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hex B, alone (2.4 {angstrom}) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2 {angstrom}) or NAG-thiazoline (2.5 {angstrom}). From these, and the known X-ray structure of the G{sub M2}-activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how {alpha} and {beta}-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease ({beta}-subunit mutations) and Tay-Sachs disease ({alpha}-subunit mutations).

  16. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit.

    Science.gov (United States)

    Campbell, Zachary T; Weichsel, Andrzej; Montfort, William R; Baldwin, Thomas O

    2009-07-07

    Bacterial luciferase from Vibrio harveyi is a heterodimer composed of a catalytic alpha subunit and a homologous but noncatalytic beta subunit. Despite decades of enzymological investigation, structural evidence defining the active center has been elusive. We report here the crystal structure of V. harveyi luciferase bound to flavin mononucleotide (FMN) at 2.3 A. The isoalloxazine ring is coordinated by an unusual cis-Ala-Ala peptide bond. The reactive sulfhydryl group of Cys106 projects toward position C-4a, the site of flavin oxygenation. This structure also provides the first data specifying the conformations of a mobile loop that is crystallographically disordered in both prior crystal structures [(1995) Biochemistry 34, 6581-6586; (1996) J. Biol. Chem. 271, 21956 21968]. This loop appears to be a boundary between solvent and the active center. Within this portion of the protein, a single contact was observed between Phe272 of the alpha subunit, not seen in the previous structures, and Tyr151 of the beta subunit. Substitutions at position 151 on the beta subunit caused reductions in activity and total quantum yield. Several of these mutants were found to have decreased affinity for reduced flavin mononucleotide (FMNH(2)). These findings partially address the long-standing question of how the beta subunit stabilizes the active conformation of the alpha subunit, thereby participating in the catalytic mechanism.

  17. Differences in plankton community structure and carbon cycling along a climate gradient from the Greenland Ice Sheet to offshore waters

    DEFF Research Database (Denmark)

    Arendt, K.E.; Nielsen, Torkel Gissel; Rysgaard, S.

    Huge differences in plankton community structures and biomasses are observed along a climate gradient from the Greenland Ice Sheet to offshore waters at the West Greenland coast. The offshore region has a high biomass of copepods dominated by Calanus spp., which are capable of consuming 55....... Protozooplankton accounts for 20-38% of the carbon turnover in the offshore and inland areas. However, protozooplankton like copepods has low ability to turn over the primary production close to the Ice Sheet. Increased run of from the Greenland Ice Sheet due to global warming could displace the existing climate...... gradient. This would have a profound influence on the future plankton community structure as well as the energy transfer to higher trophic levels in Arctic coastal ecosystems....

  18. Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Krotee, Pascal [Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States; UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States; Rodriguez, Jose A. [Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States; UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States; Sawaya, Michael R. [Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States; UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States; Cascio, Duilio [Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States; UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States; Reyes, Francis E. [Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; Shi, Dan [Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; Hattne, Johan [Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; Nannenga, Brent L. [Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; Oskarsson, Marie E. [Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; Philipp, Stephan [Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States; Griner, Sarah [Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States; UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States; Jiang, Lin [Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States; Brain Research Institute (BRI), University of California, Los Angeles, Los Angeles, United States; Glabe, Charles G. [Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States; Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Westermark, Gunilla T. [Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; Gonen, Tamir [Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; Eisenberg, David S. [Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States; UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States

    2017-01-03

    hIAPP fibrils are associated with Type-II Diabetes, but the link of hIAPP structure to islet cell death remains elusive. Here we observe that hIAPP fibrils are cytotoxic to cultured pancreatic β-cells, leading us to determine the structure and cytotoxicity of protein segments composing the amyloid spine of hIAPP. Using the cryoEM method MicroED, we discover that one segment, 19–29 S20G, forms pairs of β-sheets mated by a dry interface that share structural features with and are similarly cytotoxic to full-length hIAPP fibrils. In contrast, a second segment, 15–25 WT, forms non-toxic labile β-sheets. These segments possess different structures and cytotoxic effects, however, both can seed full-length hIAPP, and cause hIAPP to take on the cytotoxic and structural features of that segment. These results suggest that protein segment structures represent polymorphs of their parent protein and that segment 19–29 S20G may serve as a model for the toxic spine of hIAPP.

  19. Clinical approach of patients with systemic amyloidosis

    NARCIS (Netherlands)

    Hazenberg, Bouke

    2011-01-01

    Amyloidosis is the name of diseases characterised by deposition of protein fibrils with a beta-sheet structure. This beta-sheet structure generates affinity of amyloid for Congo red dye and is resistant to proteolysis. The main three types of systemic amyloidosis are AA (related to underlying

  20. Reduced Fragment Diversity for Alpha and Alpha-Beta Protein Structure Prediction using Rosetta.

    Science.gov (United States)

    Abbass, Jad; Nebel, Jean-Christophe

    2017-01-01

    Protein structure prediction is considered a main challenge in computational biology. The biannual international competition, Critical Assessment of protein Structure Prediction (CASP), has shown in its eleventh experiment that free modelling target predictions are still beyond reliable accuracy, therefore, much effort should be made to improve ab initio methods. Arguably, Rosetta is considered as the most competitive method when it comes to targets with no homologues. Relying on fragments of length 9 and 3 from known structures, Rosetta creates putative structures by assembling candidate fragments. Generally, the structure with the lowest energy score, also known as first model, is chosen to be the "predicted one". A thorough study has been conducted on the role and diversity of 3-mers involved in Rosetta's model "refinement" phase. Usage of the standard number of 3-mers - i.e. 200 - has been shown to degrade alpha and alpha-beta protein conformations initially achieved by assembling 9-mers. Therefore, a new prediction pipeline is proposed for Rosetta where the "refinement" phase is customised according to a target's structural class prediction. Over 8% improvement in terms of first model structure accuracy is reported for alpha and alpha-beta classes when decreasing the number of 3- mers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Relation between current sheets and vortex sheets in stationary incompressible MHD

    Directory of Open Access Journals (Sweden)

    D. H. Nickeler

    2012-03-01

    Full Text Available Magnetohydrodynamic configurations with strong localized current concentrations and vortices play an important role in the dissipation of energy in space and astrophysical plasma. Within this work we investigate the relation between current sheets and vortex sheets in incompressible, stationary equilibria. For this approach it is helpful that the similar mathematical structure of magnetohydrostatics and stationary incompressible hydrodynamics allows us to transform static equilibria into stationary ones. The main control function for such a transformation is the profile of the Alfvén-Mach number MA, which is always constant along magnetic field lines, but can change from one field line to another. In the case of a global constant MA, vortices and electric current concentrations are parallel. More interesting is the nonlinear case, where MA varies perpendicular to the field lines. This is a typical situation at boundary layers like the magnetopause, heliopause, the solar wind flowing around helmet streamers and at the boundary of solar coronal holes. The corresponding current and vortex sheets show in some cases also an alignment, but not in every case. For special density distributions in 2-D, it is possible to have current but no vortex sheets. In 2-D, vortex sheets of field aligned-flows can also exist without strong current sheets, taking the limit of small Alfvén Mach numbers into account. The current sheet can vanish if the Alfvén Mach number is (almost constant and the density gradient is large across some boundary layer. It should be emphasized that the used theory is not only valid for small Alfvén Mach numbers MA MA ≲ 1. Connection to other theoretical approaches and observations and physical effects in space plasmas are presented. Differences in the various aspects of theoretical investigations of current sheets and vortex sheets are given.

  2. Threading structural model of the manganese-stabilizing protein PsbO reveals presence of two possible beta-sandwich domains.

    Science.gov (United States)

    Pazos, F; Heredia, P; Valencia, A; de las Rivas, J

    2001-12-01

    The manganese-stabilizing protein (PsbO) is an essential component of photosystem II (PSII) and is present in all oxyphotosynthetic organisms. PsbO allows correct water splitting and oxygen evolution by stabilizing the reactions driven by the manganese cluster. Despite its important role, its structure and detailed functional mechanism are still unknown. In this article we propose a structural model based on fold recognition and molecular modeling. This model has additional support from a study of the distribution of characteristics of the PsbO sequence family, such as the distribution of conserved, apolar, tree-determinants, and correlated positions. Our threading results consistently showed PsbO as an all-beta (beta) protein, with two homologous beta domains of approximately 120 amino acids linked by a flexible Proline-Glycine-Glycine (PGG) motif. These features are compatible with a general elongated and flexible architecture, in which the two domains form a sandwich-type structure with Greek key topology. The first domain is predicted to include 8 to 9 beta-strands, the second domain 6 to 7 beta-strands. An Ig-like beta-sandwich structure was selected as a template to build the 3-D model. The second domain has, between the strands, long-loops rich in Pro and Gly that are difficult to model. One of these long loops includes a highly conserved region (between P148 and P174) and a short alpha-helix (between E181 and N188)). These regions are characteristic parts of PsbO and show that the second domain is not so similar to the template. Overall, the model was able to account for much of the experimental data reported by several authors, and it would allow the detection of key residues and regions that are proposed in this article as essential for the structure and function of PsbO. Copyright 2001 Wiley-Liss, Inc.

  3. The 1.4 Å Crystal Structure of the Class D [beta]-Lactamase OXA-1 Complexed with Doripenem

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Kyle D.; Karpen, Mary E.; Bonomo, Robert A.; Leonard, David A.; Powers, Rachel A.; (Grand Valley); (Case Western U.-Med)

    2010-01-12

    The clinical efficacy of carbapenem antibiotics depends on their resistance to the hydrolytic action of {beta}-lactamase enzymes. The structure of the class D {beta}-lactamase OXA-1 as an acyl complex with the carbapenem doripenem was determined to 1.4 {angstrom} resolution. Unlike most class A and class C carbapenem complexes, the acyl carbonyl oxygen in the OXA-1-doripenem complex is bound in the oxyanion hole. Interestingly, no water molecules were observed in the vicinity of the acyl linkage, providing an explanation for why carbapenems inhibit OXA-1. The side chain amine of K70 remains fully carboxylated in the acyl structure, and the resulting carbamate group forms a hydrogen bond to the alcohol of the 6{alpha}-hydroxyethyl moiety of doripenem. The carboxylate attached to the {beta}-lactam ring of doripenem is stabilized by a salt bridge to K212 and a hydrogen bond with T213, in lieu of the interaction with an arginine side chain found in most other {beta}-lactamase-{beta}-lactam complexes (e.g., R244 in the class A member TEM-1). This novel set of interactions with the carboxylate results in a major shift of the carbapenem's pyrroline ring compared to the structure of the same ring in meropenem bound to OXA-13. Additionally, bond angles of the pyrroline ring suggest that after acylation, doripenem adopts the {Delta}{sup 1} tautomer. These findings provide important insights into the role that carbapenems may have in the inactivation process of class D {beta}-lactamases.

  4. Rheological and secondary structural characterization of rice flour-zein composites for noodles slit from gluten-free sheeted dough.

    Science.gov (United States)

    Jeong, Sungmin; Kim, Hee Won; Lee, Suyong

    2017-04-15

    Rice flour-zein composites in a hydrated viscoelastic state were utilized to compensate for the role of wheat gluten in gluten-free sheeted dough. The use of zein above its glass transition temperature was able to form a viscoelastic protein network of non-wheat dough with rice flour. The mixing stability and development time of the rice dough were positively increased with increasing levels of zein. The protein secondary structural analysis by FTIR spectroscopy demonstrated that the rice doughs with high levels of zein showed significant increases in β-sheet structures whose intensity was almost doubled by the use of 10% zein. The use of zein at more than 5% (w/w) successfully produced gluten-free dough sheets that could be slit into thin and long noodle strands. In addition, the composites were effective in improving the rheological characteristics of gluten-free noodle strands by increasing their maximum force to extension, compared to wheat-based noodles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Crystal Structure of Homo Sapiens PTD012 Reveals a Zinc-Containing Hydrolase Fold

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty,B.; Bussow, K.; Fieber-ErdMan, M.; Roske, Y.; Gobam, J.; Scheich, C.; Gotz, F.; Niesen, F.; Heinemann, U.

    2006-01-01

    The human protein PTD012 is the longer product of an alternatively spliced gene and was described to be localized in the nucleus. The X-ray structure analysis at 1.7 Angstroms resolution of PTD012 through SAD phasing reveals a monomeric protein and a novel fold. The shorter splice form was also studied and appears to be unfolded and non-functional. The structure of PTD012 displays an {alpha}{beta}{beta}{alpha} four-layer topology. A metal ion residing between the central {beta}-sheets is partially coordinated by three histidine residues. X-ray absorption near-edge structure (XANES) analysis identifies the PTD012-bound ion as Zn{sup 2+}. Tetrahedral coordination of the ion is completed by the carboxylate oxygen atom of an acetate molecule taken up from the crystallization buffer. The binding of Zn{sup 2+} to PTD012 is reminiscent of zinc-containing enzymes such as carboxypeptidase, carbonic anhydrase, and {beta}-lactamase. Biochemical assays failed to demonstrate any of these enzyme activities in PTD012. However, PTD012 exhibits ester hydrolase activity on the substrate p-nitrophenyl acetate.

  6. Parallel β-Sheet Structure of Alanine Tetrapeptide in the Solid State As Studied by Solid-State NMR Spectroscopy.

    Science.gov (United States)

    Asakura, Tetsuo; Horiguchi, Kumiko; Aoki, Akihiro; Tasei, Yugo; Naito, Akira

    2016-09-01

    The structural analysis of alanine oligopeptides is important for understanding the crystalline region in silks from spiders and wild silkworms and also the mechanism of cellular toxicity of human diseases arising from expansion in polyalanine sequences. The atomic-level structures of alanine tripeptide and tetrapeptide with antiparallel β-sheet structures (AP-Ala3 and AP-Ala4, respectively) together with alanine tripeptide with parallel β-sheet structures (P-Ala3) have been determined, but alanine tetrapeptide with a parallel β-sheet structure (P-Ala4) has not been reported yet. In this article, first, we established the preparation protocol of P-Ala4 from more stable AP-Ala4. Second, complete assignments of the (13)C, (15)N, and (1)H solid-state NMR spectra were performed with (13)C- and (15)N-labeled Ala4 samples using several solid-state NMR techniques. Then, the structural constraints were obtained, for example, the amide proton peaks of P-Ala4 in the (1)H double-quantum magic-angle spinning NMR spectrum were heavily overlapped and observed at about 7.4 ppm, which was a much higher field than that of 8.7-9.1 ppm observed for AP-Ala4, indicating that the intermolecular hydrogen-bond lengths across strands (N-H···O═C) were considerably longer for P-Ala4, that is, 2.21-2.34 Å, than those reported for AP-Ala4, that is, 1.8-1.9 Å. The structural model was proposed for P-Ala4 by NMR results and MD calculations.

  7. Structural Interplay - Tuning Mechanics in Peptide-Polyurea Hybrids

    Science.gov (United States)

    Korley, Lashanda

    Utilizing cues from natural materials, we have been inspired to explore the hierarchical arrangement critical to energy absorption and mechanical enhancement in synthetic systems. Of particular interest is the soft domain ordering proposed as a contributing element to the observed toughness in spider silk. Multiblock copolymers, are ideal and dynamic systems in which to explore this approach via variations in secondary structure of nature's building blocks - peptides. We have designed a new class of polyurea hybrids that incorporate peptidic copolymers as the soft segment. The impact of hierarchical ordering on the thermal, mechanical, and morphological behavior of these bio-inspired polyurethanes with a siloxane-based, peptide soft segment was investigated. These peptide-polyurethane/urea hybrids were microphase segregated, and the beta-sheet secondary structure of the soft segment was preserved during polymerization and film casting. Toughness enhancement at low strains was achieved, but the overall extensibility of the peptide-incorporated systems was reduced due to the unique hard domain organization. To decouple the secondary structure influence in the siloxane-peptide soft segment from mechanics dominated by the hard domain, we also developed non-chain extended peptide-polyurea hybrids in which the secondary structure (beta sheet vs. alpha helix) was tuned via choice of peptide and peptide length. It was shown that this structural approach allowed tailoring of extensibility, toughness, and modulus. The sheet-dominant hybrid materials were typically tougher and more elastic due to intermolecular H-bonding facilitating load distribution, while the helical-prevalent systems generally exhibited higher stiffness. Recently, we have explored the impact of a molecular design strategy that overlays a covalent and physically crosslinked architecture in these peptide-polyurea hybrids, demonstrating that physical constraints in the network hybrids influences peptide

  8. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.

    Science.gov (United States)

    Zheng, Ce; Kurgan, Lukasz

    2008-10-10

    beta-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of beta-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based beta-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor. We show that (1) all four predicted secondary structures are useful; (2) the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3) the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential beta-turns, while the remaining four amino acids are useful to predict non-beta-turns. Empirical evaluation using three nonredundant datasets shows favorable Q total, Q predicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Q total barrier and achieves Q total = 80.9%, MCC = 0.47, and Q predicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC) competing methods, respectively. Experiments show that the proposed method constitutes an improvement over the competing prediction

  9. A series of sheet-structured alkali metal uranyl oxalate hydrates: structures and IR spectra

    International Nuclear Information System (INIS)

    Giesting, P.A.; Porter, N.J.; Burns, P.C.

    2006-01-01

    The novel compounds K[(UO 2 ) 2 (C 2 O 4 ) 2 OH] . 2 H 2 O (KUrO x ), Rb[(UO 2 ) 2 (C 2 O 4 ) 2 OH] . 2 H 2 O (RbUrO x ), and Cs[(UO 2 ) 2 (C 2 O 4 ) 2 OH] . H 2 O (CsUrO x ) have been synthesized by mild hydrothermal methods. Single crystal diffraction data collected at 125 K using MoK α radiation and a CCD-based area detector were used to solve and refine the crystal structures by full-matrix least-squares techniques to agreement indices (KUrO x , RbUrO x , CsUrO x ) wR 2 = 0.045, 0.062, 0.042 for all data, and R1 = 0.023, 0.030, 0.022 calculated for 1834, 1863, 1821 unique reflections respectively. The compounds KUrO x , RbUrO x , and CsUrO x are all monoclinic, space group P2 1 /m, Z = 2. The unit cell of KUrO x has the dimensions a = 5.6427(4), b = 13.7123(9), c = 9.2669(6) Aa, β = 98.7490(10) , V = 708.68(8) Aa 3 . The unit cell of RbUrO x has the dimensions a = 5.6225(4), b = 13.8339(9), c = 9.3308(6) Aa, β = 98.1590(10) , V = 718.41(8) Aa 3 . The unit cell of CsUrO x has the dimensions a = 5.4688(3), b = 13.5710(8), c = 9.5408(5) Aa, β = 97.5830(10) , V = 701.90(7) Aa 3 . The structures consist of chains of uranyl pentagonal bipyramids connected by oxalate groups and hydroxyl groups, and are isotypic with the compound NR 4 [(UO 2 ) 2 (C 2 O 4 ) 2 OH] . 2 H 2 O studied by Artem'eva et al. (2003); all four of these compounds are structurally composed of sheets made by polymerizing the chains of UO 2 C 2 O 4 (H 2 O) . 2 H 2 O (Jayadevan and Chackraburtty, 1972; Mikhailov et al., (1999)), this being achieved by removing a H atom from an H 2 O group in the coordination sphere of the uranyl ion to form a hydroxyl vertex that is shared by two uranyl ions. Compensating positive charges are provided by the inclusion of large monovalent cations in channels that run through the sheets; these channels also contain hydrogen-bound H 2 O groups. The positions of the cations and H 2 O groups change in relation to the uranyl oxalate sheets and to each other through the

  10. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.

    Science.gov (United States)

    Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan

    2016-11-14

    Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.

  11. Development of a new family of conformationally restricted peptides as potent nucleators of beta-turns. Design, synthesis, structure, and biological evaluation of a beta-lactam peptide analogue of melanostatin.

    Science.gov (United States)

    Palomo, Claudio; Aizpurua, Jesus M; Benito, Ana; Miranda, José Ignacio; Fratila, Raluca M; Matute, Carlos; Domercq, Maria; Gago, Federico; Martin-Santamaria, Sonsoles; Linden, Anthony

    2003-12-31

    Novel enantiopure (i)-(beta-lactam)-(Gly)-(i+3) peptide models, defined by the presence of a central alpha-alkyl-alpha-amino-beta-lactam ring placed as the (i+1) residue, have been synthesized in a totally stereocontrolled way by alpha-alkylation of suitable N-[bis(trimethylsilyl)methyl]-beta-lactams. The structural properties of these beta-lactam pseudopeptides have been studied by X-ray crystallography, Molecular Dynamics simulation, and NOESY-restrained NMR simulated annealing techniques, showing a strong tendency to form stable type II or type II' beta-turns either in the solid state or in highly coordinating DMSO solutions. Tetrapeptide models containing syn- or anti-alpha,beta-dialkyl-alpha-amino-beta-lactam rings have also been synthesized and their conformations analyzed, revealing that alpha-alkyl substitution is essential for beta-turn stabilization. A beta-lactam analogue of melanostatin (PLG amide) has also been prepared, characterized as a type-II beta-turn in DMSO-d6 solution, and tested by competitive binding assay as a dopaminergic D2 modulator in rat neuron cultured cells, displaying moderate agonist activity in the micromolar concentration range. On the basis of these results, a novel peptidomimetic design concept, based on the separation of constraint and recognition elements, is proposed.

  12. Complex world-sheets from N=2 strings

    International Nuclear Information System (INIS)

    Barbon, J.L.F.

    1996-01-01

    We study some properties of target space strings constructed from (2,1) heterotic strings. We argue that world-sheet complexification is a general property of the bosonic sector of such target world-sheets. We give a target space interpretation of this fact and relate it to the non-gaussian nature of free string field theory. We provide several one-loop calculations supporting the stringy construction of critical world-sheets in terms of (2,1) models. Using finite-temperature boundary conditions in the underlying (2,1) string we obtain non-chiral target space spin structures, and point out some of the problems arising for chiral spin structures, such as the heterotic world-sheet. To this end, we study the torus partition function of the corresponding asymmetric orbifold of the (2,1) string. (orig.)

  13. Effect of Cell Sheet Manipulation Techniques on the Expression of Collagen Type II and Stress Fiber Formation in Human Chondrocyte Sheets.

    Science.gov (United States)

    Wongin, Sopita; Waikakul, Saranatra; Chotiyarnwong, Pojchong; Siriwatwechakul, Wanwipa; Viravaidya-Pasuwat, Kwanchanok

    2018-03-01

    Cell sheet technology is applied to human articular chondrocytes to construct a tissue-like structure as an alternative treatment for cartilage defect. The effect of a gelatin manipulator, as a cell sheet transfer system, on the quality of the chondrocyte sheets was investigated. The changes of important chondrogenic markers and stress fibers, resulting from the cell sheet manipulation, were also studied. The chondrocyte cell sheets were constructed with patient-derived chondrocytes using a temperature-responsive polymer and a gelatin manipulator as a transfer carrier. The properties of the cell sheets, including sizes, expression levels of collagen type II and I, and the localization of the stress fibers, were assessed and compared with those of the cell sheets harvested without the gelatin manipulator. Using the gelatin manipulator, the original size of the chondrocyte cell sheets was retained with abundant stress fibers, but with a decrease in the expression of collagen type II. Without the gelatin manipulator, although the cell shrinkage occurred, the cell sheet with suppressed stress fiber formation showed significantly higher levels of collagen type II. These results support our observations that stress fiber formation in chondrocyte cell sheets affected the production of chondrogenic markers. These densely packed tissue-like structures possessed a good chondrogenic activity, indicating their potential for use in autologous chondrocyte implantation to treat cartilage defects.

  14. Heat capacity anomalies associated with structural transformations in. beta. -W and perovskite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R [Brookhaven National Lab., Upton, NY; Ho, J C

    1977-01-01

    The similarity of the heat capacity anomalies, often observed with structural transformations driven by soft phonons, in both ..beta..-W and perovskite compounds is discussed referring to our recent work on V/sub 3/Si and RbCaF/sub 3/.

  15. Structural insights into the {beta}-xylosidase from Trichoderma reesei

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Adriana L.; Fischer, Hannes; Polikarpov, Igor [Sao Paulo Univ. (USP), Sao Carlos, SP (Brazil). Inst. de Fisica; Eneiskaya, Elena V.; Kulminskaya, Anna A.; Shabalin, Konstantin A.; Neustroev, Kirill N.; Golubev, Alexander M. [Petersburg Nuclear Physics Inst., Moskow (Russian Federation); Craievich, Aldo Felix [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2005-07-01

    Xylan is a major structural polysaccharide in plant cells, and is the second most abundant polysaccharide in nature, accounting for approximately one-third of all renewable organic carbon on earth. Xylan together with cellulose (1,4-{beta}-glucan) and lignin (a complex polyphenolic compound) make up the major polymeric constituents of plant cell walls, recently, there was a significant industrial interest in Xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production. (author)

  16. Disintegration of liquid sheets

    Science.gov (United States)

    Mansour, Adel; Chigier, Norman

    1990-01-01

    The development, stability, and disintegration of liquid sheets issuing from a two-dimensional air-assisted nozzle is studied. Detailed measurements of mean drop size and velocity are made using a phase Doppler particle analyzer. Without air flow the liquid sheet converges toward the axis as a result of surface tension forces. With airflow a quasi-two-dimensional expanding spray is formed. The air flow causes small variations in sheet thickness to develop into major disturbances with the result that disruption starts before the formation of the main break-up region. In the two-dimensional variable geometry air-blast atomizer, it is shown that the air flow is responsible for the formation of large, ordered, and small chaotic 'cell' structures.

  17. Interlocking multi-material components made of structured steel sheets and high-pressure die cast aluminium

    Science.gov (United States)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2017-10-01

    Lightweight design is a major driving force of innovation, especially in the automotive industry. Using hybrid components made of two or more different materials is one approach to reduce the vehicles weight and decrease fuel consumption. As a possible way to increase the stiffness of multi-material components, this paper presents a process chain to produce such components made of steel sheets and high-pressure die cast aluminium. Prior to the casting sequence the steel sheets are structured in a modified rolling process which enables continuous interlocking with the aluminium. Two structures manufactured by this rolling process are tested. The first one is a channel like structure and the second one is a channel like structure with undercuts. These undercuts enable the formation of small anchors when the molten aluminium fills them. The correlation between thickness reduction during rolling and the shape of the resulting structure was evaluated for both structures. It can be stated that channels with a depth of up to 0.5 mm and a width of 1 mm could be created. Undercuts with different size depending on the thickness reduction could be realised. Subsequent aluminium high-pressure die casting experiments were performed to determine if the surface structure can be filled gap-free with molten aluminium during the casting sequence and if a gap-free connection can be achieved after contraction of the aluminium. The casting experiments showed that both structures could be filled during the high-pressure die casting. The channel like structure results in a gap between steel and aluminium after contraction of the cast metal whereas the structure with undercuts leads to a good interlocking resulting in a gap-free connection.

  18. Short-Time Structural Stability of Compressible Vortex Sheets with Surface Tension

    Science.gov (United States)

    Stevens, Ben

    2016-11-01

    Assume we start with an initial vortex-sheet configuration which consists of two inviscid fluids with density bounded below flowing smoothly past each other, where a strictly positive fixed coefficient of surface tension produces a surface tension force across the common interface, balanced by the pressure jump. We model the fluids by the compressible Euler equations in three space dimensions with a very general equation of state relating the pressure, entropy and density such that the sound speed is positive. We prove that, for a short time, there exists a unique solution of the equations with the same structure. The mathematical approach consists of introducing a carefully chosen artificial viscosity-type regularisation which allows one to linearise the system so as to obtain a collection of transport equations for the entropy, pressure and curl together with a parabolic-type equation for the velocity which becomes fairly standard after rotating the velocity according to the interface normal. We prove a high order energy estimate for the non-linear equations that is independent of the artificial viscosity parameter which allows us to send it to zero. This approach loosely follows that introduced by Shkoller et al. in the setting of a compressible liquid-vacuum interface. Although already considered by Coutand et al. [10] and Lindblad [17], we also make some brief comments on the case of a compressible liquid-vacuum interface, which is obtained from the vortex sheets problem by replacing one of the fluids by vacuum, where it is possible to obtain a structural stability result even without surface tension.

  19. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 01: forest structure and fire hazard overview

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Many managers and policymakers guided by the National Environmental Policy Act process want to understand the scientific principles on which they can base fuel treatments for reducing the size and severity of wildfires. These Forest Structure and Fire Hazard fact sheets discuss how to estimate fire hazard, how to visualize fuel treatments, and how the role of...

  20. Syntheses, structures, and IR spectroscopic characterization of new uranyl sulfate/selenate 1D-chain, 2D-sheet and 3D-framework

    Energy Technology Data Exchange (ETDEWEB)

    Ling Jie; Sigmon, Ginger E.; Ward, Matthew; Roback, Nancy; Burns, Peter C. [Dept. of Civil Engineering and Geological Science, Univ. of Notre Dame, IN (United States)

    2010-07-01

    Three uranyl sulfates, (C{sub 6}H{sub 20}N{sub 4})[(UO{sub 2}){sub 2} . (SO{sub 4}){sub 4}(H{sub 2}O){sub 2}](H{sub 2}O){sub 6} (TETAUS), (C{sub 15}H{sub 14}N{sub 3})[(UO{sub 2}) . (SO{sub 4}){sub 2}](NO{sub 3})(H{sub 2}O){sub 2} (TPUS), and K{sub 2}[(UO{sub 2})(SO{sub 4}){sub 2}(H{sub 2}O)] . H{sub 2}O (KUS), and two uranyl selenates, K(H{sub 3}O)[(UO{sub 2}){sub 2} . (SeO{sub 4}){sub 3}(H{sub 2}O)](H{sub 2}O){sub 6} (KUSe) and (H{sub 3}O){sub 2}[(UO{sub 2}){sub 2}(SeO{sub 4}){sub 3} . (H{sub 2}O)] (USe), were synthesized by slow evaporation of aqueous solutions at room temperature. TETAUS crystallizes in space group P anti 1, a = 6.7186(5) A, b = 9.2625(7) A, c = 13.1078(9) A, {alpha} = 72.337(2) , {beta} = 89.198(2) , {gamma} = 70.037(1) , V = 726.89(9) A{sup 3}, Z = 1. TPUS is triclinic, P anti 1, a = 6.9732(7) A, b = 13.569(1) A, c = 13.641(1) A, {alpha} = 111.809(2) , {beta} = 102.386(2) , {gamma} = 93.833(2) , V = 1150.0(2) A{sup 3}, Z = 2. KUS is orthorhombic, Cmca, a = 12.171(2) A, b = 16.689(3) A, c = 10.997(2) A, V = 2233.8(6) A{sup 3}, Z = 8. These uranyl sulfates are built from infinite one-dimensional uranyl sulfate chains with different topologies. KUSe is monoclinic, P2{sub 1}/n, a = 14.715(1) A, b = 10.1557(7) A, c = 15.833(1) A, {beta} = 114.415(1) , V = 2154.5(3) A{sup 3}, Z = 4. Its structure is based on a two-dimensional uranyl selenate sheet. USe crystallizes in space group P2{sub 1}/c, a = 10.6124(2) A, b = 14.7717(3) A, c = 13.7139(3) A, {beta} = 96.989(1) , V = 2133.86(8) A{sup 3}, Z = 4, with a complex three-dimensional uranyl selenate framework containing channels extending in three directions. (orig.)

  1. Dynamical properties of vortical structures on the beta-plane

    DEFF Research Database (Denmark)

    Sutyrin, G.G.; Hesthaven, J.S.; Lynov, Jens-Peter

    1994-01-01

    The long-time evolution of monopolar and dipolar vortices influenced by the large-scale gradient of the ambient potential vorticity (the beta-effect) is studied by direct numerical solutions of the equivalent barotropic quasi-geostrophic equation. Translation and reorganization of vortical...... structures are shown to depend strongly on their intensity. Transport of trapped fluid by vortical structures is illustrated by calculating particle trajectories and by considering closed isolines of potential vorticity and the streamfunction in a co-moving reference frame. The initial behaviour of strong...... monopoles is found to be well described by a recent approximate theory for the evolution of azimuthal mode one, even for times longer than the linear Rossby wave period. In the long-time limit, strong monopoles transport particles mainly westward, although the meridional displacement is several times larger...

  2. Exploiting the Past and the Future in Protein Secondary Structure Prediction

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Frasconi, P

    1999-01-01

    predictions based on variable ranges of dependencies. These architectures extend recurrent neural networks, introducing non-causal bidirectional dynamics to capture both upstream and downstream information. The prediction algorithm is completed by the use of mixtures of estimators that leverage evolutionary......Motivation: Predicting the secondary structure of a protein (alpha-helix, beta-sheet, coil) is an important step towards elucidating its three-dimensional structure, as well as its function. Presently, the best predictors are based on machine learning approaches, in particular neural network...

  3. Description and classification of uranium oxide hydrate sheet topologies

    International Nuclear Information System (INIS)

    Miller, M.L.; Burns, P.C.; Ewing, R.C.; Finch, R.J.

    1996-01-01

    The uranyl oxide hydrates (UOH) are important corrosion products of uraninite and UO 2 in spent nuclear fuel under oxidizing conditions. However, the systematics of the crystal chemistry, thermodynamic parameters, and solubilities of this mineral group are poorly understood. With the exception of the synthetic UO 2 (OH) 2 polymorphs, all UOH crystal structures are based on sheets of edge-sharing 5 and 4-coordinated uranyl dipyramids. This structural similarity suggests that it is possible to develop a model by which to estimate the thermodynamic behavior of UOHs from data on structural endmember phases. Toward this end, a method of quantitatively describing all known UOH sheets has been developed. Only four structural unit chains are required to construct the uranyl oxide hydrate sheets (as well as the structurally similar U 3 O 8 sheets). The H-chain is restricted to α-UO 2 (OH) 2 and is made up of hexagonally coordinated uranyl ions sharing opposing edges. The arrowhead chain composed of pentagonal dipyramids sharing edges and alternating with trigonal vacancies is present in all other UOH sheets. These arrowhead chains are directed and can occur in both an Up-arrow and Down-arrow sense within a single sheet. The P-chain consists of edge-sharing pentagonal dipyramids forming a zigzag chain. The P-chain is flanked on both sides by arrowhead chains of the same sense. The remaining structural unit is a discontinuous chain of rhombic dipyramids. This R-chain is produced when nested adjacent Up-arrow and Down-arrow arrowhead chains are translated by a diagonal shift. This chain occurs in sheets which contain only 4-coordinate uranyl ion and those containing both 4- and 5-coordinate uranyl ions

  4. Thin current sheets observation by MMS during a near-Earth's magnetotail reconnection event

    Science.gov (United States)

    Nakamura, R.; Varsani, A.; Nakamura, T.; Genestreti, K.; Plaschke, F.; Baumjohann, W.; Nagai, T.; Burch, J.; Cohen, I. J.; Ergun, R.; Fuselier, S. A.; Giles, B. L.; Le Contel, O.; Lindqvist, P. A.; Magnes, W.; Schwartz, S. J.; Strangeway, R. J.; Torbert, R. B.

    2017-12-01

    During summer 2017, the four spacecraft of the Magnetospheric Multiscale (MMS) mission traversed the nightside magnetotail current sheet at an apogee of 25 RE. They detected a number of flow reversal events suggestive of the passage of the reconnection current sheet. Due to the mission's unprecedented high-time resolution and spatial separation well below the ion scales, structure of thin current sheets is well resolved both with plasma and field measurements. In this study we examine the detailed structure of thin current sheets during a flow reversal event from tailward flow to Earthward flow, when MMS crossed the center of the current sheet . We investigate the changes in the structure of the thin current sheet relative to the X-point based on multi-point analysis. We determine the motion and strength of the current sheet from curlometer calculations comparing these with currents obtained from the particle data. The observed structures of these current sheets are also compared with simulations.

  5. Collisionless current sheet equilibria

    Science.gov (United States)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  6. Structural domains required for channel function of the mouse transient receptor potential protein homologue TRP1beta.

    Science.gov (United States)

    Engelke, Michael; Friedrich, Olaf; Budde, Petra; Schäfer, Christina; Niemann, Ursula; Zitt, Christof; Jüngling, Eberhard; Rocks, Oliver; Lückhoff, Andreas; Frey, Jürgen

    2002-07-17

    Transient receptor potential proteins (TRP) are supposed to participate in the formation of store-operated Ca(2+) influx channels by co-assembly. However, little is known which domains facilitate the interaction of subunits. Contribution of the N-terminal coiled-coil domain and ankyrin-like repeats and the putative pore region of the mouse TRP1beta (mTRP1beta) variant to the formation of functional cation channels were analyzed following overexpression in HEK293 (human embryonic kidney) cells. MTRP1beta expressing cells exhibited enhanced Ca(2+) influx and enhanced whole-cell membrane currents compared to mTRP1beta deletion mutants. Using a yeast two-hybrid assay only the coiled-coil domain facilitated homodimerization of the N-terminus. These results suggest that the N-terminus of mTRP1beta is required for structural organization thus forming functional channels.

  7. Conditional Betas and Investor Uncertainty

    OpenAIRE

    Fernando D. Chague

    2013-01-01

    We derive theoretical expressions for market betas from a rational expectation equilibrium model where the representative investor does not observe if the economy is in a recession or an expansion. Market betas in this economy are time-varying and related to investor uncertainty about the state of the economy. The dynamics of betas will also vary across assets according to the assets' cash-flow structure. In a calibration exercise, we show that value and growth firms have cash-flow structures...

  8. Evidence for Novel β-Sheet Structures in Iowa Mutant β-Amyloid Fibrils†

    Science.gov (United States)

    Tycko, Robert; Sciarretta, Kimberly L.; Orgel, Joseph P. R. O.; Meredith, Stephen C.

    2009-01-01

    Asp23-to-Asn mutation within the coding sequence of β-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer’s disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Aβ40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Aβ40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 × 10-3 min-1 and 1.07 × 10-4 min-1 for D23N-Aβ40 and the wild-type peptide WT-Aβ40, respectively) and without a lag phase. Electron microscopy shows that D23N-Aβ40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-β pattern, with a sharp reflection at 4.7 Å and a broad reflection at 9.4 Å, which is notably smaller than the value for WT-Aβ40 fibrils (10.4 Å). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Aβ40 fibrils containing the in-register, parallel β-sheet structure commonly found in WT-Aβ40 fibrils and most other amyloid fibrils. Antiparallel β-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through 13C-13C and 15N-13C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Aβ40 fibrils and the unusual vasculotropic clinical picture in these patients. PMID:19358576

  9. Solution structure of human intestinal fatty acid binding protein: Implications for ligand entry and exit

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fengli [Boston University School of Medicine, Department of Biophysics (United States); Luecke, Christian [Johann Wolfgang Goethe-Universitaet (Germany); Baier, Leslie J. [NIDDK, NIH, Phoenix Epidemiology and Clinical Research Branch (United States); Sacchettini, James C. [Texas A and M University, Department of Biochemistry and Biophysics (United States); Hamilton, James A. [Boston University School of Medicine, Department of Biophysics (United States)

    1997-04-15

    The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) protein which binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanine to threonine substitution at position 54 in I-FABP has been identified which affects fatty acid binding and transport, and is associated with the development of insulin resistance in several populations including Mexican-Americans and Pima Indians. To investigate the molecular basis of the binding properties of I-FABP, the 3D solution structure of the more common form of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy.Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed by using 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra(NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP was calculated by using the distance geometry program DIANA based on 2519 distance constraints obtained from the NMR data. Subsequent energy minimization was carried out by using the program SYBYL in the presence of distance constraints. The conformation of human I-FABP consists of 10 antiparallel {beta}-strands which form two nearly orthogonal {beta}-sheets of five strands each, and two short {alpha}-helices that connect the {beta}-strands A and B. The interior of the protein consists of a water-filled cavity between the two {beta}-sheets. The NMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP.The NMR results show significant conformational variability of certain backbone segments around the postulated portal region for the entry and exit of fatty acid ligand.

  10. The transposition of the balance sheet to financial and functional balance sheet. Research and development

    Directory of Open Access Journals (Sweden)

    Liana GĂDĂU

    2015-09-01

    Full Text Available As the title suggests, through this paper we want to highlight the necessity of treating again the content and the form of the balance sheet in order to adapt it to a more efficient analysis, this way surpassing the informational valences of the classic balance sheet. The functional and the financial balance sheet will be taken into account. These models of balance sheet permit the complex analyses regarding the solvability or the bankruptcy risk of an enterprise to take place, and also other analyses, like the analysis of the structure and the financial/ functional equilibrium, the analysis of the company on operating cycles and their role in the functioning of the company. Through the particularities offered by each of these two models of balance sheet, we want to present the advantages of a superior informing. This content of this material is based on a vast investigation of the specialized literature.

  11. Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications.

    Science.gov (United States)

    Kim, Sungjin; Kim, Jae Hong; Lee, Joon Seok; Park, Chan Beum

    2015-08-12

    Peptide self-assembly is an attractive route for the synthesis of intricate organic nanostructures that possess remarkable structural variety and biocompatibility. Recent studies on peptide-based, self-assembled materials have expanded beyond the construction of high-order architectures; they are now reporting new functional materials that have application in the emerging fields such as artificial photosynthesis and rechargeable batteries. Nevertheless, there have been few reviews particularly concentrating on such versatile, emerging applications. Herein, recent advances in the synthesis of self-assembled peptide nanomaterials (e.g., cross β-sheet-based amyloid nanostructures, peptide amphiphiles) are selectively reviewed and their new applications in diverse, interdisciplinary fields are described, ranging from optics and energy storage/conversion to healthcare. The applications of peptide-based self-assembled materials in unconventional fields are also highlighted, such as photoluminescent peptide nanostructures, artificial photosynthetic peptide nanomaterials, and lithium-ion battery components. The relation of such functional materials to the rapidly progressing biomedical applications of peptide self-assembly, which include biosensors/chips and regenerative medicine, are discussed. The combination of strategies shown in these applications would further promote the discovery of novel, functional, small materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis and characterization of f-element iodate architectures with variable dimensionality, alpha- and beta-Am(IO3)3.

    Science.gov (United States)

    Runde, Wolfgang; Bean, Amanda C; Brodnax, Lia F; Scott, Brian L

    2006-03-20

    Two americium(III) iodates, beta-Am(IO3)3 (I) and alpha-Am(IO3)3 (II), have been prepared from the aqueous reactions of Am(III) with KIO(4) at 180 degrees C and have been characterized by single-crystal X-ray diffraction, diffuse reflectance, and Raman spectroscopy. The alpha-form is consistent with the known structure type I of anhydrous lanthanide iodates. It consists of a three-dimensional network of pyramidal iodate groups bridging [AmO8] polyhedra where each of the americium ions are coordinated to eight iodate ligands. The beta-form reveals a novel architecture that is unknown within the f-element iodate series. beta-Am(IO3)3 exhibits a two-dimensional layered structure with nine-coordinate Am(III) atoms. Three crystallographically unique pyramidal iodate anions link the Am atoms into corrugated sheets that interact with one another through intermolecular IO3-...IO3- interactions forming dimeric I2O10 units. One of these anions utilizes all three O atoms to simultaneously bridge three Am atoms. The other two iodate ligands bridge only two Am atoms and have one terminal O atom. In contrast to alpha-Am(IO3)3, where the [IO3] ligands are solely corner-sharing with [AmO8] polyhedra, a complex arrangement of corner- and edge-sharing mu2- and mu3-[IO3] pyramids can be found in beta-Am(IO3)3. Crystallographic data: I, monoclinic, space group P2(1)/n, a = 8.871(3) A, b = 5.933(2) A, c = 15.315(4) A, beta = 96.948(4) degrees , V = 800.1(4) A(3), Z = 4; II, monoclinic, space group P2(1)/c, a = 7.243(2) A, b = 8.538(3) A, c = 13.513(5) A, beta = 100.123(6) degrees , V = 822.7(5) A(3), Z = 4.

  13. Salt-bridging effects on short amphiphilic helical structure and introducing sequence-based short beta-turn motifs.

    Science.gov (United States)

    Guarracino, Danielle A; Gentile, Kayla; Grossman, Alec; Li, Evan; Refai, Nader; Mohnot, Joy; King, Daniel

    2018-02-01

    Determining the minimal sequence necessary to induce protein folding is beneficial in understanding the role of protein-protein interactions in biological systems, as their three-dimensional structures often dictate their activity. Proteins are generally comprised of discrete secondary structures, from α-helices to β-turns and larger β-sheets, each of which is influenced by its primary structure. Manipulating the sequence of short, moderately helical peptides can help elucidate the influences on folding. We created two new scaffolds based on a modestly helical eight-residue peptide, PT3, we previously published. Using circular dichroism (CD) spectroscopy and changing the possible salt-bridging residues to new combinations of Lys, Arg, Glu, and Asp, we found that our most helical improvements came from the Arg-Glu combination, whereas the Lys-Asp was not significantly different from the Lys-Glu of the parent scaffold, PT3. The marked 3 10 -helical contributions in PT3 were lessened in the Arg-Glu-containing peptide with the beginning of cooperative unfolding seen through a thermal denaturation. However, a unique and unexpected signature was seen for the denaturation of the Lys-Asp peptide which could help elucidate the stages of folding between the 3 10 and α-helix. In addition, we developed a short six-residue peptide with β-turn/sheet CD signature, again to help study minimal sequences needed for folding. Overall, the results indicate that improvements made to short peptide scaffolds by fine-tuning the salt-bridging residues can enhance scaffold structure. Likewise, with the results from the new, short β-turn motif, these can help impact future peptidomimetic designs in creating biologically useful, short, structured β-sheet-forming peptides.

  14. Hierarchical ZnO microspheres built by sheet-like network: Large-scale synthesis and structurally enhanced catalytic performances

    International Nuclear Information System (INIS)

    Zhu Guoxing; Liu Yuanjun; Ji Zhenyuan; Bai Song; Shen Xiaoping; Xu Zheng

    2012-01-01

    Highlights: ► Hierarchical ZnO microspheres were prepared through a facile precursor procedure in the absence of self-assembled templates, organic additives, or matrices. ► The building blocks of microspheres, sheet-like ZnO networks, are porous mesocrystal terminated with (0 1 −1 0) crystal planes. ► The hierarchical ZnO microsphere catalyst exhibits structure-induced enhancement of catalytic performance and a strong durability. - Abstract: Large-scale novel hierarchical ZnO microspheres were fabricated by a facile precursor procedure in the absence of self-assembled templates, organic additives, or matrices. A field emission scanning electron microscopy (FESEM) image reveals that the ZnO microspheres with diameter of 5–18 μm are built by sheet-like ZnO networks with average thickness of 40 nm and length of several microns. High resolution transmission electron microscopy (HRTEM) image indicates that the building blocks, sheet-like ZnO networks, are porous mesocrystal terminated with {0 1 −1 0} crystal planes. A potential application of the ZnO microspheres as a catalyst in the synthesis of 5-substituted 1H-tetrazoles was investigated. It was found that the hierarchical ZnO microsphere catalyst exhibits structure-induced enhancement of catalytic performance and a strong durability.

  15. Structure of beta-diketiminates and beta-aminoketones made from anisidines or chloroanilines: tin and lithium complexes

    Czech Academy of Sciences Publication Activity Database

    Olejník, R.; Padělková, Z.; Horáček, Michal; Růžička, A.

    2012-01-01

    Roč. 35, 1-2 (2012), s. 13-27 ISSN 0334-7575 Institutional support: RVO:61388955 Keywords : beta-diketimines * beta-enaminones * lithium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.207, year: 2011

  16. 3D 14N/1H Double Quantum/1H Single Quantum Correlation Solid-State NMR for Probing Parallel and Anti-Parallel Beta-Sheet Arrangement of Oligo-Peptides at Natural Abundance.

    Science.gov (United States)

    Hong, You-Lee; Asakura, Tetsuo; Nishiyama, Yusuke

    2018-05-08

    β-sheet structure of oligo- and poly-peptides can be formed in anti-parallel (AP)- and parallel (P)-structure, which is the important feature to understand the structures. In principle, P- and AP-β-sheet structures can be identified by the presence (AP) and absence (P) of the interstrand 1HNH/1HNH correlations on a diagonal in 2D 1H double quantum (DQ)/1H single quantum (SQ) spectrum due to the different interstrand 1HNH/1HNH distances between these two arrangements. However, the 1HNH/1HNH peaks overlap to the 1HNH3+/1HNH3+ peaks, which always give cross peaks regardless of the β-sheet arrangement. The 1HNH3+/1HNH3+ peaks disturb the observation of the presence/absence of 1HNH/1HNH correlations and the assignment of 1HNH and 1HNH3+ is not always available. Here, 3D 14N/1H DQ/1H SQ correlation solid-state NMR experiments at fast magic angle spinning (70 kHz) are introduced to distinguish AP and P β-sheet structure. The 14N dimension allows the separate observation of 1HNH/1HNH peaks from 1HNH3+/1HNH3+ peaks with clear assignment of 1HNH and 1HNH3+. In addition, the high natural abundance of 1H and 14N enables 3D 14N/1H DQ/1H SQ experiments of oligo-alanines (Ala3-6) in four hours without any isotope labelling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Large patternable metal nanoparticle sheets by photo/e-beam lithography

    Science.gov (United States)

    Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru

    2017-10-01

    Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.

  18. Optimal Design of Sheet Pile Wall Embedded in Clay

    Science.gov (United States)

    Das, Manas Ranjan; Das, Sarat Kumar

    2015-09-01

    Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.

  19. Isotope Effects in the Bonds of beta-CrOOH and beta-CrOOD

    DEFF Research Database (Denmark)

    Nørlund Christensen, A.; Hansen, P.; Lehmann, M. S.

    1976-01-01

    Samples of orthorhombic chromium oxide hydroxide, beta -CrOOH, and the deuterated compound, beta -CrOOD, were prepared hydrothermally. The crystal structures were determined by powder profile refinement technique using neutron diffraction data. Unit cells are: beta -CrOOH: a equals 4. 862(2) A, b...... equals 4. 298(a) A, c equals 2. 995(1) A; beta -CrOOD: a equals 4. 873(5) A, b equals 4. 332(7) A, c equals 2. 963(2) A, with Z equals 2. The space group is P2//1nm or Pnnm....

  20. Structure of .beta.-galactosidase complexes

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan; Skálová, Tereza; Dušková, Jarmila; Petroková, Hana; Hašek, Jindřich; Lipovová, P.; Spiwok, V.; Strnad, Hynek; Králová, B.

    2006-01-01

    Roč. 13, č. 3 (2006), s. 137-138 ISSN 1211-5894. [Czech and Slovak Crystallographic Colloquium. 22.06.2006-24.06.2006, Grenoble] R&D Projects: GA AV ČR KJB500500512 Keywords : .beta.-galactosidase * X-ray diffraction * cold-active enzyme Subject RIV: EB - Genetics ; Molecular Biology http://www. xray .cz/ms/default.htm

  1. Analysis of Financial Position Based on the Balance Sheet

    OpenAIRE

    Spineanu-Georgescu Luciana

    2011-01-01

    Analysis of financial position based on the balance sheet is mainly aimed at assessing the extent to which financial structure chosen by the firm, namely, financial resources, covering the needs reflected in the balance sheet financed. This is done through an analysis known as horizontal analysis balance sheet financial imbalances.

  2. Complex furrows in a 2D epithelial sheet code the 3D structure of a beetle horn.

    Science.gov (United States)

    Matsuda, Keisuke; Gotoh, Hiroki; Tajika, Yuki; Sushida, Takamichi; Aonuma, Hitoshi; Niimi, Teruyuki; Akiyama, Masakazu; Inoue, Yasuhiro; Kondo, Shigeru

    2017-10-24

    The external organs of holometabolous insects are generated through two consecutive processes: the development of imaginal primordia and their subsequent transformation into the adult structures. During the latter process, many different phenomena at the cellular level (e.g. cell shape changes, cell migration, folding and unfolding of epithelial sheets) contribute to the drastic changes observed in size and shape. Because of this complexity, the logic behind the formation of the 3D structure of adult external organs remains largely unknown. In this report, we investigated the metamorphosis of the horn in the Japanese rhinoceros beetle Trypoxylus dichotomus. The horn primordia is essentially a 2D epithelial cell sheet with dense furrows. We experimentally unfolded these furrows using three different methods and found that the furrow pattern solely determines the 3D horn structure, indicating that horn formation in beetles occurs by two distinct processes: formation of the furrows and subsequently unfolding them. We postulate that this developmental simplicity offers an inherent advantage to understanding the principles that guide 3D morphogenesis in insects.

  3. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    Science.gov (United States)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid

  4. Electronic structure of beta-FeSi sub 2 obtained by maximum entropy method and photoemission spectroscopy

    CERN Document Server

    Kakemoto, H; Makita, Y; Kino, Y; Tsukamoto, T; Shin, S; Wada, S; Tsurumi, T

    2003-01-01

    The electronic structure of beta-FeSi sub 2 was investigated by maximum entropy method (MEM) and photoemission spectroscopy. The electronic structure obtained by MEM using X-ray diffraction data at room temperature (RT) showed covalent bonds of Fe-Si and Si-Si electrons. The photoemission spectra of beta-FeSi sub 2 at RT were changed by incidence photon energies. For photon energies between 50 and 100 eV, resonant photoemission spectra caused by a super Coster-Kronig transition were observed. In order to reduce resonant effect about Fe(3d) for obtained photoemission spectra, difference spectrum between 53 and 57 eV was calculated, and it was compared with ab-initio band calculation and spectra function.

  5. Current disruptions in the near-earth neutral sheet region

    International Nuclear Information System (INIS)

    Liu, A.T.Y.; Anderson, B.J.; Takahashi, K.; Zanetti, L.J.; McEntire, R.W.; Potemra, T.A.; Lopez, R.E.; Klumpar, D.M.; Greene, E.M.; Strangeway, R.

    1992-01-01

    Observations from the Charge Composition Explorer in 1985 and 1986 revealed fifteen current disruption events in which the magnetic field fluctuations were large and their onsets coincided well with ground onsets of substorm expansion or intensification. Over the disruption interval, the local magnetic field can change by as much as a factor of ∼7. In general, the stronger the current buildup and the closer the neutral sheet, the larger the resultant field change. There is also a tendency for a larger subsequent enhancement in the AE index with a stronger current buildup prior to current disruption. For events with good pitch angle coverage and extended observation in the neutral sheet region the authors find that the particle pressure increases toward the disruption onset and decreases afterward. Just prior to disruption, either the total particle pressure is isotropic, or the perpendicular component (P perpendicular ) dominates the parallel component (P parallel ), the plasma beta is seen to be as high as ∼70, and the observed plasma pressure gradient at the neutral sheet is large along the tail axis. The deduced local current density associated with pressure gradient is ∼27-80 n/Am 2 and is ∼85-105 mA/m when integrated over the sheet thickness. They infer from these results that just prior to the onset of current disruption, (1) an extremely thin current sheet requiring P parallel > P perpendicular for stress balance does not develop at these distances, (2) the thermal ion orbits are in the chaotic or Speiser regime while the thermal electrons are in the adiabatic regime and, in one case, exhibit peaked fluxes perpendicular to the magnetic field, thus implying no electron orbit chaotization to possibly initiate ion tearing instability, and (3) the neutral sheet is in the unstable regime specified by the cross-field current instability

  6. Water-insoluble Silk Films with Silk I Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Q.; Hu, X; Wang, X; Kluge, J; Lu, S; Cebe, P; Kaplan, D

    2010-01-01

    Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the core surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.

  7. In silico local structure approach: a case study on outer membrane proteins.

    Science.gov (United States)

    Martin, Juliette; de Brevern, Alexandre G; Camproux, Anne-Claude

    2008-04-01

    The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results. (c) 2007 Wiley-Liss, Inc.

  8. Analysis of the texture of zircaloy-4 sheet by crystallite orientation distribution function

    International Nuclear Information System (INIS)

    Ryoo, Hwei Soo; Hwang Sun Keum

    1990-01-01

    In order to analyze the texture variation of Zircaloy-4 sheet the Roe's method of calculating the crystallite orientation distribution function(CODF) for hcp system was computer programmed. The coefficients W lmn of CODF were calculated from plane-normal distribution pole figures obtained by X-ray diffraction, and the CODF was computed from a series expansion of spherical harmonics. The Legendre function, which is the basis of the harmonics, was computed up to l=16 to account for the symmetry systems of specimen and hcp crystal. A cross-rolling followed by beta-phase heat treatment and furnace cooling increased the density of basal poles along the sheet normal direction and rotated prism poles around the c axis. (Author)

  9. Principles for designing proteins with cavities formed by curved β sheets

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, Enrique; Basanta, Benjamin; Chidyausiku, Tamuka M.; Tang, Yuefeng; Oberdorfer, Gustav; Liu, Gaohua; Swapna, G. V. T.; Guan, Rongjin; Silva, Daniel-Adriano; Dou, Jiayi; Pereira, Jose Henrique; Xiao, Rong; Sankaran, Banumathi; Zwart, Peter H.; Montelione, Gaetano T.; Baker, David

    2017-01-12

    Active sites and ligand-binding cavities in native proteins are often formed by curved β sheets, and the ability to control β-sheet curvature would allow design of binding proteins with cavities customized to specific ligands. Toward this end, we investigated the mechanisms controlling β-sheet curvature by studying the geometry of β sheets in naturally occurring protein structures and folding simulations. The principles emerging from this analysis were used to design, de novo, a series of proteins with curved β sheets topped with α helices. Nuclear magnetic resonance and crystal structures of the designs closely match the computational models, showing that β-sheet curvature can be controlled with atomic-level accuracy. Our approach enables the design of proteins with cavities and provides a route to custom design ligand-binding and catalytic sites.

  10. Cell sheet technology and cell patterning for biofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Imen Elloumi; Yamato, Masayuki; Okano, Teruo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo (Japan)

    2009-06-01

    We have developed cell sheet technology as a modern method for the fabrication of functional tissue-like and organ-like structures. This technology allows for a sheet of interconnected cells and cells in full contact with their natural extracellular environment to be obtained. A cell sheet can be patterned and composed according to more than one cell type. The key technology of cell sheet engineering is that a fabricated cell sheet can be harvested and transplanted utilizing temperature-responsive surfaces. In this review, we summarize different aspects of cell sheet engineering and provide a survey of the application of cell sheets as a suitable material for biofabrication and clinics. Moreover, since cell micropatterning is a key tool for cell sheet engineering, in this review we focus on the introduction of our approaches to cell micropatterning and cell co-culture to the principles of automation and how they can be subjected to easy robotics programming. Finally, efforts towards making cell sheet technology suitable for biofabrication and robotic biofabrication are also summarized. (topical review)

  11. Reducing Test Anxiety while Increasing Learning: The Cheat Sheet

    Science.gov (United States)

    Erbe, Brigitte

    2007-01-01

    Student learning is greatly enhanced by studying prior to an exam. Allowing students to prepare a cheat sheet for the exam helps structure this study time and deepens learning. The crib sheet is well defined: one double-sided page of notes. An award for the best and most creative cheat sheet allows the instructor to appreciate the students'…

  12. Study of the structural damage in a niobium-microalloyed steel sheet

    International Nuclear Information System (INIS)

    Fernandes, J.; Riba, J.; Verdeja, J.I.

    1986-01-01

    A quantitative experimental study of the damage developed as a consequence of straining has been performed on a microalloyed (niobium) steel sheet by means of a SEM. Equivalent strains range between 0 and 0.68 and strain paths between 0 and 1 and have been obtained in a bulge test. Damage associated to Al 2 O 3 and SMn inclusions is already present in the ''as received'' sheet and grows with strain. Damage associated to CFe 3 second phase particles appears later in the forming of the sheet. For stages previous to necking SMn stringers have dramatically developed more than 50% of total damage. The nucleation equivalent strain is between 0,3 and 0,4. (author)

  13. Experimental investigation of the degree of weakening in structural notch area of 7075-T6 aluminum alloy sheet welded with the RFSSW method

    Directory of Open Access Journals (Sweden)

    Kubit Andrzej

    2017-01-01

    Full Text Available The paper presents the methodology of the research determining the degree of weakening of the welded sheet obtained by the refill friction stir spot welding (RFSSW method. The considered weakness is the effect of a structural notch resulting from penetration by the tool. RFSSW technology is a relatively new method of joining metals, which can successfully provide an alternative to resistance welding or riveting - traditionally used methods of joining thin-walled structures in the aerospace and automotive industries. The study presented in the paper focuses on the overlapping of sheet metal with 7075-T6 aluminum alloy combined in the configuration: 1.6 mm top sheet and 0.8 mm bottom sheet. Joints were assembled following the following process parameters: Welding time 1.5 s, the tool plunge depth in the range of 1.5 ÷ 1.9 mm, and the spindle speed of 2600 rpm. The analysis of the microstructure of joints revealed that along the edge of the tool path a structural notch is formed, the size and shape of which depend on the parameters applied. The paper describes the study consisting in punching the welded area along the formed notch in the upper sheet. The punching process was performed on a universal testing machine and the punching force was measured during the test. Based on the force value, the degree of sheet weakening in the notched area was determined. The smallest weakening was observed in joints made with the smallest tool depth, i.e. 1.5 mm, whereas the biggest weakening was obtained for tool depth of 1.9 mm. The load applied to the joints was equal to 5290N and 7585N respectively.

  14. Local sequence information in cellular retinoic acid-binding protein I: specific residue roles in beta-turns.

    Science.gov (United States)

    Rotondi, Kenneth S; Gierasch, Lila M

    2003-01-01

    We have recently shown that two of the beta-turns (III and IV) in the ten-stranded, beta-clam protein, cellular retinoic acid-binding protein I (CRABP I), are favored in short peptide fragments, arguing that they are encoded by local interactions (K. S. Rotondi and L. M. Gierasch, Biochemistry, 2003, Vol. 42, pp. 7976-7985). In this paper we examine these turns in greater detail to dissect the specific local interactions responsible for their observed native conformational biases. Conformations of peptides corresponding to the turn III and IV fragments were examined under conditions designed to selectively disrupt stabilizing interactions, using pH variation, chaotrope addition, or mutagenesis to probe specific side-chain influences. We find that steric constraints imposed by excluded volume effects between near neighbor residues (i,i+2), favorable polar (i,i+2) interactions, and steric permissiveness of glycines are the principal factors accounting for the observed native bias in these turns. Longer-range stabilizing interactions across the beta-turns do not appear to play a significant role in turn stability in these short peptides, in contrast to their importance in hairpins. Additionally, our data add to a growing number of examples of the 3:5 type I turn with a beta-bulge as a class of turns with high propensity to form locally defined structure. Current work is directed at the interplay between the local sequence information in the turns and more long-range influences in the mechanism of folding of this predominantly beta-sheet protein. Copyright 2004 Wiley Periodicals, Inc.

  15. X-ray crystal structure of the passenger domain of plasmid encoded toxin(Pet), an autotransporter enterotoxin from enteroaggregative Escherichia coli (EAEC)

    Energy Technology Data Exchange (ETDEWEB)

    Domingo Meza-Aguilar, J. [Departamento de Salud Pública Facultad de Medicina UNAM, Ciudad Universitaria Coyoacán 04510, D.F. (Mexico); Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato Oncología e Investigación, Hospital Infantil de México Federico Gómez 06720, D.F. (Mexico); Fromme, Petra [Department of Chemistry and Biochemistry, Arizona State University, Physical Sciences BLDG D-102, Tempe, AZ 85287 (United States); Torres-Larios, Alfredo [Instituto de Fisiología Celular UNAM, Ciudad Universitaria Coyoacán 04510, D.F. (Mexico); Mendoza-Hernández, Guillermo [Instituto de Química UNAM, Ciudad Universitaria Coyoacán 04510, D.F (Mexico); Hernandez-Chiñas, Ulises [Departamento de Salud Pública Facultad de Medicina UNAM, Ciudad Universitaria Coyoacán 04510, D.F. (Mexico); Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato Oncología e Investigación, Hospital Infantil de México Federico Gómez 06720, D.F. (Mexico); Arreguin-Espinosa de los Monteros, Roberto A. [Instituto de Química UNAM, Ciudad Universitaria Coyoacán 04510, D.F (Mexico); and others

    2014-03-07

    Highlights: • X-ray crystal structure of the passenger domain of Plasmid encoded toxin at 2.3 Å. • Structural differences between Pet passenger domain and EspP protein are described. • High flexibility of the C-terminal beta helix is structurally assigned. - Abstract: Autotransporters (ATs) represent a superfamily of proteins produced by a variety of pathogenic bacteria, which include the pathogenic groups of Escherichia coli (E. coli) associated with gastrointestinal and urinary tract infections. We present the first X-ray structure of the passenger domain from the Plasmid-encoded toxin (Pet) a 100 kDa protein at 2.3 Å resolution which is a cause of acute diarrhea in both developing and industrialized countries. Pet is a cytoskeleton-altering toxin that induces loss of actin stress fibers. While Pet (pdb code: 4OM9) shows only a sequence identity of 50% compared to the closest related protein sequence, extracellular serine protease plasmid (EspP) the structural features of both proteins are conserved. A closer structural look reveals that Pet contains a β-pleaded sheet at the sequence region of residues 181–190, the corresponding structural domain in EspP consists of a coiled loop. Secondary, the Pet passenger domain features a more pronounced beta sheet between residues 135 and 143 compared to the structure of EspP.

  16. Heating properties of merging/reconnection startup of high-beta ST

    International Nuclear Information System (INIS)

    Ono, Yasushi

    2005-01-01

    The high-power reconnection heating of spherical tokamak (ST) has been studied in the TS-3 experiment by use of axial merging of two STs. In this method, the merging/magnetic reconnection transformed a part of magnetic energy of merging STs into their thermal energy within short reconnection time. Our present low-field merging (0.3-0.5kG, R∼0.2m) attained the maximum heating power of 4-10MW and increased the beta-values of STs by factor 2-3 transiently. The ion heating energy was found to increase inversely with the q-value (B t component) of two STs. The most probable cause for this dependence is fast reconnection speed/ outflow speed due to large anomalous resistivity of current sheet in low-q state. After merging startup, decrease in beta was observed especially in low-q STs, indicating that the final beta value of ST increased with the q-value. (author)

  17. Yeast beta-alanine synthase shares a structural scaffold and origin with dizinc-dependent exopeptidases

    DEFF Research Database (Denmark)

    Lundgren, S.; Gojkovic, Zoran; Piskur, Jure

    2003-01-01

    of the intersubunit contacts. Both domains exhibit a mixed alpha/beta-topology. Surprisingly, the observed high structural homology to a family of dizinc-dependent exopeptidases suggests that these two enzyme groups have a common origin. Alterations in the ligand composition of the metal-binding site can be explained...

  18. Superallowed Beta Decay Studies at TRIUMF --- Nuclear Structure and Fundamental Symmetries

    Science.gov (United States)

    Zganjar, E. F.; Achtzehn, T.; Albers, D.; Andreoiu, C.; Andreyev, A. N.; Austin, R. A. E.; Ball, G. C.; Behr, J. A.; Biosvert, G. C.; Bricault, P.; Bishop, S.; Chakrawarthy, R. S.; Churchman, R.; Cross, D.; Cunningham, E.; D'Auria, J. M.; Dombsky, M.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hanemaayer, V.; Hardy, J. C.; Hodgson, D. F.; Hyland, B.; Iacob, V.; Klages, P.; Koopmans, K. A.; Kulp, W. D.; Lassen, J.; Lavoie, J. P.; Leslie, J. R.; Linder, T.; MacDonald, J. A.; Mak, H.-B.; Melconian, D.; Morton, A. C.; Ormand, W. E.; Osborne, C. J.; Pearson, C. J.; Pearson, M. R.; Phillips, A. A.; Piechaczek, A.; Ressler, J.; Sarazin, F.; Savard, G.; Schumaker, M. A.; Scraggs, H. C.; Svensson, C. E.; Valiente-Dobon, J. J.; Towner, I. S.; Waddington, J. C.; Walker, P. M.; Wendt, K.; Wood, J. L.

    2007-04-01

    Precision measurement of the beta -decay half-life, Q-value, and branching ratio between nuclear analog states of Jpi = 0+ and T=1 can provide critical and fundamental tests of the Standard Model's description of electroweak interactions. A program has been initiated at TRIUMF-ISAC to measure the ft values of these superallowed beta transitions. Two Tz = 0, A > 60 cases, 74Rb and 62Ga, are presented. These are particularly relevant because they can provide critical tests of the calculated nuclear structure and isospin-symmetry breaking corrections that are predicted to be larger for heavier nuclei, and because they demonstrate the advance in the experimental precision on ft at TRIUMF-ISAC from 0.26% for 74Rb in 2002 to 0.05% for 62Ga in 2006. The high precision world data on experimental ft and corrected Ft values are discussed and shown to be consistent with CVC at the 10-4 level, yielding an average Ft = 3073.70(74) s. This Ft leads to Vud = 0.9737(4) for the up-down element of the Standard Model's CKM matrix. With this value and the Particle Data Group's 2006 values for Vus and Vub, the unitarity condition for the CKM matrix is met. Additional measurements and calculations are needed, however, to reduce the uncertainties in that evaluation. That objective is the focus of the continuing program on superallowed-beta decay at TRIUMF-ISAC.

  19. Structure of Acostatin, a Dimeric Disintegrin From Southern Copperhead (Agkistrodon Contortrix Contortrix), at 1.7 Angstrom Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Moiseeva, N.; Bau, R.; Swenson, S.D.; Marklund, F.S.; Jr.; Choe, J.-Y.; Liu, Z.-J.; Allaire, M.

    2009-05-26

    Disintegrins are a family of small (4-14 kDa) proteins that bind to another class of proteins, integrins. Therefore, as integrin inhibitors, they can be exploited as anticancer and antiplatelet agents. Acostatin, an {alpha}{beta} heterodimeric disintegrin, has been isolated from the venom of Southern copperhead (Agkistrodon contortrix contortrix). The three-dimensional structure of acostatin has been determined by macromolecular crystallography using the molecular-replacement method. The asymmetric unit of the acostatin crystals consists of two heterodimers. The structure has been refined to an R{sub work} and R{sub free} of 18.6% and 21.5%, respectively, using all data in the 20-1.7 {angstrom} resolution range. The structure of all subunits is similar and is well ordered into N-terminal and C-terminal clusters with four intramolecular disulfide bonds. The overall fold consists of short {beta}-sheets, each of which is formed by a pair of antiparallel {beta}-strands connected by {beta}-turns and flexible loops of different lengths. Conformational flexibility is found in the RGD loops and in the C-terminal segment. The interaction of two N-terminal clusters via two intermolecular disulfide bridges anchors the {alpha}{beta}chains of the acostatin dimers. The C-terminal clusters of the heterodimer project in opposite directions and form a larger angle between them in comparison with other dimeric disintegrins. Extensive interactions are observed between two heterodimers, revealing an {alpha}{beta}{beta}{alpha} acostatin tetramer. Further experiments are required to identify whether the {alpha}{beta}{beta}{alpha} acostatin complex plays a functional role in vivo.

  20. Dynamics of fluid lines, sheets, filaments and membranes

    International Nuclear Information System (INIS)

    Coutris, N.

    1988-01-01

    We establish the dynamic equations of two types of fluid structures: 1) lines-filaments and 2) sheets-membranes. In the first part, we consider one-dimensional (line) and two-dimensional (sheet) fluid structures. The second part concerns the associated three- dimensional structures: filaments and membranes. In the third part, we establish the equations for thickened lines and thickened sheets. For that purpose, we introduce a thickness in the models of the first part. The fourth part concerns the thinning of the filament and the membrane. Then, by an asymptotic process, we deduce the corresponding equations from the equations of the second part in order to show the purely formal equivalence of the equations of the third and fourth parts. To obtain the equations, we make use of theorems whose proofs can be found in the appendices. The equations can be applied to many areas of interest: instabilities of liquid jets and liquid films, modelisation of interfaces between two different fluids as sheets or membranes, modelisation with the averaged equations over a cross section of single phase flows and two-phase flows in channels with a nonrectilinear axis such as bends or pump casings [fr

  1. Comparisons of experimental beta-ray spectra important to decay heat predictions with ENSDF [Evaluated Nuclear Structure Data File] evaluations

    International Nuclear Information System (INIS)

    Dickens, J.K.

    1990-03-01

    Graphical comparisons of recently obtained experimental beta-ray spectra with predicted beta-ray spectra based on the Evaluated Nuclear Structure Data File are exhibited for 77 fission products having masses 79--99 and 130--146 and lifetimes between 0.17 and 23650 sec. The comparisons range from very poor to excellent. For beta decay of 47 nuclides, estimates are made of ground-state transition intensities. For 14 cases the value in ENSDF gives results in very good agreement with the experimental data. 12 refs., 77 figs., 1 tab

  2. Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique

    International Nuclear Information System (INIS)

    Satheesh Kumar, S.S.; Raghu, T.

    2014-01-01

    Highlights: • High purity aluminium sheets constrained groove pressed up to plastic strain of 5.8. • Microstructural evolution studied by TEM and X-ray diffraction profile analysis. • Ultrafine grained structure with grain size ∼900 nm achieved in sheets. • Yield strength increased by 5.3 times and tensile strength doubled after first pass. • Enhanced deformation homogeneity seen with increased accumulated plastic strain. - Abstract: High purity aluminium sheets (∼99.9%) are subjected to intense plastic straining by constrained groove pressing method successfully up to 5 passes thereby imparting an effective plastic strain of 5.8. Transmission electron microscopy studies of constrained groove pressed sheets divulged significant grain refinement and the average grain sizes obtained after five pass is estimated to be ∼0.9 μm. In addition to that, microstructural evolution of constrained groove pressed sheets is characterized by X-ray diffraction peak profile analysis employing Williamson–Hall method and the results obtained fairly concur with electron microscopy findings. The tensile behaviour evolution with increased straining indicates substantial improvement of yield strength by ∼5.3 times from 17 MPa to 90 MPa during first pass corroborated to grain refinement observed. Marginal increase in strengths is noticed during second pass followed by minor drop in strengths attributed to predominance of dislocation recovery is noticed in subsequent passes. Quantitative assessment of degree of deformation homogeneity using microhardness profiles reveal relatively better strain homogeneity at higher number of passes

  3. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet

    Directory of Open Access Journals (Sweden)

    Azizah Intan Pangesty

    2016-06-01

    Full Text Available A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone (PLCL sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo.

  4. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor

    DEFF Research Database (Denmark)

    Cherezov, Vadim; Rosenbaum, Daniel M; Hanson, Michael A

    2007-01-01

    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to t...

  5. Interactions between {beta}-carboline alkaloids and bovine serum albumin: Investigation by spectroscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Nafisi, Shohreh, E-mail: drshnafisi@gmail.com [Department of Chemistry, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran (Iran, Islamic Republic of); Panahyab, Ataollah [Department of Chemistry, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran (Iran, Islamic Republic of); Bagheri Sadeghi, Golshan [Department of Biology, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of)

    2012-09-15

    {beta}-Carboline alkaloids are present in medicinal plants such as Peganum harmala L. that have been used as folk medicine in anticancer therapy. BSA is the major soluble protein constituent of the circulatory system, and has many physiological functions including the transport of a variety of compounds. This study is the first attempt to investigate the binding of {beta}-carboline alkaloids to BSA by using a constant protein concentration and varying drug concentrations at pH 7.2. FTIR and UV-Vis spectroscopic methods were used to analyze the binding modes of {beta}-carboline alkaloids, the binding constants and the effects of drug complexation on BSA stability and conformation. Spectroscopic evidence showed that {beta}-carboline alkaloids bind BSA via hydrophobic interaction and van der Waals contacts along with H-bonding with the -NH groups, with overall binding constants of K{sub harmine-BSA}=2.04 Multiplication-Sign 10{sup 4} M{sup -1}, K{sub tryptoline-BSA}=1.2 Multiplication-Sign 10{sup 4} M{sup -1}, K{sub harmaline-BSA}=5.04 Multiplication-Sign 10{sup 3} M{sup -1}, K{sub harmane-BSA}=1.41 Multiplication-Sign 10{sup 3} M{sup -1} and K{sub harmalol-BSA}=1.01 Multiplication-Sign 10{sup 3} M{sup -1}, assuming that there is one drug molecule per protein. The BSA secondary structure was altered with a major decrease of {alpha}-helix from 64% (free protein) to 59% (BSA-harmane), 56% (BSA-harmaline and BSA-harmine), 55% (BSA-tryptoline), 54% (BSA-harmalol) and {beta}-sheet from 15% (free protein) to 6-8% upon {beta}-carboline alkaloids complexation, inducing a partial protein destabilization. - Highlights: Black-Right-Pointing-Pointer We model the binding of {beta}-carboline alkaloids to BSA by using the spectroscopic methods. Black-Right-Pointing-Pointer We investigate the effects of drug complexation on BSA stability and conformation. Black-Right-Pointing-Pointer A partial protein destabilization occurred at high alkaloids concentration. Black

  6. Differential Recognition of CD1d-[alpha]-Galactosyl Ceramide by the V[beta]8.2 and V[beta]7 Semi-invariant NKT T Cell Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Pellicci, Daniel G.; Patel, Onisha; Kjer-Nielsen, Lars; Pang, Siew Siew; Sullivan, Lucy C.; Kyparissoudis, Konstantinos; Brooks, Andrew G.; Reid, Hugh H.; Gras, Stephanie; Lucet, Isabelle S.; Koh, Ruide; Smyth, Mark J.; Mallevaey, Thierry; Matsuda, Jennifer L.; Gapin, Laurent; McCluskey, James; Godfrey, Dale I.; Rossjohn, Jamie; PMCI-A; Monash; UCHSC; Melbourne

    2009-09-02

    The semi-invariant natural killer T cell receptor (NKT TCR) recognizes CD1d-lipid antigens. Although the TCR{alpha} chain is typically invariant, the {beta} chain expression is more diverse, where three V{beta} chains are commonly expressed in mice. We report the structures of V{alpha}14-V{beta}8.2 and V{alpha}14-V{beta}7 NKT TCRs in complex with CD1d-{alpha}-galactosylceramide ({alpha}-GalCer) and the 2.5 {angstrom} structure of the human NKT TCR-CD1d-{alpha}-GalCer complex. Both V{beta}8.2 and V{beta}7 NKT TCRs and the human NKT TCR ligated CD1d-{alpha}-GalCer in a similar manner, highlighting the evolutionarily conserved interaction. However, differences within the V{beta} domains of the V{beta}8.2 and V{beta}7 NKT TCR-CD1d complexes resulted in altered TCR{beta}-CD1d-mediated contacts and modulated recognition mediated by the invariant {alpha} chain. Mutagenesis studies revealed the differing contributions of V{beta}8.2 and V{beta}7 residues within the CDR2{beta} loop in mediating contacts with CD1d. Collectively we provide a structural basis for the differential NKT TCR V{beta} usage in NKT cells.

  7. Influence of heat treatment in {beta} and {gamma} phases on the microscopic structure of uranium; Influence des traitements thermiques en phases {beta} et {gamma} sur la structure micrographique de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Robillard, A

    1958-06-02

    A new method of microscopic examination of uranium is described. Electrolytic polishing and etching are carried out in an acetic acid-chromic acid bath. Atmospheric or anodic oxidation of the polished surface produces films which follow exactly changes in the structure of the underlying metal. This method is very sensitive to small variations of orientation in polygonized crystals. Using this method of examination of uranium, it was found that annealing U in the {gamma} phase followed by a cooling at a rate dependent of the annealing temperature, causes the formation of substructures different from those due to the polygonization of {alpha}-U. The substructures are indicated by the concentration of impurities on the dislocations induced by the stresses accompanying the allotropic transformation {gamma} {yields} {beta}. Similar treatment of the U-1.4% Cr alloy in which the {beta} phase is stabilized at room temperature, confirms this explanation. In addition to the polygonization substructures, sharp discontinuities can be observed in the network of sub- boundaries as a fine white edging. The comparison of these with the structure revealed by thermal etching in vacuum suggest that there are traces of the grain boundaries of the {gamma} phase. The method of etching followed by oxidation shows a haloed phase identified as UH{sub 3}. The conditions of appearance and disappearance of this phase are studied. The sensitivity of this method of detecting the last traces of H in U is very high. The dependence of the hydrogen content on the tensile properties of uranium metal was also studied. (author) [French] Une methode nouvelle d'examen micrographique de l'uranium a ete mise au point. Le polissage electrolytique et le 'gravage' sont effectues dans un bain acide acetique-acide chromique. L'oxydation atmospherique ou anodique de la surface polie conduit a la formation de couches epitaxiques d'oxyde. Cette methode est particulierement sensible aux faibles variations d

  8. Natural triple beta-stranded fibrous folds.

    Science.gov (United States)

    Mitraki, Anna; Papanikolopoulou, Katerina; Van Raaij, Mark J

    2006-01-01

    A distinctive family of beta-structured folds has recently been described for fibrous proteins from viruses. Virus fibers are usually involved in specific host-cell recognition. They are asymmetric homotrimeric proteins consisting of an N-terminal virus-binding tail, a central shaft or stalk domain, and a C-terminal globular receptor-binding domain. Often they are entirely or nearly entirely composed of beta-structure. Apart from their biological relevance and possible gene therapy applications, their shape, stability, and rigidity suggest they may be useful as blueprints for biomechanical design. Folding and unfolding studies suggest their globular C-terminal domain may fold first, followed by a "zipping-up" of the shaft domains. The C-terminal domains appear to be important for registration because peptides corresponding to shaft domains alone aggregate into nonnative fibers and/or amyloid structures. C-terminal domains can be exchanged between different fibers and the resulting chimeric proteins are useful as a way to solve structures of unknown parts of the shaft domains. The following natural triple beta-stranded fibrous folds have been discovered by X-ray crystallography: the triple beta-spiral, triple beta-helix, and T4 short tail fiber fold. All have a central longitudinal hydrophobic core and extensive intermonomer polar and nonpolar interactions. Now that a reasonable body of structural and folding knowledge has been assembled about these fibrous proteins, the next challenge and opportunity is to start using this information in medical and industrial applications such as gene therapy and nanotechnology.

  9. Sheet, ligament and droplet formation in swirling primary atomization

    Directory of Open Access Journals (Sweden)

    Changxiao Shao

    2018-04-01

    Full Text Available We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF method coupled with adapted mesh refinement (AMR technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  10. Sheet, ligament and droplet formation in swirling primary atomization

    Science.gov (United States)

    Shao, Changxiao; Luo, Kun; Chai, Min; Fan, Jianren

    2018-04-01

    We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF) method coupled with adapted mesh refinement (AMR) technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  11. Electrochemical depth profiling of multilayer metallic structures: An aluminum brazing sheet

    International Nuclear Information System (INIS)

    Afshar, F. Norouzi; Ambat, R.; Kwakernaak, C.; Wit, J.H.W. de; Mol, J.M.C.; Terryn, H.

    2012-01-01

    Highlights: ► Localized electrochemical cell and glow discharge optical emission spectrometry were used. ► An electrochemical depth profile of an aluminum brazing sheet was obtained. ► The electrochemical responses were correlated to the microstructural features. - Abstract: Combinatory localized electrochemical cell and glow discharge optical emission spectrometry (GDOES) measurements were performed to obtain a thorough in depth electrochemical characterization of an aluminum brazing sheet. By defining electrochemical criteria i.e. breakdown potential, corrosion potential, cathodic and anodic reactivities, and tracking their changes as a function of depth, the evolution of electrochemical responses through out the material thickness were analyzed and correlated to the corresponding microstructural features. Polarization curves in 1 wt% NaCl solution at pH 2.8 were obtained at different depths from the surface using controlled sputtering in a glow discharge optical emission spectrometer as a sample preparation technique. The anodic and cathodic reactivity of the top surface areas were significantly higher than that of the bulk, thus indicating these areas to be more susceptible to localized attack. Consistent with this, optical microscopy and scanning electron microscope analysis revealed a relatively high density of fine intermetallic and silicon particles at these areas. The corrosion mechanism of the top layers was identified to be intergranular and pitting corrosion, while lower sensitivity to these localized attacks were detected toward the brazing sheet core. The results highlight the successful application of the electrochemical depth profiling approach in prediction of the corrosion behavior of the aluminum brazing sheet and the importance of the electrochemical activity of the outer 10 μm in controlling the corrosion performance of the aluminum brazing sheet.

  12. Strengthening of RC bridge slabs using CFRP sheets

    Directory of Open Access Journals (Sweden)

    Fahmy A. Fathelbab

    2014-12-01

    Full Text Available Many old structures became structurally insufficient to carry the new loading conditions requirements. Moreover, they suffer from structural degradation, reinforcement steel bars corrosion, bad weather conditions…etc. Many official authorities in several countries had recognized many old bridges and buildings as structurally deficient by today’s standards. Due to these reasons, structural strengthening became an essential requirement and different strengthening techniques appeared in market. Fiber Reinforced Polymer (FRP strengthening techniques established a good position among all other techniques, giving excellent structural results, low time required and moderate cost compared with the other techniques. The main purpose of this research is to study analytically the strengthening of a reinforced concrete bridge slabs due to excessive loads, using externally bonded FRP sheets technique. A commercial finite element program ANSYS was used to perform a structural linear and non-linear analysis for strengthened slab models using several schemes of FRP sheets. A parametric study was performed to evaluate analytically the effect of changing both FRP stiffness and FRP schemes in strengthening RC slabs. Comparing the results with control slab (reinforced concrete slab without strengthening it is obvious that attaching FRP sheets to the RC slab increases its capacity and enhances the ductility/toughness.

  13. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  14. The 2.2 A resolution structure of the O(H) blood-group-specific lectin I from Ulex europaeus.

    Science.gov (United States)

    Audette, G F; Vandonselaar, M; Delbaere, L T

    2000-12-01

    The tertiary and quaternary structure of the lectin I from Ulex europaeus (UE-I) has been determined to 2.2 A resolution. UE-I is a dimeric metalloglycoprotein that binds the H-type 2 human blood group determinant [alpha-L-Fucalpha(1-->2)-beta-D-Galbeta(1-->4)-beta-D-Glc NAcalpha-]. Nine changes from the published amino acid sequence were necessary to account for the electron density. The quaternary structural organization of UE-I is that of the most commonly occurring legume lectin dimer. The tertiary structure of the monomeric subunits is similar to that in the conventional lectin subunit; however, some structural differences are noted. These differences include a four-stranded anti-parallel "S" sheet in UE-I versus the five-stranded S sheet in other lectin monomers. The Ala residue of the Ala-Asp cis-peptide bond present in the carbohydrate-binding site of the conventional lectin monomer is replaced with a Thr in the UE-I structure. Also, a novel disulfide bridge linking Cys115 and Cys150 is present. There are two metallic ions, one calcium and the other manganese, per subunit. N-linked oligosaccharides are at residues 23 and 111 of each subunit. One molecule of R-2-methyl-2, 4-pentanediol (R-MPD) is present in a shallow depression on the surface of each subunit. In order to examine the binding of the H-type 2 blood group determinant by UE-I, its beta-methyl glycoside (H-type 2-OMe) was docked into the binding site of R-MPD. The epitope previously identified for H-type 2-OMe by chemical mapping proved, with only minor adjustment of amino acid residues, to be complementary to the shallow cavity occupied by R-MPD in the structure. Several key interactions have been proposed between the H-type 2-OMe and UE-I. Copyright 2000 Academic Press.

  15. Nonlinear dynamics of thin current sheets

    International Nuclear Information System (INIS)

    Daughton, William

    2002-01-01

    Observations indicate that the current sheet in the Earth's geomagnetic tail may compress to a thickness comparable to an ion gyro-radius prior to substorm onset. In recent years, there has been considerable controversy regarding the kinetic stability of these thin structures. In particular, the growth rate of the kink instability and its relevance to magnetotail dynamics is still being debated. In this work, a series of fully kinetic particle-in-cell simulations are performed for a thin Harris sheet. The ion to electron mass ratio is varied between m i /m e =4→400 and careful comparisons are made with a formally exact approach to the linear Vlasov theory. At low mass ratio m i /m e <64, the simulations are in excellent agreement with the linear theory, but at high mass ratio the kink instability is observed to grow more rapidly in the kinetic simulations than predicted by theory. The resolution to this apparent discrepancy involves the lower hybrid instability which is active on the edge of the sheet and rapidly produces nonlinear modifications to the initial equilibrium. The nature of this nonlinear deformation is characterized and a simple model is proposed to explain the physics. After the growth and saturation of the lower hybrid fluctuations, the deformed current sheet is similar in structure to a Harris equilibrium with an additional background population. This may explain the large growth rate of the kink instability at later times, since this type of modification to the Harris sheet has been shown to greatly enhance the growth rate of the kink mode

  16. Luminescent properties and structure of multicomponent naphthalene-{beta}-cyclodextrin complexes. 1. Effect of adding third parties, o-carborane or/and adamantane

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, Valery B. [Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Moscow region, Chernogolovka (Russian Federation); Avakyan, Vitaly G., E-mail: avak@photonics.ru [Photochemistry Center of Russian Academy of Sciences, 119421 Moscow, Novatorov 7a (Russian Federation); Rudyak, Vladimir Y.; Alfimov, Michail V. [Photochemistry Center of Russian Academy of Sciences, 119421 Moscow, Novatorov 7a (Russian Federation); Vershinnikova, Tatiana G. [Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Moscow region, Chernogolovka (Russian Federation)

    2011-09-15

    Luminescence spectra of water solution of {beta}-cyclodextrin ({beta}-CD) inclusion complexes with naphthalene have been studied in the presence of carcass compounds (CC), adamantane and ocarborane, added in solution as the third parties. It was observed that the CC structure completely determines luminescence type displayed by the three-component complex. Adding adamantane to the solution leads to the disappearance of the spontaneous excimer fluorescence observed usually along with a monomer fluorescence of naphthalene and the appearance of the long lived phosphorescence at room temperature. At the same time, introducing o-carborane in solution of {beta}-CD inclusion complexes with naphthalene results in the dramatic growth of intensity of the excimer band at the expense of lowering intensity of monomer fluorescence. These phenomena were explained using results of the quantum-chemical calculation of the structure and complexation energies at the semi-empirical PM3 and DFT levels of theory. - Highlights: > Structure of carcass compounds determines luminescence types for naphthalene - betaCD complex. > Adding o-carborane leads to the growth of excimer fluorescence at low naphthalene concentrations. > Adding adamantane leads to the room temperature phosphorescence without deoxygenation.

  17. Theoretical Predictions of Freestanding Honeycomb Sheets of Cadmium Chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jia [ORNL; Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Kent, Paul R [ORNL; Xie, Yu [ORNL; Terrones Maldonado, Humberto [ORNL; Smith, Sean C [ORNL

    2014-01-01

    Two-dimensional (2D) nanocrystals of CdX (X = S, Se, Te) typically grown by colloidal synthesis are coated with organic ligands. Recent experimental work on ZnSe showed that the organic ligands can be removed at elevated temperature, giving a freestanding 2D sheet of ZnSe. In this theoretical work, freestanding single- to few-layer sheets of CdX, each possessing a pseudo honeycomb lattice, are considered by cutting along all possible lattice planes of the bulk zinc blende (ZB) and wurtzite (WZ) phases. Using density functional theory, we have systematically studied their geometric structures, energetics, and electronic properties. A strong surface distortion is found to occur for all of the layered sheets, and yet all of the pseudo honeycomb lattices are preserved, giving unique types of surface corrugations and different electronic properties. The energetics, in combination with phonon mode calculations and molecular dynamics simulations, indicate that the syntheses of these freestanding 2D sheets could be selective, with the single- to few-layer WZ110, WZ100, and ZB110 sheets being favored. Through the GW approximation, it is found that all single-layer sheets have large band gaps falling into the ultraviolet range, while thicker sheets in general have reduced band gaps in the visible and ultraviolet range. On the basis of the present work and the experimental studies on freestanding double-layer sheets of ZnSe, we envision that the freestanding 2D layered sheets of CdX predicted herein are potential synthesis targets, which may offer tunable band gaps depending on their structural features including surface corrugations, stacking motifs, and number of layers.

  18. [Perissodactyla: the primary structure of hemoglobins from the lowland tapir (Tapirus terrestris): glutamic acid in position 2 of the beta chains].

    Science.gov (United States)

    Mazur, G; Braunitzer, G

    1984-09-01

    The hemoglobins from a lowland tapir (Tapirus terrestris) were analysed and the complete primary structure is described. The globin chains were separated on CM cellulose column in 8M urea and the amino-acid sequences were determined in the liquid phase sequenator. The results show that globin consists of two alpha chains (alpha I and alpha II) and beta major and beta minor components. The alpha chains differ only at one position: alpha I contains aspartic acid and alpha II glycine. The beta chains are heterogeneous: aspartic and glutamic acid were found at position beta 21 and beta 73 of the beta major components and asparagine and serine at position beta 139. In the beta minor components four positions were found with more than one amino acid, namely beta 2, beta 4, beta 6 and beta 56. The sequences are compared with those of man, horse and rhinoceros. Four residues of horse methemoglobin, which are involved in the alpha 1 beta 1 contacts are substituted in tapir hemoglobins. In the alpha chains: alpha 107(G14)Ser----Val, alpha 111-(G18) Val----Leu, alpha 115(GH3) Asn----Asp or Gly; in the beta chains: beta 116(G18) Arg----Gln. The amino acid at beta 2 of the major components is glutamic acid while glutamine and histidine are found in the minor components. Although glutamic acid, a binding site for ATP, does not interact with 2,3-bisphosphoglycerate, glutamine and histidine in the minor components are responsible for the slight effect of 2,3-bisphosphoglycerate on tapir hemoglobin.

  19. Transuranium element incorporation into the β-U3O8 uranyl sheet

    International Nuclear Information System (INIS)

    Miller, M.L.; Burns, P.C.; Ewing, R.C.; Finch, R.J.

    1997-01-01

    Spent nuclear fuel (SNF) is unstable under oxidizing conditions. Although recent studies have determined the paragenetic sequence for uranium phases that result from the corrosion of SNF, there are only limited data on the potential of alteration phases for the incorporation of transuranium elements. The crystal chemical characteristics of transuranic elements (TUE) are to a certain extent similar to uranium; thus TUE incorporation into the sheets of uranyl oxide hydrate structures can be assessed by examination of the structural details of the β-U 3 O 8 sheet type. The sheets of uranyl polyhedra observed in the crystal structure of β-U 3 O 8 also occur in the mineral billietite, where they alternate with α-U 3 O 8 type sheets. Preliminary crystal structure determinations for the minerals ianthinite, and wyartite, indicate that these phases also contain β-U 3 O 8 type sheets. The β-U 3 O 8 sheet anion topology contains triangular, rhombic, and pentagonal sites in the proportions 2:1:2. In all structures containing β-U 3 O 8 type sheets, the triangular sites are vacant. The pentagonal sites are filled with U 6+ O 2 forming pentagonal bipyramids. The rhombic dipyramids filling the rhombic sites contain U 6+ O 2 in billietite, U 4+ O 2 in β-U 3 O 8 , U 4+ (H 2 O) 2 in ianthinite, and U 4+ O 3 in wyartite-II. Interlayer species include: H 2 O (billietite, wyartite II, and ianthinite), Ba 2+ (billietite) Ca 2+ wyartite II, and Co 3 2- wyartite II; there is no interlayer in β-U 3 O 8 . The similarity of known TUE coordination polyhedra with those of U suggests that the β-U 3 O 8 sheet will accommodate TUE substitution coupled with variations in apical anion configuration and interlayer population providing the required charge balance

  20. Structure of $^{191}$Pb from $\\alpha$- and $\\beta$-decay spectroscopy

    CERN Document Server

    Cocolios, T E; Van de Walle, J; Franchoo, S; Marsh, B A; Sjoedin, A M; Huyse, M; Zemlyanoy, S; Cocolios, T E; Bastin, B; Barzakh, A; Page, R D; Mane, E; Van Duppen, P; Darby, I G; Venhart, M; Kudryavtsev, Yu; Huber, G; Fedosseev, V N; Andreyev, A N; Keupers, M; Flanagan, K T; Stefan, I; Dexters, W; Koester, U; Antalic, S; Buscher, J; Molkanov, P; Fedorov, D V

    2010-01-01

    Complementary studies of $^{191}$Pb have been made in the $\\beta$- decay of $^{191}$Bi at LISOL (CRC) and in the $\\alpha$- decay of $^{195}$Po at ISOLDE (CERN). Fine structures in the $\\alpha$- decay of the low-spin and high-spin isomers of $^{195}$Po have been fully resolved. Identification of the parent state is made possible via isomer selection based on narrow-band laser frequency scanning. The $\\alpha$-particle and $\\gamma$-ray energies have been determined with greater precision. New $\\alpha$-particle and $\\gamma$-ray energies are identified. Branching ratios in the decay of $^{195}$Po and $^{191}$Pb have been examined.

  1. Single clay sheets inside electrospun polymer nanofibers

    Science.gov (United States)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  2. Decontamination sheet

    International Nuclear Information System (INIS)

    Hirose, Emiko; Kanesaki, Ken.

    1995-01-01

    The decontamination sheet of the present invention is formed by applying an adhesive on one surface of a polymer sheet and releasably appending a plurality of curing sheets. In addition, perforated lines are formed on the sheet, and a decontaminating agent is incorporated in the adhesive. This can reduce the number of curing operation steps when a plurality steps of operations for radiation decontamination equipments are performed, and further, the amount of wastes of the cured sheets, and operator's exposure are reduced, as well as an efficiency of the curing operation can be improved, and propagation of contamination can be prevented. (T.M.)

  3. Natural and synthetic prion structure from X-ray fiber diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wille, Holger; Bian, Wen; McDonald, Michele; Kendall, Amy; Colby, David W.; Bloch, Lillian; Ollesch, Julian; Borovinskiy, Alexander L.; Cohen, Fred E.; Prusiner, Stanley B.; Stubbs, Gerald; (Vanderbilt); (UCSF)

    2009-10-21

    A conformational isoform of the mammalian prion protein (PrP{sup Sc}) is the sole component of the infectious pathogen that causes the prion diseases. We have obtained X-ray fiber diffraction patterns from infectious prions that show cross-{beta} diffraction: meridional intensity at 4.8 {angstrom} resolution, indicating the presence of {beta} strands running approximately at right angles to the filament axis and characteristic of amyloid structure. Some of the patterns also indicated the presence of a repeating unit along the fiber axis, corresponding to four {beta}-strands. We found that recombinant (rec) PrP amyloid differs substantially from highly infectious brain-derived prions, both in structure as demonstrated by the diffraction data, and in heterogeneity as shown by electron microscopy. In addition to the strong 4.8 {angstrom} meridional reflection, the recPrP amyloid diffraction is characterized by strong equatorial intensity at approximately 10.5 {angstrom}, absent from brain-derived prions, and indicating the presence of stacked {beta}-sheets. Synthetic prions recovered from transgenic mice inoculated with recPrP amyloid displayed structural characteristics and homogeneity similar to those of naturally occurring prions. The relationship between the structural differences and prion infectivity is uncertain, but might be explained by any of several hypotheses: only a minority of recPrP amyloid possesses a replication-competent conformation, the majority of recPrP amyloid has to undergo a conformational maturation to acquire replication competency, or inhibitory forms of recPrP amyloid interfere with replication during the initial transmission.

  4. Molecular analysis of the beta-thalassemia phenotype associated with inheritance of hemoglobin E (alpha 2 beta2(26)Glu leads to Lys).

    OpenAIRE

    Benz, E J; Berman, B W; Tonkonow, B L; Coupal, E; Coates, T; Boxer, L A; Altman, A; Adams, J G

    1981-01-01

    Inheritance of the gene for betaE-globin is associated with hypochromia and microcytosis, reminiscent of typical heterozygous beta-thalassemia. Patients with hemoglobin (Hb)E-beta-thalassemia exhibit clinical phenotypes of severe beta-thalassemia, a circumstance not encountered in other compound heterozygous states for structural beta-chain mutations and beta-thalassemia. We have analyzed the kinetics of globin synthesis and the levels of globin messenger (m) RNA accumulation in patients with...

  5. Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas.

    Science.gov (United States)

    MacRae, T H

    2000-06-01

    Small heat shock/alpha-crystallin proteins are defined by conserved sequence of approximately 90 amino acid residues, termed the alpha-crystallin domain, which is bounded by variable amino- and carboxy-terminal extensions. These proteins form oligomers, most of uncertain quaternary structure, and oligomerization is prerequisite to their function as molecular chaperones. Sequence modelling and physical analyses show that the secondary structure of small heat shock/alpha-crystallin proteins is predominately beta-pleated sheet. Crystallography, site-directed spin-labelling and yeast two-hybrid selection demonstrate regions of secondary structure within the alpha-crystallin domain that interact during oligomer assembly, a process also dependent on the amino terminus. Oligomers are dynamic, exhibiting subunit exchange and organizational plasticity, perhaps leading to functional diversity. Exposure of hydrophobic residues by structural modification facilitates chaperoning where denaturing proteins in the molten globule state associate with oligomers. The flexible carboxy-terminal extension contributes to chaperone activity by enhancing the solubility of small heat shock/alpha-crystallin proteins. Site-directed mutagenesis has yielded proteins where the effect of the change on structure and function depends upon the residue modified, the organism under study and the analytical techniques used. Most revealing, substitution of a conserved arginine residue within the alpha-crystallin domain has a major impact on quaternary structure and chaperone action probably through realignment of beta-sheets. These mutations are linked to inherited diseases. Oligomer size is regulated by a stress-responsive cascade including MAPKAP kinase 2/3 and p38. Phosphorylation of small heat shock/alpha-crystallin proteins has important consequences within stressed cells, especially for microfilaments.

  6. Beta decay and magnetic moments as tools to probe nuclear structure. Study of neutron-rich nuclei around N=40; Decroissance beta et moments magnetiques comme outils pour sonder la structure nucleaire. Etude des noyaux riches en neutrons autour de N=40

    Energy Technology Data Exchange (ETDEWEB)

    Matea, I

    2003-12-01

    The evolution of nuclear structure in nuclei far from the {beta} stability line is one of the 'hot topics' in modern experimental and theoretical nuclear physics. The present thesis is devoted to the study of structure of neutron-rich nuclei around N=40. The evolution of the neutron g9/2 orbital with increasing number of neutrons is one of the key points defining the structure of these nuclei at low excitation energy. We used for this investigation as experimental tools the magnetic dipole moments measurements and the {beta} decay spectroscopy. For the measurement of the gyromagnetic factor of the 9/2{sup +} isomeric state in Fe{sup 61} we have applied the TDPAD method. This method (like most of measurements of nuclear moments) requires an oriented ensemble of nuclei. The orientation of Fe{sup 61m} was achieved via the fragmentation of Ni{sup 64} at 55 MeV/u and the selection of the fragment momentum with the LISE spectrometer at GANIL. The experimental device was specially conceived to preserve the alignment up to the implantation point. The measured value of the g factor was compared with large-scale shell model and Hartree-Fock-Bogoliubov model predictions. The nuclei studied via {beta} decay were produced by the fragmentation of Kr{sup 86} at 58 MeV/u. For the selection of reaction products we used for the first time the LISE2000 spectrometer and for the detection of {gamma} rays four EXOGAM clover detectors. We measured 5 new lifetimes and 4 lifetimes with a higher precision. From the prompt {beta}{gamma} coincidences we identified new states in the daughter nuclei, as it is the case of the first 2{sup +} excited states in Fe{sup 68} and Ni{sup 72}. The results were compared with the predictions of the large-scale shell model. Other transitions were observed for the first time in {beta}{gamma} decay of Ti{sup 60}, Fe{sup 70} and Co{sup 71,73}. (author)

  7. On the structure of finite-sheeted coverings of compact connected groups

    OpenAIRE

    Grigorian, S. A.; Gumerov, R. N.

    2004-01-01

    Finite-sheeted covering mappings onto compact connected groups are studied. It is shown that a finite-sheeted covering mapping from a connected Hausdorff topological space onto a compact connected abelian group G must be a homeomorphism provided that the character group of G admits division by the degree of given covering mapping. Using this result, we obtain criteria of triviality for finite coverings of G in terms of its character group and means on G. In order to establish these facts, for...

  8. Ultra-high Thermal Conductivity of Spider Silk: Protein Function Study with Controlled Structure Change and Comparison

    Science.gov (United States)

    2016-01-23

    induced increase in energy transport capacity of silkworm silks , Biopolymers , (10 2014): 0. doi: 10.1002/bip.22496 Shen Xu, Zaoli Xu, James Starrett...SECURITY CLASSIFICATION OF: In the past three years, we have conducted extensive research to study the structure of spider silks and investigate how the...manually spun spider silks demonstrates that the alignment of the antiparallel beta-sheet crystals in spider silks plays one of the most important

  9. Microprobe metrology for direct sheet resistance and mobility characterization

    DEFF Research Database (Denmark)

    Nielsen, Peter Folmer; Petersen, Dirch Hjorth; Lin, Rong

    2012-01-01

    The M4PP measurement technique has gained increased interest from the semiconductor industry for direct sheet resistance measurements on ultra thin layers and small structures/pads. Several fully automatic microRSP probing tools are today in use for in-line sheet resistance measurements on blanket...

  10. An Integrated Modelling and Toolpathing Approach for a Frameless Stressed Skin Structure, Fabricated Using Robotic Incremental Sheet Forming

    DEFF Research Database (Denmark)

    Nicholas, Paul; Stasiuk, David; Nørgaard, Esben Clausen

    2016-01-01

    with performance implications at material, element and structural scales. This paper briefly presents ISF as a method of fabrication, and introduces the context of structures where the skin plays an integral role. It describes the development of an integrated approach for the modelling and fabrication of Stressed...... Skins, an incrementally formed sheet metal structure. The paper then focus upon the use of prototypes and empirical testing as means to inform digital models about fabrication and material parameters including: material forming limits and thinning; the parameterisation of macro and meso simulations...

  11. Laccase of Cyathus bulleri: structural, catalytic characterization and expression in Escherichia coli.

    Science.gov (United States)

    Salony; Garg, N; Baranwal, R; Chhabra, M; Mishra, S; Chaudhuri, T K; Bisaria, V S

    2008-02-01

    Cyathus bulleri, a ligninolytic fungus, produces a single laccase the internal peptides (3) of which bear similarity to laccases of several white rot fungi. Comparison of the total amino acid composition of this laccase with several fungal laccases indicated dissimilarity in the proportion of some basic and hydrophobic amino acids. Analysis of the circular dichroism spectrum of the protein indicated 37% alpha-helical, 26% beta-sheet and 38% random coil content which differed significantly from that in the solved structures of other laccases, which contain higher beta-sheet structures. The critical role of the carboxylic group containing amino acids was demonstrated by determining the kinetic parameters at different pH and this was confirmed by the observation that a critical Asp is strongly conserved in both Ascomycete and Basidiomycete laccases. The enzyme was denatured in the presence of a number of denaturing agents and refolded back to functional state with copper. In the folding experiments under alkaline conditions, zinc could replace copper in restoring 100% of laccase activity indicating the non-essential role of copper in this laccase. The laccase was expressed in Escherichia coli by a modification of the ligation-anchored PCR approach making it the first fungal laccase to be expressed in a bacterial host. The laccase sequence was confirmed by way of analysis of a 435 bp sequence of the insert.

  12. Hydrogen bonding-assisted thermal conduction in β-sheet crystals of spider silk protein

    Science.gov (United States)

    Zhang, Lin; Chen, Teli; Ban, Heng; Liu, Ling

    2014-06-01

    Using atomistic simulations, we demonstrate that β-sheet, an essential component of spider silk protein, has a thermal conductivity 1-2 orders of magnitude higher than that of some other protein structures reported in the literature. In contrast to several other nanostructured materials of similar bundled/layered structures (e.g. few-layer graphene and bundled carbon nanotubes), the β-sheet is found to uniquely feature enhanced thermal conductivity with an increased number of constituting units, i.e. β-strands. Phonon analysis identifies inter-β-strand hydrogen bonding as the main contributor to the intriguing phenomenon, which prominently influences the state of phonons in both low- and high-frequency regimes. A thermal resistance model further verifies the critical role of hydrogen bonding in thermal conduction through β-sheet structures.Using atomistic simulations, we demonstrate that β-sheet, an essential component of spider silk protein, has a thermal conductivity 1-2 orders of magnitude higher than that of some other protein structures reported in the literature. In contrast to several other nanostructured materials of similar bundled/layered structures (e.g. few-layer graphene and bundled carbon nanotubes), the β-sheet is found to uniquely feature enhanced thermal conductivity with an increased number of constituting units, i.e. β-strands. Phonon analysis identifies inter-β-strand hydrogen bonding as the main contributor to the intriguing phenomenon, which prominently influences the state of phonons in both low- and high-frequency regimes. A thermal resistance model further verifies the critical role of hydrogen bonding in thermal conduction through β-sheet structures. Electronic supplementary information (ESI) available: Structure of the β-sheets, computational model, determination of area and temperature gradient, and additional phonon DOS results. See DOI: 10.1039/c4nr01195c

  13. 1970-1997 energy balance-sheets

    International Nuclear Information System (INIS)

    1998-01-01

    The aim of this document is to bring together a consistent and harmonized set of statistical data on energy economics in the French territory. The information is based on the global and structural approach of the different energy balance-sheets published between 1970 and 1997. The first chapter gives a general idea of the energy situation of the passed year and outlines the evolution of the main aggregates (production, primary and final consumption etc..) comparatively to those of the general economy. The second chapter is devoted to the history of energy economics. Time series of indicators and diagrams allow to precise the structural modifications that occurred during the last decades. The main transformations in the national energy production and the development of the different energy sources in the industry, the residential and tertiary sectors and in the transportation sector are described too. The third chapter gives numerical data on energy for the last 28 years using the common Mtpe unit (million of tons of petroleum equivalent). These balance sheets are based on new energy keeping methods and use identical equivalence coefficients. The last chapter presents the energy balance sheets for the last three years, using the proper units for coal, petroleum, gas and electricity. (J.S.)

  14. Benchmark Testing of the Largest Titanium Aluminide Sheet Subelement Conducted

    Science.gov (United States)

    Bartolotta, Paul A.; Krause, David L.

    2000-01-01

    To evaluate wrought titanium aluminide (gamma TiAl) as a viable candidate material for the High-Speed Civil Transport (HSCT) exhaust nozzle, an international team led by the NASA Glenn Research Center at Lewis Field successfully fabricated and tested the largest gamma TiAl sheet structure ever manufactured. The gamma TiAl sheet structure, a 56-percent subscale divergent flap subelement, was fabricated for benchmark testing in three-point bending. Overall, the subelement was 84-cm (33-in.) long by 13-cm (5-in.) wide by 8-cm (3-in.) deep. Incorporated into the subelement were features that might be used in the fabrication of a full-scale divergent flap. These features include the use of: (1) gamma TiAl shear clips to join together sections of corrugations, (2) multiple gamma TiAl face sheets, (3) double hot-formed gamma TiAl corrugations, and (4) brazed joints. The structural integrity of the gamma TiAl sheet subelement was evaluated by conducting a room-temperature three-point static bend test.

  15. The structure of the human interferon alpha/beta receptor gene.

    Science.gov (United States)

    Lutfalla, G; Gardiner, K; Proudhon, D; Vielh, E; Uzé, G

    1992-02-05

    Using the cDNA coding for the human interferon alpha/beta receptor (IFNAR), the IFNAR gene has been physically mapped relative to the other loci of the chromosome 21q22.1 region. 32,906 base pairs covering the IFNAR gene have been cloned and sequenced. Primer extension and solution hybridization-ribonuclease protection have been used to determine that the transcription of the gene is initiated in a broad region of 20 base pairs. Some aspects of the polymorphism of the gene, including noncoding sequences, have been analyzed; some are allelic differences in the coding sequence that induce amino acid variations in the resulting protein. The exon structure of the IFNAR gene and of that of the available genes for the receptors of the cytokine/growth hormone/prolactin/interferon receptor family have been compared with the predictions for the secondary structure of those receptors. From this analysis, we postulate a common origin and propose an hypothesis for the divergence from the immunoglobulin superfamily.

  16. Evaluation of indigenously developed plastic scintillator sheet detector for surface radioactive contamination monitoring application

    International Nuclear Information System (INIS)

    Sahani, R.M.; Chaudhary, H.S.; Mahala, V.K.; Senwar, K.R.; Meena, J.P.

    2018-01-01

    Radioactive contamination may be caused by release of radioactivity in the environment due to accident at nuclear plant/reactor or spillage of loose radioactive materials in a laboratory. The protection of workers from potentially hazardous radiations emitted by the contaminants is a matter of prime concern. The detection of such radiations requires a monitoring system capable of measuring the level of radioactivity at the contaminated site. Plastic scintillators are widely used for large area radiation monitoring due to the ease of preparation in different shape and sizes. These detectors are sensitive to beta and gamma radiation therefore can be used for monitoring of beta and gamma contamination. In this paper, performance results of indigenously developed plastic scintillator sheet of area 800 cm 2 are reported

  17. Correlated motions are a fundamental property of β-sheets

    Science.gov (United States)

    Fenwick, R. Bryn; Orellana, Laura; Esteban-Martín, Santi; Orozco, Modesto; Salvatella, Xavier

    2014-06-01

    Correlated motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. The mechanisms that underlie these processes remain largely unknown due mainly to limitations in their direct detection. Here, based on a detailed analysis of protein structures deposited in the protein data bank, as well as on state-of-the art molecular simulations, we provide general evidence for the transfer of structural information by correlated backbone motions, mediated by hydrogen bonds, across β-sheets. We also show that the observed local and long-range correlated motions are mediated by the collective motions of β-sheets and investigate their role in large-scale conformational changes. Correlated motions represent a fundamental property of β-sheets that contributes to protein function.

  18. Relation between the 2{nu}{beta}{beta} and 0{nu}{beta}{beta} nuclear matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Petr [Kellogg Radiation Laboratory, Caltech, Pasadena, CA 91125 (United States); Simkovic, Fedor [Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, SK-84248 Bratislava (Slovakia)

    2011-12-16

    A formal relation between the GT part of the nuclear matrix elements M{sub GT}{sup 0{nu}} of 0{nu}{beta}{beta} decay and the closure matrix elements M{sub cl}{sup 2{nu}} of 2{nu}{beta}{beta} decay is established. This relation is based on the integral representation of these quantities in terms of their dependence on the distance r between the two nucleons undergoing transformation. We also discuss the difficulties in determining the correct values of the closure 2{nu}{beta}{beta} decay matrix elements.

  19. Influence of heat treatment in {beta} and {gamma} phases on the microscopic structure of uranium; Influence des traitements thermiques en phases {beta} et {gamma} sur la structure micrographique de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Robillard, A

    1958-06-02

    A new method of microscopic examination of uranium is described. Electrolytic polishing and etching are carried out in an acetic acid-chromic acid bath. Atmospheric or anodic oxidation of the polished surface produces films which follow exactly changes in the structure of the underlying metal. This method is very sensitive to small variations of orientation in polygonized crystals. Using this method of examination of uranium, it was found that annealing U in the {gamma} phase followed by a cooling at a rate dependent of the annealing temperature, causes the formation of substructures different from those due to the polygonization of {alpha}-U. The substructures are indicated by the concentration of impurities on the dislocations induced by the stresses accompanying the allotropic transformation {gamma} {yields} {beta}. Similar treatment of the U-1.4% Cr alloy in which the {beta} phase is stabilized at room temperature, confirms this explanation. In addition to the polygonization substructures, sharp discontinuities can be observed in the network of sub- boundaries as a fine white edging. The comparison of these with the structure revealed by thermal etching in vacuum suggest that there are traces of the grain boundaries of the {gamma} phase. The method of etching followed by oxidation shows a haloed phase identified as UH{sub 3}. The conditions of appearance and disappearance of this phase are studied. The sensitivity of this method of detecting the last traces of H in U is very high. The dependence of the hydrogen content on the tensile properties of uranium metal was also studied. (author) [French] Une methode nouvelle d'examen micrographique de l'uranium a ete mise au point. Le polissage electrolytique et le 'gravage' sont effectues dans un bain acide acetique-acide chromique. L'oxydation atmospherique ou anodique de la surface polie conduit a la formation de couches epitaxiques d'oxyde. Cette methode est particulierement sensible

  20. The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed beta-propeller fold in plant proteins.

    Science.gov (United States)

    Ma, Xueyan; Panjikar, Santosh; Koepke, Juergen; Loris, Elke; Stöckigt, Joachim

    2006-04-01

    The enzyme strictosidine synthase (STR1) from the Indian medicinal plant Rauvolfia serpentina is of primary importance for the biosynthetic pathway of the indole alkaloid ajmaline. Moreover, STR1 initiates all biosynthetic pathways leading to the entire monoterpenoid indole alkaloid family representing an enormous structural variety of approximately 2000 compounds in higher plants. The crystal structures of STR1 in complex with its natural substrates tryptamine and secologanin provide structural understanding of the observed substrate preference and identify residues lining the active site surface that contact the substrates. STR1 catalyzes a Pictet-Spengler-type reaction and represents a novel six-bladed beta-propeller fold in plant proteins. Structure-based sequence alignment revealed a common repetitive sequence motif (three hydrophobic residues are followed by a small residue and a hydrophilic residue), indicating a possible evolutionary relationship between STR1 and several sequence-unrelated six-bladed beta-propeller structures. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-309 in catalysis. The data will aid in deciphering the details of the reaction mechanism of STR1 as well as other members of this enzyme family.

  1. Mode structure symmetry breaking of energetic particle driven beta-induced Alfvén eigenmode

    Science.gov (United States)

    Lu, Z. X.; Wang, X.; Lauber, Ph.; Zonca, F.

    2018-01-01

    The mode structure symmetry breaking of energetic particle driven Beta-induced Alfvén Eigenmode (BAE) is studied based on global theory and simulation. The weak coupling formula gives a reasonable estimate of the local eigenvalue compared with global hybrid simulation using XHMGC. The non-perturbative effect of energetic particles on global mode structure symmetry breaking in radial and parallel (along B) directions is demonstrated. With the contribution from energetic particles, two dimensional (radial and poloidal) BAE mode structures with symmetric/asymmetric tails are produced using an analytical model. It is demonstrated that the symmetry breaking in radial and parallel directions is intimately connected. The effects of mode structure symmetry breaking on nonlinear physics, energetic particle transport, and the possible insight for experimental studies are discussed.

  2. Efficient Model Order Reduction for the Dynamics of Nonlinear Multilayer Sheet Structures with Trial Vector Derivatives

    Directory of Open Access Journals (Sweden)

    Wolfgang Witteveen

    2014-01-01

    Full Text Available The mechanical response of multilayer sheet structures, such as leaf springs or car bodies, is largely determined by the nonlinear contact and friction forces between the sheets involved. Conventional computational approaches based on classical reduction techniques or the direct finite element approach have an inefficient balance between computational time and accuracy. In the present contribution, the method of trial vector derivatives is applied and extended in order to obtain a-priori trial vectors for the model reduction which are suitable for determining the nonlinearities in the joints of the reduced system. Findings show that the result quality in terms of displacements and contact forces is comparable to the direct finite element method but the computational effort is extremely low due to the model order reduction. Two numerical studies are presented to underline the method’s accuracy and efficiency. In conclusion, this approach is discussed with respect to the existing body of literature.

  3. Hydrothermal growth of upright-standing ZnO sheet microcrystals

    International Nuclear Information System (INIS)

    Shi, Ruixia; Yang, Ping; Dong, Xiaobin; Jia, Changchao; Li, Jia

    2014-01-01

    Highlights: • Upright-standing ZnO sheet microcrystals were hydrothermally fabricated. • The ZnO sheets were prepared with sodium oxalate at 70 °C without any surfactant. • The preferable adsorption of oxalate anions causes the formation of ZnO sheet. • The continuous growth in six directions leads to the formation of hexagonal sheets. - Abstract: Large-scale upright-standing ZnO sheet microcrystals were fabricated on Zn substrate using sodium oxalate as structure-directing agent by a hydrothermal method at low temperature (70 °C) without any surfactant. The sheets are about 3–5 μm in dimension and 100–300 nm in thickness. The strong and narrow diffraction peaks of ZnO indicate that the sample has a good crystallinity and size. The morphology of sheet-like ZnO varied with the concentrations of sodium oxalate and reaction time. The sheet-like ZnO would transform into rod-like ones when sodium oxalate was substituted by equivalent sodium acetate. The formation of sheet-like ZnO is attributed to the preferable adsorption of oxalate anions on (0 0 0 1) face of ZnO, which inhibits the intrinsic growth of ZnO. Additionally, the continuous growth in six (0 1 −1 0) directions that have the lowest surface energy leads to the formation of hexagonal sheets

  4. Mechanical characterization of auxetic stainless steel thin sheets with reentrant structure

    Science.gov (United States)

    Lekesiz, H.; Bhullar, S. K.; Karaca, A. A.; Jun, M. B. G.

    2017-08-01

    Smart materials in auxetic form present a great potential for various medical applications due to their unique deformation mechanisms along with durable infrastructure. Both analytical and finite element (FE) models are extensively used in literature to characterize mechanical response of auxetic structures but these structures are mostly thick enough to be considered as bulk material and 3D inherently. Auxetic plates in very thin form, a.e. foil, may bring numerous advantages such as very light design and better biodegradability when needed. However, there is a gap in literature on mechanical characterization of auxetic thin plates. In this study, structural analysis of very thin auxetic plates under uniaxial loading is investigated using both FE method and experimental method. 25 μm thick stainless steel (316L) plates are fabricated with reentrant texture for three different unit cell dimensions and tested under uniaxial loading using universal testing machine. 25 and 50 μm thick sheets with same cell dimensions were analyzed using implicit transient FE model including strain hardening and failure behaviors. FE results cover all the deformation schemes seen in actual tests and total deformation level matches with test results. Effect of plate thickness and cell geometry on auxetic behavior is discussed in detail using FE results. Finally, based on FE analysis results, an optimum geometry for prolonged auxetic behavior, high flexibility and high durability is suggested for future potential applications.

  5. Rupture of nanoscaled water sheets in the presence of an applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Gopan, Nandu, E-mail: nandug@jncasr.ac.in [Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560 064 (India)

    2016-12-15

    Understanding the behaviour of water sheets is relevant in numerous areas, such as thin film coating and atomisation. The rupture of planar liquid sheets are interesting due to the fact that they are objects of co-dimension 1. Previous work seems to suggest that a generic route to liquid structure fragmentation is via liquid sheets. The interplay between inertia, surface tension and viscosity is crucial in determining the dynamics of liquid sheets at a macro scale. At the nanoscale, where thermal fluctuations are expected to play a dominant role, the dynamics become more interesting. The stability and rupture dynamics of nanoscaled water sheets, at constant temperature, are studied using constrained molecular dynamics (MD) simulations. The SPC/E potential with long range electrostatics is used to simulate water molecules. The effect of an applied electric field on the stability of the nanoscaled water sheet forms the focus of this study. The effect of the initial configuration is studied by changing the random seed values used for velocity initialisation. The effect of sheet thickness on the rupture dynamics is also explored. It is seen that when large electric fields (5 V/nm) act across very thin sheets (1 layer), then breakup into multiple ellipsoidal structures is a possibility, and the response of the fluid structure to the applied electric field is non-linear. Furthermore, it is seen that Taylor's predictions for the critical electric field intensity, based on classical electro-hydrodynamics for the onset of instability in macroscopic drops, scales surprisingly well for the case of nanoscaled sheets. (paper)

  6. Isolation and characterization of BetaM protein encoded by ATP1B4 - a unique member of the Na,K-ATPase {beta}-subunit gene family

    Energy Technology Data Exchange (ETDEWEB)

    Pestov, Nikolay B. [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States); Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997 (Russian Federation); Zhao, Hao [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States); Basrur, Venkatesha [Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109 (United States); Modyanov, Nikolai N., E-mail: nikolai.modyanov@utoledo.edu [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States)

    2011-09-09

    Highlights: {yields} Structural properties of BetaM and Na,K-ATPase {beta}-subunits are sharply different. {yields} BetaM protein is concentrated in nuclear membrane of skeletal myocytes. {yields} BetaM does not associate with a Na,K-ATPase {alpha}-subunit in skeletal muscle. {yields} Polypeptide chain of the native BetaM is highly sensitive to endogenous proteases. {yields} BetaM in neonatal muscle is a product of alternative splice mRNA variant B. -- Abstract: ATP1B4 genes represent a rare instance of the orthologous gene co-option that radically changed functions of encoded BetaM proteins during vertebrate evolution. In lower vertebrates, this protein is a {beta}-subunit of Na,K-ATPase located in the cell membrane. In placental mammals, BetaM completely lost its ancestral role and through acquisition of two extended Glu-rich clusters into the N-terminal domain gained entirely new properties as a muscle-specific protein of the inner nuclear membrane possessing the ability to regulate gene expression. Strict temporal regulation of BetaM expression, which is the highest in late fetal and early postnatal myocytes, indicates that it plays an essential role in perinatal development. Here we report the first structural characterization of the native eutherian BetaM protein. It should be noted that, in contrast to structurally related Na,K-ATPase {beta}-subunits, the polypeptide chain of BetaM is highly sensitive to endogenous proteases that greatly complicated its isolation. Nevertheless, using a complex of protease inhibitors, a sample of authentic BetaM was isolated from pig neonatal skeletal muscle by a combination of ion-exchange and lectin-affinity chromatography followed by SDS-PAGE. Results of the analysis of the BetaM tryptic digest using MALDI-TOF and ESI-MS/MS mass spectrometry have demonstrated that native BetaM in neonatal skeletal muscle is a product of alternative splice mRNA variant B and comprised of 351 amino acid residues. Isolated BetaM protein was

  7. The Properties of Reconnection Current Sheets in GRMHD Simulations of Radiatively Inefficient Accretion Flows

    Science.gov (United States)

    Ball, David; Özel, Feryal; Psaltis, Dimitrios; Chan, Chi-Kwan; Sironi, Lorenzo

    2018-02-01

    Non-ideal magnetohydrodynamic (MHD) effects may play a significant role in determining the dynamics, thermal properties, and observational signatures of radiatively inefficient accretion flows onto black holes. In particular, particle acceleration during magnetic reconnection events may influence black hole spectra and flaring properties. We use representative general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows to identify and explore the structures and properties of current sheets as potential sites of magnetic reconnection. In the case of standard and normal evolution (SANE) disks, we find that in the reconnection sites, the plasma beta ranges from 0.1 to 1000, the magnetization ranges from 10‑4 to 1, and the guide fields are weak compared with the reconnecting fields. In magnetically arrested (MAD) disks, we find typical values for plasma beta from 10‑2 to 103, magnetizations from 10‑3 to 10, and typically stronger guide fields, with strengths comparable to or greater than the reconnecting fields. These are critical parameters that govern the electron energy distribution resulting from magnetic reconnection and can be used in the context of plasma simulations to provide microphysics inputs to global simulations. We also find that ample magnetic energy is available in the reconnection regions to power the fluence of bright X-ray flares observed from the black hole in the center of the Milky Way.

  8. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    Science.gov (United States)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  9. Comparison and Analysis of 3,4 dihydrocylmandelic acid (DHMA) and noremetanephrine (NMN) on Amyloid-Beta 40 Monomer for treatment of Alzheimer's Disease using Molecular Dynamics Simulation

    Science.gov (United States)

    Choi, Woosung; Jee, Sang Eun; Jang, Seung Soon

    Alzheimer's disease (AD) is type of degenerative dementia caused memory loss and behavior problem. Main reason of AD is Amyloid-Beta 40(A β) mostly composed of α -helix form misfolds to insoluble fibrils and soluble oilgomer. This insoluble fibrils aggregate with beta sheet structure and form the plaque which is caused nurotoxicity in brain. Both 3,4 dihydrocylmandelic acid (DHMA) and noremetanephrine (NMN) are the metabolite of norepinephrine in brain . Also these are inhibit the changing formation of fibrils and maintain the α -helix structure. In this computational modeling study, both NMN and DHMA molecules were modified and analyzed for specific effect on the A β-monomer using molecular dynamics simulation. Using molecular dynamic simulation, NMN and DHMA act as modulator on three A β-monomer batches and could observe the conformational changing of these A β-monomer under the physiologocal condition. This computational experiment is designed to compare and analyze both of chemicals for determining which chamecal would be more effective on the conformation of A β 40 monomer.

  10. Spatial Offsets in Flare-CME Current Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, John C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Giordano, Silvio [INAF-Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese (Italy); Ciaravella, Angela, E-mail: jraymond@cfa.harvard.edu [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy)

    2017-07-10

    Magnetic reconnection plays an integral part in nearly all models of solar flares and coronal mass ejections (CMEs). The reconnection heats and accelerates the plasma, produces energetic electrons and ions, and changes the magnetic topology to form magnetic flux ropes and to allow CMEs to escape. Structures that appear between flare loops and CME cores in optical, UV, EUV, and X-ray observations have been identified as current sheets and have been interpreted in terms of the nature of the reconnection process and the energetics of the events. Many of these studies have used UV spectral observations of high temperature emission features in the [Fe xviii] and Si xii lines. In this paper, we discuss several surprising cases in which the [Fe xviii] and Si xii emission peaks are spatially offset from each other. We discuss interpretations based on asymmetric reconnection, on a thin reconnection region within a broader streamer-like structure, and on projection effects. Some events seem to be easily interpreted as the projection of a sheet that is extended along the line of sight that is viewed an angle, but a physical interpretation in terms of asymmetric reconnection is also plausible. Other events favor an interpretation as a thin current sheet embedded in a streamer-like structure.

  11. Fourier transform infrared microspectroscopic analysis of the effects of cereal type and variety within a type of grain on structural makeup in relation to rumen degradation kinetics.

    Science.gov (United States)

    Walker, Amanda M; Yu, Peiqiang; Christensen, Colleen R; Christensen, David A; McKinnon, John J

    2009-08-12

    The objectives of this study were to use Fourier transform infrared microspectroscopy (FTIRM) to determine structural makeup (features) of cereal grain endosperm tissue and to reveal and identify differences in protein and carbohydrate structural makeup between different cereal types (corn vs barley) and between different varieties within a grain (barley CDC Bold, CDC Dolly, Harrington, and Valier). Another objective was to investigate how these structural features relate to rumen degradation kinetics. The items assessed included (1) structural differences in protein amide I to nonstructural carbohydrate (NSC, starch) intensity and ratio within cellular dimensions; (2) molecular structural differences in the secondary structure profile of protein, alpha-helix, beta-sheet, and their ratio; (3) structural differences in NSC to amide I ratio profile. From the results, it was observed that (1) comparison between grain types [corn (cv. Pioneer 39P78) vs barley (cv. Harrington)] showed significant differences in structural makeup in terms of NSC, amide I to NSC ratio, and rumen degradation kinetics (degradation ratio, effective degradability of dry matter, protein and NSC) (P makeup in terms of amide I, NSC, amide I to NSC ratio, alpha-helix and beta-sheet protein structures, and rumen degradation kinetics (effective degradability of dry matter, protein, and NSC) (P makeup differences between cereal types and between different varieties within a type of grain could be revealed. These structural makeup differences were related to the rate and extent of rumen degradation.

  12. Identification of a key structural element for protein folding within beta-hairpin turns.

    Science.gov (United States)

    Kim, Jaewon; Brych, Stephen R; Lee, Jihun; Logan, Timothy M; Blaber, Michael

    2003-05-09

    Specific residues in a polypeptide may be key contributors to the stability and foldability of the unique native structure. Identification and prediction of such residues is, therefore, an important area of investigation in solving the protein folding problem. Atypical main-chain conformations can help identify strains within a folded protein, and by inference, positions where unique amino acids may have a naturally high frequency of occurrence due to favorable contributions to stability and folding. Non-Gly residues located near the left-handed alpha-helical region (L-alpha) of the Ramachandran plot are a potential indicator of structural strain. Although many investigators have studied mutations at such positions, no consistent energetic or kinetic contributions to stability or folding have been elucidated. Here we report a study of the effects of Gly, Ala and Asn substitutions found within the L-alpha region at a characteristic position in defined beta-hairpin turns within human acidic fibroblast growth factor, and demonstrate consistent effects upon stability and folding kinetics. The thermodynamic and kinetic data are compared to available data for similar mutations in other proteins, with excellent agreement. The results have identified that Gly at the i+3 position within a subset of beta-hairpin turns is a key contributor towards increasing the rate of folding to the native state of the polypeptide while leaving the rate of unfolding largely unchanged.

  13. Ice flow Modelling of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Tangaa

    Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others. In t...... a steady state with respect to the reference climate at the end of the simulation and that the mass balance of the ice sheet at this time was more sensitive to recent climate fluctuations than the temperature forcing in the early or mid-Holocene.......Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others....... In this PhD project, the use of ice flow models for the interpretation of the age-structure of the Greenland ice sheet, i.e. the depth within the ice, at which ice deposited at given times are found at present day. Two different observational data sets of this archive were investigated. Further, paleo...

  14. Bayesian Inference using Neural Net Likelihood Models for Protein Secondary Structure Prediction

    Directory of Open Access Journals (Sweden)

    Seong-Gon Kim

    2011-06-01

    Full Text Available Several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods have been used to approach the complex non-linear task of predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure in the past. This project introduces a new machine learning method by using an offline trained Multilayered Perceptrons (MLP as the likelihood models within a Bayesian Inference framework to predict secondary structures proteins. Varying window sizes are used to extract neighboring amino acid information and passed back and forth between the Neural Net models and the Bayesian Inference process until there is a convergence of the posterior secondary structure probability.

  15. Theoretical aspects of double beta decay

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1984-01-01

    Considerable effort has been expended recently in theoretical studies of double beta decay. Much of this work has focussed on the constraints this process places on gauge theories of the weak interaction, in general, and on the neutrino mass matrix, in particular. In addition, interesting nuclear structure questions have arisen in studies of double beta decay matrix elements. After briefly reviewing the theory of double beta decay, some of the progress that has been made in these areas is summarized. 25 references

  16. Blockade of rat alpha3beta4 nicotinic receptor function by methadone, its metabolites, and structural analogs.

    Science.gov (United States)

    Xiao, Y; Smith, R D; Caruso, F S; Kellar, K J

    2001-10-01

    The opioid agonist properties of (+/-)-methadone are ascribed almost entirely to the (-)-methadone enantiomer. To extend our knowledge of the pharmacological actions of methadone at ligand-gated ion channels, we investigated the effects of the two enantiomers of methadone and its metabolites R-(+)-2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium perchlorate (EDDP) and R-(+)-2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline hydrochloride (EMDP), as well as structural analogs of methadone, including (-)-alpha-acetylmethadol hydrochloride (LAAM) and (+)-alpha-propoxyphene, on rat alpha3beta4 neuronal nicotinic acetylcholine receptors (nAChRs) stably expressed in a human embryonic kidney 293 cell line, designated KXalpha3beta4R2. (+/-)-methadone inhibited nicotine-stimulated 86Rb+ efflux from the cells in a concentration-dependent manner with an IC50 value of 1.9 +/- 0.2 microM, indicating that it is a potent nAChR antagonist. The (-)- and (+)-enantiomers of methadone have similar inhibitory potencies on nicotine-stimulated 86Rb+ efflux, with IC50 values of approximately 2 microM. EDDP, the major metabolite of methadone, is even more potent, with an IC50 value of approximately 0.5 microM, making it one of the most potent nicotinic receptor blockers reported. In the presence of (+/-)-methadone, EDDP, or LAAM, the maximum nicotine-stimulated 86Rb+ efflux was markedly decreased, but the EC50 value for nicotine stimulation was altered only slightly, if at all, indicating that these compounds block alpha3beta4 nicotinic receptor function by a noncompetitive mechanism. Consistent with a noncompetitive mechanism, (+/-)-methadone, its metabolites, and structural analogs have very low affinity for nicotinic receptor agonist binding sites in membrane homogenates from KXalpha3beta4R2 cells. We conclude that both enantiomers of methadone and its metabolites as well as LAAM and (+)-alpha-propoxyphene are potent noncompetitive antagonists of alpha3beta4 nAChRs.

  17. Stamping of Thin-Walled Structural Components with Magnesium Alloy AZ31 Sheets

    International Nuclear Information System (INIS)

    Chen, F.-K.; Chang, C.-K.

    2005-01-01

    In the present study, the stamping process for manufacturing cell phone cases with magnesium alloy AZ31 sheets was studied using both the experimental approach and the finite element analysis. In order to determine the proper forming temperature and set up a fracture criterion, tensile tests and forming limit tests were first conducted to obtain the mechanical behaviors of AZ31 sheets at various elevated temperatures. The mechanical properties of Z31 sheets obtained from the experiments were then adopted in the finite element analysis to investigate the effects of the process parameters on the formability of the stamping process of cell phone cases. The finite element simulation results revealed that both the fracture and wrinkle defects could not be eliminated at the same time by adjusting blank-holder force or blank size. A drawbead design was then performed using the finite element simulations to determine the size and the location of drawbead required to suppress the wrinkle defect. An optimum stamping process, including die geometry, forming temperature, and blank dimension, was then determined for manufacturing the cell phone cases. The finite element analysis was validated by the good agreement between the simulation results and the experimental data. It confirms that the cell phone cases can be produced with magnesium alloy AZ31 sheet by the stamping process at elevated temperatures

  18. Magnetic configurations of the tilted current sheets in magnetotail

    Directory of Open Access Journals (Sweden)

    C. Shen

    2008-11-01

    Full Text Available In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1 The magnetic field lines (MFLs in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2 The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3 In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4 In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of

  19. Structural and electronic properties of hydrogen adsorptions on BC3 sheet and graphene: a comparative study

    International Nuclear Information System (INIS)

    Chuang, Feng-Chuan; Huang, Zhi-Quan; Lin, Wen-Huan; Albao, Marvin A; Su, Wan-Sheng

    2011-01-01

    We have systematically investigated the effect of hydrogen adsorption on a single BC 3 sheet as well as graphene using first-principles calculations. Specifically, a comparative study of the energetically favorable atomic configurations for both H-adsorbed BC 3 sheets and graphene at different hydrogen concentrations ranging from 1/32 to 4/32 ML and 1/8 to 1 ML was undertaken. The preferred hydrogen arrangement on the single BC 3 sheet and graphene was found to have the same property as that of the adsorbed H atoms on the neighboring C atoms on the opposite sides of the sheet. Moreover, at low coverage of H, the pattern of hydrogen adsorption on the BC 3 shows a proclivity toward formation on the same ring, contrasting their behavior on graphene where they tend to form the elongated zigzag chains instead. Lastly, both the hydrogenated BC 3 sheet and graphene exhibit alternation of semiconducting and metallic properties as the H concentration is increased. These results suggest the possibility of manipulating the bandgaps in a single BC 3 sheet and graphene by controlling the H concentrations on the BC 3 sheet and graphene.

  20. Spatial and Temporal Extent of Ion Spectral Structures at the Inner Edge of the Plasma Sheet

    Science.gov (United States)

    Ferradas, C.; Reeves, G. D.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Skoug, R. M.; Funsten, H. O.

    2017-12-01

    Several ion spectral structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift and loss in the highly dynamic environment of the inner magnetosphere. Their study helps us understand ion access and losses in this region. Several studies have found that these structures vary with geomagnetic activity, local time, and ion species, but their spatial and temporal extent remain undetermined. We use data from the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometers onboard the Van Allen Probes to analyze the spectral structures in the energy range of 1- 50 keV. HOPE measurements on both Van Allen Probes spacecraft enable us to resolve the extent of these ion structures in space and time. As the structures respond to changes in the convection electric field on a variety of time scales, the lapping of the two spacecraft on time scales of minutes to hours helps determine their spatial and temporal evolution.

  1. Supraglacial bacterial community structures vary across the Greenland ice sheet

    DEFF Research Database (Denmark)

    Cameron, Karen A.; Stibal, Marek; Zarsky, Jakub D.

    2016-01-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across...... the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related...... to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community...

  2. The Influence of Magnetosheath Beta and Ionospheric Conductivity in the Structure of the Lobes Near Solstice

    Science.gov (United States)

    Wilder, F. D.; Eriksson, S.; Wiltberger, M. J.

    2017-12-01

    The saturation of the cross-polar cap potential (CPCP) is an unexplained phenomenon in magnetosphere-ionosphere system science. In the present study, we expand upon the Alfvén Wing model of CPCP saturation by investigating its impact on the magnetosphere-ionosphere current system, particularly the cusp-mantle dynamo associated with lobe field lines. In this expansion of the Alfven wing model, the ability of open flux tubes to deform in response to the fluid stress from the magnetosheath is governed by the magnetosheath plasma beta, which in turn reduces the Maxwell stress imposed on the ionospheric plasma to accelerate it against ion-neutral collisional drag. We perform 32 simulations using the Lyon-Fedder-Mobarry (LFM) Magnetohydrodynamic (MHD) model with varying solar wind density and IMF strength, as well as a dipole tilt of 25 degrees to investigate the relative importance of both magnetosheath plasma beta and ionospheric conductivity in the formation of Alfvén wing-like structures and the saturation of the CPCP. We find that the plasma beta in the magnetosheath is different in each hemisphere and dependent on the stagnation point location. We also show that the lobes become more bent in the summer hemisphere with higher ionospheric conductivity. We find that higher ionospheric conductivity also makes the summer hemisphere lobes more sensitive to changes in the magnetosheath beta.

  3. Structural characterization and expression analysis of a beta-thymosin homologue (Tβ) in disk abalone, Haliotis discus discus.

    Science.gov (United States)

    Kasthuri, Saranya Revathy; Premachandra, H K A; Umasuthan, Navaneethaiyer; Whang, Ilson; Lee, Jehee

    2013-09-15

    Repertoires of proteins and small peptides play numerous physiological roles as hormones, antimicrobial peptides, and cellular signaling factors. The beta-thymosins are a group of small acidic peptides involved in processes such as actin sequestration, neuronal development, wound healing, tissue repair, and angiogenesis. Recent characterization of the beta thymosins as immunological regulators in invertebrates led to our identification and characterization of a beta-thymosin homologue (Tβ) from Haliotis discus discus. The cDNA possessed an ORF of 132 bp encoding a protein of 44 amino acids with a molecular mass of 4977 Da. The amino acid sequence shows high identity with another molluskan beta-thymosin and has a characteristic actin binding motif (LKKTET) and glutamyl donors. Phylogenetic analysis showed a close relationship with molluskan homologues, as well as its distinct identity and common ancestral origin. Genomic analysis revealed a 3 exon-2 intron structure similar to the other homologues. In silico promoter analysis also revealed significant transcription factor binding sites, providing evidence for the expression of this gene under different cellular conditions, including stress or pathogenic attack. Tissue distribution profiling revealed a ubiquitous presence in all the examined tissues, but with the highest expression in mantle and hemocyte. Immune challenge with lipopolysaccharide, poly I:C and Vibrio parahemolyticus induced beta-thymosin expression in gill and hemocytes, affirming an immune-related role in invertebrates. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Sintering and microstructure evolution of columnar nickel-based superalloy sheets prepared by EB-PVD

    International Nuclear Information System (INIS)

    Chen, S.; Qu, S.J.; Liang, J.; Han, J.C.

    2010-01-01

    Research highlights: → EB-PVD technology is commonly used to deposit thermal barrier coatings (TBCs) and columnar structure is commonly seen in EB-PVD condensates. The unique columnar structure can provide outstanding resistance against thermal shock and mechanical strains for TBCs. However, a number of researchers have found that the columnar structure can affect the mechanical properties of EB-PVD alloy thin sheet significantly. As yet, works on how to reduce this kind of effects are seldom done. In the present article, we tried to reveal the sintering effects on microstructure evolution and mechanical properties of columnar Ni-based superalloy sheet. The results suggests that after sintering, the columnar structure degrades. Degradation depends on sintering temperature and time. Both the ultimate tensile strength and the elongation percentage are effectively improved after sintering. - Abstract: A ∼0.15 mm-thick columnar nickel-based superalloy sheet was obtained by electron beam physical vapor deposition (EB-PVD). The as-deposited alloy sheet was sintered at different conditions. The microstructure of the specimens before and after sintering was characterized by using scanning electron microscopy. An X'Pert texture facility was used to determine the crystallographic orientation of the as-deposited alloy sheet. The phase transformation was investigated by X-ray diffraction. Tensile tests were conducted at room temperature on as-deposited and sintered specimens. The results show that the as-deposited sheet is composed of typical columnar structures. After sintering, however, the columnar structure degrades. The degradation depends on sintering temperature and time. Both the ultimate tensile strength and the elongation percentage are effectively improved after sintering.

  5. Vibrational analysis of single-layered graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Sakhaee-Pour, A; Ahmadian, M T [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naghdabadi, R [Department of Mechanical Engineering and Institute for Nano Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: sakhaee@alum.sharif.edu, E-mail: naghdabd@sharif.edu

    2008-02-27

    A molecular structural mechanics method has been implemented to investigate the vibrational behavior of single-layered graphene sheets. By adopting this approach, mode shapes and natural frequencies are obtained. Vibrational analysis is performed with different chirality and boundary conditions. Numerical results from the atomistic modeling are employed to develop predictive equations via a statistical nonlinear regression model. With the proposed equations, fundamental frequencies of single-layered graphene sheets with considered boundary conditions can be predicted within 3% difference with respect to the atomistic simulation.

  6. Off-balance-sheet financing to the refining industry

    International Nuclear Information System (INIS)

    Jenkins, J.H.

    1995-01-01

    Off-balance-sheet lending, or project finance, is becoming an increasingly popular means of capital formation in the refining and petrochemical industries. However, these transactions are substantially different from traditional corporate lending, and the demands placed on the borrower to examine, substantiate, and support the project are far greater. The following paper examines ways in which international banks and other lenders evaluate off-balance-sheet refinery projects and suggests ways to better structure financial representations

  7. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber.

    Science.gov (United States)

    Burchardt, Steffi; Troll, Valentin R; Mathieu, Lucie; Emeleus, Henry C; Donaldson, Colin H

    2013-10-08

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  8. Dense sheet Z-pinches

    International Nuclear Information System (INIS)

    Tetsu, Miyamoto

    1999-01-01

    The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)

  9. Effect of Heating Rate on Grain Structure and Superplasticity of 7B04 Aluminum Alloy Sheets

    Directory of Open Access Journals (Sweden)

    CHEN Min

    2017-03-01

    Full Text Available Fine-grained 7B04 aluminum alloy sheets were manufactured through thermo-mechanical treatment. The effects of anneal heating rate on grain structure and superplasticity were investigated using electron back scattering diffraction(EBSD and high temperature tensile test. The results show that at the heating rate of 5.0×10-3K/s, the average grain sizes along the rolling direction(RD and normal direction(ND are 28.2μm and 13.9μm respectively, the nucleation rate is 1/1000. With the increase of heating rate, the average grain size decreases, and the nucleation rate increases. When the heating rate increases to 30.0K/s, the average grain sizes along the RD and ND decrease respectively to 9.9μm and 5.1μm, and the nucleation rate increases to 1/80. Besides, with the increase of heating rate, the elongation of sheets also increases. The elongation of the specimens increases from 100% to 730% under the deforming condition of 773K/8×10-4s-1.

  10. Structural and electro-optical properties of bilayer graphyne like BN sheet

    Science.gov (United States)

    Behzad, Somayeh

    2016-12-01

    The structural, electronic and optical properties of bilayer graphyne like BN sheet (BNyne) with different stacking manners have been explored by the first-principles calculations. The stabilities of α-BNyne bilayers with different stacking manners are compared. The α-BNyne Bilayers have wide band gaps. Compared to the single α-BNyne, the numbers of energy bands are doubled due to the interlayer interactions and the band gap is reduced. The AB-I configuration has a direct band gap while the band gap becomes indirect for AA-II. The calculated ε2 (ω) of bilayer α-BNyne for (Eǁx) is similar to that of the monolayer α-BNyne, except for the small changes of peak positions and increasing of peak intensities. For (Eǁz), the first absorption peak occures at 3.86 eV, and the prominant peak of monolayer at 9.17 eV becomes broadened. These changes are related to the new transitions resulting from the band splitting.

  11. NABi, a novel β-sheet breaker, inhibits Aβ aggregation and neuronal toxicity: Therapeutic implications for Alzheimer's disease.

    Science.gov (United States)

    Jang, Ja-Young; Rhim, Hyangshuk; Kang, Seongman

    2018-01-01

    Amyloid beta (Aβ) aggregates are an important therapeutic target for Alzheimer's disease (AD), a fatal neurodegenerative disease. To date, AD still remains a big challenge due to no effective treatments. Based on the property that Aβ aggregates have the cross-β-structure, a common structural feature in amyloids, we systemically designed the Aβ-aggregation inhibitor that maintains Aβ-interacting ability but removes toxic part from SOD1 (superoxide dismutase 1)-G93A. We identified NABi (Natural Aβ Binder and Aβ-aggregation inhibitor) composed of β2-3 strands, a novel breaker of Aβ aggregation, which does not self-aggregate and has no cytotoxicity at all. The NABi blocks Aβ-fibril formation in vitro and in vivo and prevents neuronal cell death, a hallmark of AD pathogenesis. Such anti-amyloidogenic properties can provide novel strategies for treating AD. Furthermore, our study provides molecular insights into the design of amyloidogenic inhibitors to cure various neurodegenerative and amyloid-associated diseases, as NABi would regulate aggregation of other toxic β-sheet proteins other than Aβ. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.

    2015-08-14

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  13. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.; Guyon, A.; Li, E.  Q.; Thoraval, M.-J.; Thoroddsen, Sigurdur T

    2015-01-01

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  14. BETA digital beta radiometer

    International Nuclear Information System (INIS)

    Borovikov, N.V.; Kosinov, G.A.; Fedorov, Yu.N.

    1989-01-01

    Portable transportable digital beta radiometer providing for measuring beta-decay radionuclide specific activity in the range from 5x10 -9 up to 10 -6 Cu/kg (Cu/l) with error of ±25% is designed and introduced into commercial production for determination of volume and specific water and food radioactivity. The device specifications are given. Experience in the BETA radiometer application under conditions of the Chernobyl' NPP 30-km zone has shown that it is convenient for measuring specific activity of the order of 10 -8 Cu/kg, and application of a set of different beta detectors gives an opportunity to use it for surface contamination measurement in wide range of the measured value

  15. Exploration of multi-fold symmetry element-loaded superconducting radio frequency structure for reliable acceleration of low- & medium-beta ion species

    International Nuclear Information System (INIS)

    Huang, Shichun; Geng, Rongli

    2015-09-01

    Reliable acceleration of low- to medium-beta proton or heavy ion species is needed for future high-current superconducting radio frequency (SRF) accelerators. Due to the high-Q nature of an SRF resonator, it is sensitive to many factors such as electron loading (from either the accelerated beam or from parasitic field emitted electrons), mechanical vibration, and liquid helium bath pressure fluctuation etc. To increase the stability against those factors, a mechanically strong and stable RF structure is desirable. Guided by this consideration, multi-fold symmetry element-loaded SRF structures (MFSEL), cylindrical tanks with multiple (n>=3) rod-shaped radial elements, are being explored. The top goal of its optimization is to improve mechanical stability. A natural consequence of this structure is a lowered ratio of the peak surface electromagnetic field to the acceleration gradient as compared to the traditional spoke cavity. A disadvantage of this new structure is an increased size for a fixed resonant frequency and optimal beta. This paper describes the optimization of the electro-magnetic (EM) design and preliminary mechanical analysis for such structures.

  16. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    Science.gov (United States)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  17. A Two-Ply Polymer-Based Flexible Tactile Sensor Sheet Using Electric Capacitance

    Directory of Open Access Journals (Sweden)

    Shijie Guo

    2014-01-01

    Full Text Available Traditional capacitive tactile sensor sheets usually have a three-layered structure, with a dielectric layer sandwiched by two electrode layers. Each electrode layer has a number of parallel ribbon-like electrodes. The electrodes on the two electrode layers are oriented orthogonally and each crossing point of the two perpendicular electrode arrays makes up a capacitive sensor cell on the sheet. It is well known that compatibility between measuring precision and resolution is difficult, since decreasing the width of the electrodes is required to obtain a high resolution, however, this may lead to reduction of the area of the sensor cells, and as a result, lead to a low Signal/Noise (S/N ratio. To overcome this problem, a new multilayered structure and related calculation procedure are proposed. This new structure stacks two or more sensor sheets with shifts in position. Both a high precision and a high resolution can be obtained by combining the signals of the stacked sensor sheets. Trial production was made and the effect was confirmed.

  18. Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts.

    Directory of Open Access Journals (Sweden)

    Feng YongE

    Full Text Available Successful prediction of the beta-hairpin motif will be helpful for understanding the of the fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin motifs. However, the parameters used by these methods were primarily based on the amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin structure based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these chemical shifts as features combined with three algorithms to predict beta-hairpin structure. Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94% with 0.85 of Mathew's correlation coefficient using quadratic discriminant analysis algorithm, which is clearly superior to the same method for the prediction of beta-hairpin structure from 20 amino acid compositions in the three-fold cross-validation. Our finding showed that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin.

  19. LHCb: $2\\beta_s$ measurement at LHCb

    CERN Multimedia

    Conti, G

    2009-01-01

    A measurement of $2\\beta_s$, the phase of the $B_s-\\bar{B_s}$ oscillation amplitude with respect to that of the ${\\rm b} \\rightarrow {\\rm c^{+}}{\\rm W^{-}}$ tree decay amplitude, is one of the key goals of the LHCb experiment with first data. In the Standard Model (SM), $2\\beta_s$ is predicted to be $0.0360^{+0.0020}_{-0.0016} \\rm rad$. The current constraints from the Tevatron are: $2\\beta_{s}\\in[0.32 ; 2.82]$ at 68$\\%$CL from the CDF experiment and $2\\beta_{s}=0.57^{+0.24}_{-0.30}$ from the D$\\oslash$ experiment. Although the statistical uncertainties are large, these results hint at the possible contribution of New Physics in the $B_s-\\bar{B_s}$ box diagram. After one year of data taking at LHCb at an average luminosity of $\\mathcal{L}\\sim2\\cdot10^{32}\\rm cm^{-2} \\rm s^{-1}$ (integrated luminosity $\\mathcal{L}_{\\rm int}\\sim 2 \\rm fb^{-1}$), the expected statistical uncertainty on the measurement is $\\sigma(2\\beta_s)\\simeq 0.03$. This uncertainty is similar to the $2\\beta_s$ value predicted by the SM.

  20. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  1. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    2001-08-01

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  2. Structural organization of the human and mouse laminin beta2 chain genes, and alternative splicing at the 5' end of the human transcript

    DEFF Research Database (Denmark)

    Durkin, M E; Gautam, M; Loechel, F

    1996-01-01

    We have determined the structural organization of the human and mouse genes that encode the laminin beta2 chain (s-laminin), an essential component of the basement membranes of the neuromuscular synapse and the kidney glomerulus. The human and mouse genes have a nearly identical exon-intron organ......We have determined the structural organization of the human and mouse genes that encode the laminin beta2 chain (s-laminin), an essential component of the basement membranes of the neuromuscular synapse and the kidney glomerulus. The human and mouse genes have a nearly identical exon...

  3. Synthesis, characterization and optical properties of sheet-like ZnO

    International Nuclear Information System (INIS)

    Liu, Changzhen; Meng, Dawei; Wu, Xiuling; Wang, Yongqian; Yu, Xiaohong; Zhang, Zhengjie; Liu, Xiaoyang

    2011-01-01

    Highlights: → Sheet-like ZnO with regular hexagon shape was synthesized with a two-step method. → Sheet-like ZnO predecessor was synthesized at low temperature in open system. → The diameter and thickness of ZnO sheet can be controlled conveniently. → This low-cost and environmentally benign approach is controllable and reproducible. → Sheet-like ZnO may have potential application in optical and electrical devices. -- Abstract: Sheet-like ZnO with regular hexagon shape and uniform diameter has been successfully synthesized through a two-step method without any metal catalyst. First, the sheet-like ZnO precursor was synthesized in a weak alkaline carbamide environment with stirring in a constant temperature water-bath by the homogeneous precipitation method, then sheet-like ZnO was obtained by calcining at 600 o C for 2 h. The structures and optical properties of sheet-like ZnO have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and UV-vis-NIR spectrophotometer. The results reveal that the product is highly crystalline with hexagonal wurtzite phase and has appearance of hexagon at (0 0 0 1) plane. The HRTEM images confirm that the individual sheet-like ZnO is single crystal. The PL spectrum exhibits a narrow ultraviolet emission at 397 nm and a broad visible emission centering at 502 nm. The band gap of sheet-like ZnO is about 3.15 eV.

  4. Behavior of protruding lateral plane graphene sheets in liquid dodecane: molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shenghui; Sun, Shuangqing, E-mail: sunshuangqing@upc.edu.cn; Li, Chunling [China University of Petroleum (East China), College of Science (China); Pittman, Charles U. [Mississippi State University, Department of Chemistry (United States); Lacy, Thomas E. [Mississippi State University, Department of Aerospace Engineering (United States); Hu, Songqing, E-mail: songqinghu@upc.edu.cn [China University of Petroleum (East China), College of Science (China); Gwaltney, Steven R. [Mississippi State University, Department of Chemistry (United States)

    2016-11-15

    Molecular dynamics simulations are used to investigate the behavior of two parallel graphene sheets fixed on one edge (lateral plane) in liquid dodecane. The interactions of these sheets and dodecane molecules are studied with different starting inter-sheet distances. The structure of the dodecane solvent is also analyzed. The results show that when the distance between the two graphene sheets is short (less than 6.8 Å), the sheets will expel the dodecane molecules between them and stack together. However, when the distance between two sheets is large (greater than 10.2 Å), the two sheets do not come together, and the dodecane molecules will form ordered layers in the interlayer spacing. The equilibrium distance between the graphene sheets can only take on specific discrete values (3.4, 7.8, and 12.1 Å), because only an integer number of dodecane layers forms between the two sheets. Once the graphene sheets are in contact, they remain in contact; the sheets do not separate to allow dodecane into the interlayer spacing.

  5. Substructure and electrical resistivity analyses of pure tungsten sheet

    International Nuclear Information System (INIS)

    Trybus, C.L.; Sellers, C.H.; Anderl, R.A.

    1991-01-01

    The substructure of pure tungsten sheet (0.025 mm thick) is examined and quantified by transmission electron microscopy (TEM). Dislocation populations and arrangements are evaluated for as-worked and various annealed conditions of the tungsten sheet. The worked (rolled) tungsten substructure was nonhomogeneous, consisting of areas of very high and low dislocation densities. These results are correlated to resistivity measurements of the tungsten sheet following thermal cycling to 1200 degrees C to determine the substructural changes as a function of temperature. The comparison between the two characterization techniques is used to examine the relationship between structural and electronic properties in tungsten. 15 refs., 6 figs., 2 tabs

  6. Lithium doping and vacancy effects on the structural, electronic and magnetic properties of hexagonal boron nitride sheet: A first-principles calculation

    Science.gov (United States)

    Fartab, Dorsa S.; Kordbacheh, Amirhossein Ahmadkhan

    2018-06-01

    The first-principles calculations based on spin-polarized density functional theory is carried out to investigate the structural, electronic and magnetic properties of a hexagonal boron nitride sheet (h-BNS) doped by one or two lithium atom(s). Moreover, a vacancy in the neighborhood of one Li-substituted atom is introduced into the system. All optimized structures indicate significant local deformations with Li atom(s) protruded to the exterior of the sheet. The defects considered at N site are energetically more favorable than their counterpart structures at B site. The spin-polarized impurity states appear within the bandgap region of the pristine h-BNS, which lead to a spontaneous magnetization with the largest magnetic moments of about 2 μB in where a single or two B atom(s) are replaced by Li atom(s). Furthermore, the Li substitution for a single B atom increases the density of holes compared to that of electrons forming a p-type semiconductor. More interestingly, the structure in which two Li are substituted two neighboring B atoms appears to show desired half-metallic behavior that may be applicable in spintronic. The results provide a way to enhance the conductivity and magnetism of the pristine h-BNS for potential applications in BN-based nanoscale devices.

  7. Structure of N-acetyl-[beta]-D-glucosaminidase (GcnA) from the Endocarditis Pathogen Streptococcus gordonii and its Complex with the Mechanism-based Inhibitor NAG-thiazoline

    Energy Technology Data Exchange (ETDEWEB)

    Langley, David B.; Harty, Derek W.S.; Jacques, Nicholas A.; Hunter, Neil; Guss, J. Mitchell; Collyer, Charles A. (Sydney); (Westmead)

    2008-09-17

    The crystal structure of GcnA, an N-acetyl-{beta}-D-glucosaminidase from Streptococcus gordonii, was solved by multiple wavelength anomalous dispersion phasing using crystals of selenomethionine-substituted protein. GcnA is a homodimer with subunits each comprised of three domains. The structure of the C-terminal {alpha}-helical domain has not been observed previously and forms a large dimerization interface. The fold of the N-terminal domain is observed in all structurally related glycosidases although its function is unknown. The central domain has a canonical ({beta}/{alpha}){sub 8} TIM-barrel fold which harbours the active site. The primary sequence and structure of this central domain identifies the enzyme as a family 20 glycosidase. Key residues implicated in catalysis have different conformations in two different crystal forms, which probably represent active and inactive conformations of the enzyme. The catalytic mechanism for this class of glycoside hydrolase, where the substrate rather than the enzyme provides the cleavage-inducing nucleophile, has been confirmed by the structure of GcnA complexed with a putative reaction intermediate analogue, N-acetyl-{beta}-D-glucosamine-thiazoline. The catalytic mechanism is discussed in light of these and other family 20 structures.

  8. Structural evaluation of reduced graphene oxide in graphene oxide during ion irradiation: X-ray absorption spectroscopy and in-situ sheet resistance studies

    Science.gov (United States)

    Saravanan, K.; Jayalakshmi, G.; Suresh, K.; Sundaravel, B.; Panigrahi, B. K.; Phase, D. M.

    2018-03-01

    We report the structural evolution of reduced graphene oxide (rGO) in graphene oxide (GO) flakes during 1 MeV Si+ ion irradiation. In-situ electrical resistivity measurements facilitate monitoring the sheet resistance with the increase in the fluence. The electrical sheet resistance of the GO flake shows the exponential decay behaviour with the increasing ion fluence. Raman spectra of the GO flake reveal the increase in the ID/IG ratio, indicating restoration of the sp2 network upon irradiation. The C/O ratio estimated from resonant Rutherford backscattering spectrometry analysis directly evidenced the reduction of oxygen moieties upon irradiation. C K-edge X-ray absorption near edge structure spectra reveal the restoration of C=C sp2-hybridized carbon atoms and the removal of oxygen-containing functional groups in the GO flake. STM data reveal the higher conductance in the rGO regime in comparison with the regime, where the oxygen functional groups are present. The experimental investigation demonstrates that the ion irradiation can be employed for efficient reduction of GO with tunable electrical and structural properties.

  9. Sawtooth crashes at high beta on JET

    Energy Technology Data Exchange (ETDEWEB)

    Alper, B; Huysmans, G T.A.; Sips, A C.C. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Nave, M F.F. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior Tecnico

    1994-07-01

    The sawtooth crashes on JET display features which depend on beta. The main observation is a transient bulging of flux surfaces (duration inferior to 30 microsec.), which is predominantly on the low field side and extends to larger radii as beta increases. This phenomenon reaches the plasma boundary when beta{sub N} exceeds 0.5 and in these cases is followed by an ELM within 50 microsec. These sawtooth/ELM events limit plasma performance. Modelling of mode coupling shows qualitative agreement between observations of the structure of the sawtooth precursor and the calculated internal kink mode at high beta. (authors). 6 refs., 5 figs.

  10. Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors.

    Science.gov (United States)

    Shiina, T; Kawasaki, A; Nagao, T; Kurose, H

    2000-09-15

    The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.

  11. Prediction of beta-turns and beta-turn types by a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN).

    Science.gov (United States)

    Kirschner, Andreas; Frishman, Dmitrij

    2008-10-01

    Prediction of beta-turns from amino acid sequences has long been recognized as an important problem in structural bioinformatics due to their frequent occurrence as well as their structural and functional significance. Because various structural features of proteins are intercorrelated, secondary structure information has been often employed as an additional input for machine learning algorithms while predicting beta-turns. Here we present a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN) capable of predicting multiple mutually dependent structural motifs and demonstrate its efficiency in recognizing three aspects of protein structure: beta-turns, beta-turn types, and secondary structure. The advantage of our method compared to other predictors is that it does not require any external input except for sequence profiles because interdependencies between different structural features are taken into account implicitly during the learning process. In a sevenfold cross-validation experiment on a standard test dataset our method exhibits the total prediction accuracy of 77.9% and the Mathew's Correlation Coefficient of 0.45, the highest performance reported so far. It also outperforms other known methods in delineating individual turn types. We demonstrate how simultaneous prediction of multiple targets influences prediction performance on single targets. The MOLEBRNN presented here is a generic method applicable in a variety of research fields where multiple mutually depending target classes need to be predicted. http://webclu.bio.wzw.tum.de/predator-web/.

  12. γ-Irradiation assisted synthesis of graphene oxide sheets supported Ag nanoparticles with single crystalline structure and parabolic distribution from interlamellar limitation

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Yunhao; Zhou, Baoming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei, E-mail: xuzhiwei@tjpu.edu.cn; Liu, Liangsen; Kuang, Liyun; Ma, Meijun; Fu, Hongjun

    2017-05-01

    Highlights: • Graphene oxide sheets supported Ag nanoparticles composites are successfully prepared via γ-irradiation without surfactant or functional agent. • Ag nanoparticles exhibit single crystalline structure and parabolic distribution on the surface of graphene oxide sheets. • Proposing a view that the growth of intercellular AgNPs can be limited by graphite oxide. - Abstract: This paper reported a method to fabricate graphene oxide sheets supported Ag nanoparticles (AgNPs/GOS) with single crystalline structure and parabolic distribution without surfactant or functional agent. We used imidazole silver nitrate as intercalation precursor into the layers of graphite oxide, and subsequently reduction and growth of interlamellar AgNPs were induced via γ-irradiation. The results illustrated that the synergism of interlamellar limitation of graphite oxide and fragmentation ability of γ-irradiation could prevent coalescent reaction of AgNPs with other oligomeric clusters, and the single crystalline and small-sized (below 13.9 nm) AgNPs were prepared. Moreover, the content and size of AgNPs exhibited parabolic distribution on GOS surface because the graphite oxide exfoliated to GOS from the edge to the central area of layers. In addition, complete exfoliation degree of GOS and large-sized AgNPs were obtained simultaneously under suitable silver ions concentration. Optimized composites exhibited outstanding surface-enhanced Raman scattering properties for crystal violet with enhancement factor of 1.3 × 10{sup 6} and detection limit of 1.0 × 10{sup −7} M, indicating that the AgNPs/GOS composites could be applied to trace detection of organic dyes molecules. Therefore, this study presented a strategy for developing GOS supported nanometal with single crystalline structure and parabolic distribution based on γ-irradiation.

  13. γ-Irradiation assisted synthesis of graphene oxide sheets supported Ag nanoparticles with single crystalline structure and parabolic distribution from interlamellar limitation

    International Nuclear Information System (INIS)

    Yue, Yunhao; Zhou, Baoming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Liu, Liangsen; Kuang, Liyun; Ma, Meijun; Fu, Hongjun

    2017-01-01

    Highlights: • Graphene oxide sheets supported Ag nanoparticles composites are successfully prepared via γ-irradiation without surfactant or functional agent. • Ag nanoparticles exhibit single crystalline structure and parabolic distribution on the surface of graphene oxide sheets. • Proposing a view that the growth of intercellular AgNPs can be limited by graphite oxide. - Abstract: This paper reported a method to fabricate graphene oxide sheets supported Ag nanoparticles (AgNPs/GOS) with single crystalline structure and parabolic distribution without surfactant or functional agent. We used imidazole silver nitrate as intercalation precursor into the layers of graphite oxide, and subsequently reduction and growth of interlamellar AgNPs were induced via γ-irradiation. The results illustrated that the synergism of interlamellar limitation of graphite oxide and fragmentation ability of γ-irradiation could prevent coalescent reaction of AgNPs with other oligomeric clusters, and the single crystalline and small-sized (below 13.9 nm) AgNPs were prepared. Moreover, the content and size of AgNPs exhibited parabolic distribution on GOS surface because the graphite oxide exfoliated to GOS from the edge to the central area of layers. In addition, complete exfoliation degree of GOS and large-sized AgNPs were obtained simultaneously under suitable silver ions concentration. Optimized composites exhibited outstanding surface-enhanced Raman scattering properties for crystal violet with enhancement factor of 1.3 × 10"6 and detection limit of 1.0 × 10"−"7 M, indicating that the AgNPs/GOS composites could be applied to trace detection of organic dyes molecules. Therefore, this study presented a strategy for developing GOS supported nanometal with single crystalline structure and parabolic distribution based on γ-irradiation.

  14. Relationship between Beta-Lactoglobulin and Bovine Submaxillary Mucin: Structure and Tribology Studies

    DEFF Research Database (Denmark)

    Celebioglu, Hilal Yilmaz; Guðjónsdóttir, María; Chronakis, Ioannis S.

    ), the major whey protein, and bovine submaxillary mucin (BSM), a (model) major salivary component, when mixed (1:1) at different pHs (pH 3.0, 5.0 and 7.4) in order to broaden our understanding of food oral processing on the molecular level. High and low field Nuclear Magnetic Resonance (NMR), Dynamic Light......For food oral processing, any specific component in the food products and its structural changes in varying environment can give crucial influence on the sensory acceptance of the products. The objective of this research was to investigate the inter-action between beta-Lactoglobulin (BLG...... Scattering (DLS) and Circular Dichroism (CD) techniques were employed to study the structural changes. A Mini-Traction Machine (MTM) was then employed to investigate the friction and lubrication properties of the proteins at a compliant interface, as a mimic of oral processing of dairy products....

  15. Antimicrobial actions of the human epididymis 2 (HE2 protein isoforms, HE2alpha, HE2beta1 and HE2beta2

    Directory of Open Access Journals (Sweden)

    French Frank S

    2004-08-01

    Full Text Available Abstract Background The HE2 gene encodes a group of isoforms with similarities to the antimicrobial beta-defensins. We demonstrated earlier that the antimicrobial activity of HE2 proteins and peptides is salt resistant and structure dependent and involves permeabilization of bacterial membranes. In this study, we further characterize the antimicrobial properties of HE2 peptides in terms of the structural changes induced in E. coli and the inhibition of macromolecular synthesis. Methods E. coli treated with 50 micro g/ml of HE2alpha, HE2beta1 or HE2beta2 peptides for 30 and 60 min were visualized using transmission and scanning electron microscopy to investigate the impact of these peptides on bacterial internal and external structure. The effects of HE2alpha, HE2beta1 and HE2beta2 on E. coli macromolecular synthesis was assayed by incubating the bacteria with 2, 10 and 25 micro g/ml of the individual peptides for 0–60 min and measuring the incorporation of the radioactive precursors [methyl-3H]thymidine, [5-3H]uridine and L-[4,5-3H(N]leucine into DNA, RNA and protein. Statistical analyses using Student's t-test were performed using Sigma Plot software. Values shown are Mean ± S.D. Results E. coli treated with HE2alpha, HE2beta1 and HE2beta2 peptides as visualized by transmission electron microscopy showed extensive damage characterized by membrane blebbing, thickening of the membrane, highly granulated cytoplasm and appearance of vacuoles in contrast to the smooth and continuous membrane structure of the untreated bacteria. Similarly, bacteria observed by scanning electron microscopy after treating with HE2alpha, HE2beta1 or HE2beta2 peptides exhibited membrane blebbing and wrinkling, leakage of cellular contents, especially at the dividing septa, and external accumulation of fibrous materials. In addition, HE2alpha, HE2beta1 and HE2beta2 peptides inhibited E. coli DNA, RNA and protein synthesis. Conclusions The morphological changes observed

  16. Liquid Crystal Enabled Early Stage Detection of Beta Amyloid Formation on Lipid Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Sadati, Monirosadat [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Apik, Aslin Izmitli [Chemical and Biological Engineering, University of Wisconsin, Madison WI 53706 USA; Armas-Perez, Julio C. [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Martinez-Gonzalez, Jose [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Hernandez-Ortiz, Juan P. [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Departamento de Materiales y Minerales, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Calle 75 # 79A-51, Bloque M17 Medellín Colombia; Abbott, Nicholas L. [Chemical and Biological Engineering, University of Wisconsin, Madison WI 53706 USA; de Pablo, Juan J. [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Argonne National Laboratory, Argonne IL 60439 USA

    2015-09-09

    Liquid crystals (LCs) can serve as sensitive reporters of interfacial events, and this property has been used for sensing of synthetic or biological toxins. Here it is demonstrated that LCs can distinguish distinct molecular motifs and exhibit a specific response to beta-sheet structures. That property is used to detect the formation of highly toxic protofibrils involved in neurodegenerative diseases, where it is crucial to develop methods that probe the early-stage aggregation of amyloidogenic peptides in the vicinity of biological membranes. In the proposed method, the amyloid fibrils formed at the lipid-decorated LC interface can change the orientation of LCs and form elongated and branched structures that are amplified by the mesogenic medium; however, nonamyloidogenic peptides form ellipsoidal domains of tilted LCs. Moreover, a theoretical and computational analysis is used to reveal the underlying structure of the LC, thereby providing a detailed molecular-level view of the interactions and mechanisms responsible for such motifs. The corresponding signatures can be detected at nanomolar concentrations of peptide by polarized light microscopy and much earlier than the ones that can be identified by fluorescence-based techniques. As such, it offers the potential for early diagnoses of neurodegenerative diseases and for facile testing of inhibitors of amyloid formation.

  17. Development and applications of beta and near beta titanium alloys

    International Nuclear Information System (INIS)

    Takemura, A.; Ohyama, H.; Nishimura, T.; Abumiya, T.

    1993-01-01

    In this report the authors introduced application of beta and near beta titanium alloys also development and processing of these alloys at Kobe Steel LTD. Ti-15Mo-5Zr-3Al is an alloy developed by Kobe Steel which has been applied for variety of sporting goods, also used as an erosion shield of steam turbine blades. Ti-15Mo-5Zr-3Al high strength wire for valve springs is under development. New beta alloys(Ti-V-Nb-Sn-Al) are under development which have lower flow stress at room temperature than Ti 15V-3Cr-3Sn-3Al, expected to improve productivity of cold forging. NNS forging and thermo mechanical treatment of Ti-10V-2Fe-3Al were studied. Ti-10V-2Fe3Al steam turbine blades and structural parts for aircraft were developed. Fine grain cold strips of Ti 15V-3Cr-3Sn-3Al are produced by annealing and pickling process. These cold strips are used for parts of a fishing rod

  18. Preliminary evaluation of beta-spodumene as a fusion reactor structural material

    International Nuclear Information System (INIS)

    Kelsey, P.V. Jr.; Schmunk, R.E.; Henslee, S.P.

    1982-01-01

    Beta-spodumene was investigated as a candidate material for use in fusion reactor environments. Properties which support the use of beta-spodumene include good thermal shock resistance, a very low coefficient of thermal expansion, a low-Z composition which would result in minimum impact on the plasma, and flexibility in fabrication processes. Specimens were irradiated in the Advanced Test Reactor (ATR) to a fluence of 5.3 x 10 22 n/m 2 , E > MeV, and 4.9 x 10 23 n/m 2 thermal fluence in order to obtain a preliminary evaluation of the impact of irradiation on the material. Preliminary data indicate that the mechanical properties of beta-spodumene are little affected by irradiation. Gas production and release have also been investigated. (orig.)

  19. The strength research of the adhesive joints of sheet structures ...

    African Journals Online (AJOL)

    The research results of stress-strained condition of constructional sheet materials are given in the article. The strength dependence on type, configuration and sizes of adhesive joints is analyzed. The research of the strength dependence was made on the samples from bakelite plywood with the main types of adhesive joints ...

  20. Structural analysis of eight novel and 112 previously reported missense mutations in the interactive FXI mutation database reveals new insight on FXI deficiency.

    Science.gov (United States)

    Saunders, Rebecca E; Shiltagh, Nuha; Gomez, Keith; Mellars, Gillian; Cooper, Carolyn; Perry, David J; Tuddenham, Edward G; Perkins, Stephen J

    2009-08-01

    Factor XI (FXI) functions in blood coagulation. FXI is composed of four apple (Ap) domains and a serine protease (SP) domain. Deficiency of FXI leads to an injury-related bleeding disorder, which is remarkable for the lack of correlation between bleeding symptoms and FXI coagulant activity (FXI:C). The number of mutations previously reported in our interactive web database (http://www.FactorXI.org) is now significantly increased to 183 through our new patient studies and from literature surveys. Eight novel missense mutations give a total of 120 throughout the FXI gene (F11). The most abundant defects in FXI are revealed to be those from low-protein plasma levels (Type I: CRM-) that originate from protein misfolding, rather than from functional defects (Type II: CRM+). A total of 70 Ap missense mutations were analysed using a consensus Ap domain structure generated from the FXI dimer crystal structure. This showed that all parts of the Ap domain were affected. The 47 SP missense mutations were also distributed throughout the SP domain structure. The periphery of the Ap beta-sheet structure is sensitive to structural perturbation caused by residue changes throughout the Ap domain, yet this beta-sheet is crucial for FXI dimer formation. Residues located at the Ap4:Ap4 interface in the dimer are much less directly involved. We conclude that the abundance of Type I defects in FXI results from the sensitivity of the Ap domain folding to residue changes within this, and discuss how structural knowledge of the mutations improves our understanding of FXI deficiencies.

  1. H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase.

    Science.gov (United States)

    Hammel, K E; Mozuch, M D; Jensen, K A; Kersten, P J

    1994-11-15

    Oxidative C alpha-C beta cleavage of the arylglycerol beta-aryl ether lignin model 1-(3,4-dimethoxy-phenyl)-2-phenoxypropane-1,3-diol (I) by Phanerochaete chrysosporium lignin peroxidase in the presence of limiting H2O2 was enhanced 4-5-fold by glyoxal oxidase from the same fungus. Further investigation showed that each C alpha-C beta cleavage reaction released 0.8-0.9 equiv of glycolaldehyde, a glyoxal oxidase substrate. The identification of glycolaldehyde was based on 13C NMR spectrometry of reaction product obtained from beta-, gamma-, and beta,gamma-13C-substituted I, and quantitation was based on an enzymatic NADH-linked assay. The oxidation of glycolaldehyde by glyoxal oxidase yielded 0.9 oxalate and 2.8 H2O2 per reaction, as shown by quantitation of oxalate as 2,3-dihydroxyquinoxaline after derivatization with 1,2-diaminobenzene and by quantitation of H2O2 in coupled spectrophotometric assays with veratryl alcohol and lignin peroxidase. These results suggest that the C alpha-C beta cleavage of I by lignin peroxidase in the presence of glyoxal oxidase should regenerate as many as 3 H2O2. Calculations based on the observed enhancement of LiP-catalyzed C alpha-C beta cleavage by glyoxal oxidase showed that approximately 2 H2O2 were actually regenerated per cleavage of I when both enzymes were present. The cleavage of arylglycerol beta-aryl ether structures by ligninolytic enzymes thus recycles H2O2 to support subsequent cleavage reactions.

  2. Study of the Nuclear Structure of 39P Using Beta-Delayed Gamma Spectroscopy

    Science.gov (United States)

    Abromeit, Brittany; NSCL Experiment E14063 Team Team

    2016-03-01

    Investigation of nuclei with neutron and proton imbalance is at the forefront of nuclear physics research today. This is driven by the fact that the structure in these regimes may vary with that seen near the valley of stability. With eight neutrons more than the stable isotope of phosphorous, 39P is a neutron-rich exotic nucleus that has very limited information on it: previous studies of 39P produce only three known energy levels and gamma rays. The fragmentation of a 48Ca primary beam on a 564mg/cm2 thick Be target at the National Superconducting Cyclotron Laboratory (NSCL) was used to produce exotic 39Si. Using the NSCL Beta Counting System (BCS), consisting of a thick planner germanium double-sided strip detector (GeDSSD) and 16 High-purity germanium detectors in an array, SeGA, the beta-gamma coincidences from the decay of 39Si to 39P were analyzed. The resulting level scheme of 39P, including over 12 new gamma rays and energy states, confirmation of the previously measured half-life, and first-time logft values will be presented. This work was supported by the NSF under Grant No. 1401574.

  3. Crystal structures of {beta}-galactosidase from Penicillium sp. and its complex with galactose

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, A.L.; Nagem, R.A.P.; Garratt, R.C.; Polikarpov, I. [Universidade de Sao Paulo, Sao Carlos, SP (Brazil); Neustroev, K.N.; Eneyskaya, E.V.; Kulminskaya, A.A.; Golubev, A.M. [St. Petersburg, Gatchina (Russian Federation); Arand, M.; Adamska, M. [University of Wuerzburg (Germany)

    2004-07-01

    Glycosidase belong to a group of enzymes displaying a great variety of protein folds and substrate specificities. Two critically located acidic residues make up the catalytic machinery of these enzymes, which are responsible for the cleavage of glycosidic bonds. The applications of glycosidase in textile, food, and pulp processing and in catalysts and oligosaccharide synthesis have encouraged the engineering of these proteins to improve their catalytic properties and stability. Furthermore, structural studies broaden our understanding of the catalytic mechanism and the role of glycosidase in the recognition processes of their different substrates. In this work, we describe crystallographic studies of a fungi glycosidase. The crystallographic structures of {beta}-galactosidase from Penicillium sp. and its complex with galactose were solved at 1.90 A and 2.10 A resolution, respectively. The X-ray structure of the enzyme-galactose complex was useful in identifying the residue Glu200 as the proton donor and residue Glu 299 as the nucleophiles involved in catalysis. (author)

  4. Recent Insights into Clostridium perfringens Beta-Toxin

    Directory of Open Access Journals (Sweden)

    Masahiro Nagahama

    2015-02-01

    Full Text Available Clostridium perfringens beta-toxin is a key mediator of necrotizing enterocolitis and enterotoxemia. It is a pore-forming toxin (PFT that exerts cytotoxic effect. Experimental investigation using piglet and rabbit intestinal loop models and a mouse infection model apparently showed that beta-toxin is the important pathogenic factor of the organisms. The toxin caused the swelling and disruption of HL-60 cells and formed a functional pore in the lipid raft microdomains of sensitive cells. These findings represent significant progress in the characterization of the toxin with knowledge on its biological features, mechanism of action and structure-function having been accumulated. Our aims here are to review the current progresses in our comprehension of the virulence of C. perfringens type C and the character, biological feature and structure-function of beta-toxin.

  5. Ice Sheet Roughness Estimation Based on Impulse Responses Acquired in the Global Ice Sheet Mapping Orbiter Mission

    Science.gov (United States)

    Niamsuwan, N.; Johnson, J. T.; Jezek, K. C.; Gogineni, P.

    2008-12-01

    The Global Ice Sheet Mapping Orbiter (GISMO) mission was developed to address scientific needs to understand the polar ice subsurface structure. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an interferometric SAR (InSAR) strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. These signals are further processed to produce 3D-images representing basal topography of the ice sheet. In the past three years, the GISMO airborne field campaigns that have been conducted provide a set of useful data for studying geophysical properties of the Greenland ice sheet. While topography information can be obtained using interferometric SAR processing techniques, ice sheet roughness statistics can also be derived by a relatively simple procedure that involves analyzing power levels and the shape of the radar impulse response waveforms. An electromagnetic scattering model describing GISMO impulse responses has previously been proposed and validated. This model suggested that rms-heights and correlation lengths of the upper surface profile can be determined from the peak power and the decay rate of the pulse return waveform, respectively. This presentation will demonstrate a procedure for estimating the roughness of ice surfaces by fitting the GISMO impulse response model to retrieved waveforms from selected GISMO flights. Furthermore, an extension of this procedure to estimate the scattering coefficient of the glacier bed will be addressed as well. Planned future applications involving the classification of glacier bed conditions based on the derived scattering coefficients will also be described.

  6. Research on Computer Integrated Manufacturing of Sheet Metal Parts for Lithium Battery

    Directory of Open Access Journals (Sweden)

    Pan Wei-Min

    2016-01-01

    Full Text Available Lithium battery has been widely used as the main driving force of the new energy vehicle in recent years. Sheet metal parts are formed by means of pressure forming techniques with the characteristics of light weight, small size and high structural strength. The sheet metal forming has higher productivity and material utilization than the mechanical cutting, therefore sheet metal parts are widely used in many fields, such as modern automotive industry, aviation, aerospace, machine tools, instruments and household appliances. In this paper, taking a complex lithium battery box as an example, the integrated manufacturing of sheet metal parts is studied, and the digital integrated design and manufacturing process system is proposed. The technology is studied such as sheet metal design, unfolding, sheet nesting and laser cutting, CNC turret punch stamping programming, CNC bending etc. The feasibility of the method is verified through the examples of products and the integrated manufacturing of sheet metal box is completed.

  7. Sintering and robocasting of beta-tricalcium phosphate scaffoldsfor orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Pedro; Saiz, Eduardo; Gryn Karol; Tomsia, Antoni P.

    2005-11-01

    {beta}-tricalcium phosphate ({beta}-TCP) scaffolds with designed, three-dimensional (3-D) geometry and mesoscale porosity have been fabricated by direct-write assembly (robocasting) techniques. Concentrated {beta}-TCP inks with suitable viscoelastic properties were developed to enable the fabrication of the complex 3-D structures. A comprehensive study of the sintering behavior of TCP as a function of the calcium content in the starting powder was also carried out, and the optimal heat treatment for fabricating scaffolds with dense {beta}-TCP rods has been determined. Such analysis provides clues to controlling the microstructure of the fabricated structures and, therefore, enabling the fabrication by robocasting of TCP scaffolds with tailored performance for bone tissue engineering applications.

  8. The in vitro synthesis of {beta}-galactosidase induced in a subcellular structure of Escherichia coli (1961); Synthese in vitro de {beta}-galactosidase induite dans une structure subcellulaire d'Escherichia coli (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Nisman, B; Kayser, A; Demailly, J; Genin, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Isopropyl-thio-galactoside (IPTG), an inducer of 3-galactosidase, makes it possible to synthesise this enzyme in vitro with the subcellular structure (P{sub 1}). The enzyme is isolated from the bacteria Escherichia coli K 12 which are inductive but not induced. The incorporation of radioactive amino-acids, which is stimulated by the presence of an inducer, was studied during the course of the enzyme synthesis. Saccharose suppresses the induction of {beta}-galactosidase. The presence of a specific inhibitor in the structure studied is considered. (authors) [French] L'isopropylthiogalactoside (IPTG), inducteur de la 3-galactosidase, permet la synthese in vitro de cette enzyme dans la structure subcellulaire (P{sub 1}) isolee a partir des bacteries d'Escherichia coli K 12, inductibles mais non induites. L'incorporation d'acides amines radioactifs, stimulee par la presence d'inducteur, a ete etudiee au cours de la synthese de l'enzyme. Le saccharose supprime l'induction de la 3-galactosidase. La presence du represseur specifique dans la structure etudiee est consideree. (auteurs)

  9. Implications of secondary structure prediction and amino acid sequence comparison of class I and class II phosphoribosyl diphosphate synthases on catalysis, regulation, and quaternary structure

    DEFF Research Database (Denmark)

    Krath, B N; Hove-Jensen, B

    2001-01-01

    Spinach 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) synthase isozyme 4 was synthesized in Escherichia coli and purified to near homogeneity. The activity of the enzyme is independent of P(i); it is inhibited by ADP in a competitive manner, indicating a lack of an allosteric site; and it accepts...... is consistent with a homotrimer. Secondary structure prediction shows that spinach PRPP synthase isozyme 4 has a general folding similar to that of Bacillus subtilis class I PRPP synthase, for which the three-dimensional structure has been solved, as the position and extent of helices and beta-sheets of the two...... in the spinach enzyme. In contrast, residues of the active site of B. subtilis PRPP synthase show extensive conservation in spinach PRPP synthase isozyme 4....

  10. Synonymous codon usage in different protein secondary structural ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    2007-06-21

    Jun 21, 2007 ... in the DSSP file, beta-sheets by E and B and coils by the rest. 3. Results ...... Authors are thankful to the Department of Biotechnology,. New Delhi for ... thermophilic Aquifex aeolicus and mesophilic Bacillus subtilis;. J. Biomol.

  11. The structure of a conserved Piezo channel domain reveals a novel beta sandwich fold

    Science.gov (United States)

    Kamajaya, Aron; Kaiser, Jens; Lee, Jonas; Reid, Michelle; Rees, Douglas C.

    2014-01-01

    Summary Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a novel beta sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in Dehydrated Hereditary Stomatocytosis (DHS) patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels. PMID:25242456

  12. Antarctic ice sheet thickness estimation based on P-receiver function and waveform inversion

    Science.gov (United States)

    Yan, P.; Li, F.; LI, Z.; Li, J.; Yang, Y.; Hao, W.

    2016-12-01

    Antarctic ice sheet thickness is key parameter and boundary condition for ice sheet model construction, which has great significance for glacial isostatic adjustment, ice sheet mass balance and global change study. Ice thickness acquired utilizing seismological receiver function method can complement and verify with results obtained by radar echo sounding method. In this paper, P-receiver functions(PRFs) are extracted for stations deployed on Antarctic ice sheet, then Vp/Vs ratio and ice thickness are obtained using H-Kappa stacking. Comparisons are made between Bedmap2 dataset and the ice thickness from PRFs, most of the absolute value of the differences are less than 200 meters, only a few reach 600 meters. Taking into account of the intensity of Bedmap2 dataset survey lines and the uncertainty of radio echo sounding, as well as the inherit complexity of the internal ice structure beneath some stations, the ice thickness obtained from receiver function method is reliable. However limitation exists when using H-Kappa stacking method for stations where sediment squeezed between the ice and the bed rock layer. For better verifying the PRF result, a global optimizing method-Neighbourhood algotithm(NA) and spline interpolation are used to modeling PRFs assuming an isotropic layered ice sheet with depth varied densities and velocities beneath the stations. Then the velocity structure and ice sheet thickness are obtained through nonlinear searching by optimally fitting the real and the theoretical PRFs. The obtained ice sheet thickness beneath the stations agree well with the former H-Kappa method, but further detailed study are needed to constrain the inner ice velocity structure.

  13. Platelet graphite nanofibers for electrochemical sensing and biosensing: the influence of graphene sheet orientation.

    Science.gov (United States)

    Ambrosi, Adriano; Sasaki, Toshio; Pumera, Martin

    2010-02-01

    Here, we demonstrate that platelet graphite nanofibers (PGNFs) exhibit fast heterogeneous electron-transfer rates for a wide variety of compounds such as FeCl(3), ferrocyanide, dopamine, uric acid, ascorbic acid, and the reduced form of beta-nicotinamide adenine dinucleotide. The electrochemical properties of PGNFs are superior to those of multiwalled carbon nanotubes (MWCNTs) or graphite microparticles (GMPs). Transmission electron microscopy and Raman spectroscopy reveal that this arises from the unique graphene sheet orientation of such platelet nanofibers, which accounts for their unparalleled high ratio of graphene edge planes versus basal planes.

  14. An ice sheet model validation framework for the Greenland ice sheet

    Science.gov (United States)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  15. Extension arm facilitated pegylation of alphaalpha-hemoglobin with modifications targeted exclusively to amino groups: functional and structural advantages of free Cys-93(beta) in the PEG-Hb adduct.

    Science.gov (United States)

    Li, Dongxia; Hu, Tao; Manjula, Belur N; Acharya, Seetharama A

    2009-11-01

    Cys-93(beta) of hemoglobin (Hb) was reversibly protected as a mixed disulfide with thiopyridine during extension arm facilitated (EAF) PEGylation and its influence on the structural and functional properties of the EAF-PEG-Hb has been investigated. Avoiding PEGylation of Cys-93(beta) in the EAF-PEG-Hb lowers the level of perturbation of heme pocket, alpha1beta2 interface, autoxidation, heme loss, and the O(2) affinity, as compared to the EAF-PEG-Hb with PEGylation of Cys-93(beta).The structural and functional advantages of reversible protection of Cys-93(beta) during EAF PEGylation of oxy-Hb has been compared with Euro PEG-Hb generated by EAF PEGylation of deoxy Hb where Cys-93(beta) is free in the final product. The alphaalpha-fumaryl cross-linking and EAF PEGylation targeted exclusively to Lys residues has been combined together for generation of second-generation EAF-PEG-Hb with lower oxygen affinity. The PEG chains engineered on Lys as well as PEGylation of Cys-93(beta) independently contribute to the stabilization of oxy conformation of Hb and hence increase the oxygen affinity of Hb. However, oxygen affinity of the EAF-PEG-alphaalpha-Hb is more sensitive to the presence of PEGylation on Cys-93(beta) than that of the EAF-PEG-Hb. The present modified EAF PEGylation platform is expected to facilitate the design of novel versions of the EAF-PEG-Hbs that can now integrate the advantages of avoiding PEGylation of Cys-93(beta).

  16. Effect of Diagonal Belt to the Moment Capacity of the Precast Beam-Column Joint using CFRP Sheet

    OpenAIRE

    Djamaluddin, Rudy

    2017-01-01

    The FRP sheet has been applied in many fields of civil engineering structures. The study on the application has been spread out involving of precast concrete structures, such as the application on the connection of beam and column of precast concrete structures. Since the strength of the CFRP sheet is depend on the bonding capacity, it is necessary to apply a vertical U-wrap belt on the main sheet to increase its bonding strength. However, it was reported that the vertical U-wrap belt may cau...

  17. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    Science.gov (United States)

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  18. High-latitude Conic Current Sheets in the Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, Olga V.; Obridko, Vladimir N.; Kharshiladze, Alexander F. [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow (Russian Federation); Malova, Helmi V. [Scobeltsyn Nuclear Physics Institute of Lomonosov Moscow State University, Moscow (Russian Federation); Kislov, Roman A.; Zelenyi, Lev M. [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland); Tokumaru, Munetoshi; Fujiki, Ken’ichi [Institute for Space-Earth Environmental Research, Nagoya University (Japan); Sokół, Justyna M.; Grzedzielski, Stan [Space Research Centre of the Polish Academy of Sciences (CBK), Warsaw (Poland)

    2017-02-10

    We provide observational evidence for the existence of large-scale cylindrical (or conic-like) current sheets (CCSs) at high heliolatitudes. Long-lived CCSs were detected by Ulysses during its passages over the South Solar Pole in 1994 and 2007. The characteristic scale of these tornado-like structures is several times less than a typical width of coronal holes within which the CCSs are observed. CCS crossings are characterized by a dramatic decrease in the solar wind speed and plasma beta typical for predicted profiles of CCSs. Ulysses crossed the same CCS at different heliolatitudes at 2–3 au several times in 1994, as the CCS was declined from the rotation axis and corotated with the Sun. In 2007, a CCS was detected directly over the South Pole, and its structure was strongly highlighted by the interaction with comet McNaught. Restorations of solar coronal magnetic field lines reveal the occurrence of conic-like magnetic separators over the solar poles in both 1994 and 2007. Such separators exist only during solar minima. Interplanetary scintillation data analysis confirms the presence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. Energetic particle flux enhancements up to several MeV/ nuc are observed at edges of the CCSs. We built simple MHD models of a CCS to illustrate its key features. The CCSs may be formed as a result of nonaxiality of the solar rotation axis and magnetic axis, as predicted by the Fisk–Parker hybrid heliospheric magnetic field model in the modification of Burger and coworkers.

  19. Amino acid sequences and structures of chicken and turkey beta 2-microglobulin

    DEFF Research Database (Denmark)

    Welinder, K G; Jespersen, H M; Walther-Rasmussen, J

    1991-01-01

    The complete amino acid sequences of chicken and turkey beta 2-microglobulins have been determined by analyses of tryptic, V8-proteolytic and cyanogen bromide fragments, and by N-terminal sequencing. Mass spectrometric analysis of chicken beta 2-microglobulin supports the sequence-derived Mr of 11...

  20. Tuning the mechanical properties of vertical graphene sheets through atomic layer deposition

    International Nuclear Information System (INIS)

    Davami, Keivan; Jiang, Yijie; Cortes, John; Lin, Chen; Turner, Kevin T; Bargatin, Igor; Shaygan, Mehrdad

    2016-01-01

    We report the fabrication and characterization of graphene nanostructures with mechanical properties that are tuned by conformal deposition of alumina. Vertical graphene (VG) sheets, also called carbon nanowalls (CNWs), were grown on copper foil substrates using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique and conformally coated with different thicknesses of alumina (Al_2O_3) using atomic layer deposition (ALD). Nanoindentation was used to characterize the mechanical properties of pristine and alumina-coated VG sheets. Results show a significant increase in the effective Young’s modulus of the VG sheets with increasing thickness of deposited alumina. Deposition of only a 5 nm thick alumina layer on the VG sheets nearly triples the effective Young’s modulus of the VG structures. Both energy absorption and strain recovery were lower in VG sheets coated with alumina than in pure VG sheets (for the same peak force). This may be attributed to the increase in bending stiffness of the VG sheets and the creation of connections between the sheets after ALD deposition. These results demonstrate that the mechanical properties of VG sheets can be tuned over a wide range through conformal atomic layer deposition, facilitating the use of VG sheets in applications where specific mechanical properties are needed. (paper)

  1. [The mechanism of vasculogenesis: the critical role of transforming growth factor-beta 1 in the formation of vessel-like structures during the differentiation in vitro of murine embryonic stem cells].

    Science.gov (United States)

    Tsung, H C; Yao, Z

    1996-09-01

    When ES-5 cells were transfected with an exogenous porcine TGF-beta 1 gene, one can obtain clones of genetically modified ES cells with over-expression of the transfected gene. We called the genetically modified ES-5 cells as ES-T cells. When ES-T cells were used to study their differentiation in vitro by all trans-retinoic acid (RA), it was soon noticed that embryoid bodies of ES-T cells can exclusively differentiate into endothelial cells and vessel-like structures, but not in their parent ES-5 cells. The above result is the first indication that the differentiation of tubular structures in embryoid bodies of ES-T cells may somehow be related to TGF-beta 1. To demonstrate further the role of TGF-beta 1 in the formation of vessel-like structures, the cultured ES-5 cells in the presence of added rhTGF-beta 1 were closely followed in the course of their differentiation. We have, thus, demonstrated the promoting effects of exogenous rhTGF-beta 1 in the formation of vessel-like structures, morphologically similar to those structures derived from ES-T6 cells, during the differentiation of ES-5 cells, both in monolayer culture, in three dimensional collagen gel and in embryoid bodies cultured on gelatin-coated tissue culture wells. Addition of suitable amount of anti-TGF-beta 1 monoclonal antibody IgG (TB21) to the culture medium of embryoid bodies of ES-T6 cells could effectively abolish the formation of vessel-like structures induced by retinoic acid. The percentage of the inhibition was very high, giving a figure comparable to that of atypical vessel-like structures formed in the control embryoid bodies from their parent ES-5 cells. The flat epithelial-like cells and round cells differentiated from embryoid bodies of ES-T6 cells were stained rather strongly for laminin and type IV collagen by immunofluorescent procedure. The above results indicate clearly that TGF-beta 1 is a crucial factor in organizing the differentiated derivatives (endothelial-like cells and

  2. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang; (Harvard-Med); (UMM-MED)

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  3. Design and Optimization of Sheet Hydroforming Process for Manufacturing Oil tank

    International Nuclear Information System (INIS)

    Prakash, C.; Narasimhan, K.

    2005-01-01

    The need for reduction of weight is an important issue in sheet metal forming industry. The hydroforming process has become an effective manufacturing process, as it can be adapted for the manufacturing of complex structural components with high structural stiffness. The process parameters and material properties are important factors that influence the quality of final product. In this paper, an optimized window of process parameters is obtained for successful sheet hydroforming of Oil tank. The simulation of hydroforming process is performed by using a Finite Element Method based Commercial code

  4. An Excursion Set Model of the Cosmic Web: the Abundance of Sheets, Filaments And Halos

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jiajian; /Penn State U., Astron. Astrophys.; Abel, Tom; /KIPAC, Menlo Park; Mo, Houjun; /Massachusetts U., Amherst; Sheth, Ravi; /Pennsylvania U.

    2006-01-11

    We discuss an analytic approach for modeling structure formation in sheets, filaments and knots. This is accomplished by combining models of triaxial collapse with the excursion set approach: sheets are defined as objects which have collapsed along only one axis, filaments have collapsed along two axes, and halos are objects in which triaxial collapse is complete. In the simplest version of this approach, which we develop here, large scale structure shows a clear hierarchy of morphologies: the mass in large-scale sheets is partitioned up among lower mass filaments, which themselves are made-up of still lower mass halos. Our approach provides analytic estimates of the mass fraction in sheets, filaments and halos, and its evolution, for any background cosmological model and any initial fluctuation spectrum. In the currently popular {Lambda}CDM model, our analysis suggests that more than 99% of the mass in sheets, and 72% of the mass in filaments, is stored in objects more massive than 10{sup 10}M{sub {circle_dot}} at the present time. For halos, this number is only 46%. Our approach also provides analytic estimates of how halo abundances at any given time correlate with the morphology of the surrounding large-scale structure, and how halo evolution correlates with the morphology of large scale structure.

  5. Synthesis and characterization of large WO{sub 3} sheets synthesized by resistive heating method

    Energy Technology Data Exchange (ETDEWEB)

    Filippo, Emanuela, E-mail: emanuela.filippo@unisalento.it [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 Italy (Italy); Tepore, Marco [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 Italy (Italy); Baldassarre, Francesca [Department of Cultural Heritage, University of Salento, Lecce I-73100 Italy (Italy); Quarta, Gianluca; Calcagnile, Lucio [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 Italy (Italy); Guascito, Maria Rachele [DiSTeBA, University of Salento, Lecce I-73100 Italy (Italy); Tepore, Antonio [Department of Cultural Heritage, University of Salento, Lecce I-73100 Italy (Italy)

    2015-09-01

    A simple, low-cost method is presented to grow tungsten oxide large sheets simply by resistively heating a pure tungsten filament under air/water vapor flow. The obtained structures were studied using scanning and transmission electron microscopy, selected area diffraction, X Ray diffraction, Raman and X-ray photoelectron spectroscopy, photoluminescence and zeta potential measurements. SEM observations revealed that sheets formed by broadening of the wires/belts over longer growth period. Photoluminescence measurements showed that tungsten oxide sheets had an intense visible emission band. - Highlights: • WO{sub 3} large sheets were prepared by resistively heating a W filament. • WO{sub 3} sheets were carefully characterized. • Formation mechanism of sheets was studied. • WO{sub 3} sheets had an intense visible emission band at 462 nm.

  6. Application of TensorFlow to recognition of visualized results of fragment molecular orbital (FMO) calculations

    OpenAIRE

    Saitou, Sona; Iijima, Jun; Fujimoto, Mayu; Mochizuki, Yuji; Okuwaki, Koji; Doi, Hideo; Komeiji, Yuto

    2018-01-01

    We have applied Google's TensorFlow deep learning toolkit to recognize the visualized results of the fragment molecular orbital (FMO) calculations. Typical protein structures of alpha-helix and beta-sheet provide some characteristic patterns in the two-dimensional map of inter-fragment interaction energy termed as IFIE-map (Kurisaki et al., Biophys. Chem. 130 (2007) 1). A thousand of IFIE-map images with labels depending on the existences of alpha-helix and beta-sheet were prepared by employi...

  7. Chlamydia - CDC Fact Sheet

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... sheet Pelvic Inflammatory Disease (PID) – CDC fact sheet Gonorrhea – CDC fact sheet STDs Home Page Bacterial Vaginosis ( ...

  8. Structure-activity relationships of N-beta-phenylpropionyl-L-tyrosine and its derivatives on the inhibition of an identifiable giant neurone of an African giant snail (Achatina fulica Férussac).

    Science.gov (United States)

    Ariyoshi, Y.; Takeuchi, H.

    1982-01-01

    1 Inhibitory effects of N-beta-phenylpropionyl-L-tyrosine, N-beta-phenylpropionyl-L-tryptophan and their derivatives on an identifiable giant neurone, TAN (tonically autoactive neurone) of an African giant snail (Achatina fulica Férussac) were examined in an attempt to elucidate which structural features are necessary to produce the effect. 2 Of the compounds examined, N-beta-cyclohexylpropionyl-L-tyrosine showed the strongest effect. Its critical concentration (c.c.) was 3 X 10(-8)-10(-7)M, about ten times lower than that of N-beta-phenylpropionyl-L-tyrosine (c.c., 3 X 10(-7)-10(-6)M). N-beta-cyclohexylpropionyl-L-tryptophan (c.c., 10(-6)M) had an effect almost similar to that of N-beta-phenylpropionyl-L-tryptophan (c.c., 10(-6)M). 3 N-beta-Phenylpropionyl-N-methyl-L-tyrosine had no effect at a high concentration. 4 Effects of N-beta-phenylpropionyl-L-tyrosine amide (c.c., 3 X 10(-7)-10(-6)M) and N-beta-phenylpropionyl-L-tryptophan amide (c.c., 10(-6)M) were very similar to those of N-beta-phenylpropionyl-L-tyrosine and N-beta-phenylpropionyl-L-tryptophan respectively. 5 N-beta-Phenylpropionyl-p-amino-L-phenylalanine (c.c., 3 X 10(-5)-10(-4)M) and N-beta-phenylpropionyl-p-chloro-L-phenylalanine (c.c., 10(-4)M) had only a weak effect. 6 It is proposed that the structural features producing the effect are as follows: the active compound has a phenyl or a cyclohexyl group (hydrophobic binding group), after a suitable distance a peptide bond (proton donor and proton acceptor), adjacently a carbonyl group (proton acceptor), and a phenolic hydroxyl or an indolyl imino group (proton donor) in the molecule. PMID:7150871

  9. How reverse turns may mediate the formation of helical segments in proteins: an x-ray model.

    OpenAIRE

    Perczel, A; Foxman, B M; Fasman, G D

    1992-01-01

    The three-dimensional structure of a protein is the assembly of different secondary structural elements, such as alpha-helices, beta-pleated sheets, and beta-turns. Although the conformation of hundreds of proteins has been elaborated in the solid state, only a vague understanding of the mechanism of their conformational folding is known. One facet of this topic is the conformational interconversion of one or more beta-turns to a helical structure (and vice versa), which may also be related t...

  10. Self-Assembling Diblock Copolymers of Poly[N-(2-hydroxypropyl)methacrylamide] and a β-Sheet Peptide

    Science.gov (United States)

    Radu, Larisa Cristina; Yang, Jiyuan

    2015-01-01

    The self-assembly of hybrid diblock copolymers composed of poly(HPMA) and β-sheet peptide P11 (CH3CO-QQRFQWQFEQQ-NH2) blocks was investigated. Copolymers were synthesized via thiol-maleimide coupling reaction, by conjugation of semitelechelic poly(HPMA)-SH with maleimide-modified β-sheet peptide. As expected, CD and CR binding studies showed that the peptide block imposed its β-sheet structural arrangement on the structure of diblock copolymers. TEM and AFM proved that peptide and these copolymers had the ability to self-assemble into fibrils. PMID:18855948

  11. Decomposition of the beta phase in a near-eutectoid zicronium-copper alloy

    International Nuclear Information System (INIS)

    Mukhopadhyay, P.; Banerjee, S.; Krishnan, R.

    1977-01-01

    Some TEM observations made on the decomposition of the beta phase in a Zr-1.6 w/o Cu alloy, induced by beta quenching as well as by isothermal holding below the eutectoid temperature are presented. It would normally be expected that the first treatment would produce either a martensitic or a retained beta structure whereas the isothermal treatments would yield the eutectoid decomposition products. However, in the present study it has been found that even on beta quenching, finely distributed lameller constituents are obtained, the volume fraction of the second phase far exceeding that expected from the phase diagram. The crystal structure, the orientation and that habit plane of the second phase lamellae have been investigated. Isothermal holding below the eutectoid temperature has been found to produce a much smaller volume fraction of the second phase plates, with a large inter-plate spacing. On tempering the beta quenched structure at 750 0 C, the lamellar distribution has been observed to be replaced by large plates of the second phase, similar to those observed in the isothermally treated specimens. However, tempering at temperatures upto 500 0 C has shown no noticeable modification of the quenched structure. The observations are suggestive of the fact that during quenching, the beta phase decomposes into two metastable constituents, structurally similar to the eutectoid decomposition products but different from these in composition, owing to an incomplete chemical segregation during the fast cooling process. During subsequent tempering, this metastable structure approaches the equilibrium structure. (author)

  12. Protein Secondary Structures (α-helix and β-sheet) at a Cellular Level and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the α-helix and β-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of β-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution (∼10 μm). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of α-helixes and β-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of α-helixes (from 47.1% to 36.1%: S-FTIR absorption intensity), increased the

  13. The crystal structures of EAP domains from Staphylococcus aureus reveal an unexpected homology to bacterial superantigens.

    Science.gov (United States)

    Geisbrecht, Brian V; Hamaoka, Brent Y; Perman, Benjamin; Zemla, Adam; Leahy, Daniel J

    2005-04-29

    The Eap (extracellular adherence protein) of Staphylococcus aureus functions as a secreted virulence factor by mediating interactions between the bacterial cell surface and several extracellular host proteins. Eap proteins from different Staphylococcal strains consist of four to six tandem repeats of a structurally uncharacterized domain (EAP domain). We have determined the three-dimensional structures of three different EAP domains to 1.8, 2.2, and 1.35 A resolution, respectively. These structures reveal a core fold that is comprised of an alpha-helix lying diagonally across a five-stranded, mixed beta-sheet. Comparison of EAP domains with known structures reveals an unexpected homology with the C-terminal domain of bacterial superantigens. Examination of the structure of the superantigen SEC2 bound to the beta-chain of a T-cell receptor suggests a possible ligand-binding site within the EAP domain (Fields, B. A., Malchiodi, E. L., Li, H., Ysern, X., Stauffacher, C. V., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. (1996) Nature 384, 188-192). These results provide the first structural characterization of EAP domains, relate EAP domains to a large class of bacterial toxins, and will guide the design of future experiments to analyze EAP domain structure/function relationships.

  14. Development of Rolling Schedules for AZ31 Magnesium Alloy Sheets

    Science.gov (United States)

    2015-06-01

    Materials 2 2.2 Hot Rolling 3 2.2 Sample Characterization: Microstructure and Tensile Properties 3 3. Rolling Experiments 5 3.1 High-Temperature...material systems for protective and structural applications, especially in ground vehicles. Magnesium (Mg), due to its low density (~25% that of steel ...applications, wrought Mg is difficult to produce in thin sheets because of its inherently low ductility . As a result, Mg sheet is often produced at

  15. Geometric stability, electronic structure, and intercalation mechanism of Co adatom anchors on graphene sheets

    International Nuclear Information System (INIS)

    Tang, Yanan; Chen, Weiguang; Li, Chenggang; Dai, Xianqi; Li, Wei

    2015-01-01

    We perform a systematic study of the adsorption of Co adatom on monolayer and bilayer graphene sheets, and the calculated results are compared through the van der Waals density functional (vdW-DF) and the generalized gradient approximation of Perdew, Burke and Ernzernhof (GGA + PBE) methods. For the single Co adatom, its adsorption energy at vacancy site was found to be larger than at the high-symmetry adsorption sites. For the different vdW corrections, the calculated adsorption energies of Co adatom on graphene substrates are slightly changed to some extent, but they do not affect the most preferable adsorption configurations. NEB calculations prove that the Co adatom has smaller energy barrier within pristine bilayer graphene (PBG) than that on the upper layer, indicating the high mobility of Co atom anchors at overlayer and easily aggregates. For the PBG substrate, the Co adatom intercalates into graphene sheets with a large energy barrier (9.29 eV). On the bilayer graphene with a single-vacancy (SV), the Co adatom can easily be trapped at the SV site and intercalates into graphene sheets with a much lower energy barrier (2.88 eV). These results provide valuable information on the intercalation reaction and the formation mechanism of metal impurity in graphene sheets. (paper)

  16. ANALYSIS OF STRUCTURAL ELEMENT OF FAMILY 6 CARBOHYDRATE BINDING MODULE (CTCBM6B OF ALPHA-L-ARABINOFURANOSIDASE FROM CLOSTRIDIUM THERMOCELLUM

    Directory of Open Access Journals (Sweden)

    Shadab Ahmed

    2013-06-01

    Full Text Available The amino acid sequence of a family 6 carbohydrate binding module (CtCBM6B from Clostridium thermocellum alpha-L-arabinofuranosidase showed close evolutionary relationship with some other member of family 6 carbohydrate binding modules. The CD spectrum analysis confirmed the secondary structure prediction of CtCBM6B as both showed beta-sheets (44-48% and random coils (52-54% and no alpha-helix. The hydrogen bonding plot of CtCBM6B showed many segments of parallel and anti-parallel beta-strands which was similar to the secondary structure prediction by PSIPRED VIEW. The three dimensional structure of CtCBM6B generated by MODELLER revealed a typical beta-sandwich architecture at its core, characteristic of beta-jelly roll CBM superfamily. The Ramachandran plot analysis by PROCHECK showed that out of 134 residues, 92.9% were in most favoured region, 6.2% in additionally allowed region and only 0.9% in generously allowed region which indicated a stable conformation of 3D model of CtCBM6B. The docking analysis of CtCBM6B for finding putative ligand binding sites showed that it has high binding affinity for arabinobiose, beta-L-arabinofuranose and beta-D-xylopyranose indicated by lower ligand binding energy (-14.28 kcal mol–1, -12.5 kcal mol–1 and -11.3 kcal mol–1, respectively. CtCBM6B also showed appreciable binding affinity with alpha-D-xylopyranose (–10.8 kcal mol–1, beta-L-arabinopyranose (–10.2 kcal mol-1, alpha-L-arabinopyranose (–10.0 kcal mol–1 and alpha-L-arabinofuranose (–8.75 kcal mol–1. The results indicated that CtCBM6B has high potential for binding arabinan, xylans and substituted xylans.

  17. One-Dimensional Vlasov-Maxwell Equilibrium for the Force-Free Harris Sheet

    International Nuclear Information System (INIS)

    Harrison, Michael G.; Neukirch, Thomas

    2009-01-01

    In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet

  18. Crystal Structure of Homoserine Transacetylase from Haemophilus Influenzae Reveals a New Family of alpha/beta-Hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Mirza,I.; Nazi, I.; Korczynska, M.; Wright, G.; Berghuis, A.

    2005-01-01

    Homoserine transacetylase catalyzes one of the required steps in the biosynthesis of methionine in fungi and several bacteria. We have determined the crystal structure of homoserine transacetylase from Haemophilus influenzae to a resolution of 1.65 A. The structure identifies this enzyme to be a member of the alpha/beta-hydrolase structural superfamily. The active site of the enzyme is located near the end of a deep tunnel formed by the juxtaposition of two domains and incorporates a catalytic triad involving Ser143, His337, and Asp304. A structural basis is given for the observed double displacement kinetic mechanism of homoserine transacetylase. Furthermore, the properties of the tunnel provide a rationale for how homoserine transacetylase catalyzes a transferase reaction vs. hydrolysis, despite extensive similarity in active site architecture to hydrolytic enzymes.

  19. Laminin-521 Promotes Rat Bone Marrow Mesenchymal Stem Cell Sheet Formation on Light-Induced Cell Sheet Technology

    Directory of Open Access Journals (Sweden)

    Zhiwei Jiang

    2017-01-01

    Full Text Available Rat bone marrow mesenchymal stem cell sheets (rBMSC sheets are attractive for cell-based tissue engineering. However, methods of culturing rBMSC sheets are critically limited. In order to obtain intact rBMSC sheets, a light-induced cell sheet method was used in this study. TiO2 nanodot films were coated with (TL or without (TN laminin-521. We investigated the effects of laminin-521 on rBMSCs during cell sheet culturing. The fabricated rBMSC sheets were subsequently assessed to study cell sheet viability, reattachment ability, cell sheet thickness, collagen type I deposition, and multilineage potential. The results showed that laminin-521 could promote the formation of rBMSC sheets with good viability under hyperconfluent conditions. Cell sheet thickness increased from an initial 26.7 ± 1.5 μm (day 5 up to 47.7 ± 3.0 μm (day 10. Moreover, rBMSC sheets maintained their potential of osteogenic, adipogenic, and chondrogenic differentiation. This study provides a new strategy to obtain rBMSC sheets using light-induced cell sheet technology.

  20. Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses

    International Nuclear Information System (INIS)

    Liu Wenning; Sun Xin; Ruokolainen, Robert; Gayden Xiaohong

    2007-01-01

    Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steel sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated

  1. Structural characterization of inclusion complex of hesperidin methyl chalcone and hydroxypropyl-beta-cyclodextrin

    International Nuclear Information System (INIS)

    Li, Y.; Li, F.; Chen, X.; Shen, W.

    2016-01-01

    Hesperidin methyl chalcone (HMC) was a semisynthetic derivative of hesperidin, which owned antiviral and antimicrobial activities. Owing these properties, it can be applied in pharmaceutical industry. However low stability had become a barrier to its application. In order to overcome this problem, an inclusion complex of hesperidin methyl chalcone and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) were prepared by freeze-drying, using some analytical techniques to characterize the inclusion complex, including ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). The results of these analytical techniques indicated that the hesperidin methyl chalcone has been dispersed completely in the HP-beta-CD without a new compound formed, but entrapped inside the cavity of HP-beta-CD. (author)

  2. Computer-readable ''Nuclear Data Sheets''

    International Nuclear Information System (INIS)

    Ewbank, W.B.

    1975-01-01

    The evaluated nuclear structure data contained in ''Nuclear Data Sheets'' are available in computer-readable form. Experimentally established properties of nuclear levels are included as well as radiations from nuclear reactions and radioactive decay. Portions of the data can be selected for distribution in several formats on magnetic tape or computer cards. A variety of different listing and drawing formats are also available. 4 figures

  3. Large structural modification with conserved conformation: analysis of delta(3)-fused aryl prolines in model beta-turns.

    Science.gov (United States)

    Jeannotte, Guillaume; Lubell, William D

    2004-11-10

    For the first time, the influence of a fused Delta3-arylproline on peptide conformation has been studied by the synthesis and comparison of the conformations of peptides containing proline and pyrrolo-proline, 3 (PyPro). Pyrrolo-proline was demonstrated to be a conservative replacement for Pro in model beta-turns, 4 and 5, as shown by their similar DMSO titration curves, cis/trans-isomer populations, and NOESY spectral data. Pyrrolo-proline may thus be used for studying the structure activity relationships of Pro-containing peptides with minimal modification of secondary structures.

  4. Anisotropy influence on the failure of Ti6Al4V sheets deformed at room and elevated temperature

    Science.gov (United States)

    Wang, Q. L.; Ghiotti, A.; Bruschi, S.

    2018-05-01

    Ti6Al4V sheets are usually difficult-to-form at room temperature as a consequence of their strong basal texture and hcp crystal lattice. The heating of the alloy below the beta transus temperature is recognized to enhance its formability, reducing the flow stress and increasing the ductility. However, the influence of the sheet anisotropy on the material failure hasn't been studied yet. To this aim, the paper presents the anisotropy influence on the failure characteristics of Ti6Al4V titanium alloy sheets making use of tensile tests carried out at room temperature and 600°C on smooth, notched and shear samples in order to have various stress states. The fracture strain is measured and the effect of the sample orientation and stress state is identified. To determine the actual stress state for each sample geometry, a numerical model is set up and calibrated using elasto-plastic data from uni-axial tensile tests on smooth samples. Finally, the fracture surfaces are observed through SEM analysis to explain the failure characteristics.

  5. Effect of preparation methods on dispersion stability and electrochemical performance of graphene sheets

    International Nuclear Information System (INIS)

    Chen, Li; Li, Na; Zhang, Mingxia; Li, Pinnan; Lin, Zhengping

    2017-01-01

    Chemical exfoliation is one of the most important strategies for preparing graphene. The aggregation of graphene sheets severely prevents graphene from exhibiting excellent properties. However, there are no attempts to investigate the effect of preparation methods on the dispersity of graphene sheets. In this study, three chemical exfoliation methods, including Hummers method, modified Hummers method, and improved method, were used to prepare graphene sheets. The influence of preparation methods on the structure, dispersion stability in organic solvents, and electrochemical properties of graphene sheets were investigated. Fourier transform infrared microscopy, Raman spectra, transmission electron microscopy, and UV–vis spectrophotometry were employed to analyze the structure of the as-prepared graphene sheets. The results showed that graphene prepared by improved method exhibits excellent dispersity and stability in organic solvents without any additional stabilizer or modifier, which is attributed to the completely exfoliation and regular structure. Moreover, cyclic voltammetric and electrochemical impedance spectroscopy measurements showed that graphene prepared by improved method exhibits superior electrochemical properties than that prepared by the other two methods. - Graphical abstract: Graphene oxides with different oxidation degree were obtained via three methods, and then graphene with different crystal structures were created by chemical reduction of exfoliated graphene oxides. - Highlights: • Graphene oxides with different oxidation degree were obtained via three oxidation methods. • The influence of oxidation methods on microstructure of graphene was investigated. • The effect of oxidation methods on dispersion stability of graphene was investigated. • The effect of oxidation methods on electrochemical properties of graphene was discussed.

  6. Effect of preparation methods on dispersion stability and electrochemical performance of graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li, E-mail: chenli1981@lut.cn; Li, Na; Zhang, Mingxia; Li, Pinnan; Lin, Zhengping

    2017-05-15

    Chemical exfoliation is one of the most important strategies for preparing graphene. The aggregation of graphene sheets severely prevents graphene from exhibiting excellent properties. However, there are no attempts to investigate the effect of preparation methods on the dispersity of graphene sheets. In this study, three chemical exfoliation methods, including Hummers method, modified Hummers method, and improved method, were used to prepare graphene sheets. The influence of preparation methods on the structure, dispersion stability in organic solvents, and electrochemical properties of graphene sheets were investigated. Fourier transform infrared microscopy, Raman spectra, transmission electron microscopy, and UV–vis spectrophotometry were employed to analyze the structure of the as-prepared graphene sheets. The results showed that graphene prepared by improved method exhibits excellent dispersity and stability in organic solvents without any additional stabilizer or modifier, which is attributed to the completely exfoliation and regular structure. Moreover, cyclic voltammetric and electrochemical impedance spectroscopy measurements showed that graphene prepared by improved method exhibits superior electrochemical properties than that prepared by the other two methods. - Graphical abstract: Graphene oxides with different oxidation degree were obtained via three methods, and then graphene with different crystal structures were created by chemical reduction of exfoliated graphene oxides. - Highlights: • Graphene oxides with different oxidation degree were obtained via three oxidation methods. • The influence of oxidation methods on microstructure of graphene was investigated. • The effect of oxidation methods on dispersion stability of graphene was investigated. • The effect of oxidation methods on electrochemical properties of graphene was discussed.

  7. PROCESS AND APPARATUS FOR SEPARATING INDIVIDUAL PANES FROM A LAMINATED GLASS SHEET

    OpenAIRE

    Kübler, R.; Rist, T.; Hoetger, B.

    2011-01-01

    The invention relates to a process for separating at least one individual pane of predefined size and edge form from a laminated glass sheet, which has at least two laminated glass sheet panes which are arranged one above another in adjacent form and between which there is arranged a plastic film, which permanently bonds the laminated glass sheet panes to one another, wherein - a laser track channel which at least weakens the plastic structure of the plastic film is laid into the plastic film...

  8. Expression of transforming growth factor beta (TGF beta) receptors and expression of TGF beta 1, TGF beta 2 and TGF beta 3 in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1993-01-01

    A panel of 21 small cell lung cancer cell (SCLC) lines were examined for the presence of Transforming growth factor beta receptors (TGF beta-r) and the expression of TGF beta mRNAs. By the radioreceptor assay we found high affinity receptors to be expressed in six cell lines. scatchard analysis......(r) = 65,000 and 90,000 and the betaglycan (type III) with M(r) = 280,000. Northern blotting showed expression of TGF beta 1 mRNA in ten, TGF beta 2 mRNA in two and TGF beta 3 mRNA in seven cell lines. Our results provide, for the first time, evidence that a large proportion of a broad panel of SCLC cell...... lines express TGF beta-receptors and also produce TGF beta mRNAs....

  9. Single sheet metal oxides and hydroxides

    DEFF Research Database (Denmark)

    Huang, Lizhi

    The synthesis of layered double hydroxides (LDHs) provides a relatively easy and traditional way to build versatile chemical compounds with a rough control of the bulk structure. The delamination of LDHs to form their single host layers (2D nanosheets) and the capability to reassemble them offer......) Delamination of the LDHs structure (oxGRC12) with the formation of single sheet iron (hydr)oxide (SSI). (3) Assembly of the new 2D nanosheets layer by layer to achieve desired functionalities....

  10. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    no pyrimidine catabolic pathway, it enabled growth on N-carbamyl- beta -alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta -alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial......beta -Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamy-beta -alanine as the sole nitrogen source and exhibits diminished beta -alanine synthase...... N- carbamyl amidohydrolases. All three beta -alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N...

  11. SiC/C composite sheets produced from polycarbosilane/resin/bonder mixtures. Polycarbosilane/jushi/bonder kongokei kara sakuseishita SiC/C fukugo sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, K. (The National Defense Academy, Kanagawa (Japan)); Koga, J.; Iwata, T.; Yamanaka, S.; Ono, M. (Mitsubishi Materials Corp., Saitama (Japan))

    1992-02-01

    In a course of work to improve anti-oxidative property and strength of sheets of carbonic composite materials with resins, and further to produce those sheets in an industrial scale, it was tried to prepare two types of 0.4 {approximately} 0.6 m thickness SiC / C composite sheets by heat treatment of two green sheets polycarbosilane ( PCS ) / fran resin / binder type and PCS / (phenol-formaldehyde resin / binder type ) at temperature of 1200 {approximately} 1400{degree}C in an atmosphere of nitrogen. The sheets thus made were subjected to SEM observation, X-ray diffraction, measurement of density and electric resistance, and to tests on weight loss by heating and on bending. The texture of them were as tight as that of their resin carbon ( glassy carbon ). The structural feature is formation of amorphous SiO{sub 2} as a secondary product, This indicates that Si in PCS reacts with oxygen in resin during pyrolysis. The bending strength and anti-oxidative property depend on the SiC content from PCS and that the mixing effect of SiC on them are feasible when a mixing ratio of PCS / resin is higher than (2/1). 13 ref., 7 figs., 2 tabs.

  12. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Akana,J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common ({beta}/{alpha}){sub 8}-barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn{sup 2+} which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn{sup 2+} and inactive apoenzyme cannot be prepared, the affinity for Zn{sup 2+} is decreased by alanine substitutions for the two histidine residues that coordinate the Zn{sup 2+} ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn{sup 2+}. The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn{sup 2+} that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn{sup 2+} and participate as acid/base catalysts

  13. Superfund fact sheet: The remedial program. Fact sheet

    International Nuclear Information System (INIS)

    1992-09-01

    The fact sheet describes what various actions the EPA can take to clean up hazardous wastes sites. Explanations of how the criteria for environmental and public health risk assessment are determined and the role of state and local governments in site remediation are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no formal scientific training

  14. Heat transfer modeling in asymmetrical sheet rolling of aluminium alloys with ultra high shear strain

    Directory of Open Access Journals (Sweden)

    Pesin Alexander

    2016-01-01

    Full Text Available Asymmetrical sheet rolling is a method of severe plastic deformation (SPD for production of aluminium alloys with UFG structure. Prediction of sheet temperature during SPD is important. The temperature of sheet is changed due to the conversion of mechanical work into heat through sliding on contact surfaces and high shear strain. Paper presents the results of FEM simulation of the effect of contact friction, rolling speed and rolls speed ratio on the heating of aluminium sheets during asymmetrical rolling.

  15. Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication

    Directory of Open Access Journals (Sweden)

    Vince Beachley

    2014-08-01

    Full Text Available A hybrid cell sheet engineering approach was developed using ultra-thin nanofiber arrays to host the formation of composite nanofiber/cell sheets. It was found that confluent aligned cell sheets could grow on uniaxially-aligned and crisscrossed nanofiber arrays with extremely low fiber densities. The porosity of the nanofiber sheets was sufficient to allow aligned linear myotube formation from differentiated myoblasts on both sides of the nanofiber sheets, in spite of single-side cell seeding. The nanofiber content of the composite cell sheets is minimized to reduce the hindrance to cell migration, cell-cell contacts, mass transport, as well as the foreign body response or inflammatory response associated with the biomaterial. Even at extremely low densities, the nanofiber component significantly enhanced the stability and mechanical properties of the composite cell sheets. In addition, the aligned nanofiber arrays imparted excellent handling properties to the composite cell sheets, which allowed easy processing into more complex, thick 3D structures of higher hierarchy. Aligned nanofiber array-based composite cell sheet engineering combines several advantages of material-free cell sheet engineering and polymer scaffold-based cell sheet engineering; and it represents a new direction in aligned cell sheet engineering for a multitude of tissue engineering applications.

  16. Proteolysis of bovine beta-lactoglobulin during thermal treatment in subdenaturing conditions highlights some structural features of the temperature-modified protein and yields fragments with low immunoreactivity

    DEFF Research Database (Denmark)

    Iametti, S.; Rasmussen, P.; Frøkiær, Hanne

    2002-01-01

    Bovine beta-lactoglobulin was hydrolyzed with trypsin or chymotrypsin in the course of heat treatment at 55, 60 and 65 C at neutral pH. At these temperatures beta-lactoglobulin undergoes significant but reversible structural changes. In the conditions used in the present study, beta......-lactoglobulin was virtually insensitive to proteolysis by either enzyme at room temperature, but underwent extensive proteolysis when either protease was present during the heat treatment. High-temperature proteolysis occurs in a progressive manner. Mass spectrometry analysis of some large-sized breakdown intermediates...

  17. The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet

    Science.gov (United States)

    Coroniti, F. V.; Pritchett, P. L.

    2014-03-01

    The plasma pressure and current configuration of the near-Earth plasma sheet that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current sheet, which forms during the development of the growth phase enhancement of convection. The current sheet's large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the electron precipitation responsible for the arc's luminosity. The QEA is located in the plasma sheet region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the plasma pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of plasma sheet pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.

  18. Beta-energy averaging and beta spectra

    International Nuclear Information System (INIS)

    Stamatelatos, M.G.; England, T.R.

    1976-07-01

    A simple yet highly accurate method for approximately calculating spectrum-averaged beta energies and beta spectra for radioactive nuclei is presented. This method should prove useful for users who wish to obtain accurate answers without complicated calculations of Fermi functions, complex gamma functions, and time-consuming numerical integrations as required by the more exact theoretical expressions. Therefore, this method should be a good time-saving alternative for investigators who need to make calculations involving large numbers of nuclei (e.g., fission products) as well as for occasional users interested in restricted number of nuclides. The average beta-energy values calculated by this method differ from those calculated by ''exact'' methods by no more than 1 percent for nuclides with atomic numbers in the 20 to 100 range and which emit betas of energies up to approximately 8 MeV. These include all fission products and the actinides. The beta-energy spectra calculated by the present method are also of the same quality

  19. Radiation protecting sheet

    International Nuclear Information System (INIS)

    Makiguchi, Hiroshi.

    1989-01-01

    As protection sheets used in radioactivity administration areas, a thermoplastic polyurethane composition sheet with a thickness of less 0.5 mm, solid content (ash) of less than 5% and a shore D hardness of less than 60 is used. A composite sheet with thickness of less than 0.5 mm laminated or coated with such a thermoplastic polyurethane composition as a surface layer and the thermoplastic polyurethane composition sheet applied with secondary fabrication are used. This can satisfy all of the required properties, such as draping property, abrasion resistance, high breaking strength, necking resistance, endurance strength, as well as chemical resistance and easy burnability in burning furnace. Further, by forming uneveness on the surface by means of embossing, etc. safety problems such as slippage during operation and walking can be overcome. (T.M.)

  20. Parameter optimization and stretch enhancement of AISI 316 sheet using rapid prototyping technique

    Science.gov (United States)

    Moayedfar, M.; Rani, A. M.; Hanaei, H.; Ahmad, A.; Tale, A.

    2017-10-01

    Incremental sheet forming is a flexible manufacturing process which uses the indenter point-to-point force to shape the sheet metal workpiece into manufactured parts in batch production series. However, the problem sometimes arising from this process is the low plastic point in the stress-strain diagram of the material which leads the low stretching amount before ultra-tensile strain point. Hence, a set of experiments is designed to find the optimum forming parameters in this process for optimum sheet thickness distribution while both sides of the sheet are considered for the surface quality improvement. A five-axis high-speed CNC milling machine is employed to deliver the proper motion based on the programming system while the clamping system for holding the sheet metal was a blank mould. Finally, an electron microscope and roughness machine are utilized to evaluate the surface structure of final parts, illustrate any defect may cause during the forming process and examine the roughness of the final part surface accordingly. The best interaction between parameters is obtained with the optimum values which lead the maximum sheet thickness distribution of 4.211e-01 logarithmic elongation when the depth was 24mm with respect to the design. This study demonstrates that this rapid forming method offers an alternative solution for surface quality improvement of 65% avoiding the low probability of cracks and low probability of crystal structure changes.

  1. Beta-helical polymers from isocyanopeptides

    NARCIS (Netherlands)

    Cornelissen, J.J.L.M.; Donners, J.J.J.M.; Gelder, de R.; Graswinckel, W.S.; Metselaar, G.A.; Rowan, A.E.; Sommerdijk, N.A.J.M.; Nolte, R.J.M.

    2001-01-01

    Polymerization of isocyanopeptides results in the formation of high molecular mass polymers that fold in a proteinlike fashion to give helical strands in which the peptide chains are arranged in ß-sheets. The ß-helical polymers retain their structure in water and unfold in a cooperative process at

  2. New insights into structure-function relationship of the DHPR beta1a subunit in skeletal muscle excitation-contraction coupling using zebrafish 'relaxed' as an expression system

    International Nuclear Information System (INIS)

    Dayal, A.

    2010-01-01

    The paralyzed zebrafish strain relaxed carries a null mutation for the skeletal muscle dihydropyridine receptor (DHPR) [beta]1a subunit. The lack of [beta]1a not only impedes functional [alpha]1S membrane expression but also precludes the skeletal muscle-specific ultrastructural arrangement of DHPRs into tetrads opposite ryanodine receptor (RyR1), coherent with the absence of skeletal muscle excitation-contraction (EC) coupling. With the plethora of experimental approaches feasible with zebrafish model organism and importantly with the [beta]1-null mutation having a monogenetic inheritance and because of the survival of the relaxed larvae for some days, we were able to establish the zebrafish relaxed as an expression system. Linking in vitro to in vivo observations, a clear differentiation between the major functional roles of [beta] subunits in EC coupling was feasible. The skeletal muscle [beta]1a subunit was able to restore all parameters of EC coupling upon expression in relaxed myotubes and larvae. Expression of the phylogenetically closest isoform to [beta]1a, the cardiac/neuronal [beta]2a subunit or the most distant neuronal [beta]M from the housefly in relaxed myotubes and larvae was likewise able to fully restore [alpha]1S triad targeting and facilitate charge movement. However, efficient tetrad formation and thus intact DHPR-RyR1 coupling was exclusively promoted by the [beta]1a isoform. Consequently, we postulated a model according to which [beta]1a acts as a unique allosteric modifier of [alpha]1S conformation crucial for skeletal muscle EC coupling. Therefore, unique structural elements in [beta]1a must be present which endow it with this exclusive property. Earlier, a unique hydrophobic heptad repeat motif (LVV) in the [beta]1a C-terminus was postulated by others to be essential for skeletal muscle EC coupling. We wanted to address the question if the proposed [beta]1a heptad repeat motif could be an active element of the DHPR-RyR1 signal transduction

  3. Use of systematics in the interpretation of nuclear structure far from the beta-stable region

    International Nuclear Information System (INIS)

    Wood, J.L.

    1979-01-01

    The use of systematics in the interpretation of nuclear structure far from the beta-stable region is discussed. In particular, a set of rules for the use of systematics is presented together with some experimental criteria that need to be fulfilled for radioactive decay scheme studies in order that all states up to a given spin-parity and energy are located. Illustrative examples are taken from the region 180 < A < 210, with particular emphasis on the odd-mass Au and Hg nuclei. 6 figures

  4. A molybdenum disulfide/reduced oxide-graphene nanoflakelet-on-sheet structure for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiayu; Zhao, Xianmin; Fu, Yongsheng, E-mail: fuyongsheng0925@163.com; Wang, Xin, E-mail: wangx@njust.edu.cn

    2017-03-31

    Highlights: • Graphene/MoS{sub 2} hybrid was successfully prepared via a facile solvothermal method. • A novel nanoflakelet-on-sheet morphology was obtained by controlling solvent. • The hybrid showed high capacity, excellent cycling stability and rate capability. • The synergistic effect remarkably improved electrochemical properties. - Abstract: A MoS{sub 2} nanoflakelet/graphene hybrid (MoS{sub 2}/G) is designed and successfully synthesized via a simple and cost-effective strategy. It is found that the MoS{sub 2}/G hybrids prepared using and without using ethanol (EtOH) show different morphologies and EtOH plays a crucial role in the formation of MoS{sub 2} nanoflakelets on graphene. The resulting nanoflakelet-on-sheet structure can be used as a high-performance anode material for lithium ion batteries, because it not only offers plenty of pores and pathways for lithium ions to shuttle back and forth, but also withstands lithium ion intercalation/de-intercalation process without collapse or deformation. The MoS{sub 2}/G hybrid synthesized in EtOH/H{sub 2}O exhibits remarkable reversible capacities of 1902 mAh g{sup −1} and 1454 mAh g{sup −1} in the first discharging and charging cycle, respectively, with a high coulombic efficiency of 76.45%. The hybrid also shows excellent cycle and rate performance. The superior Li storage performance of the MoS{sub 2}/G hybrid is mainly attributed to the intrinsic properties of MoS{sub 2} nanoflakelets and the synergistic effect of the MoS{sub 2} nanoflakelets and graphene.

  5. Status of beta measurement evaluation and upgrade program

    International Nuclear Information System (INIS)

    Swinth, K.L.

    1986-01-01

    In 1983, the US Department of Energy (DOE) initiated a program to evaluate and upgrade beta dosimetry capabilities at DOE and DOE-contractor facilities. The program has several elements which structure the development of improvements in beta measurement practices. In addition to Pacific Northwest Laboratory (PNL), universities, private corporations, and other DOE facilities are involved in the research efforts

  6. Effects of selenium on the structure and function of recombinant human S-adenosyl-L-methionine dependent arsenic (+3 oxidation state) methyltransferase in E. coli.

    Science.gov (United States)

    Geng, Zhirong; Song, Xiaoli; Xing, Zhi; Geng, Jinlong; Zhang, Sichun; Zhang, Xinrong; Wang, Zhilin

    2009-05-01

    The effects of Se(IV) on the structure and function of recombinant human arsenic (+3 oxidation state) methyltransferase (AS3MT) purified from the cytoplasm of Escherichia coli were studied. The coding region of human AS3MT complementary DNA was amplified from total RNA extracted from HepG2 cell by reverse transcription PCR. Soluble and active human AS3MT was expressed in the E. coli with a Trx fusion tag under a lower induction temperature of 25 degrees C. Spectra (UV-vis, circular dichroism, and fluorescence) were first used to probe the interaction of Se(IV) and recombinant human AS3MT and the structure-function relationship of the enzyme. The recombinant human AS3MT had a secondary structure of 29.0% alpha-helix, 23.9% beta-pleated sheet, 17.9% beta-turn, and 29.2% random coil. When Se(IV) was added, the content of the alpha-helix did not change, but that of the beta-pleated sheet increased remarkably in the conformation of recombinant human AS3MT. Se(IV) inhibited the enzymatic methylation of inorganic As(III) in a concentration-dependent manner. The IC(50) value for Se(IV) was 2.38 muM. Double-reciprocal (1/V vs. 1/[inorganic As(III)]) plots showed Se(IV) to be a noncompetitive inhibitor of the methylation of inorganic As(III) by recombinant human AS3MT with a K (i) value of 2.61 muM. We hypothesized that Se(IV) interacts with the sulfhydryl group of cysteine(s) in the structural residues rather than the cysteines of the active site (Cys156 and Cys206). When Se(IV) was combined with cysteine(s) in the structural residues, the conformation of recombinant human AS3MT changed and the enzymatic activity decreased. Considering the quenching of tryptophan fluorescence, Cys72 and/or Cys226 are deduced to be primary targets for Se(IV).

  7. Initial rigid response and softening transition of highly stretchable kirigami sheet materials.

    Science.gov (United States)

    Isobe, Midori; Okumura, Ko

    2016-04-27

    We study, experimentally and theoretically, the mechanical response of sheet materials on which line cracks or cuts are arranged in a simple pattern. Such sheet materials, often called kirigami (the Japanese words, kiri and gami, stand for cut and paper, respectively), demonstrate a unique mechanical response promising for various engineering applications such as stretchable batteries: kirigami sheets possess a mechanical regime in which sheets are highly stretchable and very soft compared with the original sheets without line cracks, by virtue of out-of-plane deformation. However, this regime starts after a transition from an initial stiff regime governed by in-plane deformation. In other words, the softness of the kirigami structure emerges as a result of a transition from the two-dimensional to three-dimensional deformation, i.e., from stretching to bending. We clarify the physical origins of the transition and mechanical regimes, which are revealed to be governed by simple scaling laws. The results could be useful for controlling and designing the mechanical response of sheet materials including cell sheets for medical regeneration and relevant to the development of materials with tunable stiffness and mechanical force sensors.

  8. Elastic Buckling Behaviour of General Multi-Layered Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Rong Ming Lin

    2015-04-01

    Full Text Available Elastic buckling behaviour of multi-layered graphene sheets is rigorously investigated. Van der Waals forces are modelled, to a first order approximation, as linear physical springs which connect the nodes between the layers. Critical buckling loads and their associated modes are established and analyzed under different boundary conditions, aspect ratios and compressive loading ratios in the case of graphene sheets compressed in two perpendicular directions. Various practically possible loading configurations are examined and their effect on buckling characteristics is assessed. To model more accurately the buckling behaviour of multi-layered graphene sheets, a physically more representative and realistic mixed boundary support concept is proposed and applied. For the fundamental buckling mode under mixed boundary support, the layers with different boundary supports deform similarly but non-identically, leading to resultant van der Waals bonding forces between the layers which in turn affect critical buckling load. Results are compared with existing known solutions to illustrate the excellent numerical accuracy of the proposed modelling approach. The buckling characteristics of graphene sheets presented in this paper form a comprehensive and wholesome study which can be used as potential structural design guideline when graphene sheets are employed for nano-scale sensing and actuation applications such as nano-electro-mechanical systems.

  9. Speculative Betas

    OpenAIRE

    Harrison Hong; David Sraer

    2012-01-01

    We provide a model for why high beta assets are more prone to speculative overpricing than low beta ones. When investors disagree about the common factor of cash-flows, high beta assets are more sensitive to this macro-disagreement and experience a greater divergence-of-opinion about their payoffs. Short-sales constraints for some investors such as retail mutual funds result in high beta assets being over-priced. When aggregate disagreement is low, expected return increases with beta due to r...

  10. Structuring of Functional Spider Silk Wires, Coatings, and Sheets by Self-Assembly on Superhydrophobic Pillar Surfaces.

    Science.gov (United States)

    Gustafsson, Linnea; Jansson, Ronnie; Hedhammar, My; van der Wijngaart, Wouter

    2018-01-01

    Spider silk has recently become a material of high interest for a large number of biomedical applications. Previous work on structuring of silk has resulted in particles (0D), fibers (1D), films (2D), and foams, gels, capsules, or microspheres (3D). However, the manufacturing process of these structures is complex and involves posttreatment of chemicals unsuitable for biological applications. In this work, the self-assembly of recombinant spider silk on micropatterned superhydrophobic surfaces is studied. For the first time, structuring of recombinant spider silk is achieved using superhydrophobic surfaces under conditions that retain the bioactivity of the functionalized silk. By tuning the superhydrophobic surface geometry and the silk solution handling parameters, this approach allows controlled generation of silk coatings, nanowires, and sheets. The underlying mechanisms and governing parameters are discussed. It is believed that the results of this work pave the way for fabrication of silk formations for applications including vehicles for drug delivery, optical sensing, antimicrobial coatings, and cell culture scaffolds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Studies of the structure of insulin fibrils by Fourier transform infrared (FTIR) spectroscopy and electron microscopy.

    Science.gov (United States)

    Nielsen, L; Frokjaer, S; Carpenter, J F; Brange, J

    2001-01-01

    Fibril formation (aggregation) of insulin was investigated in acid media by visual inspection, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. Insulin fibrillated faster in hydrochloric acid than in acetic acid at elevated temperatures, whereas the fibrillation tendencies were reversed at ambient temperatures. Electron micrographs showed that bovine insulin fibrils consisted of long fibers with a diameter of 5 to 10 nm and lengths of several microns. The fibrils appeared either as helical filaments (in hydrochloric acid) or arranged laterally in bundles (in acetic acid, NaCl). Freeze-thawing cycles broke the fibrils into shorter segments. FTIR spectroscopy showed that the native secondary structure of insulin was identical in hydrochloric acid and acetic acid, whereas the secondary structure of fibrils formed in hydrochloric acid was different from that formed in acetic acid. Fibrils of bovine insulin prepared by heating or agitating an acid solution of insulin showed an increased content of beta-sheet (mostly intermolecular) and a decrease in the intensity of the alpha-helix band. In hydrochloric acid, the frequencies of the beta-sheet bands depended on whether the fibrillation was induced by heating or agitation. This difference was not seen in acetic acid. Freeze-thawing cycles of the fibrils in hydrochloric acid caused an increase in the intensity of the band at 1635 cm(-1) concomitant with reduction of the band at 1622 cm(-1). The results showed that the structure of insulin fibrils is highly dependent on the composition of the acid media and on the treatment. Copyright 2001 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 90: 29-37, 2001

  12. Automobile sheet metal part production with incremental sheet forming

    Directory of Open Access Journals (Sweden)

    İsmail DURGUN

    2016-02-01

    Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming

  13. Spatial genetic structure in Beta vulgaris subsp. maritima and Beta macrocarpa reveals the effect of contrasting mating system, influence of marine currents, and footprints of postglacial recolonization routes.

    Science.gov (United States)

    Leys, Marie; Petit, Eric J; El-Bahloul, Yasmina; Liso, Camille; Fournet, Sylvain; Arnaud, Jean-François

    2014-05-01

    Understanding the factors that contribute to population genetic divergence across a species' range is a long-standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present-day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco - the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic-Mediterranean refugia after the last glacial period, with leading-edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long-distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life-history and major geographic features interact to shape the distribution of genetic diversity.

  14. Orientation of the calcium channel beta relative to the alpha(12.2 subunit is critical for its regulation of channel activity.

    Directory of Open Access Journals (Sweden)

    Iuliia Vitko

    Full Text Available BACKGROUND: The Ca(vbeta subunits of high voltage-activated Ca(2+ channels control the trafficking and biophysical properties of the alpha(1 subunit. The Ca(vbeta-alpha(1 interaction site has been mapped by crystallographic studies. Nevertheless, how this interaction leads to channel regulation has not been determined. One hypothesis is that betas regulate channel gating by modulating movements of IS6. A key requirement for this direct-coupling model is that the linker connecting IS6 to the alpha-interaction domain (AID be a rigid structure. METHODOLOGY/PRINCIPAL FINDINGS: The present study tests this hypothesis by altering the flexibility and orientation of this region in alpha(12.2, then testing for Ca(vbeta regulation using whole cell patch clamp electrophysiology. Flexibility was induced by replacement of the middle six amino acids of the IS6-AID linker with glycine (PG6. This mutation abolished beta2a and beta3 subunits ability to shift the voltage dependence of activation and inactivation, and the ability of beta2a to produce non-inactivating currents. Orientation of Ca(vbeta with respect to alpha(12.2 was altered by deletion of 1, 2, or 3 amino acids from the IS6-AID linker (Bdel1, Bdel2, Bdel3, respectively. Again, the ability of Ca(vbeta subunits to regulate these biophysical properties were totally abolished in the Bdel1 and Bdel3 mutants. Functional regulation by Ca(vbeta subunits was rescued in the Bdel2 mutant, indicating that this part of the linker forms beta-sheet. The orientation of beta with respect to alpha was confirmed by the bimolecular fluorescence complementation assay. CONCLUSIONS/SIGNIFICANCE: These results show that the orientation of the Ca(vbeta subunit relative to the alpha(12.2 subunit is critical, and suggests additional points of contact between these subunits are required for Ca(vbeta to regulate channel activity.

  15. Labelling of. beta. -endorphin (. beta. -END) and. beta. -lipotropin (. beta. -LPH) by /sup 125/I

    Energy Technology Data Exchange (ETDEWEB)

    Deby-Dupont, G.; Joris, J.; Franchimont, P. (Universite de Liege (Belgique)); Reuter, A.M.; Vrindts-Gevaert, Y. (Institut des Radioelements, Fleurus (Belgique))

    1983-01-01

    5 ..mu..g of human ..beta..-endorphin were labelled with 2 mCi /sup 125/I by the chloramine T technique. After two gel filtrations on Sephadex G-15 and on Sephadex G-50 in phosphate buffer with EDTA, Trasylol and mercapto-ethanol, a pure tracer was obtained with a specific activity about 150 ..mu..Ci/..mu..g.Kept at + 4/sup 0/C, the tracer remained utilizable for 30 days without loss of immunoreactivity. The labelling with lactoperoxydase and the use of another gel filtration method (filtration on Aca 202) gave a /sup 125/I ..beta..-END tracer with the same immunoreactivity. The binding of this tracer to the antibody of an anti-..beta..-END antiserum diluted at 1/8000 was 32% with a non specific binding of 2%. 5 ..mu..g of human ..beta..-lipotropin were labelled with 0.5 mCi /sup 125/I by the lactoperoxydase method. After two gel filtrations on Sephadex G-25 and on Sephadex G-75 in phosphate buffer with EDTA, Trasylol and mercapto-ethanol, a pure tracer with a specific activity of 140 ..mu..Ci/..mu..g was obtained. It remained utilizable for 30 days when kept at + 4/sup 0/C. Gel filtration on Aca 202 did not give good purification, while gel filtration on Aca 54 was good but slower than on Sephadex G-75. The binding to antibody in absence of unlabelled ..beta..-LPH was 32% for an anti-..beta..-LPH antiserum diluted at 1/4000. The non specific binding was 2.5%.

  16. Nonlinear analysis of sequence symmetry of beta-trefoil family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingfeng [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Huang Yanzhao [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xu Ruizhen [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiao Yi [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China)]. E-mail: yxiao@mail.hust.edu.cn

    2005-07-01

    The tertiary structures of proteins of beta-trefoil family have three-fold quasi-symmetry while their amino acid sequences appear almost at random. In the present paper we show that these amino acid sequences have hidden symmetries in fact and furthermore the degrees of these hidden symmetries are the same as those of their tertiary structures. We shall present a modified recurrence plot to reveal hidden symmetries in protein sequences. Our results can explain the contradiction in sequence-structure relations of proteins of beta-trefoil family.

  17. Conformational Studies of ε- CBz- L- Lysine and L- Valine Block Copolypeptides

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2010-01-01

    Full Text Available Conformational studies of ε-CBz-L-lysine and L-valine block copoylpeptides using x- ray diffraction and CD spectra are described. The block copolypeptides contain valine block in the center and on both side of the valine are ε-CBz-L-lysine blocks. The conformation of the copolypeptides changes with increases in the chain length of ε- CBz-L- lysine blocks. When length of ε- CBZ- L- lysine blocks is 9, the block copolypeptide has exclusive beta sheet structure. With the increase in chain length of ε-CBz-L-lysine blocks from 9 to 14, the block copolypeptide shows presence of both alpha helix and beta sheet components. With further increase in chain length of ε- CBz- L- lysine blocks, the beta sheet component disappears and block copolypeptides exhibits exclusive α -helix conformation.

  18. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection

    Science.gov (United States)

    Mertz, Jerome; Kim, Jinhyun

    2010-01-01

    It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast.

  19. Micro-structured Beta-Tricalcium Phosphate for Repair of the Alveolar Cleft in Cleft Lip and Palate Patients : A Pilot Study

    NARCIS (Netherlands)

    de Ruiter, AP; Janssen, Nard; van Es, Robert; Frank, Michael; Meijer, Gert; Koole, Ron; Rosenberg, Toine

    2015-01-01

    OBJECTIVES: Can a synthetic bone substitute be used to repair the alveolar cleft to bypass donor site morbidity as well as to shorten the operating time? In earlier experimental studies, micro-structured beta-tricalcium phosphate (β-TCP) provided similar bone healing when compared with grafting with

  20. Characterization of the beta-lactam binding site of penicillin acylase of Escherichia coli by structural and site-directed mutagenesis studies

    NARCIS (Netherlands)

    Alkema, WBL; Hensgens, CMH; Kroezinga, EH; de Vries, E; Floris, R; van der Laan, JM; Dijkstra, BW; Janssen, DB

    2000-01-01

    The binding of penicillin to penicillin acylase was studied by X-ray crystallography, The structure of the enzyme-substrate complex was determined after soaking crystals of an inactive beta N241A penicillin acylase mutant with penicillin G, Binding of the substrate induces a conformational change,

  1. Load Test in Sheet Pile

    OpenAIRE

    Luis Orlando Ibanez

    2016-01-01

    In this work, are discussed experiences in the use of mathematical modeling and testing in hydraulic engineering structures. For this purpose the results of load tests in sheet pile, evaluating horizontal and vertical deformations that occur in the same exposed. Comparisons between theoretical methods for calculating deformations and mathematical models based on the Finite Element Method are established. Finally, the coincidence between the numerical model and the results of the load test ful...

  2. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    Science.gov (United States)

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Novel {beta}-Carboline Alkaloid from Peganum Harmala As Antibacterial Agent

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Aziz, H G; Abdel Kader, S M; El-Sayed, M M; EL-Malt, E A; Shaker, E S [Chem. Dept., Fac. Agric., Minia Univ., Minia (Egypt)

    2011-07-01

    A novel {beta}-carboline alkaloid isolated from the aerial parts of Peganum harmala L. (Gen: Phyeophylaceae) have been characterized as l-thioformyl-8-{beta}-D-glucopyranoside-bis-2,3-dihydro-isopyridinopyrrol. It is one of {beta}-carboline alkaloids derivatives. The chemical structure was elucidated on the basis of elementary analysis and spectroscopic studies (UV, IR, {sup 1}H-NMR and MS). The isolated compound showed significant antibacterial activity against Streptococcus pyogenus.

  4. Geometry of thin liquid sheet flows

    Science.gov (United States)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  5. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene.

    Science.gov (United States)

    Hong, Yang; Zhang, Jingchao; Huang, Xiaopeng; Zeng, Xiao Cheng

    2015-11-28

    A recently discovered two-dimensional (2D) layered material phosphorene has attracted considerable interest as a promising p-type semiconducting material. In this work, thermal conductivity (κ) of monolayer phosphorene is calculated using large-scale classical non-equilibrium molecular dynamics (NEMD) simulations. The predicted thermal conductivities for infinite length armchair and zigzag phosphorene sheets are 63.6 and 110.7 W m(-1) K(-1) respectively. The strong anisotropic thermal transport is attributed to the distinct atomic structures at altered chiral directions and direction-dependent group velocities. Thermal conductivities of 2D graphene sheets with the same dimensions are also computed for comparison. The extrapolated κ of the 2D graphene sheet are 1008.5(+37.6)(-37.6) and 1086.9(+59.1)(-59.1) W m(-1) K(-1) in the armchair and zigzag directions, respectively, which are an order of magnitude higher than those of phosphorene. The overall and decomposed phonon density of states (PDOS) are calculated in both structures to elucidate their thermal conductivity differences. In comparison with graphene, the vibrational frequencies that can be excited in phosphorene are severely limited. The temperature effect on the thermal conductivity of phosphorene and graphene sheets is investigated, which reveals a monotonic decreasing trend for both structures.

  6. Molecular phylogeny and predicted 3D structure of plant beta-D-N-acetylhexosaminidase.

    Science.gov (United States)

    Hossain, Md Anowar; Roslan, Hairul Azman

    2014-01-01

    beta-D-N-Acetylhexosaminidase, a family 20 glycosyl hydrolase, catalyzes the removal of β-1,4-linked N-acetylhexosamine residues from oligosaccharides and their conjugates. We constructed phylogenetic tree of β-hexosaminidases to analyze the evolutionary history and predicted functions of plant hexosaminidases. Phylogenetic analysis reveals the complex history of evolution of plant β-hexosaminidase that can be described by gene duplication events. The 3D structure of tomato β-hexosaminidase (β-Hex-Sl) was predicted by homology modeling using 1now as a template. Structural conformity studies of the best fit model showed that more than 98% of the residues lie inside the favoured and allowed regions where only 0.9% lie in the unfavourable region. Predicted 3D structure contains 531 amino acids residues with glycosyl hydrolase20b domain-I and glycosyl hydrolase20 superfamily domain-II including the (β/α)8 barrel in the central part. The α and β contents of the modeled structure were found to be 33.3% and 12.2%, respectively. Eleven amino acids were found to be involved in ligand-binding site; Asp(330) and Glu(331) could play important roles in enzyme-catalyzed reactions. The predicted model provides a structural framework that can act as a guide to develop a hypothesis for β-Hex-Sl mutagenesis experiments for exploring the functions of this class of enzymes in plant kingdom.

  7. Towards a Pharmacophore for Amyloid

    Energy Technology Data Exchange (ETDEWEB)

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.; Laganowsky, Arthur; Jiang, Lin; Sievers, Stuart A.; Liu, Jie; Barrio, Jorge R.; Eisenberg, David (UCLA)

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a

  8. Practical implementation of Wilhelm Osbahr’s entrepreneur balance sheet theory assumptions – a case study

    Directory of Open Access Journals (Sweden)

    EWA ŚNIEŻEK , MICHAŁ WIATR

    2015-12-01

    Full Text Available The aim of this study is to present the possibilities of the practical application of Osbahr’s balance sheet theory assumptions, as one of many possible attempts to close the information gap in the financial reporting of the twenty-first century. Wilhelm Osbahr, at the beginning of the 20th century, made an attempt to solve the problem of indicating the balance sheet values (the impact of balance sheet evaluation on the balance sheet items, from the point of view of an entrepreneur or business owner, at the same time clearly emphasizing the necessity to deal with the balance sheet structure through the prism of the objectives pursued by the company. Osbahr postulated highlighting any changes occurring in the economic structure of the company and its components, which do not result directly from its operating activities, and so to present them in the position called “adjustments”. This article uses the deductive method supported by literature studies and a case study method. The authors using the case study method confirm the possibility of using the described balance sheet theory in the current financial reporting based on actual data of the company ABC Ltd. They also show that a balance sheet which is presented according to the new reporting formula discloses new quality of information for the financial reporting users.

  9. Development and pilot production of three ingot-source beryllium sheet metal parts

    International Nuclear Information System (INIS)

    Floyd, D.R.

    1975-01-01

    Results of an extensive development program aimed at making three, separate, structural components from beryllium, using sheet-metal fabrication methods, are presented. Ingot-source beryllium sheet at thicknesses of 0.100, 0.125, and 0.170 inch is formed in a fully-recrystallized and in a partially-recrystallized condition. The tensile yield strength is 26,000 psi after full recrystallization. After partial recrystallization, tensile yield strength is between 35,000 and 45,000 psi, depending upon sheet thickness, heat treat temperature, and time at temperature. The high yield strength is retained in the parts after forming. (U.S.)

  10. Characterization of a Full-Length Endogenous Beta-Retrovirus, EqERV-Beta1, in the Genome of the Horse (Equus caballus

    Directory of Open Access Journals (Sweden)

    Antoinette C. van der Kuyl

    2011-06-01

    Full Text Available Information on endogenous retroviruses fixed in the horse (Equus caballus genome is scarce. The recent availability of a draft sequence of the horse genome enables the detection of such integrated viruses by similarity search. Using translated nucleotide fragments from gamma-, beta-, and delta-retroviral genera for initial searches, a full-length beta-retrovirus genome was retrieved from a horse chromosome 5 contig. The provirus, tentatively named EqERV-beta1 (for the first equine endogenous beta-retrovirus, was 10434 nucleotide (nt in length with the usual retroviral genome structure of 5’LTR-gag-pro-pol-env-3’LTR. The LTRs were 1361 nt long, and differed approximately 1% from each other, suggestive of a relatively recent integration. Coding sequences for gag, pro and pol were present in three different reading-frames, as common for beta-retroviruses, and the reading frames were completely open, except that the env gene was interrupted by a single stopcodon. No reading frame was apparent downstream of the env gene, suggesting that EqERV-beta1 does not encode a superantigen like mouse mammary tumor virus (MMTV. A second proviral genome of EqERV-beta1, with no stopcodon in env, is additionally integrated on chromosome 5 downstream of the first virus. Single EqERV-beta1 LTRs were abundantly present on all chromosomes except chromosome 24. Phylogenetically, EqERV-beta1 most closely resembles an unclassified retroviral sequence from cattle (Bos taurus, and the murine beta-retrovirus MMTV.

  11. Topological side-chain classification of beta-turns: ideal motifs for peptidomimetic development.

    Science.gov (United States)

    Tran, Tran Trung; McKie, Jim; Meutermans, Wim D F; Bourne, Gregory T; Andrews, Peter R; Smythe, Mark L

    2005-08-01

    Beta-turns are important topological motifs for biological recognition of proteins and peptides. Organic molecules that sample the side chain positions of beta-turns have shown broad binding capacity to multiple different receptors, for example benzodiazepines. Beta-turns have traditionally been classified into various types based on the backbone dihedral angles (phi2, psi2, phi3 and psi3). Indeed, 57-68% of beta-turns are currently classified into 8 different backbone families (Type I, Type II, Type I', Type II', Type VIII, Type VIa1, Type VIa2 and Type VIb and Type IV which represents unclassified beta-turns). Although this classification of beta-turns has been useful, the resulting beta-turn types are not ideal for the design of beta-turn mimetics as they do not reflect topological features of the recognition elements, the side chains. To overcome this, we have extracted beta-turns from a data set of non-homologous and high-resolution protein crystal structures. The side chain positions, as defined by C(alpha)-C(beta) vectors, of these turns have been clustered using the kth nearest neighbor clustering and filtered nearest centroid sorting algorithms. Nine clusters were obtained that cluster 90% of the data, and the average intra-cluster RMSD of the four C(alpha)-C(beta) vectors is 0.36. The nine clusters therefore represent the topology of the side chain scaffold architecture of the vast majority of beta-turns. The mean structures of the nine clusters are useful for the development of beta-turn mimetics and as biological descriptors for focusing combinatorial chemistry towards biologically relevant topological space.

  12. Heterogeneous Amyloid β-Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy.

    Science.gov (United States)

    Ho, Jia-Jung; Ghosh, Ayanjeet; Zhang, Tianqi O; Zanni, Martin T

    2018-02-08

    Two-dimensional sum-frequency generation spectroscopy (2D SFG) is used to study the structures of the pentapeptide FGAIL on hydrogen bond promoting surfaces. FGAIL is the most amyloidogenic portion of the human islet amyloid polypeptide (hIAPP or amylin). In the presence of a pure gold surface, FGAIL does not form ordered structures. When the gold is coated with a self-assembled monolayer of mercaptobenzoic acid (MBA), 2D SFG spectra reveal features associated with β-sheets. Also observed are cross peaks between the FGAIL peptides and the carboxylic acid groups of the MBA monolayer, indicating that the peptides are in close contact with the surface headgroups. In the second set of samples, FGAIL peptides chemically ligated to the MBA monolayer also exhibited β-sheet features but with a much simpler spectrum. From simulations of the experiments, we conclude that the hydrogen bond promoting surface catalyzes the formation of both parallel and antiparallel β-sheet structures with several different orientations. When ligated, parallel sheets with only a single orientation are the primary structure. Thus, this hydrogen bond promoting surface creates a heterogeneous distribution of polymorph structures, consistent with a concentration effect that allows nucleation of many different amyloid seeding structures. A single well-defined seed favors one polymorph over the others, showing that the concentrating influence of a membrane can be counterbalanced by factors that favor directed fiber growth. These experiments lay the foundation for the measurement and interpretation of β-sheet structures with heterodyne-detected 2D SFG spectroscopy. The results of this model system suggest that a heterogeneous distribution of polymorphs found in nature are an indication of nonselective amyloid aggregation whereas a narrow distribution of polymorph structures is consistent with a specific protein or lipid interaction that directs fiber growth.

  13. El factor de crecimiento transformante beta como blanco terapéutico Transforming growth factor-beta as a therapeutic target

    Directory of Open Access Journals (Sweden)

    Francisco Javier Gálvez-Gastélum

    2004-08-01

    Full Text Available El factor de crecimiento transformante beta (TGF-beta es una familia de proteínas que incluye al TGF-beta, activinas y a la proteína morfogénica de hueso (BMP, por sus siglas en inglés, citocinas que son secretadas y se relacionan estructuralmente en diferentes especies de metazoarios. Los miembros de la familia del TGF-beta regulan diferentes funciones celulares como proliferación, apoptosis, diferenciación, migración, y tienen un papel clave en el desarrollo del organismo. El TGF-beta está implicado en varias patologías humanas, incluyendo desórdenes autoinmunes y vasculares, así como enfermedades fibróticas y cáncer. La activación del receptor del TGF-beta propicia su fosforilación en residuos de serina/treonina y dispara la fosforilación de proteínas efectoras intracelulares (smad, que una vez activas se translocan al núcleo para inducir la transcripción de genes blanco, y así regular procesos y funciones celulares. Se están desarrollando novedosas estrategias terapéuticas encaminadas a corregir las alteraciones presentes en patologías que involucran al TGF-beta como actor principal.Transforming growth factor-beta (TGF-beta family members include TGF-beta, activins, and bone morphogenetic proteins (BMP. These proteins are structurally related cytokines secreted in diverse Metazoans. TGF-beta family members regulate cellular functions such as proliferation, apoptosis, differentiation, and migration, and play an important role in organism development. Deregulated TGF-beta family signaling participates in various human pathologies including auto-immune diseases, vascular disorders, fibrotic disease, and cancer. Ligand-induced activation of TGF-beta family receptors with intrinsic serine/threonine kinase activity, triggers phosphorylation of the intracellular effectors of TGF-beta signaling, the Smads proteins. Once these proteins are activated they translocate into the nucleus, where they induce transcription of target

  14. Effect of Low-Temperature Thermomechanical Treatment on the Structure and Mechanical, Fatigue and Corrosion Characteristics of Sheets from an Alloy of the Al - Mg - Si - Cu - Zn System

    Science.gov (United States)

    Makhsidov, V. V.; Kolobnev, N. I.; Kochubey, A. Ya.; Fomina, M. A.; Zamyatin, V. M.; Pushin, V. G.

    2014-11-01

    The effect of deformation on the structure, strength and fatigue properties, stresses on the surface and sensitivity to intercrystalline corrosion of sheets from alloy 1370 of the Al -Mg - Si - Cu - Zn system with one-side cladding is investigated. Application of deformation to sheets of alloy 1370 between the stages of artificial aging lowers the depth of penetration of ICC (≤ 0.10 mm) and raises the fatigue characteristics (by up to a factor of 2) at a high level of mechanical properties.

  15. Study of the {rho}-bar, {beta}-bar and {lambda} parameters of a light-water reactor; Etude des parametres {rho}-bar, {beta}-bar et {lambda} d'une pile a eau legere

    Energy Technology Data Exchange (ETDEWEB)

    Riche, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-09-01

    The kinetic and perturbation equations are derived from the time-dependent transport equation. Kinetic equations depend only on the ratios a = {rho}-bar/{beta}-bar and b = {beta}-bar/{lambda}, which are definite, while the reactivity {rho}-bar, the delayed neutron fraction ({beta}-bar and the generation time {lambda} are expressed in terms of an arbitrary function I. The 'static' definitions of these parameters, which reduce kinetic problems to a set of purely term dependent equations, introduce the effective fraction {beta}-bar. One way of determining experimentally the ratio b is presented; it consists in analysing the power transient after a rapid variation of the reactivity, caused by the implosion of an empty glass-bull. A simple interpretation is proposed. The apparatus can be transformed easily into a reactimeter. The value of the effective delayed neutron fraction {beta}-bar has been determined by averaging the reactivity effects of a copper sheet through out the reactor core. Experimental results: b = {beta}-bar/{lambda} = 129 s{sup -1} and {beta}-bar 795.10{sup -5}, have been determined on a light-water moderated, enriched-uranium fuelled reactor. The calculated values of the effectiveness of delayed neutrons {gamma} {beta}-bar/{beta} 1.23 and the generation time {lambda} 59.10{sup -6}s agrees fairly well with the experimental results. (author) [French] Les equations de la cinetique et de la perturbation sont deduites de la theorie du transport, par l'intermediaire de la 'notion' d'importance des neutrons. La cinetique ne depend que des rapports a = {rho}-bar/{beta}-bar et b = {beta}-bar/{lambda}, qui sont parfaitement definis; par contre, la reactivite {rho}-bar, la proportion de neutrons retardes {beta}-bar et le temps de generation des neutrons prompts {lambda} s'expriment a l'aide d'une meme fonction arbitraire I. Les definitions 'statiques' de ces parametres, qui permettent de rendre compte de la cinetique par des equations dependant purement du

  16. Layering of confined water between two graphene sheets and its liquid–liquid transition

    International Nuclear Information System (INIS)

    Zhou Xuyan; Duan Yunrui; Wang Long; Liu Sida; Li Tao; Li Yifan; Li Hui

    2017-01-01

    Molecular dynamics (MD) simulations are performed to explore the layering structure and liquid–liquid transition of liquid water confined between two graphene sheets with a varied distance at different pressures. Both the size of nanoslit and pressure could cause the layering and liquid–liquid transition of the confined water. With increase of pressure and the nanoslit’s size, the confined water could have a more obvious layering. In addition, the neighboring water molecules firstly form chain structure, then will transform into square structure, and finally become triangle with increase of pressure. These results throw light on layering and liquid–liquid transition of water confined between two graphene sheets. (paper)

  17. The effect of a beta-lactamase inhibitor peptide on bacterial membrane structure and integrity: a comparative study.

    Science.gov (United States)

    Alaybeyoglu, Begum; Uluocak, Bilge Gedik; Akbulut, Berna Sariyar; Ozkirimli, Elif

    2017-05-01

    Co-administration of beta-lactam antibiotics and beta-lactamase inhibitors has been a favored treatment strategy against beta-lactamase-mediated bacterial antibiotic resistance, but the emergence of beta-lactamases resistant to current inhibitors necessitates the discovery of novel non-beta-lactam inhibitors. Peptides derived from the Ala46-Tyr51 region of the beta-lactamase inhibitor protein are considered as potent inhibitors of beta-lactamase; unfortunately, peptide delivery into the cell limits their potential. The properties of cell-penetrating peptides could guide the design of beta-lactamase inhibitory peptides. Here, our goal is to modify the peptide with the sequence RRGHYY that possesses beta-lactamase inhibitory activity under in vitro conditions. Inspired by the work on the cell-penetrating peptide pVEC, our approach involved the addition of the N-terminal hydrophobic residues, LLIIL, from pVEC to the inhibitor peptide to build a chimera. These residues have been reported to be critical in the uptake of pVEC. We tested the potential of RRGHYY and its chimeric derivative as a beta-lactamase inhibitory peptide on Escherichia coli cells and compared the results with the action of the antimicrobial peptide melittin, the beta-lactam antibiotic ampicillin, and the beta-lactamase inhibitor potassium clavulanate to get mechanistic details on their action. Our results show that the addition of LLIIL to the N-terminus of the beta-lactamase inhibitory peptide RRGHYY increases its membrane permeabilizing potential. Interestingly, the addition of this short stretch of hydrophobic residues also modified the inhibitory peptide such that it acquired antimicrobial property. We propose that addition of the hydrophobic LLIIL residues to the peptide N-terminus offers a promising strategy to design novel antimicrobial peptides in the battle against antibiotic resistance. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European

  18. Estimating security betas using prior information based on firm fundamentals

    NARCIS (Netherlands)

    Cosemans, M.; Frehen, R.; Schotman, P.C.; Bauer, R.

    2010-01-01

    This paper proposes a novel approach for estimating time-varying betas of individual stocks that incorporates prior information based on fundamentals. We shrink the rolling window estimate of beta towards a firm-specific prior that is motivated by asset pricing theory. The prior captures structural

  19. Selective inhibition of sheep kidney 11 beta-hydroxysteroid dehydrogenase isoform 2 activity by 5 alpha-reduced (but not 5 beta) derivatives of adrenocorticosteroids.

    Science.gov (United States)

    Latif, S A; Sheff, M F; Ribeiro, C E; Morris, D J

    1997-02-01

    We have previously reported that 5 alpha and 5 beta pathways of steroid metabolism are controlled in vivo by dietary Na+ and glycyrrhetinic acid, see Gorsline et al. 1988; Latif et al. 1990. The present investigations provide evidence supporting the suggestion that endogenous substances may regulate the glucocorticoid inactivating isoenzymes, 11 beta-HSD (hydroxysteroid dehydrogenase) 1 (liver) and 11 beta-HSD2 (kidney). The activity of 11 beta-HSD is impaired in essential hypertension, following licorice ingestion, and in patients with apparent mineralocorticoid excess where 11 beta-HSD2 is particularly affected. In all three conditions, excretion of the less common 5 alpha metabolites is elevated in urine. We now report on the differential abilities of a series of Ring A reduced (5 alpha and 5 beta) adrenocorticosteroid and progesterone metabolites to inhibit these isoenzymes. Using liver microsomes with NADP+ as co-factor (11 beta-HSD1), and sheep kidney microsomes with NAD+ as co-factor (11 beta-HSD2), we have systematically investigated the abilities of a number of adrenocorticosteroids and their derivatives to inhibit the individual isoforms of 11 beta-HSD. A striking feature is the differential sensitivity of the two isoenzymes to inhibition by 5 alpha and 5 beta derivatives. 11 beta-HSD1 is inhibited by both 5 alpha and certain 5 beta derivatives. 11 beta-HSD-2 was selectively inhibited only by 5 alpha derivatives: 5 beta derivatives were without inhibitory activity toward this isoform of 11 beta-HSD. These results indicate the importance of the structural conformation of the A and B Rings in conferring specific inhibitory properties on these compounds. In addition, we discuss the effects of additions or substitutions of other functional groups on the inhibitory potency of these steroid molecules against 11 beta-HSD1 and 11 beta-HSD2.

  20. Evaluation of essential work of fracture in a dual phase high strength steel sheet

    International Nuclear Information System (INIS)

    Gutierrez, D.; Perez, L. I.; Lara, A.; Casellas, D.; Prado, J. M.

    2013-01-01

    Fracture toughness of advanced high strength steels (AHSS), can be used to optimize crash behavior of structural components. However it cannot be readily measured in metal sheet because of the sheet thickness. In this work, the Essential Work of Fracture (EWF) methodology is proposed to evaluate the fracture toughness of metal sheets. It has been successfully applied in polymers films and some metal sheets. However, their information about the applicability of this methodology to AHSS is relatively scarce. In the present work the fracture toughness of a Dual Phase (strength of 800 MPa) and drawing steel sheets has been measured by means of the EWF. The results show that the test requirements are met and also show the clear influence of notch radii on the measured values, specially for the AHSS grade. Thus, the EWF is postulated as a methodology to evaluate the fracture toughness in AHSS sheets. (Author) 18 refs.

  1. Effect of TMP variables upon structure and properties in ODS alloy HDA 8077 sheet. [ThermoMechanical Processing of Oxide Dispersion Strengthened nickel alloy

    Science.gov (United States)

    Rothman, M. F.; Tawancy, H. M.

    1980-01-01

    The effects of oxide content level and variations in thermomechanical processing upon the final structure and properties of HDA 8077 sheet have been systematically examined. It was found that creep strength and formability are substantially influenced by both oxide content and TMP schedule. Variations in creep properties obtained appear to correlate with observed microstructures.

  2. Effect of Fe, Co, Si and Ge impurities on optical properties of graphene sheet

    International Nuclear Information System (INIS)

    Kheyri, A.; Nourbakhsh, Z.; Darabi, E.

    2016-01-01

    The electronic and linear optical properties of pure graphene and impurity-graphene (with Fe, Co, Si and Ge impurities) sheets are investigated by using the full potential linear augmented plane wave plus local orbital (FPLAPW + lo) in the framework of the density functional theory (DFT). The calculated results are obtained within the generalized gradient approximation using the Perdew–Burke–Ernzerhof scheme in the presence of spin-orbit interaction. The band structure, partial electron density of states, dielectric function, absorption coefficient, optical conductivity, extinction index, energy loss function, reflectivity and the refraction index of these sheets for parallel and perpendicular electromagnetic wave polarization to sheet are investigated. The optical conductivity of Si-graphene and Ge-graphene sheets for the parallel electromagnetic wave polarization to the sheet starts with a gap about 0.4 eV confirms that these sheets have semiconductor behavior. Also the optical spectra of these sheets are anisotropic along these two wave polarizations. The dielectric function in the static limit of pure graphene sheet for perpendicular electromagnetic wave polarization to sheet does not significant change in the presence of Si, Ge, Fe and Co impurities. The static refractive index of Fe-graphene and Co-graphene sheets for parallel electromagnetic wave polarization to sheet is much larger than the corresponding value of pure graphene sheet. - Highlights: • Graphene sheet with Fe and Co impurities is metal. • Graphene sheet with Si and Ge impurities is semiconductor with 0.2 eV energy band gap. • These sheets optical spectra have metallic behavior for perpendicular polarization. • These sheets optical spectra have semiconductor behavior for parallel polarization. • Graphene sheet with Si and Ge impurities can use for optoelectronic devices.

  3. Effect of Fe, Co, Si and Ge impurities on optical properties of graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kheyri, A. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Nourbakhsh, Z., E-mail: z.nourbakhsh@sci.ui.ac.ir [Physics Department, Faculty of Science, University of Isfahan, Isfahan (Iran, Islamic Republic of); Darabi, E. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-08-01

    The electronic and linear optical properties of pure graphene and impurity-graphene (with Fe, Co, Si and Ge impurities) sheets are investigated by using the full potential linear augmented plane wave plus local orbital (FPLAPW + lo) in the framework of the density functional theory (DFT). The calculated results are obtained within the generalized gradient approximation using the Perdew–Burke–Ernzerhof scheme in the presence of spin-orbit interaction. The band structure, partial electron density of states, dielectric function, absorption coefficient, optical conductivity, extinction index, energy loss function, reflectivity and the refraction index of these sheets for parallel and perpendicular electromagnetic wave polarization to sheet are investigated. The optical conductivity of Si-graphene and Ge-graphene sheets for the parallel electromagnetic wave polarization to the sheet starts with a gap about 0.4 eV confirms that these sheets have semiconductor behavior. Also the optical spectra of these sheets are anisotropic along these two wave polarizations. The dielectric function in the static limit of pure graphene sheet for perpendicular electromagnetic wave polarization to sheet does not significant change in the presence of Si, Ge, Fe and Co impurities. The static refractive index of Fe-graphene and Co-graphene sheets for parallel electromagnetic wave polarization to sheet is much larger than the corresponding value of pure graphene sheet. - Highlights: • Graphene sheet with Fe and Co impurities is metal. • Graphene sheet with Si and Ge impurities is semiconductor with 0.2 eV energy band gap. • These sheets optical spectra have metallic behavior for perpendicular polarization. • These sheets optical spectra have semiconductor behavior for parallel polarization. • Graphene sheet with Si and Ge impurities can use for optoelectronic devices.

  4. Practical implementation of Wilhelm Osbahr’s entrepreneur balance sheet theory assumptions – the case study

    Directory of Open Access Journals (Sweden)

    Ewa Śnieżek

    2015-12-01

    Full Text Available The aim of this study is to present the possibilities of the practical application of Osbahr’s balance sheet theoryassumptions, as one of many possible attempts to close the information gap in the financial reporting of thetwenty-first century. Wilhelm Osbahr, at the beginning of the 20th century, made an attempt to solve the problemof indicating the balance sheet values (the impact of balance sheet evaluation on the balance sheet items,from the point of view of an entrepreneur or business owner, at the same time clearly emphasizing the necessityto deal with the balance sheet structure through the prism of the objectives pursued by the company. Osbahrpostulated highlighting any changes occurring in the economic structure of the company and its components,which do not result directly from its operating activities, and so to present them in the position called “adjustments”.This article uses the deductive method supported by literature studies and a case study method. Theauthors using the case study method confirm the possibility of using the described balance sheet theory in thecurrent financial reporting based on actual data of the company ABC Ltd. They also show that a balance sheetwhich is presented according to the new reporting formula discloses new quality of information for the financialreporting users.

  5. Best Management Practice, Fact Sheet 2. Sheet Flow to Open Space

    OpenAIRE

    Sample, David; Doumar, Lia

    2013-01-01

    This publication explains what sheet flow to open space is, where and how it is used, their limitations, routine and nonroutine maintenance, expected costs, and a glossary of terms. This fact sheet is one of a 15-part series on urban stormwater management practices.

  6. The beta strength function structure in β+ decay of lutetium, thulium and cesium isotopes

    International Nuclear Information System (INIS)

    Alkhazov, G.D.; Bykov, A.A.; Vitman, V.D.; Naumov, Yu.V.; Orlov, S.Yu.

    1981-01-01

    The spectra of total γ-absorption in the decays of some Lutecium, Thulium and Cesium isotopes have been measured. The probabilities for level population in the decay of the isotopes have been determined. The deduced beta strength functions reveal pronounced structure. Calculations of the strength functions using the Saxon-Woods potential and the residual Gamow-Teller interaction are presented. It is shown that in β + decay of light Thulium and Cesium isotopes the strength function comprises more than 70% of the Gamow-Teller excitations with μsub(tau) = +1. This result is the first direct observation of the Gamow-Teller resonance in β + decay of nuclei with Tsub(z) > O. (orig.)

  7. Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo

    Science.gov (United States)

    Takahashi, F.

    2011-12-01

    Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.

  8. Assessment of affinities of beta-CIT, beta-CIT-FE, and beta-CIT-FP for monoamine transporters permanently expressed in cell lines

    International Nuclear Information System (INIS)

    Okada, Tomoya; Fujita, Masahiro; Shimada, Shoichi; Sato, Kohji; Schloss, Patrick; Watanabe, Yoshiyuki; Itoh, Yasushi; Tohyama, Masaya; Nishimura, Tsunehiko

    1998-01-01

    We investigated the effects of three cocaine analogs, beta-CIT (2-beta-carbomethoxy-3-beta-(4-iodophenyl)-tropane), beta-CIT-FE (2-beta-carbomethoxy-3-beta-(4-iodophenyl)-N-(2-fluoroethyl)-nortropane), and beta-CIT-FP (2-beta-carbomethoxy-3-beta-(4-iodophenyl)-N-(3-fluoropropyl)-nortropane), on the uptake of [ 3 H]dopamine(DA), serotonin(5-HT), and 1-norepinephrine (NE) using cell lines permanently expressing DA, 5-HT, and NE transporters, respectively, to determine their affinities for these three transporters. We generated cell lines stably expressing DA, 5-HT, and NE transporters, respectively, by the Chen-Okayama method, and then tested the abilities of (-)cocaine, beta-CIT, beta-CIT-FE, beta-CIT-FP, and clomipramine to inhibit the uptake of [ 3 H]DA, 5-HT, and 1-NE. Ki values of beta-CIT, beta-CIT-FE, and beta-CIT-FP for [ 3 H]DA, 5-HT, 1-NE uptake were 6, 29, and 33 nM, 91, 133, and 130 nM, and 28, 113 and 70 nM, respectively, whereas those of cocaine and clomipramine were 316, 581, and 176 nM and > 10,000, 437, and 851 nM, respectively. Beta-CIT, beta-CIT-FE, and beta-CIT-FP were shown to be potent DA, 5-HT, and NE uptake inhibitors. Beta-CIT and beta-CIT-FP were highly potent and selective dopamine uptake inhibitors, and therefore might be useful for imaging of DA transporter with single photon emission computed tomography (SPECT) or positron emission tomography (PET)

  9. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    Science.gov (United States)

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  10. Fabrication and microwave shielding properties of free standing polyaniline-carbon fiber thin sheets

    International Nuclear Information System (INIS)

    Joon, Seema; Kumar, Rakesh; Singh, Avanish Pratap; Shukla, Rajni; Dhawan, S.K.

    2015-01-01

    Attempt has been made to synthesize polyaniline-carbon fiber (PANI-CF) composite via in-situ emulsion polymerization using β-naphthalene sulphonic acid (NSA) which acts as both surfactant as well as dopant. Free standing PANI-CF thin sheets are prepared which have electrical conductivity ∼1.02 S/cm with improved mechanical strength and thermal stability. The scanning electron microscopy is used to study the surface morphology of the composites. Structural characterization is done by using XRD. The dielectric attributes (ε* = ε′ − iε″) of PANI-CF sheets are calculated using experimental S parameters (S 11 , S 12 ) by Nicolson Ross Wier equations. It has been demonstrated that these sheets show maximum shielding effectiveness (SE) of 31.9 dB at 12.4 GHz frequency at a thickness of 1.5 mm. Free standing PANI-CF sheets so prepared have a potential for X-band microwave absorber application. - Highlights: • Free standing polyaniline-carbon fiber thin sheets fabricated for EMI shielding. • The mechanical strength of sheets improves with phenolic resin loading. • The dielectric parameters were calculated by Nicholson Ross Wier equations. • Sheets (1.5 mm thickness) demonstrate SE of 31.9 dB at 12.4 GHz frequency. • Sheets find potential application for X-band microwave absorption

  11. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls.

    Directory of Open Access Journals (Sweden)

    Mathieu Lévesque

    2007-11-01

    Full Text Available Axolotls (urodele amphibians have the unique ability, among vertebrates, to perfectly regenerate many parts of their body including limbs, tail, jaw and spinal cord following injury or amputation. The axolotl limb is the most widely used structure as an experimental model to study tissue regeneration. The process is well characterized, requiring multiple cellular and molecular mechanisms. The preparation phase represents the first part of the regeneration process which includes wound healing, cellular migration, dedifferentiation and proliferation. The redevelopment phase represents the second part when dedifferentiated cells stop proliferating and redifferentiate to give rise to all missing structures. In the axolotl, when a limb is amputated, the missing or wounded part is regenerated perfectly without scar formation between the stump and the regenerated structure. Multiple authors have recently highlighted the similarities between the early phases of mammalian wound healing and urodele limb regeneration. In mammals, one very important family of growth factors implicated in the control of almost all aspects of wound healing is the transforming growth factor-beta family (TGF-beta. In the present study, the full length sequence of the axolotl TGF-beta1 cDNA was isolated. The spatio-temporal expression pattern of TGF-beta1 in regenerating limbs shows that this gene is up-regulated during the preparation phase of regeneration. Our results also demonstrate the presence of multiple components of the TGF-beta signaling machinery in axolotl cells. By using a specific pharmacological inhibitor of TGF-beta type I receptor, SB-431542, we show that TGF-beta signaling is required for axolotl limb regeneration. Treatment of regenerating limbs with SB-431542 reveals that cellular proliferation during limb regeneration as well as the expression of genes directly dependent on TGF-beta signaling are down-regulated. These data directly implicate TGF-beta

  12. Can $\\beta$-decay probe excited state halos?

    CERN Multimedia

    2002-01-01

    In the first experiment at the newly constructed ISOLDE Facility the first-forbidden $\\beta$-decay of $^{17}$Ne into the first excited state of $^{17}$F has been measured. It is a factor two faster than the corresponding mirror decay and thus gives one of the largest recorded asymmetries for $\\beta$-decays feeding bound final states. Shell-model calculations can only reproduce the asymmetry if the halo structure of the $^{17}$F state is taken into account.

  13. Failure Models of Thin-walled Steel Sheeting and Structural-spatial Design Process

    NARCIS (Netherlands)

    Hofmeyer, H.

    2009-01-01

    This presentation is the first on 20 years of research on the failure mechanisms of sheeting subjected to combined concentrated load and bending moment, performed at Technische Universiteit Eindhoven. The aim of this research is to develop accurate, insight providing design rules using simple

  14. Microfibrous {beta}-TCP/collagen scaffolds mimic woven bone in structure and composition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shen; Zhang Xin; Cai Qing; Yang Xiaoping [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wang Bo; Deng Xuliang, E-mail: yangxp@mail.buct.edu.c [Department of VIP Dental Service, School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2010-12-15

    Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate ({beta}-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure {beta}-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the {beta}-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.

  15. Design, synthesis and bioactivity evaluation of tribactam beta lactamase inhibitors.

    Science.gov (United States)

    Copar, Anton; Prevec, Tadeja; Anzic, Borut; Mesar, Tomaz; Selic, Lovro; Vilar, Mateja; Solmajer, Tom

    2002-03-25

    Known carbapenem compounds with inhibitory effect towards beta-lactamase enzymes are formed from bicyclical beta lactam structural scaffolds. On the basis of results from theoretical computational methods and molecular modelling we have designed and developed a synthetic route towards novel, biologically active tricyclic derivatives of carbapenems.

  16. Carbon sheet pumping

    International Nuclear Information System (INIS)

    Ohyabu, N.; Sagara, A.; Kawamura, T.; Motojima, O.; Ono, T.

    1993-07-01

    A new hydrogen pumping scheme has been proposed which controls recycling of the particles for significant improvement of the energy confinement in toroidal magnetic fusion devices. In this scheme, a part of the vacuum vessel surface near the divertor is covered with carbon sheets of a large surface area. Before discharge initiation, the sheets are baked up to 700 ∼ 1000degC to remove the previously trapped hydrogen atoms. After being cooled down to below ∼ 200degC, the unsaturated carbon sheets trap high energy charge exchange hydrogen atoms effectively during a discharge and overall pumping efficiency can be as high as ∼ 50 %. (author)

  17. Data supporting beta-amyloid dimer structural transitions and protein–lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures

    Directory of Open Access Journals (Sweden)

    Sara Y. Cheng

    2016-06-01

    Full Text Available This data article supports the research article entitled “Maximally Asymmetric Transbilayer Distribution of Anionic Lipids Alters the Structure and interaction with Lipids of an Amyloidogenic Protein Dimer Bound to the Membrane Surface” [1]. We describe supporting data on the binding kinetics, time evolution of secondary structure, and residue-contact maps of a surface-absorbed beta-amyloid dimer protein on different membrane surfaces. We further demonstrate the sorting of annular and non-annular regions of the protein/lipid bilayer simulation systems, and the correlation of lipid-number mismatch and surface area per lipid mismatch of asymmetric lipid membranes.

  18. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yimin A; Kirkland, Angus I; Schaeffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H, E-mail: Jamie.warner@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2011-05-13

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moire patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  19. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals

    International Nuclear Information System (INIS)

    Wu, Yimin A; Kirkland, Angus I; Schaeffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H

    2011-01-01

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moire patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  20. THE ROLE OF FAST MAGNETOSONIC WAVES IN THE RELEASE AND CONVERSION VIA RECONNECTION OF ENERGY STORED BY A CURRENT SHEET

    Energy Technology Data Exchange (ETDEWEB)

    Longcope, D. W.; Tarr, L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2012-09-10

    Using a simple two-dimensional, zero-{beta} model, we explore the manner by which reconnection at a current sheet releases and dissipates free magnetic energy. We find that only a small fraction (3%-11% depending on current-sheet size) of the energy is stored close enough to the current sheet to be dissipated abruptly by the reconnection process. The remaining energy, stored in the larger-scale field, is converted to kinetic energy in a fast magnetosonic disturbance propagating away from the reconnection site, carrying the initial current and generating reconnection-associated flows (inflow and outflow). Some of this reflects from the lower boundary (the photosphere) and refracts back to the X-point reconnection site. Most of this inward wave energy is reflected back again and continues to bounce between X-point and photosphere until it is gradually dissipated, over many transits. This phase of the energy dissipation process is thus global and lasts far longer than the initial purely local phase. In the process, a significant fraction of the energy (25%-60%) remains as undissipated fast magnetosonic waves propagating away from the reconnection site, primarily upward. This flare-generated wave is initiated by unbalanced Lorentz forces in the reconnection-disrupted current sheet, rather than by dissipation-generated pressure, as some previous models have assumed. Depending on the orientation of the initial current sheet, the wave front is either a rarefaction, with backward-directed flow, or a compression, with forward-directed flow.

  1. Pengaruh Rendaman Air Laut terhadap Kapasitas Rekatan GFRP-Sheet pada Balok Beton Bertulang

    Directory of Open Access Journals (Sweden)

    Mufti Amir Sultan

    2017-04-01

    Full Text Available Construction of concrete structures that located in extreme environments are such as coastal areas will result in decreased strength or even the damage of the structures. As well know, chloride contained in sea water is responsible for strength reduction or structure failed were hence maintenance and repairs on concrete structure urgently needed. One popular method of structural improvements which under investigation is to use the material Glass Fiber Reinforced Polymer which has one of the advantages such as corrosion resistance. This research will be conducted experimental studies to investigate the flexural behavior of reinforced concrete beams with reinforcement GFRP-Sheet immersed in sea water using immersion time of 1, 3, 6 and 12 months. Test specimen consists of 11 pieces of reinforced beams with dimensions (15x20x330 cm that had been reinforced with GFRPSheet in the area of bending. The test specimen tested by providing a static load until it reaches the power limit, to record data during the test strain gauge mounted on the surface of the specimen and the GFRP-Sheet to collect the strain value. The result of analysis indicates the bonding capacity of GFRP Sheet decreases about 11.04% after immersed for 12 months in sea water.

  2. FDTD modeling of thin impedance sheets

    Science.gov (United States)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  3. Numerical simulation of the hole-flanging process for steel-polymer sandwich sheets

    Science.gov (United States)

    Griesel, Dominic; Keller, Marco C.; Groche, Peter

    2018-05-01

    In light of increasing demand for lightweight structures, hybrid materials are frequently used in load-optimized parts. Sandwich structures like metal-polymer sandwich sheets provide equal bending stiffness as their monolithic counterparts at a drastically reduced weight. In addition, sandwich sheets have noise-damping properties, thus they are well-suited for a large variety of parts, e.g. façade and car body panels, but also load-carrying components. However, due to the creep tendency and low heat resistance of the polymer cores, conventional joining technologies are only applicable to a limited degree. Through hole-flanging it is possible to create branches in sandwich sheets to be used as reinforced joints. While it is state of the art for monolithic materials, hole-flanging of sandwich sheets has not been investigated yet. In order to simulate this process for different material combinations and tool geometries, an axisymmetric model has been developed in the FE software Abaqus/CAE. In the present paper, various modeling strategies for steel-polymer sandwich sheets are examined, including volume elements, shell elements and combinations thereof. Different methods for joining the distinct layers in the FE model are discussed. By comparison with CT scans and optical 3D measurements of experimentally produced hole-flanges, the feasibility of the presented models is evaluated. Although a good agreement of the numerical and experimental results has been achieved, it becomes clear that the classical forming limit diagram (FLD) does not adequately predict failure of the steel skins.

  4. Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil.

    Science.gov (United States)

    Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J

    2016-01-01

    Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding

  5. Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil.

    Directory of Open Access Journals (Sweden)

    Amom Mendes Luiz

    Full Text Available Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals, museum specimens (N = 9,730 and literature records (N = 4,763. Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%, as well as broad scale spatial predictors (13%. However, geomorphological variables alone were the most important predictor of beta diversity (42%. Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for

  6. Anisotropic carrier mobility in single- and bi-layer C3N sheets

    Science.gov (United States)

    Wang, Xueyan; Li, Qingfang; Wang, Haifeng; Gao, Yan; Hou, Juan; Shao, Jianxin

    2018-05-01

    Based on the density functional theory combined with the Boltzmann transport equation with relaxation time approximation, we investigate the electronic structure and predict the carrier mobility of single- and bi-layer newly fabricated 2D carbon nitrides C3N. Although C3N sheets possess graphene-like planar hexagonal structure, the calculated carrier mobility is remarkably anisotropic, which is found mainly induced by the anisotropic effective masses and deformation potential constants. Importantly, we find that both the electron and hole mobilities are considerable high, for example, the hole mobility along the armchair direction of single-layer C3N sheets can arrive as high as 1.08 ×104 cm2 V-1 s-1, greatly larger than that of C2N-h2D and many other typical 2D materials. Owing to the high and anisotropic carrier mobility and appropriate band gap, single- and bi-layer semiconducting C3N sheets may have great potential applications in high performance electronic and optoelectronic devices.

  7. Crystal Structure of Full-length Mycobacterium tuberculosis H37Rv Glycogen Branching Enzyme; Insights of N-Terminal [beta]-Sandwich in Sustrate Specifity and Enzymatic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Kuntal; Kumar, Shiva; Sharma, Shikha; Garg, Saurabh Kumar; Alam, Mohammad Suhail; Xu, H. Eric; Agrawal, Pushpa; Swaminathan, Kunchithapadam (NU Sinapore); (Van Andel); (IMT-India)

    2010-07-13

    The open reading frame Rv1326c of Mycobacterium tuberculosis (Mtb) H37Rv encodes for an {alpha}-1,4-glucan branching enzyme (MtbGlgB, EC 2.4.1.18, Uniprot entry Q10625). This enzyme belongs to glycoside hydrolase (GH) family 13 and catalyzes the branching of a linear glucose chain during glycogenesis by cleaving a 1 {yields} 4 bond and making a new 1 {yields} 6 bond. Here, we show the crystal structure of full-length MtbGlgB (MtbGlgBWT) at 2.33-{angstrom} resolution. MtbGlgBWT contains four domains: N1 {beta}-sandwich, N2 {beta}-sandwich, a central ({beta}/{alpha}){sub 8} domain that houses the catalytic site, and a C-terminal {beta}-sandwich. We have assayed the amylase activity with amylose and starch as substrates and the glycogen branching activity using amylose as a substrate for MtbGlgBWT and the N1 domain-deleted (the first 108 residues deleted) Mtb{Delta}108GlgB protein. The N1 {beta}-sandwich, which is formed by the first 105 amino acids and superimposes well with the N2 {beta}-sandwich, is shown to have an influence in substrate binding in the amylase assay. Also, we have checked and shown that several GH13 family inhibitors are ineffective against MtbGlgBWT and Mtb{Delta}108GlgB. We propose a two-step reaction mechanism, for the amylase activity (1 {yields} 4 bond breakage) and isomerization (1 {yields} 6 bond formation), which occurs in the same catalytic pocket. The structural and functional properties of MtbGlgB and Mtb{Delta}108GlgB are compared with those of the N-terminal 112-amino acid-deleted Escherichia coli GlgB (EC{Delta}112GlgB).

  8. International Symposium on Recent Observations and Simulations of the Sun-Earth System

    Science.gov (United States)

    2007-01-10

    of nitrates . Some “archaeological” data on SCR fluxes in the past and upper limit of total energy induced by solar flare protons are also discussed...intrinsic properties of CS equilibrium and might be used for its diagnostic. Multiscale structure of “turbulent” current sheets Laminar sheets discussed...beta plasma are favorable for self-organization to hierarchy of multiscale structures. Complex topology of magnetotail field is self-consistently

  9. Time-dependent first-principles study of angle-resolved secondary electron emission from atomic sheets

    Science.gov (United States)

    Ueda, Yoshihiro; Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2018-02-01

    Angle-resolved secondary electron emission (ARSEE) spectra were analyzed for two-dimensional atomic sheets using a time-dependent first-principles simulation of electron scattering. We demonstrate that the calculated ARSEE spectra capture the unoccupied band structure of the atomic sheets. The excitation dynamics that lead to SEE have also been revealed by the time-dependent Kohn-Sham decomposition scheme. In the present study, the mechanism for the experimentally observed ARSEE from atomic sheets is elucidated with respect to both energetics and the dynamical aspects of SEE.

  10. Robot-based additive manufacturing for flexible die-modelling in incremental sheet forming

    Science.gov (United States)

    Rieger, Michael; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    The paper describes the application concept of additive manufactured dies to support the robot-based incremental sheet metal forming process (`Roboforming') for the production of sheet metal components in small batch sizes. Compared to the dieless kinematic-based generation of a shape by means of two cooperating industrial robots, the supporting robot models a die on the back of the metal sheet by using the robot-based fused layer manufacturing process (FLM). This tool chain is software-defined and preserves the high geometrical form flexibility of Roboforming while flexibly generating support structures adapted to the final part's geometry. Test series serve to confirm the feasibility of the concept by investigating the process challenges of the adhesion to the sheet surface and the general stability as well as the influence on the geometric accuracy compared to the well-known forming strategies.

  11. Molecular Phylogeny and Predicted 3D Structure of Plant beta-D-N-Acetylhexosaminidase

    Directory of Open Access Journals (Sweden)

    Md. Anowar Hossain

    2014-01-01

    Full Text Available beta-D-N-Acetylhexosaminidase, a family 20 glycosyl hydrolase, catalyzes the removal of β-1,4-linked N-acetylhexosamine residues from oligosaccharides and their conjugates. We constructed phylogenetic tree of β-hexosaminidases to analyze the evolutionary history and predicted functions of plant hexosaminidases. Phylogenetic analysis reveals the complex history of evolution of plant β-hexosaminidase that can be described by gene duplication events. The 3D structure of tomato β-hexosaminidase (β-Hex-Sl was predicted by homology modeling using 1now as a template. Structural conformity studies of the best fit model showed that more than 98% of the residues lie inside the favoured and allowed regions where only 0.9% lie in the unfavourable region. Predicted 3D structure contains 531 amino acids residues with glycosyl hydrolase20b domain-I and glycosyl hydrolase20 superfamily domain-II including the (β/α8 barrel in the central part. The α and β contents of the modeled structure were found to be 33.3% and 12.2%, respectively. Eleven amino acids were found to be involved in ligand-binding site; Asp(330 and Glu(331 could play important roles in enzyme-catalyzed reactions. The predicted model provides a structural framework that can act as a guide to develop a hypothesis for β-Hex-Sl mutagenesis experiments for exploring the functions of this class of enzymes in plant kingdom.

  12. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses

    Science.gov (United States)

    Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia

    2013-03-01

    Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.

  13. SOME ASPECTS REGARDING BALANCE SHEET ANALYSIS

    Directory of Open Access Journals (Sweden)

    ILIE RĂSCOLEAN

    2014-10-01

    Full Text Available This paper presents some aspects of the analysis based on the balance sheet at an economic entity. Attempting to use economic analysis as a support tool in the decision. The case study is performed on the financial accounts of a company, analyzing the structure of the assets using the following rates: the rate of intangible assets; rate of tangible assets; rate financial assets; rate stocks; rate receivables and cash and cash equivalents rate. Liability structure is analyzed using the following rates: the rate of financial stability; global financial autonomy rate; overall borrowing rate; term borrowing rate.

  14. Plasma dynamics in current sheets

    International Nuclear Information System (INIS)

    Bogdanov, S.Yu.; Drejden, G.V.; Kirij, N.P.; AN SSSR, Leningrad

    1992-01-01

    Plasma dynamics in successive stages of current sheet evolution is investigated on the base of analysis of time-spatial variations of electron density and electrodynamic force fields. Current sheet formation is realized in a two-dimensional magnetic field with zero line under the action of relatively small initial disturbances (linear regimes). It is established that in the limits of the formed sheet is concentrated dense (N e ∼= 10 16 cm -3 ) (T i ≥ 100 eV, bar-Z i ≥ 2) hot pressure of which is balanced by the magnetic action of electrodynamic forces is carried out both plasma compression in the sheet limits and the acceleration along the sheet surface from a middle to narrow side edges

  15. Crystal structure of the Rasputin NTF2-like domain from Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Vognsen, Tina, E-mail: tv@farma.ku.dk [Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark); Kristensen, Ole, E-mail: ok@farma.ku.dk [Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The crystal structure of the NTF2-like domain of Rasputin protein is presented. Black-Right-Pointing-Pointer Differences to known ligand binding sites of nuclear transport factor 2 are discussed. Black-Right-Pointing-Pointer A new ligand binding site for the Rasputin and G3BP proteins is proposed. -- Abstract: The crystal structure of the NTF2-like domain of the Drosophila homolog of Ras GTPase SH3 Binding Protein (G3BP), Rasputin, was determined at 2.7 A resolution. The overall structure is highly similar to nuclear transport factor 2: It is a homodimer comprised of a {beta}-sheet and three {alpha}-helices forming a cone-like shape. However, known binding sites for RanGDP and FxFG containing peptides show electrostatic and steric differences compared to nuclear transport factor 2. A HEPES molecule bound in the structure suggests a new, and possibly physiologically relevant, ligand binding site.

  16. Biosynthesis and release of beta-endorphin-, N-acetyl beta-endorphin-, beta-endorphin-(1-27)-, and N-acetyl beta-endorphin-(1-27)-like peptides by rat pituitary neurointermediate lobe: beta-endorphin is not further processed by anterior lobe

    International Nuclear Information System (INIS)

    Liotta, A.S.; Yamaguchi, H.; Krieger, D.T.

    1981-01-01

    Continuous labeling and pulse-chase techniques were employed to study the synthesis and secretion of multiple forms of immunoreactive beta-endorphin by cultured dispersed rat anterior lobe cells and intact neurointermediate pituitary lobe. Intact neurointermediate lobes incorporated radiolabeled amino acids into four to six forms of immunoreactive beta-endorphin. Four of these forms were physicochemically similar to authentic beta-endorphin, N-acetylated beta-endorphin, beta-endorphin-(1-27), and N-acetylated beta-endorphin-(1-27). Pulse-chase studies indicated that a beta-lipotropin-like molecule served as a metabolic intermediate for a beta-endorphin-like molecule. As beta-endorphin-like material accumulated in the cell, some of it was N-acetylated (approximately 18% at 2 hr chase and approximately 65% at 18 hr chase). At later chase times, beta-endorphin-(1-27)- and N-acetylated beta-endorphin-(1-27)-like peptides were the predominant molecular species detected. All endorphin forms were detected in unlabeled tissue maintained in culture or tissue continuously labeled for 72 hr and were released into the medium under basal, stimulatory (10(-8) M norepinephrine), or inhibitory (10(-7) M dopamine) incubation conditions. In all cases, beta-endorphin-(1-27)-like species were the predominant forms (more than 70% of total) present in the cells and released into the medium. In contrast, approximately 90% of radiolabeled immunoreactive beta-endorphin extracted from anterior lobe cells and medium similarly incubated appeared to represent the authentic beta-endorphin molecule. Continuous labeling (72 hr) revealed the beta-lipotropin/beta-endorphin molar ratio to be approximately 4. We conclude that, in anterior lobe, most of the beta-endorphin is not processed further and is released intact, while in neurointermediate lobe, it serves as a biosynthetic intermediate

  17. Purification of the alpha and beta subunits of phosphorylase kinase for structural studies

    International Nuclear Information System (INIS)

    Sotiroudis, T.G.; Heilmeyer, L.M.G. Jr.; Crabb, J.W.

    1987-01-01

    Structural analysis of the alpha (Mr, 132,000) and beta (Mr, 113,000) subunits of phosphorylase kinase may provide clues to their yet unknown functions however purification remains problematic. Preparative RP-HPLC procedures yield inconveniently large, dilute solutions and concentration steps are required prior to subunit modification and fragmentation. Concentration of the β subunit usually results in significant losses due to insolubility. Using preparative SDS-polyacrylamide gel electrophoresis, they have purified the α, 7 , and β subunits from rabbit muscle phosphorylase kinase in a soluble and concentrated form suitable for structural studies. Phosphorylase kinase labelled with fluorescein isothiocyanate in the α and α' subunits and fully 14 C-S-carboxymethylated was fractionated on a 5% acrylamide Laemmli slab gel. The subunit bands were visualized by fluorescence and by SDS precipitation then excised and electroeluted in the presence of SDS using an ELUTRAP device. From 4.5 mg of enzyme applied to a 4.5 mm thick gel about 70% of the α subunit and about 90% of the β subunit were typically recovered in less than 1 ml with overnight elution

  18. Prediction of the location and type of beta-turns in proteins using neural networks.

    OpenAIRE

    Shepherd, A. J.; Gorse, D.; Thornton, J. M.

    1999-01-01

    A neural network has been used to predict both the location and the type of beta-turns in a set of 300 nonhomologous protein domains. A substantial improvement in prediction accuracy compared with previous methods has been achieved by incorporating secondary structure information in the input data. The total percentage of residues correctly classified as beta-turn or not-beta-turn is around 75% with predicted secondary structure information. More significantly, the method gives a Matthews cor...

  19. Current sheets in the Earth’s magnetosphere and in laboratory experiments: The magnetic field structure and the Hall effect

    International Nuclear Information System (INIS)

    Frank, A. G.; Artemyev, A. V.; Zelenyi, L. M.

    2016-01-01

    The main characteristics of current sheets (CSs) formed in laboratory experiments are compared with the results of satellite observations of CSs in the Earth’s magnetotail. We show that many significant features of the magnetic field structure and the distributions of plasma parameters in laboratory and magnetospheric CSs exhibit a qualitative similarity, despite the enormous differences of scales, absolute values of plasma parameters, magnetic fields, and currents. In addition to a qualitative comparison, we give a number of dimensionless parameters that demonstrate the possibility of laboratory modeling of the processes occurring in the magnetosphere.

  20. Field-testing of the ICHD-3 beta diagnostic criteria for classical trigeminal neuralgia

    DEFF Research Database (Denmark)

    Maarbjerg, Stine; Sørensen, Morten Togo; Gozalov, Aydin

    2015-01-01

    INTRODUCTION: We aimed to field-test the beta version of the third edition of the International Classification of Headache Disorders (ICHD-3 beta) diagnostic criteria for classical trigeminal neuralgia (TN). The proposed beta draft of the 11th version of the International Classification of Diseases...... (ICD-11 beta) is almost exclusively based on the ICHD-3 beta classification structure although slightly abbreviated. We compared sensitivity and specificity to ICHD-2 criteria, and evaluated the needs for revision. METHODS: Clinical characteristics were systematically and prospectively collected from...

  1. Peptide design using alpha,beta-dehydro amino acids: from beta-turns to helical hairpins.

    Science.gov (United States)

    Mathur, Puniti; Ramakumar, S; Chauhan, V S

    2004-01-01

    Incorporation of alpha,beta-dehydrophenylalanine (DeltaPhe) residue in peptides induces folded conformations: beta-turns in short peptides and 3(10)-helices in larger ones. A few exceptions-namely, alpha-helix or flat beta-bend ribbon structures-have also been reported in a few cases. The most favorable conformation of DeltaPhe residues are (phi,psi) approximately (-60 degrees, -30 degrees ), (-60 degrees, 150 degrees ), (80 degrees, 0 degrees ) or their enantiomers. DeltaPhe is an achiral and planar residue. These features have been exploited in designing DeltaPhe zippers and helix-turn-helix motifs. DeltaPhe can be incorporated in both right and left-handed helices. In fact, consecutive occurrence of three or more DeltaPhe amino acids induce left-handed screw sense in peptides containing L-amino acids. Weak interactions involving the DeltaPhe residue play an important role in molecular association. The C--H.O==C hydrogen bond between the DeltaPhe side-chain and backbone carboxyl moiety, pi-pi stacking interactions between DeltaPhe side chains belonging to enantiomeric helices have shown to stabilize folding. The unusual capability of a DeltaPhe ring to form the hub of multicentered interactions namely, a donor in aromatic C--H.pi and C--H.O==C and an acceptor in a CH(3).pi interaction suggests its exploitation in introducing long-range interactions in the folding of supersecondary structures. Copyright 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

  2. 46 CFR 232.4 - Balance sheet accounts.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Balance sheet accounts. 232.4 Section 232.4 Shipping... ACTIVITIES UNIFORM FINANCIAL REPORTING REQUIREMENTS Balance Sheet § 232.4 Balance sheet accounts. (a.... (b) Purpose of balance sheet accounts. The balance sheet accounts are intended to disclose the...

  3. Photovoltaics Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-01

    This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials, processes, and device structure and characterization techniques.

  4. Conducting Layered Organic-inorganic Halides Containing -Oriented Perovskite Sheets.

    Science.gov (United States)

    Mitzi, D B; Wang, S; Feild, C A; Chess, C A; Guloy, A M

    1995-03-10

    Single crystals of the layered organic-inorganic perovskites, [NH(2)C(I=NH(2)](2)(CH(3)NH(3))m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C(4)H(9)NH(3))(2)(CH(3)NH(3))n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m -oriented CH(3)NH(3)SnI(3) perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 +/- 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.

  5. Global ice sheet modeling

    International Nuclear Information System (INIS)

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  6. Sheet production apparatus for removing a crystalline sheet from the surface of a melt using gas jets located above and below the crystalline sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kellerman, Peter L.; Thronson, Gregory D.

    2017-06-14

    In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

  7. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    The stretch zone of automotive steel sheets. L' AMBRIŠKO1,∗ and L PEŠEK2. 1Institute of Structural Engineering, Faculty of Civil Engineering,. Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovak Republic. 2Department of Materials Science, Faculty of Metallurgy,. Technical University of Košice, Letná 9, ...

  8. The effect of mutations on the structure of insulin fibrils studied by Fourier transform infrared (FTIR) spectroscopy and electron microscopy.

    Science.gov (United States)

    Garriques, Liza Nielsen; Frokjaer, Sven; Carpenter, John F; Brange, Jens

    2002-12-01

    Fibril formation (aggregation) of human and bovine insulin and six human insulin mutants in hydrochloric acid were investigated by visual inspection, Thioflavin T fluorescence spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The fibrillation tendencies of the wild-type insulins and the insulin mutants were (in order of decreasing fibrillation tendencies): Glu(B1) + Glu(B27) = bovine < human < des-(B1,B2)-insulin < Ser(B2) + Asp(B10) < Glu(A13) + Glu(B10) = Gln(B17) < Asp(B10). Transmission electron micrographs showed that the protofibrils of the mutants were similar to those of wild-type insulins and had a diameter of 5-10 nm and lengths varying from 50 nm to several microns. The fibrils of human insulin mutants exhibited varying degrees of lateral aggregation. The Asp(B10) mutant and human insulin had greater tendency to form laterally aggregated fibrils arranged in parallel bundles, whereas fibrils of the other mutants and bovine insulin were mainly arranged in helical filaments. FTIR spectroscopy showed that the native secondary structure of the wild-type insulins and the human insulin mutants in hydrochloric acid were identical, whereas the secondary structure of the fibrils formed by heating at 50 degrees C depended on the amino acid substitution. FTIR spectra of fibrils of the human insulin mutants exhibited different beta-sheet bands at 1,620-1,640 cm(-1), indicating that the beta-sheet interactions in the fibrils depended on variations in the primary structure of insulin. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2473-2480, 2002

  9. Purification of beta-acetylglucosaminase and beta-galactosidase from ram testis.

    Science.gov (United States)

    Caygill, J C; Roston, C P; Jevons, F R

    1966-02-01

    1. The presence of beta-galactosidase (EC 3.2.1.23) in an acetic acid extract of ram testis is reported. Some properties of the crude enzyme preparation were studied. 2. The purification of beta-acetylglucosaminase (EC 3.2.1.30) and of beta-galactosidase from the ram-testis extract by ammonium sulphate precipitation and chromatography on a CM-cellulose column is described. 3. The final purifications of the separated enzymes achieved were for the beta-acetylglucosaminase 35 times and for the beta-galactosidase 99 times. 4. The possibility of using DEAE-cellulose and Sephadex G-200 to purify the enzymes was investigated.

  10. Insight into biogeochemical inputs and composition of Greenland Ice Sheet surface snow and glacial forefield river catchment environments.

    Science.gov (United States)

    Cameron, Karen; Hagedorn, Birgit; Dieser, Markus; Christner, Brent; Choquette, Kyla; Sletten, Ronald; Lui, Lu; Junge, Karen

    2014-05-01

    The volume of freshwater transported from Greenland to surrounding marine waters has tended to increase annually over the past four decades as a result of warmer surface air temperatures (Bamber et al 2012, Hanna et al 2008). Ice sheet run off is estimated to make up approximately of third of this volume (Bamber et al 2012). However, the biogeochemical composition and seeding sources of the Greenland Ice Sheet supraglacial landscape is largely unknown. In this study, the structure and diversity of surface snow microbial assemblages from two regions of the western Greenland Ice Sheet ice-margin was investigated through the sequencing of small subunit rRNA genes. Furthermore, the origins of microbiota were investigated by examining correlations to molecular data obtained from marine, soil, freshwater and atmospheric environments and to geochemical analytes measured in the snow. Snow was found to contain a diverse assemblage of bacteria (Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria) and eukarya (Alveolata, Fungi, Stramenopiles and Viridiplantae). Phylotypes related to archaeal Thaumarchaeota and Euryarchaeota phyla were also identified. The structure of microbial assemblages was found to have strong similarities to communities sampled from marine and air environments, and sequences obtained from the South-West region, near Kangerlussuaq, which is bordered by an extensive periglacial expanse, had additional resemblances to soil originating communities. Strong correlations were found between bacterial beta diversity and Na+ and Cl- concentrations. These data suggest that surface snow from western regions of Greenland contain microbiota that are most likely derived from exogenous, wind transported sources. Downstream of the supraglacial environment, Greenland's rivers likely influence the ecology of localized estuary and marine systems. Here we characterize the geochemical and biotic composition of a glacial and glacial forefield fed river catchment in

  11. Localisation of Neuregulin 1-{beta}3 to different sub-nuclear structures alters gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ming; Trim, Carol M.; Gullick, William J., E-mail: w.j.gullick@kent.ac.uk

    2011-02-15

    Neuregulins are growth factors that signal via the ErbB3 and ErbB4 receptors. Here we show using immunohistochemistry that they are often expressed in the nucleus of a range of tumour types including soft tissue and breast. The Neuregulin 1 type I-{beta}3 (NRG1-{beta}3) isoform localises to two sub-nuclear compartments in animal cells, nucleoli and spliceosomes. We used NRG1-{beta}3 tagged with photoactivatable GFP and demonstrated that this re-localised from nucleoli to spliceosomes over 90 min. Tyrosine kinase activity was not required for retaining the NRG1-{beta}3 within the nucleus. Mutation of the lysines 14 and 16 or 15 and 16 together prevented nucleolar uptake while four positively charged residues were identified which were required for spliceosome uptake. Molecular modelling suggests that three of these may form a binding site. We showed using a kinome array that NRG1-{beta}3 and a mutant exclusively localising to spliceosomes increased phosphorylation and/or expression of the HER4 and HER2 receptors. Using a transcriptomic analysis the same two constructs induced expression of several messenger RNAs and we confirmed the increased expression at the protein level of the most highly induced, Heat Shock Protein 70B'. These results suggest that Neuregulin activates receptor signalling in spliceosomes leading to altered gene expression.

  12. Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants.

    Science.gov (United States)

    Arnan, Xavier; Cerdá, Xim; Retana, Javier

    2015-01-01

    We analyze the relative contribution of environmental and spatial variables to the alpha and beta components of taxonomic (TD), phylogenetic (PD), and functional (FD) diversity in ant communities found along different climate and anthropogenic disturbance gradients across western and central Europe, in order to assess the mechanisms structuring ant biodiversity. To this aim we calculated alpha and beta TD, PD, and FD for 349 ant communities, which included a total of 155 ant species; we examined 10 functional traits and phylogenetic relatedness. Variation partitioning was used to examine how much variation in ant diversity was explained by environmental and spatial variables. Autocorrelation in diversity measures and each trait's phylogenetic signal were also analyzed. We found strong autocorrelation in diversity measures. Both environmental and spatial variables significantly contributed to variation in TD, PD, and FD at both alpha and beta scales; spatial structure had the larger influence. The different facets of diversity showed similar patterns along environmental gradients. Environment explained a much larger percentage of variation in FD than in TD or PD. All traits demonstrated strong phylogenetic signals. Our results indicate that environmental filtering and dispersal limitations structure all types of diversity in ant communities. Strong dispersal limitations appear to have led to clustering of TD, PD, and FD in western and central Europe, probably because different historical and evolutionary processes generated different pools of species. Remarkably, these three facets of diversity showed parallel patterns along environmental gradients. Trait-mediated species sorting and niche conservatism appear to structure ant diversity, as evidenced by the fact that more variation was explained for FD and that all traits had strong phylogenetic signals. Since environmental variables explained much more variation in FD than in PD, functional diversity should be a

  13. Autolysis control and structural changes of purified ficin from Iranian fig latex with synthetic inhibitors.

    Science.gov (United States)

    Zare, H; Moosavi-Movahedi, A A; Salami, M; Sheibani, N; Khajeh, K; Habibi-Rezaei, M

    2016-03-01

    The fig's ficin is a cysteine endoproteolytic enzyme, which plays fundamental roles in many plant physiological processes, and has many applications in different industries such as pharmaceutical and food. In this work, we report the inhibition and activation of autolysis and structural changes associated with reaction of ficin with iodoacetamide and tetrathionate using high-performance liquid chromatography (HPLC), ultra filtration membrane, and dynamic light scattering (DLS) methods. The ficin structural changes were also determined using UV-absorption, circular dichroism (CD), fluorescence spectroscopy, and differential scanning calorimetry (DSC) techniques. These techniques demonstrated that iodoacetamide completely inhibited ficin autolysis, which was irreversible. However, tetrathionate partially and reversibility inhibited its autolysis. The ficin structural changes with two synthetic inhibitors were associated with secondary structural changes related to decreased alpha-helix and increased beta sheet and random coil conformations, contributing to its aggregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Multi-layered fabrication of large area PDMS flexible optical light guide sheets

    Science.gov (United States)

    Green, Robert; Knopf, George K.; Bordatchev, Evgueni V.

    2017-02-01

    Large area polydimethylsiloxane (PDMS) flexible optical light guide sheets can be used to create a variety of passive light harvesting and illumination systems for wearable technology, advanced indoor lighting, non-planar solar light collectors, customized signature lighting, and enhanced safety illumination for motorized vehicles. These thin optically transparent micro-patterned polymer sheets can be draped over a flat or arbitrarily curved surface. The light guiding behavior of the optical light guides depends on the geometry and spatial distribution of micro-optical structures, thickness and shape of the flexible sheet, refractive indices of the constituent layers, and the wavelength of the incident light. A scalable fabrication method that combines soft-lithography, closed thin cavity molding, partial curing, and centrifugal casting is described in this paper for building thin large area multi-layered PDMS optical light guide sheets. The proposed fabrication methodology enables the of internal micro-optical structures (MOSs) in the monolithic PDMS light guide by building the optical system layer-by-layer. Each PDMS layer in the optical light guide can have the similar, or a slightly different, indices of refraction that permit total internal reflection within the optical sheet. The individual molded layers may also be defect free or micro-patterned with microlens or reflecting micro-features. In addition, the bond between adjacent layers is ensured because each layer is only partially cured before the next functional layer is added. To illustrate the scalable build-by-layers fabrication method a three-layer mechanically flexible illuminator with an embedded LED strip is constructed and demonstrated.

  15. Supported Zeolite Beta Layers via an Organic Template-Free Preparation Route

    Directory of Open Access Journals (Sweden)

    Stephanie Reuss

    2018-01-01

    Full Text Available Layers of high silica zeolites, synthesized with an organic structure directing agent (OSDA and grown onto porous support structures, frequently suffer from the thermal stress during the removal of OSDA via the calcination process. The different thermal expansion coefficients of the zeolite and the support material, especially when stainless steel is used as a support, causes enormous tension resulting in defect formation in the zeolite layer. However, the calcination is an easy procedure to decompose the OSDA in the pore system of the zeolite. Recently, methods to synthesize zeolite beta without the use of an organic structure directing agent have been described. In the present study, a seed-directed synthesis is used to prepare OSDA-free zeolite beta layers on stainless steel supports via an in situ preparation route. For the application as membrane, a porous stainless steel support has been chosen. The beta/stainless steel composites are characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. To prove its possible application as a membrane, the beta/stainless steel composites were also tested by single gas permeances of H2, He, CO2, N2, and CH4.

  16. Supported Zeolite Beta Layers via an Organic Template-Free Preparation Route.

    Science.gov (United States)

    Reuss, Stephanie; Sanwald, Dirk; Schülein, Marion; Schwieger, Wilhelm; Al-Thabaiti, Shaeel A; Mokhtar, Mohamed; Basahel, Sulaiman N

    2018-01-21

    Layers of high silica zeolites, synthesized with an organic structure directing agent (OSDA) and grown onto porous support structures, frequently suffer from the thermal stress during the removal of OSDA via the calcination process. The different thermal expansion coefficients of the zeolite and the support material, especially when stainless steel is used as a support, causes enormous tension resulting in defect formation in the zeolite layer. However, the calcination is an easy procedure to decompose the OSDA in the pore system of the zeolite. Recently, methods to synthesize zeolite beta without the use of an organic structure directing agent have been described. In the present study, a seed-directed synthesis is used to prepare OSDA-free zeolite beta layers on stainless steel supports via an in situ preparation route. For the application as membrane, a porous stainless steel support has been chosen. The beta/stainless steel composites are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). To prove its possible application as a membrane, the beta/stainless steel composites were also tested by single gas permeances of H₂, He, CO₂, N₂, and CH₄.

  17. A novel method of producing a microcrystalline beta-sitosterol suspension in oil

    DEFF Research Database (Denmark)

    Christiansen, Leena I; Rantanen, Jukka T; von Bonsdorff, Anna K

    2002-01-01

    This paper describes a novel method of producing a microcrystalline oral suspension containing beta-sitosterol in oil for the treatment of hypercholesterolaemia. beta-Sitosterol pseudopolymorphs with different water contents were crystallized from acetone and acetone-water solutions. Structural...

  18. Study of the {rho}-bar, {beta}-bar and {lambda} parameters of a light-water reactor; Etude des parametres {rho}-bar, {beta}-bar et {lambda} d'une pile a eau legere

    Energy Technology Data Exchange (ETDEWEB)

    Riche, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-09-01

    The kinetic and perturbation equations are derived from the time-dependent transport equation. Kinetic equations depend only on the ratios a = {rho}-bar/{beta}-bar and b = {beta}-bar/{lambda}, which are definite, while the reactivity {rho}-bar, the delayed neutron fraction ({beta}-bar and the generation time {lambda} are expressed in terms of an arbitrary function I. The 'static' definitions of these parameters, which reduce kinetic problems to a set of purely term dependent equations, introduce the effective fraction {beta}-bar. One way of determining experimentally the ratio b is presented; it consists in analysing the power transient after a rapid variation of the reactivity, caused by the implosion of an empty glass-bull. A simple interpretation is proposed. The apparatus can be transformed easily into a reactimeter. The value of the effective delayed neutron fraction {beta}-bar has been determined by averaging the reactivity effects of a copper sheet through out the reactor core. Experimental results: b = {beta}-bar/{lambda} = 129 s{sup -1} and {beta}-bar 795.10{sup -5}, have been determined on a light-water moderated, enriched-uranium fuelled reactor. The calculated values of the effectiveness of delayed neutrons {gamma} {beta}-bar/{beta} 1.23 and the generation time {lambda} 59.10{sup -6}s agrees fairly well with the experimental results. (author) [French] Les equations de la cinetique et de la perturbation sont deduites de la theorie du transport, par l'intermediaire de la 'notion' d'importance des neutrons. La cinetique ne depend que des rapports a = {rho}-bar/{beta}-bar et b = {beta}-bar/{lambda}, qui sont parfaitement definis; par contre, la reactivite {rho}-bar, la proportion de neutrons retardes {beta}-bar et le temps de generation des neutrons prompts {lambda} s'expriment a l'aide d'une meme fonction arbitraire I. Les definitions 'statiques' de ces parametres, qui permettent de rendre compte de la

  19. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid.

    Science.gov (United States)

    Um, I C; Kweon, H Y; Park, Y H; Hudson, S

    2001-08-20

    Structural characteristics and thermal and solution properties of the regenerated silk fibroin (SF) prepared from formic acid (FU) were compared with those of SF from water (AU). According to the turbidity and shear viscosity measurement, SF formic acid solution was stable and transparent, no molecular aggregations occurred. The sample FU exhibited the beta-sheet structure, while AU random coil conformation using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry. The effects of methanol treatment on samples were also examined. According to the measurement of crystallinity (XRD) and crystallinity index (FTIR), the concept of long/short-range ordered structure formation was proposed. Long-range ordered crystallites are predominantly formed for methanol treated SF film while SF film cast from formic acid favors the formation of short-range ordered structure. The relaxation temperatures of SF films measured by dynamic thermomechanical analysis supported the above mechanism due to the sensitivity of relaxation temperature on the short-range order.

  20. Flexible shielding material sheet for radiations

    International Nuclear Information System (INIS)

    Kokan, Susumu; Fukuoka, Masasuke.

    1976-01-01

    Object: To provide a soft sheet of shielding material for radioactive rays without involving no problem such as environmental contamination, without generating intense second radioactive rays such as conventional cadmium. Structure: 100 weight parts of boron compound (boron carbide, boric acid anhydride) and 5 to 60 weight parts of low molecular-weight polyethylene resin, of which average molecular weight is less than 8000, are agitated in a mixer and during agitation are increased in temperature to a level above a softening temperature of the polyethylene resin to obtain a mixture in which the boron compound is coated with the low molecular-weight polyethylene. Next, 3 to 200 weight parts of the resultant mixture and 100 weight parts of olefin group resin (ethylene-vinyl acetate copolymer, styrene-butadiene random copolymer) are evenly mixed within an agitator such as a tumbler to form a sheet having the desired thickness and dimension. The thus obtained shielding material generates no capture gamma radiation. (Kamimura, M.)

  1. Transfer and Dynamic Inversion of Coassembled Supramolecular Chirality through 2D-Sheet to Rolled-Up Tubular Structure.

    Science.gov (United States)

    Choi, Heekyoung; Cho, Kang Jin; Seo, Hyowon; Ahn, Junho; Liu, Jinying; Lee, Shim Sung; Kim, Hyungjun; Feng, Chuanliang; Jung, Jong Hwa

    2017-12-13

    Transfer and inversion of supramolecular chirality from chiral calix[4]arene analogs (3D and 3L) with an alanine moiety to an achiral bipyridine derivative (1) with glycine moieties in a coassembled hydrogel are demonstrated. Molecular chirality of 3D and 3L could transfer supramolecular chirality to an achiral bipyridine derivative 1. Moreover, addition of 0.6 equiv of 3D or 3L to 1 induced supramolecular chirality inversion of 1. More interestingly, the 2D-sheet structure of the coassembled hydrogels formed with 0.2 equiv of 3D or 3L changed to a rolled-up tubular structure in the presence of 0.6 equiv of 3D or 3L. The chirality inversion and morphology change are mainly mediated by intermolecular hydrogen-bonding interactions between the achiral and chiral molecules, which might be induced by reorientations of the assembled molecules, confirmed by density functional theory calculations.

  2. Process control for sheet-metal stamping process modeling, controller design and shop-floor implementation

    CERN Document Server

    Lim, Yongseob; Ulsoy, A Galip

    2014-01-01

    Process Control for Sheet-Metal Stamping presents a comprehensive and structured approach to the design and implementation of controllers for the sheet metal stamping process. The use of process control for sheet-metal stamping greatly reduces defects in deep-drawn parts and can also yield large material savings from reduced scrap. Sheet-metal forming is a complex process and most often characterized by partial differential equations that are numerically solved using finite-element techniques. In this book, twenty years of academic research are reviewed and the resulting technology transitioned to the industrial environment. The sheet-metal stamping process is modeled in a manner suitable for multiple-input multiple-output control system design, with commercially available sensors and actuators. These models are then used to design adaptive controllers and real-time controller implementation is discussed. Finally, experimental results from actual shopfloor deployment are presented along with ideas for further...

  3. Betting Against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model’s five central predictions: (1) Since constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for U...... of the BAB factor is low; (4) Increased funding liquidity risk compresses betas toward one; (5) More constrained investors hold riskier assets........S. equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures; (2) A betting-against-beta (BAB) factor, which is long leveraged low beta assets and short high-beta assets, produces significant positive risk-adjusted returns; (3) When funding constraints tighten, the return...

  4. Vitamin and Mineral Supplement Fact Sheets

    Science.gov (United States)

    ... website Submit Search NIH Office of Dietary Supplements Vitamin and Mineral Supplement Fact Sheets Search the list ... Supplements: Background Information Botanical Dietary Supplements: Background Information Vitamin and Mineral Fact Sheets Botanical Supplement Fact Sheets ...

  5. Tunable electronic, electrical and optical properties of graphene oxide sheets by ion irradiation

    Science.gov (United States)

    Jayalakshmi, G.; Saravanan, K.; Panigrahi, B. K.; Sundaravel, B.; Gupta, Mukul

    2018-05-01

    The tunable electronic, electrical and optical properties of graphene oxide (GO) sheets were investigated using a controlled reduction by 500 keV Ar+-ion irradiation. The carbon to oxygen ratio of the GO sheets upon the ion beam reduction has been estimated using resonant Rutherford backscattering spectrometry analyses and its effect on the electrical and optical properties of GO sheets has been studied using sheet resistance measurements and photoluminescence (PL) measurements. The restoration of sp 2-hybridized carbon atoms within the sp 3 matrix is found to be increases with increasing the Ar+-ion fluences as evident from Fourier transform infrared, and x-ray absorption near-edge structure measurements. The decrease in the number of disorder-induced local density of states (LDOSs) within the π-π* gap upon the reduction causes the shifting of PL emission from near infra-red to blue region and decreases the sheet resistance. The improved electrical and optical properties of GO sheets were correlated to the decrease in the number of LDOSs within the π-π* gap. Our experimental investigations suggest ion beam irradiation is one of an effective approaches to reduce GO to RGO and to tailor its electronic, electrical and optical properties.

  6. Conversion of beta-methylbutyric acid to beta-hydroxy-beta-methylbutyric acid by Galactomyces reessii.

    OpenAIRE

    Lee, I Y; Nissen, S L; Rosazza, J P

    1997-01-01

    beta-Hydroxy-beta-methylbutyric acid (HMB) has been shown to increase strength and lean mass gains in humans undergoing resistance-exercise training. HMB is currently marketed as a calcium salt of HMB, and thus, environmentally sound and inexpensive methods of manufacture are being sought. This study investigates the microbial conversion of beta-methylbutyric acid (MBA) to HMB by cultures of Galactomyces reessii. Optimal concentrations of MBA were in the range of 5 to 20 g/liter for HMB produ...

  7. Covalent addition of chitosan to graphene sheets: Density functional theory explorations of quadrupole coupling constants

    Science.gov (United States)

    Mokhtari, Ali; Harismah, Kun; Mirzaei, Mahmoud

    2015-12-01

    Density functional theory (DFT) calculations have been performed to detect the stabilities and properties of chitosan-functionalized graphene and graphene-oxide structures (G-Chit and GO-Chit). The model systems with two different sizes of sheets have been optimized and the molecular and atomic properties have been evaluated for them. The results indicated that investigated G-Chit and GO-Chit structures could be considered as stable structures but with different properties. The properties for GO and GO-Chit structures are almost similar; however, they are different from the original G and G-Chit structures. The results also indicated that the properties could be also size-dependent, in which different molecular and atomic properties have been observed for the investigate G sheets.

  8. Dynamics of Radially Expanding Liquid Sheets

    Science.gov (United States)

    Majumdar, Nayanika; Tirumkudulu, Mahesh S.

    2018-04-01

    The process of atomization often involves ejecting thin liquid sheets at high speeds from a nozzle that causes the sheet to flap violently and break up into fine droplets. The flapping of the liquid sheet has long been attributed to the sheet's interaction with the surrounding gas phase. Here, we present experimental evidence to the contrary and show that the flapping is caused by the thinning of the liquid sheet as it spreads out from the nozzle exit. The measured growth rates of the waves agree remarkably well with the predictions of a recent theory that accounts for the sheet's thinning but ignores aerodynamic interactions. We anticipate these results to not only lead to more accurate predictions of the final drop-size distribution but also enable more efficient designs of atomizers.

  9. FLEXURAL CAPACITY OF THE PRECAST RC BEAM-COLUMN CONNECTION USING CFRP SHEET

    OpenAIRE

    Djamaluddin, Rudy; Rante, Harmonis; Irmawaty, Rita

    2016-01-01

    Precast concrete have advantages in quality and shorter construction time. The connection of a precast concrete structures is important for the successful construction. This paper presents an experimental investigation of the flexural capacity of the portal system beam-column connection of precast concrete using CFRP sheet. The study was conducted to develop a connection system using CFRP sheet on a precast concrete frame of a highway bridges. A series of specimens with parameter of CFRP shee...

  10. Magnetic field structure of experimental high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Deniz, A.V.

    1986-01-01

    The magnetic field structure of several low and high β tokamaks in the Columbia High Beta Tokamak (HBT) was determined by high-impedance internal magnetic probes. From the measurement of the magnetic field, the poloidal flux, toroidal flux, toroidal current, and safety factor are calculated. In addition, the plasma position and cross-sectional shape are determined. The extent of the perturbation of the plasma by the probe was investigated and was found to be acceptably small. The tokamaks have major radii of approx.0.24 m, minor radii of approx.0.05 m, toroidal plasma current densities of approx.10 6 A/m 2 , and line-integrated electron densities of approx.10 20 m -2 . The major difference between the low and high β tokamaks is that the high β tokamak was observed to have an outward shift in major radius of both the magnetic center and peak of the toroidal current density. The magnetic center moves inward in major radius after 20 to 30 μsec, presumably because the plasma maintains major radial equilibrium as its pressure decreases from radiation due to impurity atoms. Both the equilibrium and the production of these tokamaks from a toroidal field stabilized z-pinch are modeled computationally. One tokamak evolves from a state with low β features, through a possibly unstable state, to a state with high β features

  11. Cortisone Dissociates the Shaker Family K Channels from their Beta Subunit

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.; Weng, J; Kabaleeswaran, V; Li, H; Cao, Y; Bholse, R; Zhou, M

    2008-01-01

    The Shaker family voltage-dependent potassium channels (Kv1) are expressed in a wide variety of cells and are essential for cellular excitability. In humans, loss-of-function mutations of Kv1 channels lead to hyperexcitability and are directly linked to episodic ataxia and atrial fibrillation. All Kv1 channels assemble with {Beta} subunits (Kv{Beta}s), and certain Kv{Beta}s, for example Kv{Beta}1, have an N-terminal segment that closes the channel by the N-type inactivation mechanism. In principle, dissociation of Kv{Beta}1, although never reported, should eliminate inactivation and thus potentiate Kv1 current. We found that cortisone increases rat Kv1 channel activity by binding to Kv{Beta}1. A crystal structure of the K{Beta}v-cortisone complex was solved to 1.82-{angstrom}resolution and revealed novel cortisone binding sites. Further studies demonstrated that cortisone promotes dissociation of Kv{Beta}. The new mode of channel modulation may be explored by native or synthetic ligands to fine-tune cellular excitability.

  12. Amyloidogenesis abolished by proline substitutions but enhanced by lipid binding.

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2009-04-01

    Full Text Available The influence of lipid molecules on the aggregation of a highly amyloidogenic segment of human islet amyloid polypeptide, hIAPP20-29, and the corresponding sequence from rat has been studied by all-atom replica exchange molecular dynamics (REMD simulations with explicit solvent model. hIAPP20-29 fragments aggregate into partially ordered beta-sheet oligomers and then undergo large conformational reorganization and convert into parallel/antiparallel beta-sheet oligomers in mixed in-register and out-of-register patterns. The hydrophobic interaction between lipid tails and residues at positions 23-25 is found to stabilize the ordered beta-sheet structure, indicating a catalysis role of lipid molecules in hIAPP20-29 self-assembly. The rat IAPP variants with three proline residues maintain unstructured micelle-like oligomers, which is consistent with non-amyloidogenic behavior observed in experimental studies. Our study provides the atomic resolution descriptions of the catalytic function of lipid molecules on the aggregation of IAPP peptides.

  13. Buckling and stretching of thin viscous sheets

    Science.gov (United States)

    O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich

    2016-11-01

    Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.

  14. Forward-Looking Betas

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Vainberg, Gregory

    Few issues are more important for finance practice than the computation of market betas. Existing approaches compute market betas using historical data. While these approaches differ in terms of statistical sophistication and the modeling of the time-variation in the betas, they are all backward......-looking. This paper introduces a radically different approach to estimating market betas. Using the tools in Bakshi and Madan (2000) and Bakshi, Kapadia and Madan (2003) we employ the information embedded in the prices of individual stock options and index options to compute our forward-looking market beta...

  15. Hypertrophic stimulation increases beta-actin dynamics in adult feline cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sundaravadivel Balasubramanian

    2010-07-01

    Full Text Available The myocardium responds to hemodynamic stress through cellular growth and organ hypertrophy. The impact of cytoskeletal elements on this process, however, is not fully understood. While alpha-actin in cardiomyocytes governs muscle contraction in combination with the myosin motor, the exact role of beta-actin has not been established. We hypothesized that in adult cardiomyocytes, as in non-myocytes, beta-actin can facilitate cytoskeletal rearrangement within cytoskeletal structures such as Z-discs. Using a feline right ventricular pressure overload (RVPO model, we measured the level and distribution of beta-actin in normal and pressure overloaded myocardium. Resulting data demonstrated enriched levels of beta-actin and enhanced translocation to the Triton-insoluble cytoskeletal and membrane skeletal complexes. In addition, RVPO in vivo and in vitro hypertrophic stimulation with endothelin (ET or insulin in isolated adult cardiomyocytes enhanced the content of polymerized fraction (F-actin of beta-actin. To determine the localization and dynamics of beta-actin, we adenovirally expressed GFP-tagged beta-actin in isolated adult cardiomyocytes. The ectopically expressed beta-actin-GFP localized to the Z-discs, costameres, and cell termini. Fluorescence recovery after photobleaching (FRAP measurements of beta-actin dynamics revealed that beta-actin at the Z-discs is constantly being exchanged with beta-actin from cytoplasmic pools and that this exchange is faster upon hypertrophic stimulation with ET or insulin. In addition, in electrically stimulated isolated adult cardiomyocytes, while beta-actin overexpression improved cardiomyocyte contractility, immunoneutralization of beta-actin resulted in a reduced contractility suggesting that beta-actin could be important for the contractile function of adult cardiomyocytes. These studies demonstrate the presence and dynamics of beta-actin in the adult cardiomyocyte and reinforce its usefulness in measuring

  16. Class of analytic solutions for the thermally balanced magnetostatic prominence sheet

    International Nuclear Information System (INIS)

    Low, B.C.; Wu, S.T.

    1981-01-01

    This is a theoretical study of the nonlinear interplay between magnetostatic equilibrium and energy balance in a Kippenhahn-Schlueter type prominence sheet. The basic effects are illustrated explicitly with an analytic model in which a radiative loss proportional to rho 2 T balances against wave heating proportional to rho, with thermal conduction confined along magnetic field lines, where rho and T denote the plasma density and temperature, respectively. The particular choices of heat sink and source enable us to integrate the governing equations exactly while they are of the basic mathematical forms to simulate radiative loss in an optically thin plasma which is heated by wave dissipation. The steady solutions exhibit three different basic behaviors, characterized by the total wave heating in the prominence sheet being more than, equal to, or less than the total radiative loss. It is the compaction of the plasma along the field lines under its own weight combined with the effects of energy transport that determines which of the three basic behaviors obtains in a particular situation. The implications of the steady solutions for the formation of prominences are discussed. The exact solutions presented do not support the conclusion of Milne, Priest, and Roberts that there is an upper bound on the plasma beta for an equilibrium of the Kippenhahn-Schlueter prominence

  17. Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin.

    Science.gov (United States)

    Hwang, P M; Zhou, N; Shan, X; Arrowsmith, C H; Vogel, H J

    1998-03-24

    The solution structure of bovine lactoferricin (LfcinB) has been determined using 2D 1H NMR spectroscopy. LfcinB is a 25-residue antimicrobial peptide released by pepsin cleavage of lactoferrin, an 80 kDa iron-binding glycoprotein with many immunologically important functions. The NMR structure of LfcinB reveals a somewhat distorted antiparallel beta-sheet. This contrasts with the X-ray structure of bovine lactoferrin, in which residues 1-13 (of LfcinB) form an alpha-helix. Hence, this region of lactoferricin B appears able to adopt a helical or sheetlike conformation, similar to what has been proposed for the amyloidogenic prion proteins and Alzheimer's beta-peptides. LfcinB has an extended hydrophobic surface comprised of residues Phe1, Cys3, Trp6, Trp8, Pro16, Ile18, and Cys20. The side chains of these residues are well-defined in the NMR structure. Many hydrophilic and positively charged residues surround the hydrophobic surface, giving LfcinB an amphipathic character. LfcinB bears numerous similarities to a vast number of cationic peptides which exert their antimicrobial activities through membrane disruption. The structures of many of these peptides have been well characterized, and models of their membrane-permeabilizing mechanisms have been proposed. The NMR solution structure of LfcinB may be more relevant to membrane interaction than that suggested by the X-ray structure of intact lactoferrin. Based on the solution structure, it is now possible to propose potential mechanisms for the antimicrobial action of LfcinB.

  18. 3D tissue formation by stacking detachable cell sheets formed on nanofiber mesh.

    Science.gov (United States)

    Kim, Min Sung; Lee, Byungjun; Kim, Hong Nam; Bang, Seokyoung; Yang, Hee Seok; Kang, Seong Min; Suh, Kahp-Yang; Park, Suk-Hee; Jeon, Noo Li

    2017-03-23

    We present a novel approach for assembling 3D tissue by layer-by-layer stacking of cell sheets formed on aligned nanofiber mesh. A rigid frame was used to repeatedly collect aligned electrospun PCL (polycaprolactone) nanofiber to form a mesh structure with average distance between fibers 6.4 µm. When human umbilical vein endothelial cells (HUVECs), human foreskin dermal fibroblasts, and skeletal muscle cells (C2C12) were cultured on the nanofiber mesh, they formed confluent monolayers and could be handled as continuous cell sheets with areas 3 × 3 cm 2 or larger. Thicker 3D tissues have been formed by stacking multiple cell sheets collected on frames that can be nested (i.e. Matryoshka dolls) without any special tools. When cultured on the nanofiber mesh, skeletal muscle, C2C12 cells oriented along the direction of the nanofibers and differentiated into uniaxially aligned multinucleated myotube. Myotube cell sheets were stacked (upto 3 layers) in alternating or aligned directions to form thicker tissue with ∼50 µm thickness. Sandwiching HUVEC cell sheets with two dermal fibroblast cell sheets resulted in vascularized 3D tissue. HUVECs formed extensive networks and expressed CD31, a marker of endothelial cells. Cell sheets formed on nanofiber mesh have a number of advantages, including manipulation and stacking of multiple cell sheets for constructing 3D tissue and may find applications in a variety of tissue engineering applications.

  19. Growth and Characterization of PbO Nano rods Grown using Facile Oxidation of Lead Sheet

    International Nuclear Information System (INIS)

    Yousefi, R.; Sheini, F.J.; Saaedi, A.; Cheraghizade, M.

    2015-01-01

    PbO nano rods were synthesized by oxidation of lead sheets under an oxygen ambience with different temperatures at 330, 400, 450 and 550 degree Celsius in a tube furnace. Scanning electron microscope (SEM) results showed that the nano rods started growing on the sheet that was placed at 330 degree Celsius. On the other hand, by increasing of the temperature to 550 degree Celsius more nano rods appeared on the Pb sheet, which were lied on the lead sheet. X-ray diffraction pattern (XRD) indicated that the nano rods had α-PbO structures. However, a few β-PbO phases also appeared for the nano rods. Raman measurements confirmed the XRD results and indicated two Raman active modes that belonged to α-PbO phase for the nano rods. In addition, the Raman spectrum of the nano rods showed a weak peak of the β-PbO structure. The optical properties of the products were characterized using a room temperature photoluminescence (PL) technique. The PL result indicated a band gap for the PbO nano rods in the visible region. (author)

  20. Structural Basis for Substrate Specificity in Phosphate Binding (beta/alpha)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12

    Energy Technology Data Exchange (ETDEWEB)

    Chan,K.; Fedorov, A.; Almo, S.; Gerlt, J.

    2008-01-01

    Enzymes that share the ({beta}/{alpha})8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal ({beta}/a)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth {beta}-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ?T196, ?S197 and ?G198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the